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ABSTRACT 

COMPUTATIONAL INTELLIGENCE IN STEGANOGRAPHY: 

ADAPTIVE IMAGE WATERMARKING 

 

by 

Xin Zhong 

Digital image watermarking, as an extension of traditional steganography, refers to 

the process of hiding certain messages into cover images. The transport image, called 

marked-image or stego-image, conveys the hidden messages while appears visibly 

similar to the cover-image. Therefore, image watermarking enables various 

applications such as copyright protection and covert communication. In a 

watermarking scheme, fidelity, capacity and robustness are considered as crucial 

factors, where fidelity measures the similarity between the cover- and marked-images, 

capacity measures the maximum amount of watermark that can be embedded, and 

robustness concerns the watermark extraction under attacks on the marked-image. 

Watermarking techniques are often trade-offs between these factors; for example, a 

high capacity usually implies more modification on the cover-images and thus lowers 

the fidelity, and the robustness often applies redundancy and lowers capacity. 

Traditional image watermarking schemes place the watermark on the trivial 

portions of cover images to enable the invisibility; however, the hiding can be easily 

revealed by statistical analysis. Hence, during recent years, researchers have proposed 

different image watermarking schemes aiming at improvements from various 

perspectives, such as embedding the watermark into the frequency spectrum for high 

fidelity and high security, extending the capacity via iterative embedding, enhancing 

the undetectability by maintaining the image statistics and improving the robustness 

applying statistical features like image histogram. But the adaptation to varying, 

flexible or multi-purposed situations remains a challenge in existing watermarking 



 

 

methods due to the randomness of the cover image contents. In addition, fewer 

attempts have been reported to level the trade-off when two or more controversial 

watermarking factors are required. Moreover, although computational intelligence has 

grown rapidly in the past decade, applying its adaptation ability in image 

watermarking remains a gap. 

In this dissertation, some adaptive image watermarking schemes are presented. 

First, to achieve content adaptation on the spatial domain, a novel salient region 

detection model is presented to automatically segment the cover images into regions-

of-interests (ROIs) and region-of-noninterests (RONI). The ROIs containing the most 

representative information are kept intact during the embedding and the RONI is 

collated for watermarking. Second, an intelligent image watermarking scheme based 

on the ROI detection is presented. A novel reversible watermarking algorithm that 

achieves high capacity and low distortion is firstly introduced. It is then followed by 

partitioning algorithms to bridge the gap between ROIs based image watermarking 

schemes and watermarking embeddings on frequency domain. Partition ranking 

schemes based on entropy as well as swarm intelligence are proposed, not only to 

optimize the overall watermark embedding, but also to provide flexibility that the 

watermarking purpose can be determined by the end user. Third, to conquer the 

robustness issue, a robust image watermarking scheme based on the ROIs detection is 

presented. With a robust watermarking algorithm based on contrast modulation, it 

matches the segmented ROIs between the marked-image and the distorted image to 

rectify the attacks. Finally, an image watermarking system using deep learning is 

introduced, where the rules of watermark embedding and extraction are learned and 

generalized in an unsupervised manner, which is fully adaptive to image contents and 

features.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Motivation 

An enormous number of digital images are produced and distributed online with the 

rapid growth of digital imaging devices. Digital content protection has become a 

crucial demand as multimedia data are widely spread over Internet. Image 

watermarking has been adopted as an efficient tool to safeguard the digital properties 

with various applications of copyright protection, image authentication, data privacy, 

broadcast monitoring and covertly communication [1-3]. Generally, image 

watermarking refers to the process of embedding some information (i.e., the 

watermark) into a cover image to form a marked image. The original image content is 

protected by only allowing the marked image to be publicly accessible. Only the 

owners are able to extract or detect the existence of the watermark information.  

Although the boundaries between image watermarking and image 

steganography are sometimes fuzzy, image watermarking is more often treated as an 

extension of traditional steganography. Because image steganography often highlights 

the undetectability that the existence of the watermark should be hardly revealed, the 

capacity indicating the maximum amount of embedded data as well as the 

reversibility that the cover image can be reconstructed, while image watermarking 

considers many other issues such as fidelity and robustness.  

In a watermarking scheme, fidelity, undetectability, capacity and robustness 

are often considered as crucial factors, where fidelity measures the similarity between 

the cover- and marked-images, undetectability guarantees that the watermark is 

inaccessible without the knowing the algorithms, capacity measures the maximum 
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amount of watermark that can be embedded, and robustness concerns the watermark 

extraction under variant attacks on the marked-image. It is often a trade-off between 

the factors; for example, a higher capacity usually implies more modification on the 

cover-images and thus lowers the fidelity. 

Early image watermarking research focuses on single-bit watermark extraction 

[7], thus the output determines whether an image contains a watermark. Currently, it 

is expanded to multi-bit watermarking that requires the extraction of the entire secret 

message with the demand of various watermark applications. 

Based on the extraction demands, watermarking schemes can be divided into 

non-blindness where the extraction requires the information of cover image along 

with the marked image, and blindness that only demands the marked image. Usually, 

image watermarking schemes requires a key in the extracting process for enhanced 

security. The watermark data can be encrypted [4, 5] by different purposes, such as 

increasing the perceivable randomness for additional security and decreasing the 

impact of noise for watermark integrity under attacks. 

Based on the domain in which the watermark is inserted, image watermarking 

can be categorized into spatial-domain and frequency-domain methods. Traditional 

spatial-domain watermarking schemes place the watermark on the least significant 

bits (LSB) via substitutions or some mathematical operations [6]. Although the trivial 

replacement enables the invisibility, LSB-based methods can be easily revealed by 

statistical analysis. Frequency-domain watermarking methods starts with the purpose 

of enhancing the undetectability using the spectrum spread scheme [7] to distribute 

the embedded data around the entire image by inserting the watermark as noise-like 

data in the low-frequency components. The frequency transformations include 

discrete cosine transform (DCT), discrete Fourier transform (DFT), and discrete 



 

3 
 

wavelet transform (DWT) are often applied for this purpose. However, the capacity of 

the frequency-domain methods is often lower than that of the spatial-domain methods. 

Too much inserted data in the frequency domain will degrade the image quality 

significantly. 

Based on the watermark embedding algorithms, image watermarking can be 

categorized into: substitution, modification, and modulation. Substitution schemes 

replace a part of the cover-image with the watermark. The classic LSB is the most 

representative one. Modification schemes make additive or multiplicative changes 

corresponding to the watermark on the cover-image, where the spectrum spread is the 

representation. Modulation schemes tune the cover-image according to the watermark. 

Quantization index modulation (QIM) watermarking [8], which tunes the quantized 

index in orthogonal image transforms for watermark insertion, represents this 

category. 

Existing image watermarking proposals consider the enhancement for one or 

two watermarking factors. However, the adaptation to varying and multi-purposed 

situations remains a challenge due to the randomness of the cover image contents in 

the real world, while the rapid growth of digital imaging requires a flexibility of 

image watermarking systems. Moreover, less attempts have been reported to level the 

trade-off when two or more controversial watermarking factors are required. For 

example, a robust watermarking system often applies redundancy, and hence lowers 

the capacity. Technically, the computational intelligence, such as optimization, fuzzy 

logic and deep learning, has enabled a lot of applications in the past decade; but 

applying it in image watermarking remains a gap. To address these issues in image 

watermarking systems, this dissertation proposes some adaptive, flexible, and 

intelligent image watermarking schemes. 
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1.2 Contributions and Outline of this Dissertation 

The contributions of this dissertation can be summarized into a four-fold. Having the 

purpose of image content adaptation on the spatial domain, a novel salient region 

detection model is presented to automatically segment the cover images into regions-

of-interests (ROIs) and region-of-noninterests (RONI) in Chapter 2. The ROIs 

containing the most representative information are kept intact during the embedding 

and the RONI is collated for watermarking. This strategy not only ensures the 

watermarking fidelity by preserving major contents, but also facilitates the robustness 

by performing a ROI matching. Chapter 3 presents an intelligent image watermarking 

scheme based on the ROI detection. A novel reversible watermarking algorithm that 

achieves high capacity and low distortion is firstly introduced. Using an iterative 

strategy on the magnitudes of image frequency domain, it embeds a large amount of 

information without visible degradation to the cover image. Since frequency 

transforms cannot perform on a concave RONI where the holes are the ROIs. 

partitioning algorithms are proposed to bridge the gap between ROIs based image 

watermarking schemes and watermarking embeddings on frequency domain. The 

embedding operates frequency transforms on the rectangular partitions instead of the 

entire concave image. Having these partitions, partition ranking schemes based on 

entropy as well as swarm intelligence are proposed, not only to optimize the overall 

watermark embedding, but also to provide flexibility that the embed purpose can be 

determined by the end user. To conquer the affine distortions in watermarking 

systems, a robust image watermarking scheme based on the ROIs detection is 

presented in Chapter 4. Accompanied with a robust watermarking algorithm based on 

contrast modulation, it matches the segmented ROIs between the marked-image and 

the distorted image to evaluate the distortion parameters of translation, rotation, 
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scaling and shearing, so that the affine attacks can be automatically rectified. In 

Chapter 5, an image watermarking system using deep learning is introduced, where 

the rules of watermark embedding and extraction are learned and generalized by 

convolutional neural networks in an unsupervised manner. Hence, the scheme is fully 

adaptive to image contents and features. The robustness is achieved without any prior 

knowledge of possible attacks and distortions. A challenging application of 

watermark extraction on camera-captured images is also presented to demonstrate the 

practicality in the chapter. Finally, conclusions and possible future directions are 

discussed in Chapter 6. 
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CHAPTER 2 

ROI IDENTIFICATION USING SALIENT REGION DETECTION 

 

2.1 Background  

Having the purposes of cover-image crucial information preservation as well as 

human vision system (HVS) fidelity stabilization, image watermarking schemes 

applying ROIs have been developed, where the ROIs containing extremely important 

information in an image must be maintained during watermarking and the watermark 

is embedded into the RONI. Researchers have proposed various watermarking 

schemes [9-13] of this kind focusing on medical image authentication. However, the 

state-of-the-art image watermarking schemes use end-user’s prescribed ROIs, i.e., 

every cover-image is manually annotated. This will lower the computational 

efficiency.  

In this dissertation, ROIs identification without requiring human annotation or 

prescription is proposed, which not only speeds up the process when it comes to a 

batch, but also provides intelligence to the system by adapting the content of cover-

images. Concretely, a novel bottom-up saliency region detection model is proposed in 

the system to segment the conspicuous areas on cover images as ROIs. 

Human vision system (HVS) can extract distinctive objects from multiple 

distracters in a scene image rapidly and accurately. The process of extracting all these 

visually salient locations from various backgrounds is visual saliency detection. In 

computer vision, automated saliency detection remains a challenging problem, and 

has received tremendous interests during recent years. Saliency detection has 

widespread applications, including scene understanding, image perception, content-

based image retrieval, and seam carving Visual attention studies have been 
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categorized into two processes: top-down and bottom-up, based on the causes of 

attention attraction [14]. Top-down attention requires prior-knowledge and focuses on 

high-level cognitive factors, such as target-oriented tasks and purpose-oriented tasks. 

In contrast, saliency detection mainly focuses on bottom-up attention, which is 

cognitively low-level and is a process of rendering certain pixels which are more 

conspicuous than the others. Bottom-up saliency has been studied in fixation points 

prediction, which produces density or probabilistic saliency maps predicting eye gaze 

patterns in free-viewing tasks of images or videos. Like the traditional figure-ground 

separation process, salient object detection treats the segmentation task as a 

binarization problem that labels the salient object regions. However, in contrast to 

fixation prediction that aims to generate a saliency map with a confidence value at 

each pixel, the salient object detection algorithms often construct a saliency map and 

then produce an object mask that overlaps the salient regions. 

Researchers have proposed many salient region detection algorithms based on 

different disciplines. Motivated by an early discovery of the significance of phase 

spectrum in signals [15], Hou et al. proposed a spectrum residual (SR) model [16], 

which finds that the difference between the original and the smoothed Fourier 

amplitude spectrum can be used to obtain the saliency map. Then an object map is 

obtained by empirically thresholding the saliency map. With the similar idea, Hou et 

al. [17] presented an image signature model that produces the saliency map using only 

the sign of cosine transform coefficients. Achanta et al. [18] proposed a frequency 

tuned (FT) model, which combines several Gaussian band-pass filtered outputs to 

obtain the saliency map, and then averages the saliency map with mean-shift 

segmentation. A maximum symmetric surround (MSS) model was proposed to 

modify the global mean used in FT to the local mean of a most probable symmetrical 
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surrounding region in the saliency map generation, and then obtain an object map via 

graph-based segmentation [19]. Cheng et al. [24] proposed a global contrast (GC) 

based model, which uses histogram and region based contrast for the saliency map, 

and names GrabCut to refine the object mask by a fixed thresholding. A low-level 

wavelet transform based model was developed to capture local features using a 

Daubechies wavelet that has five vanishing moments and global features by 

computing the distribution of the local feature map [20]. 

Several current models involve Gaussian low-pass filtering in their saliency 

map creation schemes. This is by based on the assumption that a salient object is 

spatially clustered in a local region. However, it has been pointed out in [17] and [19] 

that the selection of the standard deviation of the Gaussian kernel is subjective. The 

standard deviation should be proportional to the size of the salient objects for a 

complete detection. Otherwise, the saliency map will only emphasize the objects on 

the edges. This will end up with having implicit assumptions and prior-knowledge of 

the object size before the detection, that is contrary to the idea of bottom-up saliency. 

In addition, physiological and psychophysical evidences have shown that multi-

resolution analysis (MRA) is an indispensable factor for HVS attention [21] while 

several current models analyze the input image in single scale and produce down-

sampled saliency maps. Down-sizing the input image suppresses the background by 

removing higher spatial frequency information but simultaneously eliminates the 

details of large salient objects. Specifically, FT and MSS (a local version of FT) 

broaden the spatial frequency range in multi-scale so that produce full-resolution 

saliency map with an emphasis of the largest salient object. 

In this paper, we propose an efficient bottom-up salient object detection model 

based on wavelets lifting. Wavelets domain is employed to obtain saliency maps for 
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its multi-resolution properties. A nonlinear wavelet filter bank is designed through 

generalized lifting [22, 23] for wavelet coefficients enhancement. A saliency map is 

then obtained through a combination of wavelet coefficients in different color feature 

channels. An object mask is constructed by developing a simple adaptive thresholding 

scheme given the saliency maps.  

The advantages of the proposed model can be summarized into three-fold, as 

shown in Figure 2.1. First, the saliency map contains a wide range of spatial 

frequency information because of the wavelets multiple scale derivation. Second, the 

proposed model produces full-resolution saliency maps that uniformly highlight 

multiple salient objects of different sizes and shape. Third, the proposed model uses 

no kernels, in which the parameters involve implicit assumptions and prior-

knowledge. 

