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ABSTRACT 

 
 

ANALYSIS OF CONTAINER THROUGHPUT: DEMAND FORECAST AND 
SEAPORT COMPETITIVENESS ASSESSMENT 

 
 

by 
Hussain Talat Sulaimani 

Seaports play a crucial role in the container industry, where they act as important nodes in 

the transport chain to facilitate international trade. In a competitive market, port capacity 

plays a significant role in defining its competitive position to attract demand and avoid 

congestion. Failing to provide suitable capacity results in the loss of market share. 

Therefore, port decision-makers face the challenge of maintaining and developing suitable 

port facilities to provide efficient services to port users. One of the aspects that decision-

makers consider in the planning and development process is analyzing container demand. 

The analysis of container demand can be challenging due to the dynamic changes in 

international trade, port location and accessibility, competition from other ports in the same 

geographic region, and port selection behavior of shippers and liner companies.  

 This dissertation focuses on analyzing container demand; specifically, it has two 

main objectives: Forecasting short-term container demand and assessing the 

competitiveness position of the port. To forecast demand, the univariate time series 

stochastic approach is applied based on the methodology of Box-Jenkin, and because it 

only requires the historical container throughput. The developed model is used to forecast 

container demand of Jeddah port. The proposed model provides accurate forecasts with a 



 

confidence interval of 93 Percent. The systematic forecasting approach provides the ability 

to update and apply the methodology continuously in the future. 

 To assess port competitiveness, spatial interaction models (SIM) are applied to 

estimate the impact of port performance, hinterland accessibility, and geographic location 

on the container flow. Both temporal and spatial data are collected for the four major ports 

in Saudi Arabia, which are analyzed in the case studies and SIM calibrations. The analyses 

performed in this study revealed that port users, as the results of modernization and 

privatization of the transport sector of the country, are provided with feasible port 

alternatives to efficiently transport freight, leading to fierce inter-port competition. The 

analysis also reveals that maritime connectivity of ports located in the Red Sea have a 

competitive advantage that allow them to attract more container flow and reach further 

hinterland regions when freight rates increase. This is due to their strategic location in the 

major maritime shipping routes. However, the availability of railway connectivity provides 

cheaper inland alternative that restricts the importance of maritime accessibility.  

 This dissertation should be of interest to policy and port-decision makers. The 

applied forecast model is important in the planning phase of resource allocation and facility 

improvements because it provides a reliable instrument to obtain insight into the future 

demand. The assessment of port competition helps decision-makers in evaluating the 

impact of port strategies by understanding the competitive position of the ports. 

Recognizing the scarcity of systematic research on Saudi Arabian seaports suggests that 

these forms of forecast analysis and competitive assessment will benefit the port sector in 

the country.   
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CHAPTER 1 

INTRODUCTION 

 

The globalization of the world economy and the technological evolution have contributed 

to the rapid growth of the international trade (Dicken, 2015). These developments have 

triggered the growth of the transportation industry, which went through a paradigm shift 

that was fueled by containerization and the expansion of intermodalism (Vanelslander, 

2008). Maritime shipping has played an important role in these transformations and 

developments because it is not only the most economical transport mode, but also scales 

well in the production processes (Stopford, 2009). According to the UNCTAD (2017), 

approximately 80% of overall world trade volume is transported by sea, from which 

containerized trade represents 24%. 

 The port industry plays a crucial role in supporting maritime shipping. Container 

shipping and ports are highly interrelated, where changes in container shipping are 

reflected in the port sector. This relationship is seen in the modernization of ports, where 

the strategic behavior of shipping liners makes a major impact on the port operations and 

the development of port infrastructure. In a similar vein, technological advancements have 

positively influenced the operation of containerships through modern handling equipment 

at ports as well as a wider range of operational concepts for transporting containers globally 

by integrating shipping with ports and hinterland transportation (Grant, 2016). These 

advancements are reflected in the growth of container shipping. According to the 

UNCTAD (2011), world container throughput increased by an estimated 13.3% rate to 

531.4 million TEUs in 2010.  
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 Container terminals have a major impact on economic growth as they act as 

important hubs and gateways for the facilitation of international trade and associated 

logistics and supply chains, since their development is reflected in the efficiency of services 

provided to containerships. Therefore, it is imperative to ensure efficient operation, high 

quality of logistic services, security, and effective supply chain management to keep a 

specific port globally competitive (Notteboom, 2004). However, ports are considered as 

nodes in value-driven logistic chains, and the port selection depends on the entire transport 

chain (Robinson, 2002). The determinant factors that influence the port selection, thus, port 

competitiveness, can be categorized into three interrelated groups: Efficiency of port 

operation, hinterland-related, and maritime-related (Grossmann et al., 2007; T. Notteboom, 

2009) (More information in Subsection 2.3.2). 

 Traditionally, port hinterlands, inland markets served by a port, were relatively 

fixed in nature with individual captive markets due to the existence of undeveloped land 

transport infrastructure and the long distances (Alderton, 2008), where ships had to call 

each individual port where freights shipped to and from them (Chlomoudis et al., 2003). 

However, the improvements of land transport networks allow ports to gain access to inland 

markets in further geographic regions, extending their hinterland region (Rodrigue et al., 

2017). Such practice has contributed to the phenomenon of “Inter-port competition” in the 

maritime industry. This competition takes place between ports located in the same service 

region, where advantageous location near markets and better foreland and hinterland 

accessibility of a particular port provides it a competitive advantage over rival ports.  

 Additionally, port capacity plays a significant role in defining its competitive 

position to meet demand and avoid congestion. The lower the time a ship spent in a port, 
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the more attractive the port is to port users. The competitive position of a particular port is 

one of the factors that influence its potential demand; thus, port competitiveness is a crucial 

aspect for decision-makers in terms of investment decisions in increasing the capacity of 

the port (Janssens et al., 2003). Consequently, the main objective of port decision-makers 

is to attract port users by increasing the capacity for the potential demand growth to be able 

to retain and expand the market share of their port.  

 To support decision-making in port development, an accurate forecast of container 

demand is crucial to determine the scale of developments. In addition, port shareholders 

and planners must perform their due diligence by analyzing the strategic and competitive 

position of the port in the context of ever-changing competition (Haezendonck et al., 2006). 

Hence, when planning strategies for retaining or increasing the market share, the 

competitive position of the port must be assessed by the shareholders to understand the 

factors that influence the market and to identify the port position within the competition. 

 The purpose of this dissertation is to provide an instrument to support the port 

stakeholders in the planning process by developing suitable tools to forecast container 

demand, analyze the competitiveness position of the port, and investigate the impact of the 

port, foreland, and hinterland determinants on the container flow.  

1.1 Background 

The potential demand growth for container ports and the dynamic changes in port 

competition are two major issues that decision-makers face and need to deal with in the 

process of port planning and development (Benacchio et al., 2001; Rodrigue & Notteboom, 

2017). Analyzing container demand can be challenging due to the dynamic changes in 

international trade, port location, port accessibility to markets and multimodal facilities, 
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competition from other ports in the same geographic region, and port selection behavior of 

shippers and liner companies (Arvis et al., 2018; Fagerholt, 2000; Gerrits, 2007; 

Tsamboulas & Kapros, 2000). Moreover, the complexity of the problem, its rigorous 

computation, and data availability are other factors that add to the difficulty of analyzing 

demand (Luo & Grigalunas, 2003). 

 The demand for competing ports and their services are interrelated. For example, 

when services are improved in a particular port, it influences the demand for its competing 

ports. This is due to the increasing requirements and port selection strategic behavior of 

port users. Therefore, investments in developing port capacity and intermodal connections 

are also determined by inter-port competition (Meersman & Van de Voorde, 2013). Given 

that ports nowadays are considered nodes in the transport chain, determinants affecting 

port competitiveness can be grouped into three main interrelated categories: Efficiency of 

port operation, hinterland-related, and maritime-related (Grossmann et al., 2007; 

Notteboom, 2009). The port selection decision of port users is influenced by the quality, 

efficiency, and variety of services provided in the determinants mentioned above. Hence, 

the developments of the container industry suggest that well-connected container terminals 

in terms of the hinterland and foreland are more attractive for port users. 

1.2 Problem Statement 

 Container demand analysis is a crucial requirement that decision-makers need to consider 

in the planning and development of  a port. The potential  growth in demand for container 

ports and the dynamic changes in port competition are two major issues that decision-

makers face, and need to deal with in the port planning and development process 

(Benacchio et al., 2001; Rodrigue & Notteboom, 2017). Container ports encounter 
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significant challenges to increase competitiveness and handle the  growth in demand, 

where competitive strength can be achieved by providing efficient capacity through 

increasing productivity, reducing port congestion, and, in some markets, improving 

hinterland accessibility (Gerrits, 2007). Providing efficient port capacity is essential to all 

the stakeholders (e.g., port authority, shipping companies, shippers, and terminal 

operators). To increase capacity,  container demand analysis is one of the requirements that 

port decision-makers need to consider in the planning to develop the port. However, port 

stakeholders have to deal with an increasing number of uncertainties in the container 

industry.  

 In a competitive market, container demand is not only associated with the economic 

activities but also the competitive position of the port and its competitors. The relative port 

competitiveness position is one of the factors that influence demand, which shareholders 

take into account to determine the investment decisions regarding increasing port capacity 

(Meersman et al. 2003). Moreover, the importance of the competitive position of a 

particular port increases when competing ports provide an advantage, compared to its 

competitors, to port users (e.g., shipping companies, shippers, and freight forwarders).   

Cullinane and Wang (2009) argued in their research that “inter-port competition 

occurs when the user of port infrastructure or a particular port service has an economically 

feasible substitute for those facilities in another location.” A port may be threatened by 

substitution by other ports due to the selection behavior of port users. Such a selection 

process may be affected by the introduction of mega-containerships, changes in fuel prices, 

and changes in the transportation network. For example, the emergence of alternative 

routes via a competing port may decrease the market share for a particular port. 
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 Furthermore, port selection is a part of the supply chain selection as ports are 

considered nodes in the supply chain. The selection made by port users for a particular port 

of call is influenced by a set of feasible substitutes where port, routes, transport modes, or 

various combinations of them are considered as alternatives  (Merkel, 2017). Thus, the 

competitive position of a port is influenced by factors related not only to the port but to the 

whole supply chain, where competition between alternative routes is a determinant of 

market share. 

 These developments in the liner shipping network revolutionized the way ports are 

operated, financed, managed, regulated, and how ports compete. In essence, due to the 

continuous transformations in the maritime shipping industry, and subsequently in the port 

sectors, the competition between ports intensified in some regions; thus, increased the 

importance of port competitiveness. Therefore, port shareholders need to understand their 

competitive position, the forces shaping the market, and other ports' competitive standing 

to strengthen their competitiveness. 

 With the complex relationship between port of call and various factors, such as port 

capacity/efficiency, hinterland/foreland access, and other political/economic impact, it is 

simply not enough to forecast the short-term demand for a particular port based on 

historical throughput data, which has been the main approach in the maritime analysis for 

several decades. Therefore, this dissertation is set out to identify the causal factors that 

affect  seaport demand by examining the port efficiency, hinterland access including 

multimodal land transport networks, and the impact of unique geographical locations.   
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1.3 Research Objectives 

The main purpose of this dissertation is to analyze container demand on ports by 

developing quantitative models to assist in the decision-making process of future 

investments. To achieve this, the dissertation has three objectives.  

 The first objective is to develop a model to forecast short-term container 

throughput. As port stakeholders aim to reduce operation deficiency by reducing 

congestion and improving container handling efficiency; their short-term planning 

regarding operations and resource allocation decisions is critical. The short-term forecast 

model contributes as a tool to support decision-makers in operational decisions, 

developments, and modifications to deal with the rapid changes and variability of future 

demand. 

 The second objective is to investigate the impact of inland distance on the 

distribution of container flow and to assess its role in the competitive position of competing 

ports. The evolution of inland distance role in defining the hinterland region is analyzed at 

the port-provincial level by determining and comparing the impact in two time periods. 

Additionally, this analysis will reveal the influence of other barriers that might impact the 

explanatory power of distance on the competing ports, individually. In other words, it 

provides an understanding of the geographic competitive advantage of each port with 

respect to the other ports.  

 However, factors other than inland distance impact the distribution of container 

flow and port competitiveness are considered in the third objective. The third objective is 

to analyze the impact of the geographic characteristics and intermodal connectivity in port 

competitiveness for inland distribution of maritime traffic. This analysis reveals the 
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unexploited potentialities of the ports based on the factors considered in modeling the 

spatial interaction. 

1.4 Approach and Unique Perspectives 

To achieve the dissertation objectives, container demand analysis is conducted. The 

analysis is twofold: (1) forecasting short-term container demand of the port and (2) 

assessing its competitive position. Dissertation part one is on forecasting short-term 

demand at the port level. Dissertation part two is on assessing the port competitiveness at 

the country level.  The case study of Saudi ports is used in this dissertation where massive 

port and inland infrastructure development, and recent changes in container terminal 

concessions in the port sector of Saudi Arabia led to the increase of port competition.  

 To forecast container demand, the univariate time series stochastic model is 

developed based on the Box and Jenkin methodology. The advantage of this model is its 

independence from other variables in forecasting container throughput and its ability to 

consider seasonal variation. In addition, the conducted methodology provides a systematic 

approach in identifying time series patterns, estimating model parameters, and generating 

forecasts, which provides the ability of continuously using the methodology in the future 

to forecast demand. The forecasts are obtained by regressing historical observations of 

container throughput and the current value with the error terms of the past values at 

different lags. As the model forecasts demand by only considering container throughput, 

and the volatility and uncertainty of container demand, the model is only applicable to 

forecast short-term container throughput. Therefore, monthly container throughput of 

Jeddah port for the period 2003-2018 is used to forecast short-term demand. 
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 To assess port competitiveness, two steps are conducted to investigate the impact 

of the determinants of port hinterland and foreland in the distribution of container flow in 

the hinterland. First, the impact of inland distance on the distribution of container flow is 

investigated, where the distance decay parameter is estimated by using Spatial Interaction 

Model (SIM) for two different years to investigate the evolution of distance role in the 

distribution of container flow. Secondly, the impact of port location and intermodal 

connectivity is analyzed along with inland distance. This is done by estimating the 

variables parameter using SIM and the model outcomes to investigate their impact on port 

competitiveness. The unexploited potentialities of the competing ports are assessed by 

analyzing the gap between actual and estimated container flows in both steps mentioned 

above. The gap analysis will reveal the impact of distance and other barriers on each port-

province pair individually. The analysis outcomes also provide an insight into the 

competitive position of the ports based on each hinterland region.  

1.5 Dissertation Structure 

This dissertation is presented in six chapters. The first chapter briefly introduces the 

research area, defines the problem statement, and outlines the dissertation objectives. 

 The second chapter provides an overview of the literature review. The chapter 

consists of three Sections. Section 2.1 includes a brief background of the shipping industry 

and the recent evolution of container ports. Section 2.2 presents previous studies on 

forecasting container demand and various forecasting models. Section 2.3 provides an 

overview of port competition and previous studies on the assessment of port competition. 

Finally, Section 2.4 outlines the research questions. 
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 Chapter three presents the proposed methodology to answer the research questions. 

The methodology involves three quantitative modeling techniques to analyze container 

demand. That is, (1) Forecasting short-term container demand, (2) investigating the impact 

of inland distance on container flow, and (3) Analyzing the factors impacting port 

competitiveness. Thus, The chapter is divided into three Sections. In Section 3.1, Time 

series stochastic forecasting models are presented. Sections 3.2 and 3.3 offer the models 

used to assess port competitiveness. Section 3.2 explains the maximum entropy version of 

SIM, which investigates the impact of inland distance on port competitiveness. In Section 

3.3, the statistical approaches to estimate SIM are exhibited, focusing on Poisson-based 

SIM, which investigates the impact of other factors along with the inland distance on port 

competitiveness. 

 Chapter four presents the case study used to forecast container demand and analyze 

port competitiveness. In Section 4.1, the background of Jeddah port is presented. Then, 

section 4.2 gives an overview of the development of the port sector in Saudi Arabia. 

 Chapter five presents the model fitting and research outcomes. The chapter also 

includes a discussion about the dissertation findings. In Section 5.1, the univariate Time 

Series stochastic model is applied to forecast short-term container throughput at Jeddah 

port. In Section 5.2, the explanatory power of distance on inland distribution of maritime 

traffic is investigated by applying Spatial Interaction Model (SIM) and gap analysis. After 

that, Poisson-based SIM is used in Section 5.3 to investigate competing ports' competitive 

position by analyzing the impact of inland distance, railway availability, and port location 

within major shipping routes on the inland distribution of maritime traffic. 
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 Lastly, chapter six provides a summary of the conducted methodology, findings, 

and contribution in Sections 6.1 and 6.2. In Sections 6.3 and 6.4 outlines limitations and 

recommendations for future research, respectively.  
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 

This chapter is organized into four Sections, each presenting research gaps at the end. In 

Section 2.1 presents the recent development of the global container shipping industry, its 

implications on container ports, and the evolution of hinterland. Section 2.2 reviews 

various forecasting models applied in previous studies on forecasting container demand, 

with a focus on the time series stochastic approaches. In Section 2.3 presents the evolution 

of port competition, its influence on hinterland expansion, and the impact of port 

characteristics and geographical location in its competitive position. Previous studies 

applying spatial interaction models to assess hinterland accessibility and port 

competitiveness are reviewed as well. Research gaps are presented at the end of each 

Section. Lastly, Section 2.5 introduces the research questions. 

2.1. The Evolution of Shipping Industry 

This section presents recent developments of the global container shipping industry and 

the role of port planning in the development of port capacity. 

2.1.1 Recent developments in container industry 

Containerization plays a significant role in facilitating world international trade. Ever since 

launching the first container ship in 1956, the container shipping industry has grown 

remarkably, reflecting the importance of containerization in a global economy. Because of 

the standardization aspect, containerization provides the cost and time needed of freight 

shipping dropped as economies of scale rose dramatically. In addition, during the last three 
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decades, as globalization reshaped the global market economy, global economic 

development boosted the growth of the container industry, bringing enormous international 

trade growth. The expansion resulted from increased off-shore manufacturing activities 

within the production chain (De Langen, 2003). These changes in international trade paved 

the way for the container shipping sector to grow significantly. 

 As container seaborne trade has proved its worth globally, it became the backbone 

of international trade. Compared to other shipping sectors, container shipping has been the 

fastest growing cargo segment at an annual average growth rate of 8.2% over 1990-2010 

(UNCTAD, 2011). According to the annual report of “Review of Maritime Transport 

2011” published by the World Economic Forum, global container seaborne trade accounted 

for approximately 16% of the total volume of international seaborne trade in 2010 

compared to just 6% in 1990. However, container demand growth is expected to continue 

in the upcoming years (UNCTAD, 2018).  

 The rapid growth in container seaborne trade led to the evolution of mega 

containerships. To cope with the expansion of global container seaborne trade, liner 

companies seek economies of scale, container ship size has been increasing at a high pace 

over the last twenty years. The new generation of mega containerships has a capacity of 

more than 24,000 TEU (UNCTAD, 2019) compared to a little over 4,800 TEUs capacity 

of containerships in 1990 (Merk et al., 2015). This rapidly increasing pace of container 

ship size had significant consequences on the whole container shipping industry. They 

brought cost savings per container for carriers and reduced freight cost per container for 

shippers. 
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 Furthermore, the continuous increase of containership sizes largely impacts the 

competitiveness of ports. As mega containerships have large dimensions, ports face the 

challenge of providing the infrastructure needed to meet mega ships requirements and 

carriers’ expectations (Merk, et al., 2015). Carriers argued that container ports that are not 

capable of providing the required port facilities will not get called by liners (Haralambides, 

2017). As a result, ports that are incapable of getting called by mega containerships face 

the risk of losing market share. 

2.1.2 Port Capacity and Planning  

The main objective of port decision-makers and planners is to attract port users by 

increasing the capacity for the potential demand growth to be able to retain and expand the 

market share of their port. Port planning is a complex process that involves various options 

and scenarios (Sanders et al., 2007). Having enough capacity is not a goal by itself, as port 

decision-makers must increase port utilization. Excessive port capacity compared to 

limited container demand results in low utilization of port facilities (Figueiredo et al., 

2015). On the contrary, exceeded demand leads to congestion in port facilities, an increase 

in a shipper’s cost while using ports, and extra time needed due to waiting for service and 

container handling, leading to the loss of market share.  

 To improve port capacity, port planners must decide at different planning levels. 

Based on the time horizon, three planning levels are considered by decision-makers:          

(1) the strategic level concentrates on large investment for long-term plans to provide 

strategic competitive position to the port.; (2) the tactical level concerns utilizing available 

resources and increasing facilities efficiency; and (3) the operation level increases 

operational efficiency (Figure 2.1). 
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Figure 2.1  Demand analysis as strategic tool. 
Source: Gaur (2005) P:40. 
 

 The analysis of container demand is a crucial requirement that the decision-makers 

need to consider in the planning process (see Figure 2.2). The potential demand growth for 

container ports and the dynamic changes in port competition are two major issues that 

decision-makers face and need to face in port planning and development. 

 

 

Figure 2.2  Port planning elements. 
Source: Dekker (2005) P: 71.  



 

 16 

2.2 Forecasting Container Demand 

This Section is organized in the following way: 2.2.1 reviews various forecast techniques 

applied to forecast freight demand. Subsection 2.2.2 reviews studies applying forecast 

techniques to predict freight demand. Subsection 2.2.3 focuses on comparing short-term 

freight forecasts with various parametric and non-parametric models. Subsection 2.2.4 

focuses on the application and differences of parametric time series models. Also, studies 

comparing various time series models are presented to predict container throughput.  

Subsection 2.2.5 presents the characteristics of time series stochastic methodology. Lastly, 

Subsection 2.2.6 illustrates research gaps.  

2.2.1 Forecasting as a Strategic Tool 

Demand forecast has been a recurrent topic in the shipping industry. The planning for 

developing an existing transport infrastructure or investing in a new project raises the 

question of how the demand growth is expected to evolve and how the service level of the 

under-planned projects is going to be. Therefore, port planners and decision-makers rely 

heavily on forecasting container demand which contributes as a tool in making suitable 

decisions and reducing uncertainty (Stopford, 2009). For example, port authorities need 

container forecasts to assess future infrastructure projects, while terminal operators use the 

forecasts to plan for operational decisions. 

