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ABSTRACT

MACHINE LEARNING-BASED DATA ANALYTICS FOR
UNDERSTANDING SPACE WEATHER AND CLIMATE

by
Yasser Abduallah

This dissertation addresses multiple crucial problems in space weather and climate,

presenting new machine learning-based data analytics algorithms and models for

tackling the problems.

First, the dissertation presents two new approaches to predicting solar flares.

One approach, called DeepSun, predicts solar flares by utilizing a machine-learning-

as-a-service (MLaaS) platform. The DeepSun system provides a friendly interface for

Web users and an application programming interface (API) for remote programming

users. It adopts an ensemble learning method that employs several machine learning

algorithms to perform multiclass flare prediction. The other approach, named

SolarFlareNet, forecasts the occurrence of solar flares within the next 24 to 72 hours

by using a deep learning-based transformer model. This model is implemented into

a fully operational near real-time flare forecasting system accessible on the Web.

Second, the dissertation presents a deep learning method, specifically a

bidirectional long short-term memory (biLSTM) network, to predict if a solar active

region (AR) would produce a solar energetic particle (SEP) event given that (i) the

AR will produce an M- or X-class flare and a coronal mass ejection (CME) associated

with the flare, or (ii) the AR will produce an M- or X-class flare regardless of whether

or not the flare is associated with a CME. Experimental results demonstrate the

superiority of the biLSTM network over related machine learning algorithms and its

feasibility for SEP prediction.

Third, the dissertation presents multiple algorithms and models to forecast

geomagnetic indices, which are used by geospace scientists to measure space storms



and their activities. The algorithms and models include a graph neural network

combined with bidirectional long short-term memory for predicting the SYM-H index,

a transformer-based model for predicting the Kp index, and a hybrid model combining

multi-head attention layers and long short-term memory with a convolutional neural

network for predicting the disturbance storm time (Dst) index. These algorithms

and models incorporate Bayesian inference into their learning frameworks, capable

of quantifying both aleatoric (data) uncertainty and epistemic (model) uncertainty

when predicting future indices.

Finally, the dissertation presents a method, named TSInet, to reconstruct total

solar irradiance (TSI). A minor change in solar irradiance can have a significant impact

on the Earth’s climate and atmosphere. As a result, studying and measuring solar

irradiance is crucial in understanding climate change and solar variability. TSInet

reconstructs total solar irradiance by leveraging deep learning for short and long

periods of time that span beyond the current physical models’ data availability. It

can be used to reconstruct TSI for more than 9,000 years.

All the algorithms and models presented in this dissertation are implemented

into open-source software tools using Jupyter notebooks with GitHub, which are

publicly available on the Web. These tools are Binder enabled and have Zenodo

archive for download. The tools are integrated into a machine learning (ML) enhanced

cyberinfrastructure that contains ML software and databases for advancing space

weather research and education.
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CHAPTER 1

INTRODUCTION

Solar physics phenomenons such as solar eruption, energetic particles, geomagnetic

storms, solar irradiance have significant effects on Earth and human’s life, spacecraft,

electrical power grids, observers of the aurora, and navigation systems and more.

Therefore, predicting and forecasting the activities of these phenomenons draw a lot

of attention to researchers and scientists. Early and accurate prediction of these

activities are essential for preparedness and disaster risk management.

Machine learning (ML) is an analytical method that gives computer programs

the ability to learn from data and progressively improve performance. It uses input

data, also called training data, and learns hidden insights in the training data to build

a predictive model that will be used later to make predictions on unseen test data.

Machine learning has been popular in predictive analytics for many years.

Deep learning (DL) is a branch of machine learning methods and algorithms

focusing on the use of deep neural networks, to enhance the learning outcome. It

is inspired by the human brain functions and improves the artificial intelligence

(AI) process to learn new patterns and things for decisions making. DL has drawn

significant interest in recent years. It has been used extensively in many applications

and domains such as biomedical, finance, weather forecasting and more.

This dissertation leverages deep learning and presents novels methods and

algorithms to tackle multiple crucial problems in solar physics domain focusing in

solar weather and solar climate. Specifically, in solar weather, it addresses flares

prediction, solar energetic particles and geomagnetic activities: disturbance storm

time (Dst) index and the planetary index (Kp). In solar climate, it addresses the solar

irradiance construction. In addition, the dissertation provides software development
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tools that can be used in space weather and space climate research and operational

systems.

First, the dissertation presents tow algorithms for solar flare predictions. Solar

flare prediction plays an important role in understanding and forecasting space

weather. The main goal of the Helioseismic and Magnetic Imager (HMI), one of the

instruments on NASA’s Solar Dynamics Observatory, is to study the origin of solar

variability and characterize the Sun’s magnetic activity. HMI provides continuous

full-disk observations of the solar vector magnetic field with high cadence data that

lead to reliable predictive capability; yet, solar flare prediction effort utilizing these

data is still limited. Specifically, we construct training data by utilizing the physical

parameters provided by the Space-weather HMI Active Region Patches (SHARP)

and categorize solar flares into four classes, namely B, C, M, X, according to the

X-ray flare catalogs available at the National Centers for Environmental Information

(NCEI). The first algorithm is a framework called DeepSun. It is the first web based

machine-learning-as-a-service (MLaaS) framework that is capable of predicting solar

flares through the internet. The DeepSun system employs several machine learning

algorithms to tackle this multi-class prediction problem and provides an application

programming interface (API) for remote programming users. The second algorithm

is a hybrid-transformer that combines transform encoder, called SolarFlareNet,

convolutional neural network, and long short-term memory components to predict

if the given SHARP parameters will produce a flare within the next 24 hours.

Second, the dissertation tackles the solar energetic particles (SEPs). SEPS

are an essential source of space radiation, which are hazards for humans in space,

spacecraft, and technology in general. The dissertation presents a deep learning

method, specifically a bidirectional long short-term memory (biLSTM) network, to

predict if an active region (AR) would produce an SEP event given that (i) the AR

will produce an M- or X-class flare and a coronal mass ejection (CME) associated with
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the flare, or (ii) the AR will produce an M- or X-class flare regardless of whether or

not the flare is associated with a CME. The data samples used here are collected from

the Geostationary Operational Environmental Satellite’s X-ray flare catalogs provided

by the National Centers for Environmental Information. We select M- and X-class

flares with identified ARs in the catalogs for the period between 2010 and 2021, and

find the associations of flares, CMEs and SEPs in the Space Weather Database of

Notifications, Knowledge, Information during the same period. Each data sample

contains physical parameters collected from the Helioseismic and Magnetic Imager

on board the Solar Dynamics Observatory. The dissertation also discusses extensions

of the approach for probabilistic forecasting and calibration with empirical evaluation.

Third, the dissertation presents multiple algorithms to forecast geomagnetic

indices. Geomagnetic indices are used by Geospace scientists to measure space storms

and their activities. The first index is one of the most important geomagnetic indices,

the SYM-H index. At midlatitude, the SYM-H index indicates the longitudinally

symmetric geomagnetic disturbance of the horizontal component of the magnetic

field. Early and accurate estimation of the SYM-H index is crucial for disaster risk

management and preparedness. We propose a novel deep learning framework, named

SYMHNet, that employs a graph neural network and a bidirectional long short-term

memory network to cooperatively learn patterns from solar wind data for short-term

forecasts of the SYM-H index. SYMHNet takes as input a time series of solar wind

parameters and predicts as output SYM-H index values for the next t hours where t

ranges from 1 to 6. NASA’s Space Science Data Coordinated Archive provides the

solar wind parameters used here. Similarly, the dissertation presents another two

novel algorithms to forecast two more indexes: the interplanetary index called the

Kp Index and the disturbance storm time (Dst) index. The three models have an

additional add-on capability that integrates the Bayesian inference into the learning
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framework, that is able to quantify both aleatoric (data) uncertainty and epistemic

(model) uncertainty when predicting future indices.

Fourth, the dissertation presents the first deep learning method in space climate,

called TSInet, to reconstruct total solar irradiance (TSI). The Earth’s primary source

of energy is the radiant energy generated by the Sun, which is referred to as solar

irradiance, or total solar irradiance (TSI) when all of the radiation is measured. A

minor change in the solar irradiance can have a significant impact on the Earth’s

climate and atmosphere. As a result, studying and measuring solar irradiance is

crucial in understanding climate changes and solar variability. Several methods have

been developed to reconstruct total solar irradiance for long and short periods of

time; however, they are physics-based and rely on the availability of data, which does

not go beyond 9,000 years. The TSInet reconstructs total solar irradiance by deep

learning for short and long periods of time that span beyond the physical models’

data availability. On the data that are available, our method agrees well with the

state-of-the-art physics-based reconstruction models. Therefore, it can be used as an

add-on to physical models to reconstruct TSI. This is the first time that deep learning

has been used to reconstruct total solar irradiance for more than 9,000 years.

Lastly, the dissertation presents the implementation of the deep learning tools

developed for the algorithms presented in the dissertation. The tools are implemented

using Jupyter notebooks with Github and publicly available to download and use. The

tools include the TSInet for reconstructing total solar irradiance, DeepSun MLaaS for

predicting solar flares, SEP biLSTM for predicting solar energetic particles, DSTT

for predicting and forecasting disturbance storm time, and KpNet for forecasting the

Kp index. The tools are Bender enabled and also have Zendo archive to download.

The dissertation is organized as follows. Chapter 2 presents the solar

flare prediction algorithms: the machine learning-as-a-service (MLaaS), DeepSun,

framework and the solare flare prediction SolarFlareNet. Chapter 3 details the
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bidirection long short-term memory (biLSTM) to predict the solar energetic particles

(SEPs). Chapter 4 presents the detailed implementation geomagnetic indices

algorithms: SYMHNet, KpNet, and DSTT. Chapter 5 describes solar climate model,

TSInet, for reconstructing the total solar irradiance. Finally chapter 6 present the

software development tools that are useful for Space Weather and Space Climate

researches and operational systems.
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CHAPTER 2

PREDICTION OF SOLAR FLARES

2.1 Machine-Learning-as-a-Service for Flare Prediction

2.1.1 Background and Related Work

Solar flares and the often-associated coronal mass ejections (CMEs) highly impact

the near-Earth space environment [117, 121]. They have the potential to cause

catastrophic damage to technology infrastructure [53]. According to the U.S. National

Space Weather Strategy, released by the Space Weather Prediction Center, it is a

challenging task to correctly predict solar flares and CMEs. Recent efforts led by the

United States and its partners resulted in substantial progress toward monitoring,

prediction, and mitigation plans, but much more effort is still needed.

Researches have indicated that the magnetic free energy stored in the corona,

quickly discharged by magnetic reconnection, powers solar flares and CMEs [137] .

The process of building the coronal free energy is controlled by the structural evolution

of the magnetic field on the photosphere where plasma dominates the process.

Observing and measuring the structure and evolution of the photospheric magnetic

field can provide valuable information and clues to the triggering mechanisms of flares

and CMEs. There are many physical properties or parameters, as we will discuss

later in this research, that characterize the static photospheric magnetic field, such as

integrated Lorentz force, magnetic helicity injection, unsigned magnetic flux, vertical

electric currents, magnetic shear and gradient, and magnetic energy dissipation.

Researchers spent significant efforts attempting to understand the physical

relationship between flare productivity and non-potentiality of active regions (ARs)

as specified by the physical parameters. This led researchers to use different methods

to predict flares that are not based on physical models, but rather based on statistical

6



modeling and machine learning [18]. Machine learning gives computer programs the

ability to learn from data and progressively improve performance. It uses input data,

also called training data, and learns hidden insights in the training data to build a

predictive model that will be used later to make predictions on unseen test data.

In our previous work [117], we reported the results of solar flare prediction

using the random forests (RF) algorithm [33]. We constructed a database of solar

flare events using the physical parameters provided by the Space-weather HMI Active

Region Patches (SHARP), and categorized solar flares into four different classes,

namely B, C, M, X, based on the X-ray flare catalogs available at the National

Centers for Environmental Information (NCEI). Flares in the B class have the smallest

magnitude while flares in the X class have the largest magnitude. We used the RF

algorithm and the physical parameters or features to perform multi-class classification

of solar flares, predicting the occurrence of a certain class of flares in a given active

region (AR) within 24 hours. Our experimental results demonstrated the good

performance of the RF algorithm.

In this research, we extend our previous work in [117] by considering two

additional multi-class classification algorithms: multilayer perceptrons (MLP) and

extreme learning machines (ELM). We implement these algorithms into a machine-

learning-as-a-service (MLaaS) framework, called DeepSun, which allows scientists

to perform multi-class flare prediction on the Internet. Our work here makes the

following two contributions.

1. We develop an ensemble method for multi-class flare prediction that performs
better than the existing machine learning algorithms including RF, MLP and
ELM according to our experimental study.

2. We design and implement DeepSun, which is the first MLaaS system of its kind
for solar flare prediction.

The rest of this work is organized as follows. Subsection 2.1.2 describes the data and

the SHARP predictive parameters used in this study. Subsection 2.1.3 describes the
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machine learning algorithms employed by DeepSun. Subsection 2.1.4 evaluates the

performance of these machine learning algorithms. Subsection 2.1.5 details the design

and implementation of the DeepSun framework. Subsection 2.1.7 surveys related work

and compares DeepSun with existing services computing systems. Subsection 2.1.8

concludes the work and points out some directions for future research.

2.1.2 Data and Physical Parameters

In 2012, SHARP data were released. The main goal of the SHARP data was to

facilitate AR (active region) event forecasting [31]. These data are available in the

Joint Science Operations Center (JSOC)1 as hmi.sharp series which include magnetic

measures and parameters for many ARs. In 2014, another data series, cgem.Lorentz,

were produced based on the SHARP data. This series include the Lorentz force

estimations. The main goal of this series was to help diagnose the dynamic process of

ARs. Bobra et al. [31] considered 25 physical parameters in the SHARP datasets that

characterize the AR magnetic field properties. The authors used a univariate feature

selection method to score the 25 parameters, and suggested that the top 13 out of

the 25 parameters be used as predictors for flare activity. Table 2.1 summarizes these

13 important parameters and their descriptions. More details about the 13 physical

parameters can be found in [117].

We constructed a database based on the SHARP parameters extracted from the

solar images that are available at the Joint Science Operations Center (JSOC) and the

X-ray flare catalogs provided by the National Centers for Environmental Information

(NCEI) [117]. We considered the period between May 2010 and December 2016.

There are 845 flares in this period, among which 128 flares are of class B, 552 flares

are of class C, 142 flares are of class M, and 23 flares are of class X. These 845 flares

come from 472 active regions (ARs). The duration of a flare ranges from several

1Retrieved on 05/01/2021 from http://jsoc.stanford.edu/
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Table 2.1 13 Important SHARP Physical Parameters

Parameter Description

ABSNJZH Absolute value of the net current helicity

AREA ACR Area of strong field pixels in the active region

EPSZ Sum of z-component of normalized Lorentz force

MEANPOT Mean photospheric magnetic free energy

R VALUE Sum of flux near polarity inversion line

SAVNCPP Sum of the modulus of the net current per polarity

SHRGT45 Fraction of area with shear > 45◦

TOTBSQ Total magnitude of Lorentz force

TOTFZ Sum of z-component of Lorentz force

TOTPOT Total photospheric magnetic free energy density

TOTUSJH Total unsigned current helicity

TOTUSJZ Total unsigned vertical current

USFLUX Total unsigned flux

minutes to hours. The duration of an AR ranges from several minutes to days. Table

2.2 summarizes the flare information.

We created and stored 845 corresponding data samples in our database, shown

in Figure 2.12, where each data sample contains values of the 13 physical parameters

or features listed in Table 2.1. The two digits following a class label (B, C, M, X)

are ignored in performing flare prediction. The time point of a data sample is the

beginning time (00:00:01 early morning) of the start date of a flare and the label of

the data sample is the class which the flare belongs to. These labeled data samples

are used to train the DeepSun system.

2.1.3 Machine Learning Algorithms

DeepSun employs three machine learning algorithms for flare prediction: random

forests (RF) [33], multilayer perceptrons (MLP) [145, 32] and extreme learning

2Retrieved on 05/15/2021 from https://nature.njit.edu/spacesoft/Flare-Predict
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Figure 2.1 Screenshot showing our online flare database.

Table 2.2 Numbers of Flares and Active Regions Per Solar Flare Class

Flare Class Number of Flares Number of ARs

B 128 88

C 552 281

M 142 88

X 23 15

machines (ELM) [79, 80]. RF is a tree-based algorithm comprised of multiple binary

classification and regression trees (CART) while both MLP and ELM are feed-forward

artificial neural networks. All the three algorithms are well suited for multi-class

classification. In addition, we develop an ensemble (ENS) algorithm, which works by

taking the majority vote of RF, MLP and ELM. If there is no majority vote for a test

data sample, ENS outputs “no verdict” for the test data sample.
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2.1.4 Performance Evaluation

We conducted a series of experiments to evaluate the performance of the machine

learning algorithms presented in Section 2.1.3 using the database described in Section

2.1.2. To avoid bias and to keep the data as balanced as possible, we created 100

csv (comma separated values) datasets of which each dataset included all B, M, and

X classes and randomly selected 142 data samples of class C. We used 10-fold cross

validation in which for each data set, we randomly formed 10-fold partitions using the

KFold function provided by the scikit-learn library in Python [134]. Each machine

learning algorithm was trained by nine of the 10-folds, and the 10th fold was used

for testing. To overcome errors associated with cross validation, we repeated the

procedure 100 times for each of the 100 datasets that resulted in 10000 iterations to

produce the final result.

We converted the multiple-class classification problem at hand into four binary

classification problems for the four classes B, C, M, and X. For example, consider the

binary classification problem for class B. Here, we say a data sample is positive if it is

in class B, or negative if it is not in class B, i.e., it is in class C, M, or X. We define TP

(true positive), FP (false positive), TN (true negative), FN (false negative) as follows.

TP is a data sample where an algorithm predicts the data sample to be positive and

the data sample is indeed positive. FP is a data sample where the algorithm predicts

the data sample to be positive while the data sample is actually negative. TN is a

data sample where the algorithm predicts the data sample to be negative and the

data sample is indeed negative. FN is a data sample where the algorithm predicts

the data sample to be negative while the data sample is actually positive. We also

use TP (FP, TN, FN, respectively) to represent the number of true positives (false

positives, true negatives, false negatives, respectively). Because we are tackling an

imbalanced classification problem (see Table 2.2), we adopt two performance metrics,

balanced accuracy (BACC) and true skill statistics (TSS), where BACC is defined as
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follows:

BACC =
1

2

(
TP

TP + FN
+

TN

TN+ FP

)

and TSS is defined as follows:

TSS =
TP

TP + FN
− FP

TN + FP

BACC and TSS are well suited for imbalanced classification of solar eruptions

[120, 121, 117]. We obtain BACC and TSS for each binary classification problem.

There are four binary classification problems. We then calculate the average of the

BACC and TSS values obtained from the four classification problems, and use the

average as the result for the multi-class classification problem.

Figure 2.2 Overview of DeepSun.

We implemented the machine learning algorithms in Python leveraging the

scikit-learn packages [134]. Each algorithm has different optimization parameters

to be tuned based on the training and test datasets. We used random forests (RF)

12



composed of 500 to 1000 trees and set the number of features to six to find the best

node split. For multilayer perceptrons (MLP) and extreme learning machines (ELM),

we set the number of hidden layers to 200. These parameter values were chosen to

maximize TSS values.

Table 2.3 compares the BACC and TSS values of the machine learning

algorithms at hand for each binary classification problem and for the overall

multi-class classification problem where the highest performance metric values are

highlighted in boldface. It can be seen from the table that the proposed ENS

algorithm is better than the existing algorithms RF, MLP and ELM. However, all the

four algorithms perform poorly in predicting X-class flares. This happens probably

because the X class has much fewer flares than the other classes. Overall, there were

approximately less than 2% data samples receiving “no verdict.”

Table 2.3 Flare Prediction Results Using 13 SHARP Parameters and Four Machine
Learning Algorithms

Class B Class C Class M Class X Average

BACC

ENS 0.871 0.691 0.790 0.670 0.756

RF 0.834 0.663 0.749 0.645 0.723

MLP 0.818 0.659 0.757 0.599 0.708

ELM 0.791 0.641 0.721 0.608 0.690

TSS

ENS 0.745 0.380 0.551 0.362 0.507

RF 0.708 0.378 0.537 0.330 0.488

MLP 0.661 0.285 0.526 0.010 0.371

ELM 0.618 0.296 0.446 0.227 0.397

2.1.5 DeepSun Framework and System Design

The four machine learning algorithms (ENS, RF, MLP, ELM) have been implemented

into our DeepSun system where the algorithms are used as a back-end, also known
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as the server-side, engine for the machine-learning-as-a-service (MLaaS) platform.

Figure 2.2 presents the overall contextual architecture of the DeepSun framework.

The system supports two different types of users: Web and programming. The Web

user invokes the service by accessing a graphical user interface (GUI) to perform flare

predictions. The programming user can use any programming language that supports

HTTP requests, such as Java, C++, Python, Node.js, JavaScript modules in React

or other frameworks to perform flare predictions.

MLaaS is a representational state transfer (REST) application programming

interface (API) that supports JSON (JavaScript Object Notation) formatted payloads

in the request and response. JSON is a plain-text and lightweight data-interchange

format. It is structured with attributes and values in an easy way for humans to read

and write. JSON is language independent but it is easy to parse; therefore almost

every programming language supports it. The request transmits the user’s data from

the front-end to the back-end and must include well defined JSON formatted test data

to predict or training data to create a predictive model. The response transmits the

result from the back-end to the front-end, which is a well formatted prediction result

or the predictive model identifier. Here, the front-end means the client-side that can

be a Web-designed interface for the Web user or a program for the programming user.

2.1.6 System Implementation

When a user visits DeepSun’s home page, the user sees three options. Option 1 allows

the user to select the pretrained models provided by DeepSun. Option 2 allows the

user to upload his/her own training data to create his/her own machine learning

models for solar flare prediction. Option 3 allows the user to perform solar flare

prediction using RESTful services. Figure 2.3 shows DeepSun’s home page3.

3Retrieved on 05/15/2021 from https://nature.njit.edu/spacesoft/DeepSun/
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Figure 2.3 Screenshot showing the home page of DeepSun.

Pretrained Models in DeepSun The pretrained models are ready-to-use models

that were created using the database described in Section 2.1.2. With the pretrained

models, a user has multiple options to load test data samples containing the 13

physical parameters or features listed in Table 2.1: (1) Manually enter the data

samples with values of the 13 physical parameters one by one in the provided text

boxes. (2) Load sample data provided by the DeepSun engine. (3) Load the user’s

own data in a file, in which each line contains the values of the 13 physical parameters.

The user may invoke the services to predict all the loaded, or entered, test data at

once or make predictions one by one. Figure 2.4 shows the webpage of pretrained

models on which four predictions were made using the ENS algorithm.

Custom Models in DeepSun DeepSun allows the user to load his/her data to

train and create his/her custom model to predict solar flares. The training data
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Figure 2.4 Screenshot showing the webpage with pretrained models of DeepSun.

are saved in a file meeting DeepSun’s format requirement. When the user creates a

custom model, a model identifier (id) is assigned to the current session. If the created

model is idle for 24 hours, it will be deleted. Once the model is ready, the user goes

to the DeepSun’s graphical user interface with the assigned model id to perform flare

predictions as done with the pretrained models. The model id is used to distinguish

between the custom models and pretrained models. Figure 2.5 shows the webpage of

custom models with example training data displayed.

RESTful API for DeepSun The RESTful API is designed to help the programming

user perform solar flare predictions using the pretrained or custom models. The API

supports the POST request to predict solar flare occurrence or create a custom model,
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Figure 2.5 Screenshot showing the webpage with custom models of DeepSun.

and the GET request to get a random data sample from our training database. The

interface supports JSON formatted strings for requests’ body and their results. The

interface also supports two different debug levels; they are (i) INFO which is the

default debug mode and (ii) DEBUG to return additional data with the result.

The return result from the POST request is a JSON object including the

predicted solar flare occurrence and its class. Each test data sample is associated

with a JSON object that includes two attributes. One attribute is “fcnumber” which

is the numerical representation for the solar flare class where we use “1” (“2”, “3”,

“4”, respectively) to represent class B (C, M, X, respectively). The other attribute is

”fcname” which is the solar flare class name.

In addition, the RESTful API uses the POST request to create a custom model.

The body of the request must be JSON formatted strings for an array of JSON objects.
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Figure 2.6 Screenshot showing the RESTful API page of DeepSun.

Each object must contain the 13 physical parameters and its flare class label where

the label must be one of B, C, M, X. The return result of this POST request is a

JSON object that contains the custom model identifier (id) which can be used for

flare prediction. The custom model includes all the four algorithms (ENS, RF, MLP,

ELM). Since the API is a RESTful interface, any programming language that supports

HTTP calls, such as Java, C++, Python, Node.js, JavaScript modules in React or

other frameworks can be used to invoke the API. Figure 2.6 shows the RESTful
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API page on which the definitions of the available methods and client examples are

displayed.

2.1.7 Related Work

There are two groups of work that are closely related to ours. The first group is

concerned with solar flare forecasting. Many studies in this group used parameters

derived from the line-of-sight (LOS) component of the photospheric magnetic field

and produced probability outputs for the occurrence of a certain magnitude flare in

a time period [117]. Some researchers [63] used sunspot classification and Poisson

statistics to provide probabilities for an active region (AR) to produce flares with

different magnitudes within 24 hours. Song et al. [156] used three LOS magnetic

parameters together with the ordinal logistic regression (OLR) method to predict the

probabilities of a one-day flare. Bloomfield et al. [27] suggested that the prediction

probabilities should be converted into a binary (i.e., yes-or-no) forecast before they

can be translated as flare-imminent or flare-quiet. Following this suggestion, Yuan

et al. [185] employed support vector machines (SVMs) to obtain a clear true or false

flare prediction for different flare classes.

On the other hand, the full vector data provide more information about the

photospheric magnetic field structure compared to the LOS field. This type of

information may provide better flare prediction performance, but due to the limitation

imposed by ground-based vector magnetic field observations, the work on flare forecast

is limited. For example, Leka and Barnes [110] used a small sample of vector

magnetograms from the Mees Solar Observatory and applied a discriminant analysis

to differentiate between flare-producing and flare-quiet ARs within few hours. The

authors later extended their work and used a larger number of samples with a 24-hour

prediction window on producing probabilistic forecasts [19].
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Since May 2010, the Helioseismic and Magnetic Imager (HMI) onboard the

Solar Dynamics Observatory (SDO) [29] has been producing high quality photospheric

vector magnetograms with high-cadence and full-disk coverage data. Using these

data, Bobra and Couvidat [29] calculated a number of magnetic parameters for each

AR. They selected 13 from all the available parameters and achieved good prediction

performance using an SVM method for flares greater than M1.0 class. Nishizuka et

al. [133] applied a number of machine learning algorithms to HMI data and produced

prediction models for ≥M and X-class flares with reasonably high performance. More

recently, we employed a long short-term memory network for flare prediction [120].

The second group of related work is concerned with services computing.

Benmerar et al. [21] developed a brain diffusion MRI (magnetic resonance imaging)

application to overcome the SaaS (software-as-a-service) limitations caused by

intensive computation. The application provides APIs that tackle browser paradigms

to reduce the parallel computation rendered in the client side of the browser.

Wu et al. [181] developed an automated testing technique to detect cross-

browser compatibility issues so that they can be fixed. These cross-browser issues

cause problems for an organization to create JavaScript web applications. The

authors employed an existing record-and-play technique, Mugshot [128], to design

an incremental cross-browser incompatibility algorithm. The system starts off by

injecting the record library into the browsers, collects traces and events to be replayed,

and runs the detection algorithm to find different types of incompatibilities among

the browsers.

Song et al. [157] presented a machine learning algorithm for IT support services

to automate the problem determination and classification, and also find the root cause

of a problem. The algorithm is an on-line perceptron that learns about the user’s

problems from the data that were generated from logs and monitoring information

across different systems. The algorithm then categorizes the problems by finding
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the actual root cause from what it learned from the data. The algorithm employs

an incremental learning technique and is able to automatically adjust the classifier

parameters.

Li et al. [112] described a new software documentation recommendation

methodology that adopts a learn-to-rank (LTR) technique. LTR is an application

of supervised and semi-supervised machine learning techniques. Their strategy

combines the social context from a questions-and-answers online system and the

content of official software documentation to build the LTR model to provide accurate

and relevant software documentation recommendations. Their experimental results

showed that this approach outperforms traditional code search engines including the

Google search engine.

