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ABSTRACT

AN INFORMATION THEORETIC APPROACH TO ASSESS
PERCEIVED AUDIO QUALITY USING EEG WITH REDUCED

NUMBER OF ELECTRODES

by
Sansit Das

Electroencephalograph(EEG) is a process mainly used in medical and research fields

to study the electrical activities in a brain. In this technique, 128 or 256 electrodes

are attached to the scalp and the electrical activities of the human brain is recorded

with the help of a software. In the global scenario, the EEG responses are studied and

analysed to acknowledge any disorders in the brain, such as epilepsy or head injury.

Recent studies performed by researchers, have focused on analysing these electrical

activities to access perceived audio quality from users by using information theoretic

approaches, such as mutual information. Experiments were conducted by using a

total of 128 electrodes, comprised in 8 regions of interests. In the research, each

region is considered to have 9 electrodes each. The aim of this thesis was to build on

previous research, and to reduce the use of the number of electrodes, so as to reduce

the cost and complexity of the setup. In order to achieve this, first both the good and

the bad quality audios were analyzed, and a receiver operating characteristic curve is

plotted to draw a classification. Furthermore, a combination of different regions were

taken and their mutual information were calculated, in order to check which group of

regions give us the best result. This test is undertaken for each available combination

of 2 or 3 regions. The classification accuracy was obtained by a variance detector

approach and the accuracy was verified by computing z scores.
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CHAPTER 1

INTRODUCTION

It is a general understanding that the human brain acts as an information processing

device like a computer. It is known that the human brain works in a set of sequences,

namely receiving the input, processing the information and delivering the output.

Humans process the information they receive, rather than merely responding to

stimuli. It is this perspective that equates a human brain to a computer, which

is responsible for analyzing information from the environment. Information is taken

in through the senses, the information is then put through the short-term memory.

The information is then encoded to the long term memory, where the information is

then stored. The information can be retrieved when necessary.

According to neurobiology, this process is carried out by the neurons or nerve

cells present in the human brain. Human brain mainly consists of millions of neurons

which are playing an important role for controlling behavior of human body with

respect to internal, external motor and sensory stimuli. The neurons interact with

each other to communicate and process information based on which we see, hear,

move, think, make decisions and generally function. The central nervous system and

its network of neurons are at the heart of all the activity that happens in the body.

Understanding cognitive behaviour of brain can be done by analyzing either signals

or images from the brain.

Electroencephalography(EEG) is among the best techniques used to record,

analyse and interpret these signals or brain-wave patterns using an Electroencephalogram.

EEG is a well-established approach that enables the noninvasive recording of electrical
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activity in the human brain. EEG signals refer to voltage fluctuations in the

micro-volt range and they are frequently acquired to address clinical as well as research

questions. EEG is best suited to record these voltages because it has very high time

resolution and captures cognitive processes in the time frame in which cognition

occurs, directly measures neural activity, is inexpensive, lightweight, and portable,

and monitors cognitive-affective processing in absence of behavioral responses. Data

from these experiments are often multivariate, the interactions between the variables

are nonlinear, and the landscape of hypothesized or possible interactions between

variables is extremely broad.

Information Theory is the best mathematical approach to study these type of

time-varying, non-linear brain activities as it includes quantification, storage, and

communication of information. The foundation of information theory was laid in

1948 paper by Shannon titled, “A Mathematical Theory of Communication.” It is

a well suited stochastic statistical tool especially designed to quantify information

and to characterize and model neural response [1]-[9]. Key measures in information

theory are Entropy and Mutual Information(MI). Entropy quantifies the amount of

uncertainty involved in the value of a random variable or the outcome of a random

process. MI is a quantity that measures how much one random variables tells us about

another. It can be used to analyze EEG which is a non-directional connectivity

measure [10]. MI enables the estimation of both linear and non-linear statistical