 Before proceeding to the literature, however, it is important to define the major 

terms from this section. Traffic forecast is defined by Flyvbjerg (2007) and 

Nicolaisen (2012) as being the estimation of demand, ridership, or traffic for a transport 

project, either for the short-term, medium-term, or long-term. In addition, Jansson and 

Shneerson (1982) defined demand forecast as a tool to assess operational and planning 
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decisions by forecasting future demand. Container throughput is a measure that reflects the 

container volume, expressed in Twenty feet Equivalent Units (TEUs), where TEU is a 

standard measure of container demand and capacity of ports and containerships. 

 In the literature of freight forecast, many studies forecasted freight demand at 

seaports. The diversity across these forecast studies is large in terms of forecast objective, 

techniques, and study span. Therefore, these studies can be classified into different 

perspectives: 

1. From the methodology perspective: Forecast methods can be quantitative, some 
are qualitative, and others are a combination of both (De Langen et al. 2012). 

2. Form the analysis level perspective: Forecasts can be applied at the level of 
analysis such as total port throughput, specific cargo category, or disaggregate 
commodity level.   

a. Studies may aim to forecast freight at the port or country level, such as the 
study of Dragan (2017), who predicted seaborne flow of Sweden. 

b. Specific cargo category (container, dry bulk) as in the case of Veenstra et 
al. (2001) who forecasted seaborne trade flows of crude oil, iron ore, grain, 
and coal in various global routes. 

c. At a disaggregate commodity level such as the study conducted by Milad 
(2012) forecasted imports of machinery equipment. De Langen et al.( 2012) 
emphasized the importance to apply forecast models on one type of cargo 
or category instead of the overall freight volume of the port since cargo 
characteristics influence model selection.  

3. From the application perspective: Some studies forecasted freight traffic at the 
port level, such as Antwerp port in Rashed (2014). Other studies were conducted at 
a country level, such as Spain in Coto-Millán et al. (2011), Sweden in Henesey 
(2014), and Indonesia in Milad (2014). Also, some studies were conducted at a 
regional level, such as van Dorsser et al. (2012), who forecasted port demand at the 
range of Hamburg – La Herve ports in Northern Europe, and the study of Xie et al. 
(2013) who forecast container demand of ports at Yangtze River delta in South 
China. 

4. The objective and forecast horizon perspective: Forecast studies can also be 
categorized according to the length of time series data used, which also determines 
the forecast horizon. Some studies forecast short-term by using monthly or 
quarterly data; others are aimed at long-term forecasts by using annual data. The 
forecast horizon is determined based on the research objective where short-term 
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forecasts are used to assess operational planning, and Long-term forecasts assist in 
capital investments. 

 For this dissertation the aim is to forecast short-term container throughput at the 

port level measured in twenty-foot equivalent units (TEUs), that represents the demand 

side for the port. Various types of models have been extensively applied to modeling and 

forecasting freight demand in the literature. Therefore, an overview of the literature is 

provided in this section by focusing on the empirical studies to forecast short-term demand. 

The classification adopted in the literature review is according to the conducted forecast 

method. An overview of overall studies in freight forecast is provided first, and then, the 

literature review is narrowed down to concentrate on short-term container throughput. 

2.2.2 Forecasting Freight Demand 

Various forecasting models can be applied to deal forecast freight demand. Choosing the 

most appropriate model depends on a number of factors: i.e., the forecast context, data 

availability, the desired degree of accuracy, and forecast horizon (McCarthy et al. 2006). 

Based upon the extent to which mathematical and statistical methods are used, forecast 

techniques can be broadly classified into two major categories: qualitative and quantitative 

techniques. (Chambers et al., 1971). Quantitative techniques focus on analyzing historical 

demand to generate forecasts based on the assumption that the underlying historical trend 

will continue in the future. On the other side, qualitative techniques do not rely on analysis 

methods that heavily require existing historical data. Instead, it mainly employs experts' 

judgment and accumulated knowledge by using expert surveys as the main source of 

information to predict future demand. A wide range of forecast approaches, both qualitative 
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and quantitative, were used in the literature. However, applied quantitative techniques are 

more commonly used to forecast freight demand because of the systematic apparatus it 

provides and the availability of time series data (Zhao et al., 2013). This section focuses on 

applied quantitative techniques to forecast freight demand. 

 Various quantitative methods have been applied in the literature to forecast freight 

demand. These methods can be categorized into two major types, namely, time series 

models and cause and effect models. Time series models rely on past observations to 

forecast future demand. Examples of time series models include classical exponential 

smoothing, Holt-Winters’ exponential smoothing, growth curve, and Stochastic models 

(i.e., ARMA and ARIMA). On the other hand, cause and effect models identify and 

measure the explanatory relationship between the forecasted variable and one or more 

predictor independent variable(s). Examples include linear regression, system dynamics, 

nonlinear regression, traditional neural networks, and artificial neural networks.  

            Various forecast models are applied in the literature to predict freight demand with 

causal models being widely applied in previous studies e.g., (C. C. Chou et al., 2008; Patil 

& Sahu, 2016; Seabrooke et al., 2003). Since causal models rely on the causal relationship 

between variables, the determinants of freight demand behavior have to be analyzed as 

with Coto-Millán et al. (2005).  However, estimating demand by using traditional 

regression approaches is based on time series data (a data that is non-stationary in real-life 

time series) where models such as Ordinary Least Square (OLS) assumes that the time 

series is stationary. Broadly, a time series is defined as nonstationary when its mean, 

variance and covariance values between equal lag length are constant over time (Schmukler 



 

 20 

et al., 1997). Ignoring non-stationary and not modifying the errors leads to spurious 

regression (Rashed et al., 2015; Syafi’i et al., 2005).  

            To improve forecast accuracy, other studies combined regression models with 

various forecasting models such as Linear regression and Neural Network (Gosasang et al., 

2011; Lam et al., 2004), Linear with gray model Chen and Gu (2010), Grey model with 

logistic growth curve models (Zhao et al., 2013), and traditional fuzzy set theory and 

regression analysis (Chou et al., 2003). Combined regression, compared to singly models 

provides better forecasts. 

            It is shown in the literature that studies applied to forecast freight demand were 

mostly conducted to predict long-term demand where traditional regression models were 

widely adopted. On the contrary, limited number of studies were conducted on short-term 

freight demand at seaports. In the next subsection, studies conducted to forecast short-term 

freight demand are reviewed. 

2.2.3 Short-term Freight Demand Forecast 

To forecast short-term demand, both parametric and non-parametric time series models are 

applied in the literature. In recent years, the popularity of non-parametric in forecasting 

short-term freight demand increased due to their ability to capture time-series patterns and 

to improve forecast results by trial-and-error methods (Gautam & Singh, 2020). Examples 

of non-parametric models includes Neural Networks (NNs), Genetic Programming (GP) 

and Error Correction Models (ECM). These models, among others, were applied in the 

literature to forecast freight demand. 
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 NN models are soft computing methods that are able to model seasonality and 

changes in the time series trend (Lam et al., 2004).  Lam et al., (2004) used the Neural 

Network model to forecast freight demand at Hong Kong Port. Zhang and Kline (2007) 

applied 44 NN models into a large dataset of 756 quarterly time series. NN models are able 

to deal with changes in the time series pattern to overcome the linearity assumption (Lam 

et al., 2004). Other non-parametric models applied to forecast freight demand includes 

Error Correction Models (ECM) as in the studies of (Fung, 2002; Lam et al., 2004). Genetic 

Programming as in (Chen & Chen, 2010; C. C. Chou et al., 2008), and Least Squared 

Support Vector Regression (LSSVR) (Xie et al., 2013). However, non-parametric models 

have some deficiencies. 

            Despite the fact that non-parametric models provide accurate forecasts, neither 

provide a structural mathematical formation or functional form (Farhan & Ong, 2018); 

thus, making it difficult to understand how the forecasts are generated. Also, non-

parametric models require a large number of time series observations, proper time series 

preprocessing and transformation where there is no literature that provides suitable 

transformation to be utilized to improve forecasts (Gautam & Singh, 2020).  

On the contrary, parametric models are known for their transparency where they 

assume that the stochastic stationary process has a specific structure that can be described 

by mathematical expressions that contain a specific number of parameters (Farhan & Ong, 

2018). Furthermore, parametric models allow the historical pattern to be differentiated 

from random components in the time series and avoids overfitting by applying various 

parameter selection criteria. The above-mentioned limitations of non-parametric models 
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led to the selection of parametric over non-parametric models to forecast short-term 

container demand. 

2.2.4 Univariate Time Series Forecasting Model 

Various types of time series forecast methods are used to predict short-term demand based 

on the historical observations of demand. Examples of time series models are exponential 

smoothing, gray model, classical decomposition, and Box-Jenkin (ARIMA) models. 

Various models were applied in previous studies to forecast freight demand.  

Choosing the right method depends on the port characteristics and behavior of 

historical freight throughput.  Exponential smoothing (ES) techniques are simple tools 

used for smoothing and forecasting the time series by assuming that most recent 

observations are more important for a forecast; thus, applying weights on observations that 

decrease exponentially with time (Lemke, 2010). Ee et al. (2014) forecasted container 

throughput by using Halts and Winters Exponential Smoothing and SARIMA model and 

stated that both models provide reliable forecasts; but they indicated that the flexibility of 

SARIMA model in dealing with autocorrelation makes it more suitable in providing 

reliable forecasts.  

Another time series model is Grey Model (GM). This model is suitable to forecast 

demand when issues such as insufficient information and uncertain behavior are 

encountered (Deng 1982). It also does not require a large dataset nor prior knowledge (less 

computational work). GM is applied in the studies of Jiang and Lei (2009); Huang et al. 

(2003) to forecast cargo throughput.  The selection of a proper model doesn’t only depend 

on the forecast purpose and horizon (short/medium/long term) but also on port 

characteristics and historical time series structure and pattern (seasonality and trend). 
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 However, capturing the seasonality variation on the time is crucial for the 

operational planning of ports. Liang and Chou (2003) and Chen (2010) analyzed container 

throughput at three Taiwanese ports and argued that Chinese New Year has a significant 

impact on container throughput at all ports in Taiwan. Furthermore, capturing the 

seasonality effect in the historical demand increases forecasting reliability (Xie, 2013). 

This is due to the impact of seasonal fluctuations on the variations of the forecasted dataset.  

Gray and exponential smoothing models lack the ability to deal with seasonal variations. 

On the other hand, the classic decomposition and Box-Jenkins time series methods allow 

to model seasonal time series; thus, they provide the ability to remove seasonal factors 

before forecasting demand. This is done by decomposing the time series into four separate 

components: trend, cyclical, seasonal, and random components. 

            Various studies were conducted to compare the reliability of time series models 

where the impact of ignoring seasonal variation in some models can been seen in the 

forecast results of some models. The model reliability, in these studies, is based on 

measuring the forecast error in the predicted results by using various error measures such 

as the mean absolute error, mean absolute percent error, and the root mean square error. A 

comparison of six univariate and causal models is conducted by Peng & Chu (2009) in 

forecasting container demand of three Taiwanese ports of the period 2003-2006. The 

applied models are a combination of causal and time series models, namely, the classical 

decomposition model, trigonometric regression model, regression model with seasonal 

dummy variables, grey model, hybrid grey model, and SARIMA model. The comparison 
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showed that classical decomposition model, and to a lesser extent SARIMA model, 

provides the most accurate forecasting results. 

 In addition, the Grey Model provided the poorest forecast accuracy due to its 

inability to deal with seasonality properly. The authors indicated that the monthly 

observations of the three ports exhibit a seasonal pattern and sharp decrease in the container 

throughput in February of each year due to the Chinese New Year holidays. A study is 

conducted by Huang et al. (2020) based on the same dataset, forecast models, and time 

horizon as the study of Peng & Chu (2009). However, the authors stated that using the 

formal statistical theory to estimate SARIMA model and forecast container demand 

revealed its superiority compared to Classical decomposition.  

 Furthermore, Dragan et al. (2014) compared the results of three univariate time 

series models, namely, classical decomposition, Holt-Winters, and ARIMA models. By 

applying the models on the quarterly container throughput for the period 2002-2012 of four 

Northern Adriatic ports, the outcomes showed that the ARIMA model resulted in better 

forecasting results compared to less complicated models. They indicated that this is due to 

the capability of SARIMA in delineating the seasonal variation. Despite the fact that many 

forecasting models have been applied in previous studies, ARIMA models tend to 

outperform the other time series models due to their ability to deal with seasonality, 

stationary, and autocorrelation. 
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2.2.5 The Characteristics of Time Series Stochastic Models  

Unlike its counterparts, the formal and structured approach of ARIMA, developed by (Box 

and Jenkins 1976), flexibly incorporates the dynamic structure of the time series, which 

provides ARIMA an advantage in forecasting short-term demand (Farhan, 2018). 

Therefore, ARIMA approach is drawn attention in the literature due to its capability of 

identifying and analyzing: a) the dynamic and systematic variation in the series of data 

(seasonality); b) the cyclical patterns; c) the presence of trend patterns; and d) the historical 

growth rates.  

Accordingly, the process of the Box-Jenkins forecast approach provides a 

systematic methodology in identifying and dealing with seasonal variation and non-

stationary nature of real-life time series observations (Siami-Namini et al., 2018). To 

identify model parameters and forecast demand, Box and Jenkins (1976) proposed a 

systematic methodology, known as Box-Jenkins methodology. This methodology consists 

of three phases: 1) model identification, 2) model estimation and diagnostic testing, and   

3) forecast application. 

 The literature in freight demand forecast shows that applying Box-Jenkins time 

series approach provides high forecast performance in the short-term horizon (Kim, 2008; 

Shin, 2011; Pak & Yeo, 2011; Rashed, 2016; Farhan (2018)). To account for the seasonal 

component, other studies used the Seasonal Autoregressive Integrated Moving Average 

(SARIMA), an extended version of ARIMA, to forecast freight throughput (Chou, 2003; 

Kim, 2007). These studies reveal the significance of ARIMA and SARIMA models in 

forecasting freight demand. However, as the forecast horizon increases, the ability of 

ARIMA models to generate accurate forecasts deteriorates, because these models are 
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ineffective at capturing long-term variation in the time series. Nevertheless, ARIMA 

models are proven to provide accurate short-term forecasts. 

2.2.6 Conclusion 

To sum up, the review performed on extant forecast literature provides some insights and 

recommendations. From the literature review, it is concluded that a reliable forecasting 

model from a specific port does not mean it suits other ports' forecasts. Therefore, there is 

no inclusive best model that outputs reliable results for all ports; so, choosing a forecasting 

technique does not only depend on the forecast purpose and horizon (short/medium/long 

term) but also on port characteristics and historical time series structure and pattern 

(seasonality and trend). 

 Both short-term and long-term perspectives were considered in forecasting 

container demand. However, long-term demand was widely forecasted in previous studies, 

where as a limited number of studies forecasted short-term demand. Most studies applying 

time series models to forecast short-term demand lack consideration of seasonal variations 

which appears to be crucial for short-term port planning and operational decisions. Hence, 

issues related to time series behavior such as periodicity and seasonality may not be 

appropriately addressed. Furthermore, to deal with these issues, ARIMA models appear to 

provide a systematic approach to understand time series behavior and deal with issues 

related to historical patterns of container demand such as non-stationary and seasonal 

variations. 
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 A limited number of studies applied time series stochastic models to forecast short-

term container demand. In most cases, studies applying ARIMA to forecast container 

demand were either using tones, a naive conversion method from tones to TEUs or lack 

explaining the conversion method. From a practical perspective, using TEUs to forecast 

the container throughput is crucial and more beneficial to terminal operators and port 

authorities since the decision making depends on the number of handled TEU. Therefore, 

there is a need for developing forecasting models for short-term demand by using monthly 

TEU and incorporating seasonality and considering time series stationarity. 

            Additionally, the literature shows that global financial and economic crises, such 

as the 2008 financial crisis, play a leading role in container demand. Most studies were 

conducted on time series observations for the periods before the 2008 financial crisis. Also, 

empirical studies that were conducted to forecast container demand of forecast horizons 

that covers the crisis period impacts the performance of certain models. To deal with the 

complexity and dynamic behavior of container demand, and to ensure a rigorous support 

instrument for the decision-making process, ARIMA models are applied to understand the 

structure of the series by analyzing the historical demand pattern; thus, avoiding the 

negative impacts of such major changes in the time series pattern. The literature also shows 

that the majority of studies applying ARIMA models were concentrated in ports located in 

developed countries. In this perspective, ARIMA model is applied in this dissertation to 

forecast demand based on the historical time series from 2003 to 2018 for the port of Jeddah 

in Saudi Arabia. 
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2.3 Port Competition 

In this section, the content is arranged in the following way: Subsection 2.3.1 presents the 

evolution of port competition and its impact hinterland expansion. Subsection 2.3.2 

investigates the impact of various factors on port choice process, along with the 

relationship between port competitiveness and port choice. Subsection 2.3.3 investigates 

previous studies applying Spatial Interaction Models (SIM) to analyze the distribution of 

container flow. Also, a brief explanation of SIM. Lastly, Subsection 2.3.4 reviews previous 

studies applying gravity models and introduces research gaps.  

2.3.1 The Evolution of Port Competition and Hinterland 

 During the noticeable transformation of the maritime industry, the traditional 

concept of port hinterland developed throughout the years. For instance, Intermodalism 

expanded port hinterland by transforming the port market from being monopolistic to 

becoming more competitive. Container ports, as a result, are able to expand market and 

reach further inland markets. Based on these developments, the competition among ports, 

in some regions, serving the same hinterland intensified (Ferrari et al., 2011).  As a result, 

the competition transformed from port competition to competition between supply chain. 

Therefore, a port’s ability to attract containers depends on the overall supply chain where 

the port is involved (Figure 2.3). The relationship between ports is considered as inter-port 

competition when port users have various economic port alternatives (Cullinane & Wang, 

2009). More information on supply chain is provided in Subsection 2.3.2. 
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Figure 2.3 Container transfer process at a seaport and within the supply chain. 
Source: Dekker (2005) p:38. 

 Winkelmans et al. (2002) classified port competition into three levels: (1) inter-port 

competition at port authority level between different ports; (2) inter-port competition at 

operator level between operators from different ports located in the same range; and (3) 

intra-port competition at operator level between operator in the same port (Figure 2.4). 
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Figure 2.4 Port competition levels. 
Source: Winkelmans et al. (2002) p. 12. 

2.3.2 Determinants of Port competition 

The evolution of the container industry has changed the strategic function of the port 

where ports are increasingly competing as essential nodes in the supply chain rather than 

individual loading/discharging nodes (Robinson, 2002; Carbone and Gouvernal, 2007). 

Supply chain is defined by Christopher (1992) as “the network of organizations that are 

involved, through upstream and downstream linkages, in the different processes and 

activities that produce value in the form of products and services delivered to the ultimate 

consumer.”. 

 Such changes in the industry necessitate a supply-chain-oriented approach in the 

port choice decision of liner companies and shippers; thus, this viewpoint has become 

dominant has become in the assessment of port competitiveness (Guy and Urli, 2006). 
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Consequently, the supply-chain-oriented approach indicates that the competitive position 

relies more on external factors (Ferrari, 2011). Port competitiveness, as a result, is 

determined not only by port efficiency but also by the efficiency of factors outside the port 

domain, particularly connectivity to the hinterland and accessibility to global shipping 

networks  

 Van der Berg and van Den Berg (1998) defined port hinterland as "the continental 

area of origin and destination of traffic flows through a port, in other words, it is the 

interior region served by the port.". On the other side, Parola et al. (2017) state that 

Maritime connectivity reflects the adequacy of transport networks (e.g., number of ships 

calling at a port, service frequency, distance to/from the global shipping network). Figure 

2.5 depicts the transport network where ports act as nodes, connecting the hinterland and 

maritime sections. 

 In a competitive environment where ports provide feasible substitutes, the 

importance of port competitiveness increases. Consequently, the demand for competing 

ports and capacity becomes interrelated. For example, when services are improved in a 

particular port, it influences the demand of the particular port and its competitors. This is 

due to the increasing requirements caused by the selection behavior of port users where 

they choose the most efficient port. Given that port selection is influenced by port 

efficiency, port selection determines the port that is thought to be the most competitive one 

(Moura et al., 2018). Therefore, the determinants impacting port competitiveness impacts 

port choice as well. 
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Figure 2.5 Ports as nodes in a transportation network. 
Source: Dekker (2005) P:9. 

 Numerous studies analyzed the factors that impact port selection, which are 

shipping cost, the efficiency of port infrastructure, port location, transport time and cost, 

frequency of liner services, foreland and hinterland accessibility, and inland transport cost 

and time (Talley & Ng, 2018; Tiwari et al., 2003). The importance of factors impacting 

port selection is difference for liner companies compared to shippers, as each one has 

different preferences. Therefore, factors impact the selection behavior of shipping 

companies and shippers varies for different port users. While shipping companies tend to 

consider costs at port as the major factors that influence the choice of calling at a particular 

port, the decision of shippers to use a particular port is influenced by port location and 

hinterland connections (Acosta, 2007; Parola et al., 2017b).  

 These studies, among others, emphasize the impact of port location on ports' 

competitive position. The importance of port location raises from its role on connecting the 
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port with inland markets and maritime network where well-geographically located ports 

contribute positively by connecting shippers and consignees in the port's hinterland to 

international markets. Consequently, Tongzon (2001) emphasized the importance of port 

connectivity on improving the performance of the port. Port connectivity can be broadly 

defined to encompass the whole transportation network by including connections to both 

hinterland and maritime (de Langen et al., 2016). Therefore, The higher a port's 

connectivity, the more value it provides to its users. 

 Factors influencing the port selection process, whether they are in the port domain 

or not, are of importance to port authorities. They can be categorized as internal and 

external factors. Where Internal factors, such as port efficiency and cost, are under direct 

control of port authorities where they have full capability to improve them. On the other 

side, external factors such as those related to port location influence port selection. 

Although port choice depends on factors beyond the port domain, port authorities can 

indirectly influence port choice. A particular port, for instance, can adopt more proactive 

measures to improve its competitive position by identifying the preferences of port users 

for other ports (Martnez Moya & Feo Valero 2017). Malchow and Kanafani (2004) 

emphasized that factors out of port authorities’ control have the most significant impact 

and stated that port location has the most significant impact on shipment volumes. This is 

supported by other studies including (Moura et al., 2018; Parola et al., 2017a; Veldman et 

al., 2011).  

