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ABSTRACT

TOPICS ON HIGH DIMENSIONAL SELECTIVE INFERENCE

by
Yan Zhang

In such applications as identifying differentially expressed genes in micro-array

experiments or assessing safety and efficacy of drugs in clinical trials, researchers

often report confidence intervals (CIs) and p-values only for the selected parameters,

which is called selective inference. While constructing multiple CIs for the selected

parameters, it is common practice to ignore issue of selection and multiplicity.

Although protection against the effect of selection is sufficient in some cases,

simultaneous coverage should be also needed in real applications. For example, in

clinical trials, multiple endpoints are considered to assess effects of a drug and the

ultimate decision often depends on joint outcome for primary endpoints.

In this dissertation, a new concept of γ-false coverage proportion (γ-FCP) is

first presented as a proper measurement for CIs following selection. Such a new

measurement has advantages since it takes effect of selection into consideration as well

as simultaneous coverage. If a procedure control γ-FCP at a desired level α, then it

implies such procedure has high proportion of CIs, which cover the corresponding

parameters with high probability. Aiming at keeping γ-FCP at a desired level,

two types of procedures are developed. One type is based on unconditional CI;

the other type is based on conditional CI, which means CI is conditional on the

event of selection. An unconditional CI-based procedure is firstly developed, which

is proven to control γ-FCP at a desired level under independence. Theoretically,

the result is able to be extended to positive regression dependence. Secondly, a

modified unconditional CI-based procedure is presented to control γ-FCP under

arbitrary dependence. Thirdly, with approach of conditional CIs, a new conditional

CI-based selective inference procedure is developed, which is able to control γ-FCP at



a desired level under independence. Finally a modified conditional CI-based procedure

is developed to control γ-FCP under arbitrary dependence.

All of the proposed procedures are evaluated through extensive simulation

studies. The effect of nonzero proportion, selection level, and correlation coefficient

are evaluated, while we apply the proposed procedures in terms of γ-FCP control and

average width of CIs. The simulation studies are then applied to strong dependence

such as equal correlation and several weak dependence such as block-wise dependence.

The simulation studies show that the proposed procedures are able to either control

γ-FCP or have shorter width of CIs than existing methods such as FCR controlling

procedures (Benjamini and Yekutieli, 2005). Next, all of the proposed procedures are

applied on two sets of micro-array gene expression data. Compared to same existing

methods, the proposed conditional CI-based procedure provides (i) shorter width of

CI; and (ii) more count of CI not covering zero; and (iii) longer distance of CI away

from zero.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In modern scientific investigations, high dimensional data is getting involved, which is

difficult to analysis, such as genome-wise association study (GWAS) and micro-array

analysis (Lee et al., 2018; Jones et al., 2019). There is a common practice that

researchers tend to report only a few confidence intervals (CIs) or p-values for the

parameters selected after viewing data (Benjamini et al., 2009). In practice, most

statistical analysis involves selective inference, in which CIs and p-values are only

reported for the selected variables (Benjamini and Yekutieli, 2005; Efron, 2008; Lee

et al., 2013; Peng et al., 2017). Such selected CIs are not able to provide the assumed

coverage probability (Benjamini and Yekutieli, 2005). To better understand and

investigate about such selective inference in large scale experiments like micro-array

or fMRI study, Benjamini and Yekutieli (2005) introduced false coverage rate (FCR)

as an appropriate measure to be controlled while constructing a large number of

CIs. FCR is widely used in high dimensional inference. Benjamini and Yekutieli

(2005) proposed several FCR controlling procedures. However, FCR controlling

procedures have limitation because it only takes effects of selection into consideration

(Benjamini, 2010). Although protection against effect of selection is sufficient in

some cases, simultaneous coverage (Benjamini et al., 2019) is also needed in many

real applications, for example, most clinical trials contain multiple endpoint to assess

effects of drug and ultimate decision often depends on joint outcome of several selected

parameters for primary endpoints. In this dissertation, a new concept of γ-false

coverage proportion (γ-FCP) is presented as a proper measurement of simultaneous

coverage, in a sense that most of CIs are able to cover the corresponding parameters.
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Such new measurement has advantages since it takes simultaneous coverage into

consideration as well as effect of selection.