 

 
Figure 2.1 An example of the proposed salient region detection. (a) An input image 

(b) Our saliency map (c) Our object mask (d) Ground-truth. 

 

2.2 Algorithm 

Figure 2.2 illustrates the overall process of the proposed model. Firstly, an input 

image (normalized to [0, 1]) is transformed into a set of broadly-tuned color feature 

channels for early visual feature extraction. These channels are constructed by 

considering the opponency of colors in HVS according to the detection mechanism in 

the cortex and neurons [21]. Let r, g, and b denote the red, green, and blue channels of 
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an image respectively. This broadly-tuned color feature set contains: (1) The intensity 

image, (2) R = r – (g + b) / 2 for red color tuned channel, (3) G = g – (r + b) / 2 green 

color tuned channel, (4) B = b – (g + r) / 2 for blue color tuned channel, (5) Y = (r + 

g) / 2 – |r – g| / 2 – b for yellow color tuned channel, and additional two color feature 

spaces defined by R – G and B – Y for the opponent color. Secondly, saliency maps 

are computed in each channel by developing a wavelet filter bank via generalized 

lifting scheme, and a comprehensive saliency map is obtained by a linear combination 

of the maps in each channel. Finally, an object mask is constructed through the 

saliency map by the adaptive thresholding scheme. 

 

 

Figure 2.2 The pipeline of the proposed salient region extraction model. 

 

2.2.1 Saliency Map Computation 

A wavelet transform captures localized signal information with a zooming procedure 

that gradually reduces the scale. In order to isolate discontinuities in signals, the 

wavelet transform enables large temporal supports for lower frequencies while 

maintaining short temporal widths for higher frequencies. This multi-resolution 

property extends spatial-frequency analysis into spatial-scale analysis. To decompose 
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a signal into its projections to subspaces, wavelet transform selects the coarsest scale 

�� and the finest scale �� that form a chain as 

 

 �� ⊂ ��	� ⊂ ⋯ ⊂ �� ⊂ �� (2.1) 

 

and obtain �� by 

 

 �� = �� ⊕��� � (2.2) 

 

where � is a subspace containing the differences between successive scales �� and 

���� L is the total number of scales and ⊕ denotes the direct summation. 

To obtain V and W, a scale function and a wavelet function are constructed 

through translation and dilation of a prototype wavelet basis, where Fourier methods 

play a key role [25]. However, the translation and dilation of a single basis function 

imposes the constraints that limit the utility of the multi-resolution idea at the core of 

wavelet transform. To extend the utility of wavelet methods, Sweldens [22] 

introduced the second generation wavelets via lifting. The main feature of the lifting 

scheme is that it provides a spatial interpretation of the wavelet transform which 

removes the necessity of Fourier analysis. This allows the adaptive customizations of 

discrete biorthogonal wavelets. Given a signal �(�), a single lifting step involves 

three basic operations: 

Split: Split �(�) into a disjoint polyphase representation. A common sampling 

scheme is the lazy wavelet, extracting the even and odd polyphase components of 

�(�). 



 

12 
 

Dual lifting: Predict the components in phase i based on a linear combination 

of samples of another phase j. Then it replaces the components in phase j by the 

difference between the components in phase i and the predicted value. The dual lifting 

operation is also referred to as the prediction. It can be formulated as 

 

 ��(�)��� = ��(�) − �(��(�)) (2.3) 

 

where P( ) denotes the linear combination operations used in the prediction, P( ) 

returns the predicted value. 

Primal lifting: Update the components in phase i based on a linear 

combination of the difference samples produced from the dual lifting. The primal 

lifting operation is also referred to as the update. Mathematically, it is expressed as 

 

 ��(�)��� = ��(�) + �(��(�)���) (2.4) 

 

where U( ) is the linear combination operations that return the values for the update. 

The inverse transform is simply the inverse of Equations (2.3) and (2.4). 

One restriction in conventional lifting scheme structure is that the dual lifting 

and primal lifting consider only linear operations. This may result in unsuccessful 

decorrelation for some complex signals. In order to break out this limitation, Rojals 

[23] presented an improved method, which absorbs linear or nonlinear operations 

used in the dual and primal lifting into some bijective mappings. Mathematically, this 

generalized lifting revises the dual lifting as in Equation (2.3) and primal lifting as in 

Equation (2.4) to become Equation (2.5) and Equation (2.6), respectively 
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 ��(�)��� = �(��(�), ��(�)) (2.5) 

 

 ��(�)��� = �(��(�), ��(�)) (2.6) 

 

where P and U are the mappings used in the prediction and update, respectively. If the 

mappings arise and arrive on finite sets, P and U are considered to be injective. In 

order to guarantee the invertibility of the entire scheme, P and U must be invertible.  

The saliency map computation intends to find the salient regions taking 

advantage of the spatial-frequency and spatial-scale properties of wavelet transform. 

If � (s = 1, …, L) subspace in Equation (2.2) appropriately collects the local details 

in each scale, we find that the salient regions can be obtained by reconstructing the 

input signal without the coarsest scale ��. This saliency map combines local surround 

details to a wide range of spatial frequency information due to the multiple scale 

derivation as in Equation (2.1). Hence, it has high performance for salient object 

detection. We summarize our computation of saliency map S as  

 

  =⊕��� � (2.7) 

 

The direct sum ⊕ is specified as the dual and primal mappings as in Equations 

(2.5) and (2.6). We will show that this saliency map computation is both analytically 

and experimentally confirmed. The core problem now in our saliency computation is 

to find an appropriate local spatial frequency information collector in wavelet 

transform. Given an image �(�) , unlike other applications such as image 

compression in which a better representative approximation is the goal, we aim to 

develop a wavelet filter bank that emphasizes the wavelet subspaces for decorrelating 
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�(�). Therefore, we restrict the dual and primal mapping design to the following 

criteria: 

1. Full reconstruction. This is guaranteed by the invertibility of the dual and 

primal mappings.  

 

 

2. Compact support. This is defined by the length of the filters. Compact 

wavelet support ensures the isolation of singularities, thus enables us to filter out 

salient regions that possess peculiarities. 

 

3. Smoothness. It is determined by the number of primal or dual vanishing 

moments. The primal vanishing moments determine the smoothness of reconstruction. 

The dual vanishing moments determine the convergence rate of subspace projections. 

Increasing the dual vanishing moments not only decreases the magnitude of the 

wavelet coefficients and produces a sparser wavelet subspace, but also increases the 

wavelet support which will reduce the number of large wavelet coefficients produced 

by isolated singularities [25, 26]. Hence in our case, we need less number of dual 

vanishing moments. 

 

In this dissertation, we develop a single round nonlinear wavelet filter bank in 

terms of generalized lifting framework. The input signal �(�)  is assumed to be 

normalized into the range of [0, 1]. 

1. Split. Starting with a lazy wavelet, we decompose �(�)  into even 

components ��(2�) and odd components �"(2� + 1). 

 

2. Dual lifting. �"(2� + 1) is used to predict ��(2�) in scale s, and the dual 

mapping P is defined as 

 

 �(�", ��) = ||%	|&'(	&)(||| (2.8) 

 

For collecting a wide range of spatial information that uniformly highlights 

salient regions, we apply an exponential decay function to emphasize the difference of 

phase components by weighting more on small differences and less on large 

differences. Then L2 norm is applied to eliminate the over-sparsity of wavelet sub-

bands. It is obvious that the mapping P is not only injective but also bijective; hence, 
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it satisfies criterion 2 of compact support with a narrow filter. To guarantee the dual 

invertibility, the inverse dual mapping �	� for scale s is correspondingly developed as 

 

 �	�(�"��, ��) = *+, (||�"��||	�) + �� (2.9) 

 

3. Primal lifting. Primal lifting is the preparation of the next scale’s dual lifting. ��(2�) is updated by �"(2� + 1) in such a way indicating the average information of 

neighboring components. The update mapping U and its inverse mapping �	� are 

respectively defined as 

 

 �(�"��, ��) = �� + *+, (||�"��||	�)/2 (2.10) 

 

 �	�(�"��, ����) = ���� − *+, (||�"��||	�)/2 (2.11) 

 

For the criteria, full reconstruction and compact support are guaranteed in the 

scheme construction described above. We then prove that the proposed nonlinear 

lifting scheme satisfies the smoothness criterion because the dual vanishing moment 

is one, which is the minimum in any wavelet schemes. A function /(0)  has M 

vanishing moments if 

 

 1 02/(0) 30 = 0,    for  0 ≤ 9 < ; 
(2.12) 

 

 1 02%<= 30 = %<= >(−1)2	� 9!@! A2	��� 0�2
���  

(2.13) 

Equation (2.13) is zero if and only if m = 0 since only the first term of the summation 

is zero. Thus, the dual lifting has exactly one vanishing moment that enables large 

wavelet coefficients for singularities emphasis. 
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Having this generalized lifting scheme, we are able to obtain the channel 

saliency maps based on Equation (2.7), as defining the converging condition when the 

signal has only one component. Thus, we define the coarsest scale L to be the most 

general information. We summarize the computation process as Algorithm 2.1. 

Algorithm 2.1: Saliency Map Computation 

Input: One map C in the broadly-tuned color feature set (normalized to [0,1]). 

Output: Corresponding saliency map S. 

1. Recursively decompose C and the primal lifting result of C using P and U as in 

Equation (2.8) and Equation (2.10), and converge the decomposition when the 

primal lifting result has only a single element. Note that for a matrix C, the 2D 

decomposition at each round is a row decomposition plus a column decomposition. 

 

2. Discard current single element and recursively reconstruct the map using the dual 

lifting results in each scale using the inverse mappings as described in Equation 

(2.9) and Equation (2.11). 

 

3. Normalize the reconstructed map into [0, 1] to obtain the result S. 

 

To integrate all the channel maps for the final saliency map, we weight the 

maximum of all the channel maps by an average (see Figure 2.3). The maximum map 

contains the most salient information of the input image and highlights both the 

salient region and background patterns, while the average map conveys more general 

information of all the channel maps that balance the spatial frequency. The 

elementwise multiplication of these two maps weights the maximum map in such a 

way diminishing the spatial frequency information over-highlighted, and therefore 

suppressing background patterns. We scale the integrated saliency map into [0, 1] for 

the convenience of object mask threshold. 
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(a)                      (b)                      (c)                      (d) 

Figure 2.3 Examples of saliency map integration. (a) The input image, (b) the 

maximum saliency map, (c) the average saliency map, (d) the integrated saliency map. 

 

2.2.2 Object Mask Computation 

The effectiveness of a saliency map is usually application-oriented. In the proposed 

model, we focus on a core application of content-based image processing, i.e., the 

salient object segmentation. Hence, a binarization of the saliency map is necessary. 

The goal is to produce a binary mask that overlaps the human labeled salient regions. 

Some state-of-the-art salient object detection methods used fixed or empirical 

thresholds for this task, and the result is hence restricted on the threshold selection. 

Some also combined image segmentation approaches to assist threshold selection; 

however, their accuracies heavily rely on the segmentation outputs. In this paper, we 

propose an efficient binarization method that adapts to different saliency maps 

automatically. It does not require empirical threshold selection, and independently 

takes the saliency map as the input. 
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Figure 2.4 The overall process of object mask construction. 

 

Figure 2.4 shows the overall process of object mask construction. There are 

three main steps in the object mask construction: raw thresholding, weight 

computation, and global thresholding. The proposed saliency map binarization 

process is presented as follows. 

1. A morphological opening by reconstruction is applied to the saliency maps 

for the flatness of high saliency values. It contains an erosion process that eliminates 

undesirable local peaks, followed by a morphological reconstruction that dilates the 

shape back. The result flattens peaks at high salient regions. We then threshold this 

flat peak saliency map by the global mean to obtain a raw mask, as shown in the third 

row of Figure 2.5. 

 

2. The raw mask contains noisy regions that do not belong to the objects. 

Hence, we define a weight matrix to diminish those noises. The saliency values at a 

raw mask are collected by the elementwise multiplication between the raw mask and 

the flat peak saliency map. Then the local maxima of the saliency values at the raw 

mask are used as the seeds towards a distance transform. Remarkably, local maxima 

regions with the average saliency less than the global mean of the flat peak saliency 

map are discarded to eliminate noises. The weight matrix WD is defined as 

 

 �B = ||A+9(BC)|| (2.14) 

 

where com denotes the complement operation of an image and DT is the result of the 

distance transform [27]. The weight matrix WD contains the regions to be highlighted 

(as shown in bright areas of the fourth row of Figure 2.5) and the regions to be 

suppressed (as shown in dark areas of the fourth row of Figure 2.5). 
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Figure 2.5 Examples of object mask construction. First row: Input images, second 

row: saliency maps, third row: raw masks, fourth row: the weight matrices via 

distance transform, fifth row: object masks, and sixth row: the human labeled ground 

truths. 

 

3. Saliency values at the raw mask are then weighted using the weight matrix 

WD. The next task is to threshold this weighted saliency map for a final object mask. 

Our normalized and weighted saliency map produces most of values close to zero 

indicating the background, and a small amount lager values indicating the salient 

objects. Figure 2.6 shows the average histogram of our saliency maps of 1000 images 

[18], from which we observe an obvious drop corresponding to the background. To 

locate this drop, we apply the adaptive global threshold method, which consists of 

four steps [27].  (1) Initial the threshold D as the global mean, (2) calculate the two 

mean values E� and E�  within the two groups of pixels after thresholding at D, (3) 

calculate the new threshold D = (E� + E�)/2, (4) converge the algorithm if D does 

not change. 
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Figure 2.6 The average histogram of our saliency maps of 1000 images. 

 

We summarize the object mask construction process as Algorithm 2.2. 

Algorithm 2.2: Object Mask Construction 

Input: A flat peak saliency map S. 

Output: The corresponding object mask O. 

1.  Compute the global mean Mof the input saliency map S.  

 

2.  Threshold S with M to obtain the binarized raw mask R. 

 

3.  Compute the elementwise multiplication SR = S × R. 

 

4.  Find the eight-connectivity local maxima LM in SR, and discard maxima 

components with average saliency value less than M in LM. 

 

5.  Compute the weight matrix WD in Equation (2.14), and use LM as the seeds in the 

distance transform. 

 

6.  Calculate the weighted saliency WS = WD × SR. 

 

7.  Threshold WS to obtain the final object mask O using the adaptive global threshold 

method mentioned above. 
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2.3 Experiments 

To measure the performance, we present quantitative evaluations and comparisons of 

the proposed model against various existing methods on two benchmark datasets: 

Microsoft and FT. The quantitative performance is the evaluation of consistency 

between the algorithm-produced object masks and the ground truths. We first apply 

spread-over thresholds to evaluate the performance of saliency maps and then focus 

on the accuracy of object masks in different approaches. 