 Considering the hinterland connectivity, one of the factors that heavily determines 

the port competitiveness over market share is the inland connectivity. Inland connectivity 

refers to the efficiency of inland transport networks (Parola, et al., 2017). Halim et al. 
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(2016) highlighted that the key factor that impact port selection is the hinterland 

connectivity. Therefore, inland distance between ports and the hinterland of region impacts 

the container flow of ports. The distance between port and users in the hinterland has a key 

impact on inland transport costs (Tiwari et al., 2003). Notteboom and Winkelmans (2001) 

emphasized that inland transport cost has an average of approximately 40% of total 

container transport cost. port choice is influenced by inland transport cost (Blonigen & 

Wilson, 2006). The shippers’ choice of a specific route depends on the lowest route cost 

among alternatives (Luo & Grigalunas, 2003).  In this sense, cargo volume decreases when 

the inland distance between the port and the inland market increases (Guerrero, 2018; 

Levine et al., 2009; Moura et al., 2018; L. Wang et al., 2018). From a statistics perspective, 

(Malchow and Kanafani (2004) compared the impact of inland distance and maritime 

distance on port choice, from the perspective of liner companies. They stated that inland 

distance is more significant than maritime distance in case of the availability of feasible 

alternatives.  

 The impact of inland distance on the freight flow from/to the port hinterland varies 

among different regions and depends on the geographic configuration where the distance 

impact is weaker in geographically wider countries. This can be seen in the case in the 

United States (Levine et al., 2009) where the friction of distance is relatively weak 

compared to other countries that are geographically smaller such as Italy (C. Ferrari et al., 

2011), Spain (Moura et al., 2017) and France (Guerrero, 2018). In addition to geographic 

characteristics, the availability of alternative intermodal connectivity, transport 

infrastructure development, technology and transport cost influence the distance on 

container flow (Guerrero, 2014; J. Rodrigue, 2012).  
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 Another determinant that heavily determines the port competitiveness is the 

maritime connectivity. Maritime connectivity is vital for ports since the length of maritime 

haulage impacts shipping cost. Maritime connectivity is referred to as the accessibility to 

maritime routes and liner services in a particular geographical location (Pitoski et al. 2015). 

In this dissertation, foreland accessibility and maritime connectivity are used 

interchangeably. Various studies have emphasized the impact of maritime connectivity to 

shipping networks on trade costs (Arvis et al., 2016; Wilmsmeier & Hoffmann, 2008). 

Furthermore, (Hoffmann, 2012) demonstrated the importance of maritime connectivity to 

container shipping routes in determining port competitiveness. The better maritime 

connectivity, the more options port users have for transporting containers to and from 

international destinations and origins; thus, maritime connectivity is of relevance to port 

users. 

 To assess maritime connectivity, various centrality measures have been employed 

where closeness centrality degree centrality, and betweenness centrality are the most 

commonly used (Dinu et al., 2016; Ducruet et al., 2010; Li et al., 2015; Wang & Cullinane, 

2016; Zheng et al., 2017). These connectivity measures are calculated based on the number 

of links in the network and/or the number of connections available at a particular port in 

the network. To account for the quality of port connections, other connectivity measures 

have been developed to assess the quality of port connectivity based on factors such as 

connection capacity and competition level in the connection (Burghouwt & Redondi, 

2013). Lam and Yap (2011), for example, simply used both the number of ships calling at 

a particular port with ship capacity in TEUs to take into account the dynamics of liner 

shipping network. 
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 However, in global container shipping, maritime connectivity, as well as the 

frequency and intensity of liner shipping services, are essential elements to determine port 

competitiveness  (Hoffmann, 2012). Several indicators of connectivity have been 

developed specifically for liner shipping networks to reflect the dynamic structure of 

container shipping networks such as the Lloyd’s Shipping Index and Liner Shipping 

Connectivity Index (LSCI). The following components were considered in developing 

maritime connectivity indicators in previously developed maritime connectivity indicators, 

according to a review study by Pitoski et al. (2015): Ship capacity, number of ships call in 

the port, frequency of port calls, number of liner services to/from ports, number of liner 

shipping providers and transit time. These components are believed to have an impact on 

the generalized transport costs of port users. Certain components such as ship size and the 

number of liner services provided to/from the port) are regarded as proxies for transport 

costs, whereas others are related to the quantity and level of connections, such as the 

number of direct port calls (de Langen et al., 2016). 

 United Nations Conference on Trade and Development (UNCTAD) developed the 

Liner Shipping Connectivity Index (LSCI) to measure the shipping Connectivity and 

performance of individual ports (UNCTAD, 2021). The index, published in 2019, covers 

more than 900 container ports globally and generates the degree of port connectivity. This 

index is the normalized average of six components: (a) The number of ship calls per week 

in the port; (b) The total deployed annual capacity in TEU offered at the port; (c) The 

number of liner shipping services from/to the port; (d) The number of liner services 

providing services to/from the port; (e) The average carrying capacity in TEU of deployed 

ships by scheduled services with the largest average ship size; and (f) The number of other 
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ports that are directly connected to the port via liner services. A direct service is regarded 

as a regular liner service between two ports which may include other port calls in the route, 

but does not require the transshipment of the transported containers. (UNCTAD, 2021). 

The port’s value of each component is divided by the maximum value of that component 

in the base year of 2004, then, the total average of all six components for the particular port 

is calculated and divided again by the maximum average in 2004 and multiplied by 100. 

This is done for all the ports to generate the LSCI value where the higher the index value, 

the better the ports connectivity in the global liner shipping network (UNCTAD, 2021). 

 A distinctive feature of LSCI is that it measures port connectivity based on the 

strength position of the port within the dynamic structure of container shipping network, 

rather than simply relying on local data such as ship numbers, container volumes handled 

or direct connections to other ports (Bartholdi et al., 2016). It is also noted that no study in 

the existing literature was found to apply port LSCI in the SIM. However, a number of 

studies used the country version of the andix in various analysis. Given that LSCI reflects 

connectivity strength and the port, the study of De Oliveira and Cariou (2015) 

demonstrated that LSCI is a key factor in determining freight rates and competitive position 

of ports. This is in line with Wilmsmeier and Hoffmann (2008) who emphasized the 

importance of port connectivity on transport cost. Consequently, the index can be 

employed as a proxy of the port competitiveness, with the view that it is positively 

correlated to port efficiency (De Oliveira and Cariou, 2015). Therefore, LSCI is used in 

this dissertation to investigate the impact of port efficiency and assess port competitiveness 

by analyzing connectivity position of different ports. 
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2.3.3 Assessing Port Competitiveness: Spatial Interaction Model 

Port competitiveness and port selection have been widely analyzed in previous studies. The 

theoretical foundation of applied models in the majority of these studies is the Discrete 

Choice Theory where Multinomial Logit Models (MNL) were mostly applied to analyze 

port selection process (Moya and Valero, 2016). MNL models were also applied to analyze 

freight flow in the maritime industry. Other models, such as Spatial Interaction Models 

(SIM), were also used to analyze the spatial interaction between origin/destination nodes. 

However. assessing port competitiveness by considering the spatial implications is limited 

in previous studies.  Spatial Interaction Models (SIM) analyze flow between bilateral points 

(origin and destination) as a function of attractiveness and emissiveness of both origin and 

destination, respectively, and a vector of distance variable (Wilson, 1976). Even though 

both SIM and MNL approaches use an explicative-stochastic perspective and revealed 

preferences, their theoretical approaches are different (Anas ,1983). 

 Compared to Multinomial Logit Models (MNLs), SIM has several advantages. 

First, despite the structural similarity of SIM and Discrete choice models, SIM is more 

appropriate in dealing with aggregate data compared to discrete choice models due to the 

minimal initial assumptions of the former (Anas, 1983; Roy, 2004). Secondly, SIM have 

the ability to take into consideration the impact of spatial characteristics as well as transport 

network characteristics (Kerkman et al., 2017). Thirdly, Merkel (2017) argues that as ports 

have fixed geographical locations, the distance separating them impacts the intensity of 

their competition; thus, the inland distance separating ports and hinterland regions can be 

used as a proxy to estimate the unobservable impact of interdependence degree among 

ports. Considering the difficulty of calculating cost between origin and destination points 
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due to the lack of disaggregate transport cost data, distance can be used as a proxy for trade 

cost Anderson and van Wincoop (2004). 

 Spatial interaction model has been a limitedly applied in the transport economics, 

and its scarcer in analyzing container flow between ports and hinterland regions. Previous 

studies concerned in analyzing the relationship between distance and traffic flow have 

demonstrated that SIM can be applied (Ferrari et al. 2011; Guerrero 2014). Debrie and 

Guerrero (2008) used SIM to investigate the impact of distance on freight flow between 

French ports and regions. They observed that distance is an important variable in 

explaining freight distribution in France. Guerrero (2014) investigated the impact of inland 

distance on different types of cargo and concluded that the impact varies according to the 

cargo category, where container flows are the least sensitive to its influence. Guerrero 

(2016) applied SIM to investigate the impact of inland distance and shipper services, 

finding out that considering both variables improve the model results. Tiller and Thill 

(2017) analyzed the degree of trade impedance in South American exports by using a 

reverse doubly constrained SIM.  

 Additionally, the expansion of port hinterland can be analyzed by the use of Spatial 

interaction model (SIM) (Garcia-Alonso et al., 2016). During the last decade, only four 

relevant articles have been published focusing on the distribution of the container flow 

from the perspective of the spatial interaction models. Ferrari et al (2011) investigated the 

explanatory power of distance in explaining freight distribution in North Italian ports, 

concluding that distance is has high influence but other barriers define the hinterland. To 

delimit the hinterland shape, Moura et al (2017) applied origin constrained SIM by using 

the variables of port throughput and travel time to inland regions. Moura et al (2018) 
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applied origin constrained SIM to investigate if the impact of port size and inland distance 

on inland flow distribution vary according to the foreign trade pattern of Spain. Then, the 

authors used the predicted results to assess the discrepancy of each port by considering the 

gap between predicted and actual flows. Lately, Gruerrero (2019) assessed the importance 

of transport connections and geographical proximity in the Freight distribution of France. 

The author also investigated if these factors have changed between the years 2008-2012. 

 Analyzing the difference between the outcomes of SIM and actual flow may reveals 

the ability of each port to compete over the hinterland regions; thus, provides an insight 

into the impact of other barriers in preventing each port from expanding hinterland region; 

thus, the competitive advantage. Among the above-mentioned studies, Ferrari et al. (2001), 

Moura et al. (2017) and Moura et al. (2018) attempted to assess port competitiveness and 

delimit hinterland scope by investigating the unexploited potentialities of ports. However, 

the former study merely considered the impact of inland distance, while the other two 

studies did not consider the impact of foreland determinants. 

 The literature also shows a lack of studies for port competitiveness in developing 

countries. Guerrero (2018) pointed out that the issues of port selection are not of relevance 

in the case of developing countries where high inland costs might cause stronger effects of 

distance that leads to limiting the contestable hinterland. However, no studies were 

conducted in the literature to analyze the impact of distance on the hinterland expansion on 

developing countries. 

 



 

 41 

2.3.4 Conclusion 

 To sum up, the impact of various factors based on port selection process where, in 

addition to port efficiency, foreland and hinterland connectivity are two important 

determinants of port connectivity. It is worth mentioning that the factors impact port 

competitiveness have direct impact on container flow between ports and hinterland regions, 

where the characteristics of these factors impact cost, capacity and reliability of transport 

services. The interaction between these factors raises the need to investigate their impact 

on port competitiveness. In the literature, numerous studies are concentrated on identifying 

the factors that determine port competitiveness. However, limited number of studies 

assessed port competitiveness by considering the impact of spatial interaction on container 

flow. In the next subsection, literature review on port competitiveness is presented and the 

theoretical foundation of various models are briefly presented. 

 Spatial Interaction Models are gaining more attention and being employed to 

investigate the pattern of maritime throughput on the hinterland. However, a limited 

number of studies applied SIM to assess port competitiveness by analyzing their 

unexploited potentialities (C. Ferrari et al., 2011; Moura et al., 2018). These two studies 

did not consider the influence of maritime; that is, factors related to the determinants of the 

overall transport chain must be considered. Additionally, it is also noted that no study in 

the existing literature was found to apply port LSCI in the SIM, therefore, contributions of 

this dissertation. this study aims to use Port Liner Shipping Connectivity Index (LSCI) as 

an attractiveness factor that explains port connectivity. 

 This dissertation aims to investigate the impact of geographic characteristics of 

competing ports and intermodal availability in the distribution of container flow in the 
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country of Saudi Arabia and to assess port competitiveness in Saudi Arabia or not. 

Furthermore, Gap analysis is applied to analyze unexploited potentialities of competing 

port to assess their competitive position.  Because ports competitiveness relies on the 

capability of attracting traffic from global maritime networks (foreland) and their inclusion 

in the hinterland, the impact of factors related to both of hinterland and foreland are 

considered. 

2.4 Research Questions 

RQ1: How to develop a quantified model to forecast short-term container demand by 

considering the time series pattern? 

The aim of this question to provide an instrument to analyze historical behavior of 

container throughput and forecast short-term demand by using monthly container 

throughput. This is done by developing a forecasting model using the univariate time series 

stochastic approach.  

 

RQ2: How does the explanatory power of inland distance evolve over time in the 

distribution of containers over the hinterland? 

The aim of this question is to test the relevancy of inland distance in shaping the 

hinterland of ports. To do so, a spatial interaction model (SIM) is employed to investigate 

the role of inland distance in drawing market share of competing ports over hinterland. 

Thereafter, gap analysis is applied to investigate the unexploited potentialities of 

competing ports by comparing the actual and predicted container flows. The gap implies 

the presence of barriers has not included other than distance. 
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RQ3: How does the geographic characteristics and intermodal connectivity impact the 

distribution of container flow and their role in the competitive position of the competing 

ports? 

 The aim of this question is to investigate the impact of port characteristics and 

geographical location on the inland distribution of maritime traffic and to assess port 

competitiveness. The impact of maritime connectivity, railway availability, inland 

distance, and port location within maritime shipping routes on the container flow is 

investigated. Attraction-constrained Spatial Interaction model is developed where the 

influence of these factors is investigated. Thereafter, port competitiveness is assessed by 

analyzing the gap between predicted and actual container flow to reveal the impact of the 

various factors on the hinterland expansion of the competing ports.  
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CHAPTER 3 

METHODOLOGY 

 

In this section, the methodology conducted to achieve the dissertation objective is 

presented consists of two major sections. Section 3.1 presents the time series stochastic 

models that is used to forecast short-term container demand, and the methodology followed 

to analyze time series historical behavior, identify and estimate the tentative models, and 

generate forecasts. 

 Section 3.2 introduces two different version of Spatial Interaction Models (SIM) to 

analyze the impact of various factors on container flow and assess port competitiveness, 

where Subsection 3.2.1 presents the development and types of Wilson maximum entropy 

SI models. Followed by explaining the model calibration. Attraction and doubly 

constrained maximum entropy models are used to investigate the explanatory power of 

distance in defining container flow. 

 Subsection 3.2.2 presents the development of the Poisson-based SI models. This 

Subsection also presents and compare the assumptions of various statistical approaches 

that are used to calibrate SIM. Poisson-based SIM models are known for being flexible to 

fit additional variable. Poisson-based attraction constrained model is used to investigate 

the impact of maritime connectivity, railway availability, inland distance, and port location 

within maritime shipping routes on the container flow between ports and hinterland region. 
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3.1 Forecasting Container Demand 

The Autoregressive Integrated Moving Average (ARIMA) is a model in which forecasts 

are obtained by regressing historical observations of the variable itself and the current value 

with the error terms of the past values at different lags. This model has the advantage of 

being independent in finding and forecasting explanatory variables by analyzing the impact 

of time on the relationships among time-ordered variables. Considering the rapid, volatile, 

and unexpected changes of container demand that are due to factors other than its own 

trend, the forecasts of this model are for a short period. The purpose of applying this 

methodology is to investigate the historical attitude of container throughput and 

understanding its future direction and development, evaluate the time series pattern, and 

produce short-term forecasts. 

3.1.1 Univariate Time Series Model 

The idea of a univariate time series model is using the past values in the series to forecast 

future values, where Autoregressive AR is a combination of the past value of the series 

(!("#$), !("#&), … , !("#'	)) and Moving Average MA is the combination of the historical 

random errors ($("#$), $("#&), … , $("#))) as explanatory variables. The AR and MA models 

are, respectively, represented as: 

 

!" = & + ∅$!("#$) +	∅&!("#&) +⋯+	∅'	!("#'	) +	+" (3.1) 

 
!" = 	, +	-$	$("#$) +	-&	$("#&) +⋯+	-) 	$("#)) +	+" (3.2) 

 

where !" is the time series value at period; t, +" is the random error at time period t; ∅' is 

the AR parameter,;-) is the MA parameter; and , is the time series mean. 
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 Autoregressive and moving average models can be effectively combined to form 

an extended time series model. The extension of AR and MA is called Autoregressive 

Moving average ARMA(p,q), where p and q are the AR and MA are the parameter orders. 

The ARMA model is represented as: 

 

!" =	∅* + ∅$!("#$)+	. . . +∅'!("#'	) +	$" 	+ -$$("#$)	+	. . . +	-) 	$("#))  (3.3) 

 

where ∅s and -s are the autoregressive and moving average parameters, respectively, to be 

estimated. The random error term $ is assumed to be to be a white noise process and follow 

the normal probability distribution $"~0(0, 3&). 

 Most of the economic time series exhibit nonstationary behavior. Non-stationarity 

indicates that the distribution of the series depends upon time. Usually, the nonstationary 

behavior of time series is due to a trend, a change in the mean, or seasonal variation. Since 

stationarity is one of the fundamentals for Box-Jenkins methodology, the nonstationary 

series must be made stationary around mean and variance. Therefore, if non-stationarity is 

found, the data must be transformed by linear detrending or differencing to remove trends 

and achieve stationarity. Making this modification to the series is called an integration 

process. By doing so, the ARMA model becomes an Autoregressive Integrated Moving 

Average ARIMA(p,d,q) model, where the integration order (I) refers to the integration 

process and (d) is the order of differencing (the number of time differencing applied into 

the series to get it stationary). It is referred to as ∆+. The differencing also represents the 

number of unit roots.  
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∆+!" 	= ∅* 	+ 	∆+∅$!("#$)	+	. . . +	∆+∅'!("#') +	$" 	
+ 	-$$("#$)	+. . . +	-)$("#') 

(3.4) 

 

 Some economic series exhibit seasonality also. If that occurs, another modification 

is done to the ARIMA equation  to deal with seasonality, meaning that the ARIMA model 

is extended to SARIMA(p,d,q)(P,D,Q) namely Seasonal Autoregressive Integrated 

Moving Average. In the SARIMA model, seasonal differencing of appropriate order is 

used to remove non-stationarity from the series, where d is the differencing order to make 

the series stationary, D is the order of seasonal differencing, and s is the seasonal period. 

The model is expressed as: 

 

∅'(6)7'(6,)∆+∆,-!" = -)(6)8.(6,)$" (3.5) 

 

Where:  

∅'(6) = nonseasonal autoregressive operator of order p. = 1 − ∅$6 − ∅&6&…− ∅'6' 

-)(6) = nonseasonal moving average operator of order q. = 1 − -$6 − -&6& −⋯− -)6) 	

7/(6,) = the seasonal AR operators of finite orders P= 1 − 7$6, − 7&6, −⋯−7'6,'	

8.(6,) = the seasonal MA operators of finite orders Q= 1 − 8$6, − 8&6, −⋯− 8.6,. 	

∆+ = the nonseasonal operator = (1 − 6)+ 	!" = !" −	!"#$ 

∆,- = the seasonal differencing operator = (1−6,) !" =!" −!"#, 

B = the lag operator 

In order to determine the suitable model, the following steps are required: 
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1) Determine the difference order of d by using Autocorrelation Function (ACF), 
Partial Autocorrelation Function (PACF), and Augmented Dickey-Fuller 
(ADF) unit root tests. 

2) Use correlation coefficients to determine the AR and MA lags p and q, 
respectively. 

3)  Estimate the value of ∅' and -) parameters. 

4)  Envision and determine the effect of seasonality with ARIMA. 

To perform these steps, the methodology of Box-Jenkins is used as explained in the 

following subsection. 

3.1.2 Box-Jenkins Methodology 

The process of Box-Jenkins methodology consists of three phases: (1) model identification, 

(2) model estimation and testing and (3) forecast application. Each phase consists of 

various steps as illustrated in the following flowchart (Figure 3.1):  

 

 

Figure 3.1 Box-Jenkins methodology for time series forecasting 
Source: Box et al. (2013) 
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 These phases are implemented in an iterative process by suggesting various 

tentative models. Thereafter, tentative models are checked by using diagnostic tests and 

visual inspection to ensure: data fitting and model adequacy, parameter significance, 

residuals are random (white noise) and the model’s ability to generate reliable forecast 

results. The potential models passing through these tests and inspections are used to 

produce forecasts. Then, forecast errors are compared to ensure model reliability. A 

detailed description of these phases is represented in the model identification, model 

estimation and diagnosis and forecast application. 

Phase I: Model identification 

The purpose of this phase is to investigate the time series pattern and to determine the 

degree of integration (d), the lag terms of Autoregressive (AR), and Moving average (MA). 

To do so, this phase consists of data preparation and model selection. In the former, or data 

preparation, the following steps are conducted to identify the changes that occurred on 

container throughput and ensure series stationarity: 

1) Time series data and various transformations are plotted. Trend, seasonality, and 
random components of data series are plotted as well. Time series data is 
decomposed to extract the three components mentioned above. By composing 
seasonality, the trend component corresponds to the long run behavior of the series. 
The random (stochastic) component is used to visualize if the series encounters 
structural breaks. If structural breaks are found, they have to be considered in 
constructing the model. 

2) In order to use the ARIMA model, time series data must be stationary around mean 
and variance, if not, stationarity must be obtained by applying differencing or linear 
detrending filters. This step will lead us toward determining the degree of 
integration (d). 

In the latter, or model selection, tentative models are determined. Stationary is checked as 

well. To do so, the followings tests and visualizations are conducted: 



 

 50 

1) Diagnostic tests: Augmented Dickey Fuller (ADF) and (KPSS) tests are applied to 
the original and the transformed time series to verify the stationarity of time 
series. This diagnosis avoids spurious regression. 

 
2) Visual inspection: Box-Jenkins methodology suggests the use of Autocorrelation 

Function (ACF) and the Partial Autocorrelation Function (PACF) to identify the 
order of lag structures of Autoregressive and Moving Average (p and q). ACF and 
PACF measure the correlation coefficient to reflect how the time series 
observations relate to each other. The plots also help identify seasonal patterns. If 
seasonality is identified, the SARIMA model is used. 