In order to control γ-FCP, we suggest two types of procedures. One type is

based on unconditional confidence interval (CI), the other type is based on conditional

CI, which is CI conditional on the event of selection (Weinstein et al., 2013).

In this dissertation, a general unconditional CI-based selective inference procedure

is developed, which is proven to control γ-FCP at a desired level under positive

regression dependence (Benjamini and Yekutieli, 2001). An adjusted unconditional

CI-based procedure is then developed to control γ-FCP under arbitrary dependence.

At the same time, with the approach of conditional CIs (Weinstein et al., 2013), a

new conditional CI-based selective inference procedure is developed, which is able

to control γ-FCP at a desired level under independence. An adjusted conditional

CI-based procedure is then developed to control γ-FCP under arbitrary dependence.

All of the proposed procedures are evaluated through extensive simulation studies

under independence. We evaluate effect of some factors, such as nonzero proportion,

selection level and correlation coefficient, while we apply our proposed unconditional

CI-based procedures and conditional CI-based selective inference procedures in terms

of γ-FCP control and average width of CIs. The simulation studies are also applied

to strong dependence such as equal correlation and several weak dependences such as

block-wise dependence. Our simulation studies are able to show that the proposed

procedures are able to either control γ-FCP or have shorter width of CIs than existing

methods such as FCR controlling procedures (Benjamini and Yekutieli, 2005). Next,

all of the proposed procedures are applied on two sets of micro-array gene expression

data. Compared to existing methods such as FCR controlling procedures (Benjamini

and Yekutieli, 2005), the proposed procedure is demonstrated to provide (i) shorter

width of CI; and (ii) more count of CI not covering zero; and (iii) longer distance of

CI away from zero.
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1.2 Confidence Interval Versus p-value

It is of interest to compare limitations and advantages of two types of widely used

inference: CI and p-value. In scientific publications, it is common practice for

researcher to misuse and misunderstand p-value. Wasserstein and Lazar (2016) gave

a comprehensive discussion about the limitations of p-value. It is worth to mention

that a p-value does not measure size of an effect or importance of a result. Moreover, a

p-value does not provide a good measure of evidence regarding a model or hypothesis.

Besides the disadvantages of p-values have been frequently discussed in literatures,

CI can act into scientific publications as a better alternative (Ranstam, 2012). For

example, in clinical trails, CI can easily show and evaluate clinical significance, which

is practical importance of treatment effect, no matter whether or not it has a real

and noticeable effect on daily life.

To better explain the advantages of CI, we offer an illustration example in

Figure 1.1 for the comparison between CI and p-value. In this example, there are

five CIs and corresponding p-values. Four pairs of CIs are compared to illustrate

advantage of CIs against p-values. Each pair is aiming to explain one of advantage of

CIs against p-values in details. In this clinical trial example, statistical significance

is equivalent to (1) p-value is less than 0.05 or (2) CI not covering 0 (whether CI

cross the black dashed vertical line or not in Figure 1.1). In this example, we assume

clinical significance as effect is greater than 2 (whether the CI is on the right hand

side of dark red dashed vertical line or not in Figure 1.1).

• CI 1 vs CI 2 shows the fact that CI can provide clinically significance, while
the corresponding p-value has no information about it. The p-values are both
greater than 0.05, only showing no statistical significance for both. Meanwhile,
CI 2 is able to show clinical significance, and CI 1 does not.

• CI 3 vs CI 5 presents that CI can provide details about direction of effect.
Without point estimation, p-value can not provide details about direction of
effect. As the corresponding p-values are less than 0.05 (statistical significance),
but CI 3 is able to present negative effect, and CI 5 is able to present positive
effect.
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Figure 1.1 Illustration example of five CIs and corresponding p-values. Black vertical
dashed line means statistical significant. Red dashed line means clinical significant.

• CI 4 vs CI 5 demonstrates that CI is able to distinguish clearly about the
distance between an estimation and a standard level (zero in this example).
But p-value can not measure it. The center of CI 2 is much more far away from
zero than CI 4, though CI 2’s corresponding p-value only display non statistical
significance (greater than 0.05), and CI 4’s corresponding p-value shows the
same.