dependencies between time series and can be used to detect functional coupling

[11]. Because neural dynamics almost certainly includes many highly nonlinear

processes, MI analysis may be helpful in understanding and quantifying the nonlinear

transmission of neural information within the brain[10], [12]-[15]. MI has also

effectively helped in the research of Abnormal cortical connections in nervous system

diseases, such as Alzheimer’s, schizophrenia and Parkinson’s[16]-[18]. Also, in the
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cercal sensory system of a cricket, MI transmission from stimulus to response is bound

using different approximations of Gaussian mixture models(GMMs)[19]. GMMs are

a probabilistic model for representing normally distributed sub-populations within an

overall population.

Apart from these works, which mainly focus on information flow in the neural

level, this research primarily focuses on high-level information flow between the

stimulus and the EEG sensor observations by the electrodes for determining the

perceived audio quality of human beings. In this setup, MI and Entropy have been

successfully employed to perceive the audio or video quality using EEG[24]-[27].

In [24], MI has been used as a measure to assess audio quality perception

by directly measuring the brainwave responses of the human subjects using a high

resolution EEG. The subjects are present with audio whose quality varies with time

between different possible quality levels, mainly comprising of the worst case scenario,

where there are two audio qualities, that is good quality and bad quality. Attempts

were made to replicate the results of [24] and it was successful to achieve the above

objectives.

More research on this topic, enables to assess the perceived audio quality using

EEG with reduced number of electrodes. In order to achieve this, following questions

were analyzed:

i. What is the minimum number of electrodes that we need in order to assess the

perceived audio quality using EEG?

ii. Is there a good classification between the good and the bad quality of audio

perceived after testing with the reduced number of electrodes?
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To answer these questions, we analyse the EEG recordings for all our subjects and we

divide the huge number of electrodes into specific segments called regions, with each

region consisting of 9 electrodes. By using an information theoretic approach and a

statistical approach, we take into account some region combinations and determine

the minimum number of electrodes. Further, by repeating the experiments with

different training and testing sets of the data, thus determine if there is a good

classification between the qualities of the audio signal.

The rest of the study is organised as follows. In Section 2, we provide an

overview of EEG, the ERP channel and the test sequence used in the analysis. In

Section 3, we provide the information theoretic approaches and the algorithms used

to determine the entire study. Then the results and the classification plots are shown

in Section 4 which is followed by a conclusion in Section 5.
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CHAPTER 2

DETAILED DESCRIPTION OF EEG

2.1 Electroencephalogram (EEG)

Electroencephalography is a process of detecting electrical activity in our brain by

using electrodes that are attached to the scalp. Figure 2.1 shows the arrangement of

128 EEG electrodes on the scalp of the brain. The brain cells communicate with each

other via electric impulses and are active all the time, even when a person is asleep.

The EEG records the post-synaptic dendritic currents from cortical pyramidal cells.

Not all electrical fields generated by the brain are strong enough to spread all the way

through tissue, bone and skull towards the scalp surface. Research studies indicate

that it is primarily the synchronized activity of the pyramidal neurons in cortical

brain regions which can be measured from the outside (from EEG devices). Their

name comes from the fact that they have pyramidal/triangular shaped cell body.

Figure 2.1 The Biosemi EEG cap of 128 electrodes.
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Our brain consists of hundreds of thousands of neurons. These neurons

have axons, that transmit neural transmitters and dendrites, that receive neuro-

transmitters. When the dendrites of a neuron receive neuro-transmitters from the

axons of other neurons, it causes an electrical polarity change inside of the neuron.

This polarity change is recorded by EEG. The activity of each of the neurons is very

difficult to be recorded by the EEG. So, EEG has electrodes with each electrode

recording the polarity change in thousands of neurons. An area of a group of neurons

working together is called an LFP (Local Field Potential)[28]-[29].