In case of seasonality, SARIMA models or transforms the dataset by taking the seasonal 

difference. The seasonal differencing (year-over-year monthly growth rate) is defined: 

∆∆$&!" = (1 − 6)(1 − 6$&)!"	 = ∆!" − ∆!"#$& =	!" − !"#$& − !"#$ + !"#$0 (3.6) 

 

Phase II: Estimating and testing 

The accuracy of parameters and forecasts depends on choosing the right lag length. On the 

one hand, choosing a higher lag order than needed results in parameter overestimation 

which leads to forecasting errors. On the other hand, selecting a lower lag length 

underestimates the coefficients and autocorrelation errors. Therefore, tentative models 

from the previous phase are checked by using diagnostic tests and visual inspection to 

ensure model appropriateness.  Additionally, other model parameters are considered to 

generate appropriate lag length by using the selection criteria of Akaike’s information 

criterion (AIC) and Schwarz information criterion (SIC) to estimate model parameters. To 

avoid over-differencing, parameter significance and invertibility conditions must be met. 

Therefore, the following tests are conducted to ensure model appropriateness: 

1) Model-fit adequacy 

2) Residual randomness and normality to ensure white noise 

3) Parameters’ significance and their relationship 
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Phase III: Forecasting 

In this final phase, the potential models are used to forecast container throughput. To test 

accuracy, the forecasts of tentative models are compared to the actual values with error 

measures: mean square error (MSE), the root mean square error (RMSE), and the mean 

absolute percentage error (MAPE). To evaluate forecast accuracy, the following expression 

for the RMSE is used:  

 

;<=> = 	√<=> (3.7) 

 

 The developed model with the lowest forecast errors is the most reliable model. 

Considering the difference between the actual and the forecasted time series, forecast error 

is represented as @" = A" −	AB" . After finding the most suitable model, it is used to forecast 

the out-of-sample set. The forecast methodology is applied to in Section 5.1. 
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3.2 Assessing Port Competitiveness 

Another purpose of this dissertation is to conduct a spatial analysis to assess port 

competitiveness by analyzing the impact of port accessibility and geographic 

characteristics on inland distribution of container traffic. An in-depth discussion on various 

gravity model approaches, therefore, is presented in this section, where Spatial Interaction 

Models (SIM) is applied to assess port competitiveness. 

 The conducted port competitiveness analysis has two elements. The first one is 

analyzing the spatial relationship between container flow and distance; Wilson maximum 

entropy SI models is used to analyze the impact of inland distance on port competitiveness 

by investigating the role of distance as an explanatory power in determining the market 

share among competing ports. The second one is analyzing the importance of port 

characteristic and accessibility in hinterland region. This is done by applying Poisson-

based SI model to investigate the impact of port accessibility, inland distance, railway 

availability and port location within shipping routes on the inland distribution of container 

flow within hinterland. The model seeks to investigate whether the preference of shippers 

favor inland accessibility or not. 

 Lastly, this section, is organized as follows: Subsection 3.2.1 presents the spatial 

interaction model used to analyze the inland distance in container flow. The Spatial 

Interaction Model based on Poisson-based SI model is presented in Subsection 3.2.2 to 

include factors other than distance in the spatial analysis, 
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3.2.1 Spatial Interaction Analysis: Wilson Entropy-maximizing Models 

Spatial Interaction Model (SIM) is one of the well-known gravity model approaches that 

analyzes the geographic distribution of flow between origins and destinations, or the 

spatial interaction, it consists of three factors typically relied on upon the gravity model.  

Factor 1  Origin-specific describes the ability of origins in generating flows. 

Factor 2  Destination-specific tend to reflect destination attributes in  
attracting flow. 

Factor 3  Impediment function demonstrates the spatial separation between  
origin and destination between constraining flows. 

 On a broad geographical scale, the spatial separation between origin and destination 

is measured in terms of the spatial impediment between origin and destination. The 

traditional gravity model is formulated as follows (Wilson, 1967): 

 

C12 =
D1E2
F12&

 (3.8) 

 

 Where the attributes of emissiveness D2 and attractiveness E2 are directly 

proportional to the spatial interaction between origin G and destination H, and the impedance 

attribute is the road distance between i and j	F12, where the squared distance is inversely 

proportional to it. However, the model in equation X shows a clear flaw. When the mass 

of an origin/destination doubles, the volume of movements between them quadruples, and 

not just doubles, as could be expected. 

 To overcome this deficiency, two constraints have to be considered in relation to 

origins and destinations (Wilson, 1967). The sum of D1 over all origins must be equal to 
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the total productions and the sum of E2 over all destinations must be equal to the total 

attraction. Equations (3.9) and (3.10) define the two constraints of production and 

attraction. 

D1 =I
2

C12 (3.9) 

 

E2 =I
1

C12 (3.10) 

 

 Considering these constraints is ensured by using two balancing factors namely J2 

and 62. These balancing factors are associated with production and destination, 

respectively. By introducing the balancing factors into Equation 3.11, the gravitational is 

formulated as follows: 

C12 = J162D1E2K(F12)  (3.11) 

Where: 

J1 = LM262E2KNF12OP
#$ (3.12) 

 
62 = LM1J1D1K(F12)P

#$ (3.13) 

 

 Alternative types of the gravity model can be used by adding exogenous constraints 

on the main spatial interaction model. These model variants consist of the balancing factor 

of origin-specific and/or destination-specific. These balancing factors work as constraints 

to ensure the totals of origin and destination constraints, specified above, are exactly 

predicted (Ferrari et al., 2011). In case that either the origin or the destination constraints 
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are used, the mode is singly constrained; otherwise, it is not constrained. The model is 

doubly constricted when both balancing factors of origins and destination hold for every 

location. The new matrix C′12 is generated by setting the following alternative types of 

constraints: 

1) Production constrained: where the container flow generated by each origin 
remains constant both in the observed and predicted matrix, while the traffic 
attracted by each destination is redistributed among them. 
 

C′12 = J1D1E2K(F12) (3.14) 

 

2) Destination constrained: where the overall container flow is redistributed among 
the different origins, while the traffic flows assigned to each destination in both 
matrices are constant. 
 

C′12 = 62D1E2K(F12) (3.15) 

 

3) Doubly constrained: where both the container flow of the ith origin and jth 
destination are kept constant. The difference between this constraint and previous 
ones is that it has two balancing factors J1 for origin and 62 for destination, whereas 
each of the production and attraction constraints has only a single balancing factor 
J1 and 61, respectively. The formula of the doubly constraint is presented in 
equation (3.16), where the constants of the origin J1 and destination 62 are 
dependent on each other. Depending on the calibration technique, they may need 
to be computed iteratively. 
 

C′12 = J162D1E2K(F12) (3.16) 

 

 There are two container flow matrices that need to be distinguished. The actual 

container flow RC12 matrix and the predicted container flow RC′12 matrix. In addition, the 

geographical inland distance matrix. Input data are the observed origin-destination O-D 

matrix, where RC12 represents the flows produced by port i and attracted by province j, and 

the distance matrix where element F12 is the geographical distance between the ith region 



 

 56 

and the jth destination. The model produces as output a new O-D matrix (predicted OD 

matrix), which represents the redistribution of the observed traffic flows. 

3.2.1.1 Model calibration: Starting from the general Equation 3.11, distance function is 

introduced into the gravity model. Various decay functions presume different responses to 

the increasing costs associated with long distance. To determine the distance function 

K(F12), there are various options that have been considered in the literature. The two major 

functions are: the exponential function (@3+!") and the power function (F12
3 ). For locations 

separated by short spatial distances, the negative exponential function (@3+!") can work 

properly (C. Ferrari et al., 2011). In case of long distance between origins and destinations, 

the alternative of power function (F12
3 ) is preferable. The mainstream of the literature 

suggests the use of the latter for long distances; Thus, power function is applied in the case 

study of this dissertation. By applying power distance, the predicted O-D matrix RC′12 is 

calculated as follows: 

C′12 = J162D1E2F12
3  (3.17) 

Where all the parameters and variables have the same meaning specified earlier. (see for 

e.g. Equation 3.8). The Interpretation of distance parameters will be clarified in the 

calibration phase. 

3.2.1.2 Goodness-of-fit: An essential step of modeling the spatial interaction is evaluating 

its ability to predict a set of flow distribution. Accurate prediction supports the theoretical 

propositions on which the design is based: that is, it supports a specific model type over 

the others. It likewise provides confidence in the accuracy of parameter estimates and in 
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the capability of a model to predict system flows. Various goodness-of-fit statistics have 

been used in the literature to assess the ability of the SI models in predicting flow. These 

goodness-of-fit statistics provide quantitative description by comparing the actual and 

predicted flow matrices. SRMSE and information gain are two measures of model 

goodness-of-fit where SEMSE is used to measure the error in the model outcomes. 

However, there has been little consistency in using a specific accuracy measure which 

prevents the comparison of model ability throughout the studies (Williams & 

Fotheringham, 1984).  

 The aim of this analysis is not the model’s goodness-of-fit, however. Ferrari et al., 

(2011) applied Absolute Entropy Difference (AED) and statistics deviation (d) to evaluate 

the degree of flow redistribution in calibrating the constrained models. In this dissertation, 

these two parameters are applied in the outcomes of the analysis in Section 5.2. The two 

parameters are calculated for both models. AED can be conceptualized as a statistical index 

defining systems’ entropy and d is a fitting parameter. AED is defined as the difference in 

the variance of the actual and predicted probability distribution in absolute value. AED is 

not used to measure the model fit but to evaluate the degree of influence that distance has 

on container flow. It can be expressed: 

J>E = |X' − X)| (3.18) 

Where X' and X)  denotes Shannon Entropy measures and they refer to the variances of 

observed and predicted probability distribution, respectively. Therefore: 

X' = M1M2 	Y12Z[	(Y12)  (3.19) 
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X) = M1M2 	\12Z[	(\12) (3.20) 

Where: 

Y12 =
4!"

5!5"	4!"
  (3.21) 

 
\12 =

46!"
5!5"	46!"

  (3.22) 

 

AED shows how much the real system is predictable where the lower limit of AED can be 

zero when the system is fully predictable (X' = X)). In contrast, the upper limit of AED 

represents the maximum entropy with maximum level of uncertainty, when X' = 0	and 

X) = Z[	([). n is determined by the size of the system, where n is the number of 

destinations divided by the number of origins. The higher bound of AED equals ln(n), 

where n is the maximum size of the system (the number of provinces divided by the number 

of ports). AED provides evidence of how much the variance of predicted flows compared 

to the variance of the actual flow, where a close value of AED to zero indicates a minimal 

difference between the two variances, whereas a higher AED indicates the model does not 

reliably fit the real system (Knudsen & Fotheringham, 1986). 

 Parameter d also measures the deviation in the actual container flow C12 compared 

to the predicted container C′12. It is measured in percentage where F=100% indicates that 

predicted flow distribution has no deviation from the actual flow. The deviation statistics 

is characterized by the functions of  K′12 and K′12, where K12 is an element of the actual 

container flow matrix, and K′12 is an element of the predicted container flow matrix. The 

deviation is defined as: 
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F =
M1M2 	K12 − K612

M1M2 	K12
	× 	100 (3.23) 

3.2.2 Spatial Interaction Models: Poisson-based models 

The Spatial Interaction Models presented in the previous Subsection focused solely on 

inland distance as a factor that impacts container flow. However, other determinants also 

have an impact on the distribution of container flow within the considered hinterland. In 

this subsection, the Poisson-based spatial analysis model is proposed where factors related 

to geographic and port accessibility fitted in the analysis of container flow. 

 As shown in Subsection 3.2.1, there are three variants of the spatial interaction 

gravity model: doubly constrained, production constrained, and attraction constrained 

exponential gravity models. These models include either origin or destination-specific or 

both as balancing factors to ensure that the total volume of the predicted equals that of the 

actual data. These can also be estimated statistically. If data typically counts and follows 

Poisson distribution, for instance, the Poisson model provides better statistical distribution, 

so that unbiased results can thus be compared to OLS regression. The probabilistic Poisson 

allows the use of origin and/or destination fixed effects for model estimation. The 

development of Poisson-based SIM is presented in this Subsection. 

 The classical concept of the gravity model states that every point mass D1 

(emissiveness/ propulsiveness) attracts every other point mass E2 (attractiveness) with a 

gravity force C (interactions) that is directly proportional to the product of their masses D1 

and E2 and inversely proportional to the square of the distance F between them: 
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C = ^	
D1 	 ∙ E2
F12&

 (3.24) 

3.2.2.1 Calibration framework: Linear regression is the typical method to calibrate the 

Spatial Interaction Models. However, linear programming and nonlinear optimization can 

also be used. For this study, the regression framework is used as a calibration technique 

due to its flexibility and extensibility. The natural logarithm is applied on both sides of the 

basic gravity model in Equation (3.24) to obtain the log-linear version of the gravity model 

(Equation 3.25). By including the error component, the log-normal gravity model is 

obtained (Equation 3.26). 

 

Z[RC12" = ^ + ,`[a1 + b`[c2 − dZ[F12  (3.25) 

 

Z[RC12" = ^ + ,`[a1 + b`[c2 − dZ[F12 + 	+  (3.26) 

here + is the error component that is normally distributed with a mean of 0. d represents 

the distance parameter. To validate the underlying hypothesis, A negative value of d 

indicates that spatial interactions decrease when distance is higher. 

 The constrained spatial interaction may have the following model components: 

production constrained or the fixed effects for the origins; attraction-constrained or the 

fixed effects for the destinations; or fixed effects for both attraction and production 

constrained (doubly constrained). However, it is important to note the limitation of the log-

normal gravity models. First, the flows are considered discrete entities representing counts 

of flow units. Second, the flows are abnormally distributed. Third, it produces estimates of 

logarithmic flows instead of actual flows resulting in biased predictions. Fourth, it cannot 
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deal with zero flows as the logarithm of zero is undefined, consequently applying log-

normal results in the exclusion of observations with zero value. 

 Considering these limitations, Flowerdew and Aitkin (1982) proposed Poisson log-

linear regression to estimate spatial interaction models. The inherent assumption of this 

specification is that the flows observations between G and H is drawn from a Poisson 

distribution with mean e12 =	RC12, where e12 is assumed to be logarithmically linked to 

the linear combination of variables. The equation of log-linear regression is as follows: 

Z[e12 = 	^ + ,`[a1 + b`[c2 − dZ[F12 (3.27) 

Removing the log-operator provided from both sides yields the following equation that 

represents unconstrained Poisson log-linear gravity model with a distance-decay power 

function. 

RC12 = @fY	(	^ + ,Z[a1 + bZ[c2 − dZ[F12)   (3.28) 

Therefore, by using the balancing factors in the Equations from (3.11) to (3.13), the 

constrained variants of production, attraction, and doubly can be respectively defined: 

RC12 = @fY	(	^ + ,1 + b1Z[c2 − dZ[F12)  (3.29) 

 

RC12 = @fY	(	^ + ,1Z[a1 + b1 − dZ[F12)  (3.30) 

 

RC12 = @fY	(	^ + ,1 + b1 − dZ[F12)   (3.31) 
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Where ,1 and b1 are origin and destination balancing factors, respectively (Tiefelsdorf, 

Boots 1995). To ensure the flow observation totals are conserved, the value of k is included, 

and it represents the estimated intercept in equations from 3.25 to 3.31. Using Poisson 

regression addresses the above-mentioned limitation 1-4 of the linear model as the flow is 

no longer logarithmic. Poisson regression can be calibrated by using iteratively weighted 

least squares (IWSL) within a generalized linear modeling (GLM) framework (Nelder & 

Wedderburn, 1972). 
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CHAPTER 4 

CASE STUDY 

 

In this chapter, the case study is presented where Section 4.1. covers the background of 

Jeddah port, the port in which the forecast methodology is implemented to estimate 

potential demand. In Section 4.2, the characteristics of the inter-port competition within 

country-level are discussed. 

4.1 Background of Jeddah Port 

The port of Jeddah is located in the red sea on the western coast of Saudi Arabia. Its 

strategic location in the major East Asian-European liner shipping route increases its 

importance as a major port in Saudi Arabia and as a transshipment hub in the Middle East 

region (Figures 4.1 and 4.2). According to General Authority for Statistics of Saudi Arabia, 

in 2018, Jeddah Port was ranked number one among the Saudi ports in terms of container 

volumes where over 4.5 million TEUs were handled by the three container terminals of the 

port in 2013, making the port one of the major ports in the Middle East region and among 

the 30 busiest container ports in the world. 

 The container terminals are managed, operated and maintained by private 

companies under the umbrella of the Port Authority of Saudi Arabia (PASA) which acts as 

a regulatory body for all ports located in both the West and East coasts except the newly-

emerged port of King Abdullah which is privately owned and not subject to the regulatory 

body of the PASA. 



 

 64 

 

Figure 4.1  Major container shipping routes and container volumes (million TEUs) in 
2007. 
Source: UNCTAD (2008). 

 

Figure 4.2  Geographic location of Jeddah port. 
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4.2 Competition Among Saudi Ports 

Saudi Arabia has seven commercial seaports distributed between the West and East coasts 

of the country. Four of them are considered as the critical ports of the country. Ports of 

Jeddah and King Abdullah are located in the Red Sea. Ports of Dammam and Jubail are 

located in the Arabian Gulf.  Over the last decade, nonetheless, the port sector of Saudi 

Arabia developed and expanded rapidly to provide efficient performance and reliable 

logistics.  

 In addition to the development of existing ports, colossal investments permitted the 

port of King Abdullah (KAP) to be built. It is the first port in the country to be privately 

funded, owned and run outside the umbrella of Saudi Port Authority. The port was opened 

in late 2013. The port is strategically located in the newly-built King Abdullah Economic 

City on the Red Sea coast. It is located 130 kilometers north of Jeddah port. During the 

first phase of operation, the port had a total initial capacity of 3 million TEUs, with a depth 

of 18 meters that allows the biggest containerships to access the port. It had a total quay 

length of 1,470 meters and fit ship-to-shore gantry cranes with 25 containers outreach.  

 The port has a long-term strategic expansion plan consisting of seven phases to 

extend its quay length to 11,707 meters and capacity to reach 20 million TEUs in the future. 

Phase 2 later on was brought into operation in 2017, where two more berths were 

commissioned which increased the total capacity by 25% to reach 4 million TEUs. As a 

result, Jeddah Port has been facing increasing competition from KAP as they are relatively 

located close to each other.  
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Figure 4.3 Market Concentration of Saudi Ports Measured by TEUs (2003-2018). 

 Figure 4.3 presents the container volume of the four ports for the period 2003-2018. 

Jeddah port experienced a strong growth during the period 2003-2008. In 2018, the port 

handled 4.5 million TEUs compared to 1.7 million TEUs. Following the global economic 

crisis of 2008, The port faced a decline by 7% in 2009. Jeddah container throughput faced 

approximately the same decline rate as the average global rate reaching 3.3 million TEUs. 

In the following years, the container throughput resumed its growth to reach 4.5 million 

TEUs in 2013. 

 Container throughput of Jeddah port has been fluctuating during the period 2014-

2018. It reflected the loss of market share to its rival KAP. Since the opening of KAP, it 

has gained a remarkable share of Jeddah Port’s demand. Despite the slowdown in the global 

economy, the number of containers handled in KAP quintupled from almost 500 thousand 

TEUs in 2014 to 2.3 million TEUs in 2018, making it the fastest growing port in the world. 
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At the same time? container throughput in Jeddah Port decreased by 2.4% reaching 4.117 

million TEUs in 2018 compared to 4.218 million TEUs in 2014 (as shown in Table 4.1). 

 

Table 4.1  Container Throughput and Growth Rates of Jeddah and KAP 

 
Port 

 
2014 

 
2015 

 
2016 

 
2017 

 
2018 

Avg. 
annual 

growth rate  
(2014-2018) 

Cumulative 
growth rate 
(2014-2018) 

 Jeddah Port 4,218 4,188 4,283 4,154 4,117 -0.6% -2.4% 

Ann. growth   -0.7% 2.2% -3% -0.9% 

 KAP 497 1,270 1,402 1,695 2,302 46.7% 363.2% 

Ann. growth   161.6% 7.8% 20.9% 35.8% 

 

 From 2003 to2014, Jeddah port dominated the container throughput in Saudi Arabia by an 

average annual market share of 73%, while the majority of the remaining market share was 

for Dammam port in the east coast of the country as shown in Table 4.2. Ever since the 

opening of the first privately-owned KAP in 2014, Jeddah port has been facing an increase 

in competition which resulted in a decrease of market share of Jeddah port by 14% the 

same year. The market share decline continued until 2018, where Jeddah port had a market 

share of 46.4% in comparison to 26% for KAP. This decrease was due to the close location 

of KAP port to the local hinterland of Jeddah port.  

 Development of the dry terminal in the capital of Riyadh in 2014 caused another 

decrease. The improved efficiency of the railway link between the capital and port of 

Dammam increased the container handled in the dry terminal by 29% to reach 350,000 

TEUs in 2015. The railway connectivity provides Dammam port an advantage over the 
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strategically located ports of Jeddah and KAP, however, this railway connection is the only 

one specialized in container transport in the country. 

 

Table 4.2  The Market Share of Container Ports in Saudi Arabia (2003-2018) 

Year Red Sea ports Arabian Gulf ports 

Jeddah KAP Dammam Jubail 
2003 73.0 - 26.0 1.0 
2004 76.2 - 23.3 0.4 
2005 76.0 - 24.0 0.0 
2006 75.3 - 24.4 0.3 
2007 72.9 - 25.8 1.2 
2008 71.5 - 26.8 1.6 
2009 70.0 - 27.8 2.2 
2010 72.4 - 25.2 2.3 
2011 70.8 - 26.3 2.9 
2012 75.0 - 21.1 3.9 
2013 75.2 - 20.6 4.2 
2014 61.5 7.2 25.5 5.8 
2015 53.3 16.5 24.9 5.3 
2016 53.5 17.5 22.3 6.7 
2017 50.0 21.4 20.0 8.5 
2018 47.4 26.5 17.7 8.3 

 

 The overall market share of Dammam port declined by approximately 7% from the 

year 2015 to 2018 due to the development of the port of Jubail. Given that Jubail port is 

also located on the East coast, it shares the same market as Dammam port. The massive 

investments in the development of the port sector have also benefited Jubail port resulting 

in the increase of its market share to 8% in 2018.  
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Figure 4.4  The market share of the four Saudi ports (2003-2018). 

4.2.1 Market structure and condition 

To understand the structure and condition of the container market in Saudi Arabia, Shift-

Share Analysis is conducted in the container throughput of the four ports. Table 4.3 

presents shift and share effects, supported by Figure 4.5 that illustrates these effects. The 

figure reveals the following interesting findings. 