1.3 Basic Concepts of Multiple Hypothesis Testings

Hypothesis testing is a widely used method of statistical inference. A single hypothesis

testing is able to explore one research question, and multiple hypotheses testing

are used to investigate multiple study objectives simultaneously. While conducting

multiple hypothesis testings, it is critical to define the type I error, which occurs

when the null hypothesis is true, but is falsely rejected by testing. With the

increasing number of testing hypotheses, multiplicity issue arises in the sense that

type I error rate is inflated. Considering the multiple hypothesis testing problem,

we first introduce three commonly used type I error rates: familywise error rate

(FWER), false discovery rate (FDR) and γ-false discovery proportion (γ-FDP). It is

important, in the filed of multiple hypotheses testing, to address the multiplicity issue

appropriately and to control overall error rates, meanwhile various multiple testing
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procedures (MTPs) have been developed to overcome such issue with the control of

proper error rates. Followed by the error measurement, a commonly used multiple

hypotheses testing procedures (MTPs), which are then introduced.

1.3.1 Type I Error Rate

To begin with the definitions, we denote R as the number of total rejections and V as

the number of false rejections. First of all, we introduce a concept: familywise error

rate (FWER).

Definition 1.1 (Familiwise Error Rate (FWER)). Familiwise error rate is defined

as probability of making at least one false rejection, that is,

FWER = P
[
V ≥ 1

]
.

Remark 1.1. When dealing with small scale multiple testing problems, FWER is

commonly used to measure type I error rate. Especially in clinical trials, it is

mandatory to strongly control the FWER by the Food and Drug Administration

(FDA).

In large-scale multiple testing, it is too conservative for controlling FWER to

detect any false null hypothesis. In practice, it may allow a few false discoveries in

order to gain power to detect more. Based on this idea, Benjamini and Hochberg

(1995) suggest another type I error measure: false discovery rate (FDR).

Definition 1.2 (False Discovery Rate (FDR)). False discovery rate is defined as the

expected proportion of false rejections among all rejected hypotheses. That is,

FDR = E
[ V

R ∨ 1

]
,

where R ∨ 1 = max{R, 1}.
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To control FDR means that when the experiment is repeated many times, on

average we control the false discovery proportion FDP = V
R∨1

. In this sense, it does not

consider the variability of FDP. Though we may keep the average of FDP at a desired

level, the actual FDP could be quite large. To deal with this issue, Lehmann and

Romano (2005) introduced another Type I error measure: γ-false discovery proportion

(γ-FDP).

Definition 1.3 (γ-False Discovery Proportion (γ−FDP)). γ-False discovery propor-

tion is defined as the probability of ratio, which is the false rejections among all rejected

hypotheses, beyond a pre-specified value. That is,

γ-FDP = P
[ V

R ∨ 1
> γ

]
,

where γ is pre-specified positive number between 0 and 1.

To sum up, when large-scale of multiple hypothesis testings are involved, FWER

is not an appropriate measurement. But FWER can ensure simultaneous correctness

of a set of multiple testings. FDR can not guarantee all of the rejecting multiple

testings to be true. But FDR is a more useful approach to determining a significance

cutoff in high dimensional study. We suggest γ−FDP among these error as a good

measurement, not only for γ−FDP are able to measure the falsely rejecting multiple

testings simultaneously, but also for γ−FDP can be used to adjust to the large-scale

of multiple hypothesis testings.

1.3.2 Multiple Testing Procedures

A commonly used multiple testing procedures (MTPs) is Benjamini-Hochberg proce-

dure (BH procedure). Consider a problem of testing m hypotheses, H1, H2, . . . , Hm

with corresponding p-values p1, p2, . . . , pm. Let p(1) ≤ p(2) ≤ · · · ≤ p(m) denote ordered

version of pi’s with corresponding H(1), H(2), . . . , H(m). Reject H(1), H(2), . . . , H(R),
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Figure 1.2 Illustration example of twenty CIs (both black segments and red seg-
ments) and four selected CIs (only red segments), triangle indicate the corresponding
parameters.

where R = max{0 ≤ i ≤ m : P(i) ≤ αi = i
m
α}. BH procedure is a FDR controlling

procedure under independence or positive regression dependence

1.4 Basic Concepts of Confidence Intervals Based Method

There is a common practice that researchers tend to report only a few CIs for the

parameters selected after viewing data. There are two types of serious issues behind

such common practice. We name the two types of issues as (1) issue of multiplicity

when constructing multiple CIs at same time and (2) issue of selection when reporting

a few CIs after viewing the data. And next we illustrate such issues in an illustrative

example in Figure 1.2.