2.3.1 Saliency Map Validation 

In the first experiment our goal is the saliency map validation; hence, Microsoft 

benchmark dataset [20] is applied. It includes 5000 color images categorized in nine 

subjects as well as the corresponding human annotated attention regions as the ground 

truths. Therefore, we provide a variety of challenging situations and a more 

comprehensive measurement to saliency detection algorithms. Then we compare our 

saliency maps against the following representative algorithms: the classic Itti saliency 

method [21] (denoted IT), the spectral residual model [16] (denoted SR), the 

frequency-tuned salient object detection model [18] (denoted FT), and the low-level 

feature collection via wavelets transform method [20] (denoted WT). The reasons for 

selecting these competitors are threefold: 

(1) Citation. They are frequently cited saliency detection papers in the state-of-

the-art.  

 

(2) Variety. Each model has the uniqueness in terms of the domains. For 

instances, IT uses spatial domain, SR utilizes Fourier domain, FT exploits Gaussian 

pyramid, and WT uses wavelet domain.  

 

(3) Relevance. Both SR and FT are considered as frequency-based methods, 

and WT also uses wavelet domain. 
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Some examples of the saliency maps produced from these models are shown 

in Figure 2.7.  

 

Input 

 

IT 

SR 

FT 

WT 

Ours 

Figure 2.7 Saliency maps of various methods. 

 

In order to visualize quantitative evaluations of saliency maps in different 

models, we plot the ROC (receiver operating characteristics) curves and compute their 

corresponding AUC (area under the curve) scores. In this process, we threshold every 

saliency map in aforementioned models into a binary mask. This mask is the 

classification result which segments the positive samples (i.e. salient region) from the 

negative samples (i.e., non-salient region). At a given threshold T, the true positive 

rate TPR is defined as the percentage of the positive samples from the binary mask 

overlapping the positive samples from the corresponding ground truth. The false 

positive rate FPR is the percentage of the positive samples from the binary mask 
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overlapping the negative samples from the ground truth. TPR and FPR can be 

mathematically described as 

 

 C�G = C�/(C� + HI) (2.15) 

 

 H�G = H�/(H� + CI) (2.16) 

 

where TP, FN, FP, and TN denote the number of true positive samples, false negative 

samples, false positive samples, and true negative samples, respectively. Computing 

each pair of TPR and FPR using spread-over thresholds produces the ROC curves in 

Figure 2.8(a), where the AUC scores are shown in Figure 2.8(b) to measure the 

effectiveness of a saliency map when the salient objects or regions are segmented. 

The AUC score is between the chance level 0.5 and the perfect segmentation 1. A 

larger ROC curve beneath area (i.e., the curve closer to the upper-left corner) or a 

larger AUC score indicates better performance of the saliency maps in a model. FT 

shows the lowest AUC score, indicating its object mask relies heavily on its special 

binarization scheme. Saliency maps in the proposed model outperform those in the 

reviewed papers by showing the highest 0.8754 of average AUC score of 5000 test 

images. 
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(a)                                                            (b) 

Figure 2.8 ROC and AUC. (a) Average ROC curves in various models, (b) the 

corresponding AUC scores. 

 

2.3.2 Object Mask Evaluation 

We then focus on the object mask evaluation in the second experiment by applying 

the FT benchmark dataset [18] that is specially developed for salient object detection. 

It consists of 1000 color images with various sizes and shape of salient objects and 

human perceived object masks as the ground truths. In addition to IT, SR, and FT 

models, the global contrast based salient region detection model [24] (denoted GC) is 

added for comparisons concentrating on the salient object detection. Note that we 

evaluate the object masks in all the models using their published binarization 

approaches. In other words, we measure the ultimate output of each salient object 

detection scheme. Average values of the F-measure are computed based on the 

ground truths. F-measure is the harmonic mean of precision and recall defined as 

 

 H = G%AJ** × �K%A@L@+�(1 + M�)G%AJ** + M��K%A@L@+�  (2.17) 
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where M�  is set to be 0.3 to weight precision over recall as suggested in [18]. 

Precision is defined as the proportion of true positive samples to all positive samples 

in the algorithm-produced object mask, and recall is the same as TPR. The average 

precision, recall, and F-measure values of various methods are reported in Figure 2.9. 

Clearly, the object mask in the proposed model shows the highest performance with 

an averaging F-measure value 0.8452 of 1000 test images. 

 

 

Figure 2.9 Bars of average F-measure for different models. 

 

Conclusively, in the proposed model the saliency maps are validated based on 

the ROC curve and AUC scores, object masks are evaluated using the F-measure. 

Regarding these criteria, the proposed model yields better results with respect to the 

relevant state-of-the-art algorithms. 

Since our purpose of the salient region detection is to facilitate the ROIs 

automatic extraction in the adaptive image watermarking, we evaluate robustness and 

invariance of the proposed model under different affine transformations, including 

scaling, rotation, and shearing, which simulate the viewpoint changes of the HVS. 

Commonly, a stable region detector is able to identify similar regions while changing 

the viewpoints. Similar with HVS, the detected regions should be invariant to image 
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transformations and covariantly transform with these transformations. The proposed 

detection model should have covariant detection results due to the covariance 

characteristics of wavelet domain. We confirm this empirically, and some examples 

are shown in Figure 2.10, where the distortions consist of a scaling of 0.7, rotation 85° 

counterclockwise, and a shearing of 0.2 both horizontally and vertically. 

 

 
      (a)                  (b)               (c)          (d) 

Figure 2.10 Saliency maps under affine distortions. (a) Original input images,  

(b) saliency maps of the original image, (c) affine-distorted input images, (d) saliency 

maps of the distorted image. 

 

There are three main steps in this confirmation. First, the saliency maps of 

both the original and the affine distorted images are computed. Two object masks are 

obtained by thresholding both saliency maps using the proposed model. We then 

affine transform the object mask of the original image with the same parameters and 

compute the overlapping percentage between the transformed original mask and the 

mask computed from the distorted image. We sweep over the scaling factor from 0.5 

to 1.5, the rotation angle from 1° to 45°, and the shearing factor from 0.1 to 0.5, 

respectively, and plot the average overlapping percentage versus the varying factor as 

shown in Figure 2.11. Based on experimental results, we conclude that the average 

overlapping percentage of the proposed model in the tested datasets reaches higher 

than 98%, and therefore the region detection is affine invariant or robust against affine 

transformations. 
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(a)                                                               (b) 

 

(c) 

Figure 2.11 Distortions vs overlapping. (a) Scaling vs overlapping percentage,  

(b) rotation vs overlapping percentage, (c) shearing vs overlapping percentage. 
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CHAPTER 3 

HIGH-CAPACITY AND INTELLIGENT IMAGE WATERMARKING 

SHCEME BASED ON THE ROI DETECTION 
 

3.1 Background  

Capacity is an important factor in image watermarking. To maximize the amount of 

watermark bits that a cover image could convey, researchers have been proposing 

various methods. Among them, image watermarking based on difference expansion 

[28] is considered as the most significant break-through towards the capacity. By 

utilizing the nature of high correlation between local pixels, the difference expansion 

approach can embed multiple bits per pixel. Later, researchers have proposed some 

improved versions of difference expansion. For example, difference expansion using 

generalized integer transform [29] and difference expansion embedding in the least 

significant bits [30]. However, the state-of-the-art proposals based on the difference 

expansion still suffer from the drawbacks of spatial domain that the embedding can be 

revealed easily via basic steganalysis. 

On the other hand, existing polygon and arbitrarily-shaped ROI-based image 

watermarking methods insert the secret information into the spatial domain of the 

RONI, which is less secure than the frequency-domain embedding. Methods applying 

frequency-domain embedding only use rectangular bounding boxes for ROI enclosure, 

while the RONI often contains a concave region with arbitrarily-shaped ROIs. Based 

on the above reasons, the current image watermarking techniques have not achieved 

the optimization of embedding capacity. 

In this chapter, a novel image watermarking scheme for achieving high data 

capacity and high image quality in frequency domain is presented, where the 

embedding exploits the nature of images. The high capacity is achieved via an 
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iterative modification of image magnitudes in the frequency domain inspired by the 

ideas of the difference expansion in the spatial domain. Hence, the security advantage 

of frequency-domain based watermarking, that the watermark is spread over the entire 

image, has been preserved while the watermarking capacity is significantly enhanced.  

To bridge the gap between ROIs based image watermarking schemes and 

watermarking embeddings on frequency domain, partitioning algorithms are proposed 

so that the embedding operates only frequency transforms on the rectangular 

partitions instead of the entire concave image. Furthermore, intelligent partition 

ranking schemes based on entropy as well as swarm optimization are proposed, which 

not only optimizes the overall watermark embedding, but also provides flexibility that 

the embed purpose can be determined by the end user. 

Figure 3.1 shows the general of the image watermarking scheme in this 

Chapter. A cover image is firstly segmented into region-of-interests (ROIs) and 

region-of-noninterests (RONI) using the method in Chapter 2. The RONI is 

decomposed into non-overlapping (i.e., partitioning) rectangles to facilitate 

frequency-domain based watermarking algorithms. Each RONI rectangle is then 

transformed into frequency domain for watermark insertion. The watermark, 

considered as an arbitrary bit stream, can be encoded for various reasons such as 

added security and error correction. Each RONI rectangle is embedded with some 

portions of the watermark to obtain the embedded rectangle. Finally, the embedded 

rectangles and the intact ROIs are concatenated to generate the marked-image. 
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Figure 3.1 General pipeline of the proposed intelligent watermarking scheme. 

 

3.2 Algorithm  

3.2.1 A Reversible and High-capacity Image Watermarking Algorithm 

From the frequency and statistics perspective, natural images follow the power law 

[31, 32], low frequency components convey most of the energy of an image. When 

viewing an image, human vision would focus on those most energetic parts. 

Especially for medical images which are viewed as piecewise smooth or even 

piecewise constant, the magnitude spectrums share almost the same distribution that 

most of the energy concentrates on low frequencies. Figure 3.2 shows an example of 

the magnitude spectrum of an image in log scale. 

 

 

Figure 3.2 The magnitude spectrum. 
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We exploit the similarity of the magnitude distribution for image 

watermarking by inserting the watermark into middle frequency components (MFC) 

of images. MFC avoids the most important parts (low frequency) for human vision, 

while significantly protecting the watermark from being removed in compression and 

noises (high frequency). To capture the magnitudes, we adopt DCT since it is more 

computationally effective and tends to have more of its energy concentrated in a small 

number of coefficients when compared to other transforms like the DFT, which 

makes it easier to break up the frequency bands for watermarking. Through DCT, 

low-frequency components are placed at the upper-left corner and high-frequency 

components at the lower-right corner. We set low-frequency area as a left triangle 

with two sides being one-half of the image’s width and height respectively, and high-

frequency area as a right triangle with two sides being four-fifths of the image’s width 

and height respectively. The remainder is MFC as shown in Figure 3.3(a) white area. 

Figure 3.3(b) shows a medical image, and Figure 3.3(c) is the reconstructed image 

after MFC removal. It is observed that removing the MFC does not bring much 

distortion to human vision. 

 

 

Figure 3.3 MFC of an image. 

 

The watermark insertion process of the proposed high capacity algorithm is to 

iteratively modify the magnitude of each harmonic wave at MFC. The modification is 
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inspired by difference expansion [28]. Different from difference expansion, our 

modification on the frequency domain can be increasive (i.e., to expand the 

magnitude) or decreasive (i.e., to shrink the magnitude). In addition, we introduce the 

embedding iteration time t to determine the modification level. Reconstructing the 

image with the modified magnitude produces a marked image. Figure 3.4 shows an 

illustration of both increasive and decreasive modification on a harmonic wave. 

 

 

Figure 3.4 Illustration of watermark insertion on a harmonic wave. 

 

Officially, the proposed watermark embedding algorithm with the increasive strategy 

is presented as Algorithm 3.1.  

Algorithm 3.1: Watermark embedding 

Input:  MFC, watermark bits S, and embedding iteration time t.  

Output:  Embedded MFC' and a key K.  

1. Compute the mean value M of MFC. Store M in key K. 

 

2. For each coefficient V in MFC , compute A as the arithmetic mean of V and M. 

Store A in key K. Note that we can perform encryptions on K for enhanced security. 

 

3. Compute the embedding length L by  
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 N = O*+, (|P − ;|)Q (3.1) 

 

Note that if L= 0 or || MA − < the logarithm base, one bit will be embedded. 

 

4. Obtain the embedding integer value E by taking L bits of S.  

 

5. If V > 0,  update V as V + E  

Else,        update V as V – E  

 

6. Repeat steps 1 through 5 by t times. 

 

After embedding, the marked image is obtained by performing IDCT (inverse 

discrete cosine transform) on the combination of MFC' and the original L&HFA (low 

and high frequency area). Figure 3.5 presents an example of a medical image before- 

and after- embedding. 

 

 

Figure 3.5 An example of cover and marked image. 

 

The corresponding watermarking extraction algorithm is presented in Algorithm 3.2. 

The original image can be restored so the proposed watermarking scheme is reversible. 

Algorithm 3.2: Watermark extracting and MFC restoration 

Input: MFC' of a marked image, key K and the embedded iteration time t. 

Output: Original MFC and the watermark bits B. 
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1. For each coefficient 'V  in the MFC', compute the embedded value 'E  by 

 

 RS = |�S − P| (3.2) 

 

2. Compute the embedded length 'L  by Equation (3.1). Note that if 'L = 0, one bit 

will be extracted. 

 

3. Obtain the embedded bits 'B  by converting 'E  with length 'L . 

 

4. For each coefficient 'V  in the MFC', update 'V  by 

 

 �S = 2P − ; (3.3) 

 

5. Obtain the original MFC by repeating steps 1 to 4 by t times and obtain the whole 

bits B by stacking 'B . The original cover image is obtained by performing IDCT on 

the combination of restored MFC and the original L&HFA. 

 

Experimentally, we evaluate the watermarking capacity as bits per pixel (BPP) 

and the fidelity as the peak signal-to-noise ratio (PSNR). BPP is computed as the ratio 

between the total number of bits embedded and the total number of image pixels. 

PSNR is defined as 

 

 

MSE
gfPSNR

k 2

10

)12(
log10),(

−×=  (3.4) 

 

where k is the bit depth, f and g are the cover and marked image respectively, and 

MSE is mean square error: 
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= −∑∑  (3.5) 

 

We first explore the relationship between BPP and PSNR for the proposed 

algorithm, the 256 × 256 MRI brain image shown as Figure 3.4 with the embed area 

36,293 pixels is used. We set the embedding iteration time t from 1 to 5. Table 3.1 

lists the results, as t increases, BPP increases; however, PSNR decreases. We can 

continue increasing t for higher BPP while compromising PSNR. It is observed that 

BPP increases linearly whereas PSNR declines exponentially. So, keeping increasing 

BPP would not compromise PSNR a lot. 