Our DeepSun system differs from the above works in two ways. First, DeepSun

provides services dedicated to solar flare prediction, which has not been addressed

by the existing services computing systems. Second, in the solar flare forecasting

area, DeepSun is the first MLaaS system, to our knowledge, that allows scientists to

perform multi-class flare prediction through the Internet.

2.1.8 Summary

We present a machine-learning-as-a-service framework (DeepSun) for solar flare

prediction. This framework provides two interfaces: a web server where the user

enters the information through a graphical interface and a programmable interface

that can be used by any RESTful client. DeepSun employs three existing machine

learning algorithms, namely random forests (RF), multilayer perceptrons (MLP),

extreme learning machines (ELM), and an ensemble algorithm (ENS) that combines

the three machine learning algorithms. Our experimental results demonstrated the

good performance of the ensemble algorithm and its superiority over the three existing

machine learning algorithms.
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In the current work, we focus on data samples composed of SHARP physical

parameters. We collect 845 data samples belonging to four flare classes: B, C, M,

and X across 472 active regions. In addition, the Helioseismic Magnetic Imager

(HMI) aboard the Solar Dynamics Observatory (SDO) produces continuous full-disk

observations (solar images). In future work, we plan to incorporate these HMI images

into our DeepSun framework and extend our previously developed deep learning

techniques [123, 77, 78] to directly process the images. We also plan to combine

our recently developed deep learning algorithms using the SHARP parameters [120]

with the image-based techniques and machine learning algorithms described in this

research for more accurate solar flare prediction.

2.2 Flare Prediction with Deep Learning

2.2.1 Background and Related Work

Solar flares are known to be the largest explosion in the solar system. They

usually associated with coronal mass ejections (CMEs) or solar energetic particles

(SEPs) [117, 122, 2]. As described in Chapter 2.1, there were many efforts to

monitor and predict solar flares because they could affect and damage the near-Earth

environments such as satellites, space stations, and technologies [53]. Therefore,

accurate prediction of flares occurrences is becoming crucial to scientist for disaster

recovery and preparedness. The prediction task is still challenging and researchers are

tying to invent algorithms and models to provide accurate flares prediction. Many

machine learning algorithms have been created to predict solar flares occurrences

such as [119, 4]. In this work, we continue our previous effort to predict solar flares as

described in Section 2.1 and we provide a novel algorithm to introduce an operational

forecasting algorithm to predict solar flares with high accuracy. We propose a new

hybrid-Transformer model that combines multiple recurrent neural network (RNN)
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components to forecast solar flares for the next 24-72 hours ahead for flares types

≥C, ≥M, and ≥M5.0 using the SDO/HMI vector magnetic data products.

2.2.2 Data

Following [117, 119, 4, 2], we conducted our research using the Space-weather HMI

Active Region Patches (SHARP) [31] that were developed by the SDO/HMI toward

the end of 2012. The data are available and can be downloaded from the Joint Science

Operations Center (JSOC)4. We combined the data from two different data series.

The first one is the hmi.sharp that has the SHARP parameters. The other data series

is the cgem.Lorentz which was built to include estimations of integrated Lorentz

forces [60]. We collected the SHARP data samples from both data series using the

Python package SunPy [159] at a 12 minutes cadence. The SHARP parameters are

described as follows.

• Absolute value of the net current helicity (ABSNJZH),

• Area of strong field pixels in the active region (AREA ACR),

• Mean characteristic twist parameter (MEANALP),

• Mean angle of field from radial (MEANGAM),

• Mean gradient of horizontal field (MEANGBH),

• Mean gradient of total field (MEANGBT),

• Mean gradient of vertical field (MEANGBZ),

• Mean vertical current density (MEANJZD),

• Mean current helicity (MEANJZH),

• Mean photospheric magnetic free energy (MEANPOT),

4Retrieved on 11/12/2022 from http://jsoc.stanford.edu/
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• Mean shear angle (MEANSHR),

• Sum of flux near polarity inversion line (R VALUE),

• Sum of the modulus of the net current per polarity (SAVNCPP),

• Fraction of area with shear > 45◦ (SHRGT45),

• Total photospheric magnetic free energy density (TOTPOT),

• Total unsigned current helicity (TOTUSJH),

• Total unsigned vertical current (TOTUSJZ),

• Total unsigned flux (USFLUX),

• Sum of x-component of Lorentz force (TOTFX),

• Sum of y-component of Lorentz force (TOTFY),

• Sum of z-component of Lorentz force (TOTFZ),

• Sum of x-component of normalized Lorentz force (EPSX),

• Sum of y-component of normalized Lorentz force (EPSY),

• Sum of z-component of normalized Lorentz force (EPSZ).

We selected a subset of the parameters to perform the prediction task as described

by [119] feature ranking. The nine parameters we focused on are: TOTUSJH,

TOTUSJZ, USFLUX, MEANALP, R VALUE, TOTPOT, SAVNCPP, AREA ACR,

and ABSNJZH The SHARP parameters values are in different scales and units,

therefore, we normalized each parameter values using the min-max normalization

method following [122, 2]. Let pki be the original value of the ith parameter of the

kth data sample. Let qki be the normalized value of the ith parameter of the kth
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data sample. Let mini be the minimum value of the ith parameter. Let maxi be the

maximum value of the ith parameter. Then

qki =
pki −mini

maxi −mini

. (2.1)

Data quality is essential in machine learning. Therefore, when we collected the

data we focused on high quality and discarded the low data. We collected B-, C-, M-

and X-class flares that occurred between 2010 and 2022 for the active regions from the

GOES X-ray flare catalogs that provided by the National Centers for Environmental

Information (NCEI). We followed the data sample quality measures defined by [30,

119, 2]. We discarded any active regions that were outside ± 70◦ of the central

meridian. These ARs are near the limb and have projection effects that make the

calculation of the SHARP parameters that produced by those ARs to incorrect. In

addition, we discard the data samples if the following conditions are met:

1. Flares with an absolute value of the radial velocity of SDO that is greater than
3500 m s−1

2. HMI data with low-quality as defined by [76],

3. Records with missing values and incomplete SHARP parameters.

The data are divided into two subsets: the training data using the data samples from

2010 to 2021 and the testing data using the data samples from 2022.

2.2.3 Methodology

Prediction Task: In this work, we are proposing flare occurrence forecasting within

the next 24-hour (48- and 72-hour, respectively) using binary classification. That is

for any given active region (AR), will it produce K-class within the next 24-hour

(48- and 72-hour, respectively), where K can be ≥C, ≥M, or ≥M5.0. We divided

the problem into three different binary classifications so that each K class is treated

individually. We focused on these K classes following [29, 89, 132, 119] because they
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highlighted and showed the importance of each class especially for ≥M5.0. As [119]

indicated, there are few X-class flares, therefore, they used ≥M5.0 because it means

the GOES X-ray flux value of the flare is greater than 5×10−5 Wm−2 and is considered

a major flare.

Data Labeling: Data labeling is an important task in machine learning to develop

good models and algorithms. After we collect the high quality data, the next step is to

properly label the data and create data samples for training and testing. Specifically,

for a given data sample xt that is collected from an AR at time t, we collect all

data samples between t and t − 24hours (48 and 72 hours, respectively). For ≥C

class, if the flare at time point t is C, M, or X, the collected samples are labeled

positive, otherwise, the data samples are labeled negative. For ≥M, if the flare at time

point t is M or X, the data samples are labeled positive, otherwise they are labeled

negative. Similarly for ≥M5.0, if the flare at time point t is M with intensity ≥ 5.0,

the data samples are labeled positive, otherwise, they are labeled negative. Figure 2.7

illustrates the collection of positive and negative data samples for flare class ≥C.

Collection and construction of data samples are done in the same way for flare classes

≥M and ≥M5.0. The data samples are collected at 12 minutes cadence and due to

the removal of low quality data sets as describe in Section 2.2.2, some data samples

might be missing. Therefore, we use zero-padding technique to fill in the sequence of

data within the 24-72 hours [119, 2].

Data Augmentation The data set used in the study is considered imbalanced

especially for the ≥M and ≥M5.0 which poses challenges and causes over-fitting

during the training process and result in poor model performance. In order to

overcome the imbalanced data, one may use data augmentation technique. Data

augmentation is an important technique that enriches the training data and increases

the generalization of the model [55]. We use the Gaussian white noise (GWN) data
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Figure 2.7 Example for collecting positive and negative data samples on a AR for flare
class ≥C. The red vertical line shows the start time of ≥C (or ≥M, or ≥M5.0).
(a) represents the positive labeled data samples because the occurring flare is
≥C. (b) represents the negative labeled data samples because the occurring
flare is B.

augmentation because it has showing significant improvement when it is applied as

data augmentation technique[165, 113]. GWN has a property that any two values

are statistically independent regardless of how close they are in time. The stationary

random values of GWN are generated using zero mean and 5% of the data standard

deviation. The data augmentation is applied to the minority class during the training,

leaving the majority class as is. The data is pre-processed and fed into the model

input layer. During testing, the data were left without any augmentation so that the

model predicts the actual testing data only to avoid any misleading performance.

The SolarFlareNet Architecture: Figure 2.8 represents the overall contextual

architecture of the SolarFlareNet model used in the study. The algorithm and model

components are built and configured using the Tensorflow framework5. The model is

a hybrid-based transformer that combines a one dimension (1D) convolution neural

network (CNN) (Conv1D), long short-term memory (LSTM)[4], transformer encoder

blocks, and additional helping layers consist of batch normalization layers, dropout

layers, and dense layers. The first layer of the model is the input layer which takes the

input data. Since the data in this research is time series, each input data sample to

5Retrieved on 10/28/2022 from https://www.tensorflow.org
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the network is configured with time series sequence so that the data sample consists

of m consecutive records xt−m+1, xt−m+2 . . .xt−1, xt where xt is the data sample at

time point t following [2]. The input data is augmented as specific in Section 2.2.3.

The input layer is followed by a batch normalization layer (BNL, that is also added

to different location of the model architecture). BNL is an add-on technique to the

stabilize the neural network, makes it faster, and help in avoiding over-fitting during

training. Here, we use BNL instead of layer normalization to avoid the effect of outlier

in time series which does not exist in nature language processing (NLP) where layer

normalization is proven to be better than BNL[187]. BNL applies transformation to

try to maintain the mean output close to 0 and the output standard deviation close

to 1. We apply BNL after the input layer, LSTM layer, and within the transformer

encoder to make sure the network is stable throughout the training phase. BNL is

followed by Conv1D layer to process the time series because time series have a strong

one dimension (1D) time locality that can be extracted by convolutions [101]. Then,

LSTM layer that has regularization to also avoid over-fitting. LSTM is very famous

of handling the time series data and its temporal correlation and dependency. Adding

LSTM layer on top of Conv1D layer has shown significant improvement to process

time series [5, 6, 3]. The LSTM layer passes the learned features and patterns to

the BNL to stabilize the network before the data goes to the transformer encoder

(TE). In this study, we are using the transformer encoder without the decoder this

is because the problem in hand is dealing with time series not NLP where decoder is

required to decode the words for sentence translation. The number of TE blocks is

set to 4 not 8 as defined by [169] because the number of encoder blocks has significant

effect on the overall model performance and results and dependent on the data and its

dimensions. In this study, if we less than 4 blocks the model is not able to learn useful

patterns and is under-fitted, and if we use more than 4 to 8, it causes overhead on the

encoder processing and the model tends to do excessive over-fitting and tends to lean
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toward the majority class in the data ignoring the positive class entirely. Each TE

block is configured with a dropout, multi-head attention (MHA), a BNL Conv1D, and

an LSTM layers. The multi-head attention layer is the most important layer in the

encoder because it provides the transformation on the sequence values to obtain the

distinct metrics. The MHA layer is configured with 4 heads and the each attention

head is set to 4 as well. The dropout (DO) layers are mainly used to overcome

the over-fitting due to the imbalanced data. The DO layers drops a percentage of

the neurons from the architecture that causes the internal architecture of the model

changes and allows for better performance and stability. Finally, the softmax function

is used as the final activation function because it produces a probability prediction

of positive and negative classes.
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Figure 2.8 The overall contextual architecture used for the Transformer-based operational
flare forecasting model (SolarFlareNet).

2.2.4 Comparative Study

In this section, we provide a comparative study between the proposed framework,

SolarFlareNet, and a previously developed algorithm using LSTM with an attention
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layer[119] who predict the same binary classification proposed in our study, and

three existing machine learning algorithms namely multilayer perceptron (MLP) [139],

support vector machine (SVM) [50], and random forest (RF) [33]. All algorithms and

trained and tested on the same data sets as specified in Section 2.2.2. The validation

data is set during the training by configuring the model to use 10% of the training

data as validation. The performance metrics used in the comparison are those used

by [119] as follows.

Recall =
TP

TP + FN
, (2.2)

Precision =
TP

TP + FP
, (2.3)

Accuracy (ACC) =
TP + TN

TP + FP + TN+ FN
, (2.4)

Balanced Accuracy (BACC)

=
1

2

(
TP

TP + FN
+

TN

TN+ FP

)
,

(2.5)

Heidke Skill Score (HSS)

=
2× (TP× TN− FP× FN)

(TP + FN)× (FN + TN) + (TP + FP)× (FP + TN)
,

(2.6)

True Skill Statistics (TSS) =
TP

TP + FN
− FP

FP + TN
. (2.7)

Table 2.4 shows the comparison results between the proposed SolarFlareNet and

the other closely related machine learning algorithms. It can be seen from the table

that our model outperforms all algorithms in all the performance metrics.

In addition, We also performed a cross-validation study to evaluate our model

and also compare it with LSTM [119] only because it is the second best performing

algorithms among the compared algorithms. The cross validation is based on the cross
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validation strategy provided by [119]. Table 2.5 shows the cross-validation results for

the SolarFlareNet and the LSTM models. The highest performance values are in

boldface with the standard deviation between the parenthesis. The table also shows

that our model still outperforms LSTM [119] in all performance metrics in the cross

validation study.

In addition, we trained and tested the proposed model with the training and

testing data used by [119] to assess our model against the data and compare the

performance with results produced by [119] for the single run given the training from

2010 to 2013, the validation data sets from 2014, and the testing data from 2015 to

2018. We also performed the same cross-validation technique in this data set. Tables

2.6 and 2.7 show the results for the single run and the Cross validation, respectively.

The results show that our model still outperforms the LSTM model in both single

and cross-validation testing.

Furthermore, we performed a cross validation as specified by [119] on the 2010-

2018 data and compared the results.

2.2.5 Ablation Study

To further assess our model and its components to avoid any redundancy or overhead

in the model, we performed an ablation experiments by removing one main component

at the time while keeping the other components to perform the training and testing.

We created the following sub-models from SolarFlareNet:

1. SolarFlareNet-C is a sub-model without the Conv1D layer, captures the
temporal patterns from the raw data without the strong correlation that is
built by the Conv1D layer and passes to the LSTM layer.

2. SolarFlareNet-L is a sub-model without the LSTM layer, captures the 1
dimension time correlation from the input data, but it does not build temporal
correlation that is learned by the LSTM layer.
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Table 2.4 Performance Comparison of SolarFlareNet, MLP, SVM, RF, and LSTM [119]

≥M5.0 class ≥M class ≥C class

Recall MLP 0.624 0.646 0.593

SVM 0.616 0.689 0.651

RF 0.850 0.683 0.912

LSTM 0.835 0.706 0.937

SolarFlareNet 0.872 0.879 0.953

Precision MLP 0.432 0.523 0.533

SVM 0.542 0.601 0.482

RF 0.904 0.852 0.792

LSTM 0.929 0.832 0.815

SolarFlareNet 0.972 0.953 0.905

ACC MLP 0.709 0.821 0.793

SVM 0.801 0.774 0.793

RF 0.892 0.834 0.812

LSTM 0.907 0.940 0.854

SolarFlareNet 0.962 0.942 0.922

BACC MLP 0.682 0.794 0.739

SVM 0.744 0.747 0.721

RF 0.812 0.846 0.796

LSTM 0.891 0.850 0.848

SolarFlareNet 0.936 0.938 0.920

HSS MLP 0.314 0.296 0.371

SVM 0.412 0.396 0.409

RF 0.759 0.613 0.562

LSTM 0.878 0.754 0.703

SolarFlareNet 0.891 0.910 0.844

TSS MLP 0.433 0.387 0.396

SVM 0.453 0.441 0.462

RF 0.829 0.701 0.674

LSTM 0.834 0.702 0.697

SolarFlareNet 0.881 0.877 0.841

3. SolarFlareNet-CL is a sub-model without the Conv1D and LSTM layers, and the
transformer block is working on the data directly without the learned temporal
patterns from Conv1D and LSTM layers.
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Table 2.5 Performance Comparison of SolarFlareNet and LSTM [119] Using Cross
Validation.

≥M5.0 class ≥M class ≥C class
Recall LSTM 0.890 (0.055) 0.759 (0.038) 0.944 (0.012)

SolarFlareNet 0.914 (0.016) 0.873 (0.017) 0.958 (0.011)
Precision LSTM 0.949 (0.034) 0.784 (0.034) 0.808 (0.025)

SolarFlareNet 0.975 (0.018) 0.911 (0.019) 0.873 (0.037)
ACC LSTM 0.957 (0.001) 0.929 (0.002) 0.851 (0.019)

SolarFlareNet 0.968 (0.021) 0.940 (0.001) 0.903 (0.025)
BACC LSTM 0.945 (0.027) 0.874 (0.019) 0.845 (0.020)

SolarFlareNet 0.957 (0.022) 0.935 (0.009) 0.899 (0.026)
HSS LSTM 0.917 (0.036) 0.760 (0.027) 0.698 (0.039)

SolarFlareNet 0.942 (0.023) 0.886 (0.013) 0.803 (0.050)
TSS LSTM 0.868 (0.054) 0.751 (0.037) 0.696 (0.040)

SolarFlareNet 0.897 (0.043) 0.880 (0.017) 0.819 (0.052)

Table 2.6 Performance Comparison of SolarFlareNet and LSTM [119] Using the 2010-2018
Data Created by [119]

≥M5.0 class ≥M class ≥C class
Recall LSTM 0.978 0.881 0.762

SolarFlareNet 0.893 0.884 0.829
Precision LSTM 0.038 0.222 0.544

SolarFlareNet 0.975 0.910 0.806
ACC LSTM 0.899 0.909 0.829

SolarFlareNet 0.968 0.941 0.927
BACC LSTM 0.938 0.895 0.803

SolarFlareNet 0.946 0.920 0.890
HSS LSTM 0.074 0.347 0.539

SolarFlareNet 0.931 0.870 0.772
TSS LSTM 0.877 0.790 0.607

SolarFlareNet 0.893 0.839 0.780

4. SolarFlarenet-T is a subm-model without the transformer encoder block, relies
only the patterns learned from the Con1D and LSTM layers without doing the
transformation on the sequence values to obtain the distinct metrics from the
multi-head attention and other components.

Figure 4.16 shows the ablation test result for the TSS performance metric. It can be

seen in the figure that the full SolarFlareNet outperforms the other sub-models. In

addition, it can be seen that removing the Conv1D and LSTM layers at the same time

as well as removing the transformer encoder blocks result in poor performance. This
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Table 2.7 Performance Comparison of SolarFlareNet and LSTM [119] Using the 2010-2018
Data Created by [119] for Cross Validation

≥M5.0 class ≥M class ≥C class
Recall LSTM 0.960 (0.017) 0.885 (0.017) 0.773 (0.027)

SolarFlareNet 0.887 (0.003) 0.866 (0.02) 0.842 (0.038)
Precision LSTM 0.048 (0.008) 0.222 (0.023) 0.541 (0.030

SolarFlareNet 0.973 (0.013) 0.913 (0.019) 0.867 (0.036)
ACC LSTM 0.921 (0.014) 0.907 (0.013) 0.826 (0.015)

SolarFlareNet 0.968 (0.021) 0.992 (0.021) 0.943 (0.015)
BACC LSTM 0.940 (0.007) 0.896 (0.004) 0.806 (0.004)

SolarFlareNet 0.943 (0.002) 0.931 (0.016) 0.905 (0.019)
HSS LSTM 0.084 (0.015) 0.323 (0.030) 0.526 (0.021

SolarFlareNet 0.907 (0.002) 0.884 (0.015) 0.818 (0.034)
TSS LSTM 0.881 (0.014) 0.792 (0.008) 0.612 (0.009)

SolarFlareNet 0.886 (0.003) 0.857 (0.02) 0.794 (0.039)

is because when removing the Conv1D and LSTM the sub-model loses big portion

of the temporal correlation between the data. On the other hand, removing the

transformer encoder losed the transformation of from the multi-head attentions and

less patterns to learn. Therefore, combing all components together allows the model

to learn both the temporal correlation as well as the transformation from the attention

layers. Similar behaviour and result are produced for other performance metrics.

≥M5.0 ≥M ≥C

0.2

0.4

0.6

0.8

1.0

0.0

T
S
S

SolarFlareNet(SFN) SFN-C SFN-L SFN-CL SFN-T

Figure 2.9 Ablation study result showing the TSS performance metrics.
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2.2.6 Probabilistic Forecasting and Calibration

In this section, we provide probabilistic forecasting and calibration [2]. The two

machine learning methods, SolarFlareNet and LSTM [119], are capable of producing

probabilistic forecasting models and produce a probability between 0 and 1. We

compare the probability with a preset threshold, which is set to 0.5, to determine the

output produced by each machine learning method. Since, the problem studied in

this research is a binary classification for each class K, where K is ≥C, ≥M, ≥M5.0,

the probability of the positive class is 1 and probability of the negative class is 0.

Generally, the model produces a value v where 0 ≥ v ≤ 1 and we use v as the

probabilistic forecasting output value from the model and interpreted as follows. At

any time point t, the data sample xt in an active region (AR), the probability of

AR to produce K class within 24 hours (48 and 72, respectively) is v and v is the

probabilistic estimate of how likely the AR will produce K-class flare.

In addition, we adopted a probability calibration method using the isotonic

regression [104, 147] to adjust the probabilities and avoid the mismatch between the

distribution of the predicted and expected probabilistic values [2]. We add a suffix

“+C” to SolarFlareNet and LSTM to indicate the calibrated version of the model.

Similar to [122, 2], to evaluate the performance of a probabilistic and calibrated

probabilistic forecasting behaviour, we use the Brier Score (BS)[177] and Brier Skill

Score (BSS)[177], defined as follows:

BS =
1

N

N∑
i=1

(yi − ŷi)
2, (2.8)

BSS = 1− BS
1
N

∑N
i=1(yi − ȳ)2

. (2.9)

Where, N is the total number of data sequences each having m consecutive data

samples in the test set; yi denotes the observed probability and ŷi denotes the

predicted probability of the ith test data sequence, respectively; ȳ = 1
N

∑N
i=1 yi
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denotes the mean of all the observed probabilities. The BS values range from 0

to 1, with 0 being a perfect score, whereas the BSS values range from −∞ to 1, with

1 being a perfect score.

Table 2.8 represents the performance comparison of the probabilistic forecasting

for SolarFlareNet and LSTM [119]. The table presents the mean BS and BSS

values the average of our cross-validation scheme with standard deviations enclosed

in parentheses. The best values for BS and BSS values are highlighted in boldface. It

can be seen from Table 3.5 that the probabilistic forecasting results of our model is

performing better than LSTM [119]. Furthermore, the calibrated version of a model is

better than the model without calibration. Overall, SolarFlarNet+C performs better

in terms of BS and BSS. Similarly, Tables 2.9 and 2.10 show the results for the 48-hour

(and 72-hour, respectively). It also can be seen that SolarFlareNet outperforms the

LSTM[119] which is line with the result for 24-hour predictions. It should also be

noticed that 48- and 72-hour predictions have less performance than 24-hour. This is

expected because the longer the prediction ahead, the less performance due to data

deviation over time.

Table 2.8 Probabilistic Forecasting Results of SolarFlareNet and LSTM [119] With and
Without Calibration for 24-hour.

≥M5.0 class ≥M class ≥C class
BS LSTM 0.315 (0.062) 0.324 (0.087) 0.401 (0.066)

LSTM+C 0.302 (0.073) 0.319 (0.039) 0.389 (0.086)
SolarFlareNet 0.268 (0.047) 0.277 (0.062) 0.321 (0.065)
SolarFlareNet+C 0.236 (0.032) 0.247 (0.048) 0.293 (0.042)

BSS LSTM 0.395 (0.104) 0.382 (0.124) 0.377 (0.126 )
LSTM+C 0.426 (0.120) 0.399 (0.109) 0.386 (0.115)
SolarFlareNet 0.516 (0.055) 0.462 (0.134) 0.452 (0.093)
SolarFlareNet+C 0.587 (0.037) 0.503 (0.086) 0.498 (0.076)
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Table 2.9 Probabilistic Forecasting Results of SolarFlareNet and LSTM [119] With and
Without Calibration for 48-hour.

≥M5.0 class ≥M class ≥C class
BS LSTM 0.355 (0.072) 0.375 (0.066) 0.463 (0.062)

LSTM+C 0.324 (0.078) 0.367 (0.092) 0.427 (0.084)
SolarFlareNet 0.301 (0.051) 0.346 (0.059) 0.359 (0.052)
SolarFlareNet+C 0.289 (0.042) 0.328 (0.042) 0.344 (0.039)

BSS LSTM 0.388 (0.092) 0.366 (0.102) 0.351 (0.122)
LSTM+C 0.417 (0.122) 0.372 (0.100) 0.376 (0.180)
SolarFlareNet 0.497 (0.073) 0.464 (0.093) 0.447 (0.079)
SolarFlareNet+C 0.571 (0.047) 0.499 (0.089) 0.485 (0.088)

Table 2.10 Probabilistic Forecasting Results of SolarFlareNet and LSTM [119] With and
Without Calibration for 72-hour.

≥M5.0 class ≥M class ≥C class
BS LSTM 0.348 (0.039) 0.388 (0.069) 0.474 (0.101)

LSTM+C 0.336 (0.058) 0.382 (0.104) 0.438 (0.093)
SolarFlareNet 0.321 (0.063) 0.353 (0.076) 0.366 (0.071)
SolarFlareNet+C 0.294 (0.050) 0.338 (0.055) 0.351 (0.050)

BSS LSTM 0.493 (0.088) 0.351 (0.051) 0.344 (0.106)
LSTM+C 0.521 (0.051) 0.367 (0.092) 0.401 (0.088)
SolarFlareNet 0.502 (0.058) 0.455 (0.077) 0.453 (0.094)
SolarFlareNet+C 0.566 (0.049) 0.480 (0.062) 0.478 (0.064)
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CHAPTER 3

PREDICTION OF SOLAR ENERGETIC PARTICLES

3.1 Background and Related Work

Solar eruptions including flares and coronal mass ejections (CMEs) can endanger

modern civilization. Solar flares are large bursts of radiation released into space;

they appear as sudden and unexpected brightening in the solar atmosphere with a

duration ranging from minutes to hours. CMEs are significant discharges of plasma

and magnetic fields produced by the solar corona into the interplanetary medium

[115]. They are considered to be the largest-scale solar eruptions in the solar system

and occur on a quasi-regular basis [46, 176, 94]. Research shows that both flares and

CMEs are magnetic events, sharing a similar physical process [73, 23], though more

work is performed to understand the correlation between them [182, 92]. Large flares

and accompanied CMEs cause solar energetic particles (SEPs). SEPs, composed of

electrons, protons and heavy ions, are expedited by magnetic reconnection or shock

waves associated with the CMEs [34, 81]. When SEP events are strong, they cause

nuclear cascades in the Earth’s upper atmosphere and also represent a radiation

hazard to equipment in space that is not adequately protected [142, 90, 144].

Active regions (ARs), which manifest complex magnetic geometry and properties

[22], are the source of flares and CMEs [46, 167]. The lifetime of ARs ranges from

days to months [167]. Recently, researchers combine machine learning with physical

parameters derived from vector magnetograms provided by the Helioseismic and

Magnetic Imager (HMI) [148] on board the Solar Dynamics Observatory (SDO)

[135] to predict flares, CMEs, and SEPs. These physical parameters, including

magnetic helicity and magnetic flux [109, 149, 130], are part of the vector magnetic
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data products, named the Space-weather HMI Active Region Patches (SHARP) [31],

produced by the SDO/HMI team.