We generate data Xij ∼ N(µi, 1), i = 1, 2, ..., 20, j = 1, 2, ..., 100. And X̄i =

1
100

∑100
j=1 Xij is calculated as the estimator to select parameter µi. Parameter µi is

selected if |X̄i| ≥ 0.2. Once 95% unconditional CI is constructed, then we draw a black

segment in Figure 1.2. At the meantime, if the parameter selected and corresponding
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95% unconditional CI is constructed, then we draw a red segment in Figure 1.2. µi is

a uniformly distributed random number between (-0.2, 0.2). It is drawn by triangle

in Figure 1.2.

The issue of multiplicity can be shown by all CIs (both black and red segments

in Figure 1.2). Among 20 CIs, 2 out of 20 (No.17 and No. 20) are not covering its

corresponding true parameters (triangle). In this sense, when constructing multiple

CIs without selection, 95% unconditional CIs can not ensure that CIs does not cover

the corresponding parameters with probability less than 5% (10% > 5%). When

selection are involved (only red segments in Figure 1.2), 2 out of 4 CIs are not covering

its corresponding true parameters in the selected ones. This example is designed to

see issue of selection. In such sense, when constructing multiple CIs with selection,

proportion of a mistake arises for 95% unconditional CIs, since the selected CIs does

not cover the corresponding parameters with probability 50% (far away from 5%).

Hence it is necessary to address and suggest some new methods for constructing

multiple CIs for the selected ones.

1.4.1 False Coverage Rate

Let RCI be the number of constructed CIs and VCI be the number of constructed CIs

not covering their respective parameters. False coverage proportion (FCP) is ratio of

true parameters, which is not covered by CI. Among the selected CIs, FCP can be

denoted as

FCP =
VCI

RCI ∨ 1
. (1.1)

Benjamini and Yekutieli (2005) suggest a new error rate: false coverage rate (FCR),

which is the average rate of FCP.

Definition 1.4 (False Coverage Rate (FCR)). The false coverage rate is defined as

the expected proportion of non-covering confidence intervals among all constructed
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confidence intervals, that is,

FCR = E
[
FCP

]
. (1.2)

For a single parameter (m = 1), the FCR equals the probability of constructing

a non-covering CI. One single 1 − α CI therefore has FCR < α. Though, in real

world, multiple parameters are more often involved and hence Benjamini and Yekutieli

(2005) develop some FCR controlling procedures.

1.4.2 Confidence Interval Based Method: FCR Controlling Procedures

To better understand and investigate about the such selective inference in high

dimensional data, such as micro-array or fMRI study, Benjamini and Yekutieli (2005)

suggested a procedure for constructing selective multiple CIs (selective CIs), based

on a vector of m parameter estimators T. The selection procedure is given by

S(T) ⊆ {1, ...,m} and is followed by the construction of some CI for each θi, i ∈ S(T).

Definition 1.5 (Level α FCR-Adjusted Selective CI-Based Procedure).

1. Apply the selection criterion Ŝ to T, yielding the selected set of parameters

as Ŝ(T).

2. For each selected parameter µi, i ∈ Ŝ(T), partition T into Ti and T(i) =

T \ {Ti}, and find R
(i)
min := min{|Ŝ(T(i), Ti = t)| : i ∈ Ŝ(T(i), Ti = t)}.

3. For each selected parameter µi, i ∈ Ŝ(T), construct the following confidence

interval: CIi(
R
m
α).