When the EEG signal is time-locked to a stimulus, then the amplitude or

potential measured is called ERP (Event Related Potential).The time period

before stimulus in an ERP is called baseline. EEG is recorded using the technology

of the Differential Amplifier. The differential amplifier takes two electrical inputs and

gives output as the difference between the two inputs. Similarly, the EEG also takes

the inputs from two electrodes and gives the difference of the potentials from these

two electrodes as the output.

The large number of neurons in the human brain have highly complex firing

patterns, mixing in a rather complicated fashion. The neural oscillations that are

measured with EEG are even visible in raw, unprocessed data. However, the signal

is always a mixture of several underlying base frequencies, which are considered to

reflect certain cognitive or attentional states. Since these frequencies vary slightly

dependent on individual factors, these are classified based on specific frequency ranges,

or frequency bands: Delta band (less than 5 Hz), Theta band (4 – 8 Hz), Alpha band

(8 – 12 Hz), beta band (more than 12 Hz) and gamma band (more than 25 Hz). The

brain wave frequency bands are shown in Figure 2.2[32].
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Figure 2.2 Brain Wave Frequency Bands with their respective patterns.

2.2 ERP Channel

An event-related potential (ERP) are the scalp-recorded voltage fluctuations that

results from specific sensory, cognitive, or motor event[30]. More formally, it is any

stereotyped electrophysiological response to a stimulus. The study of the brain in

this way provides a noninvasive means of evaluating brain functioning.

Event-related potentials (ERPs) are very small voltages generated in the brain

structures in response to specific events or stimuli. They provide safe and noninvasive

approach to study psycho-physiological correlates of mental processes. They are

thought to reflect the summed activity of postsynaptic potentials produced when

a large number of similarly oriented cortical pyramidal neurons (in the order of

thousands or millions) fire in synchrony while processing information. ERPs in

humans can be divided into 2 categories. The early waves, or components peaking

roughly within the first 100 milliseconds after stimulus, are termed sensory or

exogenous as they depend largely on the physical parameters of the stimulus. The

ERPs generated in later parts reflect the manner in which the subject evaluates the

stimulus and are termed cognitive or endogenous ERPs as they examine information
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processing[31].

ERP waveforms consist of a series of positive and negative voltage deflections,

which are related to a set of underlying components[32]. Though some ERP

components are referred to with acronyms (like contingent negative variation is CNV,

error-related negativity is ERN), other components are referred to by a letter (N/P)

indicating polarity (negative/positive), followed by a number indicating either the

latency is in milliseconds or the component’s ordinal position in the waveform. For

instance, a negative-going peak that is the first substantial peak in the waveform and

often occurs about 100 milliseconds after a stimulus is represented as N100 (indicating

its latency is 100 ms after the stimulus and that it is negative) or N1 (indicating that

it is the first peak and is negative). If it is often followed by a positive peak, then

it can be referred to as P200 or P2. The stated latencies for ERP components are

often quite variable, particularly so for the later components that are related to the

cognitive processing of the stimulus. For example, the P300 component may exhibit

a peak anywhere between 250 ms to 700 ms.

For our research, the ERP channel considered here is equivalent to a SIMO(Single

Input Multiple Output) channel with unknown characteristics, where the ’single

input’ refers to the quality of the audio stimulus and the ’multiple output’ refers

to the observations at the EEG sensor electrodes on the scalp.

2.3 EEG Data and Audio Test Sequence

The data captured from the EEG system on each of the 128 spatial channels or

electrodes are sampled at 1kHz. An average re-referencing, baseline removal and high

pass filtering was performed to remove any DC noise component resulting from eye

blinks, movements, and facial muscle artifacts. It was noticed that for each trial, we
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have a very large multidimensional data-set. So, in order to analyse the data, the 128

electrodes are grouped into 8 regions of interests[24].

Each and every audio test sequence used here were created from three different

base sequences which were sampled at 44.1kHz with a precision of 16 bits per sample.