Machine learning (ML) has been popular in predictive analytics for many years.

ML is able to learn patterns from historical data and make predictions on unseen

or future data [10, 67]. For example, [117] used random forests (RF) and the

SHARP parameters to predict the occurrence of a certain class of flares in a given

AR within 24 hours. [89] employed machine learning to extract relevant information

from photospheric and coronal image data to perform flare prediction. [61] adopted

multiple machine learning algorithms including RF, multilayer perceptrons (MLP)

and support vector machines (SVM) for flare forecasting. More recently, researchers

started to use deep learning (DL), which is a branch of machine learning focusing on

the use of deep neural networks, to enhance the learning outcome [67]. [82] designed

a convolutional neural network to learn patterns from line-of-sight magnetograms

of ARs and used the patterns to forecast flares. [119] adopted a long short-term

memory (LSTM) network for flare prediction. [47] employed LSTM and the SHARP

parameters to identify solar flare precursors; the authors later extended their work by

investigating solar cycle dependence [174]. Similar ML and DL methods have been

applied to CME and SEP forecasting. [30] used SVM to predict CMEs; [122] extended

their work by adopting recurrent neural networks including LSTM and gated recurrent

units. [84] employed SVM and MLP to forecast if flares would be accompanied with

CMEs and SEPs.

In this research, we proposed a new deep learning method, specifically a

bidirectional long short-term memory (biLSTM) network, for SEP prediction using

the SDO/HMI vector magnetic data products. We aim to solve two binary prediction

problems: (i) predict whether an AR would produce an SEP event given that the AR

will produce an M- or X-class flare and a CME associated with the flare (referred to

as the FC S problem); (ii) predict whether an AR would produce an SEP event given
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that the AR will produce an M- or X-class flare regardless of whether or not the flare

is associated with a CME (referred to as the F S problem). The proposed biLSTM is

an extension of LSTM [75], both of which are well suited for time series forecasting

[108, 67]. Unlike LSTM, which works in one direction, biLSTM works back and forth

on the input data and then the patterns learned from the two directions are joined

together to strengthen the learning outcome. In SEP prediction, the observations

and physical parameters associated with ARs form time series, and hence biLSTM is

suitable for our study.

The rest of this work is organized as follows. Section 3.2 explains the data and

data collection procedure used in our study. Section 3.3 describes our proposed deep

learning method. Section 3.4 reports experimental results and discusses extensions of

our approach for probabilistic forecasting and calibration. Section 3.5 concludes the

research.

3.2 Data

In this work, we adopt the Space-weather HMI Active Region Patches (SHARP)

[31] that were produced by the SDO/HMI team and released at the end of 2012.

These data are available for download, in the data series hmi.sharp, from the Joint

Science Operations Center (JSOC).1 The SHARP data provide physical parameters

of active regions (ARs) that have been used to predict flares, CMEs and SEPs

[30, 117, 84, 119, 122]. We collected SHARP data samples from the data series,

hmi.sharp cea 720s, using the Python package SunPy [159] at a cadence of 12 minutes.

In collecting the data samples, we focused on the 18 physical parameters previously

used for SEP prediction [84]. These 18 SHARP parameters include the absolute value

of the net current helicity (ABSNJZH), area of strong field pixels in the active region

(AREA AC), mean characteristic twist parameter (MEANALP), mean angle of field

1Retrieved on 09/03/2022 from http://jsoc.stanford.edu/
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from radial (MEANGAM), mean gradient of horizontal field (MEANGBH), mean

gradient of total field (MEANGBT), mean gradient of vertical field (MEANGBZ),

mean vertical current density (MEANJZD), mean current helicity (MEANJZH), mean

photospheric magnetic free energy (MEANPOT), mean shear angle (MEANSHR),

sum of flux near polarity inversion line (R VALUE), sum of the modulus of the net

current per polarity (SAVNCPP), fraction of area with shear > 45◦ (SHRGT45),

total photospheric magnetic free energy density (TOTPOT), total unsigned current

helicity (TOTUSJH), total unsigned vertical current (TOTUSJZ), and total unsigned

flux (USFLUX).

Since the 18 SHARP parameters have different units and scales, we normalized

the parameter values using the min-max normalization procedure as done in [122].

Each data sample contains the 18 SHARP parameters. Let pki be the original value

of the ith parameter of the kth data sample. Let qki be the normalized value of the

ith parameter of the kth data sample. Let mini be the minimum value of the ith

parameter. Let maxi be the maximum value of the ith parameter. Then

qki =
pki −mini

maxi −mini

. (3.1)

Appropriately labeling the data samples is crucial for machine learning. We

surveyed M- and X-class flares that occurred between 2010 and 2021 with identified

active regions in the GOES X-ray flare catalogs provided by the National Centers

for Environmental Information (NCEI). As done in [30], we excluded ARs that were

outside ± 70◦ of the central meridian because the SHARP parameters cannot be

calculated correctly based on the vector magnetograms of the ARs that are near the

limb due to foreshortening and projection effects.2 We also excluded flares with an

2Notice that flaring ARs outside ± 70◦ of the central meridian may produce eruptive events
that have increased probabilities to result in SEPs due to the magnetic connectivity with
Earth. Excluding these flaring ARs may reduce the number of SEP events considered in
the study. This is a limitation of our approach.
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absolute value of the radial velocity of SDO being greater than 3500 m s−1, low-quality

HMI data as described by [76], and data samples with incomplete SHARP parameters.

In this way, we excluded data samples of low quality, and kept qualified data samples

of high quality in our study. Furthermore, we collected and extracted information

from NASA’s Space Weather Database of Notifications, Knowledge, Information

(DONKI)3 to tag, for any given M- or X-class flare, whether it produced a CME

and/or SEP event. We cross-checked the flare records in DONKI and GOES X-ray

flare catalogs to ensure that each flare record was associated with an active region;

otherwise the flare record was removed from our study.

We then created two databases of active regions (ARs) for the period between

2010 and 2021. ARs from 2010, 2016, and 2018-2021 were excluded from the study

due to the lack of qualified data samples or the absence of SEP events associated

with M-/X-class flares and CMEs. Thus, the databases contain ARs from six years,

namely 2011-2015 and 2017. In our first database, referred to as the FC S database,

each record corresponds to an AR, contains an M- or X-class flare as well as a CME

associated with the flare, and is tagged by whether the flare/CME produce an SEP

event. In this database, there are 31 records tagged by “yes” indicating they are

associated with SEP events while there are 97 records tagged by “no” indicating they

are not associated with SEP events. In our second database, referred to as the F S

database, each record corresponds to an AR, contains an M- or X-class flare, and

is tagged by whether the flare produces an SEP event regardless of whether or not

the flare initiates a CME. In this database, there are 40 records tagged by “yes”

indicating they are associated with SEP events while there are 700 records tagged by

“no” indicating they are not associated with SEP events.

3Retrieved on 09/03/2022 from http://kauai.ccmc.gsfc.nasa.gov/DONKI/
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3.3 Methodology

3.3.1 Prediction Tasks

As mentioned in Section 2.1.1, we aim to solve the following two binary prediction

problems. [FC S problem] Given a data sample xt at time point t in an AR where

the AR will produce an M- or X-class flare within the next T hours of t and the

flare initiates a CME, we predict whether xt is positive or negative. Predicting xt

to be positive means that the AR will produce an SEP event associated with the

flare/CME. Predicting xt to be negative means that the AR will not produce an SEP

event associated with the flare/CME. [F S problem] Given a data sample xt at time

point t in an AR where the AR will produce an M- or X-class flare within the next T

hours of t regardless of whether or not the flare initiates a CME, we predict whether

xt is positive or negative. Predicting xt to be positive means that the AR will produce

an SEP event associated with the flare. Predicting xt to be negative means that the

AR will not produce an SEP event associated with the flare. For both of the two

binary prediction problems, we consider T ranging from 12 to 72 in 12-hour intervals

as frequently considered in the literature [7, 30, 84, 122].

In solving the two binary prediction problems, we first show how to collect and

construct positive and negative data samples used in our study. Figure 3.1(a) (Figure

3.1(b), respectively) illustrates how to construct positive (negative, respectively) data

samples for the FC S problem where T = 24 hours. Refer to the FC S database

described in Section 5.2, which indicates whether a flaring AR that already produces

an M- or X- class flare/CME will initiate an SEP event associated with the flare/CME.

For the flaring AR, we collect data samples that are within the T = 24 hours prior

to the peak time of the flare.

• If the flare/CME are associated with an SEP event, the data samples belong to
the positive class and are colored (labeled) by blue as shown in Figure 3.1(a).
Thus, for each blue (positive) data sample, there is an M- or X- class flare that
is within the next 24 hours of the occurrence time of the data sample, the flare
initiates a CME and the flare/CME are associated with an SEP event.
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• If the flare/CME are not associated with an SEP event, the data samples belong
to the negative class and are colored (labeled) by green as shown in Figure
3.1(b). Thus, for each green (negative) data sample, there is an M- or X- class
flare that is within the next 24 hours of the occurrence time of the data sample,
the flare initiates a CME but the flare/CME are not associated with an SEP
event.

Constructing positive and negative data samples for the F S problem is done similarly

and its description is omitted.

Table 3.1 Numbers of Positive and Negative Data Samples Constructed for Different Hours
for the FC S and F S Problems, Respectively

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

FC S Positive 994 2017 3055 4143 5221 6336
Negative 2952 5522 7864 9976 11687 13135

F S Positive 1260 2561 3863 5207 6517 7864
Negative 19593 31534 40619 48189 54718 59821

Table 3.1 shows the numbers of positive and negative data samples constructed

for the FC S and F S problems, respectively. Consider the FC S problem. The

positive and negative data samples are constructed based on the 31 records tagged by

“yes” and 97 records tagged by “no” in the FC S database described in Section 5.2.

When T = 24 hours and the cadence is 12 minutes, one would expect the total number

of positive data samples to be 24 hr × 60 minutes/hr × (1/12 minutes) × 31 = 3720,

and the total number of negative data samples to be 24 hr × 60 minutes/hr × (1/12

minutes)× 97 = 11640. However, the total number of positive (negative, respectively)

data samples is 2017 (5522, respectively). This happens because we removed many

data samples of low quality as described in Section 5.2. If a gap occurs in the middle

of a time series due to the removal, we use a zero-padding strategy as done in [122]

to create a synthetic data sample to fill the gap. The synthetic data sample has zero

values for all the 18 SHARP parameters. The synthetic data sample is added after the

normalization of the SHARP parameter values, and hence the synthetic data sample

does not affect the normalization procedure.
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After explaining how to construct the positive and negative data samples, we

now show how to solve the binary prediction problems. Consider again the FC S

problem where T = 24 hours. Here we want to predict whether a given test data

sample xt at time point t is positive (blue) or negative (green) given that there will

be an M- or X- class flare within the next 24 hours of t and the flare initiates a

CME. If there is an SEP event associated with the flare/CME, and we predict xt to

be positive (blue), then this is a correct prediction as illustrated in Figure 3.1(c). If

there is an SEP event associated with the flare/CME, but we predict xt to be negative

(green), then this is a wrong prediction as illustrated in Figure 3.1(e). On the other

hand, if there is no SEP event associated with the flare/CME, and we predict xt to

be negative (green), then this is a correct prediction as illustrated in Figure 3.1(d).

If there is no SEP event associated with the flare/CME, but we predict xt to be

positive (blue), then this is a wrong prediction as illustrated in Figure 3.1(f). The

F S problem is solved similarly. In the following subsection we describe how to train

our model and use the trained model to make predictions.

3.3.2 Prediction Method

We consider one of recurrent neural networks (RNNs) that is called long short-term

memory (LSTM) [75, 67] to build our model. LSTM has shown good results in

solar eruption prediction [119, 122]. We create a model using bidirectional LSTM

(biLSTM). Generally, a bidirectional RNN [150] functions by duplicating the initial

recurrent layer in the network to obtain two layers so that one layer uses the input as

is and the other duplicated layer uses the input in a reverse order. This design allows

biLSTM to discover additional patterns that cannot be found by LSTM with only

one recurrent layer [153]. In addition, the data used in our study is time series and

biLSTM has shown an improvement over LSTM for general time series forecasting
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Figure 3.1 Collecting and constructing positive and negative data samples on a flaring
AR for the FC S problem where T = 24 hours and making predictions based
on the collected data samples. The data samples are collected at a cadence of
12 minutes. Each rectangular box corresponds to 1 hour and contains 5 data
samples. The red vertical line shows the peak time of an M- or X- class flare.

[11, 91]. As our experimental results show later, biLSTM also outperforms LSTM in

SEP prediction.

Figure 3.2 presents the architecture of our neural network, which accepts as

input a data sequence with m consecutive data samples. (In the study presented

here, m is set to 10.) The neural network consists of a biLSTM layer configured with

400 neurons. In addition, the neural network contains an attention layer motivated

by [67] to direct the network to focus on important information and characteristics of

input data samples. The attention layer is designed to map and capture the alignment
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Figure 3.2 Architecture of the proposed biLSTM network. Yellow boxes represent biLSTM
cells. These cells are connected to an attention layer (A) that contains m
neurons, which are connected to a fully connected layer (FCL). (In the study
presented here, m is set to 10.) During testing/prediction, the input to the
network is a test data sequence with m consecutive data samples xt−m+1,
xt−m+2 . . .xt−1, xt where xt is the test data sample at time point t. The
trained biLSTM network predicts the label (color) of the test data sequence,
more precisely the label (color) of xt. The output layer of the biLSTM network
calculates a probability (ŷ) between 0 and 1. If ŷ is greater than or equal to a
threshold, which is set to 0.5, the biLSTM network outputs 1 and predicts xt
to be positive, i.e., predicts the label (color) of xt to be blue; see Figure 3.1.
Otherwise, the biLSTM network outputs 0 and predicts xt to be negative, i.e.,
predicts the label (color) of xt to be green; see Figure 3.1.

between the input and output by calculating a weighted sum for input data sequences.

Specifically, the attention context vector for the output ŷi, denotedCV i, is calculated

as follows:

CV i =
m∑
j=1

W i,jH j, (3.2)

where m is the input sequence length, H j is the hidden state corresponding to the

input data sample xj and W contains weights applied to the hidden state. W is

computed by a softmax function as follows:

W i,j =
eSi,j∑m
k=1 e

Si,k
. (3.3)
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Here Si,j is a score function calculated as follows:

Si,j = V × tanh(W
′
(Si,Hj)), (3.4)

where tanh(·) is the hyperbolic tangent function, Si is the output state corresponding

to the output ŷi, V and W
′
are weight matrices learned by the neural network. The

attention layer passes its resulting vector to a fully connected layer.

Training

Trainingxp−9 xp−8 xp−7

...

xp

xp−8 xp−7

...

xp xp+1

xp−7

...

xp xp+1 xp+2

(a)

Trainingxq−9 xq−8 xq−7

...

xq

xq−8 xq−7

...

xq xq+1

xq−7

...

xq xq+1 xq+2

(b)

Testing

xt−9 xt−8

...

xt−1 xt

(c)

Figure 3.3 Example data sequences used to train and test our biLSTM network where
each data sequence contains 10 consecutive data samples. (a) Three positive
training data sequences taken from a flaring AR. (b) Three negative training
data sequences taken from a flaring AR. In (a) and (b), the label (color) of a
training data sequence is defined to be the label (color) of the last data sample
in the training data sequence while the labels (colors) of the other nine data
samples in the training data sequence are ignored. (c) A test data sequence
formed for predicting the label (color) of the last data sample xt in a flaring
AR.

During training, our biLSTM network takes as input overlapping data sequences

where each data sequence contains m = 10 consecutive data samples. The label

(color) of a training data sequence is defined to be the label (color) of the last (i.e.,
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10th) data sample in the data sequence while the labels (colors) of the other nine data

samples in the data sequence are ignored. Thus, if the 10th data sample is positive

(blue), then the training data sequence is positive; if the 10th data sample is negative

(green), then the training data sequence is negative. We feed one training data

sequence at a time to our biLSTM network when training the model. Figure 3.3(a)

illustrates three positive data sequences used to train our biLSTM model. Figure

3.3(b) illustrates three negative data sequences used to train our biLSTM model.

The loss function used in our biLSTM model is the weighted binary cross-

entropy (WBCE) [67, 122]. Let N denote the total number of data sequences each

having m consecutive data samples in the training set. Let w0 denote the weight for

the positive class (i.e., minority class) and let w1 denote the weight for the negative

class (i.e., majority class). The weights are calculated based on the ratio of majority

and minority class sizes with more weight assigned to the minority class. Let yi denote

the observed probability of the ith data sequence; yi is 1 if the ith data sequence is

positive and 0 if the ith data sequence is negative. Let ŷi denote the predicted

probability of the ith data sequence. The WBCE, calculated as follows, is suitable

for imbalanced datasets such as those tackled here where the negative class has more

data samples than the positive class; see Table 3.1.

WBCE =
N∑
i=1

w0yi log(ŷi) + w1(1− yi) log(1− ŷi). (3.5)

We configure the network to use a fraction (1/10) of the training set as the

internal validation subset. We employ progressive learning with early stopping and

adopt the strategy of saving the highest performing model during the iterative learning

process. The performance of a model is measured by the WBCE on the internal

validation subset where the smaller the WBCE is, the better performance the model

has. In each iteration, the process checks the performance of the models in the current
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and previous iterations to decide which model to use for the next iteration. If the

model in the current iteration has better performance, the process copies its weights

as starting weights for the next iteration; otherwise, it copies the weights of the model

in the previous iteration as starting weights for the next iteration. This progressive

process improves the weights of the network’s hidden layers and as a result the overall

performance of the network is also improved. In addition, during the iterations, if

the performance of the network degrades, the process stops and selects the highest

performing model it identifies within the iterations.

During testing/prediction, we are given a test data sample xt and our biLSTM

model will predict the label (color) of xt, i.e., predict whether xt is positive or negative.

We pack the m−1 data samples preceding xt, namely xt−m+1, xt−m+2, . . ., xt−1, along

with xt into a test data sequence with m consecutive data samples and feed this

test data sequence to our biLSTM model as shown in the input layer in Figure 3.2.

Figure 3.3(c) illustrates a test data sequence where m is 10. The output layer of our

biLSTM model calculates a probability between 0 and 1 for the test data sequence.

We compare the probability with a threshold, which is set to 0.5. If the probability is

greater than or equal to the threshold, our biLSTM model outputs 1 indicating the

test data sequence, more precisely the test data sample xt, is positive; otherwise our

model outputs 0 indicating the test data sequence, more precisely xt, is negative.

3.4 Results

3.4.1 Performance Metrics and Experiment Setup

We conducted a series of experiments to evaluate the performance of the proposed

method and compare it with related machine learning methods. For the data sample

xt at time point t, we define:

• xt to be true positive (TP) if our model (network) predicts that xt is positive
and xt is indeed positive, i.e., an SEP event will be produced with respect to
xt;
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• xt to be false positive (FP) if our model predicts that xt is positive while xt is
actually negative, i.e., no SEP event will be produced with respect to xt;

• xt to be true negative (TN) if our model predicts xt is negative and xt is indeed
negative;

• xt to be false negative (FN) if our model predicts xt is negative while xt is
actually positive.

We also use TP (FP, TN, FN, respectively) to denote the total number of true

positives (false positives, true negatives, false negatives, respectively) produced by

a method.

The following performance metrics are used in our study:

Recall =
TP

TP + FN
, (3.6)

Precision =
TP

TP + FP
, (3.7)

Balanced Accuracy (BACC) =
1

2

(
TP

TP + FN
+

TN

TN+ FP

)
, (3.8)

Heidke Skill Score (HSS) =
2× (TP× TN− FP× FN)

(TP + FN)× (FN + TN) + (TP + FP)× (FP + TN)
,

(3.9)

True Skill Statistics (TSS) =
TP

TP + FN
− FP

FP + TN
. (3.10)

BACC [64] is an accuracy measure mainly for imbalanced datasets. HSS [74]

and TSS [27] are commonly used for flare, CME and SEP predictions [27, 61, 84,

119, 122]. HSS ranges from −∞ to +1. The higher HSS value a method has, the

better performance the method achieves. TSS ranges from −1 to +1. Like HSS,
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the higher TSS value a method has, the better performance the method achieves.

In addition, we use the weighted area under the curve (WAUC) [20] in our study.

The area under the curve (AUC) in a receiver operating characteristic (ROC) curve

[125] indicates how well a method is capable of distinguishing between two classes

in binary prediction with the ideal value of one. When calculating the AUC, we do

not distinguish between the accuracy on the minority class (positive class) and the

accuracy on the majority class (negative class). In contrast, when calculating the

WAUC, which is an extension of the AUC and mainly for imbalanced datasets like

those tackled here, the accuracy on the minority class has a larger contribution to

the overall performance of a model than the accuracy on the majority class. As a

consequence, we assign more weight to the accuracy on the minority class where the

weight is defined to be the ratio of the sizes of the minority and majority classes.

All the metrics mentioned above are calculated using the confusion matrices obtained

from the cross-validation (CV) scheme. With CV, we train a model using a subset of

data, called the training set, and test the model using another subset of data, called

the test set, where the training set and test set are disjoint. We consider six years,

namely 2011-2015 and 2017, as mentioned in Section 5.2. Data samples from each

year in turn are used for testing in a run and data samples from all the other five

years together are used for training in the run. There are six years, and hence there

are six runs in total. For each performance metric, the mean and standard deviation

over the six runs are calculated and recorded.

3.4.2 Parameter Ranking and Selection

We first assessed the importance of the 18 SHARP parameters described in Section

5.2 to understand which parameters are the most important ones with the greatest

predictive power by utilizing a parameter ranking method, called Stability Selection

[127]. This method is based on the LASSO (Least Absolute Shrinkage and Selection
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Operator) algorithm [161]. Table 3.2 presents the rankings of the parameters with

respect to T = 12, 24, 36, 48, 60 and 72 for the FC S and F S problems, respectively.

The parameter ranked first is the most important one while the parameter ranked

18th is the least important one. ABSNJZH is ranked consistently high for the FC S

problem while SAVNCPP and TOTUSJH are ranked high for the F S problem.

AREA ACR, TOTUSJZ and USFLUX are ranked consistently low for both of the

FC S and F S problems.

Table 3.2 Importance Rankings of the 18 SHARP Parameters Used in Our Study for the
FC S and F S Problems, Respectively

SHARP 12 hr 24 hr 36 hr 48 hr 60 hr 72 hr

Keyword FC S F S FC S F S FC S F S FC S F S FC S F S FC S F S
ABSNJZH 3 3 1 4 1 10 1 10 1 2 5 1
AREA ACR 17 16 17 16 17 16 17 16 16 16 16 16
MEANALP 13 15 3 15 3 15 3 15 2 15 6 15
MEANGAM 4 14 4 14 4 14 4 14 4 14 8 14
MEANGBH 5 13 5 13 5 13 5 13 14 13 14 7
MEANGBT 6 12 6 12 6 12 6 12 13 12 13 13
MEANGBZ 7 11 7 3 7 4 7 4 12 11 4 4
MEANJZD 8 10 8 11 8 11 8 11 11 10 12 12
MEANJZH 2 9 2 10 2 5 2 5 10 9 11 10
MEANPOT 10 8 10 9 10 9 10 9 9 8 1 11
MEANSHR 11 7 11 8 11 8 11 8 8 7 10 3
R VALUE 12 6 12 7 12 1 12 3 7 6 2 2
SAVNCPP 1 2 13 2 13 3 13 1 6 1 3 5
SHRGT45 14 5 14 6 14 7 14 7 5 5 9 9
TOTPOT 15 4 15 5 15 6 15 6 15 4 15 8
TOTUSJH 9 1 9 1 9 2 9 2 3 3 7 6
TOTUSJZ 16 17 16 17 16 17 16 17 17 17 17 17
USFLUX 18 18 18 18 18 18 18 18 18 18 18 18

We then used the recursive parameter elimination algorithm [37] in combination

with our biLSTM model to select a set of parameters that achieves the best

performance where the performance is measured by TSS. The parameter elimination

algorithm is an interactive procedure. It selects parameters by recursively considering

smaller and smaller sets of parameters where the least important parameters are
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Figure 3.4 Parameter selection results for (a) the FC S problem, and (b) the F S problem.

successively pruned from the current set of parameters. Figure 3.4 presents the

parameter selection results for the FC S and F S problems, respectively. It can be

seen from the figure that using the top 15 most important parameters achieves the

best performance for both of the FC S and F S problems. When using the top k,

1 ≤ k ≤ 14, most important parameters, the less parameters we use, the worse

performance our model achieves. Using the top-ranked, most important parameter

alone would yield a lower TSS than using all the top 15 most important parameters

together. In subsequent experiments, we used the top 15 most important parameters
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for our biLSTM model. That is, we removed the three least important parameters

AREA ACR, TOTUSJZ and USFLUX from data samples and each data sample

contained only the top 15 most important SHARP parameters.

3.4.3 Performance Comparison

Next, we compared our biLSTM network with four related machine learning methods,

including multilayer perceptrons (MLP), support vector machines (SVM), random

forests (RF) and long short-term memory (LSTM) [119]. These four methods are

commonly used to predict solar flares, CMEs and SEPs [30, 117, 61, 84, 47, 119, 122,

174, 4].

MLP [145, 12] is a feed-forward artificial neural network [32] that consists of an

input layer, an output layer, and one or more hidden layers. The number of hidden

layers is set to 3 with 200 neurons in each hidden layer. SVM [52] is trained with

the Radial Basis Function (RBF) kernel and the cache size is set to 20000 to speed

the training process. RF [33] is an ensemble algorithm that has two hyperparameters

for performance tuning: m (the number of SHARP magnetic parameters randomly

selected and used to split a node in a tree of the forest) and n (the number of trees

to grow). We set m to 2 and n to 500. The implementation of LSTM follows that

described in [122]. The hyperparameters not specified here are set to their default

values provided by the scikit-learn library in Python [134].

As done in biLSTM, we used the recursive parameter elimination algorithm

[37] to identify and select the best parameters for the four related machine learning

methods based on the importance rankings of the 18 SHARP parameters in Table

3.2 for the FC S and F S problems, respectively. Our experiments showed that, like

biLSTM, using the top 15 most important parameters achieved the best performance

for the four related machine learning methods. Consequently, we used the top 15
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most important parameters for the four machine learning methods in the experimental

study.
RF

TP          
49

102
200

          FP
67
73
88

46
63
72

FN          

214
418
859

          TN

TP          
96

214
413

          FP
157
215
324

63
121
167

FN          

251
705

1499
          TN

TP          
178
345
721

          FP
149
264
420

110
164
259

FN          

377
1046
2192

          TN

TP          
182
461

1073

          FP
222
350
459

155
228
342

FN          

336
1312
2811

          TN

TP          
340
650
1511

          FP
248
475
628

159
220
327

FN          

383
1472
3317

          TN

TP          
439
838

2002

          FP
148
362
568

123
217
303

FN          

495
1826
3834

          TN

M
LP

TP          
25
95

193

          FP
61
91
115

46
70
90

FN          

225
400
832

          TN

TP          
86

219
438

          FP
181
272
422

67
116
143

FN          

209
648

1401
          TN

TP          
172
362
810

          FP
162
338
464

110
147
173

FN          

364
972

2175
          TN

TP          
178
449

1047

          FP
371
438
538

127
240
368

FN          

226
1224
2743

          TN

TP          
347
643

1506

          FP
319
525
863

162
227
332

FN          

312
1422
3367

          TN

TP          
435
842

2029

          FP
197
481
712

139
213
259

FN          

446
1707
3690

          TN

SV
M

TP          
25
97

197

          FP
65
88
112

45
68
90

FN          

221
403
835

          TN

TP          
123
227
413

          FP
151
197
291

66
108
167

FN          

278
723

1532
          TN

TP          
161
356
814

          FP
142
286
430

107
153
184

FN          

384
1024
2193

          TN

TP          
232
493

1095

          FP
197
324
483

106
196
320

FN          

387
1338
2787

          TN

TP          
340
647

1516

          FP
317
550
909

157
223
322

FN          

314
1397
3298

          TN

TP          
431
837

2018

          FP
165
489
756

138
218
270

FN          

478
1699
3646

          TN

LS
TM

TP          
55
115
220

          FP
57
63
81

43
50
60

FN          

228
428
866

          TN

TP          
116
229
437

          FP
150
199
302

69
106
143

FN          

273
721

1521
          TN

TP          
208
365
747

          FP
138
254
410

99
144
233

FN          

388
1056
2198

          TN

TP          
250
508
1107

          FP
175
304
418

110
181
308

FN          

393
1358
2852

          TN

TP          
365
668

1528

          FP
226
454
619

127
202
310

FN          

405
1493
3330

          TN

TP          
459
859

2028

          FP
131
340
539

106
196
275

FN          

512
1848
3863

          TN

12 hr

bi
LS

TM

TP          
87

139
246

          FP
30
36
41

22
26
35

FN          

256
455
906

          TN
24 hr

TP          
117
247
479

          FP
104
161
280

61
88
112

FN          

351
759

1543
          TN

36 hr

TP          
225
396
825

          FP
130
229
381

76
113
155

FN          

396
1081
2195

          TN
48 hr

TP          
271
529
1141

          FP
136
227
342

97
160
274

FN          

461
1435
2928

          TN
60 hr

TP          
374
691

1551

          FP
153
318
508

91
179
287

FN          

478
1629
3500

          TN
72 hr

TP          
516
911

2108

          FP
103
273
427

96
144
180

FN          

540
1915
3975

          TN

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------
------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------
------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

------------------------

Figure 3.5 Confusion matrices of RF, MLP, SVM, LSTM and biLSTM for the FC S
problem. For each T , T = 12, 24, 36, 48, 60, 72, and each machine learning
method, the figure shows the minimum, average, maximum (displayed from top
to bottom) TP, FN, TN, and FP from the six runs based on our cross-validation
scheme.