 Since the opening of KAP in 2014, Jeddah port has continuously lost significant 

container share. As the shift effect analysis in Figure 3 shows, the total container volume 

of over 2,300,000 TEUs shifted from Jeddah to KAP in just five years. This shift might 

explain the declined volume of containers that Jeddah port went through, while its 

throughput decreased by 2% in the 2014-2018 five-year- period, compared to an increase 

of 10%  during the prior-five-year-period of 2010-2014. 
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 On the East coast, another clear shift effect occurs between Dammam and its 

neighbor port of Jubail, where approximately 300,000 TEUs  shifted from Dammam port 

to Jubail port during the same period (2014-2018). Further to this noticeable shift, there is 

a gradual increase over the previous period 2003-2013. These two periods have led to a 

remarkable decrease in the gap between Jubail and Dammam ports. These shifts might 

explain the declined volume of container throughput that Dammam port went through as 

the port throughput decreased by 11% in the 2014-2018 five-year- period, compared to a 

remarkable 31% increase during the prior-five-year-period (2010-2014). 

 On the other hand, the container throughput increase in Jubail port was 83% in the 

2014-2018 period, compared to 220% in the previous period. The increase of container 

throughput in Jubail port slowed down from 220% to 83% in the periods 2014-2018 and 

2010-2014, respectively. This led to a gap reduction of container throughput in the two 

Eastern ports from 1.2 million TEU in 2010 to 0.7 million TEU in 2018. Shift Share 

Analysis is a useful and effective tool to measure structural changes of ports as it represents 

the shift and shares that occur in competing ports. However, this technique does not explain 

the reasons behind changes on shifts nor shares. In the next subsection, market share of the 

four ports is presented at the province level.  
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Table 4.3  Shift-Share Analysis results for container ports in Saudi Arabia (2003-2018) 

Year 

Share effect Shift effect 

Red Sea Arabian Gulf Red Sea Arabian Gulf 

Jeddah KAP Dammam Jubail Jeddah KAP Dammam Jubail 

2003 546.8 0 194.8 7.4 102.2 0 -84.8 -17.4 

2004 418.4 0 128.2 2.4 -8.4 0 23.8 -15.4 

2005 98.8 0 31.2 0.0 -26.8 0 15.8 11.0 

2006 259.8 0 84.2 1.1 -99.8 0 60.8 38.9 

2007 322.3 0 114.2 5.5 -64.3 0 45.8 18.5 

2008 -166.0 0 -62.2 -3.8 -67.0 0 42.2 24.8 

2009 609.9 0 242.0 19.1 128.1 0 -136.0 7.9 

2010 282.5 0 98.3 9.1 -94.5 0 60.7 33.9 

2011 452.3 0 167.9 18.8 267.7 0 -326.9 59.2 

2012 -186.8 0 -52.5 -9.7 8.8 0 -30.5 21.7 

2013 593.8 0 162.7 33.5 -936.8 497.0 335.3 104.5 

2014 616.9 72.7 255.6 57.8 -646.9 730.3 -49.6 -33.8 

2015 74.1 23.0 34.6 7.4 20.9 79.0 -208.6 108.6 

2016 -49.3 -16.1 -20.5 -6.2 -276.7 309.1 -177.5 145.2 

2017 387.3 

165.

9 154.8 66.0 -228.3 441.1 -195.8 -17.0 

2018 4260.9 

245.

5 1533.2 208.4 -1921.9 2056.5 -625.2 490.6 
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(a) Share analysis 

 
(a) Shift analysis 

Figure 4.5  Share and Shift effect of container ports in Saudi Arabia (2003-2018) 

4.2.2 Port Competition Over Hinterland 

Saudi Arabia is divided into 13 governmental provinces where Riyadh, the capital, is in the 

province of Riyadh. Table 4.4 presents the demographic and economic characteristics of 

the 13 provinces. The table also shows the distance from these provinces to the four ports. 

The Western ports of Jeddah and KAP are in the province of Makkah, and the ports of 

Dammam and Jubail are located in the Eastern province. Figure 4.6 shows the location of 

the four ports and the inland connectivity to the major cities. 
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Table 4.4  The characteristics of the provinces of Saudi Arabia (2012) 

Province Capital population 

GDP  

(million 

US$) 

Distance to each province (km) 

JED KAP DAM JUB 

Riyadh Riyadh 8,002,100 152.012 951 1,014 432 476 

Makkah Makkah 8,325,304 89.340 0 139 1,379 1,422 

Madinah Madinah 2,080,436 42.670 422 316 1,245 1,273 

Qaseem Buraidah 1,387,996 41.069 917 814 773 780 

E. Province Dammam 4,780,619 80.811 1,360 1,402 0 92 

Aseer Abha 2,164,172 58.137 632 760 1,379 1,421 

Tabouk Tabouk 890,922 22.001 1,023 905 1,775 1,687 

Hail Hail 684,619 33.336 883 780 1,032 948 

N. Borders Arar 359,235 20.268 1,429 1,328 1,056 978 

Jazan Jazan 1,533,680 23.201 711 840 1,561 1,610 

Najran Najran 569,332 20.641 924 1,053 1,366 1,408 

Baha Baha 466,384 11.734 421 480 1301 1,350 

AlJouf Sakaka 497,509 26.668 1,264 1164 1237 1,159 
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Figure 4.6  Port locations and population size of each province in 2012. 

 

Figures 4.7 and 4.8 depict the container flow market shares of each port in the 13 provinces 

for the years from 2011 until 2017. The provinces can be geographically categorized into 

three main regions: west, east, and central. The above two figures, based on each region, 

reveal the following: 

a) The western region: Until 2014, the market of seven provinces of Makkah, Aseer, 
Madinah, Jazan, Tabouk, Najran and Al-Baha was dominated by Jeddah port where 
it had a market share of more than 95%. This picture has changed after the 
emergence of KAP.  In 2018, Jeddah port continued to be the dominant port for 
only three South Western provinces of Aseer, Jazan and Najran. These changes 
show that the emerge of KAP has reduced the domination of Jeddah port over its 
immediate hinterland (Makkah province) to 82% in 2017 

b) The Eastern region: The oil-rich Eastern Province, where the two ports of 
Dammam and Jubail are located, is the third largest province in terms of population 
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size. It has been the captive hinterland of Dammam port. In recent years, a 
remarkable increase of Jubail’s share reduced the domination of Dammam.  In the 
Eastern region, the small province of “North Borders” is also located. The growing 
port of Jubail has gained 26% market share in the Eastern province from the 
neighboring port of Dammam in 2017 compared to 2011. 

c) The Central region: The hinterland of the northern region consists of the provinces 
of Riyadh, Qaseem, Hail, Jouf. Riyadh province is the second most populous 
province and has the highest regional GDP. It is also home of the capital city of 
Riyadh. Moreover, the province is the only one that has a railway connection to 
Dammam port, the port that is strategically located 432 km away from the capital 
city of Riyadh, sustained its market share at the same range of 72%. While the 
Jeddah port, located 950 km away from the capital, lost more than 13% of its market 
share. Jubail, on the other hand, increased its market share from just 3% to 14%. 
Qaseem province, located north of Riyadh, has been under fierce competition 
among the 4 ports. The market share of Jeddah and Dammam ports declined by 
22% and 10%, respectively, during the period 2011-2017. In contrast, the port of 
Jubail and KAP dramatically increased their market share to 14% and 26%.  

  



 

 76 

 
Figure 4.7  Port share of the imports of each province in 2011. 

 
Figure 4.8  Port share of the imports of each province in 2018.  
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To sum up, changes in container flow occur as a result of various factors. The location of 

Jeddah and KAP ports gave them an advantage over the Eastern ports of Dammam and 

Jubail in regard to expanding their market shares specially during the increase of freight 

rates. Concomitantly, the ability of Dammam port to sustain its share might be caused by 

the availability of the railway connection to Riyadh province.  

 These findings suggest the importance of investigating the impact of port size and 

connectivity to foreland and hinterland, and the availability of railway connectivity in the 

competitive position of the ports. Therefore, in Section 5.2, the role of inland distance in 

the distribution of container flow is investigated by applying spatial interaction models for 

the years 2011 and 2018. What is more, the competitiveness of ports is assessed by 

considering the impact of the port size their accessibility in terms of hinterland and 

foreland, specifically, inland distance, the availability of railway connections and ports 

locations within the maritime shipping routes in Section 5.3.  
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CHAPTER 5 

MODEL FITTING AND RESEARCH FINDINGS 

 

To achieve the dissertation objectives and to present the outcomes and findings, this 

chapter fits, validates, and calibrates the models shown in chapter 3. This chapter is also 

divided into three sections. In Section 5.1, container demand is forecasted by applying 

univariate time series stochastic approach. In Section 5.2, the explanatory power of 

distance on inland distribution of maritime traffic is investigated by applying Spatial 

Interaction Model (SIM) and gap analysis. In Section 5.3, the statistical version of Spatial 

Interaction Model is applied to analyze the impact of port characteristics and geographic 

location in port-hinterland container flow. Considering these factors, the unexploited 

potentialities of each port is investigated to assess port competitiveness. 

5.1 Container Demand Forecast 

In subsection 5.1.1, data description is presented followed by model identification in 

Subsection 5.1.2. After identifying various tentative models, their parameters are 

estimated, and a diagnosis test is applied to determine the most suitable models in 

Subsection 5.1.3. Lastly, container forecasts are generated by the qualified models and the 

model that provides the lowest accuracy error is used to forecast out-of-sample demand in 

Subsection 5.1.4. 

5.1.1 Data Description 

The dataset consists of 204 monthly container throughput of Jeddah port for the period of 

January 2003 to December 2018. To validate the model, the time series data set is divided 

into two samples: experimental set (the training set) and the validation set (the test set). 
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First, the training set (80% of the time series observations) consists of 168 observations, 

starting January 2003 to December 2016. This set is used for model development. Second, 

the validation set consists of 36 observations, starting January 2017 to December 2019. It 

is used to evaluates the forecast accuracy of estimated models. Additionally, data 

exploration is conducted as a part of applying Box-Jenkins methodology in the next 

subsection. 

5.1.2 Model identification 

Model identification is conducted in three steps. 

I. Data exploration 

Prior to estimating the forecast model, it is important to understand the nature of the dataset 

and its variation through time. To explore the data, container throughput (CONT) dataset 

is decomposed to analyze trend and seasonality changes (Figure 5.1). The figure depicts 

the decompositions of CONT which are trend, seasonal and random components. The trend 

component shows an increase of container throughput indicating nonstationary. Followed 

by the fluctuation of container throughput starting in 2014 until 2020. This is due to the 

decline in oil prices that highly impacted the economic activities in Saudi Arabia, as well 

as the emergence of the neighboring port of King Abdullah. The seasonal changes are 

contrasted in the seasonal component which shows accompanied cyclical patterns, where 

container demand reaches its peak in the second quarter. By detrending and de-

seasonalizing the dataset, the random component remains. 

 The stationarity of the time series is an essential condition in building the time 

series model. Nonstationary is often observed on the trend component of trade dataset. To 

achieve stationarity, the time series must be detrended to stabilize the variance by 
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transforming the dataset. Therefore, various power transformations and differentiations are 

applied. Also, visual inspection assesses changes in the transformed data series.  

 
Figure 5.1  Time series decomposition of container throughput. 

 
 
II. Data transformation and graphical representation 

As shown in the previous subsection, the time series of CONT shows trend and seasonality, 

which are evidence of non-stationarity. To achieve stationarity, four transformations of 

CONT are conducted. The original and transformed time series datasets are shown in the 

Figure 5.2, and described as follows: 

a) Figure 5.2.a shows the monthly time series of imported container throughput in 
TEUs (CONTt). The plot shows a gradual growth from January 2003 to May 2012, 
faced by various downturns. The overall time series shows a positive pattern. 
 

b) Figure 5.2.b shows the natural logarithm of the original series (LCONTt). The 
logarithm series is generated to reduce variance inconsistency. The plot displays a 
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positive trend until May 2012, followed by a shift in trend level combined with 
continuous fluctuations. These changes might be caused by seasonal and economic 
shocks. The economic shocks are associated with the 2008 financial crisis, and the 
decline of oil prices. Other port-related factors, however, might cause the changes, 
such as port congestion in 2009 and/or the emerging competition in 2014. 
 

c) Figure 5.2.c depicts unsteady month-to-month growth rate of container throughput. 
This monthly growth rate is computed as DCONTt= CONTt – CONTt-1. 
 

d) Figure 5.2.d shows year-over-year monthly growth rate which is defined as 
D12CONT= CONTt – CONT t-12. During the 5-year-period to December 2008, 
the growth rate was around 14% followed by a decline of -6% during the year of 
2009. In the following three years (2010-2012), the growth rate returned to 15%. 
Then, a long period of fluctuation a small amount below the mean at a rate of -2.7% 
from April 2013 to December 2018 is observed. The problem that encounters the 
modelling of container demand is the interruption that the dynamic process of time 
series faces. Most of these dynamic changes are associated with the economic 
situation and other factors such as port competition to some degree.  

 

(a) CONTt     (b) LCONT 

 

   (c) DCONTt     (d) D12CONT 
Figure 5.2  Original and transformed monthly container throughput time series datasets. 
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III. Identifying lag orders 

In this subsection, various tentative models are generated by identifying the various 

components of them as illustrated in Subsection 3.1.1. First, the degree of integration (I) is 

identified, and stationarity is tested by using the unit root test of Augmented Duckey Fuller 

test (ADF) to determine difference order (d). Afterwards, the lag orders of AR and MA are 

specified with correlation coefficients. 

 A time series is considered stationary if its mean, variance, and covariance are 

constant over time. As shown in the previous phase, the original time series (CONT) have 

shown a clear trend that violates one of the assumptions of a stationary time series. 

Stationarity is tested for different transformations of CONT. To confirm stationarity, the 

unit root test of ADF and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) are conducted. 

Their results are shown in Table 5.1.  

 From the unit root table results, since the time series (LCONT) has a trend, it is 

nonstationary at 5% significance. On the other hand, the unit root test of the differenced 

time series DLCONT, D12LCONT and DD12LCONT are found stationary as their t-

statistics (i.e., -20.6, -3.16, and -4.41), are below the critical value of -1.9424 at 5% 

significance level, meaning that we reject the null hypothesis that the series has a unit root. 

 To sum up, the LCONT has a unit root, and taking the first difference of LCONT 

results in the stationary time series of DLCONT. Also, the inclusion of a seasonal 

difference in both LCONT and DLCONT results in the two stationary time series of 

D12LCONT and DD12LCONT, respectively. 

 To generate tentative ARIMA models, the lag orders of AR and MA terms, p and 

q respectively, are identified. To do so, Autocorrelation Function (ACF) and Partial 
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Autocorrelation Function (PACF) are shown in Figure 5.3; the plots are used to confirm 

the stationary status of the time series and identify model parameters. To identify the 

ARIMA model, the parameters AR(q) and MA(p) are identified by visualizing the plots. 

By matching the empirical autocorrelation and partial correlation patterns with the 

theoretical ones, it is often possible to identify one or several potential models for the given 

time series. 

 Figure 5.3a shows ACF and PACF of the natural logarithm container throughput 

(LCONT). Even though it is transformed, the ACF plot shows that the autocorrelation 

follows a slow linear decay pattern. Hence, natural logarithm time series (LCONT) is 

nonstationary. Taking the first non-seasonal deference of (LCONT) to generate 

(DLCONT). Figure 5.3b represents the ACF and PACF of (DLCONT). ACF plot indicates 

the presence of significant seasonal lags at 12, 24, and 36 outside the 95% boundaries 

emphasizing the existence of seasonal effect. PACF plot shows spiked at lag 1 and 6. As 

the PACF plot also depicts that the 12th lag is positively significant, one might consider 

adding a seasonal AR. However, these plots do not provide a clear pattern for a definite 

model. Therefore, many tentative models are considered and tested with reference to the 

selection criterion of AIC and BIC.  

 To account for seasonality, the datasets first seasonal differencing (D12LCONT) 

and second non-seasonal differencing (DD12CONT) are considered. The ACF and PACF 

for the two different datasets are also shown in Figures 5.3c and 5.3d, respectively. In 

Figure 5.3c, the ACF plot depicts that the autocorrelation decays slowly. The PACF depicts 

that partial correlation is significant at lag 1, then dies out fairly quickly afterward, 

suggesting an AR(1).



 

 

Table 5.1  ADF and KPSS Results 

Time series  

ADF KPSS 

 H0: The series has a unit root H0: The series has no unit root 

  None Constant 
Constant 
& Trend Constant 

Constant  
& Trend 

LCONT P-value 0.9422 0.0282 0.0229 1.4480 0.3721 
  t-statistics 1.2123 -3.0996 -3.7241   
DLCONT P-value 0.0000 0.0000 0.0008 0.3154 0.1915 
  t-statistics -20.6386 -20.7091 -4.7458   
D12LCONT P-value 0.0016 0.0139 0.0495 0.5596 0.0968 
  t-statistics -3.1697 -3.3551 -3.4375   
DD12LCONT P-value 0.0000 0.0004 0.0013 0.1856 0.0523 
  t-statistics -4.4101 -4.4394 -4.6315   
  The CRITICAL VALUES Asymptotic critical value 

 1% -2.5765 -3.4629 -4.0044 0.739 0.216 
 5% -1.9424 -2.8758 -3.4323 0.463 0.146 

  10% -1.6156 -2.5744 -3.1399 0.347 0.119 
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(a) LCONT 

   
(a) DLCONT 

  
(a) D12LCONT 

    
(a) DD12LCONT 

Figure 5.3  The ACF and PACF of various transformations. 
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 Also, PACF shows that there is a significant negative correlation that dies out in 

lags 24, 36, and so on. Thus, seasonal MA might be considered suggesting the 

multiplicative seasonal model of SARIMA(1,0,0)(1,1,0)!". ACF and PACF plots of 

(DD12LCONT) series are shown in Figure 5.3d ACF plot shows significant spikes at 1st  

and 12th lags and dampening effects for the other lags which might imply the need for an 

MA(1) and seasonal MA(1). 

5.1.3 Model estimation and diagnostic checking  

Based on the autocorrelation visualization, various tentative models are considered. For 

time series that do not provide a clear pattern to generate tentative models, alternative 

models have been considered and estimated, and the best models are chosen based on the 

selection criterion of Akaike’s information criterion (AIC). These information criterion 

measures are designed explicitly for model selection. Models having the lowest AIC and 

SIC values are considered the most optimal. To avoid over-differencing, parameter 

significance and MA invertibility are considered as well. Once the models are estimated, 

various residual diagnostic tests are applied to ensure variance consistency, 

homoscedasticity, and stationarity. 

 Out of the estimated models, the diagnostic checking of 6 models are illustrated in 

Table 5.2, namely, ARIMA(2,1,1), &'()*'(2,1,0)(1,0,1)!", &'()*'(1,0,1)(0,1,1)!", 

&'()*'(1,0,1)(2,1,0)!", &'()*'(2,1,0)(0,1,1)!", and &'()*'(1,1,1)(0,1,1)!". 

Models not reported in the table may have insufficient parameters, violate the white noise 

assumption, or have a high selection criteria of AIC. The full diagnostic tests and graphs 

of these models are presented in Appendix B.  In Table 5.2 considering residual normality 



 

  

Table 5.2  diagnostic test s for the six potential models 

  DLCONT D12LCONT DD12LCONT 
 Test Type Diagnostic test (2,1,1) (2,1,0)(1,0,1) (1,0,1)(0,1,1) (1,0,1)(2,1,0) (2,1,0)(0,1,1) (1,1,1)(0,1,1) 

Model fit R-squared 0.119731 0.528 0.827 0.708 0.523 0.519 

 Adj R-squared 0.108863 0.518 0.825 0.701 0.517 0.513 

 Sum squared Residual 0.835186 0.413 0.426 0.432 0.420 0.424 

 Std. dev. Of residuals 0.071317 0.052 0.0525 0.0576 0.0525 0.0526 

  Inverted MA and/or MA roots <1 <1 <1 <1 <1 <1 

Selection criterion AIC -2.411 -3.023 -3.017 -2.813 -2.96 -3.016 

Residual normality Skewness 0.024748 0.044914 0.053315 0.2153 0.030151 0.084628 

 Kurtosis 2.751351 2.866969 2.881283 3.639557 2.904097 2.87293 

  Jaraque-bera test 0.801757 0.921152 0.921063 0.197434 0.959918 0.866135 

Residual serial correlation 
  

Ljung-Box test 0.0000 0.150 0.156 0.243 0.186 0.298 

Breusch-Godfrey test 0.0000 0.3550 0.0929 0.2464 0.3232 0.3161 

Residual variance ARCH test   0.9929 0.4045 0.6619 0.9896 0.6272 

Forecast accuracy RMSE (static forecast)   33176.07 34115.76 35567.59 33002.41 33405.59 

 MAPE (static forecast)   6.654 6.678 6.935 6.687 6.685 

 RMSE (dynamic forecast)   35217.04 33495.93 32558.96 37906.19 38847.19 

  MAPE (dynamic forecast)   7.736 6.327 5.586 8.629 8.950 
a) When no AR root lies outside the unit circle, the model is stationary, when no MA root lies outside the unit cycle, the model is 

invertible. 
b) Autoregressive conditional heteroscedasticity test (ARCH) is used to test if residuals have constant variance. The null hypothesis: the 

residuals are homoscedastic. 
c) Ljung-Box test (portmanteau test) is used to test autocorrelation. The null hypothesis is that no serial correlation at residuals. 
d) Static forecast uses the actual value for forecasting the subsequent value.  
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and according to the Jarque-Bera test, the estimated residuals of the proposed models are 

normally distributed where the probability of their J-B test exceeds 5%.  

However, the residuals of ARIMA(2,1,1) are serially correlated which violate the 

assumption. On the other hand, the issue of serial correlation that is present in 

ARIMA(2,1,1) is invalid in the other five models, as the probability value of their Breusch-

Godfrey test is over 5% meaning that all the other five models satisfy the residual 

assumptions.  Considering variance consistency among residuals, the ARCH test is for 

testing residual variance. ARCH results prove that the residuals are homoscedastic with a 

probability exceeding 5% for each of the remaining models. To determine the most suitable 

model, forecast error is examined in the third phase. 