36 second long test sequences were created with a mixture of both high and low

quality of audio. Out of the 36 second long sequence, the first 1 second and the last

5 seconds are fed with no distortions. The remaining 30 second long duration is fed

up with either Frequency Truncation distortion or Scalar Quantization distortion[0].
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CHAPTER 3

INFORMATION THEORETIC DEFINITIONS AND ALGORITHMS

3.1 Entropy

Entropy is the average rate at which information is produced by a stochastic source

of data. Calculating information entropy is a useful tool in machine learning and

information theory and is used as the basis for techniques such as feature selection,

building decision trees, and, more generally, fitting classification models. Entropy

provides a measure of the average amount of information needed to represent an

event drawn from a probability distribution for a random variable. The measure of

information entropy associated with each possible data value is the negative logarithm

of the probability mass function for the value.

H(X) = −
n∑
i=1

P (xi)logbP (xi) (3.1)

where H(X) denotes the entropy of random variable X, P(x) is the probability

distribution of x and n is the number of samples of X.

Information entropy is typically measured in bits(also called Shannons) or

sometimes in natural units (nats). For this analysis, all logarithms to base 2 were

taken, thus measuring the entropy and MI in bits.

The dynamic range for Entropy is between 0 and 1. The present experiment reveals

the entropy within the dynamic range.

3.2 Mutual Information

Mutual Information quantifies the amount of information obtained about one random

variable through observing the other random variable.
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Mutual Information is also known as information gain.

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

= H(X, Y )−H(X|Y )−H(Y |X)

Here, X is the ERP channel input and Y is the ERP channel output. Similar

to entropy, the dynamic range for the MI value is between 0 and 1.

MI is used to predict the perception of the stimulus. The perception of stimulus

is an equiprobable Bernoulli distribution containing two values, either high or low

quality. Since, we are only interested in the MI between X and Y, a moderate-to-high

value of MI is sufficient enough to indicate that the EEG data output is related to

the input stimulus, which means it contains data about the audio quality.

Mutual information has many appealing information theoretic properties. A

widely recognized advantage of mutual information is that it allows one to detect

non-linear relationships. This can be attractive in particular when dealing with time

series data [34]. For categorical variables, mutual information is (asymptotically)

equivalent to other widely used statistical association measures such as the likelihood

ratio statistic or the Pearson chi-square test. In this case, all of these measures

(including MI) are arguably optimal association measures. Interpreting MI as a

likelihood ratio test statistic facilitates a straightforward approach for adjusting the

association measure for additional covariates [35].
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3.3 Gaussian Mixture Models

There has been many research work about Gaussian Mixture Models (GMMs) and

Split-Merge Algorithms. Being an extremely powerful probability model, GMM

has been widely used in fields of pattern recognition, information processing and

data mining. GMMs have also been used for feature extraction from speech data,

and used extensively in object tracking of multiple objects, where the number of

mixture components and their means predict object locations at each frame in

a video sequence. If the number of the Gaussians in a mixture is known, the

Expectation-Maximization (EM) algorithm could be used to estimate the parameters

in the Gaussian mixture model. However, if the number of Gaussians in the mixture

is not known or the computation of the GMMs is complex, then it is very difficult to

have an estimation of the parameters in the GMMs.

Here, Taylor Series has been used to calculate the entropy of the Gaussian

mixture since the computation of higher order terms is very complex and time taking.

Moreover, since we are considering brain activity here, which is non-linear and time

varying, Gaussian splitting has become highly important. Also, as we are having two

inputs(i.e., good and bad quality audio), namely x1 and x2, our probability of the

output variable y can be written as a sum of two conditional probabilities.

p(y) =
1

2
[p(y|x1) + p(y|x2)]

By now, for the nonlinear measuring situation, one common view believes that

larger co-variance will cause larger error. Therefore, splitting the predicted Gaussian

component with large co-variance into Gaussian components with smaller co-variance

has become the main trend to alleviate this error.
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3.4 Gaussian Splitting

Gaussian Splitting is a process by which a single gaussian component is split into two

or more gaussian components in a manner to re-approximate the original component

as a mixture itself. A new initialization scheme based on the splitting strategy

commonly used in vector quantization has been implemented here. Using this

method[36],

i. First the Gaussian component is identified in the mixture with high variance.