Figures 3.5 and 3.6 present the confusion matrices of the five machine learning

methods (RF, MLP, SVM, LSTM, biLSTM) for the FC S and F S problems,

respectively. For each T , T = 12, 24, 36, 48, 60, 72, and each machine learning

method, the figures show the minimum, average, maximum (displayed from top to

bottom) TP, FN, TN, and FP from the six runs based on our cross-validation scheme.

For example, refer to T = 12 and biLSTM in Figure 3.5. The minimum (maximum,
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Figure 3.6 Confusion matrices of RF, MLP, SVM, LSTM and biLSTM for the F S
problem. For each T , T = 12, 24, 36, 48, 60, 72, and each machine learning
method, the figure shows the minimum, average, maximum (displayed from
top to bottom) TP, FN, TN, FP, respectively from the six runs based on our
cross-validation scheme.

respectively) TP obtained by biLSTM from the six runs is 87 (246, respectively);

the average TP over the six runs is 139. It can be seen from Figures 3.5 and 3.6

that the average TN values are much larger than the average FP values for both

of the FC S and F S problems. This happens because there are many negative

training data samples in our datasets (see Table 3.1). As a consequence, the machine

learning methods gain sufficient knowledge about the negative data samples and hence

can detect them relatively easily. For the FC S problem, the average TP values

(TN values, respectively) are consistently larger than the average FN values (FP
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values, respectively), indicating that the machine learning methods can solve the

FC S problem reasonably well. For the F S problem, the average TP values are close

to, or even smaller than, the average FN values in many cases, suggesting that the

machine learning methods have difficulty in detecting positive data samples. This is

understandable given that there are much fewer positive training data samples than

negative training data samples for the F S problem (see Table 3.1).

Tables 3.3 and 3.4 compare the performance of the five machine learning

methods for the FC S and F S problems, respectively. The tables present the mean

performance metric values averaged over the six runs based on our cross-validation

scheme with standard deviations enclosed in parentheses. Best average metric values

are highlighted in boldface. It can be seen from Tables 3.3 and 3.4 that our biLSTM

network outperforms the four related machine learning methods in terms of BACC,

HSS, TSS and WAUC. Furthermore, the five machine learning methods generally

perform better in solving the FC S problem than in solving the F S problem. This

result indicates that one can predict SEP events more accurately when active regions

will produce both flares and associated CMEs. Using flare information alone to

predict SEP events is harder and would produce less reliable prediction results.

3.4.4 Probabilistic Forecasting and Calibration

The five machine learning methods (RF, MLP, SVM, LSTM, biLSTM) studied here

are inherently probabilistic forecasting models in the sense that they calculate a

probability between 0 and 1. We compare the probability with a threshold, which is

set to 0.5, to determine the output produced by each machine learning method. The

output is either 1 or 0 (see Figure 3.2), and hence each method is essentially a binary

prediction model. In addition to comparing the methods used as binary prediction

models, we also compare the methods used as probabilistic forecasting models, where

the output produced by each model is interpreted as follows. [FC S problem] Given
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Table 3.3 Performance Comparison of RF, MLP, SVM, LSTM and biLSTM Based on Our
Cross-Validation Scheme for the FC S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr
Recall RF 0.593 (0.106) 0.617 (0.120) 0.660 (0.078) 0.632 (0.134) 0.721 (0.082) 0.767 (0.095)

MLP 0.542 (0.175) 0.617 (0.149) 0.679 (0.110) 0.618 (0.143) 0.711 (0.088) 0.766 (0.093)
SVM 0.543 (0.175) 0.666 (0.088) 0.663 (0.125) 0.686 (0.123) 0.714 (0.090) 0.761 (0.093)
LSTM 0.658 (0.113) 0.663 (0.099) 0.699 (0.064) 0.714 (0.100) 0.745 (0.071) 0.788 (0.089)
biLSTM 0.825 (0.058) 0.710 (0.112) 0.758 (0.064) 0.748 (0.086) 0.777 (0.077) 0.843 (0.058)

Precision RF 0.554 (0.113) 0.483 (0.151) 0.556 (0.163) 0.532 (0.165) 0.548 (0.155) 0.661 (0.171)
MLP 0.478 (0.153) 0.432 (0.166) 0.501 (0.155) 0.471 (0.161) 0.524 (0.164) 0.605 (0.161)
SVM 0.486 (0.168) 0.520 (0.132) 0.543 (0.158) 0.574 (0.163) 0.514 (0.176) 0.603 (0.175)
LSTM 0.609 (0.102) 0.516 (0.142) 0.581 (0.158) 0.599 (0.155) 0.569 (0.153) 0.680 (0.166)
biLSTM 0.777 (0.061) 0.587 (0.148) 0.619 (0.149) 0.669 (0.155) 0.656 (0.160) 0.739 (0.133)

BACC RF 0.707 (0.045) 0.672 (0.047) 0.719 (0.036) 0.688 (0.051) 0.713 (0.030) 0.790 (0.043)
MLP 0.663 (0.061) 0.641 (0.062) 0.690 (0.049) 0.641 (0.051) 0.691 (0.046) 0.752 (0.023)
SVM 0.668 (0.070) 0.706 (0.022) 0.709 (0.045) 0.730 (0.032) 0.687 (0.053) 0.753 (0.029)
LSTM 0.751 (0.047) 0.704 (0.035) 0.744 (0.029) 0.750 (0.031) 0.734 (0.025) 0.807 (0.041)
biLSTM 0.868 (0.029) 0.757 (0.040) 0.784 (0.029) 0.796 (0.037) 0.795 (0.032) 0.852 (0.021)

HSS RF 0.404 (0.091) 0.315 (0.100) 0.406 (0.088) 0.354 (0.100) 0.386 (0.063) 0.545 (0.099)
MLP 0.314 (0.119) 0.249 (0.123) 0.343 (0.105) 0.259 (0.098) 0.343 (0.098) 0.468 (0.067)
SVM 0.325 (0.138) 0.377 (0.063) 0.391 (0.101) 0.431 (0.080) 0.332 (0.114) 0.468 (0.083)
LSTM 0.489 (0.090) 0.373 (0.086) 0.450 (0.084) 0.468 (0.079) 0.423 (0.057) 0.579 (0.099)
biLSTM 0.722 (0.057) 0.481 (0.097) 0.522 (0.080) 0.562 (0.086) 0.551 (0.086) 0.669 (0.064)

TSS RF 0.413 (0.090) 0.344 (0.094) 0.437 (0.072) 0.376 (0.101) 0.426 (0.061) 0.579 (0.085)
MLP 0.326 (0.123) 0.281 (0.125) 0.379 (0.098) 0.283 (0.101) 0.382 (0.092) 0.504 (0.046)
SVM 0.336 (0.140) 0.413 (0.045) 0.417 (0.091) 0.459 (0.063) 0.374 (0.106) 0.507 (0.057)
LSTM 0.501 (0.093) 0.407 (0.071) 0.487 (0.059) 0.499 (0.063) 0.468 (0.051) 0.615 (0.082)
biLSTM 0.737 (0.057) 0.515 (0.081) 0.567 (0.059) 0.592 (0.073) 0.590 (0.063) 0.703 (0.041)

WAUC RF 0.453 (0.056) 0.375 (0.071) 0.476 (0.048) 0.410 (0.063) 0.459 (0.040) 0.621 (0.057)
MLP 0.354 (0.033) 0.301 (0.032) 0.415 (0.088) 0.304 (0.072) 0.410 (0.024) 0.543 (0.085)
SVM 0.361 (0.087) 0.453 (0.068) 0.457 (0.023) 0.503 (0.064) 0.405 (0.040) 0.553 (0.085)
LSTM 0.541 (0.074) 0.436 (0.071) 0.526 (0.020) 0.535 (0.052) 0.510 (0.051) 0.671 (0.026)
biLSTM 0.794 (0.041) 0.563 (0.039) 0.609 (0.086) 0.646 (0.043) 0.642 (0.048) 0.764 (0.073)

Table 3.4 Performance Comparison of RF, MLP, SVM, LSTM and biLSTM Based on Our
Cross-Validation Scheme for the F S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr
Recall RF 0.414 (0.099) 0.468 (0.066) 0.592 (0.137) 0.550 (0.123) 0.522 (0.120) 0.590 (0.109)

MLP 0.367 (0.138) 0.457 (0.098) 0.398 (0.172) 0.501 (0.148) 0.520 (0.153) 0.568 (0.150)
SVM 0.433 (0.064) 0.471 (0.058) 0.495 (0.189) 0.575 (0.106) 0.518 (0.160) 0.567 (0.145)
LSTM 0.468 (0.146) 0.456 (0.166) 0.592 (0.155) 0.591 (0.140) 0.546 (0.155) 0.624 (0.127)
biLSTM 0.520 (0.103) 0.508 (0.122) 0.597 (0.095) 0.545 (0.197) 0.548 (0.090) 0.629 (0.120)

Precision RF 0.178 (0.052) 0.253 (0.119) 0.267 (0.159) 0.314 (0.144) 0.285 (0.166) 0.370 (0.177)
MLP 0.164 (0.073) 0.215 (0.106) 0.227 (0.140) 0.254 (0.136) 0.247 (0.138) 0.315 (0.158)
SVM 0.152 (0.035) 0.218 (0.096) 0.278 (0.130) 0.287 (0.129) 0.234 (0.136) 0.306 (0.154)
LSTM 0.184 (0.076) 0.252 (0.114) 0.432 (0.124) 0.340 (0.141) 0.329 (0.162) 0.404 (0.161)
biLSTM 0.366 (0.159) 0.473 (0.110) 0.527 (0.155) 0.377 (0.200) 0.405 (0.170) 0.485 (0.166)

BACC RF 0.627 (0.033) 0.656 (0.030) 0.684 (0.052) 0.681 (0.038) 0.650 (0.025) 0.702 (0.036)
MLP 0.599 (0.049) 0.635 (0.031) 0.605 (0.062) 0.634 (0.036) 0.618 (0.040) 0.665 (0.032)
SVM 0.616 (0.052) 0.641 (0.028) 0.655 (0.039) 0.676 (0.035) 0.605 (0.055) 0.654 (0.052)
LSTM 0.647 (0.046) 0.653 (0.079) 0.739 (0.061) 0.703 (0.022) 0.677 (0.059) 0.720 (0.029)
biLSTM 0.721 (0.046) 0.714 (0.047) 0.765 (0.037) 0.706 (0.076) 0.708 (0.015) 0.754 (0.027)

HSS RF 0.154 (0.031) 0.218 (0.066) 0.239 (0.117) 0.265 (0.077) 0.212 (0.069) 0.311 (0.086)
MLP 0.128 (0.073) 0.171 (0.049) 0.156 (0.098) 0.181 (0.050) 0.152 (0.048) 0.235 (0.049)
SVM 0.119 (0.040) 0.175 (0.038) 0.233 (0.082) 0.235 (0.042) 0.128 (0.064) 0.218 (0.087)
LSTM 0.170 (0.064) 0.216 (0.091) 0.414 (0.110) 0.303 (0.068) 0.270 (0.100) 0.352 (0.078)
biLSTM 0.365 (0.137) 0.418 (0.100) 0.493 (0.099) 0.345 (0.159) 0.353 (0.079) 0.448 (0.089)

TSS RF 0.254 (0.066) 0.313 (0.060) 0.368 (0.103) 0.362 (0.075) 0.301 (0.050) 0.405 (0.071)
MLP 0.198 (0.098) 0.270 (0.062) 0.211 (0.125) 0.269 (0.072) 0.236 (0.080) 0.329 (0.064)
SVM 0.233 (0.104) 0.282 (0.057) 0.309 (0.078) 0.353 (0.070) 0.210 (0.110) 0.309 (0.104)
LSTM 0.293 (0.092) 0.305 (0.158) 0.479 (0.122) 0.405 (0.044) 0.353 (0.119) 0.440 (0.058)
biLSTM 0.441 (0.093) 0.428 (0.093) 0.529 (0.075) 0.412 (0.151) 0.416 (0.031) 0.509 (0.055)

WAUC RF 0.276 (0.022) 0.338 (0.067) 0.403 (0.021) 0.388 (0.035) 0.330 (0.021) 0.431 (0.042)
MLP 0.212 (0.084) 0.290 (0.079) 0.226 (0.024) 0.294 (0.034) 0.256 (0.085) 0.359 (0.075)
SVM 0.254 (0.084) 0.307 (0.048) 0.334 (0.062) 0.381 (0.074) 0.230 (0.060) 0.334 (0.027)
LSTM 0.319 (0.056) 0.328 (0.047) 0.514 (0.033) 0.432 (0.038) 0.382 (0.073) 0.474 (0.020)
biLSTM 0.480 (0.076) 0.467 (0.034) 0.574 (0.085) 0.450 (0.035) 0.448 (0.087) 0.552 (0.016)
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a data sample xt at time point t in an AR where the AR will produce an M- or X-class

flare within the next T hours of t and the flare initiates a CME, based on the SHARP

parameters in xt and its preceding m − 1 data samples xt−m+1, xt−m+2, . . ., xt−1,

we calculate and output a probabilistic estimate of how likely it is that the AR will

produce an SEP event associated with the flare and CME. [F S problem] Given a

data sample xt at time point t in an AR where the AR will produce an M- or X-class

flare within the next T hours of t regardless of whether or not the flare initiates a

CME, based on the SHARP parameters in xt and its preceding m − 1 data samples

xt−m+1, xt−m+2, . . ., xt−1, we calculate and output a probabilistic estimate of how

likely it is that the AR will produce an SEP event associated with the flare.

The distribution and behavior of the predicted probabilistic values may not

match the expected distribution of observed probabilities in the training data. One

can adjust the distribution of the predicted probabilities to better match the expected

distribution observed in the training data through calibration. Here, we adopt isotonic

regression [104, 147] to adjust the probabilities. Isotonic regression works by fitting a

free-form line to a sequence of data points such that the fitted line is non-decreasing (or

non-increasing) everywhere, and lies as close to the data points as possible. Calibrated

models often produce more accurate results. We add a suffix “+C” to each model to

denote the calibrated version of the model.

To quantitatively assess the performance of a probabilistic forecasting model,

we adopt the Brier Score (BS) [177] and Brier Skill Score (BSS) [177], defined as

follows:

BS =
1

N

N∑
i=1

(yi − ŷi)
2, (3.11)

BSS = 1− BS
1
N

∑N
i=1(yi − ȳ)2

. (3.12)
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Here, N is the total number of data sequences each havingm consecutive data samples

in the test set (see Figure 3.2 where a test data sequence with m consecutive data

samples is fed to our biLSTM model); yi denotes the observed probability and ŷi

denotes the predicted probability of the ith test data sequence; ȳ = 1
N

∑N
i=1 yi denotes

the mean of all the observed probabilities. The BS values range from 0 to 1, with 0

being a perfect score, whereas the BSS values range from −∞ to 1, with 1 being a

perfect score.

Table 3.5 compares the performance of the five machine learning methods used

as probabilistic forecasting models for the FC S and F S problems, respectively. The

table presents the mean BS and BSS values averaged over the six runs based on our

cross-validation scheme with standard deviations enclosed in parentheses. Best BS

and BSS values are highlighted in boldface. It can be seen from Table 3.5 that the

probabilistic forecasting models generally perform better in solving the FC S problem

than in solving the F S problem, suggesting that F S is a harder problem and hence

the forecasting results for the F S problem would be less reliable. These findings are

consistent with those in Tables 3.3 and 3.4 where the machine learning methods are

used as binary prediction models. Furthermore, the calibrated version of a model is

better than the model without calibration. Overall, biLSTM+C performs the best

among all the models in terms of both BS and BSS.

3.5 Summary

We develop a bidirectional long short-term memory (biLSTM) network for SEP

prediction. We consider two prediction tasks. In the first task (FC S), given a data

sample xt at time point t in an AR where the AR will produce an M- or X-class flare

within the next T hours of t and the flare initiates a CME, based on the SHARP

parameters in xt and its preceding m − 1 data samples xt−m+1, xt−m+2, . . ., xt−1,

our biLSTM, when used as a binary prediction model, can predict whether the AR
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Table 3.5 Probabilistic Forecasting Results of RF, MLP, SVM, LSTM and biLSTM With
and Without Calibration for the FC S and F S Problems, Respectively

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr
FC S
BS RF 0.372 (0.083) 0.342 (0.075) 0.365 (0.060) 0.342 (0.092) 0.355 (0.051) 0.269 (0.040)

RF+C 0.332 (0.070) 0.331 (0.101) 0.324 (0.056) 0.302 (0.085) 0.328 (0.047) 0.252 (0.037)
MLP 0.362 (0.136) 0.393 (0.080) 0.335 (0.095) 0.315 (0.050) 0.335 (0.083) 0.280 (0.025)
MLP+C 0.329 (0.124) 0.366 (0.076) 0.309 (0.088) 0.283 (0.050) 0.301 (0.073) 0.255 (0.027)
SVM 0.359 (0.052) 0.344 (0.037) 0.337 (0.075) 0.353 (0.049) 0.306 (0.087) 0.298 (0.034)
SVM+C 0.322 (0.047) 0.303 (0.030) 0.297 (0.066) 0.306 (0.035) 0.284 (0.080) 0.267 (0.035)
LSTM 0.337 (0.064) 0.356 (0.054) 0.300 (0.058) 0.288 (0.032) 0.298 (0.038) 0.274 (0.028)
LSTM+C 0.271 (0.062) 0.302 (0.045) 0.262 (0.053) 0.244 (0.032) 0.273 (0.035) 0.232 (0.021)
biLSTM 0.248 (0.028) 0.272 (0.052) 0.270 (0.048) 0.281 (0.040) 0.297 (0.021) 0.279 (0.015)
biLSTM+C 0.215 (0.021) 0.249 (0.038) 0.223 (0.025) 0.235 (0.033) 0.270 (0.043) 0.202 (0.014)

BSS RF 0.273 (0.166) 0.316 (0.164) 0.282 (0.124) 0.316 (0.180) 0.325 (0.118) 0.466 (0.067)
RF+C 0.341 (0.140) 0.343 (0.189) 0.362 (0.115) 0.396 (0.167) 0.340 (0.109) 0.501 (0.062)
MLP 0.290 (0.262) 0.274 (0.100) 0.320 (0.202) 0.382 (0.082) 0.323 (0.179) 0.436 (0.048)
MLP+C 0.355 (0.239) 0.325 (0.094) 0.372 (0.187) 0.445 (0.087) 0.392 (0.158) 0.486 (0.052)
SVM 0.281 (0.128) 0.310 (0.086) 0.333 (0.142) 0.295 (0.101) 0.388 (0.178) 0.406 (0.057)
SVM+C 0.355 (0.115) 0.392 (0.065) 0.412 (0.125) 0.389 (0.074) 0.432 (0.164) 0.469 (0.059)
LSTM 0.338 (0.124) 0.306 (0.114) 0.388 (0.128) 0.425 (0.073) 0.406 (0.074) 0.458 (0.052)
LSTM+C 0.466 (0.121) 0.395 (0.099) 0.466 (0.115) 0.513 (0.068) 0.456 (0.068) 0.542 (0.037)
biLSTM 0.513 (0.050) 0.450 (0.110) 0.464 (0.097) 0.424 (0.086) 0.417 (0.046) 0.450 (0.018)
biLSTM+C 0.578 (0.035) 0.498 (0.080) 0.558 (0.046) 0.518 (0.065) 0.470 (0.087) 0.587 (0.020)

F S
BS RF 0.393 (0.094) 0.391 (0.075) 0.449 (0.126) 0.459 (0.077) 0.381 (0.063) 0.317 (0.056)

RF+C 0.341 (0.078) 0.351 (0.062) 0.380 (0.109) 0.383 (0.063) 0.334 (0.043) 0.276 (0.044)
MLP 0.433 (0.042) 0.429 (0.053) 0.395 (0.063) 0.404 (0.105) 0.394 (0.134) 0.366 (0.072)
MLP+C 0.376 (0.031) 0.381 (0.046) 0.340 (0.057) 0.357 (0.100) 0.341 (0.111) 0.329 (0.069)
SVM 0.429 (0.071) 0.391 (0.043) 0.381 (0.032) 0.379 (0.075) 0.403 (0.067) 0.390 (0.100)
SVM+C 0.390 (0.073) 0.354 (0.038) 0.336 (0.025) 0.336 (0.061) 0.363 (0.067) 0.346 (0.082)
LSTM 0.373 (0.093) 0.359 (0.077) 0.381 (0.048) 0.347 (0.042) 0.377 (0.074) 0.276 (0.034)
LSTM+C 0.341 (0.088) 0.315 (0.074) 0.336 (0.049) 0.314 (0.036) 0.319 (0.052) 0.247 (0.034)
biLSTM 0.267 (0.054) 0.345 (0.038) 0.318 (0.069) 0.344 (0.040) 0.346 (0.034) 0.307 (0.028)
biLSTM+C 0.231 (0.042) 0.294 (0.035) 0.226 (0.060) 0.291 (0.044) 0.289 (0.021) 0.220 (0.029)

BSS RF 0.267 (0.182) 0.206 (0.160) 0.232 (0.224) 0.228 (0.066) 0.313 (0.131) 0.360 (0.093)
RF+C 0.322 (0.150) 0.329 (0.133) 0.293 (0.216) 0.354 (0.078) 0.322 (0.093) 0.441 (0.072)
MLP 0.282 (0.078) 0.138 (0.109) 0.226 (0.105) 0.284 (0.076) 0.259 (0.222) 0.345 (0.085)
MLP+C 0.336 (0.059) 0.235 (0.093) 0.335 (0.088) 0.368 (0.069) 0.358 (0.183) 0.411 (0.086)
SVM 0.122 (0.163) 0.228 (0.083) 0.251 (0.051) 0.247 (0.151) 0.204 (0.137) 0.310 (0.119)
SVM+C 0.201 (0.165) 0.301 (0.075) 0.339 (0.043) 0.332 (0.122) 0.283 (0.135) 0.388 (0.091)
LSTM 0.256 (0.204) 0.297 (0.150) 0.230 (0.092) 0.309 (0.080) 0.342 (0.152) 0.430 (0.129)
LSTM+C 0.319 (0.193) 0.383 (0.144) 0.323 (0.096) 0.385 (0.067) 0.447 (0.145) 0.489 (0.122)
biLSTM 0.464 (0.106) 0.309 (0.092) 0.451 (0.144) 0.314 (0.083) 0.351 (0.072) 0.437 (0.091)
biLSTM+C 0.535 (0.083) 0.410 (0.084) 0.513 (0.100) 0.420 (0.087) 0.457 (0.047) 0.521 (0.089)

will produce an SEP event associated with the flare/CME. Furthermore, our biLSTM,

when used as a probabilistic forecasting model, can provide a probabilistic estimate of

how likely it is that the AR will produce an SEP event associated with the flare/CME.

In the second task (F S), given a data sample xt at time point t in an AR where the

AR will produce an M- or X-class flare within the next T hours of t, based on the

SHARP parameters in xt and its preceding m− 1 data samples xt−m+1, xt−m+2, . . .,

xt−1, our biLSTM, when used as a binary prediction model, can predict whether

the AR will produce an SEP event associated with the flare, and when used as a

probabilistic forecasting model, can provide a probabilistic estimate of how likely it

is that the AR will produce an SEP event associated with the flare, regardless of
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whether or not the flare initiates a CME. For both tasks, T ranges from 12 to 72 in

12 hr intervals.

We surveyed and collected data samples from the JSOC website, in the period

between 2010 and 2021. Each data sample contains 18 SHARP parameters. Active

regions (ARs) from 2010, 2016, and 2018-2021 were excluded from the study due

to the lack of qualified data samples or the absence of SEP events associated with

M-/X-class flares and CMEs. We then performed a cross-validation study on the

remaining six years (2011-2015 and 2017). In the cross-validation study, training and

test sets are disjoint, and hence our biLSTM model can make predictions on ARs that

were never seen before. We evaluated the performance of our model and compared it

with four related machine learning algorithms, namely RF [117], MLP [84], SVM [30]

and a previous LSTM network [119]. The five machine learning methods including our

biLSTM can be used both as binary prediction models and as probabilistic forecasting

models. Our main results are summarized as follows.

1. The data samples in an AR are modeled as time series. We employ the biLSTM
network to predict SEP events based on the time series. To our knowledge, this
is the first study using a deep neural network to learn the dependencies in the
temporal domain of the data for SEP prediction.

2. We evaluate the importance of the 18 SHARP parameters used in our study.
It is found that using the top 15 SHARP parameters achieves the best
performance for both the FC S and F S tasks. This finding is consistent with
the literature which indicates using fewer high-quality SHARP parameters often
achieves better performance for eruption prediction than using all the SHARP
parameters including low-quality ones [10, 30, 122].

3. Our experiments show that the proposed biLSTM outperforms the four related
machine learning methods in performing binary prediction and probabilistic
forecasting for both the FC S and F S tasks. Furthermore, we introduce a
calibration mechanism to enhance the accuracy of probabilistic forecasting.
Overall, the calibrated biLSTM achieves the best performance among all the
probabilistic forecasting models studied here.
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4. When both an M-/X-class flare and its associated CME will occur, predicting
whether there is an SEP event associated with the flare and CME is an easier
problem (FC S). Our biLSTM can solve the FC S problem with relatively high
accuracy. In contrast, when an M-/X-class flare will occur in the absence of
CME information, predicting whether there is an SEP event associated with
the flare is a harder problem (F S). Our biLSTM solves the F S problem with
relatively low accuracy, and hence the prediction results would be less reliable.

5. The findings reported here are based on the cross-validation (CV) scheme
in which six years (2011-2015 and 2017) are considered, data samples from
each year in turn are used for testing, and data samples from the other five
years together are used for training. To further understand the behavior of
our biLSTM network and the four related machine learning methods, we have
performed additional experiments using a random division (RD) scheme. With
RD, we randomly select 10% of all positive data sequences and 10% of all
negative data sequences, and use them together as the test set. The remaining
90% of the positive data sequences and 90% of the negative data sequences
are used together as the training set. We repeat this experiment 100 times.
The average values and standard deviations of the performance metrics are
calculated. Tables 3.6 and 3.7 in section 3.6 present results of the five machine
learning methods used as binary prediction models for the FC S and F S
problems, respectively. Table 3.8 presents results of the five machine learning
methods used as probabilistic forecasting models for the FC S and F S problems,
respectively. It can be seen from these tables that the results obtained from
the random division scheme are consistent with those from the cross-validation
scheme, though the performance metric values from the RD scheme are generally
better than those from the CV scheme. This happens probably because with
the RD scheme the machine learning methods are trained by more diverse data
and hence are more knowledgeable, yielding more accurate results than with
the CV scheme.

It should be pointed out that, in solving the FC S problem, the condition in

which we have a data sample xt at time point t in an AR where the AR will produce

an M- or X-class flare within the next T hours of t and the flare initiates a CME is

given. That is, we assume an M- or X-class flare and its associated CME will occur.