 

Table 3.1 PSNR, BPP and Capacity (t from 1 to 5) of the Proposed Algorithm 

t 1 2 3 4 5 

PSNR 

(dB) 

48.53 45.00 43.66 43.07 42.78 

BPP 1.63 3.06 4.40 5.71 7.03 

Total 

embedded 

bits 

59,138 110,956 159,552 207,336 255,052 

 

Secondly, we compare the proposed technique against some reviewed state-of-

the-art techniques [29, 33, 34, 28, 35, 36, 37, 38]. The results are listed in Tables 3.2 

and 3.3. By limit t from 1 to 5 as compared to [29], the proposed technique can 

improve PSNR from 46.36% to 66.03% and BPP from 120.27% to 850%. As 

compared to [33], the proposed technique can improve PSNR from 12.58% to 27.71% 

and BPP from 63% to 603%. As compared to [34], the proposed technique can 

improve PSNR from 45.56% to 65.12% and BPP from 65.65% to 610.10%. As 

compared to [28], the proposed technique can improve PSNR from 35.90% to 54.16% 
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and BPP from 232.65% to 1334.69%. As compared to [35], the proposed technique 

can improve PSNR from 91.32% to 117.04%. Although BPP is 18.50% lower when t 

is 1, it could be increased up by 251.5% when increasing t to 5. As compared to [36], 

the proposed technique can improve PSNR from -16.51% to -5.28% and BPP from 

201.85% to 1201.85%. Although our PSNR is at most 16.51% lower, the capacity is 

increased up to 1201.85%. As compared to [37], the proposed technique can improve 

PSNR from 34.95% to 53.07% and BPP from 53.77% to 563.21%. As compared to 

[38], the proposed technique can improve PSNR from -4.17% to 8.71% and BPP from 

640.91% to 3095.45%. Although after t > 3, we have a lower PSNR, but the capacity 

is increased by 3095%. These comparisons indicate that the proposed technique 

achieves high quality and high capacity. 

 

Table 3.2 PSNR Comparisons of the Proposed Technique against Some Techniques 

Method PSNR 

(dB) 

Increment compare to our PSNR in the t range from 48.53 dB 

down to 42.78 dB 

Note: Increment is negative means our PSNR is lower 

t 

1 2 3 4 5 

[29] 29.23 66.03% 53.95% 49.37% 47.35% 46.36% 

[33] 38.00 27.71% 18.42% 14.89% 13.34% 12.58% 

[34] 29.39 65.12% 53.11% 48.55% 46.55% 45.56% 

[28] 31.48 54.16% 42.95% 38.69% 36.82% 35.90% 

[35] 22.36 117.04% 101.25% 95.26% 92.62% 91.32% 

[36] 51.24 -5.28% -12.17% -14.79% -15.94% -16.51% 

[37] 31.70 53.09% 41.96% 37.73% 35.87% 34.95% 

[38] 44.64 8.71% 0.81% -2.19% -3.51% -4.17% 
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Table 3.3 BPP Comparisons of the Proposed technique against Some Techniques 

Method BPP 

Increment compare to our BPP in the t range from 1.63 down to 

7.03 

Note: Increment is negative means our BPP is lower 

t 

1 2 3 4 5 

[29] 0.74 120.27% 313.51% 494.59% 671.62% 850.00% 

[33] 1.00 63.00% 206.00% 340.00% 471.00% 603.00% 

[34] 0.99 65.65% 209.09% 344.44% 476.76% 610.10% 

[28] 0.49 232.65% 524.49% 797.96% 1065.31% 1334.69% 

[35] 2.00 -18.50% 53.00% 120.00% 185.5% 251.5% 

[36] 0.54 201.85% 466.67% 714.81% 957.41% 1201.85% 

[37] 1.06 53.77% 188.68% 315.09% 438.68% 563.21% 

[38] 0.22 640.91% 1290.90% 1900.00% 2495.45% 3095.45% 

 

3.2.2 RONI Partitioning Algorithms 

Frequency transforms cannot be performed on a concave RONI with multiple holes 

inside. Hence, in this section a task of watermarking on a cover image with multiple 

ROIs is considered. These ROIs are assumed to contain crucial information of the 

cover image content; hence they should be kept intact and only the remainder (i.e., 

RONI) can be used for watermark embedding.  

First, we consider that ROIs are identified by rectangular bounding boxes, a 

binary ROI mask can be simply generated by filling “1” inside each ROI rectangle 

and “0” for outside RONI part. Then connected component analysis can be used to 

locate the position of each ROI rectangle by finding each connected area of “1”. 

Figure 3.6(a) shows an image with two preselected ROIs, and Figure 3.6(b) shows the 

generated ROI mask. The upper-left corners of both rectangles are (24, 102) with 
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width 96 and height 129 for the left ROI and (142, 45) with width 95 and height 128 

for the right ROI, respectively. The location of each ROI is saved. 

 

 

Figure 3.6 An example of rectangular ROI mask. 

 

The concave RONI part shown in black color in Figure 3.6(b) is partitioned into the 

minimum number of non-overlapping rectangles to facilitate the transformation to 

frequency domain. It has been proved in [39] that the minimum number of rectangles 

that a rectilinear polygon can be partitioned is defined by its number of vertices, 

number of caves and number of collinear concave lines. It can be mathematically 

stated as: 

 

 ;� = �2 + ℎ − 1 − U 
(3.6) 

 

where MP denotes the minimum partition number, n denotes the total number of 

vertices of both the caves’ and polygon’s, h is the number of caves and C denotes the 

maximum cardinality of a set S of concave lines, no two of which are intersected. 

Inspired by this definition, we develop a novel algorithm for partitioning the 

concave RONI into the minimum number of rectangles with coordinates of all 

vertices. This algorithm first draws horizontal and vertical concave lines respectively 
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for each rectangular ROI, and then selects the result of minimum rectangles as the 

partition. Let )],(),,(),,(),,[( 44332211 yxyxyxyx , respectively denote the coordinates 

of upper-left, upper-right, lower-left, and lower-right corners of each ROI. The 

algorithm can be stated as Algorithm 3.3 

Algorithm 3.3: RONI partitioning into rectangles  

Input: )],(),,(),,(),,[( 44332211 yxyxyxyx  of each ROI 

Output: Minimum number of rectangles partition 

1. While ≠31, xx  image margin 

11_1 −= xx end ;    13_3 −= xx end  

If ( endend xx _3_1 ,  go through other ROI)    break; 

 

2. While ≠42 , xx  image margin 

12_2 += xx end ;    14_4 += xx end  

If ( endend xx _4_2 ,  go through other ROI)    break; 

 

3. Draw lines from point ( endx _1 , 1y ) to point ( endx _2 , 2y ) and from point ( endx _3 , 3y ) 

to point ( endx _4 , 4y ) to generate horizontal partitioned results. 

 

4. While ≠21, yy  image margin 

11_1 −= yy end ;    12_2 −= yy end  

If ( endend yy _2_1 ,  go through other ROI)    break; 

 

5. While ≠43, yy  image margin 

13_3 += yy end ;    14_4 += yy end  

If ( endend yy _4_3 ,  go through other ROI)    break; 

 

6. Draw lines from point ( 1x , endy _1 ) to point ( 3x , endy _3 ) and from point ( 2x , endy _2 ) 

to point ( 4x , endy _4 ) to generate vertical partitioned results. 
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7. Select the result from steps 3 and 6 that generate fewer rectangles as the final 

partition result. 

 

Figure 3.7 shows an example of partitioning the RONI concave rectangle into 

the minimum number of rectangles. Figure 3.7(a) shows the possible horizontal 

partition, Figure 3.7(b) shows the possible vertical partition, and Figure 3.7(c) shows 

the corresponding result. There are no collinear lines in this example, and we use the 

horizontal partition as default. In addition, each RONI rectangle is represented as 

having value “1” in the binary partitioned mask. Note that the white areas in Figure 

3.7(c) are RONI partitioned rectangles for embedding, while the white areas in Figure 

3.6(b) indicating ROI for preservation. According to Equation (3.6), we have n = 12, 

h = 2, and C = 0. Therefore, MP = 7 is the optimal partition. Figure 3.8 shows another 

example of partitioning a three-ROI image with two collinear lines. In this case, we 

have n = 16, h = 3, and C = 2, and therefore MP = 8. 

 

 

Figure 3.7 An example of partitioning. 
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Figure 3.8 An example of partitioning a three-ROI image with two collinear lines. 

 

Secondly, instead of using bounding boxes, we consider a RONI partition 

algorithm to deal with arbitrarily-shaped ROI inside (see an example in Figure 3.9). 

Adopting similar concept as in MAT (medial axis transforms), we develop a square-

production algorithm. The MAT is a block-based scheme representing connected 

components in an image by the medial axis and radii [40]. Instead of applying the 

MAT for skeletonization, we apply MAT to produce different sized squares for 

watermark embedding. 

 

 

Figure 3.9 An arbitrarily-shaped ROI example. (a) the cover image, (b) the ROI. 

 

The pixels of the arbitrarily-shaped ROI are used as the seeds to generate 

distance transform of the image. Then we choose the pixels which are the 3 × 3 local 

maxima of the distance transform to be the medial axis. The redundant squares 

containing unions or connected to others are removed by selecting the first scanned 
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square. Small blocks are eliminated intentionally for the resistance of watermark 

embedding noises. After each square-production round, we can continuously generate 

more squares in the remaining RONI area using the arbitrarily-shaped ROI along with 

the squares produced in the previous round as the new seeds for the distance 

transform. In general, there are three types of distance measures often used in image 

processing: Euclidean, city-block, and chessboard. Since the RONI area is 

decomposed into several square-shaped RONI parts, the 8-neighbor chessboard 

distance is adopted. The proposed square-production algorithm is presented as 

Algorithm 3.4. 

Algorithm 3.4: RONI partitioning into squares 

Input: a binary image with the ROI region masked as “1,” denoted as R 

Output: a squared bounding box image R_S 

1. Perform the chessboard distance transform on R using the arbitrarily-shaped object 

region (i.e. ROI) as the seeds to obtain CDT (the chessboard distance transformed 

ROI). 

 

2. Upon scanning CDT, if a radius is the local maxima (i.e. maximum of 3 × 3 

window), keep the distance value; otherwise, reset the pixel's distance to be zero. 

 

3. If the nonzero output pixels are connected (i.e., they have the same distance value), 

choose the first scanned pixel to obtain the squares so the redundancy in MAT is 

removed. 

 

4. Mark the above selected squares to one inside the bounding box R to form a new 

bounding box R_N. Remove squares whose radii are smaller than a prescribed 

threshold TS. 

 

5. Use R_N as new seeds to repeat steps 1 to 4. 

 

6. The algorithm is terminated if no more squares can be found. Collect those 

produced squares as well as the object region as R_S. 
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The step-by-step results in the first iteration of Algorithm 3.4 are shown in 

Figure 3.10, where the non-overlapping white blocks are the squares produced for 

watermark embedding. Continuing the iteration number N will repeatedly produce the 

squares. The continuous square production is shown in Figure 3.11. In this case, the 

square production algorithm stops at the fourth round. 

 

 

Figure 3.10 The step-by-step results in the first iteration of RONI decomposition. 

 

 

Figure 3.11 Square production for each iteration number N. 

 

Note that a different threshold value TS will cover the RONI area by a 

different size of squares. If the threshold is one, the RONI area inside will be 

completely covered. Increasing the threshold value will approximate the coverage of 

the RONI area by eliminating small squares. Figure 3.12 shows the squares produced 

by increasing the threshold value TS. 
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Figure 3.12 Square production of the cover-image by different thresholds. 

 

Without loss of generality, we summarize more details of our low distortion 

and high capacity watermarking scheme as the pipeline in Figure 3.13. A cover image 

is firstly segmented with multiple ROIs indicated by either rectangular bounding 

boxes or arbitrarily-shaped areas. Either algorithm 3.3 or 3.4 is selected to partition 

the RONI into rectangles according to the shape or ROIs. Each RONI rectangle is 

transformed into frequency domain with watermark inserting at the magnitude of 

MFC based on algorithm 3.1. The Marked image is obtained by combining the intact 

ROIs and the embedded RONI rectangles. 

 

 
Figure 3.13 The details of the low distortion, high capacity watermarking scheme. 

 

The proposed image watermarking scheme is tested on the MRI medical 

image dataset from OASIS [41], which consists of a cross-sectional collection of 416 

subjects aged from 18 to 96. This dataset is selected because it includes MRI images 
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of different sizes with multiple arbitrarily-shaped ROIs. Some images from the dataset 

are shown in Figure 3.14. 

 

 

Figure 3.14 Some images from OASIS dataset. 

 

The ratio of the ROI areas with respect to the entire cover-image is computed. 

Figure 3.15 visually compares the results of applying the arbitrarily-shaped RONI 

decomposition scheme (Algorithm 3.3) and the ROI bounding box partition method 

(Algorithm 3.4). The increment is the extra pixels for embedding generated by the 

arbitrarily-shaped RONI decomposition divided by the pixels for embedding using a 

bounding box partition. If the ratio of the ROI versus the cover-image is small, the 

increment is small too. However, if the ratio is large, a significantly high amount of 

increment will be obtained. Varying the ROI proportion from 30% to 70%, we plot 

the curves of increments using the threshold value TS to be 1, 3, 5, 7, and 9 in Figure 

3.16. It is observed that the increments grow exponentially as the ROI proportions 

increase linearly for all variant thresholds. Note that the squares of radii smaller than 

TS will be removed. If TS = 1, all the produced squares of size 1 × 1 (i.e., a single 

pixel whose radius is zero) are eliminated. 
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Figure 3.15. Comparisons of increment (a) The cover-image, (b) the ROI, (c) the ROI 

enclosure with a bounding box, (d) the squares produced for embedding using the 

decomposition scheme. 

 

 

Figure 3.16 ROI proportion vs. increment with varying threshold values. 

 

We compare the proposed scheme against five state-of-the-art, blind, fragile, 

and ROI-based image watermarking algorithms [37, 42-45]. The following categories 

are used for comparisons: the embedding domain, the embedding capacity in BPP, the 

ROI annotation method, the ROI enclosure shape, ROI lossless, and PSNR. Table 3.4 

lists the results, from which we observe that all existing methods need manual 

annotation of ROI on medical images. Moreover, the existing methods allow 

arbitrarily- or polygon-shaped ROIs to be embedded into the spatial domain, whereas 

our methods enable both rectangular and arbitrarily-shaped ROIs to be embedded into 
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the frequency domain. Besides, the proposed schemes have significant increments in 

the watermark capacities. 

 

Table 3.4 Comparisons of the Proposed Scheme against Five Existing Schemes 

Scheme Domain 
Capacity 

(BPP) 

ROI 

annotation 

ROI 

shape 

ROI 

lossless 

PSNR 

(dB) 

[13] Spatial 
Authentication 

data only 
Manual Rectangle 

Near 

lossless 

Threshold at 

32. 

[14] Spatial 0.75 Manual Polygon Yes 

Related to the 

selection of 

polygons 

[15] Spatial 

0.39 to 0.89 for 

ROI extent 

30% to 5% 

Manual Arbitrary Yes Around 43.06 

[16] Spatial 0.46 to 0.50 Manual Polygon Yes 

36.71 to 85.50 

on 16-bit 

images. 