5.1.4 Forecast Application and Findings 

The five tentative models that satisfy all the diagnostic tests in the previous phase are used 

to generate forecasts from Jan 2017 to Dec 2019. Thereafter, the forecast results are 

compared to the actual observations on the training set specified in Subsection 5.5.1. Table 

5.2 depicts the forecast accuracy of the tentative models. Two forecast accuracy measures 

are used, namely Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE). The model that provides the lowest RMSE and MAPE forecast accuracy is 

considered the most reliable one. By comparing the accuracy of the models in Table 5.2, 

the model !"#$%"(1,0,1)(2,1,0)!" demonstrates the most reliable forecasts over the 

training set with a forecast error equal 6.65%. The model estimation output is reported in 

Figure 5.3, and its estimated equation is as follows: 

(1 − ∅!.) ∙ (1 − 0!.!" − 0".!") ∙ (1 − .!")12345# = (1 − 7!.)8# (5.1) 
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 In Table 5.3, it can be seen from the t statistics and p-value of model coefficients 

that the parameter estimates are significant at 5% with an R squared value of 70.7%. Using 

the SARIMA(1,0,1)(2,1,0) model, Figure 5.4 represents a comparison between the 

forecasted and the actual container throughput of Jeddah port for the period of January 

2017 to December 2019. Despite the spike in the forecast of July 2019, the model shows 

accurate performance in explaining the container throughput of the port during the three-

year period (2017-2019). 
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Table 5.3  Model Estimation of SARIMA(1,0,1)(2,1,0) Using D12LCONT Series 

 
 

 
Figure 5.4  Forecasted container throughput of Jeddah port (Jan 2017 – Dec 2019). 
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5.1.5 Conclusion 

The purpose of this subsection is to forecast container demand, understand the behavior 

and pattern of container throughput, and provide an approach that can be updated and 

applied in the future. The port of Jeddah is used in the empirical analysis to forecast 

container demand from January 2003 to August 2020. To validate the model, the time 

series data set is divided into two samples, that is the experimental set (the training set) and 

the validation set (the test set) As mentioned in Subsection 5.1.1. The empirical analysis 

resulted in an important conclusion. First, based on the data generating process, and 

assuming the historical pattern remains the same, this approach provided a reliable forecast 

of demand variation for the period of three years. Second, the model of 

SARIMA(1,0,1)(2,1,0) provides the most accurate forecast results. Based on the error 

measure of MAPE, the forecast error of the model is 6.6%. 

 Forecasting short-term container demand is of importance for port decision-makers 

by supplying an instrument to obtain insight into future demand. Port authorities and 

terminal operators aim to avoid traffic congestion and improve container handling 

efficiency. The short-term forecasts help them in the planning process for operation 

decisions and resource allocation. Therefore, improvements and modifications of operation 

plans may be applied to improve productivity and can be achieved by considering these 

forecasts.   
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5.2 Assessing the Role of Distance in Container Flow 

The objective of this section is to measure the diversion of container flow between ports 

and provinces. It has two folds. First, the explanatory power of inland distance on the 

distribution of container flow is analyzed. This is done by analyzing the role of distance in 

the hinterland of competing ports. The analysis will detect the impact of distance in two 

years to investigate whether the role of distance in the container flow has changed.  Second, 

assessing the potential market share of each port by considering the role of the inland 

distance between ports and provinces. This assessment will reveal the unexploited 

potentialities of the ports based on the inland distance. This is done by comparing the actual 

and predicted container flow based on the spatial analysis model.  

 In terms of how this section is organized, Subsection 5.2.1 data used to assess 

hinterland connectivity is described. In Subsection 5.2.2, model calibration and goodness-

of-fit statistics are applied; also, model results are presented. In Subsection 5.2.3 findings 

are presented. Lastly, the conclusion is presented in Subsection 5.2.4. 

5.2.1 Data Description 

The analysis of this section deals with the study of Saudi ports. Since the container flow in 

the country is import-driven, only containers transported from ports to provinces are 

considered in the analysis. The four ports of Jeddah, KAP, Dammam, and Jubail are 

considered as the origins, and the 13 provinces are the destinations (Attracting container 

flow). The four ports represent over 95% of the containers transported to the 13 provinces, 

thus, other ports are not considered in the analysis. 

 There are two matrices that need to be distinguished. The actual container flow 9$%  

matrix  and the inland distance matrix. These two matrices are used as input data, where 
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9$% represents the actual flows from :th province to ;th province. The container flows are 

measured in TEU. The inland distance matrix where <$% represents the geographical 

distance between the ith province and the jth port and distance is measured in km. 

Geographic distance between ports and provinces is used in the analysis. It is calculated 

between the most populated city in each province. Further matrices are generated as outputs 

by applying the Spatial Interaction Models in the next section. The SIModel software is 

used to produce new O-D matrices (predicted OD matrix), which represents the 

redistribution of the observed traffic flows. 

5.2.2 Model calibration 

The spatial interaction model (SIM) is performed by applying doubly and constrained 

models. First, the doubly constrained model is applied to assess the explanatory power of 

distance in the distribution of container flow between ports and provinces in Saudi Arabia. 

This is done by estimating the distance decay parameter based on the port-province inland 

distance and container flows, then investigating the explanatory power of distance in 

shaping the hinterland regions. Thereafter, the distance-decay parameters = for the two 

time periods of 2011 and 2017 are compared to assess whether its role has evolved or not. 

The comparison provides an understanding of the evolution of distance explanatory power 

which can be beneficial in determining the behavior of spatial interaction. 

 Second, the attraction constrained model is applied, then, the estimated and the 

actual container flows are analyzed by using gap analysis to reveal the role of distance in 

each port-hinterland connection and to investigate unexploited potentialities of the Saudi 

ports. The attraction model is applied to the container flow by reassigning the container 

flow within the container ports. The redistribution of container volumes among ports is 
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performed based on the inland distance and the total volume of each port, to iron out the 

frictions from the system and keep the traffic transported to each province fixed.  

 In the case of this study, the model proposed by Williams & Fotheringham (1984) 

is presented in Subsection 3.2.1. This allows the calibration of spatial interaction models 

through the Maximum Likelihood (ML) estimation. By running the model calibration on 

the container flow between i-ports and j-provinces, the distance parameter is estimated. 

The model is calibrated by using Spatial Interaction Model (SIModel) software, which the 

model calibration provides parameter estimates on the distance decay which provide useful 

information on the distribution of flow within an investigated system.  

 For the doubly constrained model, the flows are redistributed based on the distance, 

inflow totals to each province, and outflow totals from each port. The reason for using 

inflows to provinces is to ensure that the sum of estimated inflows to a particular province 

equals to the total actual inflow to it. Similarly, outflow totals are used to ensure the sum 

of estimated outflows from a particular port equals the total actual outflow from that port. 

To calibrate attraction constrained model, the model calibration assigns the predicted 

container flows based on the distance and the inflow totals to provinces, to iron out the 

frictions from the system and keep the traffic transported to each province fixed. 

 The calibration of a model involves optimizing the value of the parameter =. This 

parameter defines how close an estimated value is compared to the observed flows. From 

a mathematical perspective, the optimization of = ensures the probability that the flows 

estimated by the model are similar to the actual ones. According to the doubly constraint 

model, the =  measures the role of the distance in defining the relationship between ports 

and provinces.  = is sensitive to the inland distance and represents practical challenges that 
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would cause traffic flow deviations (Clarke et al., 1986). Such challenges include inland 

transport cost and inefficiency of transport operation. The literature defines the port 

attractiveness as a function of distance-decay framework. The effect of = may take any 

value below zero, where: 

0 ≤ = < −1 friction is proportionately lower l with the distance. 

= < −1 container flow is proportionately higher with the distance. 

= = −1 container flow is directly proportional to the distance. 

 When beta equals zero, distance has no role at all in shaping the hinterland which 

results in a perfectly contestable hinterland. The closer to zero the = value, the lower the 

impact of distance in shaping the port hinterland which means that the role of distance in 

container flow is limited. In contrast, the role of distance in the distribution container flow 

is higher when the beta value is away from zero. In other words, the container flow is highly 

influenced by distance, thus, the explanatory power of distance is stronger in shaping 

hinterland resulting in a captive hinterland (C. Ferrari et al., 2011).  

 Two other parameters are used: Absolute Entropy Difference (AED) and 

corresponding statistical deviation (d) for Spatial Interaction models.  These parameters 

are calculated for both models. AED can be conceptualized as a statistical index defining 

systems’ entropy and d is a fitting parameter. AED is defined as the difference in the 

variance of the actual and predicted probability distribution in absolute value. AED is not 

used to measure the model fit but to evaluate the degree of influence that distance has on 

container flow.  
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5.2.3 Findings  

To investigate the role of distance, a doubly constrained model is applied from 2011 and 

2017. The 	= parameters of both years are compared to find out whether the impact of 

distance encountered any changes or not. The outcomes of the model calibrations are 

reported in Table 5.4. 

 

Table 5.4  The Outcomes of the Doubly and Attraction Constraint Models 
for 2011 and 2017 

year constraint = AED d(%) 

2011 Attraction -0.989 0.097 27.4 

 Doubly -1.044 1.333 29.3 

2017 Attraction -0.5815 1.216 55.7 

 Doubly -0.6671 2.523 57.2 

 

 Table 5.4 depicts the outcomes of the models of doubly and attraction constraints. 

In order to analyze the explanatory power of distance, the = value of the doubly constraint 

model is considered for the years 2011 and 2017. The = value of the doubly model in 2017 

is -1.044 compared to -0.671 in 2011. This increase in = value (getting closer to zero) 

indicates that container flow became less sensitive to distance in 2017. This suggests an 

increased grade of contestability in the inland provinces, where the container flow to 

further inland markets from ports is less influenced by distance due to the decreased role 

of distance in 2017. Following the study conducted by Ferrari et al. (2011), two additional 

parameters are used to interpret the model results, namely, Absolute Entropy Difference 
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(AED) and corresponding statistical deviation (d). The two parameters are calculated for 

both models. 

 AED provides evidence of how much the variance of predicted flows compared to 

the variance of the actual flow, where a close value of AED to zero, indicates a minimal 

difference between the two variances whereas a higher AED indicates the model does not 

reliably fit the actual system. AED shows how much the actual system is predictable where 

the lower limit of AED can be zero when the system is fully predictable (A& = A'). In 

contrast, the upper limit of AED represents the maximum entropy with maximum level of 

uncertainty, when A& = 0	and A' = BC	(C);  n is determined by the size of the system. 

Given that there are 13 provinces and 4 ports, the higher bound of AED equals to ln(n), 

where n is the maximum size of the system (the number of provinces divided by the number 

of ports). Therefore, 

0 ≤ "EF ≤ 3.6665   for 2011  

 	0 ≤ "EF ≤ 3.951   for 2017 

 The imbalance in serving the inland provinces between the western ports of Jeddah 

and KAP and the eastern ports of Dammam and Jubail is reflected in the AED values. 

Furthermore, the deviation statistics measures the deviation in the actual container flow 9$% 

compared to the predicted container 9′$%. It is measured in percentage where  <=100% 

indicates that predicted flow distribution has no deviation from the actual flow. In 2011, 

the deviation in the estimated flow of attraction constrained model is lower (29%) 

compared to 56% in 2018. This indicates that even though the distance decay parameter 

has an impact on container flow, it weakly describes container flow in 2011, indicating that 

other factors may have influenced the explanatory power of distance. 
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 While such value provides a general overview of the scenario, there might be some 

masking of the real degree of permeability of corresponding captive markets. This figure 

may mask strong captivity of some ports over closer hinterlands and overlapped hinterlands 

in the inland regions by major competing ports which raises the need for further 

consideration. Therefore, a more in-depth analysis is necessary to further investigate the 

impact of distance in shaping hinterland as it might reveal different judgment, especially 

on the explanatory power of distance on inland regions for the presence of any barriers. 

 Furthermore, observing the actual flows reveals a various degree of hinterland 

types, where local hinterland and the surrounding provinces, tend to be captive hinterland 

for the two major ports of Jeddah and Dammam in 2011. This picture changed in 2017 

after the emergence of KAP and the developing port of Jubail penetrate the hinterland of 

the two major ports. Concerning the inland regions, the relative market share of Dammam 

port over the long-lasting captive hinterland of Riyadh province encountered a decline in 

2011. The increase of freight rates during 2011 might have had a barrier effect for the 

Eastern ports, whereas the western ports of Jeddah benefited because of their advantageous 

geographic location in terms of the maritime shipping accessibility. The availability of 

railway services between the port of Dammam and Riyadh province provides the port an 

advantage over the other ports. Similarly, the other central province of Qaseem is closer to 

the eastern ports compared to the Western ports. Jeddah port gained higher market share 

of Qaseem in 2011, then the market share dropped significantly in 2017.  

 These observations also reveal the existence of non-homogeneous of different 

hinterland regions. Unfortunately, the distance decay parameter does not reflect such 

variability. Therefore, the varying developments in the market share at different regions 
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highlight the need of investigating the evolution of the explanatory power of distance at 

the port-province level; as such, a permeability analysis is conducted to assess the 

competitive advantage of competing ports. The permeability index presented by Ferrari, et 

al. (2011) is used as well. 

The index is calculated by considering the ratio between actual and predicted 

container flow. The index allows to measure the ability of each port in serving the 

hinterland region. Using the two container flow matrices: the actual flow 9$% and predicted 

flow 	9′$% based on the attraction constrained model, the permeability index is calculated 

as follows: 

$$% =	
9$%
9

($%
 (5.2) 

Where $$% may take the value of zero or any negative value. If  $$%is larger than 1, the port 

is able to serve the hinterland, and the impedance effect of the spatial distance is limited. 

If  $$% is less than zero, the port ability to serve the hinterland is limited or connectivity 

barrier exists. Figure 5.5 shows provincial permeability index by province for each port for 

the years 2011 and 2017.  

 Equally important, container traffic tends to decrease with the increase of distance 

where the surrounding provinces of Jeddah port in the west and Dammam in the east 

encountered some penetration of the small but developing ports of KAP and Jubail in 2017. 

On the West Coast, despite the decreased discrepancy of Jeddah port in the Northwestern 

provinces, the port still dominates in the Southern provinces. On the East Coast, the 

situation is slightly different where Dammam’s ability to keep its local share has decreased. 

In 2011, a large proportion of containers handled in Jubail port were delivered to the local 
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region. The port mainly serves the province of North Borders and, to a lesser extent, its 

province due to the dominance of Dammam port. However, this has changed in 2017, as 

Jubail port penetrated the hinterland of Dammam port in the Eastern province and Riyadh 

province. The large infrastructure development that Jubail experienced might be the reason 

for increasing port capability by reaching further hinterland. 

 Figure 5.5 also reveals interesting changes regarding the central provinces. In 2011, 

the Western port of Jeddah served a wider hinterland and had higher permeability index 

values in the central provinces of Riyadh and Qaseem compared to 2017. The port’s market 

share was 16% higher in 2011 than in 2017, which indicates the reduction of distance 

impact on the container flow from Jeddah port to central provinces. The freight rates might 

cause this difference as shippers attempt to decrease the maritime haulage of their shipped 

containers when freight rates increase. Their attempt may cause longer inland transport 

haulage, but it can be compensated by reducing freight cost, thus, the overall cost saving. 

Therefore, the increasing share of the Western port of Jeddah in the central regions to the 

detriment of the Eastern ports might be attributed to the increase of freight rates in 2011 

and the port users’ preferences. However, the situation is different in Riyadh, where the 

permeability index of Jeddah port is relatively lower compared to that of Qaseem where 

Dammam port maintains a solid link to Riyadh due to not only to the close distance, since 

Jubail port has the same advantage, but also Dammam-Riyadh railway connection. 

 These results indicate that the availability of ports on different coasts, freight rates, 

and railway connectivity fuel the inter-port competition; thus, transforming the inland 

markets from captive to overlapping hinterland regions, since each port would have a 

competitive advantage, allows it to compete over the overlapped hinterland. However, the 
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strength of port competition might vary in different regions based on the geographical 

configuration where larger countries tend to have a longer distance to inland markets that 

increase the impact of inland transport cost. The impact size of long-distance decreases 

when alternative inland transport modes are available. 
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Figure 5.5  Provincial permeability index by province for each port (2011 and 2017).  
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5.2.4 Conclusion 

The objective of this section is to determine the impact of distance on the diversion of 

container flow among the competing ports. This objective consists of first investigating the 

evolution of inland distance role on the distribution of container flow and secondly 

assessing the competitive position of the ports, based on the different hinterland regions. 

To achieve these objectives, two steps were conducted.  

One, to investigate the evolution of the role of distance in two different years, the 

doubly constrained model is applied to estimate the distance parameters of the container 

flow in the years 2011 and 2018. These two parameters investigate whether distance power 

in explaining the container flow changed or not. Second, to assess the competitive position 

of the ports, the Attraction constrained model assesses the unexploited potentialities of the 

competing ports by analyzing the difference between the predicted and actual container 

flow at the port-hinterland level.  

The results of the gap analysis are useful in highlighting the geographic competitive 

advantage of each port with respect to the other ports. The existence of other barriers that 

reduce the explanatory power of distance is also investigated. The analysis is conducted on 

the case study of Saudi Arabian ports for the years 2011 and 2017. This provides an 

understanding of port competitiveness within the country-level and the barriers that limit 

the competitive position of the ports. The analysis of this section reveals the following 

outcomes:  

a) The stronger explanatory power of distance in 2011, indicates that the container 
flow is highly influenced and shaped by distance, resulting in a less contestable 
hinterland. 

b) The role of distance in shaping the hinterland is stronger and more efficient in 
2011 than in 2017.  
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c) The actual container flow in each province reveals the existence of non-
homogeneous of different port hinterland, where the distance decay parameter 
does not reflect such variability. The results of gap analysis show the negative 
impact of poorly located ports in attracting cargo in the presence of high freight 
rates. The availability of railway connections in a particular port-province pair 
improves the port competitiveness position. 

d) While foreland accessibility acts as a barrier effect in the hinterland expansion of 
Eastern ports, Jeddah port benefited from its geographic location in the Red Sea, 
especially in 2011 when freight rates reached their peak. Therefore, the impact of 
port location within liner shipping routes on the container flow is investigated in 
the next section to reveal whether the location of Jeddah port allows it to reduce 
the influence of distance as an impedance in reaching the central provinces of 
Riyadh and Qaseem. 

e) Distance plays a major role in the distribution of container flow, shaping the 
hinterland where potential increases in container volume are limited as distance 
increases.  

f) The findings of the applied SIM and gap analysis reveal that container flow 
distribution and the expansion of hinterland are influenced by (1) hinterland 
accessibility, (2) intermodal availability, and (3) foreland accessibility. 

Further investigation on the impact of these factors in the distribution of container flow is 

conducted in Section 5.3. 

5.3 Analyzing Port Competitiveness  

The competitive position of the port depends on the port ability to attract port users and 

gain a higher market share compared to other ports. The port selection decision of port 

users is influenced by factors related to the entire transport chain in which the port is 

included. In the previous section, inland distance was solely considered in depicting the 

market share and measuring its role as an explanatory power in defining port hinterland. 

However, various factors related to the determinants of ports, hinterland and foreland 

impact the distribution of container flow and influence hinterland expansion; thus, port 

competitiveness. 
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 In this section, two steps are followed to assess port competitiveness. First, 

investigating the impact of port geographical characteristics, and the intermodal 

connectivity in the inland distribution of maritime traffic at country-level. Poisson Spatial 

Interaction Model (SIM) is applied to analyze the impact of the impact of maritime 

accessibility, inland distance between ports and inland regions, railway availability 

between them and port location within maritime shipping routes in container flow, on port-

province container flow in the case study of Saudi Arabia. Second, assessing port 

competitiveness by taking into account the actual and predicted container flow where they 

are the predicted and actual container flow are analyzed by applying gap analysis to assess 

the competitive position of ports at the provincial-level. The model outcomes reveal the 

role of these factors in shaping the hinterland of ports. This analysis provides information 

regarding whether the hinterland is captive or contestable. 

 Further, special attention is paid to the role of inland distance (port-province) 

maritime accessibility to determine which one has higher explanatory power in shaping the 

hinterland; and in turn, their impact is investigated by comparing the parameter 

significance of these two factors. In addition, the impact of intermodal accessibility is 

considered as well where Dammam port has an inland alternative to mode of railway for 

containers transported to the central region. Furthermore, maritime accessibility of ports is 

crucial especially for countries bordering two seas where ports are geographically located 

as in the case of Saudi Arabia. Given the availability of alternative inland mode in 

Dammam port and the strategic location of Jeddah port, in terms of maritime accessibility, 

the impact of port location and intermodal availability are of particular interest.  
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 The analysis of this section may help port planners (e.g., port authority and terminal 

operators) in port planning decisions by understanding the port competitiveness and the 

impact of the above-mentioned factors in container traffic. Also, the analysis is of interest 

to policy makers and planners of inland transport since it sheds light on the distribution of 

container flow over the hinterland regions. This section is structured as follows: In Section 

5.3.1 data used to assess hinterland connectivity is described. In Section 5.3.2, the 

methodology is applied. In Section 5.3.3, model calibration is conducted. Lastly, results 

and findings are presented in Section 5.3.4. 

5.3.1 Data Description 

SIM estimates the spatial interaction in the inland distribution of maritime traffic, container 

flow, is generated as annual port-province flow between the four major ports and the 13 

provinces in Saudi Arabia during the years 2006-2018 based on data collected from Saudi 

Ports Authority (SPA), King Abdullah Port (KAP) website and the general authority for 

statistics of Saudi Arabia. The ports of Jeddah, KAP, Dammam and Jubail are used as 

origins. These ports accounts for more than 95% of the country’s container throughput. 

Minor ports in the country are not assumed to impact the container flow of the four major 

ports and are therefore excluded from the analysis. For destinations, the 13 governmental 

provinces are used as destinations. 

 To model Spatial interaction, inland distance, Liner Shipping Connectivity Index 

(LSCI) are used as explanatory variables. The inland distance between the four ports and 

the 13 provinces, measured in kilometers, is obtained from Google maps by calculating the 

distance between the most populated city in each province and each port. LSCI data is 

collected from United Nation Conference on Trade and Development (UNCTAD). The 
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index is used as a proxy for port performance as it measures the maritime Connectivity of 

the port to global liner network based on six components where these components reflect 

the deployed capacity of ports and the dynamic structure of global shipping network. More 

detailed information about LSCI is presented in Section 2.3.4. 