In an operational system, one can determine in two phases if an AR will produce an

M- or X-class flare within the next T -hours of a given time point t and if the flare

initiates a CME, as follows [118]. In the first phase, one can use a flare prediction

tool such as [117, 61, 89, 132, 119] to predict whether there will be an M- or X-class
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flare within the next T hours of t. If the answer is yes, then in the second phase one

can use a CME prediction tool such as [122] to predict whether the flare initiates a

CME. If the answer is also yes, then one can use the proposed biLSTM to predict

whether there is an SEP event associated with the flare and CME. On the other hand,

to solve the F S problem, one only needs to execute the first phase. If the answer

from the first phase indicates that an M- or X-class flare will occur within the next

T hours of t, one can then go ahead to use the proposed biLSTM to predict whether

there is an SEP event associated with the flare. Thus, the proposed biLSTM does not

function in a stand-alone manner. Rather, it first requires the other tools to provide

flare/CME predictions. As such, the performance of the operational biLSTM system

depends on the performance of the other tools. A wrong prediction from the other

tools would affect the accuracy of our approach.

3.6 Additional Experiments and Results

Tables 3.6 and 3.7 present results of the five machine learning methods (RF, MLP,

SVM, LSTM, biLSTM) used as binary prediction models for the FC S and F S

problems, respectively. Table 3.8 presents results of the five machine learning

methods used as probabilistic forecasting models for the FC S and F S problems,

respectively. The tables show the mean performance metric values averaged over

the 100 experiments based on the random division scheme with standard deviations

enclosed in parentheses. Best average metric values are highlighted in boldface.
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Table 3.6 Performance Comparison of RF, MLP, SVM, LSTM and biLSTM Based on the
Random Division Scheme for the FC S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr
Recall RF 0.699 (0.149) 0.686 (0.148) 0.657 (0.169) 0.701 (0.165) 0.689 (0.087) 0.817 (0.080)

MLP 0.655 (0.164) 0.690 (0.132) 0.688 (0.149) 0.692 (0.149) 0.679 (0.101) 0.798 (0.091)
SVM 0.666 (0.170) 0.693 (0.147) 0.681 (0.159) 0.701 (0.153) 0.716 (0.088) 0.810 (0.091)
LSTM 0.786 (0.080) 0.804 (0.071) 0.840 (0.059) 0.860 (0.047) 0.870 (0.054) 0.884 (0.061)
biLSTM 0.911 (0.056) 0.844 (0.067) 0.860 (0.057) 0.882 (0.047) 0.875 (0.052) 0.906 (0.054)

Precision RF 0.680 (0.184) 0.670 (0.113) 0.654 (0.069) 0.636 (0.088) 0.675 (0.036) 0.719 (0.046)
MLP 0.650 (0.214) 0.630 (0.079) 0.659 (0.069) 0.627 (0.073) 0.659 (0.040) 0.715 (0.045)
SVM 0.733 (0.163) 0.649 (0.090) 0.707 (0.083) 0.684 (0.093) 0.692 (0.042) 0.725 (0.046)
LSTM 0.682 (0.135) 0.692 (0.130) 0.706 (0.103) 0.683 (0.120) 0.710 (0.106) 0.727 (0.071)
biLSTM 0.788 (0.149) 0.721 (0.132) 0.722 (0.103) 0.705 (0.118) 0.752 (0.107) 0.749 (0.067)

BACC RF 0.781 (0.073) 0.776 (0.068) 0.761 (0.078) 0.768 (0.083) 0.770 (0.042) 0.831 (0.042)
MLP 0.750 (0.085) 0.768 (0.057) 0.774 (0.069) 0.759 (0.067) 0.761 (0.049) 0.822 (0.046)
SVM 0.787 (0.093) 0.775 (0.065) 0.787 (0.080) 0.784 (0.080) 0.787 (0.046) 0.831 (0.047)
LSTM 0.822 (0.051) 0.828 (0.051) 0.847 (0.044) 0.840 (0.054) 0.848 (0.042) 0.860 (0.046)
biLSTM 0.906 (0.041) 0.854 (0.048) 0.861 (0.042) 0.858 (0.051) 0.867 (0.045) 0.878 (0.040)

HSS RF 0.548 (0.152) 0.541 (0.124) 0.516 (0.130) 0.516 (0.150) 0.536 (0.072) 0.639 (0.076)
MLP 0.492 (0.183) 0.517 (0.096) 0.537 (0.118) 0.500 (0.119) 0.516 (0.083) 0.624 (0.081)
SVM 0.585 (0.178) 0.534 (0.110) 0.575 (0.141) 0.561 (0.148) 0.568 (0.080) 0.640 (0.082)
LSTM 0.612 (0.128) 0.624 (0.125) 0.656 (0.105) 0.633 (0.131) 0.656 (0.108) 0.682 (0.093)
biLSTM 0.769 (0.124) 0.670 (0.123) 0.682 (0.103) 0.667 (0.126) 0.702 (0.112) 0.717 (0.083)

TSS RF 0.562 (0.146) 0.551 (0.136) 0.523 (0.155) 0.536 (0.165) 0.541 (0.084) 0.662 (0.084)
MLP 0.501 (0.171) 0.536 (0.114) 0.549 (0.139) 0.519 (0.134) 0.522 (0.097) 0.644 (0.093)
SVM 0.574 (0.186) 0.551 (0.131) 0.573 (0.161) 0.568 (0.161) 0.574 (0.091) 0.661 (0.093)
LSTM 0.645 (0.103) 0.657 (0.102) 0.695 (0.088) 0.680 (0.109) 0.697 (0.085) 0.720 (0.091)
biLSTM 0.812 (0.081) 0.708 (0.096) 0.722 (0.073) 0.715 (0.103) 0.733 (0.091) 0.756 (0.079)

WAUC RF 0.619 (0.022) 0.601 (0.046) 0.577 (0.022) 0.579 (0.050) 0.599 (0.065) 0.729 (0.072)
MLP 0.551 (0.015) 0.581 (0.013) 0.605 (0.042) 0.573 (0.051) 0.565 (0.024) 0.709 (0.035)
SVM 0.633 (0.015) 0.597 (0.079) 0.630 (0.048) 0.618 (0.057) 0.625 (0.056) 0.730 (0.046)
LSTM 0.708 (0.039) 0.725 (0.020) 0.757 (0.084) 0.744 (0.081) 0.761 (0.029) 0.782 (0.070)
biLSTM 0.895 (0.013) 0.775 (0.041) 0.799 (0.051) 0.780 (0.069) 0.796 (0.058) 0.821 (0.063)

Table 3.7 Performance Comparison of RF, MLP, SVM, LSTM and biLSTM Based on the
Random Division Scheme for the F S Problem

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr
Recall RF 0.734 (0.105) 0.797 (0.117) 0.749 (0.147) 0.710 (0.116) 0.717 (0.089) 0.756 (0.104)

MLP 0.683 (0.087) 0.769 (0.123) 0.752 (0.109) 0.689 (0.121) 0.702 (0.103) 0.728 (0.083)
SVM 0.767 (0.107) 0.791 (0.101) 0.786 (0.104) 0.730 (0.120) 0.740 (0.103) 0.743 (0.086)
LSTM 0.774 (0.098) 0.770 (0.125) 0.817 (0.108) 0.782 (0.120) 0.768 (0.106) 0.772 (0.103)
biLSTM 0.834 (0.096) 0.837 (0.120) 0.856 (0.107) 0.837 (0.122) 0.818 (0.101) 0.815 (0.102)

Precision RF 0.243 (0.117) 0.244 (0.103) 0.261 (0.096) 0.308 (0.089) 0.396 (0.190) 0.434 (0.162)
MLP 0.225 (0.107) 0.243 (0.100) 0.269 (0.082) 0.291 (0.069) 0.363 (0.156) 0.366 (0.097)
SVM 0.235 (0.104) 0.231 (0.086) 0.242 (0.067) 0.326 (0.099) 0.383 (0.166) 0.393 (0.113)
LSTM 0.250 (0.114) 0.252 (0.097) 0.291 (0.092) 0.349 (0.108) 0.413 (0.189) 0.443 (0.165)
biLSTM 0.279 (0.131) 0.275 (0.107) 0.306 (0.099) 0.377 (0.119) 0.483 (0.174) 0.476 (0.173)

BACC RF 0.770 (0.073) 0.774 (0.058) 0.758 (0.087) 0.760 (0.054) 0.760 (0.083) 0.795 (0.049)
MLP 0.742 (0.065) 0.764 (0.058) 0.766 (0.054) 0.746 (0.056) 0.748 (0.069) 0.770 (0.045)
SVM 0.783 (0.069) 0.770 (0.057) 0.764 (0.071) 0.772 (0.056) 0.770 (0.069) 0.783 (0.046)
LSTM 0.791 (0.068) 0.772 (0.062) 0.799 (0.053) 0.801 (0.056) 0.787 (0.069) 0.804 (0.049)
biLSTM 0.825 (0.068) 0.809 (0.059) 0.821 (0.053) 0.832 (0.057) 0.841 (0.059) 0.830 (0.049)

HSS RF 0.284 (0.151) 0.274 (0.129) 0.284 (0.128) 0.327 (0.102) 0.390 (0.196) 0.442 (0.153)
MLP 0.255 (0.138) 0.269 (0.125) 0.295 (0.098) 0.306 (0.089) 0.358 (0.166) 0.379 (0.110)
SVM 0.280 (0.138) 0.260 (0.111) 0.267 (0.101) 0.350 (0.110) 0.387 (0.174) 0.409 (0.122)
LSTM 0.298 (0.149) 0.284 (0.122) 0.330 (0.110) 0.385 (0.115) 0.418 (0.189) 0.455 (0.155)
biLSTM 0.340 (0.165) 0.321 (0.131) 0.354 (0.116) 0.426 (0.124) 0.515 (0.158) 0.500 (0.162)

TSS RF 0.540 (0.145) 0.548 (0.116) 0.516 (0.174) 0.519 (0.109) 0.521 (0.166) 0.589 (0.098)
MLP 0.484 (0.130) 0.527 (0.116) 0.533 (0.108) 0.493 (0.111) 0.497 (0.138) 0.540 (0.090)
SVM 0.566 (0.138) 0.540 (0.113) 0.528 (0.142) 0.545 (0.111) 0.539 (0.138) 0.567 (0.093)
LSTM 0.581 (0.137) 0.544 (0.125) 0.598 (0.106) 0.601 (0.112) 0.574 (0.138) 0.607 (0.097)
biLSTM 0.651 (0.136) 0.617 (0.119) 0.641 (0.106) 0.664 (0.114) 0.682 (0.118) 0.660 (0.097)

WAUC RF 0.591 (0.057) 0.600 (0.021) 0.561 (0.016) 0.565 (0.038) 0.577 (0.043) 0.655 (0.057)
MLP 0.528 (0.068) 0.577 (0.043) 0.578 (0.069) 0.543 (0.065) 0.547 (0.054) 0.597 (0.085)
SVM 0.624 (0.025) 0.586 (0.027) 0.580 (0.032) 0.602 (0.039) 0.590 (0.069) 0.617 (0.065)
LSTM 0.634 (0.052) 0.595 (0.048) 0.665 (0.026) 0.666 (0.027) 0.625 (0.028) 0.673 (0.062)
biLSTM 0.712 (0.068) 0.680 (0.082) 0.710 (0.057) 0.730 (0.053) 0.753 (0.031) 0.732 (0.060)
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Table 3.8 Probabilistic Forecasting Results of RF, MLP, SVM, LSTM and biLSTM With
and Without Calibration Based on the Random Division Scheme for the FC S
and F S Problems, Respectively

12 hr 24 hr 36 hr 48 hr 60 hr 72 hr
FC S BS RF 0.268 (0.068) 0.279 (0.076) 0.305 (0.102) 0.300 (0.119) 0.232 (0.043) 0.305 (0.040)

RF+C 0.226 (0.057) 0.246 (0.066) 0.260 (0.087) 0.256 (0.102) 0.272 (0.038) 0.269 (0.036)
MLP 0.311 (0.101) 0.303 (0.084) 0.339 (0.118) 0.312 (0.119) 0.303 (0.046) 0.311 (0.066)
MLP+C 0.265 (0.087) 0.259 (0.071) 0.288 (0.101) 0.266 (0.102) 0.283 (0.040) 0.293 (0.058)
SVM 0.261 (0.073) 0.264 (0.089) 0.271 (0.121) 0.261 (0.127) 0.285 (0.065) 0.282 (0.043)
SVM+C 0.219 (0.061) 0.241 (0.076) 0.252 (0.103) 0.253 (0.109) 0.249 (0.058) 0.231 (0.040)
LSTM 0.258 (0.041) 0.263 (0.041) 0.278 (0.035) 0.272 (0.044) 0.257 (0.034) 0.268 (0.036)
LSTM+C 0.220 (0.037) 0.224 (0.037) 0.236 (0.031) 0.232 (0.040) 0.238 (0.031) 0.235 (0.033)
biLSTM 0.214 (0.021) 0.230 (0.034) 0.203 (0.037) 0.214 (0.040) 0.193 (0.024) 0.185 (0.012)
biLSTM+C 0.183 (0.019) 0.195 (0.027) 0.153 (0.028) 0.182 (0.035) 0.164 (0.020) 0.157 (0.011)

BSS RF 0.464 (0.138) 0.429 (0.154) 0.402 (0.207) 0.408 (0.235) 0.354 (0.099) 0.368 (0.092)
RF+C 0.549 (0.118) 0.516 (0.132) 0.490 (0.176) 0.495 (0.201) 0.453 (0.088) 0.460 (0.084)
MLP 0.381 (0.205) 0.399 (0.169) 0.320 (0.243) 0.378 (0.241) 0.338 (0.096) 0.221 (0.139)
MLP+C 0.474 (0.175) 0.488 (0.143) 0.422 (0.209) 0.469 (0.207) 0.439 (0.084) 0.335 (0.122)
SVM 0.476 (0.154) 0.431 (0.176) 0.433 (0.248) 0.386 (0.258) 0.415 (0.133) 0.409 (0.096)
SVM+C 0.560 (0.129) 0.517 (0.151) 0.509 (0.210) 0.488 (0.222) 0.505 (0.120) 0.517 (0.087)
LSTM 0.492 (0.085) 0.478 (0.082) 0.445 (0.074) 0.455 (0.092) 0.452 (0.077) 0.430 (0.079)
LSTM+C 0.566 (0.075) 0.556 (0.072) 0.529 (0.067) 0.535 (0.086) 0.533 (0.067) 0.516 (0.070)
biLSTM 0.573 (0.053) 0.545 (0.070) 0.596 (0.078) 0.569 (0.087) 0.610 (0.056) 0.627 (0.036)
biLSTM+C 0.635 (0.047) 0.614 (0.060) 0.696 (0.058) 0.633 (0.077) 0.668 (0.047) 0.683 (0.032)

F S BS RF 0.284 (0.076) 0.288 (0.061) 0.372 (0.067) 0.320 (0.130) 0.307 (0.094) 0.310 (0.052)
RF+C 0.272 (0.099) 0.276 (0.087) 0.312 (0.056) 0.268 (0.109) 0.274 (0.121) 0.281 (0.101)
MLP 0.332 (0.114) 0.329 (0.072) 0.394 (0.080) 0.352 (0.080) 0.316 (0.145) 0.332 (0.147)
MLP+C 0.283 (0.098) 0.278 (0.063) 0.336 (0.071) 0.279 (0.123) 0.299 (0.124) 0.305 (0.124)
SVM 0.276 (0.067) 0.279 (0.063) 0.298 (0.059) 0.276 (0.054) 0.295 (0.058) 0.290 (0.045)
SVM+C 0.236 (0.059) 0.249 (0.055) 0.264 (0.050) 0.267 (0.045) 0.291 (0.049) 0.248 (0.038)
LSTM 0.277 (0.065) 0.279 (0.059) 0.285 (0.051) 0.282 (0.080) 0.273 (0.066) 0.289 (0.046)
LSTM+C 0.236 (0.056) 0.231 (0.051) 0.242 (0.044) 0.246 (0.068) 0.247 (0.058) 0.247 (0.040)
biLSTM 0.260 (0.054) 0.247 (0.048) 0.260 (0.043) 0.265 (0.046) 0.253 (0.085) 0.237 (0.089)
biLSTM+C 0.221 (0.046) 0.209 (0.041) 0.221 (0.037) 0.223 (0.039) 0.214 (0.073) 0.201 (0.076)

BSS RF 0.390 (0.133) 0.365 (0.077) 0.397 (0.071) 0.342 (0.139) 0.330 (0.164) 0.324 (0.162)
RF+C 0.463 (0.158) 0.470 (0.140) 0.482 (0.089) 0.424 (0.172) 0.440 (0.194) 0.419 (0.167)
MLP 0.289 (0.205) 0.348 (0.146) 0.215 (0.170) 0.260 (0.191) 0.264 (0.208) 0.200 (0.153)
MLP+C 0.388 (0.187) 0.450 (0.127) 0.331 (0.150) 0.366 (0.186) 0.357 (0.204) 0.304 (0.165)
SVM 0.447 (0.145) 0.420 (0.134) 0.403 (0.129) 0.378 (0.109) 0.404 (0.117) 0.391 (0.097)
SVM+C 0.529 (0.126) 0.493 (0.117) 0.492 (0.109) 0.461 (0.091) 0.420 (0.101) 0.507 (0.083)
LSTM 0.450 (0.139) 0.467 (0.128) 0.436 (0.103) 0.422 (0.145) 0.442 (0.139) 0.421 (0.101)
LSTM+C 0.531 (0.118) 0.536 (0.110) 0.511 (0.088) 0.500 (0.146) 0.461 (0.121) 0.506 (0.086)
biLSTM 0.484 (0.112) 0.505 (0.105) 0.489 (0.089) 0.466 (0.097) 0.428 (0.154) 0.432 (0.166)
biLSTM+C 0.592 (0.095) 0.581 (0.090) 0.566 (0.075) 0.550 (0.082) 0.504 (0.165) 0.613 (0.074)
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CHAPTER 4

PREDICTION OF GEOMAGNETIC INDICES

4.1 Prediction of SYM-H Index

4.1.1 Background and Related Work

Geomagnetic activities and events are known to have a substantial impact on

Earth. They can damage and affect technological systems such as telecommunication

networks, power transmission systems, and spacecrafts [13]. These activities are

massive and scale in orders of magnitude [131]. It may take a few days to recover from

the damage depending on its severity. These activities and events can not be ignored

regardless if they are in regions at high, medium, or low latitudes [40, 65, 129, 162, 1].

There are several solar activity indices that measure the intensity of the geomagnetic

effects. These indices characterize the magnitude of the disturbance over time.

Modeling and forecasting these indices have become a crucial area of study in space

weather research.

Some indices, such as Kp, describe the overall level of geomagnetic activity

while others, such as the disturbance storm time (Dst) index [70, 178, 186], describe

a specific area of geomagnetic activity. The Dst index aims to classify a storm based on

its intensity. It is a superstorm when Dst is smaller than −250 nT, moderate when

Dst is larger than −50 nT, and powerful when Dst is between −50 nT and −250

nT [71, 124]. Another important index is the symmetric H-component (SYM-H)

index, which is used to represent the longitudinally symmetric disturbance of the

ring current intensity during geomagnetic storms [140, 171, 175]. The SYM-H index

is basically the same as the Dst index but with a high temporal resolution of 1

minute instead of 1 or 3 hours, which is very useful in studying a short period of

temporal variations of geomagnetic activities [154]. On the other hand, ASY-H (the
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asymmetric geomagnetic disturbance of the horizontal component) is quantified as the

longitudinally asymmetric part of the geomagnetic disturbance field at low latitude

to midlatitude. In addition, there are other indices that can be used to measure the

storm activity as described in [126].

A lot of efforts have been devoted to developing strategies to alleviate the

geomagnetic effects on technologies and humans, but it is almost impossible to offer

complete protection from the effects [154]. Some of these strategies are to accurately

forecast and predict the occurrence and intensity of geomagnetic storms to offer

some level of mitigation of their damaging effects. [35] established an empirical

connection between interplanetary circumstances and Dst using a linear forecasting

model. [173] used differential equation models to examine the effect of the solar wind

dynamic pressure on the decay and injection of the ring current. [13] performed

predictions of global magnetic disturbance in near-Earth space in a case study for

Kp index using Nonlinear AutoRegressive with eXogenous (NARX) models. Due to

the intrinsic complex response of the circumterrestrial environment to changes in the

interplanetary medium, these simple models were unable to properly and fully depict

the evolution of the solar wind-magnetosphere-ionosphere system [49, 98, 154]. To

surpass the limitations of the simple models and to acquire the complex response of

the magnetosphere, researchers resorted to more advanced models such as artificial

neural networks (ANNs).

The use of ANNs focused on the prediction of Dst and Kp indices. [66]

constructed the first Dst prediction model by employing a time-delay ANN with solar

wind parameters as input variables. The authors performed Dst index projections

for 1 to 6 hours in advance. [105] created a particle swarm optimization method to

train ANN connection weights to improve the accuracy of Dst index prediction. [15]

combined ANNs and physical models with solar wind and interplanetary magnetic

field parameters such as velocity, interplanetary magnetic field (IMF) magnitude, and
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clock angle. [42] used Gaussian processes (GP) to build an auto-regressive model to

predict the Dst index 1 hour in advance based on the past solar wind velocity, IMF Bz

component, and Dst index values. This method generated a predictive distribution

rather than a single prediction point. However, the mean values of the estimations

are not as accurate as those generated by ANNs. [71] overcame the poor performance

of GP and constructed a Dst index estimation model by merging GP with a long

short-term memory (LSTM) network to obtain more accurate results. [141] compared

the effectiveness of 30 models that forecast the Dst index and found that none of the

models performed consistently best for all events.

Relatively few researchers have focused on the SYM-H index prediction. This

happens probably because of the high temporal resolution of 1 minute for the SYM-H

index, which gives rise to a more difficult problem to estimate SYM-H due to its highly

oscillating nature [154]. Nevertheless, there have been some SYM-H index prediction

techniques reported in literature. [38] presented the first 5-minute average estimates

of the SYM-H index throughout large storms between 1998 and 2006 by using an

NARX neural network with IMF and solar wind data. [24] predicted both SYM-H and

ASY-H indices for solar cycle 24 by employing the NARX neural network in a similar

manner. Both [24] and [38] made use of IMF magnitude (B), By and Bz components,

as well as solar wind density and velocity as input data to their models. [154] provided

a comprehensive examination of two well-known deep learning models, namely long

short-term memory (LSTM) and a convolutional neural network (CNN), with an

average temporal resolution of 5 minutes for the estimation of SYM-H index values

(1 hour in advance). The authors made use of IMF Bz component, squared values

of IMF magnitude B and of By component, measured at L1 by the ACE satellite

in GSM coordinates. [48] created neural network models for SYM-H and ASY-H

predictions by combining CNN and LSTM. The authors considered 42 geomagnetic

storms between 1998 and 2018 for model training, validation, and testing purposes.
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[85] developed a model using gradient boosting machines to predict the SYM-H index

(1 and 2 hours in advance) with a temporal resolution of 5 minutes.

In this study, we present a novel method, named SYMHNet, that utilizes

cooperative learning of a graph neural network (GNN) and a bidirectional long

short-term memory (BiLSTM) network with Bayesian inference to conduct short-term

(i.e., 1-6 hour ahead) predictions of the SYM-H index for solar cycles 23 and 24. We

consider temporal resolutions of 1 minute and 5 minutes for the SYM-H index. Our

method can quantify both model and data uncertainties when producing forecasting

results.

The remainder of this study is organized as follows. Subsection 4.1.2 describes

the data, including the solar wind and IMF parameters as well as geomagnetic storms,

used in this study. Subsection 4.1.3 presents the architecture of SYMHNet and

its uncertainty quantification algorithm. Subsection 4.1.5 compares SYMHNet with

related machine learning methods and reports experimental results. Subsection 4.2.7

presents a discussion and concludes the paper.

4.1.2 Data

In training and evaluating SYMHNet, we build a database that combines the solar

wind and IMF parameters with geomagnetic storms studied here. This database

contains 42 storms selected from the past 2 solar cycles (#23 and #24) between 1996

and 2018. We describe the parameters and storms in detail below.

Solar Wind and IMF Parameters We consider seven solar wind, IMF, and

derived parameters: IMF magnitude (B), By and Bz components, flow speed, proton

density, electric field, and flow pressure. These parameters have been used in related

studies [24, 38, 57, 85]. The parameters’ values along with SYM-H index values are
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collected from the NASA Space Science Data Coordinated Archive1 [96]. The data is

collected with both 1-minute and 5-minute resolutions.

Geomagnetic Storms We work on the same storms as those considered in the

previous studies [48, 85, 154]. Table 4.1 lists the storms used for training SYMHNet.

Table 4.2 lists the storms used for validating SYMHNet. Table 4.3 lists the storms

used for testing SYMHNet. The training set, validation set and test set are disjoint.

Therefore, SYMHNet can make predictions on storms that it has never seen during

training.

Table 4.1 Storms Used to Train SYMHNet

Storm # Start date End date Min SYM-H (nT)
1 02/14/1998 02/22/1998 −119
2 08/02/1998 08/08/1998 −168
3 09/19/1998 09/29/1998 −213
4 02/16/1999 02/24/1999 −127
5 10/15/1999 10/25/1999 −218
6 07/09/2000 07/19/2000 −335
7 08/06/2000 08/16/2000 −235
8 09/15/2000 09/25/2000 −196
9 11/01/2000 11/15/2000 −174
10 03/14/2001 03/24/2001 −165
11 04/06/2001 04/16/2001 −275
12 10/17/2001 10/22/2001 −210
13 10/31/2001 11/10/2001 −313
14 05/17/2002 05/27/2002 −113
15 11/15/2003 11/25/2003 −488
16 07/20/2004 07/30/2004 −208
17 05/10/2005 05/20/2005 −302
18 04/09/2006 04/19/2006 −110
19 10/09/2006 12/19/2006 −206
20 03/01/2012 03/11/2012 −149

1Retrieved on 09/10/2022 from https://nssdc.gsfc.nasa.gov
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Table 4.2 Storms Used to Validate SYMHNet

Storm # Start date End date Min SYM-H (nT)
21 04/28/1998 05/08/1998 −268
22 09/19/1999 09/26/1999 −160
23 10/25/2003 11/03/2003 −427
24 06/18/2015 06/28/2015 −207
25 09/01/2017 09/11/2017 −144

Table 4.3 Storms Used to Test SYMHNet

Storm # Start date End date Min SYM-H (nT)
26 06/22/1998 06/30/1998 −120
27 11/02/1998 11/12/1998 −179
28 01/09/1999 01/18/1999 −111
29 04/13/1999 04/19/1999 −122
30 01/16/2000 01/26/2000 −101
31 04/02/2000 04/12/2000 −315
32 05/19/2000 05/28/2000 −159
33 03/26/2001 04/04/2001 −434
34 05/26/2003 06/06/2003 −162
35 07/08/2003 07/18/2003 −125
36 01/18/2004 01/27/2004 −137
37 11/04/2004 11/14/2004 −393
38 09/10/2012 10/05/2012 −138
39 05/28/2013 06/04/2013 −134
40 06/26/2013 07/04/2013 −110
41 03/11/2015 03/21/2015 −233
42 08/22/2018 09/03/2018 −205

4.1.3 Methodology

Machine learning (ML) and its subfield, deep learning (DL) [67], have been used

extensively in the space weather community for predicting solar flares [4, 82, 119],

flare precursors [47], coronal mass ejections [9, 122], solar energetic particles [2], and

geomagnetic indices [15, 24, 48, 70, 105, 154]. Different from the existing methods,

SYMHNet combines a graph neural network (GNN) and a bidirectional long short-

term memory (biLSTM) network to jointly learn patterns from input data. As our

experimental results show later, this combined learning framework works well and
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performs better than the existing methods for SYM-H index forecasting. We describe

our method in detail below.

Parameter Graph We construct an undirected unweighted fully connected graph

(FCG) for the solar wind, IMF, and derived parameters considered in this study where

each node represents a parameter and there is an edge between every two nodes.