If components of T are independent, then the FCR-adjusted selective CI in

Definition 1.5 enjoys FCR ≤ α. To process such method to a complex structure of

the selection estimator T, Benjamini and Yekutieli (2005) developed and showed the

following results. Before we formally present the concept, a definition of positive

regression dependent on a subset (PRDS) was developed by Benjamini and Yekutieli

(2001).
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Definition 1.6 (Benjamini and Yekutieli, 2001). The components of X are positive

regression dependent on a subset (PRDS) on a give subset I0 ⊆ I = {1, ...,m}, if

for any increasing set D (where x ∈ D and y ≥ x implies that y ∈ D) and for each

i ∈ I0, P (X ∈ D|Xi = x) is nondecreasing in x. Specially, if X is PRDS on any

subset of I, we can simply denote it as PRDS.

If the condition change from P (X ∈ D|Xi = x) to P (X ∈ D|Xi ≥ x), for each

i ∈ I0, is nondecreasing in x, we can still denote X as PRDS. Meanwhile, a definition

of concordant of CIs was developed by Benjamini and Yekutieli (2005).

Definition 1.7 (Benjamini and Yekutieli, 2005). A procedure for selective confidence

intervals is concordant if for all values of µ, for all 0 < α < 1, and for i = 1, ...,m, k =

1, ...,m, both {T(i) : k ≤ Rmin(T(i))} and {Ti : µi /∈ CIi(α)} are either increasing or

decreasing sets.

Theorem 1.1 (Positive Dependence). If components of T are PRDS and the selection

criterion and the confidence intervals are concordant, then the FCR-adjusted selective

confidence intervals in Definition 1.5 enjoys FCR ≤ α.

Moreover, Benjamini and Yekutieli (2005) have proven the Theorem 1.2 under

arbitrary dependence.

Theorem 1.2 (General Dependence). For any monotone unconditional confidence

intervals, any selection procedure Ŝ(T), and any dependence structure of the esti-

mators for confidence intervals, the FCR of the FCR-adjusted selective confidence

intervals in Definition 1.5 is bounded by α
∑m

j=1
1
j
.

All these results allow the researchers to construct multiple selective CIs and

still keep FCR at a desired level. In the BH procedure, after sorting the p values

p(1) < ... < p(m) and calculating R = max{j : p(j) < jα/m}, the R null hypotheses

for which p(·) < Rα/m are rejected. Our suggested method of adjusting for FCR at

level α is defined as following.

10



Definition 1.8 (Level α FCR-Adjusted BH-Selected CI-Based Procedure).

1. Sort the p-values used for testing the m hypotheses regarding the parameters,

p(1), p(2), . . . , p(m).

2. Calculate R = max{j : p(j) ≤ jα/m}.

3. Select the R parameters for which p(i) ≤ Rα/m, corresponding to the rejected

hypotheses.

4. Construct a 1−Rα/m confidence interval for each parameter selected.

1.5 Literature Review

It is a common practice that researchers tend to report only a few CIs or p-values for

the parameters selected after viewing data (Benjamini and Yekutieli, 2005; Benjamini

et al., 2009; Peng et al., 2017). Benjamini and Yekutieli (2005) demonstrated that CIs

which are reported for selected parameters cannot guarantee nominal coverage even

on average. Benjamini and Yekutieli (2005) suggested a concept of FCR and several

FCR controlling procedures, where CIs are constructed for the selected parameters.

Simultaneous selective inference and traditional justification for multiple-comparisons

procedures are two distinct goals (Benjamini, 2010). FDR and FCR are viewed

as concepts to address directly the dangers that are caused by selective inference,

which may alter meaning of reported p-values and CIs, while giving up simultaneous

inference. In most large problems, only effect of selection is taken care of (Benjamini

and Yekutieli, 2005; Benjamini, 2010).

In recent decades, several progresses have been made about constructing CI

after selection. Weinstein et al. (2013) developed methods of constructing conditional

CIs and suggested three methods, which can offer FCR control. For these reasons,

conditional CIs for the selected parameters are able to be used as an attractive

alternative to available general FCR adjusted intervals (Benjamini and Yekutieli,

2005). Based on the previously proposed methods, Weinstein and Yekutieli (2014)
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then suggested a procedure, which employs FCR-adjustment to an unconditional CI

in order to construct a maximum number of sign-determining CIs. Moreover, Weistein

and Ramdas (2019) recently presented a general unconditional CI-based procedure,

which can be used to devise online sign classification and control false sign rate (FSR),

which is the expected ratio of number of incorrect directional decisions to total number

of directional decisions made.