[17] Spatial 
0.5 when ROI 

extent is 5% 
Manual Polygon Yes 

Only focus on 

the extracted 

and original 

cover-image. 

Ours 

(Rectangular) 
frequency >= 1.63 Manual Rectangle Yes 

48.53. 

Drop 

exponentially 

when 

increasing 

capacity. 

Ours 

(Arbitrary) 
frequency 1.13 to 5.09 Manual Arbitrary Yes 56.22 

 

3.2.3 RONI Ranking for Embedding Optimization and Purpose Adjustment 

Having the RONI rectangles partitioned, in order to achieve an intelligent and 

optimized image watermarking scheme, we answer the question “How much 

information can we place in each rectangle?”. We first address this problem by 
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considering the appearance of each RONI rectangle, to preserve the fidelity, those 

rectangles look complex should convey less information than those look flat. Image 

entropy is adopted to evaluate the complexity of appearance for each RONI rectangle. 

Image entropy is a statistical measure of randomness, representing the energy or 

complexity of an image. It can be used to put image regions into an order according to 

human vision subjective perception of complexity [46]. In this proposal, the entropy 

of each RONI rectangle is computed by 

 

 R = − > V*+,�(V) 
(3.7) 

 

where E is the entropy, p denotes the probability of each pixel obtained from an image 

histogram. After computing the entropy of all RONI rectangles, we rank them by 

applying a fuzzy membership using a sigmoid function [47], where the independent 

value is the entropy and the dependent value is the embedding iteration time t in 

Algorithm 3.1. Note that t determines the modification level of the magnitude, thus 

implying the embedding amount. Figure 3.17 shows the sigmoid curve in the 

proposed scheme. 

 

Figure 3.17 The sigmoid membership in the proposed scheme. 
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Mathematically, we obtain t by 

 

 W = X 11 + exp {J(R − A)} (W^ − W_) + W_` (3.8) 

 

where a is the function acceleration, c denotes the function center, W_ and W^ constitute 

the range of the membership. According to experiment, a is set to be 2.5, c is the 

mean value of entropy E, and  W_ and W^ are set to be 1 and 5 respectively. After this 

computing, the embedding iteration time for each RONI rectangle depends on its 

complexity of appearance. 

Figure 3.18 presents an example of ranking the RONI rectangles on a natural 

image with three prescribed ROIs. Figure 3.18(a) shows the 450 × 300 image with 

three prescribed ROIs bounding boxes. Figure 3.18(b) is the corresponding RONI 

partition, where we use Algorithm 3.3 for rectangular ROIs to produce nine RONI 

rectangles. The t value for each rectangle in Figure 3.18(b) column-wisely is shown in 

Table 3.5. The embedding amount is larger for rectangles with lower entropy. 

 

 

Figure 3.18 An example of embedding a sample watermark image. (a) A natural 

image with three ROIs. (b) RONI rectangle partition. 

 

 



 

50 
 

Table 3.5 Embedding Iteration Time t for Each Rectangle in Figure 5.2(b) 

t 5 4 5 1 4 1 2 1 2 

 

Secondly, we enhance the ranking idea by considering both the appearance of 

the cover image and the watermarking capacity simultaneously via swarm intelligence. 

Swarm intelligence is a promising computing technology developed from effective 

processing mechanisms and desired characteristics of biological evolutions. Its 

effectiveness in global optimizations has been deeply studied and applied. We adopt 

particle swarm optimization (PSO) [48] in this proposal for its enhanced capability of 

global optimization. PSO iteratively optimizes a problem by improving existing 

solutions that represented by particles moving in the search space at each round.  

In the proposed image watermarking context, each particle represents an 

embedding solution of a RONI rectangle with an iteration time t. The algorithm 

initializes a group of particles and computes the fitness to evaluate them. The update 

process involving the personal best position as well as the global best particle guides 

the evolution to a better direction. Any updated positions should not exceed the search 

range, avoiding the particle going to an undesirable field. PSO in the proposed 

watermarking scheme can be divided into the following steps: 

Randomly initialize the position (i.e. an embedding with t) and velocity of a 

group particles. 

Compute the fitness for each particle, record the global best particle at current 

iteration G and personal best position of each particle PB. 

Update the position 'P  and the new velocity 'V  for each particle by 

 

 �S = � + 9� (3.9) 
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 �S = � + aA�KJ�3()(b − �)c + (A�KJ�3()(�d − �)) (3.10) 

 

where P is current position of a particle, rand() is a 0 to 1 random number draw from 

uniform distribution, V is current velocity of a particle and m, 1c , 2c  are the updating 

pace factors. We set m = 0.1, 1 1c =   and 2 1c =  according to the suggestion in [48]. 

Update G and PB according to the fitness function. 

Stop the algorithm if a termination condition is satisfied, otherwise go to the 

next iteration. 

The fitness function in the proposed scheme, is designed to achieve high 

fidelity and higher capacity simultaneously after inserting a watermark image into a 

cover image. We consider the universal image quality index [49] for fidelity 

evaluation and the number of bits embedded for capacity. The fitness function is 

computed as 

 

 �@W�%LL = e�f + e�U (3.11) 

 

where C is the ratio between the number of bits capable to be embedded into a RONI 

rectangle with a t, and total embedding bits. Considering a host image g� and a marked 

image g� of size ; × I, the universal image quality matrix f can be computed by 

 

 f = hijikhijhik × 2g�lg�lg�l� + g�l � × 2hijhikhij� + hik � (3.12) 
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where g�l  and g�l  are the global mean of g�  and g�, respectively, hij � and hik� are the 

variance of g� and g�, respectively, and hijik is the cross correlation between g� and g�.   

The first term of f is the correlation coefficient, which measures the correlation loss 

between g�  and g� . With a range [-1, 1], the best value 1 indicating both standard 

deviations are the same. The second term measures the luminance loss with a range [0, 

1], the best value 1 indicating the mean luminance are the same. The third term 

measures the contrast loss with a range [0, 1], the best value 1 indicating no loss of 

contrast. In overall, the multiplication produces a Q in the range [-1, 1], with the best 

value 1 indicating images g� and g� are identical to each other. 

Remarkably, two weighting factors e�  and e�  are set up in the fitness 

function. They respectively determine the importance of fidelity and capacity during 

watermarking to make our scheme adjustable-purpose to the end users. For instance, 

if quality preservation is the primary purpose for a embedding, a user can set e� > e�. 

Note that e�, e� ∈ [0,1], and ∑ e����� = 1. 

Figure 3.19 illustrates the RONI ranking with PSO with an example of 

embedding a sample watermark image into a natural image. Figure 3.19(a) shows a 

natural image of size 500 × 300 with four ROIs selected. Figure 3.19(b) is the 

corresponding RONI partition, Algorithm 3 produces thirteen rectangles in this case. 

Figure 3.19(c) shows the watermark logo. We use a binary image as the watermark 

bits. Figure 3.19(d) is the marked image with PSNR 57.33. The watermark is 

embedded into each RONI rectangle using Algorithm 3.1. Figure 3.19(e) is the 

difference between the cover and marked images, from which we can observe that the 

watermark embedded amount for each RONI rectangle varies. RONI rectangles with 

less texture convey more watermark bits according to the results of swarm 

intelligence. 
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Figure 3.19 An illustration of the RONI ranking with PSO. (a) A natural image with 

ROIs. (b) RONI rectangle partition. (c) The watermark logo image. (d) The marked 

image. (e) The difference between original and marked images (amplified by 100 

times). 

 

The computational complexity of the proposed algorithm is analyzed as 

follows. Most evolutionary algorithms have, at each iteration, a complexity of O(n*p 

+ Cof*p), where n is the dimension of the problem, p is the population size, and Cof 

is the cost of the objective function. Furthermore, assume that an evolutionary 

algorithm performs FEs/p iterations, where FEs is the maximum amount of function 

evaluations allowed. Thus, the complexity cost becomes O(n*FEs + Cof*FEs). The 

second term tends to dominate the time complexity, and this complexity is determined 

by the cost of evaluating the objective function and the amount of evaluations 

performed. Therefore, the algorithm complexity is measured by the amount of 

evaluations it performs. 

The method in Figure 3.13 is improved with RONI ranking. It is compared 

with an intelligent watermarking scheme that involves evolution, [50] (Arsalan et al.), 

a reversible watermark scheme with interpolation [51] (Luo et al.) and prediction 

error expansion based image watermarking schemes with sorting [52] (Sachnev et al.) 

or without sorting [34] (Thodi et al.). The evaluation criteria include capacity (BPP) 
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and PSNR (dB). The results are as shown in Figure 3.20. Figure 3.20(a) shows the 

PSNR vs. BPP for the state-of-the-art algorithms and Figure 3.20(b) presents the 

PSNR vs. BPP for the proposed scheme. 

 

 
                                      (a)                                                          (b) 

Figure 3.20 Comparisons between the proposed watermarking scheme and the state-

of-the-art. (a) PSNR vs. BPP for the state-of-the-art. (b) PSNR vs. BPP for the 

proposed scheme. 

 

All the competitors have at most the capacity of BPP = 1.0, so we control the 

BPP from 0.1 to 1.0 and observe their quality (PSNR). For a fair comparison, we 

adjust the parameters e� and e� in our adjustable-purpose scheme to achieve similar 

PSNR, however the capacity in our scheme is at least 1.0, thus the BPP is improved at 

least ten times if we compare the PSNR on the same unit. Hence, we conclude that the 

proposed intelligent image watermarking significantly improves the capacity while 

preserving a high fidelity. 
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CHAPTER 4 

ROBUST IMAGE WATERMARKING SCHEME  

BASED ON THE ROI DETECTION 
 

4.1 Background  

One crucial challenge in image watermarking systems is the embedded data 

synchronization when variant distortions are applied on the marked-image, namely 

the robustness issue. The variant distortions include some sorts of image-processing 

attacks and geometric attacks. Therefore, a solution often consists of a robust 

watermarking strategy and a geometric resynchronization. 

Robust watermarking strategies are usually constructed to conquer the image-

processing attacks on the marked-image, such as filtering, cropping, compression and 

noising. For example, focusing on the JPEG compression, the quantization-index-

modulation (QIM) watermarking [8] tunes the quantized index in orthogonal image 

transforms for watermark insertion. On the other hand, there exists a few image 

watermarking strategies aiming to solve both the image-processing and geometric 

attacks via a single algorithm. For example, the histogram shape-based watermarking 

scheme [53] that applys the local contrast of image histograms. However, it suffers 

from a low-payload drawback that only a few bits can be embedded to ensure the 

robustness. 

The approaches to watermark resynchronization under geometric and affine 

distortions can be blind or non-blind. For non-blind methods, the problem can be 

addressed through effective search between the distorted and original images due to 

the availability of the undistorted image [54]. The more challenging blind solution, in 

which the original image is not available during the watermark extraction, is 

categorized into three types: invariant domain-based, normalization-based, and 
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rectification-based. Invariant domain-based approaches embed the watermark into a 

rotation, scale, translation (RST) invariant domain. For example, Lin et al. [55] uses a 

Mellin transform to convert a rotation into a translation in log-polar coordinates, and 

apply a translation-invariant transform, such as Fourier transform, to achieve 

geometric invariance. However, the inverse log-polar mapping, in which the 

interpolation is involved, introduces deviation and error. Moreover, shearing 

distortion, which is an important atomic operation in affine transforms, can be hardly 

solved using domain-based approaches. Normalization-based approaches derive 

geometric image statistics, such as central moments [56] and Zernike moments [57], 

to spatially transform both the original and distorted images into a standard status, so 

the invariance can be achieved. But normalization is global and vulnerable to local 

changes, such as lossy coding. The rectification-based watermark resynchronization 

approaches [58] aim to determine and invert the distortion parameters through some 

reference patterns. One way is to intentionally embed some templates [59], in which 

rectification is achieved by searching between the original and distorted templates. 

However, the embedded template not only compromises the payload, but also causes 

failed synchronization since certain attacks interfere the detection of the template 

itself. The self-referencing or feature-based rectification methods, in which invariant 

features on both the original and distorted images are identified, have some 

advantages because of the avoidance of additional embedding data [60, 61]. 

In this chapter, a multibit and robust image watermarking scheme by using an 

improved embedding strategy as well as a synchronization approach is presented. By 

modulating image contrast information, a watermark embedding strategy that 

achieves high robustness and high payload simultaneously is developed. The self-

referencing rectification approach is used for watermark resynchronization under 
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affine transformation, in which the centers of mass in affine covariant regions 

identified by bottom-up saliency detection are extracted and matched to estimate the 

parameters for affine distortions. 

 

4.2 Algorithm  

Figure 4.1 illustrates the pipeline of watermark embedding and extraction processes of 

the proposed scheme. A watermark image is first converted into a binary sequence, 

denoted as W, and then encoded for security and robustness enhancement. The 

encoded watermark is embedded into the cover-image CI by a contrast modulation 

embedding strategy. The marked-image MI is segmented using the saliency detection 

described in Chapter 2, for reference region identification. The reference points on the 

region mask from MI are compared to the corresponding reference points on the mask 

from the possibly distorted marked-image ;g′ for rectification. We can compress the 

region mask by some coding methods (for instance, chain coding) since the mask is 

Boolean map. 

 

 

Figure 4.1 The pipeline of the robust ROI-based watermarking scheme. 
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Watermark extraction involves synchronization since the marked-image ;g′ is 
possibly distorted. All the information needed for the extraction is stored in the key K, 

which includes the encoding parameters, the embedding position and length, and the 

segmentation mask from MI. The key K is encrypted via Advanced Encryption 

Standard (AES) during the transition from the encoder to the decoder. The affine 

covariant reference regions on ;g′ are segmented and matched by the regions on MI. 

The distortion parameters are determined by the corresponding centers of mass in 

these regions. An extracted watermark W ′  is obtained through the watermark 

extraction on the rectified image followed by the decoding. 

4.2.1 Watermark Encoding 

As the proposed scheme deals with robust extraction of a multibit watermark, the 

watermark bits are encoded for higher performance. The first watermark encoding 

step involves utilization of error correction code (ECC) to recover error bits extracted 

from a distorted marked image, although some embedding payload is sacrificed. 

Bose-Chadhuri-Hocquenghem (BCH) encoding [62] is adopted for this purpose since 

it provides a variety of code block lengths and error correction rate. Different BCH 

encoding schemes can be selected to balance the tradeoff between total payload and 

robustness. For example, a BCH(31,6,7) encoding (i.e., it tolerates 7 random error bits 

in a codeword of 31 bits.) has a higher correction rate, yet more redundant bits than a 

BCH(7,4,1) encoding.  