Because the parameter values’ are time series, we obtain a time series of parameter

graphs where the topologies of the graphs are the same but the node values vary as

time goes. For example, Figure 4.1 shows three parameter graphs constructed at time

points t, t + 1, t + 2 with a resolution of 1 minute for predicting the SYM-H index 1

hour in advance. In Figure 4.1, the leftmost graph at t contains the seven parameters’

values, represented by seven nodes or circles, at time point t. The FCG symbol in

the center indicates that this is a fully connected graph in which every two nodes are

connected by an edge. (For simplicity, only a portion of the edges are shown in the

figure.) In addition, the graph contains a node representing the SYM-H index value

at time point t + 1 hour. The SYM-H index value is used as the label for this graph.

The GNN in SYMHNet will learn the relationships among the parameters’ values and

the relationships between the parameters’ values and the label. If we want to predict

the SYM-H index k hours in advance, 1 < k ≤ 6, then the label will be the SYM-H

index value at time point t + k hours.

The middle graph at t + 1 in Figure 4.1 contains the seven parameters’ values

at time point t + 1 minutes. In addition, this graph contains the SYM-H index value

at time point (t + 1 minutes) + 1 hour, which is the label for this graph. If we want

to predict the SYM-H index k hours in advance, 1 < k ≤ 6, then the label will be

the SYM-H index value at time point (t + 1 minutes) + k hours.

The rightmost graph at t + 2 in Figure 4.1 contains the seven parameters’ values

at time point t + 2 minutes. In addition, this graph contains the SYM-H index value
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Figure 4.1 Illustration of the parameter graphs constructed at time points t, t + 1, t + 2
with a resolution of 1 minute for predicting the SYM-H index 1 hour in advance.
Each graph contains seven parameters: IMF magnitude (B), By component,
Bz component, electric field (EF), proton density (PD), flow pressure (FP), and
flow speed (FS). The colored values in the graphs represent the parameters’
values that change as time goes while the topologies of the graphs remain the
same. The value in the SYM-H node in a graph is the label of the graph. The
FCG symbol in a graph indicates that the graph is fully connected.

at time point (t + 2 minutes) + 1 hour, which is the label for this graph. If we want

to predict the SYM-H index k hours in advance, 1 < k ≤ 6, then the label will be

the SYM-H index value at time point (t + 2 minutes) + k hours.

The SYMHNet Architecture In this section, we describe how the SYMHNet

network works as shown in Figure 4.2. The trained SYMHNet model takes a

constructed parameter graph, as described in Section 4.1.3, and the time series of

the time-varying parameters as input. The graph is used as an input to the graph

neural network (GNN) component to learn and determine the topological correlations

between the parameters. Specifically, at time t we create the virtual connection

between each parameter. Figure 4.1 shows only one connection between each two

nodes and omits all other edges to keep the figure clean for demonstration only. Next,

for every node in the graph, we create time series sequence at times t, t + 1, ...t + n

to represent the features’ information at each time step as shown in Figure 4.1 and

denoted with the numbers in each node in the graph. The time series data is used
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as an input to the bidirectional long short-term memory (BiLSTM) component to

learn the temporal correlation between the parameters data. Next, the SYMHNet

network combines and correlates the graphical information and temporal patterns it

finds to build the predictive network. SYMHNet network concatenates and joins the

patterns learned from both GNN and BiLSTM to build a joint pattern and passes

to the dropout layers for further processing. The network then trains the Bayesian

deep-learning model for probabilistic prediction and uncertainties. We use the mean

squared error (MSE) as the loss function of our network and the root mean squared

propagation (RMSProp) with a learning rate that is set to 0.0002. RMSprop is an

extension of gradient descent that uses a decaying average of partial gradients in the

adaptation of the step size for each parameter to allow the algorithm to ignore early

gradients and focus on the recently observed partial gradients during the progress,

which improves the pattern discoveries from the parameters. In the following section,

we describe each component of the SYMHNet architecture in detail.

Graph Neural Network Neural networks (NNs) have shown significant predictive

power in learning and capturing hidden patterns from fixed-size, regular-structured,

Euclidean data such as texts, time series, images, and videos. With the increasing

size and different type of data that comes from different systems such as social

media, citations, transactions, physical models, and/or non-Euclidean data that can

be presented as graphs, NNs have a limitation and not able to accurately learning

and predict them. To overcome the shortcoming of NNs, Graph Neural Networks

(GNNs) were developed to learn patterns from these type of data.

GNNs are a class of neural networks that can learn from graph-structured data.

GNNs extract and utilize the features from the graphs to perform more accurate

prediction about the entities interactions such as node, edge and/or graph level.
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Figure 4.2 Architecture of SYMHNet. (a) is the overall architecture of SYMHNet. (b) is
the GNN architecture. (c) is the BiLSTM architecture.

The general function of GNNs is identifying the labels graph’s nodes. For

instance, given an observed graph G that is constructed of non-empty set of N
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vertices, also referred to as nodes, V and set of edges E so that G = (V,E). For

every node or vertex in the graph G, the derived features denoted by xi. For a given

subset of vertices S ⊂ V , the labels are measured by YS = {yi : i ∈ S}. In categorical

classification, the label yi can one of categories such as true or false, active or inactive,

and so on. In regression task, the label can be a real value. The goal of GNNs is

estimate and predict the unlabeled nodes or vertices using the features x and the

given observed graph G [190]. GNNs network perform graph convolution functions

within the neural network architecture. The collection of feature vectors as the rows

vectors X are calculated as follows [54, 97, 190]:

H(1) = σ(AgXW (0)) (4.1)

H(l+1) = σ(AgH
(l)W (l)) (4.2)

where H(l) represents the output features from layer l − 1, Ag is a matrix derived

from the observed graph G and decides, at each layer, how the output are mixed

across the graph. X represent the feature matrix, W (l) represents the weights of the

neural network at layer l. The final output (the predictions) of an L-layer network

is denoted by Z = H(L). The network uses back-propagation to minimize the error

metrics between the predicted labels Z and the ground truth or observed labels Y .

In addition, the network performance can be improved by using techniques such as

attention nodes [170] and skip connection and gates [95].

In our research, we are building a static graph structure with temporal time

series signals that receives information at each time step t as illustrated it in Figure 4.1

to build a Temporal Graph Neural Networks (TGNNs) or Spatio-Temporal Graph

Neural Networks (STGNNs) model. In this model, the graph structure does not

change overtime this is because, in our research, the graph is built using the selected
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solar wind parameters that are always present within the span of the given data. Each

node (parameter) in the graph receives an information over time that is known as

time-varying features values. The TGNNs represents and captures the dependency of

the symh or asyh within the generated graph over time. All information is considered

as a signal that is updated at every time point t.

Bidirectional LSTM (BiLSTM) The proposed algorithm and network include

a bidirectional long short-term memory (LSTM) component that we refer to it by

BiLSTM. BiLSTM is comprised of two LSTM [75] layers with opposite direction when

they ready the data. It allows the network to use one LSTM layer to read the sequence

from the start to the end, denoted as forward, and the other LSTM layer to read the

sequence from the end to the start, denoted as backward. This behaviour allows the

network to learn more patterns and features from the data. Figure 4.2(c) illustrates

the BiLSTM component architecture in the proposed SYMHNet model. Both LSTM

and BiLSTM have shown significant performance improvement in processing time

series, but furthermore, BiLSTM outperforms LSTM as proven by many studies [2,

153].

4.1.4 Uncertainty Quantification

Uncertainty quantification is essential for a model’s reproducibility and validation

[172]. Uncertainty quantification with deep learning has been used in computer vision

[93], space weather [71], and solar physics [87]. There are two types of uncertainty:

aleatoric and epistemic. Aleatoric uncertainty captures the inherent randomness of

data, hence also referred to as data uncertainty. Epistemic uncertainty occurs due to

the inexact weight calculations in a neural network and is also referred to as model

uncertainty.

In incorporating Bayesian inference into SYMHNet, our goal is to find the

posterior distribution over the network’s weights,W , given the observed training data,
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X, and the labels Y , namely P (W |X, Y ). The posterior distribution is intractable

[87], and one has to approximate the distribution of the weights [56]. We use

variational inference as suggested by [68] to learn the variational distribution over

the network’s weights, q(W ), by minimizing the Kullback–Leibler (KL) divergence of

q(W ) and P (W |X, Y ).

Training a network with dropout [158] is equivalent to a variational approx-

imation on the network [62]. Furthermore, minimizing the cross entropy (CE) loss

objective function [67] can have the same effect as minimizing the KL divergence term.

Minimizing the CE loss in classification problems is equivalent to the minimization of

the mean squared error (MSE) loss in regression problems [83, 99]. Therefore we use

the MSE loss objective function and the root mean squared propagation (RMSProp)

optimizer with a learning rate of 0.0002 to train SYMHNet. We use q̂(W ) to represent

the optimized weight distribution.

During testing, SYMHNet leverages the Monte Carlo (MC) dropout sampling

technique [62] to quantify uncertainty. Specifically, we process the test data K times

to generate K MC samples where K is set to 100 in this study. Each time, a set

of weights is randomly drawn from q̂(W ). We obtain a mean and variance for K

samples. The mean is the anticipated SYM-H value. In accordance with [87], we

split the variance into aleatory and epistemic uncertainties.

4.1.5 Experiments and Results

Evaluation Metrics To evaluate and compare our proposed network to the existing

models, we followed the guidelines for geomagnetic index predictions and forecasting

presented by [114] and used by previous work [48, 85, 154] and were introduced

in the survey conducted by [39] for regression problems. We selected two common

performance metrics, the root mean square error (RMSE), R-squared (R2) which is

known as coefficient of determination.
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RMSE calculates the difference between prediction and ground-truth for each

data point to captures the range of values of the data, in our case the SYM-H index

values. RMSE is calculated as follows:

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2, (4.3)

where m is the total number of testing records in the test set, ŷi (yi, respectively)

represents the predicted SYM-H index value (observed index value, respectively) at

time point i. The smaller the RMSE, the more accurate a method is.

R2 calculates the amount of variance of the observed data explained by the

predicted data and is calculated as follows:

R2 = 1−
∑m

i (yi − ŷi)
2∑m

i (yi − ȳ)2
, (4.4)

where ȳ is the mean of the observed Dst index values. The larger the R2, the more

accurate a method is.

Results Based on 1-Minute Resolution Data Here we present the result for the

1-minute temporal resolution data set. The 1-minute temporal resolution experiments

follow the same approach as the 5-minute data sets.

Ablation Study with 1-Minute Resolution Data Similar to Section 4.1.6,

here we present the ablation tests we performed in the model to analyze and

assess the components of SYMHNet network for 1-minute temporal resolution. We

followed the same approach and built three variants from the original SYMHNet:

SYMHNet-B, SYMHNet-G, and SYMHNet-BG, turned off the uncertainty quantifi-

cation mechanism for all sub-networks, and used the same performance metrics:

RMSE, R2, and STDE.
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Figure 4.3 shows the RMSE and R2 results for the ablation test comparing

the SYMHNet model with the three sub-network variants for 1-minute cadence. It

can be seen from the figure that SYMHNet outperforms all the variants. Similar to

5-minute results, the SYMHNet outperforms the sub-network variants, SYMHNet-B

is the second in comparison, SYMHNet-G is third, and SYMHNet-BG performs the

least among the sub-networks.
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Figure 4.3 SYM-H 1-minute temporal resolution prediction results from the ablation
experiment for 1-6 hour ahead prediction. We are comparing our proposed
SYMHNet model with the three sub-network variants for the test storms
number 26 to 42. (a) is the RMSE mean and standard deviation error (STDE).
(b) is the R-squared mean and standard deviation error (STDE).
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Case Study with 1-Minute Resolution Data In this section, we provide the

case study for the January 2004 storm, storm number 36 for 1-minute temporal

resolution data. First we show the regression fitting plots then the uncertainty

quantification results.

Figure 4.4 shows the regression fitting plot between the predicted and observed

values of the SYM-M with the correlation coefficient (CC) values for 1-minutes

resolution data. The figure shows that our model is performing very well in predicting

the storm values and the predicted values are well fitted for 1 to 6 hours ahead.

Figures 4.5 and 4.6 show 1-minute uncertainty quantification for 1-3 and 4-6

hours ahead, respectively. The figure show the entire span of the storm. The red

lines in the figures represent the ground-truth observations of the SYM-H values

while yellow lines represent the predicted values. The light gray region represents the

aleatoric uncertainty (data uncertainty) and light blue region represents the epistemic

uncertainty (model uncertainty) for SYM-H index. The figures show that the yellow

lines (predicted values) are reasonably close to the red lines (ground truth values) and

demonstrate the good performance of SYMHNet which is consistent with the results.

Similar to 5-minute uncertainty quantification results, The light gray zone is tinier

than the light blue hemisphere, denoting that model uncertainty is lower than data

uncertainty. This is due to the fact that the uncertainty in the estimated outcome is

primarily caused by noise in the input test data. In addition, the data demonstrate

that the model uncertainty for 6-hour-ahead forecasts is marginally greater than for

other hours. This is projected because the model has more time to predict.

4.1.6 Results Based on 5-Minute Resolution Data

In this section, we present the results based on the 5-minute resolution as well as

provide a comparison results with the previous works. The comparison is only for
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Figure 4.4 SYM-H 1-minute temporal resolution regression plot with correlation
coefficient for the January 2004 storm.

5-minute resolution because previous works did not provide prediction for 1-minute

resolution.

Comparative Study with 5-Minute Resolution Data We first compared

SYMHNet with closely related methods. [48] combined long short-term memory

(LSTM) and convolutional neural networks (CNNs), which is referred to as the
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Figure 4.5 SYM-H 1-minute resolution uncertainty quantification results produced by
SYMHNet for 1-3 hours ahead for the January 2004 storm. The light gray is the
aleatoric (data) uncertainty, the light-blue is the epistemic (model) uncertainty,
the red line is the observed SYM-H, and the yellow line is the predicted SYM-H.

LSTM+CNN method to forecast SYM-H for 1 and 2 hours ahead. [85] also forecasts

SYM-H using gradient boosting machines for 1 and 2 hours ahead,we referred to as
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Figure 4.6 SYM-H 1-minute resolution uncertainty quantification results produced by
SYMHNet for 4-6 hours ahead for the January 2004 storm. The light gray is the
aleatoric (data) uncertainty, the light-blue is the epistemic (model) uncertainty,
the red line is the observed SYM-H, and the yellow line is the predicted SYM-H.

the GBM method. [154] provided an SYM-H forecasting comparison between long

short-term memory (LSTM) and convolutional neural networks (CNN) for 1 hour
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ahead only. During our experiments, we use the results provided by each method for

the available number of hours ahead. Our proposed algorithm provides up to 6 hours

ahead forecasting that are not provided by other methods, therefore, there are no

result to compare, but we show how our method behaves in forecasting the SYM-H

index in these additional hours. Also, [85] did not provide R2 results.

In addition, The related methods did not produce uncertainty quantification

results, so we also turned off the uncertainty quantification component in SYMHNet.

Tables 4.4 and 4.5 present the RMSE results and Table 4.6 shows the R2

results for the 5-minute temporal resolution comparison between our proposed method

SYMHNet model and the related methods LSTM+CNN [48], GBM [85], and LSTM

and CNN from [154] for the test storms number 26 to 42.

The tables show that our SYMHNet network outperforms competing models

for which results are available. Also, our additional number of hours of forecasting

are inline with the compared results and show that our model can perform very well

in all of the number of hours in the study.

Ablation Study with 5-Minute Resolution Data In this section, we show

the ablation tests we performed in the model to analyze and assess the components

of SYMHNet network. In order to create different variations of the network, we

modify the layers in the variants where appropriate to accept input data fed to

the sub-network. We built three different variants or subnets from the original

SYMHNet: SYMHNet-B, SYMHNet-G, and SYMHNet-BG. SYMHNet-B represents

a sub-network without the BiLSTM components while keeping the GNN and other

components. SYMHNet-G represents a sub-network without the GNN components

while keeping the BiLSTM and other components. SYMHNet-BC represents the

sub-network without the BiLSTM and GNN components while keeping only the

dense layers to simulate a simple multi-layer perceptron network. To perform this
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Table 4.4 RMSE Results for the 1h Ahead Predictions Over the Test Storms Set Obtained
by the Machine Learning Methods Considered in This Study

1h ahead prediction (RMSE)
Storm# SYMHNet LSTM+CNN GBM LSTM CNN
26 4.105 6.630 5.863 6.700 7.200
27 7.077 8.913 7.729 8.900 10.500
28 3.251 5.858 4.281 5.400 5.600
29 5.376 6.683 5.833 7.200 7.700
30 4.746 5.200 4.927 5.600 6.500
31 7.846 8.584 8.277 10.700 9.600
32 5.359 7.259 6.841 8.300 8.200
33 12.177 13.340 14.492 16.300 19.100
34 5.754 10.034 10.190 11.300 12.400
35 6.148 7.693 7.154 8.500 8.800
36 6.552 9.525 8.512 8.700 10.500
37 13.975 15.184 14.548 17.500 17.300
38 3.479 4.080 3.886 4.200 4.600
39 5.546 6.431 5.901 5.600 6.800
40 4.644 4.673 4.976 5.500 5.900
41 7.103 7.882 7.558 9.000 9.400
42 4.926 5.669 5.030 5.900 6.300

experiment, the uncertainty quantification mechanism was turned off for SYMHNet

and the three sub-networks.

Figure 4.7 shows the RMSE and R2 results for the ablation test comparing the

SYMHNet model with the three sub-network variants where error bars are as defined

in [9]. It can be seen from the figure that SYMHNet outperforms all the variants. The

SYMGNet-B is the second best in comparison. GNN is already proven to perform

well in regression problems [26]. Therefore, GNN is performing well without BiLSTM

but has a degradation of 5-10% compared to the full model. SYHMNet-G is third in

comparison and is not performing very well without the GNN component. This is in

sync with the finding introduced by [48], and it can be seen that SYMHNet-G is also

performing less than LSTM+CNN. Finally, SYMHNet-BG is lowest in performance

because it loses the advantage of the GNN and BiLSTM components. It should also

be noted that the performance of all variants including the full model is degraded for
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Table 4.5 RMSE Results for the 2h Ahead Predictions Over the Test Storms Set Obtained
by the Machine Learning Methods Considered in This Study

2h ahead prediction (RMSE)
Storm # SYMHNet LSTM+CNN GBM
26 4.511 8.989 8.285
27 8.765 13.418 11.585
28 5.286 5.877 5.650
29 6.061 9.314 8.826
30 5.435 7.288 7.280
31 12.097 12.436 12.613
32 8.049 8.937 9.927
33 17.022 18.481 24.519
34 6.239 13.941 13.736
35 6.539 9.932 9.504
36 6.702 12.058 12.068
37 16.676 21.084 22.327
38 3.788 5.213 5.153
39 6.636 6.798 7.391
40 5.030 5.281 5.633
41 11.140 11.707 12.121
42 6.216 8.273 7.976

longer hours ahead prediction. This is because the models have to predict longer time

that include large span of the data from the time point t to the h-hour ahead where

h ¿ 2. For example, for 5-hour ahead prediction, the span of the data is 5*¡number of

records per hour¿ = 5*12 = 60 data points. Similarly for 1-minute resolution, check

Section 4.1.5 for details, data points = 5*60 = 300.

Case Study with 5-Minute Resolution Data In this section, we provide a case

study for the January 2004 storm, storm number 36. First we show the regression

fitting plots then the uncertainty quantification results.

Figure 4.8 shows the regression fitting plot between the predicted and observed

values of the SYM-M with the correlation coefficient (CC) values for 5-minute

resolution data, respectively. The figure shows that our model is performing very

well in predicting the storm values and the predicted values are well fitted for 1 to 6
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Table 4.6 R2 Results for the 1h and 2h Ahead Predictions Over the Test Storms Set
Obtained by the Machine Learning Methods Considered in This Study

1h ahead prediction (R2) 2h ahead prediction (R2)
Storm# SYMHNet LSTM+CNN LSTM CNN SYMHNet LSTM+CNN
26 0.953 0.870 0.890 0.870 0.943 0.766
27 0.996 0.939 0.940 0.920 0.998 0.862
28 0.994 0.936 0.950 0.950 0.996 0.936
29 0.993 0.922 0.930 0.920 0.995 0.848
30 0.997 0.946 0.950 0.930 0.998 0.894
31 0.997 0.971 0.960 0.970 0.999 0.939
32 0.996 0.953 0.950 0.950 0.997 0.929
33 0.997 0.965 0.960 0.950 0.998 0.932
34 0.987 0.798 0.750 0.700 0.989 0.612
35 0.995 0.907 0.900 0.890 0.996 0.845
36 0.994 0.864 0.890 0.840 0.995 0.782
37 0.973 0.966 0.960 0.960 0.969 0.934
38 0.994 0.939 0.940 0.930 0.995 0.900
39 0.992 0.932 0.960 0.940 0.995 0.924
40 0.995 0.966 0.950 0.950 0.997 0.957
41 0.996 0.969 0.960 0.960 0.997 0.931
42 0.974 0.968 0.970 0.960 0.998 0.932

hours ahead. CC is calculated as follows:

CC =

∑m
i (yi − µ(ŷ))(yi − ȳ)√∑m

i=1(yi − µ(ŷ))2
√∑m

i=1(yi − ȳ)2
(4.5)

where µ(ŷ) denotes the mean of all predicted SYM-H values and ȳ denotes the mean

of all observed SYM-H values. CC is used to measure how strong the relationship

between the predicted and actual SYM-H values is. CC ranges from 1 to -1, where

1 means there is a strong positive correlation, -1 means there is a strong negative

correlation, and 0 means there is no correlation between the predicted and actual

SYM-H values.

Figures 4.9 and 4.10 show the uncertainty quantification for 1-3 and 4-6 hours

ahead, respectively. we selected a smaller region of the storm to clearly show the

uncertainty shades and make them visible. The red lines in the figures represent

the ground-truth observations of the SYM-H values while the prediction are shown
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Figure 4.7 SYM-H 5-minute temporal resolution prediction results from the ablation
experiment for 1-6 hour ahead prediction. We are comparing our proposed
SYMHNet model with the three sub-network variants for the test storms
number 26 to 42. (a) is the RMSE mean and standard deviation error. (b) is
the R-squared mean and standard deviation error.

as yellow lines. The light gray area shows aleatoric uncertainty (data uncertainty)

and the light blue area represents epistemic uncertainty (model uncertainty) for the

SYM-H index. The graphs reveal that the yellow lines (predicted values) are fairly

similar to the red lines (ground truth values) and indicate the good performance of

SYMHNet, which is consistent with the outcomes. Moreover, the light gray region is

tinier than the light blue region, implying that model uncertainty is less than data
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uncertainty. This is due to the fact that the uncertainty in the predicted outcome is

primarily caused by noise in the input test data. Furthermore, the figures show that

the model uncertainty for 6-hour ahead prediction is slightly larger than other hours.

This is expected because of the longer time the model has to predict.

Figure 4.8 SYM-H 5-minute temporal resolution regression plot with correlation
coefficient for the January 2004 storm.
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Figure 4.9 SYM-H 5-minute resolution uncertainty quantification results produced by
SYMHNet for 1-3 hours ahead for the January 2004 storm. The light gray is the
aleatoric (data) uncertainty, the light-blue is the epistemic (model) uncertainty,
the red line is the observed SYM-H, and the yellow line is the predicted SYM-H.
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Figure 4.10 SYM-H 5-minute resolution uncertainty quantification results produced by
SYMHNet for 4-6 hours ahead for the January 2004 storm. The light gray
is the aleatoric (data) uncertainty, the light-blue is the epistemic (model)
uncertainty, the red line is the observed SYM-H, and the yellow line is the
predicted SYM-H.

4.1.7 Summary

Geomagnetic activities have a significant impact on Earth, which can cause damage

on spacecraft, electrical power grids, and navigation systems. Geospace scientists
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use geomagnetic indices to measure and quantify the activities. The SYM-H index

can be used to explain the information about the response and behaviour of the

Earth’s magnetosphere during geomagnetic storms activities. Therefore, many work

and researches were conducted to perform predictions of the the indices due to their

importance to understand the Earth behaviour during the storms. The previous work

focused on the 5-minute temporal resolution and skipped the 1-minute temporal

resolution data set because of its forecasting difficulties due to the high temporal

resolution which poses a more difficult challenge to forecast due to its highly oscillating

character. Throughout this investigation, we introduced a novel deep learning

model, SYMHNet, for 1 to 6 hour-ahead forecasting of the SYM-H index utilising

solar wind parameters from the NASA Space Science Data Coordinated Archive.

SYMHNet combines temporal graph neural network and bidirectional long short-term

memory with Parameter estimation to quantify aleatoric (data) and epistemic (model)

uncertainty when executing SYM-H index prediction tasks. Our findings demonstrate

the superiority of SYMHNet over competing machine learning techniques. These

results were derived from the information gathered to create two distinct databases.

One database contained the 42 storms that occurred during the two solar cycles

between 1996 and 2018. The other database was constructed using all data from 1996

to 2018. This dataset was used for the testing of cross validation. To eliminate bias in

our results, we conducted additional experiments employing 22-fold cross validation

where the data was divided into 22 partitions or folds. Each layer represents one

year of testing data, while the rest layers serve as training data. The successive

arrangement of data in each layer was retained. One fold was used for testing and

the remaining 21 folds were used for training in each run. There were 22 folds,

and consequently 22 runs, for which the overall performance metric values were

calculated. The results of the 22-fold validation set matched those reported in the

study. Furthermore, we extended our work to predict SYM-H using the 1-minute
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temporal resolution data set. The model architecture stays the same as shown

in Figure 4.2 and described in Section 4.3.2, but with slightly different internal

configuration. For 1-minute data set, the model is configured with higher number of

neurons in the dense layer, higher percentage in the dropout layer, and larger number

of epochs during the training phase. This is because the 1-minute resolution data are

known to pose a more difficult challenge to forecast SYM-H due to its highly oscillating

character [154]. This behaviour could make the data more noisy to the model than

it is in 5-minute resolution data. Therefore, the model requires more iteration with

larger neurons in order to learn the internal features and pattern hidden in the data.

We also present the result of the 1-minute temporal resolution in Section 4.1.5. The

results show that by comparison the 1-minute temporal resolution results have better

performance than those for the 5-minute temporal resolution due to the large number

of data the model has to learn from.

Consequently, we conclude that the suggested SYMHNet is a viable machine

learning method for short-term, 1 to 6 hour-ahead forecasts of the SYM-H index for

both 1 and 5-minute-resolution temporal data sets.

4.2 Prediction of Kp Index

4.2.1 Background and Related Work

Geomagnetic activities have a crucial impact on Earth, which can affect spacecraft,

electrical power grids, observers of the aurora, and navigation systems. They are

very complex, and their scales vary in orders of magnitude. Geomagnetic activity

modeling and forecasting has therefore been an important subject in space weather

research.

Generally, geomagnetic indices are indicators of disturbances in the Earth’s

magnetic field. One important geomagnetic index, named the Kp index, is used

to describe the overall level of geomagnetic activity. Kp values range from 0 to 9.
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The U.S. Space Weather Prediction Center (SWPC) at the National Oceanic and

Atmospheric Administration (NOAA) classifies the geomagnetic activities into four

categories: (i) quiet to unsettled (Kp < 4), (ii) active (Kp = 4), (iii) minor storm

(Kp = 5), and (iv) major to severe storm (Kp > 5). A storm occurs when there is an

exchange of energy from the solar wind to the near-Earth space environment. At any

period, if the Kp index indicates a high geomagnetic activity (e.g., a storm), SWPC

issues a warning or alert for the affected parties.

Several machine learning-based methods have been developed to forecast the

Kp index. Costello [51] designed and implemented a neural network (NN)-based

operational system, whose prediction results are posted on the NOAA website.2

Boberg et al. [28] described a real-time NN algorithm for making three-hour

predictions of the Kp index. Shprits et al. [152] explored the relative efficiency

of solar wind-based predictions and compared long and short term Kp forecasting. Ji

et al. [86] provided a comparison between NN and SVM (support vector machine)

algorithms used for Kp forecasting. Tan et al. [160] and later Chakraborty and

Morley [41] developed deep learning models for Kp forecasting using long short-term

memory (LSTM) networks. In addition to the above Kp prediction methods, several

researchers investigated the importance of predictive parameters such as the magnetic

component, particle density and velocity, and total magnetic field B to understand

the impact of each of the parameters on Kp forecasting performance [191].

In this research, we present a new transformer-based Bayesian deep learning

model, named KpNet, for Kp prediction. Our work makes several contributions to

the field, listed below.