The mean,variance and weight of Gaussian component are denoted as µi, σi and

wi, respectively.

ii. Then the Gaussian component is split into two by slightly perturbing the

mean of the Gaussian along the direction of the standard deviation vector,

and re-estimate the model by further EM training[37]. For a four-way split and

so on, the standard deviation, mean and the weighting coefficients are reduced

in a progressive fashion.

Further:

(a) Attention is given to restrict splitting libraries with equal standard

deviations, which means, the standard deviation of the two Gaussian

components after split is the same as the original standard deviation.

σ1 = σ2 = σi (for a two-way split)

where σ1, σ2 are the standard deviations of the two Gaussian components

(b) The number of mixture components(L) is restricted to a power of two,

which means we can only have a two-way split, four-way split, eight-way

13



split and so on.

L = 2, 4, 8, 16, 32, .....

(c) For a two-way split, the original weight vector wi is equally divided into

the weights of the resulting Gaussians, namely w1 and w2. For a four way

split, the weights of the four consecutive Gaussian components are reduced

in a progressive fashion.

For a two-way split, w1 = w2 =
wi
2

= 0.5

For a four way split, two ways of splitting has been found out[24],[37].

Table 3.1 Splitting Library For Weights

Weights Way1 Way2

w1 0.35690 0.127380

w2 0.61042 0.372619

w3 0.61042 0.372619

w4 0.35690 0.127380

(d) The means, µ1 and µ2 of the Gaussian components after split is slightly

changed along the direction of the standard deviation vector.

For a two-way split, µ1 = µi − ε

µ2 = µi + ε

where ε is a positive quantity.

This form of splitting is difficult to apply in practical scenarios, since
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selection of ε is always a compromise. When the two new densities are

spaced far apart, ε is large and when the two new densities are close to

each other, ε is small. In our research, ε has been set as 0.001. Instead of

using ε, [38] has proposed σi
2

.

3.5 Bootstrap Algorithm

The bootstrap method is a resampling technique used to estimate statistics on a

population by sampling a dataset with replacement[39]. Bootstrapping paves a way

to calculate standard errors, construct confidence intervals, and perform hypothesis

testing for numerous types of sample statistics. Bootstrap methods are alternative

approaches to traditional hypothesis testing and are notable for being easier to

understand and valid for more conditions.

It can be used to estimate summary statistics such as the mean or standard

deviation. It is used in applied machine learning to estimate the skill of machine

learning models when making predictions on data not included in the training data.

Steps involved are:

i. A dataset of size n is taken.

ii. One single instance is drawn from this dataset and assigned to the jth bootstrap

sample. This step is repeated until the bootstrap sample has size n; the size

of the original dataset. Each time, samples are drawn from the same original

dataset so that certain samples may appear more than once in the bootstrap

sample[40].

iii. A model is then fit to each of the b bootstrap samples and the resubstitution

accuracy is computed.

iv. The model accuracy is calculated as the average over the b accuracy estimates.
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3.5.1 Advantages of Bootstrapping

It is a simple algorithm. It is a straightforward way to derive estimates of standard

errors and confidence intervals for complex estimators of complex parameters of the

distribution[41].

It allows us to handle outliers without arbitrary cutoffs. Bootstrap is a powerful,

computer-based method for statistical inference without relying on too many

assumption.

Bootstrap is also an appropriate way to control and check the stability of the results.

Although for many problems it is impossible to know the true confidence interval,

bootstrap is asymptotically more accurate than the standard intervals obtained using

sample variance and assumptions of normality[42].

3.5.2 Disadvantages of Bootstrapping

Bootstrapping is computationally expensive. It cannot be applied to small data sets.