The second watermark encoding step applies random permutation to combat 

the burst errors caused by the cropping and jitter attacks, in which the error bits are 

grouped in some areas of an image. When the burst errors are occurred, a large 

number of error bits that exceed the correction capability will be placed within one 

codeword. Those errors cannot be simply removed by adjusting the BCH coding 
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parameters. Instead, we randomly permute the BCH encoded data, in such a way that 

the error bits are spread out while inversing the permutation. Therefore, each 

codeword will have to correct a less amount of errors, so as to improve the correction 

rate (also see [59]). The BCH encoding parameters and the random permutation order 

are stored in the key K for watermark extraction. 

4.2.2 Watermark Embedding and Extraction Algorithm 

A robust watermark embedding strategy aims to find a stable factor on the cover-

image for data insertion. Ideally, this factor survives under modifications in various 

image-processing attacks. This is somehow a dilemma that a robust watermarking 

scheme requires a factor strong enough to resist different pixel changes, and at the 

same time weak enough for a higher visual fidelity. Noise-like trivial insertion 

strategies emphasize on minor modification for marked image quality but can hardly 

survive under different pixel modifications. Hence, the watermark embedding strategy 

based on modulation is used, in which some features of the cover-image are adjusted 

to indicate the watermark. Specifically, we propose an efficient strategy to modulate 

image contrast features in order to facilitate the tradeoff between robustness and 

fidelity. 

According to Weber’s law, a fluctuation is perceivable only when its 

proportion to the initial stimuli surpasses a threshold. In image context, Weber’s 

contrast is stated as 

 

 Ur�s�t = ∆g/g (4.1) 

 

where ∆g denotes the changes and g stands for the background stimuli. This physical 

property implies that a watermark stays invisible when the embedding change 
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fluctuates within a threshold. At the same time, insignificant pixel modification does 

not affect the steadiness of the contrast. Thus, we can achieve both imperceptibility 

and robustness in the watermarking scheme. 

In the proposed algorithm, a binary watermark is embedded into a grayscale 

cover-image by modulating the contrast in an image area. In a similar fashion with 

root-mean-square (RMS) contrast [63], the mean of the area is used to approximate 

the background stimuli, and the fluctuation is computed by the difference of intensity 

values between a reference point and the background stimuli. We modulate the sign of 

the fluctuation to +1 and -1 according to the watermark bit 1 and 0, respectively. 

Utilizing the sign function as well as the mean for background approximation 

introduces tolerance towards pixel modifications. Therefore, the embedded data is 

robust as long as the modifications do not change the contrast information. 

Concretely, a watermark is embedded by modulating a reference point Vt  in 

the low frequency band of integer-to-integer wavelet transform [64] (IWT) by: 

 

 Vt ′ = v Cwx     if � = 1  and  Vt < Cwx  C_"�    if � = 0  and  Vt > C_"�Vt        otherwise                           (4.2) 

 

where �  is the watermark, and Cwx  and C_"�  respectively are the upper and lower 

thresholds. Setting up these two thresholds enables the modulation that the reference 

point Vt is larger when the embedding bit is 1, and smaller when the embedding bit is 

0. The low frequency band of IWT is applied to avoid blocking artifacts, to generate 

locations in spatial and frequency domains, to contain inherent scaling, to better 

identify regions that are sensitive to human vision, as well as to achieve high 

robustness [65]. Cwx and C_"� are defined based on the mean intensity: 
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 Cwx = �∑ V�∀�∈�r,��tI − 1 × (1 + �)� (4.3) 

 

 C_"� = �∑ V�∀�∈�r,��tI − 1 × (1 − �)� (4.4) 

 

where N� is a slide window specifying an area on the cover-image with N points 

inside, V  denotes the intensity values of pixels in N� , and �  is the embedding 

strength. The reference point Vt  is selected in a certain position for the watermark 

extraction. Figure 4.2 shows a watermark embedding example of a 2 × 2 window N�. 

A cover-image is firstly decomposed to four bands using IWT. And at the low 

frequency band in each N�, the upper-left pixel Vt is selected as the reference point 

and modulated according to the mean intensity of its three neighbors V�, V� , V�, and 

the watermark. A higher embedding strength � has a higher tolerance to distortion at 

the price of a lower fidelity. 

 

 
Figure 4.2 An example of watermark embedding. 
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In the watermark extraction process, a marked-image is firstly decomposed 

using IWT, and only the modulated reference point Vt′ and the local mean in N� are 

compared to determine a watermark bit. The embedding strength � is not required 

since we can quantize the relationship between Vt ′ and its local neighbors for a binary 

watermark using a sign function. The watermark extraction for �′  can be 

mathematically stated as 

 

 �′ = � 1,   if sign{Vt′ − mean(∀V ∈ N�)} = +1 0,   if sign{Vt′ − mean(∀V ∈ N�)} = −1 (4.5) 

 

The extractions are combined in each slide window N� to produce the entire 

extracted watermark. Both the position of reference point Vt and the size of each slide 

window LW can be randomized for enhancing security. 

4.2.3 Affine Rectification 

Another important factor in a robust watermarking scheme is the watermark 

resynchronization under geometric or affine distortions. In this Chapter, we focus on 

general affine distortion, i.e., a set of linear transformations that simulate the view-

point change in computer vision. Major atomic affine transformations include rotation, 

scaling, translation (RST), and shearing. By including the challenging shearing, we 

can process more general image distortions in observer’s view-point changes than 

merely including RST. In digital images, two-dimensional affine transformations can 

be mathematically represented by 

 

 g′ = �P U 0d B 0R H 1� g (4.6) 
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where I is the original image and g′ is the distorted image. Different combinations of 

A to F represent different operations on I. The parameters of RST transformation are 

listed in Table 4.1. 

 

Table 4.1 Parameters in Atomic Affine Transformation 

Affine Transform Atomic Matrix Notation 

Rotation 

 

� A+L(�) L@�(�) 0−L@�(�) A+L(�) 00 0 1� 

 

� is the rotation angle. 

Scaling 

 

�L= 0 00 L� 00 0 1� 

 

L= and L� are the scaling 

factor along horizontal 

and vertical dimensions. 

Shearing 

 

� 1 Lℎ� 0Lℎ= 1 00 0 1� 

 

Lℎ=  and Lℎ� are the 

shearing factor along 

horizontal and vertical 

dimensions. 

Translation 

 

� 1 0 00 1 0W= W� 1� 

 

W= and W� are the offset 

along horizontal and 

vertical dimensions. 

 

Given parameters A to F, an inverse matrix (i.e., the rectification) 

transforming g′ back to I can be deduced as 

 

 g = �     B/I −U/I−d/I    P/IdH − BR   UR − PH
    0    0    1� g′ (4.7) 
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where I = PB − dU. However, in practical applications, parameters A to F are often 

unavailable, so they need to be estimated. Let [0S, �′] and [0, �] be the location of 

pixels on g′ and I, respectively. There are three unknowns along each dimension, 

including A, B, E to convert from 0  to 0′ and C, D, F to convert from � to �′. A 

unique solution of these parameters requires at least three pairs of corresponding 

reference points [0� , ��] and [0S� , �′�] (@ = 1,2,3). 

Center of mass (COM) is selected in affine covariant regions as the reference 

point for its consistent interrelation with the image. The algorithms discussed in 

Chapter 2 is applied for the affine invariance. The COM of each segmented region is 

then computed as the reference point for rectification. Figure 4.3 shows a region mask 

before and after affine distortions, with the spot inside indicating the covariant COM. 

 

 
Figure 4.3 Region masks before and after affine distortions with COM. 

 

To warrant at least three pairs of covariant points, we split the region and 

identify the COM in each subregion to produce sufficient reference points. An 

example of illustrating the split process is shown in Figure 4.4, where the object is 

detected on the marked-image MI. The major and minor axes of the ellipse having the 

same second moment with the identified region are used to split the region. The COM 

is computed on each divided subregion. In this example, we use “*” to plot the 

general COM of the entire region, “x” to plot the COM of subregion’s from major 

axis split, and “o” to plot the COM of subregion’s from minor axis split. 
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Figure 4.4 Identification of COMs on divided subregions. 

 

The same process is followed to identify the covariant COMs on the distorted 

marked image ;g′, as shown in Figure 4.5. COMs on the distorted and the undistorted 

images are paired for rectification. 

 

 
Figure 4.5 Identification of COMs on an affine distorted image. 

 

A rectification could fail when a segmented region is relatively symmetric, 

where a single split will produce the reference points nearly collinear. Using collinear 

points to conduct the rectification along a single dimension cannot fully correct the 

distortion. Figure 4.6 shows a problematic rectification, in which the nearly collinear 

two “o” points from minor axis split and the “*” point are used as the reference points. 

Due to the similarity of horizontal positions of the reference points, the resulting 

image is not horizontally rectified, even if the distorted image ;g′ is just a simple 
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rescale to 90% of the original image MI. Therefore, the region is split twice to 

produce a total of five points to prevent from such a failure. We select the general 

COM “*” along with one of the COMs “o” from minor axis split and one of the 

COMs “x” from major axis split to produce three triangularly located reference points. 

In some cases of less than three covariant regions detected, it is necessary to split 

some regions when the number of noncollinear COMs is less than three. 

 

 
Figure 4.6 A problematic rectification. 

 

After obtaining enough reference points, we associate the same region before 

and after affine distortion, so that the COMs can be matched. We compute the affine 

moment invariants (AMI), which is a moment-based region descriptor invariant under 

general affine transformations for each region. The details of comprehensive 

derivation from classic algebraic invariants to AMI can be found in [66]. We compute 

the AMI up to the fourth order to distinguish similarly-shaped regions for matching. 

 

 P;g� = (E��E�� − E���)/E��� (4.8) 

 

P;g� = �E���E��� − 6E��E��E��E�� + 4E��E���+4E��E��� − 3E���E��� � /E���� (4.9) 
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P;g� = �E��(E��E�� − E���) − E��(E��E�� − E��E��)+E��(E��E�� − E���) � /E��� (4.10) 

 

P;g� =
�
���

E���E��� − 6E���E��E��E�� − 6E���E��E��E��+9E���E��E��� + 12E��E���E��E��+6E��E��E��E��E�� − 18E��E��E��E��E��−8E���E��E�� − 6E��E���E��E�� + 9E��E���E���+12E���E��E��E�� − 6E��E���E��E�� + E���E����
��� /E���� (4.11) 

 

where E�� denotes the central moment of order @ +   and is computed by 

 

E�� = > >(0 − 0̅)�(� − �¢)�K(0, �)�=  (4.12) 

 

where [0,l �¢] are the coordinates of the COM in K(0, �). Let P;g_ (* ∈ [1,2,3, … ]) be 

an array containing P;g� to P;g� of the *-th subregion on the undistorted image MI, 

and P;g_¤S  ( *3 ∈ [1,2,3, … ] ) be an array containing P;g�  to P;g�  of the ld-th 

subregion on the distorted image ;g′. The *-th subregion on MI is matched with ld-th 

subregion on ;g′ by 

 

JK,9@�_¤ { >(P;g_ − P;g_¤S )� } (4.13) 

 

the corresponding COM in the matched regions can be associated after MI and ;g′ 
are matched. 

Figure 4.7 shows the rectification process of a single-object and a multiple-

object. The COM of salient regions is first detected on both the marked image MI and 

the distorted marked image ;g′. If less than three noncollinear COMs are detected, 
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we split and select three matched reference points for the rectification; otherwise, we 

select three matched COMs from different objects. 

 

 

Figure 4.7 Examples of the rectification process. 

 

4.3 Experiments  

This Chapter presents a robust image watermarking system with an embedding 

capacity of on bit per slide window. Increasing the size of the slide window trades the 

payload for fidelity by decreasing the number of reference points modulated. 

4.3.1 Parameter and Tolerance Range 

Increasing the embedding strength � can improve the robustness, while the fidelity is 

compromised by increasing the modulation magnitude. The bit error rate (BER), 

which is the ratio of the number of different bits between the original and the 

extracted watermarks to the watermark length, is applied to evaluate the robustness of 

the syste. A 3 × 3 LW with Vt  being at the center is used. We adopt 120 images from 

Bruce and Tsotsos [5] as the cover media to include the variations in size and salient 

region. Some images are shown in Figure 4.8. 
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Figure 4.8 Sample cover images from Bruce and Tsotsos dataset. 

 

For a varying �, the average BER, PSNR, as well as the extraction of the 

sample watermark under both image-processing and affine attacks are analyzed to 

illustrate the relationship between robustness and fidelity. For example, the results 

under salt-and-pepper noise (5%) are given and Figure 4.9(a). The results under a 

non-linear scaling (0.9 horizontally and 1.1 vertically) are shown Figure 4.9(b). It can 

be observed that the descending BER and PSNR with the ascending �, and BER drops 

faster than PSNR does. 

 

 

Figure 4.9 Examples of BER and PSNR image with varying �. (a) salt-and-peppered 

(b) scaled. 
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The tolerance range of the proposed scheme is analyzed by evaluating its 

responses towards various parameters in different attacks. These parameters 

determine the strength of certain attacks, such as the percentage of a cropping area. 

Some distortions on the Lena image and the extracted watermarks using the proposed 

scheme are shown in Figure 4.10. The distortion parameters vs average BER for the 

challenging attacks, including cropping, jittering (random removal of rows and 

columns), rotation, and shearing, are presented in Figure 4.11. The BER shows a 

severe degradation when the marked image is cropped 50%, jittered 30%, or sheared 

30%. The BER in each case is larger than 20%. The BER under rotation has less 

fluctuation since the interference of varying rotation angles in the marked image is 

relatively stable. 

 

 

Figure 4.10 Sample attacks and the corresponding sample extractions. 
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Figure 4.11 Distortion parameters vs BER. (a) Cropping, (b) Jittering, (c) Shearing, (d) 

Rotation. 

 

The proposed scheme shows promising performance with high tolerance range 

of the challenging distortions. It can tolerate shearing up to 30%, while the template-

based rectification method in [59] can only tolerate shearing up to 5%. 

4.3.2 Comparative Study 

The proposed scheme is compared against four existing multibit robust image 

watermarking methods [8, 53, 67, 68], where [68] and [53] are statistical feature-

based, [8] is modulation-based, and [67] is spectrum-based. The embedding strength 

�  in the proposed scheme is adjusted to achieve close visual fidelity for a fair 

comparison.  

Table 4.2 lists the comparison results of the proposed scheme and the methods 

in [68] and [53], where ‘n/a’ (not applicable) means failure to extract or inapplicable 

in the watermarking scheme. It is observed that the proposed scheme outperforms 

others by having the lowest BER in most of the attacks and the highest tolerance 
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range in cropping, jittering, and shearing attacks. Furthermore, the proposed scheme 

can take care of the histogram equalization and sharpening attacks, whereas the 

statistical and histogram feature-based methods cannot. Note that in shearing 10%, 

our scheme shows a higher BER than the method in [53], which used the general 

histogram shape to be less affected by small pixels loss caused in shearing. However, 

when an image has a larger pixel change with an increased shearing factor (i.e. 

shearing 30%), the general histogram shape is destroyed; however, the proposed 

scheme can still extract a large portion of the watermark. 