• KpNet is the first model to utilize transformers to forecast the Kp index for a
short-term (i.e., 1-9 hours ahead) period.

2Retrieved on 09/01/2022 from https://www.noaa.gov/
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• With Bayesian inference, KpNet can quantify both aleatoric and epistemic
uncertainties in producing Kp predictions. Aleatoric uncertainty, also known as
data uncertainty, measures the noise inherent in data. Epistemic uncertainty,
also known as model uncertainty, measures the uncertainty in the parameters of
a model [93]. To our knowledge, no previous Kp prediction method can quantify
both types of uncertainty.

• KpNet performs better than closely related machine learning methods for short-
term Kp prediction in terms of both the root mean square error (RMSE) and
R-squared (R2).

4.2.2 Methodology

Data Collection: The Kp measurements used in this study are provided by the

GFZ German Research Centre for Geosciences.3 The Kp values in the GFZ site are

collected with a 3-hour cadence where the values range from 0 to 8.33. The solar

wind parameters used in this study are taken from the NASA Space Science Data

Coordinated Archive.4 We collect the data in the time period between January 1,

2010 and March 31, 2022. We select the time resolution of the hourly average for the

solar wind parameters. Following [160, 191], we consider eight solar wind parameters,

namely the interplanetary magnetic field (IMF) magnitude average, magnetic field

Bx, By, and Bz components, plasma temperature, proton density, plasma speed, and

flow pressure. Due to the difference in cadence, where Kp uses a 3-hour cadence

whereas the solar wind parameters use a 1-hour cadence, we process the data by

temporally matching the Kp measurements from the GFZ site with the solar wind

parameters from the NASA site to create the final dataset.

Data Labeling: We divide our dataset into two parts: training set and test set.

The training set contains the records from January 1, 2010 to December 31, 2021. The

test set contains the records from January 1, 2022 to March 31, 2022. The training

set and test set are disjoint. The records are labeled as follows. Let t be a given time

3Retrieved on 09/01/2022 from https://www.gfz-potsdam.de/en/kp-index/
4Retrieved on 09/01/2022 from https://nssdc.gsfc.nasa.gov
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point and let w be the time window ahead of t, where w ranges from 1 to 9 hours

for the short-term Kp forecasting studied here. The label of the record at time point

t is defined as the Kp value at time point t + w for w-hour-ahead forecasting. Each

training record at time point t in the training set has nine values including eight solar

wind parameter values at time point t and the label of the training record. Each test

record in the test set contains only eight solar wind parameter values; the label of the

test record in the test set will be predicted by our KpNet model.

The KpNet Architecture: Figure 4.11 presents the architecture of KpNet, which

is created using the keras framework from tensorflow.5 To enhance the KpNet learning

capability and its performance, we add multiple layers to the network. The input

of KpNet consists of non-overlapping sequences of records xp+1, xp+2, . . ., xp+n,

where n is set to 512 in our study. The sequences are passed to a one-dimensional

convolution (Conv1D) layer with 64 kernels where the size of each kernel is 1. Conv1D

was proven to be well suited for sequential data and was also previously used for

geomagnetic index prediction [155]; it learns internal patterns from the input data

sequence and passes them to a bidirectional long short-term memory (biLSTM) layer

that is configured with 300 neurons. Combining Conv1D and biLSTM layers has

shown substantial improvement in performance when dealing with time series as our

ablation studies show later.

The biLSTM layer transfers the learned patterns down to a transformer network,

which is composed of b transformer encoder blocks (TEBs).6 Each TEB consists of

a multi-head attention layer [169], a batch normalization layer, and a feed-forward

network. Generally, transformers for natural language processing (NLP) use layer

normalization leading to significant performance gains over batch normalization [169].

However, we use batch normalization here to avoid the effect of outliers in time series

5Retrieved on 09/10/2022 from https://www.tensorflow.org
6Following [169], we set b to 8 in this study.
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Figure 4.11 (a) Architecture of KpNet. (b) Configuration details of a transformer encoder
block (TEB) used in KpNet. Each TEB has two dropout layers, a multi-
head attention layer, a batch normalization layer, followed by a feed forward
network that contains a Conv1D layer, and a bidirectional LSTM (biLSTM)
layer.

which do not exist in NLP word embedding [187]. The multi-head attention layer

provides transformation on the sequential input values to obtain distinct metrics

of size h. Here, h is the number of attention heads that is set to 4 and the size
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of each attention head is also set to 4; the other parameters are left with their

default values. The feed-forward network, composed of a Conv1D layer, with 4 kernels

where the number of kernels equals the number of attention heads and each kernel

size is 1, followed by a biLSTM layer with 250 neurons, helps reduce over-fitting.

Notice that each TEB uses a transformer encoder without the decoder because we

are dealing with time series instead of language processing and therefore translation

is not involved [187].

Furthermore, a dense variational layer (DVL) [163] with 10 neurons is added

that uses variational inference [25] to approximate the posterior distribution over

the model weights. DVL is similar to a regular dense layer but requires two input

functions that define the prior and posterior distributions over the model weights.

DVL allows KpNet to represent the weights by a distribution instead of estimated

points. In addition, KpNet includes several dense and dropout layers. Each dense

layer is strongly connected with its preceding layer where every neuron in the dense

layer is connected with every neuron in the preceding layer. Each dropout layer

provides a mechanism to randomly drop a percentage of hidden neurons to avoid

over-fitting, as explained below.

4.2.3 Experiments and Results

We conducted a series of experiments to evaluate our proposed KpNet model and

compare it with closely related methods. The performance metrics used in the study

are the root mean square error (RMSE) and R-squared (R2) [5]. The smaller (larger,

respectively) RMSE (R2, respectively) a method has, the more accurate the method

is.
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4.2.4 Ablation Studies

In this experiment, we performed ablation tests to analyze and assess the components

of the proposed KpNet model. We considered four subnets derived from KpNet:

KpNet-C, KpNet-L, KpNet-CL, and KpNet-T. KpNet-C (KpNet-L, KpNet-CL,

KpNet-T, respectively) represents the subnet of KpNet in which we remove the

Conv1D (64, 1) layer (biLSTM (300) layer, Conv1D (64, 1) and biLSTM (300)

layers, transformer network, respectively) while keeping the remaining components

of the KpNet framework. For comparison purposes, we turned off the uncertainty

quantification mechanism in the five models.

Figure 4.12 presents the ablation test results of the five models. The t + wh,

1 ≤ w ≤ 9, on the X-axis represents the w-hour ahead prediction of the Kp index

based on the test records in the test set. It can be seen from Figure 4.12 that the

full network model, KpNet, achieves the best performance among the five models.

KpNet-C captures the temporal correlation from the input data but does not learn

additional patterns and properties to strengthen the relationship between the test

records. KpNet-L captures the properties from the test records but lacks the temporal

correlation information to deeply analyze the sequential information in the input

data. We also see from Figure 4.12 that removing both of the two layers, Conv1D

and biLSTM, decreases the performance significantly. Overall, KpNet-T is the worst

model, indicating the importance of the transformer network. The results based on

RMSE and R2 are consistent. In subsequent experiments, we used the full network

model, KpNet, due to its best performance among the five models.

4.2.5 Comparison with Related Methods

In this experiment, we compared KpNet with four related machine learning methods

that have been used in previous Kp forecasting studies, including linear regression

(LR) [160], support vector regression (SVR) [86], a long short-term memory (LSTM)
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Figure 4.12 Results of the ablation tests obtained by removing components of KpNet.

network [160], and a convolutional neural network (CNN) that has also been used

for geomagnetic index prediction [155]. Since the four methods do not have the

ability to quantify both data and model uncertainties, we turned off the uncertainty

quantification mechanism in our KpNet model when performing this experiment.

Figure 4.13 presents the results. It can be seen from the figure that KpNet achieves the

best performance, producing the most accurate predictions, among the five methods

in terms of RMSE and R2. This finding is consistent with those in the literature [187],

which indicate that transformers often perform better than LSTM and CNN models

in time series forecasting.
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Figure 4.13 Performance comparison of five Kp prediction methods.

4.2.6 Uncertainty Quantification Results

Figure 4.14 shows uncertainty quantification results produced by KpNet on the test

set. Due to space limitation, we only present the results obtained from 6-hour ahead

predictions of the Kp index. In Figure 4.14, yellow lines represent observed Kp values

(ground truths) while black lines represent predicted Kp values. The light blue region

in Figure 4.14(a) represents aleatoric uncertainty (data uncertainty). The light gray

region in Figure 4.14(b) represents epistemic uncertainty (model uncertainty). It can

be seen from Figure 4.14 that the black lines are reasonably close to the yellow lines,

demonstrating the good performance of KpNet, which is consistent with the results

in Figure 4.13. Figure 4.14 also shows that the light gray region is much smaller than
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the light blue region, indicating that the model uncertainties are much smaller than

the data uncertainties. Thus, the uncertainty in the predicted result is mainly due to

the noise in the input test data. Similar results were obtained from the other w-hour,

1 ≤ w ≤ 9, w ̸= 6, ahead predictions of the Kp index.
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Figure 4.14 Uncertainty quantification results produced by KpNet. (a) 6 hr ahead
forecasting results with data uncertainty (light blue region). (b) 6 hr ahead
forecasting results with model uncertainty (light gray region). Yellow lines
represent observed Kp values while black lines represent predicted Kp values.

106



4.2.7 Summary

We presented a novel deep learning model, named KpNet, to perform short-term,

1-9 hour ahead, forecasting of the Kp index based on the solar wind parameters

taken from the NASA Space Science Data Coordinated Archive. KpNet combines

transformer encoder blocks with Bayesian inference, which is capable of quantifying

both aleatoric uncertainty and epistemic uncertainty when making Kp predictions.

Our experimental results demonstrated the good performance of KpNet and its

superiority over related machine learning methods. These results were based on the

data collected in the period between January 1, 2010 and March 31, 2022. The

training set contained hourly records from January 1, 2010 to December 31, 2021.

The test set contained hourly records from January 1, 2022 to March 31, 2022. To

avoid bias in our findings, we performed additional experiments using 10-fold cross

validation where the data was divided into 10 approximately equal partitions or folds.

The sequential order of the data in each fold was maintained. In each run, one fold

was used for testing and the other nine folds together were used for training. There

were 10 folds and hence 10 runs where the average performance metric values over the

10 runs were calculated. Results from the 10-fold cross validation were consistent with

those reported in this work. Thus we conclude that the proposed KpNet is a feasible

machine learning method for short-term, 1-9 hour, ahead predictions of the Kp index.

In the future, we plan to extend KpNet to perform long-term Kp forecasting using

other data sources such as solar images in addition to solar wind parameters.

4.3 Prediction of the Disturbance Storm Time Index

4.3.1 Background and Related Work

Geomagnetic activities have significant impact on Earth. They can disturb or damage

telephone systems, power grid transmission systems and space satellites. Geomagnetic

activity modeling and forecasting has therefore been an important subject in space
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weather research. The main source of geomagnetic activity is solar activity. The solar

wind, which is a stream of charged particles released from the atmosphere of the Sun,

is considered as the medium through which the Sun exerts influence on Earth. As a

consequence, solar wind parameters such as the interplanetary magnetic field (IMF),

total electric field, solar wind speed and plasma temperature are often used to model

geomagnetic activities and forecast geomagnetic indices.

The disturbance storm time (Dst) index is an important geomagnetic index.

It has been used to characterize the size and intensity of a geomagnetic storm. A

negative Dst value means that the Earth’s magnetic field is weakened, which happens

during storms. A storm is considered moderate when Dst is greater than −50 nT,

intense when Dst is between −50 nT and −250 nT, or super when Dst is less than

−250 nT [124, 71].

Many techniques have been developed to model and forecast the Dst index. For

example, [36] adopted differential equations to model the Dst index. The authors

used solar wind parameters as the source of differential equations in their model.

[66] created the first Dst prediction model by employing a time-delay artificial neural

network (ANN) with solar wind parameters as input. The authors performed 1-6

hour ahead predictions for the Dst index forecasting. [16] discussed another strategy

by combining physical models and ANNs, along with parameters such as the solar

wind velocity, IMF magnitude, and IMF clock angle. [106] employed a particle swarm

optimization technique to train ANN connection weights to improve the accuracy of

Dst index predictions.

The above approaches mainly focused on single point predictions. [43] extended

the above approaches by considering probabilistic forecasting of the Dst index. The

authors used Gaussian processes (GP) to build autoregressive models to estimate

Dst 1 hour ahead based on past Dst values, as well as the solar wind velocity and

the IMF Bz component. Their technique generated a predictive distribution instead
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of single point predictions. However, the mean values of the forecasts are not as

accurate as the forecasts produced by ANNs. To improve GP’s poor point prediction

performance, [71] built a Dst index prediction model by combining GP with a long

short-term memory (LSTM) network.

In this work, we present a novel Bayesian deep learning approach for performing

short-term, 1-6 hour ahead, predictions of the Dst index. Our approach, called

the Dst Transformer and denoted by DSTT, combines a multi-head attention layer

with Bayesian inference capable of handling both aleatoric uncertainty and epistemic

uncertainty. Aleatoric uncertainty, also known as data uncertainty, measures the

noise inherent in data. Epistemic uncertainty, also known as model uncertainty,

measures the uncertainty in the parameters of a model [93]. Thus, our work

extends the aforementioned GP-based probabilistic forecasts, which can only handle

model uncertainty, to quantify both data and model uncertainties through Bayesian

inference. It is worth noting that Bayesian deep learning has also been used to mine

solar images [87]. However, Dst values are time series data, not image data, and

hence the architecture of our Dst Transformer is totally different from the model

architecture developed by [87].

The contributions of our work are summarized below.

• Our DSTT model is the first to utilize the Transformer network to forecast the
Dst index for a short-term period (i.e., 1-6 hours ahead).

• This is the first study in which both data and model uncertainties are quantified
when performing Dst index forecasting.

• Our DSTT model outperforms closely comparable machine learning methods for
short-term Dst index forecasting, as evidenced by performance metrics including
the root mean square error (RMSE) and R-squared (R2).
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4.3.2 Methodology

Data Source: The Dst index measurements used in this study are provided by

the NASA Space Science Data Coordinated Archive.7 The data source provides

other widely accessed data that are frequently used in solar wind analysis. The data

source is being periodically updated with Advanced Composition Explorer (ACE).8

We used the Dst index data in the time period between January 1, 2010 and November

15, 2021. We selected the time resolution of the hourly average for the Dst index.

Following [111], we considered seven solar wind parameters, namely the interplanetary

magnetic field (IMF), magnetic field Bz component, plasma temperature, proton

density, plasma speed, flow pressure, and electric field. The total number of records

in our dataset is 104,080. The Dst index values in the dataset range from 77 nT to

−223 nT.

Data Labeling: We divided our dataset into two parts: training set and test set.

The training set contains 102,976 records from January 1, 2010 to September 30,

2021. The test set contains 1104 records from October 1, 2021 to November 15, 2021.

The training set and test set are disjoint. The records are labeled as follows. Let t be

a time point of interest and let w be the time window ahead of t, where w ranges from

1 to 6 hours for the short-term Dst forecasting studied here. The label of the record

at time point t is defined as the Dst index value at time point t+w for w-hour-ahead

forecasting. Each record in the training set has eight values including the seven solar

wind parameter values and the label of the training record. Each record in the test

set contains only the seven solar wind parameter values; the label of each testing

record in the test set will be predicted by our DSTT model.

7Retrieved on 03/15/2022 from https://nssdc.gsfc.nasa.gov
8Retrieved on 03/15/2022 from https://omniweb.gsfc.nasa.gov
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Figure 4.15 Architecture of our Dst Transformer (DSTT).

Architecture of the DSTT: Figure 4.15 presents the architecture of our DSTT

model. DSTT is created using the tensorflow keras framework.9 We add multiple

layers to DSTT to enhance its performance and improve its learning capability. The

model accepts as input non-overlapping sequences of records xp+1, xp+2, . . . , xp+n,

where n is set to 1024 in our study. Each sequence is passed to a one-dimensional

convolution neural network (Conv1D) with 32 kernels where the size of each kernel

is 1. Conv1D is well suited for sequential data; it learns patterns from the input

9Retrieved on 04/01/2022 from https://www.tensorflow.org
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data sequence and passes them to a long short-term memory (LSTM) layer that

is configured with 250 LSTM units. Combining Conv1D and LSTM layers has

shown significant improvement in performance when dealing with sequential data

such as time series [5, 59]. LSTM hands the learned patterns down to a multi-head

attention layer [168]. The multi-head attention layer provides transformation on the

sequential input of values to obtain distinct metrics of size h. Here, h is the number

of attention heads that is set to 3 and the size of each attention head is also set to 3

because a number greater than 3 caused overhead and less than 3 caused performance

degradation. The other parameters are left with their default values.

Furthermore, we add custom attention to instruct the layers to focus and pay

more attention to critical information of the input data sequence and capture the

correlation between the input and output by computing the weighted sum of the data

sequence. In addition, we add a dense variational layer (DVL) [163] with 10 neurons

that uses variational inference [25] to approximate the posterior distribution over

the model weights. DVL is similar to a regular dense layer, but requires two input

functions that define the prior and posterior distributions over the model weights.

DVL allows our DSTT model to represent the weights by a distribution instead of

estimated points.

The model, DSTT, also includes multiple dense and dropout layers. Each dense

layer is strongly connected with its preceding layer where every neuron in the dense

layer is connected with every neuron in the preceding layer. Each dropout layer

instructs the DSTT model to randomly drop a percentage of its hidden neurons

throughout the training phase to avoid over-fitting of training data.
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Figure 4.16 Results of the ablation study.

4.3.3 Performance Metrics

We conducted a series of experiments to evaluate our proposed DSTT model and

compare it with closely related methods. The performance metrics used in our study

are the root mean square error (RMSE) [5] and R-squared (R2).

RMSE is calculated as follows:

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2, (4.6)

where m is the total number of testing records in the test set, ŷi (yi, respectively)

represents the predicted Dst index value (observed Dst index value, respectively) at

time point i. The smaller the RMSE, the more accurate a method is.

R2 is calculated as follows:

R2 = 1−
∑m

i (yi − ŷi)
2∑m

i (yi − ȳ)2
, (4.7)

where ȳ is the mean of the observed Dst index values. The larger the R2, the more

accurate a method is.
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4.3.4 Ablation Study

In this experiment, we performed ablation tests to analyze and evaluate the

components of our DSTT model. We considered six subnets derived from DSTT:

DSTT-C, DSTT-L, DSTT-M, DSTT-CL, DSTT-CM and DSTT-LM. DSTT-C

(DSTT-L, DSTT-M, DSTT-CL, DSTT-CM, DSTT-LM, respectively) represents the

subnet of DSTT in which we remove the Conv1D layer (LSTM layer, multi-head

attention layer, Conv1D and LSTM layers, Conv1D and multi-head attention layers,

LSTM and multi-head attention layers, respectively) while keeping the remaining

components of the DSTT network. For comparison purposes, we turned off the

uncertainty quantification mechanism in the seven models.

Figure 4.16 presents the RMSE and R2 results of the seven models. The t+wh,

1 ≤ w ≤ 6, on the X-axis corresponds to the w-hour ahead predictions of the Dst

index based on the testing records in the test set. It can be seen from Figure 4.16 that

our proposed full network model, DSTT, achieves the best performance among the

seven models. DSTT-C captures the temporal correlation from the input data but

it does not learn additional patterns and properties to strengthen the relationship

between data records. DSTT-L captures the properties from the data records

but it lacks the temporal correlation information to deeply analyze the sequential

information in the input data. DSTT-M captures both the temporal correlation

and additional properties, but it does not provide transformation on the sequential

inputs to obtain distinct metrics to further strengthen the correlation between the

predicted and observed Dst values. Similarity, DSTT-CL, DSTT-CM, and DSTT-LM

do not capture the combined patterns due to the removed layers. As a consequence,

the six subnets achieve worse performance than DSTT. It can be seen from Figure

4.16 that removing two layers yields worse results than removing one layer only.

DSTT-LM yields the worst results, indicating the importance of including the LSTM

and multi-head attention layers. The results based on RMSE and R2 are consistent.
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In subsequent experiments, we used DSTT due to its best performance among the

seven models.
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Figure 4.17 Performance comparison of seven Dst forecasting methods.

4.3.5 Comparison with Related Methods

In this experiment, we compared the Dst Transformer (DSTT) with six closely

related machine learning methods including linear regression (LR), random forests

(RF), support vector regression (SVR), auto regressive integrated moving average

(ARIMA) [164], long short-term memory (LSTM), and the method developed by [71],

which combines LSTM with Gaussian processes (GP) and is denoted by LSTMGP.

Because the six related methods do not have the ability to quantify both data and

model uncertainties, we turned off the uncertainty quantification mechanism in our

DSTT model when performing this experiment.

Figure 4.17 presents the RMSE and R2 results of the seven methods: DSTT, LR,

RF, SVR, ARIMA, LSTM and LSTMGP. It can be seen from the figure that DSTT

achieves the best performance, producing the most accurate predictions, among the

seven methods in terms of both RMSE and R2. The deep learning methods including
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DSTT, LSTM and LSTMGP as well as ARIMA mostly perform better than the

traditional machine learning algorithms including RF, LR and SVR.

4.3.6 Uncertainty Quantification Results

Figure 4.18 shows uncertainty quantification results produced by our DSTT model on

the test set. Due to space limitation, we only present the results obtained from 4-hour

ahead predictions of the Dst index. In Figure 4.18, the orange lines represent observed

values of the Dst index (ground truth) while the blue lines represent the predicted

values of the Dst index. The light blue region in Figure 4.18(a) represents aleatoric

uncertainty (data uncertainty). The light gray region in Figure 4.18(b) represents

epistemic uncertainty (model uncertainty).

It can be seen from Figure 4.18 that the blue lines are reasonably close to the

orange lines, indicating the good performance of our DSTT model, which is consistent

with the results in Figure 4.17. Figure 4.18 also shows that the light gray region is

much smaller than the light blue region, indicating that the model uncertainties are

much smaller than the data uncertainties. Thus, the uncertainty in the predicted

result is mainly due to the noise in the input test data. Similar results were obtained

from other w-hour, 1 ≤ w ≤ 6, w ̸= 4, ahead predictions of the Dst index. We note

that when w is longer than 4, the prediction performance starts to degrade. This is

understandable given that we are trying to predict a Dst index value that is farther

away from the input test record.

4.3.7 Summary

The disturbance storm time (Dst) index is an important and useful measurement in

space weather research, which is used to understand the severity of a geomagnetic

storm. The Dst index is also known as the measure of the decrease in the Earth’s

magnetic field. In this work, we present a novel deep learning model, called the

116



10/01/21 10/11/21 10/22/21 11/03/21 11/15/21

-150

-100

-50

0

50

Time
(a)

4h ahead forecasting

10/01/21 10/11/21 10/22/21 11/03/21 11/15/21

-150

-100

-50

0

50

Time
(b)

4h ahead forecasting

Figure 4.18 Uncertainty quantification results produced by our Dst Transformer (DSTT).

Dst Transformer or DSTT, to perform short-term, 1-6 hour ahead predictions of

the Dst index. Our empirical study demonstrated the good performance of the Dst

Transformer and its superiority over related methods.
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Our experiments were based on the data collected in the period between January

1, 2010 and November 15, 2021. The training set contained hourly records from

January 1, 2010 to September 30, 2021. The test set contained hourly records from

October 1, 2021 to November 15, 2021. To avoid bias in our findings, we performed

additional experiments using 10-fold cross validation (CV). For the CV tests, we used

the original data set described above and another data set ranging from November

28, 1963 to March 1, 2022 that has 510,696 records. In addition, we generated

synthetic data with up to 1.2 million records to further assess the performance and

stability of our DSTT model. With the 10-fold CV tests, the data was divided into

10 approximately equal partitions or folds. The sequential order of the data in each

fold was maintained. In each run, one fold was used for testing and the other nine

folds together were used for training. There were 10 folds and hence 10 runs. We

computed the performance metrics including RMSE and R2 for each method studied

in this research in each run. The means and standard deviations of the metric values

over the 10 runs were calculated and recorded. Results from the 10-fold CV tests were

consistent with those reported in the research. Thus we conclude that the proposed

Dst Transformer (DSTT) is a feasible machine learning method for short-term, 1-6

hour ahead predictions of the Dst index. Furthermore, our DST Transformer can

quantify both data and model uncertainties in making the predictions, which can not

be done by the related methods.

Our work focuses on short-term predictions of the Dst index by utilizing solar

wind parameters. These solar wind parameters are collected by instruments near

Earth and are suited for short-term predictions of the geomagnetic storms near Earth

[71, 111]. When using the solar wind parameters to perform long-term (e.g., 3-day

ahead) predictions of the Dst index, the accuracy is low. In the future work, we plan

to perform long-term predictions of the Dst index by utilizing solar data collected by

instruments near the Sun. The solar data reflects solar activity, which is the source of
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geomagnetic activity. We plan to extend the Bayesian deep learning method described

here to mine the solar data for performing long-term Dst index forecasts.
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CHAPTER 5

RECONSTRUCTION OF SOLAR IRRADIANCE

5.1 Background and Related Work

Deep learning has drawn significant interest in recent years. It has been used

extensively in biomedical applications for Parkinson’s disease assessment [72], drug-

disease interaction learning [44], drug-drug interaction prediction [116], clinical

event prediction [138], breast cancer subtype classification [143], medical image

segmentation [189] and so on. It finds many applications in other domains as well.

For example, deep learning has been used for power load forecasting [45] and traffic

forecasting [184].

More recently, [188] employed a periodic long short-term memory (LSTM)

network for parking behavior prediction.

[88] used a U-shaped convolutional neural network (CNN) to track solar

magnetic flux elements. In this research, we propose a new deep learning method

for reconstructing total solar irradiance.

Solar irradiance is the primary source of energy for our Earth [102], and is a

key input for climate models and changes [17]. It is described in terms of total solar

irradiance (TSI) when all of the radiation is measured. Irradiance is defined as the

amount of light energy from an object that is hitting a square meter of another object

each second. Solar irradiance is the amount of light energy from the Sun’s entire disk

measured at the Earth, and it is known to vary over different temporal scales, in

a manner that is strongly wavelength dependent [100]. TSI variability affects the

Earth’s atmosphere and climate in many ways [69]. To understand the effect of solar

radiation on our Earth’s climate changes, solar irradiance records for long periods

of time are required. Since systematic measurements of irradiance started only in
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the late seventies, many models were introduced to provide irradiance records dating

back to times ranging from century to millennia. All such models are based on the

empirical evidence that irradiance variability is modulated by surface magnetism [58],

while the approaches adopted in the different models are mostly driven by the type

of proxies of the magnetic field available at the temporal scales considered.

Most of the published models aim to reconstruct irradiance variability up to

a few centuries into the past [107, 103]. Such models are intended to address the

impact of solar variability on Earth’s increase of temperatures registered from the

pre-industrial era, and mostly make use of sunspot, or sunspot-group number, as a

proxy of the surface magnetic activity. A few models have instead been proposed in

the literature aiming at reconstructing irradiance variations at longer temporal scales.

Because at those times telescopic observations were not available, such reconstructions

necessarily make use of indirect proxies. These mostly consist of radioisotopes like

14C, 10Be and nitrate-related species [166], which are generated by the interaction of

energetic particles with the Earth’s atmosphere, whose flux, in turn, is regulated by

the heliospheric magnetic field.

Some of the historical irradiance reconstruction models used linear regression

relationships between the irradiance measured at modern times and input proxies.

More complex techniques make use of geomagnetic models to estimate from radioisotopes

the open and closed components of the solar magnetic field, from which the

distribution of magnetic features over the Sun’s disk is recovered.

The most recent state-of-the-art model of this kind was developed by [179] ,

who reconstructed TSI for the previous 9 millennia, making use of two different

cosmogenic isotopes, 10Be and 14C, derived from various datasets [180]. All of the

published models reconstructed solar irradiance based on physics properties [179].
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In this research, we present the first deep learning model, called TSInet, to

reconstruct total solar irradiance for more than 9,000 years. Our main contributions

are outlined as follows:

1. We use TSInet to reconstruct TSI for the entire 9,000 years already covered in
the recent reconstruction by [179] and for additional 1,000 years when physical
data are not available.

2. Our deep learning model does not rely on proxies; hence our model is not
affected by uncertainties in the proxies including errors in their measurements
and estimates.

3. Our TSInet method can be extended back at times when proxies are not
available. When physical data are available, TSInet agrees well with the
state-of-the-art physics-based reconstruction models on the available data.