Also, the bootstrapping can be time-consuming.

Here t-percentile bootstrap is performed to calculate the estimate of the median

of the MI’s and therefore a CI estimation is done to find out the upper and lower

bound of the MI[24].

16



CHAPTER 4

ANALYSIS

4.1 Mutual Information Calculation

In our discussion so far, we have noticed that our ERP channel is nonlinear, non-

stationary and time varying. So, we begin our analysis by considering the known

parameters of our model, which are the input and the output random variables. We

follow the same approach as discussed in [24] to calculate the mutual information

for a single region. For this first we calculate the conditional entropy of the output

random variable Y given the input random variable X.

h(Y |X) = 0.5(log(2π|C1|) + 1) + 0.5(log(2π|C2|) + 1)

Here C1 and C2 are the n ∗ n co-variance matrices of the two input distributions.

Then we calculate the entropy of the output random variable, by using the law of

total probability and taking a mixture of the conditional probabilities.

h(Y ) = −0.5

∫
Rn

[p(y|x1) + p(y|x2)] · log(0.5[p(y|x1) + p(y|x2)])

where x1 and x2 are the two inputs, namely good quality audio and bad quality audio

and p(y|x1) and p(y|x2) are the conditional probabilities. As both p(y|x1) and p(y|x2)

are multivariate Gaussian distributions, so the output vector y is a multivariate

Gaussian mixture or a multivariate Gaussian mixture model. Finally we calculate

the MI between the EEG output data and the input audio stimulus.

I(X;Y ) = h(Y )− h(Y |X)
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In order to approximate the data, all the other steps were carried out as performed in

[24] including Gaussian splitting and Taylor series expansion of the Gaussian Mixture

Models(GMMs).

To answer the first question, What is the minimum number of electrodes that

we need in order to assess the perceived audio quality using EEG?, first we compute

and analyze the MI results for 4 regions instead of the total 8 regions. This is

accomplished using the same equations mentioned above, but instead of taking data

samples from 8 different regions, we consider data samples from only 4 regions. All the

combinations of 4 different regions were analyzed and the MI results were calculated.

While considering four region combinations, we keep in mind that we are considering

a total of 36 electrodes. A similar approach was carried out to analyze the MI results

for even lesser regions or electrodes. Further, we consider 3 region or 27 electrode

combinations and 2 region or 18 electrode combinations and thus calculate the mutual

information for each of these combinations. In all the scenarios, a high MI for a

combination indicates that the combination has high ability to assess perceived audio

quality. Here, we are not considering MI results from single region or 9 electrode

observations, as they are too few to determine or assess the quality of audio.

4.2 Variance Detector

To further validate our standing on our MI results and support our analysis, we

devise a Variance Detector for each of these region combinations. In order to achieve

this, first we partition the data samples of a particular region into nine equal sized

folds or blocks, as it is very difficult to analyze thousands of samples region-wise,

trial-wise and subject-wise. Then we calculate the variances of these blocks. Here,

we are considering a single block to be of 10240 samples or duration wise a 10 second
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Figure 4.1 Figure showing the two training variances with the threshold and the

perceived classifications.

block. Each analysis region-wise, is done by considering the first 10 seconds as the

training set and the rest 80 seconds as the test set. While considering a specific region

combination, the training set is taken as the first ten seconds from each region present

in the combination, while the other remaining samples from each region is taken as

the test set. Since, we have two types of input here, namely good quality and bad

quality, so we also have two different training variances and two different set of test

variances.