 

Table 4.2 BER (%) Comparison of the Proposed Scheme and the Methods in [53, 68] 

Attack [53] [68] Ours 

Histogram 

equalization 
n/a n/a < 0.1 

Sharpening n/a n/a < 0.1 

Cropping 20% 1.93 16.00 0.13 

Cropping 30% 2.73 16.20 1.98 

Cropping 50% n/a n/a 25.76 

JPEG 9.75 16.30 5.73 

Jitter 1% 1.67 6.80 < 0.1 

Jitter 10% n/a n/a 1.75 

Salt & Pepper 1.17 6.60 < 0.1 

Filtering 2.97 9.60 2.31 

Rotation 30° 4.43 10.60 2.93 

Scaling 3.83 8.65 0.99 

Shearing 10% 3.10 8.40 6.07 

Shearing 30% n/a n/a 22.87 

 

Table 4.3 shows the comparison of the proposed scheme and the methods in [67] and 

[8]. The proposed scheme obtains the lowest BER under the filtering and affine 

distortions, whereas the methods in [67] and [8] achieve lower BERs in JPEG 

compression since they used the quantized frequency index. 
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Table 4.3 BER (%) Comparison of the Proposed Scheme and the Methods in [59, 19] 

Attack [59] [19] Ours 

JPEG 1.45 3.51 5.73 

Filtering 3.60 6.25 2.31 

Rotation 0.5° < 0.1 43.67 2.03 

Rotation 30° n/a n/a 2.93 

Scaling n/a n/a 0.99 

Shearing 10% n/a n/a 6.07 

 

In addition, the proposed scheme outperforms the competitors regarding the 

payload. Under the same PSNR around 42.00, the embedding capacity in [53] is fixed 

at 64 bits, and the capacity in [8] is fixed at 256 bits, while the embedding capacity in 

the proposed method is linear in terms of cover-image size the and more than 7k bits 

are embedded in these experiments. 
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CHAPTER 5 

ROBUST IMAGE WATERMARKING USING DEEP LEARNING 

 

5.1 Background  

Incorporating deep neural networks with image watermarking has attracted increasing 

attentions during recent years. Compared to the significant achievements in 

steganalysis [69, 70], less attempts of applying deep learning in the processes of 

watermark embedding and extraction are reported. Instead of manual determination of 

the LSB, some methods in [71-73] use neural networks to assign the significance of 

the bits for each pixel. Tang et al. [74] proposed a variant of a generative adversarial 

network to determine the embedding position and the strength on cover images. Kandi 

et al. [75] used two deep auto-encoders for non-blind binary watermark extraction, 

where in the marked image, the pixels produced by the first auto-encoder represent bit 

zero and the pixels produced by the second auto-encoder indicate bit one. However, 

the neural networks used in all aforementioned methods do not learn the rule of 

watermark embedding and extraction. To fully apply the fitting ability of deep 

learning systems to image watermarking, Baluja [76] proposed a variant of auto-

encoders to form a blind scheme aiming at high fidelity as well as high capacity. Li et 

al. [77] embedded the watermark into discrete cosine domain and used convolutional 

neural networks to cooperate the extraction. Either the embedding or extraction rule is 

generalized by neural networks; however, due to fragility of neural networks [78], the 

robustness issue remains a challenge since inputting a modified marked image to a 

pretrained deep learning system can cause failure in watermark extraction. Like the 

idea in adversarial networks, Mun et al. [79] proposed to resolve this issue by 

including attack simulation in the training. But the attacks included in the training set 
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show much higher robustness than those did not. This significantly limits the 

applications because of the difficulties in enumerating possible attacks in practice. 

Different from the state-of-the-art, in this Chapter, we introduce a robust and 

blind image watermarking scheme using deep convolutional neural networks to 

generalize the rule of watermark embedding and extraction. The advantages of the 

proposed model can be summarized into three-fold. First, the proposed system 

achieves robustness without any prior knowledge of possible attacks and distortions. 

Second, under the novel construction of the network structure as well as the 

computation of the loss, the proposed system increases the watermarking capacity as 

comparing against other robust image watermarking systems. Last, experimental 

results confirm that the proposed system has an enhanced tolerance range towards 

common attacks. 

 

5.2 Model  

The proposed system is compatible with the deep auto-encoders [80], in which a 

latent space is learned through a bottleneck to compress the dimensionality of an 

image. It is structured as two nested auto-encoders, where the outer watermark 

encoder-decoder network learns a latent space of the binary watermark as the 

watermark code, and the inner embedder-extractor network controls the visual 

appearance of the watermark code by referencing the cover image. As a result, an 

intermediate latent space of the watermark code is obtained as the marked image that 

appears visually similar to the cover image, while simultaneously contains some 

information of the watermark. Instead of training for dimensionality compression, the 

proposed system learns over-complete representation to secure accurate extraction as 

well as to achieve robustness.  
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The overall architecture of the proposed image watermarking system is 

presented in Figure 5.1. First, the encoder network prepares the binary watermark for 

enhanced robustness and added security. Note that the watermark can be color, 

grayscale, or binary images, which are converted into binary codes. The marked 

image is then generated by the embedder network considering both the watermark 

code and the cover image. An invariance layer provides invariant representation of the 

marked image, so that its extraction of the watermark tolerates noises and distortions, 

and therefore provides robustness. Finally, the extractor network restores the 

watermark code, and the decoder network reconstructs the binary watermark. The 

proposed system is considered as blind since the watermark extraction only takes 

from the marked image. The entire system is trained as a single deep network, while 

we separately describe each component in detail. For illustration purposes, we present 

the embedding of a 1,024-bit (32 × 32) watermark into a 128 × 128 × 3 color cover-

image. One can adapt the sizes by slightly modifying the structure, for example, 

adding a fully-connected layer with 1,024 neurons to receive an arbitrarily-sized 

binary watermark. 

 

 

Figure 5.1 The overall architecture of the proposed deep watermarking system. 
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5.2.1 Watermark Encoder and Decoder Networks 

The encoder and decoder network learns an over-complete latent space of binary 

watermark as watermark code. A 32 ×  32 watermark is input into the encoder 

network and successively increased into 24 channels and 48 channels by 

convolutional blocks. The 48-channel feature map is the watermark code to be used in 

the embedder network. On the other hand, the decoder network receives a 32 × 32 × 

48 watermark code and restores it to a 32 × 32 watermark. Figure 5.2 shows the 

structure of the encoder and decoder networks. 

 

 

Figure 5.2 Structure of the encoder and decoder networks. 

 

To increase the channels, the inception residual block [81] is adopted to 

extract crucial features as well as to preserve gradient flow. The block consists of a 1 

× 1, a 3 × 3, and a 5 × 5 convolution, and a residual connection which sums up the 

feature maps and the input itself, so that various perception fields are applied. Each 

convolution has 32 filters, and the 5 ×  5 convolution is replaced by two 3 ×  3 

convolutions for efficiency. Applying the convolutions will partition the patterns in 

the binary watermark into different channels, where important features can be 

duplicated. The convolutional block is shown in Figure 5.3. 
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Figure 5.3 The convolutional block. 

 

Encoding the single-channel watermark into 48 channels produces a latent 

space with redundancy, decomposition, and encryption for adding security and 

enhancing robustness to the proposed system. As a result, this channel-increased 

latent space along with the invariance layer accounts for high tolerance range of 

robustness, so that cropping 65% of the marked image yields only 8% errors in the 

extraction. A few 32 × 32 binary watermarks and their corresponding 32 × 32 × 48 

watermark codes (reshaped to 128 × 128 × 3 for display) are shown in Figure 5.4, 

from which we observe the perceivable randomness. 

 

 

Figure 5.4 Some examples of the watermark code. First row: sample binary 

watermark, and second row: the corresponding watermark code. 
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5.2.2 Embedder and Extractor Networks 

Having the watermark code along with the cover image, the embedder and extractor 

network learns a latent space of the watermark code as the marked image, in which its 

visual appearance must be similar to the cover image and its feature must correlate 

with the watermark code. The detailed structure of the embedder and extractor 

networks is shown in Figure 5.5. A reshaped watermark code of size 128 × 128 × 3 is 

input into the embedder network. A convolutional block is first used to extract 

features from the watermark code, so that the code details are included in the marked 

image to facilitate later explanation of the loss. Then, the second convolutional block 

creates the 128 × 128 × 3 marked image by depth concatenation of the transformed 

code feature and RGB channels of the cover image as considering different perception 

fields. The extractor network reversely restores the watermark code from the marked 

image. 

 

 

Figure 5.5 Detailed structure of the embedder and extractor networks. 

 

By inputting two images, the embedder and extractor network encodes the 

watermark code into the least noticeable components of the cover image. Some 
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examples of the embedding are shown in Figure 5.6. Human vision can hardly tell the 

differences between marked- and cover-images in spatial domain, while the 

convolutional blocks in the extractor are able to find the watermark code in feature 

maps. 

 

 

Figure 5.6 Some examples of the embedding. 1st row: the cover images, 2nd row: the 

marked image, and 3rd row: the embedded and extracted watermark code. 

 

5.2.3 Invariance Layer 

For the robustness, the transformer layer learns invariant representation of the marked 

image. As shown in Figure 5.7, it converts the three-channel marked image into M-

channel over-complete representation with a fully-connected layer, where M is the 

redundant parameter. Note that the higher M is, the higher robustness it can achieve. 
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Figure 5.7 The invariance layer. 

 

Referring to the contractive auto-encoder [82], this layer enables the 

robustness of learned representation of the marked image by a regularization term that 

is obtained by the fully-connected layer’s Frobenius norm of Jacobian matrix with 

regards to the training input. Mathematically, the penalty term P is given as the partial 

derivative of the layer to its inputs 

 

� =  >(¥ℎ�(�)¥�� )�
�,�  (5.1) 

 

where �� (i = 1, 2, 3, …) denotes the i-th input and ℎ�  denotes the output of the j-th 

hidden unit. Similar to the common gradient computation in neural networks, the 

partial derivative can be written as 

 

¥ℎ�(�)¥�� = ¥�(�����)¥����� ��� (5.2) 

 

where � is an activation function and W is the weight of the layer.  
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In practice, we treat each channel as a single neuron for high computational 

efficiency, structure preservation, and enhanced robustness. Concretely, treating one 

pixel as an input neuron means 49,152 inputs for a 128 ×128 × 3 marked image. Thus, 

having 147,456 units in the fully-connected layer requires at least 7,247,757,312 

parameters if we only set the redundant parameter M as 3, which is not practical in 

most of current graphical computation units and significantly lowers the efficiency. 

On the other hand, treating one channel as an input unit considers only 3 input units 

for the RGB marked image, which enables faster computation as well as a much 

larger M as hundreds for an enhanced robustness. 

We propose to apply hyperbolic tangent as the non-linear activation function 

of the invariance layer for strong gradients as well as bias avoidance [83]. With  � 

assigned as the hyperbolic tangent, P can be defined as 

 

� = >(1 − ℎ��)� >(���¦)�
��  (5.3) 

 

Minimizing term P is essentially rendering the weights in the hidden layer 

unchangeable towards all the inputs X. However, placing it as a penalty in the total 

loss function enables the layer to preserve only useful information while rejecting all 

other noises and irrelevant information to achieve the invariance. 

5.2.4 Loss and Error Propagation 

The proposed system is trained as a single and deep network by minimizing the loss 

function L 

 

N = E�|| e, % || + E�|| 9, A || + E�||�(9, e)|| + E�� (5.4) 
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where w, e, m, c denote the watermark, the watermark extraction, the marked image, 

and the cover image, respectively, � denotes the correlation computation function, P 

is the regularization term as in Equation (5.3), and E� , @ = (1,2,3,4) is the weight 

controlling the contribution of each term. 

The error propagation of each term is presented in Figure 5.9. || e, % || is the 

cyclic term that ensures the similarity between the extraction and the original 

watermarks. All the components in the system apply this error term during their 

weights update. The || 9, A ||  guarantees the visual similarity between cover- and 

marked-images by comparing their contents. To explain the error term ||�(9, e)||, 
we annotate �� and �� (shown in Figure 5.8) for the convolutional block f of Figure 

5.5. Under this annotation, E�||�(9, e)|| can be computed as 

 

E�||�(9, e)|| = E�2 (|| ,(��(Ae)),  ,(��(9))|| + || ,(��(Ae)),  ,(��(9))||) (5.5) 

 

where Ae  is the watermark code and g denotes the gram matrix. Besides the 

watermark code, the convolutional block f also extracts features on the marked image. 

The feature maps of the marked image must correlate with those of the watermark 

code. The correlation is maximized by minimizing the distance between the gram 

matrices. Remarkably, || 9, A || and ||�(9, e)|| are only applied to the weights of 

encoder and embedder networks. All the components contain the information of the 

watermark under this error propagation. 
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Figure 5.8 �� and �� in the convolutional block f 

 

 

Figure 5.9 The error propagation of the proposed system. 

 

5.3 Experiments 

5.3.1 Training, Testing and on Synthetic Images 

This chapter presents a robust image watermarking system based on deep neural 

networks, with a fixed watermark payload of 1,024 bits. The proposed system is 

trained using ImageNet [84] (rescaled to 128 × 128) as the cover image and the 

binary version of CIFAR [85] (32 × 32) as the watermark. Both datasets include more 

than millions of images to introduce a large scope to the system. The ADADELTA 

[86] optimizer that applies a moving window in gradient updates is adopted for its 

ability of continuous learning after large epochs. Figure 5.10 shows the value of loss L 

during 200 epochs. The loss L drops smoothly and converges below 1%. The distance 
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measures in L are set as the mean absolute error to highlight the overall performance 

over a few outliers. The E� , @ = (1,2,3,4) is set to be one for equal highlight of each 

error term. All the layers in the system apply the rectified linear unit (ReLU) as the 

activation function except that the marked image and watermark extraction use 

sigmoid to limit the output range into (0, 1) and the invariance layer uses hyperbolic 

tangent. 

 

 

Figure 5.10 Training loss versus epoch. 

 

The testing is performed on 10,000 images of Microsoft COCO dataset [87] as 

the cover image, and 10,000 images of the testing division of the binary CIFAR as the 

watermark. Both the testing cover images and testing watermarks are not used in the 

training. It demonstrates that the proposed system generalizes the watermarking rules 

without over-fitting to the training samples. The peak signal-to-noise ratio (PSNR) 

and bit-error-rate (BER) are respectively used to quantitatively evaluate the fidelity of 

the marked image and the quality of the watermark extraction. The PSNR is defined 

as in Equation (3.4) and the BER is computed as the percentage of error bits on the 

binarized watermark extraction. In the testing, the BER is very close to zero, 

indicating that the original and the extracted watermarks are identical. The testing 

PSNR is 39.72 dB, meaning a high fidelity of the marked images, so that the hidden 
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information cannot be noticed by human vision. Some examples of the watermark 

embedding with various image content and color are shown in Figure 5.11. The 

residual errors showing the absolute difference in each RGB channel between the 

marked and the cover images are also displayed, from which we observe that the 

watermark is dispersed over the marked image. It provides added security to the 

marked image even if the cover image has leaked. But subtracting it from the marked 

image does not reveal the watermark information. Ranging the pixel values between 0 

and 255, we compute the mean of residual errors for each RGB channel, averaging 

along the testing results of 2.57, 2.10, and 1.63, respectively. Similarly, the maxima of 

residual errors are 14.11, 24.79, and 17.08. These numbers indicate that there are 

some relatively spiky modifications for the extraction, but on average the watermark 

insertion does not alter channels a lot. 