 In addition to the collected data, two dummy parameters are used in the SIM. The 

dummy of rail availability where a value of one indicates the availability of railway service 

between port-province pairs, otherwise, zero. The other dummy of port location is used to 

account for the advantageous port location where the dummy value is one if the port is 

located in the Red Sea, otherwise, zero. The total number of observations is 572. Data for 

KAP is available from 2014 to 2018 since the port opened in 2013, thus, the annual 

observations from 2006 to 2013 is 39 and 52 annual observations for the period of 2014 to 

2018. Summary statistics of the variable is presented in Table 5.5. 

 

Table 5.5  Descriptive Statistics 

Variable Obs Mean Std. Dev. Min Max 

Container flow 572 86868.7 206225.6 0 1235900 

LSCI 572 29.8 13.4 2.6 48.9 

inland distance 572 1007.4 444.3 10 1775 

Rail availability (dummy) 572 0.02 0.15 0 1 

Port location (dummy) 572 0.41 0.49 0 1 

 

The histogram distribution of container flow is depicted in Figure 5.6. There are 

some unique features of the data worth mentioning. About 32% of the container flows are 
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zeros. Various studies in the literature emphasized that the presence of large zero-flow 

observations is the main estimation problem of gravity models. Gómez-Herrera (2013) 

indicated that estimating models that do not appropriately deal with the presence of zero 

flows perform noticeably worse than others where the excessive number of zeros leads to 

heteroscedasticity. Heteroscedasticity exists if the variance of the model error is not 

constant. The presence of heteroscedasticity indicates the violation of homoscedasticity 

assumption in OLS, thus, using OLS regression to estimate the parameter leads to biased 

estimates. As a result, having high frequency of zeros in the dependent variable (container 

flow) demands the use of an appropriate method that would allow for consistent estimates, 

which necessitates a careful consideration of the methods to prevent biased results.  

 

Figure 5.6  Histogram of port-province container flow (2006-2018). 

 

 Several ways are recommended in the literature to deal with heteroscedasticity. One 

of the ways is by taking the natural logarithm of the dependent variables. However, taking 
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the logarithm of the dependent variable results in undefined value of observations with zero 

flow; thus, dropping them. Another option is to add a constant value of one to all the 

observations of the dependent variable. Adding a constant is not theoretically consistent as 

it present more variance that others (Gómez-Herrera, 2013). Alternatively, Silva and 

Tenreyro (2006) stated that to account for the excessive presence of zeros, it is appropriate 

to estimate gravity models such as spatial interaction models by using  Maximum 

Likelihood (ML) estimator as it provides unbiased estimates in the presence of 

heteroskedasticity. Spatial interaction models are commonly estimated in the literature by 

using Poisson regression. Therefore, linear Poisson regression is applied, in this section, to 

estimate Spatial interaction Model. 

5.3.2 Model specification 

As indicated in the previous subsection, the Poisson regression method is applied to 

estimate the parameters of the Spatial interaction model where the impact of port 

characteristics, inland distance between ports and provinces, maritime accessibility, and 

intermodal connectivity on the inland distribution of maritime traffic is investigated. To 

estimate the SIM parameters, the analysis conducted in this section follows the approach 

proposed by Flowerdew & Aitkin (1982). The authors stated that Poisson distribution is 

applicable to fit SIM when the container flow between origins and destinations is assumed 

to be drawn from a discrete choice probabilistic process, as in this analysis of this section. 

Additionally, this approach is used when the mean of the response variable is a function of 

the independent variables.  In other words, the mean of the container flow is assumed to be 

logarithmically linked to the linear combination of the independent variables. To converge 

the Poisson Pseudo-Maximum Likelihood (PPML) for the parameter estimates, the Poisson 
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model is calibrated by using the iteratively Reweighted Least Square (IWSL) as it allows 

successive iteration until the value of the estimated parameters leads to convergence 

(Nelder & Wedderburn, 1972). 

 Even though this Poisson regression method provides consistent parameter 

estimations, the model results are not always efficient. Poisson distribution restrictively 

assumes that the variance of observation is equal to the mean. In practice, overdispersion 

occurs when observed variance is usually larger than the mean. This is due to two reasons: 

(1) the heterogeneity of observations causes the presence of extreme values in the 

dependent variable (Zeileis, 2004); and (2) the selection consists of more than one 

individual where their behavior varies (Flowerdew & Aitkin, 1982). In container flow 

analysis, both circumstances exist since an excessive number of flows may have zero value 

and choosing a particular port result from various strategies of port users (Moura et al., 

2018).  In such settings, estimating Poisson regression with the presence of over-dispersed 

data and the use of default standard error leads to invalid statistical inference and inefficient 

model results (Lindsey, 1999). The reason for this is that default standard errors can greatly 

overstate estimator precision, resulting in considerably small standard errors; thus, invalid 

statistical inferences (Hoechle, 2007). Therefore, attention must be paid to standard error 

to increase model efficiency. 

 To ensure the SIM fits well without violating Poisson regression assumptions, the 

clustered robust standard error is generated instead of the default standard error. The 

clustered standard error (covariance matrix estimator) allows the relaxation of the 

independently distributed residuals assumption (Froot, 1989; Rogers, 1992). In the 

presence of independent distributed residuals, the obtained standard errors by using the 
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cluster estimators are consistent even if heteroscedasticity is seen across residuals (Newey 

& West, 1987). Therefore, standard errors are clustered by port-province pairs, in this 

section, to account for any intra-cluster correlations at the port-province pair-level. 

 Regarding choosing a suitable Spatial Interaction Model, an attraction constrained 

model is chosen to investigate the impact of LSCI, inland distance, railway availability, 

and port location in the inland distribution of container flow. This due to the model ability 

to consider both the spatial impedance and port-related factors. Briefly, the basic 

(unconstrained) spatial interaction model considers the impact of both origin and 

destination where origin represents port attribute and destinations represent province 

attribute. Since the analysis in this section is based on the factors that impacts the 

distribution of container flow from a transport perspective, using the unconstrained model 

does not allow for an analysis to be exclusively related to the distribution of container flow. 

Moreover, doubly constrained model only considers the impact of distance and does not 

allow fitting factors related to the port. Therefore, the attraction constrained model is used 

to fit the panel dataset, presented in Subsection 5.3.1, by including factors related to the 

port attribute (origin) and constraining the province attributes (destination). A detailed 

comparison of Attraction constrained model and the other SI models is presented in 

Subsection 3.2.2.   

 The attraction constrained model is applied to estimate container flow (9$%#) 

between ports and provinces where ports are defined as : (: = 1,2, … , $), provinces are 

defined as ; (; = 1,2, … , P), and years are defined as Q (Q = 1,2, … , 5). To represent factors 

related to port performance and geographic characteristics, the model involves fitting the 

variables: Liner Shipping Connectivity index ($$#), inland distance (<$%), rail availability 
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(#$%) and port location within shipping routes 1$. Based on the attraction constrained 

Equation 3.30 presented in chapter three, the model is reformulated to fit the variables of 

interest as follows: 

9$%# = RST	U	V + =!BC	$$# 	+ X% − =BC	<$% + =)	BC	#$% + =*BC	1$ 		Y 	+ 	Z$%  (5.3) 

Where: 

9$%# container flow from port : to province ; 

V constant 

$$# liner shipping connectivity index for port : and year Q 

X% fixed effect for province ; 

<$% inland distance between port : and province ; 

#$% dummy for the availability of rail services between port : and province ; 

1$ dummy for the location of port : 

Z$%  the clustered error on port-province pairs 

 

 Liner Shipping Connectivity Index ($$#) is used as an attractiveness measure of port 

: at year Q. Obtaining a variable that represents port performance is a difficult task, Liner 

Shipping Connectivity Index (LSCI) is used as a proxy for port efficiency. This supported 

by De Oliveira & Cariou, (2015) who suggests the use of LSCI as a proxy of the 

competitive pressure from shippers and liner companies as the authors analyzed the 

relationship between port efficiency and LSCI and found that they are positively correlated. 

Moreover, this index is a good measure to compare different ports as it contains measures 
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related to both port ability to serve ships and the proximity to dynamic global liner network. 

Thus, LSCI is used as a proxy of for port attractiveness. 

 The distance decay parameter <$% is a repulsion measure of flow between port : and 

province ;. Its sign is expected to be negative since the increase of distance causes a 

reduction in container traffic. Distance parameter of  = < 1 implies that the parameter is 

less than proportional to distance indicating the hinterland is contestable, and conversely, 

= > 1 implies that the parameter is more than proportional to distance indicating to captive 

hinterland (Claudio Ferrari et al., 2011; Guerrero, 2018). The higher the parameter, the 

higher the distance impact on preventing the ports from reaching further markets, thus, 

limiting their hinterland scope.  

 The dummy variable #$%is consider the availability of railway services between port 

: and province ; where the dummy equals 1 if railway service exists, otherwise, 0. The sign 

of the parameter coefficient is expected to be positive since the availability of rail 

connection provides an advantage for port i compared to the other ports. Maloni and 

Jackson (2005) and Castillo-Manzano, González-Laxe, and López-Valpuesta (2013), 

States that rail services is widely recognized as a critical factor in the port’s ability to 

compete for hinterland flow   

 As container demand at ports is likely related to the cost of shipping. the location 

dummy is included to account for the impact of freight rates on port location. The dummy 

is included for for two reasons: 1) fuel price is a major element of ship operating cost which 

has a direct impact on freight rates of liner shipping services (Stopford, 2009). 2) As 

shippers select the lowest transport cost, they prefer ports that provide the lowest freight 

cost.  Therefore, the dummy variable 1$ refers to the port location within shipping routes 
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where it takes a value of 1 if the port : is located in the Red Sea, otherwise, 0. Its expected 

sign is positive as ports strategically located in the Red Sea have better accessibility to 

maritime shipping routes which provides a competitive advantage for the port : compared 

to the other ports.  

 To constrain the destination attribute, the model involves fitting a time-invariant 

fixed effect factor X% that allows capturing the unobserved effect of each province. Each 

province is presented by a dummy variable (X% =1, 2, …,	X+) that has a value of one in 

every observation the province is part of. For example, the dummy variable (X!) is set to 1 

for Riyadh province, otherwise, zero; similarly, the dummy variable (X") is coded as 1 for 

Makkah province and zero for other provinces and so on. To avoid perfect 

multicollinearity, each province has a dummy variable except one that does not have a 

dummy and the attribute of this province is explained by the default intercept. In the next 

subsection, the model outcomes and findings are presented. 

5.3.3 Findings 

In this subsection, first, the attraction constrained model is applied to assess the impact of 

geographical characteristics, LSCI and intermodal availability in the distribution of 

maritime traffic. Thereafter, the gap between predicted and the actual container flow is 

analyzed to reveal the unexploited potentialities of ports. The outcomes of the gap analysis 

are used to assess port competitiveness. 

   The outcomes of the attraction constrained model are represented in Table 5.6. 

The explanatory power of the considered variables differs considerably. The obtained 

values of parameters allow the observed flow to fit with a 91.7% accuracy. 
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Table 5.6  Outcomes of the attraction constrained model 

variable coefficient clustered s.e. z P-value 

$$#	 1.126 0.256 4.40 0.000 

<$% 	 -0.812 0.151 -5.38 0.000 

#$% 	 2.009 0.257 7.80 0.000 

1$ 	 0.662 0.317 2.09 0.037 

R^2 0.9098    

Obs. 572    

 

 The distance-decay parameter (<$%) is a repulsion measure that is used as 

measurement of trade impedance between ports and provinces since an increase in distance 

impacts container flow negatively, and vice versa. The distance parameter is statistically 

significant and has a negative effect on container flow which is in line with the apriori 

expectation, meaning that a rapid decrease of the intensity of inland flows with an increase 

in distance. The friction parameter provides an overall indicator of inland distance on the 

level of captivity in the hinterland. A friction parameter lower than 1 means that the friction 

parameter is less than proportional to distance which indicates a contestable hinterland. 

The higher the friction the more limited is the scope of the hinterlands (Guerrero, 2018). 

The model estimates a distance parameter of -0.812<1 which indicates that the hinterland 

is more of a contestable type.  

 Additionally, the impact of inland distance on the freight flow to the hinterland 

region depends on the geographic characteristics of the country where the friction value is 

higher in large countries. This can be seen in the case of the United States (Levine et al., 

2009) where the friction of distance is relatively weak compared to other countries that are 



 

 

116 

 

geographically smaller such as Italy (C. Ferrari et al., 2011), Spain (Moura et al., 2017) 

and France (Guerrero, 2018). One of the reasons for this impact is that intense container 

flow in long haulage in port-province pairs caused the small friction of distance. Low value 

of distance parameter is caused by the fact that long-distance inland transport is more 

frequently common (Thill & Lim, 2010). This can be seen in the case of this study where 

a high volume of container flow is transported to the inland province of Riyadh from ports 

of Dammam and Jeddah where the two ports are located 430 and 950 km away from 

Riyadh, respectively. The flow share of both ports to Riyadh province is 26% of the total 

container throughput in 2018.  Further analysis at provincial-level is conducted later in this 

section to analyze the impact of distance on each port individually. 

 However, the share of Dammam port share on total container inflow to Riyadh is 

72% in 2015. This large share is due not only to the proximate distance as Jubail port share 

the same advantage, but also to the availability of railway connection between Dammam 

and Riyadh. The impact of this railway link can be seen in the dummy variable of (#$%) 

which represents the Dammam-Riyadh railway connection. In conformity with apriori 

expectation, the parameter is statistically significant and has a positive sign. This may 

demonstrate the impact of rail in the distance decay parameter as the friction of distance 

decreases due the availability of railway services (Debrie & Gouvernal, 2006; T. E. 

Notteboom & Rodrigue, 2005; J. P. Rodrigue et al., 2010). 

 Therefore, the availability of railway connection is a major determinant in container 

inflow to Riyadh since most of the transported containers to Riyadh are shipped through 

Dammam port, where 38% of total container flow between Dammam and Riyadh were 

transported by rail in 2015. This reflects the importance of the Railway connection as an 
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alternative intermodal, providing Dammam port an advantage over the neighboring port of 

Jubail and the ports located in the Red Sea. 

 Considering the impact of maritime connectivity, the value for the parameter ($$#) 

is statistically significant with a positive coefficient value of 1.126. Port having larger 

index provide shippers with larger alternatives of shipping options to select from; thus, 

better port services.  

It also indicates that port size is a primary variable in explaining the pattern of container 

flows through the ports since have larger number of port calls and have a deployed capacity 

are larger that allows it to reach further hinterland regions. Comparing inland distance and 

LSCI, the impact of LSCI greatly surpasses the impact of inland distance, indicating that 

maritime connectivity has higher importance in the preferences of shippers when it comes 

to port choice. This result is counterintuitive to what was found in the studies of (Guerrero, 

2018) who investigated the impact of ship size and inland distance and found that distance 

outperformed ship size in explaining container flow. However, the variable used in his 

analysis only considers ship size. Variables, other than ship size, impact maritime 

connectivity such as number of port calls, liner services and the deployed capacity in the 

port. 

 The variable (1$) represents the port location has a positive sign and appears to be 

statistically significant, as expected, with a coefficient of 0.662. Since the location variable 

represents the maritime haulage distance, having shorter distance to major routes, 

compared to competing ports, leads to reaching further shippers and wider hinterland, 

because strategic location contributes to reducing shipping cost. This is due to the fact that 

shipping containers through ports located closer to maritime routes tend to reduce the cost 
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of maritime shipping, as it leads to reducing the total cost of container transport which 

consists of various types of costs like port charges, inland transport cost, and maritime 

shipping cost (Talley, 2014). Additionally, Parola et al., (2017b) state that the port 

selection, from the perspective of shippers, is mostly influenced by the factors related to 

port location. This can be seen in the case of Jeddah and KAP ports. The two ports are 

located in the Red Sea, within major maritime shipping routes, the parameter value proves 

that their strategic location is a determinant in the hinterland expansion compared to the 

ports located in the Persian Sea. This confirms the findings of Guerrero, (2018) who 

pointed out that the geographic location impacts the process of port selection, thus, 

expanding hinterland. 

 In the analysis of this section, LSCI is used as a proxy for the maritime connectivity 

of the ports. Other proxies were used in the literature. Meersman et al. (2010) argued that 

container throughput could be used as a measure for Port performance. Container 

throughput is used as a proxy of port performance in previous studies to analyze container 

flow. Therefore, a comparison is conducted between the use of LSCI and container 

throughput in the Spatial Interaction Model to investigate their impact on the model 

outcomes. The model outcomes using container throughput are presented in appendix C.1. 

By incorporating LSCI, its coefficient value is significant at 1.12. On the other side, fitting 

Imported/exported container throughput results in a coefficient value of only 0.45. The 

larger coefficient value of LSCI, compared to TEU, indicates that maritime connectivity 

has a higher impact on container flow. The comparison disclosed that maritime 

connectivity has a significant effect on container flow. Meaning that the ports located in 

the East coast are more constrained by maritime connectivity than ports located in the 
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Western coast. The estimated outcomes of the two models emphasize the significant impact 

of port accessibility since LSCI reflects both maritime and considers port efficiency. 

 Port efficiency is highly influenced by port location and maritime connectivity. 

Tongzon (2001) indicated that port efficiency could be positively influenced by the port's 

geographical location, port costs, infrastructure quality, and maritime connectivity. LSCI 

is calculated based on six components  (a) the number of scheduled ship calls, (b) the total 

deployed annual capacity in TEU, (c) the number of liner shipping services from and to the 

port; (d) the number of liner companies providing shipping services from and to the port; 

(e) the average carrying capacity of ships in TEU; and (f) The number of other ports that 

are connected directly to the port. Given that LSCI considers factors related to port 

characteristics and connectivity to the liner shipping network, it provides a better proxy for 

port efficiency and maritime connectivity. Therefore, the use of LSCI provides a better 

proxy for the port impact on container flow than the use of container throughput. 

 Additionally, incorporating liner shipping connectivity into the model slightly 

reduced the coefficient value of port location. This is due to the impact of port location on 

the LSCI. However, port location is considered in the model to account for the shipping 

cost, which impacts freight rates. Therefore, port location influences the port choice since 

ports located in the Red Sea provide a lower freight rate than ports located in the Persian 

Gulf. Compared to LSCI, container throughput in the Spatial Interaction Model shows no 

substantial differences in the coefficient values of inland distance and rail availability. 

5.3.3.1 Analyzing unexploited potentialities of the ports: The parameter values in the 

attraction constrained model showed the explanatory power of each factor in the container 

flow. However, additional investigation is conducted to analyze the port competitiveness 
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at the port-province level by assessing the unexploited potentialities of competing ports. 

Gap analysis is applied to measure the gap between the predicted and actual container flow; 

that is, it takes into account the magnitude of the traffic flows. The gap measure is the 

percentage of the difference between predicted and actual flows. The goal is to find out 

whether port-province flows are overestimated or underestimated, and in turn to understand 

if a particular port-province pair is more competitive with respect to that of the competing 

ports. If actual flow is smaller than predicted flow overestimation, it is indicative of the 

presence of unexploited potentialities (weak port-hinterland link). On the other hand, 

underestimation indicates that actual flow is larger than the predicted flow, thus, the 

hinterland is relatively captive (Ferrari et al., 2011; Moura et al., 2018). 

 Figure 5.5 presents the gap percentage of the four ports in each province for 2011 

and 2017. The figure reveals that ports on both coasts are able to sustain their position in 

the local hinterland. Still, some interesting changes appear in the surrounding provinces 

and inland hinterland. On the West Coast, the emergence of the port of KAP had limited 

impact in the local captive hinterland of Jeddah port, where Jeddah port is in the most 

populated city in the province, Jeddah city. The situation is different in Madinah province, 

where KAP has the advantage of being close to the province. The discrepancy of Jeddah 

port in Madinah province decreased in 2017. The massive investment in KAP port allows 

it to increase its market share since it started operating in 2013. The market share growth 

of KAP is expected to continue once the new infrastructure investments become available 

for operation in the future. 

 Regarding the surrounding provinces, Jeddah port kept its dominant share in the 

Southeastern provinces of Baha, Aseer, Jazan, and Najran. This situation might change 
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once the new container terminal operator of Hutchison port holding completes the 

development of terminal facilities in the Southwestern port of Jazan. These developments 

are expected to become available in 2022 and will provide shorter inland distance to the 

provinces of Jazan, Aseer, and Najran. The figure also reveals interesting findings of the 

evolution of the contestable hinterlands in the inland provinces. It is crucial to pay attention 

to the central provinces of Riyadh and Qaseem.  

The analysis shows that the flow from Jeddah to Riyadh is slightly underestimated 

for 2011 but overestimated for 2018. The significant increase in freight rates in 2011 might 

be the reason for the underestimate in that year, leading to an increase in the port share in 

the central provinces. The location of Jeddah provides it with better maritime accessibility 

compared to Dammam port. However, the maritime accessibility of Dammam does not 

impact the port significantly due to its closer inland distance to Riyadh. Also, the 

availability of railway connection between Dammam and Riyadh provides an inland 

alternative to shippers. The railway impact can be seen in the discrepancy outcome where 

the actual flow of Dammam port to Riyadh surpasses the predicted flow in both years, 

highlighting the importance of the railway connection as an alternative mode that provides 

an advantage for Dammam. Better inland connections provide competitive advantage for 

ports, thus enhancing their opportunity to increase their share (Acciaro et al., 2017; 

Kramberger et al., 2018). The figure also shows that the position of Jubail port in Riyadh 

strengthened in 2018 indicating that the impact of inland distance between them, and the 

port's infrastructure development has led to enhancing its competitive position.  
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Figure 5.7  Gap percentage by province for each port based on Poisson SIM (2011-
2017). 
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 The situation is slightly different in the province of Qaseem. The figure reveals a 

high positive discrepancy for the Eastern ports in Qaseem province, where the two ports 

benefited from being close to the province. On the other hand, even though the combined 

share of two western ports is 34% in 2017, the linkage between the two ports and Qaseem 

is overestimated, indicating that unobserved factors related to the long-distance act as a 

key barrier such as the increased inland transport cost. This cost increase results from the 

new pricing policy of gasoline in Saudi Arabia, which led to the increase of gasoline prices. 

 The flows between the two eastern ports and the provinces of Riyadh and Qaseem 

have a significant positive permeability value due to their location in terms of inland 

accessibility, an accessibility that increases their competitiveness. The situation is different 

in the other two central provinces of Hail and Jouf, however. It is interesting to pay 

attention to the overestimation of the flow from these two provinces. The four ports have 

almost the same inland distance to Hail and Jouf provinces; but, the Western ports of 

Jeddah and KAP hold the dominant share in both provinces due to their geographic location 

within liner shipping routes. Despite the high permeability index value of KAP in 2017, 

the index value of Jeddah port remains positive in 2017. Therefore, both ports have the 

capability to penetrate the hinterland of Hail and Jouf. The planned expansion of the 

container terminal in KAP is expected to increase the port share and intensify competition. 

The outcome of the gap analysis confirms the following major findings:  

1) The primary role of rail availability in enlarging the market share of Dammam 
port in the province of Riyadh;  

2) The importance of inland distance in increasing port competitiveness in the 
surrounding hinterland; 
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3) Given that inland distance acts as a barrier for the hinterland expansion, the 
results confirm the importance of maritime accessibility of ports in shaping the 
inland hinterland.  