Going further, a group of thresholds are assumed between the two training

variances. Figure 4.1 shows the Variance Detector approach where the threshold is

in between the training variances and classification is drawn to the right and left of

the threshold. For a given discrimination threshold value T, the classification rule is

such that a subject is allocated to the positive class if and only if its score exceeds

the threshold. If the score is less than the threshold, the subject is allocated to the

negative class. The true positive probability, also called True Positive Rate(TPR) is

the probability that a subject from the positive class is correctly classified as belonging

to the positive class:

TPR(T ) =

∑Np

i=1(S
(p)
i > T )

Np

where Np is the total number of values belonging to the positive class and S
(p)
i is a

random variable of the positive class. Similarly, the false positive probability, also
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called False Positive Rate(FPR), is the probability that a subject from the negative

class is unclassified or incorrectly classified as belonging to the positive class:

FPR(T ) =

∑Nn

i=1(S
(n)
i < T )

Nn

where Nn is the total number of values belonging to the negative class and S
(n)
i is a

random variable of the negative class. So, we check these thresholds on our test data

sets. If the variance for a certain block of test data is greater than the threshold,

then we assume it belongs to the positive class(good quality) and if it is less than the

threshold, we say it belongs to the negative class(bad quality).

To answer the second question, Is there a good classification between the good and

the bad quality of audio perceived after testing with the reduced number of electrodes?,

we follow the same process as discussed in the variance detector approach. A proper

Receiver Operating Characteristic(ROC) Curve is plotted by taking the true and false

error probabilities. A Curve with a bend towards the upper left corner of the ROC

plane, indicates that there is a good classification between the good and the bad

quality audio for that region combination.

4.3 Z Score Calculation

To analyze the results achieved by the MI calculations so far, we further calculate the

z-scores for the combinations. A higher z-score would indicate a proper classification

of good and bad quality audio. Such a z-score is expressed as the inverse error function

of the probabilities. It is given by

z =
√

2erf−1((2TPR)− 1)−
√

2erf−1((2FPR)− 1)

where TPR and FPR are the true probability rate and the false probability rate

respectively. In order to calculate the TPR and FPR values, we follow the approach
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of the Variance Detector, where we take the first eighty percent of the total data as

the training set, and the remaining twenty percent of the data as the test set. We

calculate the variances for both the good and bad quality training data sets and take

a threshold which is the midpoint of the training variances. In a fashion similar to

that used in Variance detector approach, the TPR and FPR values are computed for

each region combinations and using these values, we calculate our z-scores.

4.4 Correlation between Mutual Information and Z Score

To further validate our results, we analyze if there is a good correlation between the

Mutual Information and the Z Score results. In order to proceed with this, we try

to compute the R2 test, to check what percent of MI can be verified by the Z score.

The R2 test is basically a statistical measure that represents the proportion of the

variance of MI that is explained by the Z Score. In other words, it tries to explain, to

what extent the variance of one variable explains the variance of the other variable.

Here R denotes the Correlation Coefficient, which can be calculated as,

R =
n(
∑
xy)− (

∑
x)(

∑
y)√

(n
∑
x2 − (

∑
x)2)(n

∑
y2 − (

∑
y)2)

where x is the Z Score and y is the Mutual Information. There is a limitation for the

R2 test. A high or a low R2 is not necessarily good or bad, since it does not convey

the reliability of the model.

To recheck our correlation between the MI results and the Z scores, we analyze

the correlation by drawing a Linear Regression Model. The Linear Regression Model

establishes a relationship between the dependent variable(MI) and the independent

variable(Z score).
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CHAPTER 5

RESULTS

First the Mutual Information was evaluated for each 3 region combinations where

data samples from total 27 electrodes were taken. The mutual information was

calculated using the same approach as described in [24], by fourth order Taylor series

approximation. While considering a particular region combination, the neural activity

occurring between the other regions are considered negligible. It is interesting to note

that regions 1,2,6 and regions 2,5,6 have a high mutual information as compared to

other region combinations. Simultaneously, the z scores were calculated for these

region combinations. In order to showcase all the MI and z-score results, everything

was plotted in terms of confusion matrices as done in [43]. Figures 5.1 to 5.8 shows the

confusion matrices plotted for both Mutual Information and Z scores for each region

combination. Each figure is related to a specific region followed by a 7x7 matrix of

other regions. The diagonal elements in the matrices, correspond to 2 region scores

which are discussed further.