 

 

Figure 5.11 A few testing examples. 1st column: the embedded and extracted 

watermark, 2nd column: the cover image, 3rd column: the marked image, and 4th, 5th, 

and 6th columns: the respective residual errors of R, G, and B channels between the 

marked and the cover images. 
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We explore the proposed system to some extreme cases using synthetic 

images for further estimation. In particular, the synthetic situations that are not 

included during the training process are analyzed, and the results involving blank and 

random-noise images are presented here. 

Figure 5.12 shows the results of embedding real watermarks into some blank 

cover images of black, white, red, green, and blue, where the residuals are amplified 

10 times. Although the blank cover images are not included in the training, the 

proposed system provides acceptable results in the cases. The residual errors display 

more green color and the blank green marked image displays relatively more 

noticeable noises than those in other colors, implying that the proposed system 

modifies the green color slightly more. 

 

 

Figure 5.12 Embedding watermarks into blank covers. 1st column: the watermark, 

2nd column: the blank cover image, 3rd column: the extracted watermark, 4th column: 

the marked image, and 5th and 6th columns: the residual errors. 
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Figure 5.13 presents the results of embedding a random binary image into a 

natural cover image, as well as embedding a real watermark into a random color-

spotted cover. Applying a random binary image as the watermark displays good 

results. Although the general shape of extraction is recognizable, there are obvious 

distortions on the extraction when it comes to embedding a watermark into random 

noises. In practice, hiding a watermark into random noises indicates that the 

appearance of the marked media is noisy and meaningless, so the encryption methods 

mapping a watermark into random patterns could be used. 

 

 
Figure 5.13 Embedding involving noise images. 1st column: the watermark, 2nd 

column: the cover image, 3rd column: the extracted watermark, 4th column: the 

marked image, and 5th and 6th columns: the residual errors. 

 

5.3.2 Robustness 

The robustness of the proposed system against different distortions on the marked 

image is evaluated by analyzing the tolerance range towards the attacks. Figure 5.14 

shows visual comparisons between the marked images and their distortions as well as 

between the original watermarks and the extractions from the distorted marked 

images. 
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Figure 5.14 Visual comparisons of distortions. 1st row: the marked image, 2nd row: 

the distorted marked image, from left to right the operations are histogram 

equalization, Gaussian blur, random noise, salt-and-pepper noise, and cropping, 3rd 

row: the original watermark, and 4th row: the extraction from the distorted marked 

image. 

 

Quantitatively, swept-over distortion parameters which control the strength of 

the attacks are applied on the testing datasets, and the average BER are recorded. 

Since the geometric distortions, such as translation, rotation, and scaling, are rectified, 

we focus on the responses of the proposed system against image processing attacks. 

Figure 5.16 presents the results of some common but challenging situations. The 

extracted watermarks from the proposed system respectively have 11%,  8.1%,  31%, 

8.2%, 42%, and 5.1% bits errors when the distortions are a Gaussian blur with mean 0 

and variance 85%, a cropping discarding 65% percent of the marked image, a 

Gaussian additive noise mean 0 and variance 20%, a JPEG compression with quality 

factor 10, a 20% random noise, and a 30% salt-and-pepper noise. The proposed 

system shows a high tolerance range on these challenges especially for cropping, salt-

and-pepper noise, JPEG compression, and the noises that randomly fluctuate the pixel 

values through image channels show higher BER such as Gaussian additive noise and 

random modificative noise. However, a 20% Gaussian noise or a 20% random noise 

destroys almost content of the marked image as shown in Figure 5.15. The proposed 
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system responds acceptable performances given a decent distortion parameter of these 

attacks, such as 16% BER on 10% Gaussian noise. 

 

 

Figure 5.15 Extreme cases. Left: the original marked image. Middle: Gaussian 

additive noise with variance 20%. Right: 20% Random modificative noise. 

 

 

Figure 5.16 Distortion parameters vs BER. 

 

5.3.3 Comparative Study 

First, the proposed method is analytically compared against several state-of-the-art 

image watermarking methods that incorporate deep neural networks as shown in 

Table 5.1. To the best of our knowledge, Kandi et al. [75] is the first image 

watermarking scheme utilizing convolutional neural networks. But it is a non-blind 

scheme for achieving robustness. Embedded by increasingly changing an image block 

to represent a watermark bit, the system in [79] is trained to extract the watermark bits 

from their corresponding blocks with attack simulation and achieves both blindness 
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and robustness. However, it requires the distortions to be included in the training 

phase for robustness, it is difficult to predict and enumerate all encountering attacks in 

practice. On the other hand, the proposed system not only achieves blindness and 

robustness simultaneously, but also is trained without the requirement of any prior 

knowledge of attack information, and hence has a wider range of applications. 

 

Table 5.1 Comparison of the Proposed System against State-of-the-art Image 

Watermarking Methods  

Method 
Function of the deep neural 

networks 
Blindness Robustness Concentration 

[74] 
determine the embedding 

position and probability 
no no undetectability 

[75] embedding and extraction no yes robustness 

[76] embedding and extraction yes no capacity 

[77] extraction yes no Undetectability 

[79] extraction yes yes Robustness 

Ours embedding and extraction yes yes Robustness 

 

Second, the proposed system is compared against several blind and robust 

competitors quantitatively. The selection of the competitors mainly considers 

variation. Mun et al. [79] applied convolutional neural networks, and Zong et al. [53], 

Zareian and Tohidypour [8], and Ouyang et al. [88] are classic, traditional, and robust 

methods with different image domains in recent years, such as histogram domain 

adopting statistical image features, frequency domain, and log-polar domain with 

summarized image features. For a fair comparison, the testing is performed on the 

same image sets reported in the references. The crucial results are presented in Table 

5.2, where “/” denotes not applicable, S&P is the salt-and-pepper noise, and GF is 

Gaussian filtering. The proposed method shows clear advantages by covering more 

general distortion categories as well as lower BER under the same distortion 

parameters. For instance, the traditional methods such as manipulating the image 

histogram cannot tolerate the histogram equalization attack. In addition, the proposed 
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method has a higher tolerance range; for example, [79] and [88] can only extract the 

watermark with high JPEG quality of 80 to 90, while the proposed method covers as 

low as 10 although the method in [8] focuses on the JPEG having a higher 

performance. Remarkably, the competitors tolerate cropping 20% to 30%, while the 

BER is as high as 8.2% if 65% of the marked image is cropped. Finally, under a close 

PSNR, the proposed method outperforms the existing methods by simultaneously 

achieving the highest robustness and the highest capacity. 

 

Table 5.2 Quantitative Comparison Between the Proposal and Some Blind and 

Robust Competitors 

 

Method 

BER ( % ) 
PSNR 

(dB) 
Capacity 

HE 
JPEG 

10 

Cropping 

20% 

S&P 

5% 

GF 

10% 

[79] / / 6.61 7.98 4.81 38.01 
1 bit per 

block 

[53] / 17.50 7.06 3.51 6.33 46.63 25 bits 

[8] / 2.15 / 4.94 0.21 41.00 256 bits 

[88] / / 7.51 9.41 27.91 36.77 24 bits 

Ours 0.43 8.16 0 0.97 0 39.93 1,024 bits 

 

5.3.4 Application on Camera-captured Images 

We present one of the core applications using the proposed system to extract 

watermark from a camera-captured image. Success in this problem has the potential 

of many useful applications, such as connecting the virtual world and the real world to 

serve as the low-level interface for the internet of things. Watermark detection and 

extraction on a camera resampled image remains a challenge. Its difficulty is mainly 

caused by the comprehensive combination of noises [89], including geometric 

distortions, optical tilt, quality degradation, compression, and lens distortions. 

Researchers and engineers have been trying to address this issue from various 

perfectives. For example, Pramila et al. [90] proposed to extract the watermark from a 



 

93 
 

phone-camera capture of an image printed on blank paper. However, it has restricted 

applications since the presence of the cover image is required. 

We apply the proposed blind system towards this issue. Instead of using 

printing, a phone camera is used to capture a marked image displayed on a laptop 

screen. The distortions are brought by the camera, the resolution, brightness, refresh 

rate, and frame rate, etc. and could be challenging to robustness issue. The scenario is 

related to the widely-used Quick-Response (QR) code, where the users are directed to 

online resource via a scan. What dissimilar to the traditional QR code in our system is 

that the end users just need to scan the content image for more information and the 

code/watermark becomes completely invisible. As shown in Figure 5.17, the provider 

distributes the marked image obtained with the cover image and the watermark 

information via our marking app containing the trained encoder and embedder 

networks. The user installs our scanning app containing the trained decoder and 

extractor networks, and scans the image displayed on a screen for the hidden 

information. 

 

 
Figure 5.17 The process of the application. 
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In practice, error correction coding can be used for further protection to the 

watermark. For instance, a classic Reed Solomon (RS) code [91] can correct up to 30% 

error in the extraction. In this paper, we present the raw results for visual comparison 

as well as for simplicity. To test the system under realistic situation, a protype is 

developed and a raw 32 × 32 binary watermark (see Figure 5.18) is used for its clear 

structure. Five volunteers are asked to take a few pictures of some marked images 

displayed 425px × 425px on a 2,560 × 1,440 screen, with the camera of a mobile 

phone. Two rules are told to the users. First, as shown in the user’s interface, the 

entire image should be placed as large as possible inside the region of interest (ROI). 

As a prototype of demonstrating purpose, this rule facilitates our segmentation that 

the largest contour inside the ROI is the marked image, so that we can focus on the 

test of the proposed system instead of some complicated segmentation algorithms. In 

addition, placing the image largely in the ROI helps us to capture desired details and 

features for the extraction. Second, the camera should be kept as still as possible. 

Although the proposed system tolerates some blurring effects, it is not designed to 

extract watermark in a high-speed motion. 

 

  
Figure 5.18. The prototype. Left: the appearance of the prototype, Right: the sample 

binary watermark. 

 

The prototype only analyzes the ROIs, and hand-taken pictures can hardly be 

completely parallel to the screen. Therefore, there exist some geometrical, affine, and 
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perspective distortions. As the proposed system does not include the robustness 

towards these attacks, the image registration technique in [92, 93] is adopted. To 

simplify the prototype as in Figure 5.19, four corners of the largest contour inside the 

ROI are used as the reference points. The contoured content is mapped on the bird 

view plane, and the watermark is extracted from the rectified image. 

Figure 5.19 presents a few extractions and their corresponding ROIs. The 

BERs from left to right are 3.71%, 4.98%, 1.07%, 4.30%, and 8.45%. We observe that 

the closer the picture is taken, the lower the error is. The more parallel between the 

camera and the screen, the lower the error is. Note that the tolerance limit is around 30° 

in this test. Also, the flash light brings more errors since it may over- and underexpose 

some image areas. We may turn off the flash lights in this case since the screen has 

backlit. In total from the user test we have 20 images, and the average BER is 5.13%. 

This is the raw result without the error correction code and can be considered as 

acceptable since the RS code can correct 30% errors theoretically. Moreover, the 

scanning app extracts the watermark within one second as it only applies the 

pretrained weights in the extractor and decoder networks to the marked image 

rectification. 

 

 
Figure 5.19 A few extractions and the ROIs. 

 

In summary, experimental results confirm that the proposed system extracts 

the watermark well on a rectified marked image with the registration techniques. 
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Hence, it can be used in solving the challenging problem of watermark extraction on 

camera-captured images. 
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CHAPTER 6 

CONCLUSION 

 

Focusing on the computational intelligence in steganography, adaptive digital image 

watermarking systems that can be applied to varying, flexible and multi-purposed 

watermarking situations are presented in this dissertation.  

By proposing a nonlinear mapping through wavelet generalized lifting to 

obtain a saliency map as well as an efficient adaptive thresholding scheme, a novel 

salient region detection model is proposed to segment the cover-image into ROIs and 

RONI. The ROIs containing the most representative information of the images are 

kept intact during and the RONI is for watermarking. Hence image watermarking 

adaptive to visual contents is achieved. Concentrating on salient object segmentation 

at the core of content-based image watermarking, the proposed model not only 

produces full-resolution saliency maps that highlight multiple salient objects, but also 

requires no kernels with implicit assumptions and prior-knowledge. Experimental 

results have shown the reliability and high performance of the proposed model. 

Extending the proposed model for the applications of video saliency detection as well 

as depth map generation for 2D to 3D Conversion and including more feature maps at 

the saliency map computation stage, such as the texture, orientation and added 

psychological patterns can be considered at the next step. 

Secondly, an intelligent image watermarking scheme based on the ROI 

detection is presented. It is a novel technique for image frequency-domain 

watermarking by exploiting the phase spectrum of the original image. Applying an 

iterative strategy on the magnitudes of image frequency domain, a novel reversible 

watermarking algorithm is proposed to embed a large amount of information without 
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visible degradation to the cover image. Partitioning algorithms are proposed to 

facilitate the embedding of the watermark into only RONIs, and therefore, the crucial 

information is undistorted. With the help of swarm intelligence, the proposed scheme 

allows an optimal watermarking solution with an option of adjusting different weights 

of capacity and quality to satisfy user’s need. 

A robust multibit image watermarking scheme based on the ROIs using an 

improved embedding strategy and the synchronization approach is also presented. A 

novel contrast modulation-based watermark embedding strategy is developed to 

achieve high robustness and high payload simultaneously. A self-referencing 

rectification approach is designed for watermark resynchronization under affine 

transformations, by which the proposed scheme offers a high tolerance range on 

parameters in affine distortions. In the future work, handling more comprehensive 

attacks such as random bending, and extend both the embedding strategy and the 

rectification into three-dimensional contexts can be the directions. 

Finally, a robust and blind image watermarking system using deep learning is 

introduced. In an unsupervised manner, a novel structure of applying deep 

convolutional neural networks is proposed to learn the watermark embedding and 

extraction rules with the constraint of loss function. The robustness is achieved 

without any prior knowledge of possible attacks and distortions. Comprehensive 

evaluations are presented to confirm the superiority and a challenging application of 

watermark extraction from camera-capture image is introduced to validate the 

practicality of the proposed system. In the future work, statistical features such as the 

probability density functions could be merged into the deep neural networks, so that 

the embedding and extraction can consider the image distribution for a higher 

robustness. 
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