The two western ports of KAP and Jeddah benefit from being transshipment hubs due to 

their geographic location in terms of maritime accessibility. Their advantageous location 

makes them attractive destinations from mega containerships, allowing the ports to expand 

their hinterland beyond the surrounding region. However, maritime accessibility has a 

strong impact in the absence of railway connectivity since railway connections provide a 

lower-in-cost inland alternative for shippers, and thus reduce the impact of the costly longer 

maritime haulage and decrease the overall transport cost. 

 Moreover, to investigate the impact of the factors considered in the Attraction 

constrained model on the evolution of container inflow to the central provinces during the 

study period, Figure 5.8 presents the actual and predicted container flow of the central 

provinces of Riyadh, Qaseem, Hail and Jouf from 2006 to 2018. The figure reveals the 

evolution of the hinterlands in some of the central provinces are relatively overlapped. The 

container inflow to the Riyadh province shows the impact the new development in Riyadh 

dry terminal in 2015, where the new development caused a significant growth in Dammam-

Riyadh flow, which indicates that the development of railway services in the dry terminal 

in Riyadh has contributed to the growing market share of Dammam port at the expense of 

western ports. 

 Unlike the case of Riyadh province, the situation is different in the other three 

central provinces of Qaseem, Hail, and Jouf, whose truck transport is the only inland 

transport. Due to the proximate distance separating the two eastern ports from the province 

of Qaseem, Dammam and Jubail ports are dominant over the other central province of 

Qaseem, where the former port gains the higher share of flow. Calling at ports located close 
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to the major shipping routes causes considerable savings on the freight shipping cost 

(Ferrari et al., 2006). The contribution of inland distance to hinterlands is influenced by 

maritime accessibility of ports. This can be seen due to the strategic location of Jeddah port 

where the port share increased in the province of Qaseem during the spike of freight rates 

in the years 2010-2012. The other two provinces of Hail and Jouf are approximately located 

in equal distance from the eastern and western ports. Nevertheless, Jeddah port has a greater 

advantage in serving them throughout the study period due to the strategic maritime 

accessibility of Jeddah port. These findings reveal the importance of foreland accessibility. 

The choice for a port to call and the increase of the port's activity, therefore, depends on 

the port accessibility not only to hinterland but also to foreland.
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Figure 5.8  Comparison of actual and predicted inflow to the central provinces (2006-2018) in thousands.
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To sum up, the results of the analysis conducted in this section reveals these major findings: 

1) Inland distance between ports and provinces is a significant factor in the 
distribution of container traffic, and it confirms the conclusion drawn by Garcia-
Alonso & Sanchez-Soriano (2009) who stated that container outflow to provinces 
(destinations) tends to seek the shortest inland route from ports. Thus, inland 
distance is a crucial factor that influences the competitiveness position of ports.  

2) The port location to major liner routes is a primary variable in explaining the pattern 
of import container flows through the ports in the model. Western Ports of Jeddah 
and KAP, located strategically in a close distance to major maritime shipping 
routes, tend to reach further hinterland destinations, thus, serve most destinations 
and boast the best of hinterland connections compared to the Eastern ports of 
Dammam and Jubail. 

3) The contribution of maritime accessibility of a port is not enough to explain 
container flow. The availability of intermodal connection from Riyadh province to 
inland hinterland is very important for the success of the port despite its weaker 
maritime accessibility to shipping routes. This gives the port an advantage over the 
western ports, thus, allowing Dammam to gain the dominant share in Riyadh 
province. This is in line with Acciaro et al. (2017) and Kramberger et al. (2018) 
who emphasized the importance of inland transport services for enhancing the 
capability of ports. 

4) Port size is an important factor impacting container flow. The hinterland size of the 
port of Jubail, which is located in a proximate distance from Dammam port, has 
been considerably smaller than its neighboring port. The port’s closeness to inland 
hinterland did not favor its evolution of container traffic. Similarly, the hinterland 
expansion of KAP port is smaller than that of Jeddah port. Consequently, the 
evolution of the traffic of the ports of Jubail and KAP is much more linked to their 
local hinterland than to distant hinterland. This is in line with Guerrero (2018) who 
pointed out that smaller ports have a higher proportion in markets located closer to 
them compared to further ones. 

5.3.4 Conclusion 

 The major goal of this section is to explore the interactive relationship between 

inland distance and container flow in the hinterland by considering the geographical 

characteristics of competing ports and the intermodal availability in the hinterland. To 

achieve this goal, this study analyzed the spatial interaction of the port–hinterland container 

flow by investigating the impact of inland connectivity, intermodal availability, port size 

and its maritime accessibility on the inter-port container traffic distribution. The empirical 
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analysis synthesized the available information on the container distribution from the four 

major ports of Saudi Arabia, namely, Jeddah, KAP, Dammam and Jubail, to the thirteen 

provinces in the country for the period (2006-2018). First, spatial interaction model is 

applied to investigate the explanatory power of the determinants in shaping the hinterland, 

then, analyzing the discrepancy between actual and predicted container flow to investigate 

the unexploited potentialities of ports at province-level.  

 The analysis showed that inland accessibility and port location within maritime 

shipping routes influence container flow, thus, port choice in Saudi Arabia. The study of 

Guerrero (2019) points out that the issues of port selection are not relevant in the case of 

developing countries whose high inland costs might be the reason why stronger effects of 

distance leads to limiting the contestable hinterland. In Saudi Arabia, this might not be the 

case where significant investments have been implemented in the last two decades to 

develop the inland connections between major cities, eventually contributing to expanding 

contestable hinterlands in some inland provinces.  

However, the contestable hinterland might be caused by the wide geographic 

configuration in Saudi Arabia which lead to long-haulage as in the case of the U.S. where 

the friction of distance is relatively low compared to other geographically smaller countries 

whose friction in distance is large (Levine et al., 2009). Therefore, it would be interesting 

that further spatial analysis is conducted in the case of Saudi Arabia to investigate the 

impact of transport cost.  

 In addition, port characteristics contributes more than inland distance in explaining 

the distribution for container traffic, thus, delimiting hinterland in the case of inter-port 

competition at the country-level of Saudi Arabia. It is concluded that the evolution of inland 
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distribution of container flow is greatly influenced by the strategic and geographic 

characteristics of ports.  This is in line with Fleming and Hayuth (1994) who identified that 

the spatial characteristics of “centrality” and “intermediacy” play a significant role in the 

evolution of port activity. As a result, the inland accessibility and the port location within 

the shipping routes are two factors that impact the inland flow distribution of maritime 

traffic. Since the determinants of foreland and hinterland complement each other and are 

essential for the competitive position of the port, ports included in major shipping routes 

which have sufficient inland accessibility, are able to sustain a high share of hinterland 

demand. 

 The conducted analysis on the impact of the determinants in port-province 

container flow may lead to some interesting suggestions and ideas for the planning and 

development of not only the port but also the hinterland, as it identifies the significance of 

geographical conditions and transportation facilities in the port–hinterland relationship. 

Paying attention to the impact of infrastructure availability and spatial and location 

characteristics of container flow may help to avoid overcapacity and congestion of ports 

and inland corridors. This improves the efficiency in the allocation of resources and 

reinforcing the competitiveness of domestic exports (Moura et al., 2018).  

Accordingly, it is essential to develop approaches to enable rapid development in a 

sustainable manner while maintaining economic growth through the coordination of ports 

and hinterlands. Therefore, the empirical analysis can help various port and inland transport 

stakeholders make better decisions to meet their respective objectives as follows: (1) For 

governments, this study can help in the evaluation of the impact of port strategies and the 

influence of developing inland infrastructure and changes in the economic activity in the 
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hinterland; (2) Even though port location is fixed, by understand inland flow, port 

authorities can get insight into the needs of hinterland regions to improve the provided 

services in the port, as well as determining port competitiveness in the different inland 

markets to assess whether to seek cooperation with rival ports or not; (3) Terminal 

operators can identify the potential shippers in the hinterland, thus, prepare marketing 

strategies and negotiate contracts with customers.   
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

 

This chapter presents the dissertation conclusion. Section 6.1 presents the conducted 

methodology and the case study. Findings and contributions are discussed in Section 6.2. 

In Section 6.3, the limitation of the dissertation. Suggestions for future research are 

presented in Section 6.4. 

Again, the purpose of this dissertation is to provide tools to support the decisions 

of policymakers and stakeholders for short-term planning and investment decisions in the 

port sector. The dissertation has two main objectives: Forecasting short-term container 

throughput and analyzing port competitiveness. First, forecasting short-term container 

throughput includes identifying the structural composition of the historical pattern of 

container demand and modeling short-term demand forecast. Second, port competitiveness 

is investigated based on the impact of specified factors related to the determinants of ports, 

hinterland, and forelands. 

6.1 Conducted Methodology 

To forecast container demand, the Univariate Time Series Stochastic Model is developed 

based on Box and Jenkin methodology and the historical pattern of container throughput. 

The advantage of the model is its independence in only the historical container throughput. 

The Autoregressive Integrated Moving Average (ARIMA) is a model in which forecasts 

are obtained by regressing historical observations of the variable itself and the current value 

with the error terms of the past values at different lags. Box and Jenkin methodology 
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provides an estimation framework to forecast demand than includes model identification, 

model estimation and diagnostic tests, and forecast generating.  

 The analysis of port competitiveness is applied in Sections 5.2 and 5.3. In Section 

5.2, two types of SIM are used to assess the role of inland distance in the container flow 

from ports to hinterland regions by investigating the role of distance as explanatory power. 

First, the doubly constrained model is applied to assess the explanatory power of distance 

in the distribution of container flow between ports and provinces in Saudi Arabia. Second, 

attraction constrained model and gap analysis are applied to investigate unexploited 

potentialities of the competing ports. After using the attraction model to estimate container 

flow, a gap analysis is applied by comparing the gap between actual and estimated 

container flows. 

 Since the traditional SIM does not have the ability to include variables other than 

distance, Poisson spatial interaction model is used in Section 5.3. The statistical version of 

the attraction constrained model is used to investigate the competitive position of 

competing ports and to analyze the impact of inland distance, intermodal accessibility, and 

geographical proximity to the major maritime shipping routes in the container flow. 

Poisson distribution model is used to fit the attraction constrained model where the 

iteratively Reweighted Least Square (IWSL) is applied to converge the Poisson Pseudo-

Maximum Likelihood (PPML) for the parameter estimates. After estimating the 

parameters, the impact of port size, inland distance, railway availability, and port location 

within the liner shipping routes are investigated. Thereafter, discrepancy analysis is applied 

to assess the port competitiveness at port-province container flows by using: The use of 

discrepancy analysis allows measuring the gap between the predicted and actual container 
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flow. The analysis outcomes are used then to understand the hinterland type of each 

province and to assess the port competitiveness at port-province container flows. 

6.2 Findings and Contribution 

The dissertation has two major paths, forecasting container demand at the port level and 

assessing the competitive position of the port and its competing ones. The first path is 

forecasting container demand. The port of Jeddah is used in the empirical analysis to 

forecast container demand based on the period of January 2003 to August 2020. The 

empirical analysis resulted in the following findings: First, based on the data generating 

process and assuming the historical pattern remains the same, this approach provides a 

reliable forecast of demand variation for two years-period. Applying the model to forecast 

a third-year results in larger forecast error. Second, the model of SARIMA (1,0,1) (2,1,0) 

provides the most accurate forecast results. Based on the error measure of MAPE, the 

forecast margin of error is 6.6%. Third, the methodology provides a systematic approach 

to building the model and forecasting demand. This systematic approach provides the 

ability to understand the behavior and pattern of historical container throughput prior to 

forecast demand; thus, it allows to update and apply the methodology in the future.  

The applied forecast is of importance to port decision-makers as it provides an 

instrument to obtain insight into future demand. Port authorities and terminal operators aim 

to avoid traffic congestion and improve container handling efficiency. Short-term forecasts 

help them in the planning process for operation decisions and resource allocation. 

Therefore, improvements and modifications of operation plans may be applied to improve 

productivity based on the outcomes of the forecast methodology.  
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 The second path is focusing on port competition. Port competition in Saudi Arabia 

is used in the empirical analysis to assess port competitiveness and the impact of various 

factors in container flows in the period of 2006-2018. The results provided by the model 

reveal interesting findings. For instance, inland accessibility and port location within 

maritime shipping routes influence container flow, thus, port choice in Saudi Arabia. The 

study of Guerrero (2019) pointed out that the issues of port selection are not relevant in the 

case of developing countries where high inland costs might cause stronger effects of 

distance that leads to limiting the contestable hinterland.  

In Saudi Arabia, this might not be the case where significant investments have been 

implemented in the last two decades to develop the inland connections between major 

cities, which eventually contributed to expanding contestable hinterlands in some inland 

provinces. The contestable hinterland might be caused by the wide geographic 

configuration of Saudi Arabia, which leads to long-haulage as in the case of the U.S., where 

the friction of distance is relatively low compared to other geographically smaller countries 

where the friction is distance is large (Levine et al., 2009). Therefore, it would be 

interesting that further spatial analysis is conducted in the case of Saudi Arabia and 

includes transport cost to investigate its impact.  

 In addition, Inland distance and port accessibility contribute more than port size in 

explaining the distribution for container traffic, thus, delimiting hinterland in the case of 

inter-port competition at the country-level of Saudi Arabia. It is concluded that the 

evolution of the distribution of container flow is greatly influenced by the strategic and 

geographic characteristics of ports.  This is in line with Fleming and Hayuth (1994), who 

identified that the spatial characteristics of “centrality” and “intermediacy” play a 
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significant role in the evolution of port activity. Therefore, the inland accessibility and the 

port location within the shipping routes are two factors that impact the inland flow 

distribution of maritime traffic. Since the determinants of foreland and hinterland 

complement each other and are essential for the competitive position of the port, ports 

included in major shipping routes and have sufficient inland accessibility are able to sustain 

a high share of hinterland demand. 

 The empirical analysis can help various port and inland transport stakeholders make 

better decisions to meet their respective objectives as follows: 

1. For governments, the analysis can help evaluate the impact of port strategies, the 
influence of potential inland infrastructure, and the understanding of the changes in 
the economic activity in the market. 

2. Even though the port location is fixed, by understanding inland flow, port 
authorities can get insight into the needs of hinterland regions to improve the 
provided services in the port, as well as determining port competitiveness in the 
different inland markets to assess whether to seek cooperation with rival ports or 
not. 

3. Terminal operators can identify the potential shippers in the hinterland, thus, 
prepare marketing strategies. 

6.3 Limitation 

Maritime freight is derived from economic demand. The aggregate macroeconomic data 

put limitations on forecasting monthly demand due to the non-availability of monthly 

frequency data. In the case study, the scarcity of monthly economic data in Saudi Arabia 

limits the ability to use economic indicators in the short-term forecast of container demand. 

To forecast container demand, the historical trend of container throughput is assumed to 

continue in the same pattern; thus, a univariate time series model is used where historical 

container throughput is the only variable used to forecast demand. The unavailability of 

monthly economic indicators limits the univariate time series forecast to only three months. 
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 Regarding the conducted analysis of port competition, the availability of detailed 

data limits the use of variables in analyzing the port competition. Several factors were not 

included in the spatial interaction models due to the scarcity of data. Inland distance is a 

repulsion parameter in the spatial interaction models. The use of distance transport cost as 

a repulsion factor would allow explaining the evolution of inland distance due to the 

technological and infrastructural developments of inland transport (Moura et al., 2017).  

The cost variable has implications in the port-province container flow and including 

it in the spatial analysis would provide more reliable results. Therefore, not using inland 

transport costs imposes a limitation on the analysis. Because of the non-availability of 

transport cost data, transport cost is not included. Instead, inland distance is used as a proxy 

of the repulsion factor in the spatial constrained models. The same issue is applied to the 

use of a variable to explain the port location within maritime shipping routes. Including 

container freight rates would provide better results as it reflects the shipper preferences in 

regard to the port selection, thus, impacting container flow. Therefore, the non-availability 

of freight rates set limitations on using it; rather, a dummy that explains port location is 

considered. 

6.4 Future Research 

The results and findings discussed in this dissertation shed light on the potential topics for 

future research. Forecasting container demand is a complex process that includes various 

factors. From a methodological perspective, the forecast analysis is conducted by using a 

univariate time series model. If more monthly economic indicators are available, including 

them in the alternative model of multivariate time series will provide forecasts for a longer 

period.  
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From an empirical application perspective, the availability of monthly data to be 

included in the forecast modeling will allow us to examine the impact of various scenarios. 

An interesting variable to be considered is the total income of oil production. In the case 

study, Jeddah port, located in the country of Saudi Arabia, is used as a case study to forecast 

container demand. The GDP of the country is highly related to oil production and prices. 

Since the growth of the country’s revenue from oil is uncertain, forecasting container 

demand of Jeddah port under different scenarios of oil prices and production will provide 

the dynamic model and reveal interesting results. 

 It would be desirable to extend the analysis of port competition by investigating the 

difference between the privately-owned port and the governmental-owned ports. Among 

the four ports, KAP is the only fully-owned and operated by the private sector, whereas the 

ports of Jeddah, Dammam, and Jubail are operated by the private sector but owned and 

governed by the Saudi port authority. The differentiation between governmental and 

private ports may result in interesting findings in the competition and complementary 

relationship and their impact on container flow. 

Furthermore, considering the impact of implementing new transport policies in the 

distribution of container traffic at a national level. Changes in the gas policy in Saudi 

Arabia may be of interest to shippers and has an impact on container distribution. 

Therefore, combining the quantitative findings of this section with a qualitative interview 

on the impact of implementing new transport policies in Saudi Arabia (e.g., the new gas 

price policy) in the port choice factors from the perspective of the importer may allow 

determining whether the factors that impact port choice have changed or not due to changes 

in gasoline prices.  
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APPENDIX A 

TOOLS AND SOFTWARES 

 

Statistical analysis (including data analysis, estimation, validation, and calibration of 

models and forecasts) and graphical representations were conducted and obtained using the 

statistical software packages and computer programs of StataIC 17, Matlab R2021a, 

SIModel and Eviews11 university edition. Geographic maps were produced using the 

geographical information system application of QGIS (3.18.3).  
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APPENDIX B 

POTENTIAL ARIMA MODELS AND ESTIMATION RESULTS 

 

Figure B.1  Estimation of SARIMA(2,1,0)(1,0,1) using DLCONT dataset. 

 

Figure B.2  Estimation of SARIMA(1,0,1)(0,1,1) using D12LCONT dataset. 
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Figure B.3  Estimation of SARIMA(2,1,0)(0,1,1) using DD12LCONT dataset. 

 

Figure B.4  Estimation of SARIMA(1,1,1)(0,1,1) using DD12LCONT dataset. 
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Figure B.5  Forecasts results and accuracy measures of SARIMA(2,1,0)(1,0,1). 

 

Figure B.6  Forecasts results and accuracy measures of SARIMA(1,0,1)(0,1,1). 
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Figure B.7  Forecasts results and accuracy measures of SARIMA(2,1,0)(0,1,1). 

 

Figure B.8  Forecasts results and accuracy measures of SARIMA(1,1,1)(0,1,1). 
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APPENDIX C 

SIM ESTIMATION RESULTS 

 

 

Figure C.1  SIM Model outcomes by fitting import/export container throughput. 
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                   bah    -2.830642   .3614558    -7.83   0.000    -3.539082   -2.122201
             Province_j 
                        
             d_Redsea_i     1.00132   .3081398     3.25   0.001     .3973768    1.605263
              d_Rail_ij     1.89307    .295539     6.41   0.000     1.313824    2.472316
             lndistance   -.7609106   .1622089    -4.69   0.000    -1.078834    -.442987
lnIEcontainerthroughput    .4997573   .1353394     3.69   0.000     .2344969    .7650177

                Flow_ij       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                       Robust

                                               (Std. Err. adjusted for 52 clusters in ID)
Number of clusters (ID)     =         52

Log pseudolikelihood = -6226282.695               Pseudo R2       =     0.9162
Deviance             =  12447968.25               Prob > chi2     =     0.0000
Statistics robust to heteroskedasticity           Wald chi2(16)   =    2695.84
                                                  Residual df     =         51
PPML regression                                   No. of obs      =        572
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Figure C.2  SIM Model outcomes by fitting LSCI. 

  

       _cons    12.05145   .8985878    13.41   0.000     10.29025    13.81265
             
        tab     -1.00127   .4715439    -2.12   0.034    -1.925479   -.0770607
        riy     .6060486   .3900629     1.55   0.120    -.1584606    1.370558
        qas     .0479488   .5279589     0.09   0.928    -.9868317    1.082729
        nbr    -2.195803   .8215588    -2.67   0.008    -3.806029   -.5855771
        naj    -1.724966   .5638584    -3.06   0.002    -2.830108   -.6198236
        mkk    -1.281193   .7658103    -1.67   0.094    -2.782154    .2197674
        mad     .0960434   .5288782     0.18   0.856    -.9405388    1.132626
        jof    -1.910937   .4371421    -4.37   0.000     -2.76772   -1.054154
        jaz    -.4189787   .5332791    -0.79   0.432    -1.464186    .6262291
        hai    -.7841595   .4643956    -1.69   0.091    -1.694358     .126039
        epr    -.5061696   .7866039    -0.64   0.520    -2.047885    1.035546
        bah     -2.85509   .4807019    -5.94   0.000    -3.797249   -1.912932
  Province_j 
             
  d_Redsea_i    .6624017   .3169438     2.09   0.037     .0412033      1.2836
   d_Rail_ij    2.008617   .2573566     7.80   0.000     1.504207    2.513026
  lndistance   -.8111572   .1507313    -5.38   0.000    -1.106585   -.5157293
      lnLSCI     1.12558   .2555267     4.40   0.000     .6247566    1.626403

     Flow_ij       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                            Robust

                                    (Std. Err. adjusted for 52 clusters in ID)
Number of clusters (ID)     =         52

Log pseudolikelihood = -6697372.536               Pseudo R2       =     0.9098
Deviance             =  13390147.93               Prob > chi2     =     0.0000
Statistics robust to heteroskedasticity           Wald chi2(16)   =    1839.91
                                                  Residual df     =         51
PPML regression                                   No. of obs      =        572
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APPENDIX D 

PORT LINER SHIPPING CONNECTIVITY INDEX (PLSCI) OF THE FOUR 

PORT IN SAUDI ARABIA 

 

Figure D.1  Port liner shipping connectivity index (PLSCI) of the major four ports in 
Saudi Arabia (2006-2018). 
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