In order to reduce the number of electrodes further, the variations of Mutual

Information and z score results was computed for 2 region combinations. It was

interesting to find out that regions 1,2 and 2,6 and 1,6 show a high MI and z score.

This is in strong agreement with the results found out from 3 region combinations,

where combinations 2,5,6 and 1,2,6 were showing high MI and z-score results. Figure

5.9 shows the confusion matrices plotted for both Mutual Information and Z scores

for each region combination. The results were cross validated by taking 80 percent of

data as training set to estimate the variances, then the z-score was calculated on the
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Confusion Matrix of Z scores for 3ROI combinations (Region 1)
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Figure 5.1 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 1).
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Figure 5.2 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 2).
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Figure 5.3 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 3).
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Figure 5.4 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 4).
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Confusion Matrix of Z scores for 3ROI combinations (Region 5)
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Figure 5.5 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 5).
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Figure 5.6 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 6).
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Confusion Matrix of Z scores for 3ROI combinations (Region 7)
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Figure 5.7 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 7).
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Figure 5.8 Confusion Matrices for Mutual Information and Z scores for 3 region

combinations (Region 8).
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Figure 5.9 Confusion Matrices for Mutual Information and Z scores for 2 region

combinations.

remaining 20 percent and this process was repeated 100 times.

After finding out which regions give us a better MI and better z-score, we try to

establish a correlation between the two parameters. For this, we plot a scatter plot of

both MI and z-score results and calculate the square of the correlation coefficient. We

further do a linear regression fit and try to analyze the slope. Figures 5.10 and 5.11

show the scatter plots for 3 region and 2 region combinations. From the values of the

square of correlation coefficient(R), it can be seen that there is very less correlation

between the two parameters.

Further, we classify the good and bad quality audio using our Variance Detector

approach by plotting the ROC curves. The Receiver Operating Characteristic(ROC)

curve is a graphical plot by which the degree of discrimination between good and bad

quality could be estimated. ROC applies different threshold values to plot the true

positive rate (TPR) against the false positive rate (FPR). This was done by using

the Contingency Table for different values of threshold. Figures 5.12 and 5.13 show
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Figure 5.10 Scatter plot between Mutual Information and Z scores for 3 region

combinations.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Mutual Information

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Z
 s

c
o
re

s

Scatterplot between MI and Z score for three region combinations

R
2
 = 0.06

Data

Fit

Confidence bounds

Figure 5.11 Scatter plot between Mutual Information and Z scores for 2 region

combinations.
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Figure 5.12 Receiver Operating Characteristic(ROC) curves for best 3 region

combinations.

the ROC curves for the best five combinations of three and two region combinations.

It can be seen from both figures that regions 2 and 6 together shows us a better

performance.

29



0 0.2 0.4 0.6 0.8 1

False Positive Rate(FPR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(T
P

R
)

ROC Curves for two region combinations

Region 2,6

Region 1,6

Region 2,3

Region 3,6

Region 2,4

Diagonal

Figure 5.13 Receiver Operating Characteristic(ROC) curves for best 2 region
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CHAPTER 6

CONCLUSION

It has been observed from the above analysis that, a minimum of 2 regions or 18

electrodes may be used to properly assess the perceived audio quality, which has

been verified by the Mutual Information, Z score computation and the ROC curves.

Both the graphical and analytical representations of the Mutual Information

reveals the information in the data where the low quality is different from the high

quality. This has been classified by the variance detector. The ROC curves have

been plotted, which shows that there is a good classification between the good and

bad quality audio. To analyze this further, we computed the z scores. A squared

correlation coefficient test shows that only 17 percent of the variance of the MI can

be verified by the z-score. In order to get a significant Z Score and a high R2 value,

Variance Detector approach may be replaced by any other approach in the future.
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