5.2 Data

In this work, we use measurements of the TSI provided by the Total Irradiance

Monitor aboard the SOlar Radiation and Climate Experiment (SORCE)[146]1. This

dataset, used as our training set, contains daily TSI measurements carried out from

2003 to the present. Figure 5.1 illustrates the SORCE time series dataset showing

the total solar irradiance over time.

Our testing set contains measurements from TCTE Total Solar Irradiance

daily averages2. Total Solar Irradiance Calibration Transfer Experiment (TCTE)3

measurements are made by the LASP TCTE Total Irradiance Monitor (TIM)

instrument aboard the U.S. Air Force’s STPSat-3 spacecraft. This TIM has been

measuring total solar irradiance since late 2013.

1Retrieved on 04/10/2021 from http://lasp.colorado.edu/home/sorce/data/

tsi-data/
2Retrieved on 04/10/2021 from http://lasp.colorado.edu/lisird/data/tcte_tsi_

24hr/
3Retrieved on 04/10/2021 from http://lasp.colorado.edu/home/missions-projects/

quick-facts-tcte/
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Figure 5.1 SORCE total solar irradiance (TSI) data from 2003 to the present.

In addition, we adopt the following publicly available datasets obtained, over

different temporal ranges, by different physics-based models, which will be used as

testing sets in our work.

• NRLTSI2 Daily Averages4 is the daily climate record of total solar
irradiance from 1882 to the present. It is constructed using version 2 of the
Naval Research Laboratory’s (NRL) solar variability model (NRLTSI2). The
NRLTSI2 model computes TSI based on the changes of the quiet Sun conditions
arising from bright faculae and dark sunspots on the solar disk. It uses linear
regression between solar sunspots and facular features, as well as irradiance
observations from SORCE.

• SATIRE-S (Spectral And Total Irradiance REconstruction model - Space era)5

provides daily reconstruction of solar irradiance in the period of 1974 – 2013.
Irradiance is reconstructed by combining the area coverage of magnetic and
quiet features as derived by full-disk magnetograms and continuum images of

4Retrieved on 04/10/2021 from http://lasp.colorado.edu/lisird/
5Retrieved on 04/10/2021 from http://www2.mps.mpg.de/projects/sun-climate/data.

html
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the Sun, together with spectral syntheses obtained by one-dimensional, static,
atmosphere models [183].

• SATIRE-M (Spectral And Total Irradiance REconstruction model - Millennia)6

is similar to SATIRE-S, but the area coverage of magnetic structures is
estimated by making use of a model which relies on the sunspot number [180].
This model provides decennial averages and reconstructs the solar irradiance
over the last 9,000 years. The model is used to reconstruct decadal total TSI.

The total solar irradiance values range from 1356.656 to 1363.525. We use a

feature scaling technique, also known as data normalization, to normalize the range

of data to increase the cohesion of the TSI values. Specifically, we use the min-max

normalization that is calculated as follows:

v̂i =
vi −min(S)

max(S)−min(S)
(5.1)

where v̂i (vi, respectively) is the normalized value (actual value, respectively) at time

point i, and S represents the input data set.

The normalized TSI values range from 0 to 1.

5.3 Proposed Method

5.3.1 Architecture and Training of TSInet

Figure 5.2 presents the architecture of our TSInet. Let t be the latest time point.

Data sample xt contains w values vt, vt−1, . . . , vt−w+1 and the label vt−w where vt is

the TSI value at time point t. (In the study presented here, the time window, w, is

set to 7.) We train TSInet with multiple batches. In the first batch, we use the n

training data samples, xt, xt−1, . . . , xt−n+1, to train TSInet. (In the study presented

here, the number of input data samples, n, is set to 10.) The label of the n training

data samples is determined by the label of the last data sample (i.e., xt−n+1). In

the second batch, we use the next n training data samples, xt−n, xt−n−1, . . . , xt−2n+1,

6Retrieved on 04/10/2021 from http://www2.mps.mpg.de/projects/sun-climate/data.

html
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Figure 5.2 Architecture of TSInet.

to train TSInet. The label of the n training data samples is determined by the

label of xt−2n+1. In the third batch, we use the following n training data samples,

xt−2n, xt−2n−1, . . . , xt−3n+1, to train TSInet. The label of the n training data samples
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is determined by the label of xt−3n+1. We continue this training process until all TSI

values in the training set are used. For every two adjacent data samples xi, xi−1, they

overlap on w − 1 TSI values, namely vi−1, vi−2, . . . , vi−w+1.

TSInet consists of three convolutional layers (Conv1d 1, Conv1d 2, and Conv1d 3)

where the kernel slides along 1 dimension on the time series, a max pooling layer,

a flatten layer, a repeat vector layer, an LSTM (long short-term memory) layer, an

attention layer, two fully connected layers, and an output layer. The output from

the three convolutional layers is flattened by the flatten layer and transformed into

a sequence, also known as a feature vector. The repeat vector layer repeats the

feature vector to reshape and prepare it as the input to the LSTM layer. The LSTM

layer in our architecture contains m LSTM cells (in this study, m is set to 10). The

attention layer with m neurons is used to focus on the relevant information in each

time step [14]. Each of the two fully connected layers has 200 neurons. The activation

function used in our model is ReLU (rectified linear unit). TSInet produces as output

a predicted TSI value.

The proposed TSInet is implemented in Python, Keras, and Tensorflow. We

use adaptive moment estimation (Adam) [108, 67] as the network optimizer, which

is a stochastic gradient descent algorithm that can update network weights based on

training data. Adam is configured with a learning rate of 0.003 and a weight decay

of 0.000005 to regularize the weights and minimize the test error during training in

each epoch. Other Adam parameters (β1, β2, respectively) are set to default values

(0.9, 0.999, respectively). To achieve faster back-propagation convergence, we adopt

the mini-batch strategy described in [108, 67]. The number of epochs is set to 10 by

default.
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5.3.2 Reconstruction of Total Solar Irradiance

After describing the architecture and training procedure of TSInet, we now turn to

the algorithms for reconstructing total solar irradiance (TSI) in a testing set. We

develop two reconstruction algorithms: (i) single-step or 1-step reconstruction; (ii)

multi-step or k-step, k > 1, reconstruction.

Let t be the latest time point. With single-step reconstruction, we begin by

considering the n testing data samples xt, xt−1, . . . , xt−n+1 where xt contains the

w + 1 TSI values vt, vt−1, . . . , vt−w+1, vt−w in the testing set. Our TSInet model,

which is trained as described in Section “Architecture and Training of TSInet,” takes

as input the n testing data samples and predicts the label of the last testing data

sample (i.e., xt−n+1), which is treated as the label of the n testing data samples.

We then use the n testing data samples together with the predicted label to re-fit or

re-train TSInet. The re-trained TSInet then takes as input the next n testing data

samples xt−1, xt−2, . . . , xt−n and predicts the label of the last testing data sample (

i.e., xt−n), which is treated as the label of the n testing data samples. We again

use the n testing data samples together with the predicted label to re-fit or re-train

TSInet. The re-trained TSInet then takes as input the following n testing data

samples xt−2, xt−3, . . . , xt−n−1 and predicts the label of the last testing data sample (

i.e., xt−n−1), which is treated as the label of the n testing data samples. We then use

the n testing data samples together with the predicted label to re-train TSInet. We

continue this predicting-retraining process until all TSI values (labels) in the testing

set have been predicted, at which point we have reconstructed all the TSI values in

the testing set.

With multi-step reconstruction, we begin by considering the first batch

containing the n testing data samples xt, xt−1, . . . , xt−n+1 in the testing set. Our

trained TSInet takes as input these n testing data samples and predicts the label

of the last testing data sample ( i.e., xt−n+1), which is treated as the label of the n
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testing data samples. Then, the same TSInet model takes as input the second batch

containing the next n testing data samples xt−1, xt−2, . . . , xt−n and predicts the label

of the last testing data sample ( i.e., xt−n), which is treated as the label of the n

testing data samples. We keep on using the same TSInet model until the model takes

as input the kth batch containing the n testing data samples xt−k+1, xt−k, . . . , xt−n−k+2

and predicts the label of the last testing data sample ( i.e., xt−n−k+2), which is treated

as the label of the n testing data samples. We then use the k batches, where each

batch contains n testing data samples together with their predicted label, to retrain

our TSInet as shown in Figure 5.2. Then we use the re-trained model to predict the

labels for the next k × n testing data samples.

The difference between single-step reconstruction and multi-step reconstruction

is that the former retrains TSInet once using one batch containing n testing data

sample in every one step while the latter retrains TSInet once using k batches

containing k × n testing data samples in every k steps.

5.4 Experiments and Results

5.4.1 Performance Metrics

We conducted a series of experiments to evaluate the performance of the proposed

TSInet and compare it with related methods. The performance metrics used here

are the root mean square error (RMSE) and Pearson correlation coefficient (CORR).

RMSE is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (5.2)

where ŷi (yi, respectively) represents the predicted TSI value (actual TSI value,

respectively) at time point i. RMSE measures the differences between the actual

TSI values and the predicted TSI values by a method. The lower the RMSE value,
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the more accurate the method is. CORR is calculated as follows:

CORR =

∑
i(ŷi − µ(ŷ))(yi − µ(y))√∑

i(ŷi − µ(ŷ))2
√∑

i(yi − µ(y))2
(5.3)

where µ(ŷ) denotes the mean of all predicted TSI values and µ(y) denotes the mean of

all actual TSI values. CORR is used to measure how strong the relationship between

the predicted and actual TSI values is. CORR ranges from 1 to -1, where 1 means

there is a strong positive correlation, -1 means there is a strong negative correlation,

and 0 means there is no correlation between the predicted and actual TSI values.

5.4.2 Single-Step vs. Multi-Step Reconstruction Algorithms

In this experiment, we compared the single-step ( i.e., 1-step) and multi-step ( i.e.,

k-step) reconstruction algorithms

described in Section “Reconstruction of Total Solar Irradiance.” We used the

SORCE training set to train TSInet and reconstructed the TSI values in the TCTE

testing set for varying k, k = 1, . . . , 10. For each k, we computed the performance

metrics and recorded the runtime used by the algorithms. Figure 5.3 shows the

performance metrics, RMSE and CORR, for varying k. it can be seen from the figure

that the performance of TSInet degrades as k increases. This happens because the

TSInet model is refitted more often, and hence is more accurate when k is smaller.

On the other hand, smaller k requires more runtime, as shown in Figure 5.3. In

subsequent experiments, we fixed k = 5 as it achieved good performance while

requiring reasonable runtime.

5.4.3 Ablation Tests

In this experiment, we performed ablation tests to analyze and evaluate the

components of our TSInet framework by considering two models based on TSInet:

CNN and LSTM. The CNN model is a subnet of TSInet, keeping the three
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Figure 5.3 (i) RMSE and CORR values obtained by TSInet for k-step, k = 1, 2, . . . , 10,
reconstruction of TSI on the TCTE dataset. (ii) Runtime needed by TSInet
for k-step, k = 1, 2, . . . , 10, reconstruction of TSI on the TCTE dataset. (iii)
Comparison of RMSE values of TSInet, CNN and LSTM on the TCTE dataset.
(iv) Comparison of CORR values of TSInet, CNN and LSTM on the TCTE
dataset. (v) Comparison of RMSE values of five TSI reconstruction methods on
the TCTE dataset. (vi) Comparison of RMSE values of five TSI reconstruction
methods on the NRLTSI2 dataset. Results from the SATIRE-S dataset are
similar and omitted.

convolutional layers, max pooling layer, flatten layer, repeat vector layer, attention

layer, two fully connected layers, and output layer, but removing the LSTM layer.

The LSTM model is also a subnet of TSInet, keeping the LSTM layer, attention layer,

two fully connected layers, and output layer, but removing the three convolutional

layers, max pooling layer, flatten layer, and repeat vector layer.

Figure 5.3 presents the RMSE and CORR results from TSInet, CNN, and

LSTM. It can be seen from the figures that TSInet yields the best accuracy

and correlation among the three methods. This happens because CNN learns

characteristics from the input data but it lacks temporal components to deeply analyze

the time series information in the data. On the other hand, LSTM captures the
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temporal correlation in the input data, but it works on the raw input data without

learning additional characteristics to strengthen the correlation between the data

entries. TSInet combines the characteristics it learns in the CNN network and

temporal correlation it learns in the LSTM network. Therefore, TSInet achieves

the best performance.

5.4.4 Comparison with Related Methods

In this experiment, we compared TSInet with four closely related machine learning

algorithms including linear regression (LR), Gaussian process regression (GPR) [151,

8], random forest (RF), and support vector regression (SVR). Figures 5.3 presents

the RMSE results for the five methods on the TCTE and NRLTSI2 datasets. The

figures show that TSInet achieves the best performance among the five methods in

terms of RMSE. The CORR results are similar and omitted here.

To assess whether the results obtained by our TSInet agree with entries in the

testing datasets, we performed the Wilcoxon signed-rank test [136]. According to

the test, the difference between the TSInet results and entries in TCTE (NRLTSI2,

SATIRE-S, respectively) is not statistically significant with p= 0.01552< 0.05 (0.0001

< 0.05, 0.0001 < 0.05, respectively).

5.4.5 Reconstruction of TSI on the SATIRE-M Dataset

SATIRE-M contains decennial averages and is comprised of solar irradiance over the

last 9,000 years. Each entry in the SATIRE-M dataset represents an average of 10

years. However, our TSInet reconstructs daily TSI. To reconstruct solar irradiance on

the SATIRE-M dataset, we employ the following technique. Recall that the SATIRE-

S dataset provides daily reconstruction of solar irradiance in the period of 1974 – 2013.

We first use TSInet to reconstruct total solar irradiance beyond 1974 on SATIRE-S.

Then we take 10-year averages on the reconstructed TSI values.
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Figure 5.4 compares the 10-year averages obtained by TSInet with the entries

in SATIRE-M. TSInet’s results agree mostly with entries in SATIRE-M. According

to the Wilcoxon signed-rank test [136], the difference between TSInet’s results and

SATIRE-M entries is not statistically significant (p = 0.000297 < 0.05). Figure 5.4

also shows that our TSInet model is capable of reconstructing total solar irradiance

beyond 9,000 years. We reconstructed total solar irradiance for additional 1,000 years

beyond the SATIRE-M data.

Figure 5.4 SATIRE-M reconstruction using TSInet plus reconstruction of solar irradiance
for additional1,000 years.

5.5 Summary

The Earth’s primary source of energy is the radiant energy from the Sun. This energy

is known as solar irradiance, or total solar irradiance (TSI) when all of the radiation

is measured. The changes in solar irradiance have a significant impact on Earths’

atmosphere and climate. Therefore, studying and reconstructing solar irradiance

is crucial in solar physics. Existing methods for solar irradiance reconstruction
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are all based on physics-based models [179]. In this research, we presented the

first deep learning method (TSInet) for reconstructing total solar irradiance (TSI).

Experimental results showed that results from our TSInet agree well with those

from the physics-based models. When compared to closely related machine learning

methods, TSInet achieves the best performance among the methods. TSInet does

not depend on physics properties such as proxies, and hence it can be extended back

at times when proxies were not available. We demonstrated here that TSInet is able

to reconstruct TSI for more than 9 millennia.
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CHAPTER 6

SOFTWARE AND DATABASES

This chapter presents the implementation of some of deep learning tools using Jupyter

notebooks and with Github for the all presented models and frames in the dissertation

including TSInet, DeepSun MLaaS, SEP biLSTM, DSTT, and KpNet. The tools are

Binder enabled and have Zenodo archive to download.

6.1 Community Coordinated Software Center

6.1.1 MLaaS: FlareML Framework

This section presents the FlareML framework. FlareML is the backend of an the

machine-learning-as-a-service (MLaaS) presented in Section 2.1. Same as MLaaS,

FlareML system employs four machine learning methods: (i) ensemble (ENS), (ii)

random forests (RF), (iii) multilayer perceptrons (MLP), and (iv) extreme learning

machines (ELM). FlareML is implemented in a Jupyter notebook using Python

programming language and its related Tensorflow packages. In addition, it can run

in Binder and has Zenodo enabled archive. Specific requirements to run the tool are

detailed with examples in the GitHub repository. The repository includes the links to

run the Jupyter notebook, launch a Binder docker, and download Zenodo. Figure 6.1

shows the FlareML GitHub repository main page that includes all the source code

required to download and run the tool.
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Figure 6.1 FlareML Github repository

6.1.2 BiLSTM: SEP Prediction Framework

This section presents the SEP BiLSTM framework. BiLSTM demonstrates how to

predict SEP using deep learning (DL) and SDO/HMI vector magnetic data products

(SHARP parameters) as specified in Chapter 3. BiLSTM is implemented in a Jupyter

notebook using Python programming language and its related Tensorflow packages, it

can run in Binder, and has Zenodo enabled archive. Specific requirements to run the

tool are detailed with examples in the GitHub repository. The repository includes the

links to run the Jupyter notebook, launch a Binder docker, and download Zenodo.

Figure 6.2 shows the BiLSTM GitHub repository main page that includes all the

source code required to download and run the tool.
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Figure 6.2 BiLSTM Github repository

6.1.3 DSTT Framework

This section presents the DSTT framework. DSTT to demonstrate how to

forecast Dst index using deep learning (DL) and solar wind parameters and provide

uncertainty quantification with Bayesian network as detailed in Chapter 4. DSTT

is implemented in a Jupyter notebook using Python programming language and its

related Tensorflow packages, it can run in Binder, and has Zenodo enabled archive.

Specific requirements to run the tool are detailed with examples in the GitHub

repository. The repository includes the links to run the Jupyter notebook, launch a

Binder docker, and download Zenodo. Figure 6.3 shows the DSTT GitHub repository

main page that includes all the source code required to download and run the tool.
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Figure 6.3 DSTT Github repository

6.1.4 KpNet Framework

This section presents the KpNet framework. KpNet to demonstrate how to

forecast Kp index using deep learning (DL) and solar wind parameters and provide

uncertainty quantification with Bayesian network as described in Chapter 4. KpNet

is implemented in a Jupyter notebook using Python programming language and its

related Tensorflow packages, it can run in Binder, and has Zenodo enabled archive.

Specific requirements to run the tool are detailed with examples in the GitHub

repository. The repository includes the links to run the Jupyter notebook, launch a

Binder docker, and download Zenodo. Figure 6.4 shows the GitHub KpNet repository

main page that includes all the source code required to download and run the tool.
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Figure 6.4 KpNet Github repository

6.1.5 TSInet Framework

This section describes and presents the TSInet framework model. TSInet is for

reconstructing total solar irradiance. The tool is implemented in a Jupyter notebook

using Python programming language and its related Tensorflow packages. In addition,

The tool can run in Binder. Figure 6.5 shows the TSInet GitHub repository main

page that includes all the source code required to download and run the tool. The

repository includes the links to run the Jupyter notebook, launch a Binder docker,

and download Zenodo.

6.2 Cyberinfrastructure Database

The Cyberinfrastructure contains solar images of significant M- and X-class flares

occurring in solar cycle 24. These solar images, obtained from NASA’s Solar

Dynamics Observatory, allow scientists to observe and understand the precursors and

aftermath of each flare stored in SolarDB. The web-based online cyberinfrastructure

also contains digitized solar images of some historic observations from the Big
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Figure 6.5 TSInet Github repository

Bear Solar Observatory (BBSO) and H-alpha observations collected from eight

observatories worldwide.

6.2.1 SolarDB

This repository is composed of three databases, namely a flare database, a global

Hα database and a Big Bear Solar Observatory archive, as well as our operational

near real-time flare forecasting system. The figure below shows the home page of

the cyberinfrastructure. Figure 6.6 shows the landing page of the Cyberinfrastructure

website.

6.2.2 Flare Database

The Flare Database contains 129 significant flares of class M5.0 or larger from 60

active regions. It provides several filters to facilitate searching the database. It also

provides options to allow the user to watch a quick look movie for a selected flare
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Figure 6.6 Cyberinfrastructure: SolarDB database website main page.

event or download data files related to the flare event. Figure 6.7 shows a search

example in the database.

6.2.3 Global H-alpha Network Database

This database site consists of multiple links to show H-alpha artifacts as follows:

1. Latest images include a list of latest images from the following observatories:
Big Bear solar observatory, Observatório de Coimbra, Observatory de Paris
Meudon, Uccle Solar Equatorial Table, Kanzelhöhe Solar Observatory, Catania
Astrophysical Observatory, Observatoire Pic Du Midi, and Huairou Solar
Observatory.

2. Synoptic images include a list of the most recent and historical Synoptic map
of Carrington rotation numbers.

3. Stations list the most update information about the each observatory station
including physical location address, contact numbers, website address, and
geographical coordinates.
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Figure 6.7 Cyberinfrastructure: Flare Database.

4. Instruments list the instruments information used by the observatories
including Telescope Aperture, Filter Bandpass, Tunable Filter Range, Detector,
Detector Size, and Dynamic Range.

5. Daily images includes historical daily images from the observatories.

Figure 6.8 shows an example of the daily images from all observatories.
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Figure 6.8 Cyberinfrastructure: Global H-alpha Network Database.

6.2.4 Big Bear Solar Observatory (Historic Observations)

This database contains 1147 records of archived active regions from the Big Bear

solar observatory. It provides several filters to facilitate searching the database. It

also provides options to allow the user to watch a quick look movie for a selected

active region or download data files related to the active region. Figure 6.9 shows a

search example in the database.
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Figure 6.9 Cyberinfrastructure: Big Bear Solar Observatory (Historic Observations).
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation addresses multiple crucial problems in space weather and space

climate domains. Basically, in space weather, it tackles flares prediction, solar

energetic particles and geomagnetic activities: disturbance storm time (Dst) index

and the planetary index (Kp). In space climate, it addresses the total solar irradiance

construction. In addition, the dissertation provides software development tools that

can be used in space weather and space climate research and operational systems.

For space weather, the dissertation addresses the following problems. First,

the dissertation presents the first web based machine-learning-as-a-service (MLaaS)

framework, called DeepSun, that is capable of predicting solar flares through the

internet as well as a hybrid-transformer algorithm that forecasts the occurrences of

solar flares within the next 24 hours. Second, the dissertation presents a deep learning

method, specifically a bidirectional long short-term memory (biLSTM) network, to

predict if an active region (AR) would produce an SEP event given that (i) the AR will

produce an M- or X-class flare and a coronal mass ejection (CME) associated with the

flare, or (ii) the AR will produce an M- or X-class flare regardless of whether or not the

flare is associated with a CME. Third, the dissertation presents multiple algorithms

to forecast geomagnetic indices. Geomagnetic indices are used by Geospace scientists

to measure space storms and their activities. The first index is the SYM-H index

and the algorithm used is graph neural network combined with bidirectional long

short-term memory. The second index is the interplanetary index, known as the Kp

index using transformer based model. The third index is the disturbance storm time

(Dst) using mult-head attention layer combined with convolutional neural network

and long short-term memory algorithms. The algorithms have an added add-on
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functionality that integrates the Bayesian inference into the learning framework, that

is able to quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty

when predicting future indices.

For space climate, the dissertation presents the first deep learning method,

called TSInet, to reconstruct total solar irradiance (TSI). The TSInet reconstructs

total solar irradiance by deep learning for short and long periods of time that span

beyond the physical models’ data availability. It can be used as an add-on to physical

models to reconstruct TSI for more than 9,000 years.

In addition, the dissertation presents the implementation of the deep learning

tools are developed for the algorithms presented in the dissertation. The tools are

implemented using Jupyter notebooks with Github and publicly available to download

and use. The tools include the TSInet for reconstructing total solar irradiance,

DeepSun MLaaS for predicting solar flares, SEP biLSTM for predicting solar energetic

particles, DSTT for predicting and forecasting disturbance storm time, and KpNet for

forecasting the Kp index. The tools are Binder enabled and also have Zendo archive

to download.
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attention networks. In Proceedings of the 6th International Conference on
Learning Representations, 2018.

159



[171] G. Vichare, N. Thomas, K. Shiokawa, A. Bhaskar, and A. K. Sinha. Spatial gradients
in geomagnetic storm time currents observed by Swarm multispacecraft
mission. Journal of Geophysical Research (Space Physics), 124(2):982–995,
2019.

[172] V. Volodina and P. Challenor. The importance of uncertainty quantification in
model reproducibility. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 379(2197):20200071, 2021.

[173] C. B. Wang, J. K. Chao, and C.-H. Lin. Influence of the solar wind dynamic pressure
on the decay and injection of the ring current. Journal of Geophysical Research:
Space Physics, 108(A9), 2003.

[174] X. Wang, Y. Chen, G. Toth, W. B. Manchester, T. I. Gombosi, A. O. Hero, Z. Jiao,
H. Sun, M. Jin, and Y. Liu. Predicting solar flares with machine learning:
Investigating solar cycle dependence. Astrophysical Journal, 895(1):3, May
2020.

[175] J. A. Wanliss and K. M. Showalter. High-resolution global storm index: Dst versus
SYM-H. Journal of Geophysical Research (Space Physics), 111(A2):A02202,
2006.

[176] D. F. Webb and T. A. Howard. Coronal Mass Ejections: Observations. Living Reviews
in Solar Physics, 9(1):3, June 2012.

[177] D. S. Wilks. Sampling distributions of the Brier score and Brier skill score under
serial dependence. Quarterly Journal of the Royal Meteorological Society,
136(653):2109–2118, Oct. 2010.

[178] J. R. Woodroffe, S. K. Morley, V. K. Jordanova, M. G. Henderson, M. M. Cowee, and
J. G. Gjerloev. The latitudinal variation of geoelectromagnetic disturbances
during large (Dst≤-100 nT) geomagnetic storms. Space Weather, 14(9):668–
681, 2016.

[179] C. J. Wu, N. A. Krivova, S. K. Solanki, and I. G. Usoskin. Solar total and spectral
irradiance reconstruction over the last 9000 years. Astronomy & Astrophysics,
620:A120, 2018.

[180] C. J. Wu, I. G. Usoskin, N. Krivova, G. A. Kovaltsov, M. Baroni, E. Bard, and
S. K. Solanki. Solar activity over nine millennia: A consistent multi-proxy
reconstruction. Astronomy & Astrophysics, 615:A93, 2018.

[181] G. Wu, M. He, W. Chen, J. Wei, and H. Zhong. X-Check: Improving effectiveness
and efficiency of cross-browser issues detection for JavaScript-based Web
applications. IEEE Transactions on Services Computing, 2018.

[182] S. Yashiro and N. Gopalswamy. Statistical relationship between solar flares and
coronal mass ejections. Proceedings of the International Astronomical Union,
4(S257):233–243, 2008.

160



[183] K. L. Yeo, N. A. Krivova, S. K. Solanki, and K. H. Glassmeier. Reconstruction of total
and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI,
and SDO/HMI observations. Astronomy & Astrophysics, 570:A85, 2014.

[184] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In Proceedings of the International
Joint Conferences on Artificial Intelligence, pages 3634–3640, 2018.

[185] Y. Yuan, F. Shih, J. Jing, and H. Wang. Automated flare forecasting using a statistical
learning technique. Research in Astronomy and Astrophysics, 10:785–796, Aug.
2010.

[186] V. B. Yurchyshyn, H. Wang, P. R. Goode, and Y. Deng. Orientation of the magnetic
fields in interplanetary flux ropes and solar filaments. The Astrophysical
Journal, 563(1):381–388, 2001.

[187] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff. A transformer-
based framework for multivariate time series representation learning. In
Proceedings of the 27th Association for Computing Machinery and Special
Interest Group on Knowledge Discovery in Data Conference on Knowledge
Discovery & Data Mining, 2021.

[188] F. Zhang, N. Feng, Y. Liu, C. Yang, J. Zhai, S. Zhang, B. He, J. Lin, and X. Du.
PewLSTM: Periodic LSTM with weather-aware gating mechanism for parking
behavior prediction. In Proceedings of the International Joint Conferences on
Artificial Intelligence 2020, pages 4424–4430, 2020.

[189] Q. Zhang, L. Liu, K. Ma, C. Zhuo, and Y. Zheng. Cross-denoising network
against corrupted labels in medical image segmentation with domain shift. In
Proceedings of the International Joint Conferences on Artificial Intelligence,
pages 1047–1053, 2020.

[190] Y. Zhang, S. Pal, M. Coates, and D. Üstebay. Bayesian graph convolutional neural
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