In the era of post model selection inference, a valid “post-selection inference”

(Berk et al., 2013) was proposed by reducing problem to one of simultaneous inference

and therefore suitably widening conventional CIs. Lee et al. (2013) developed a

general approach to characterize distribution of a post-selection estimator conditioned

on the selection event. A method was developed by Lee and Taylor (2014) to construct

valid CIs and hypothesis tests for regression coefficients that account for the selection

procedure, which has no required assumptions on design matrix. Fithian et al. (2017),

based on classical theory of Lehmann and Scheff’e (1955), derived some powerful

unbiased selective tests and CIs for inference in exponential family models after

arbitrary selection procedures for linear regression.

Efron (2008) has discussed some issues, as well as associated difficulties, from

the empirical Bayes approach. Benjamini (2010) has discussed it from both the

Bayesian and the empirical Bayes approach and addressed formally the effects of

selection. Benjamini and Gavrilov (2009) have drawn attention to this problem in

replicability studies of genomewise scans for association with a disease. Woody Scott

(2018) proposed nonparametric empirical-Bayes approach for constructing optimal

selection-adjusted CIs.

In this dissertation, we are interested in the two challenges about selective

inference. One challenge is about simultaneous selective inference; the other challenge

is about high dimensional selective inference (Tian and Taylor, 2018). For the first

challenge, Katsevich and Ramdas (2018) addressed simultaneous selective inference
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in testing. Benjamini et al. (2019) formally define “simultaneous over the selected”

(SoS) error rate, which is the probability that one or more intervals for selected

parameters do not cover. Benjamini et al. (2019) suggest a method of constructing

SoS controlling CIs for parameters which are selected. For the other challenge of high

dimensional selective inference (Tian and Taylor, 2018), as high dimensional inference

(Bühlmann and Geer, 2011) is a very important in modern science, Taylor addressed

the conditional approach. Even though some results have already been published

(Markovic and Leeb 2019; Wasserman and Roeder, 2009), there are still much work

need to be done. It remains unknown whether the method can be applied to high

dimensional data or not.

1.6 Research Motivation and Outline

In order to measure falsely constructed CIs, Benjamini and Yekutieli (2005) proposed

a concept of FCR as well as some FCR controlling procedures. Although such general

and special FCR adjusted procedure in Definitions 1.5 and 1.8 can control FCR

when we construct multiple CIs for selected parameters in many applications, it has

limitations. As control of FCR does not prohibit FCP from varying, even if its average

value is bounded. FCR controlling procedure cannot offer simultaneous coverage,

which mean multiple CIs can cover most of the corresponding parameters. In many

modern applications, simultaneous coverage is important and necessary. For example,

several selected parameters for primary endpoints need to be joint so that ultimate

decision can be given out in the area of clinical trials. And connection between FDR

and the foregoing CIs inspire us to think how we can solve the issue of simultaneous.

In this dissertation, two types of CI are taken into consideration: unconditional

CI and conditional CI, which is constructed once the corresponding variable is

selected. First of all, a general unconditional CI based selective inference procedure

is developed, which can be proven to control γ-FCP at a desired level under
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independence. Theoretically, the result is able to be extended to positive regression

dependency condition of Benjamini and Yekutieli. Then, an adjusted unconditional

CI based procedure is presented to control γ-FCP under arbitrary dependence. With

the approach of conditional CIs, a new conditional CI based selective inference

procedure is then developed, which is able to control γ-FCP at a desired level under

independence. An adjusted conditional CI-based procedure is then developed to

control γ-FCP under arbitrary dependence. Finally, the proposed general procedures

and conditional CI-based selective inference procedures are evaluated through

extensive simulation studies under independence structure. The simulation studies

are also extended to strong dependence structures such as equal correlation and

several weak dependence structures such as blockwise dependence. The simulation

studies are able to show that the new proposed procedures can be more reliable

than alternative methods such as Benjamini and Yekutieli (2005) selective inference

procedures. Also, the proposed general procedures and conditional CI-based selective

inference procedures are applied on two sets of micro-array gene expression data.

Compared to alternative methods such as Benjamini and Yekutieli (2005) selective

inference procedures, the proposed procedure is demonstrated to be less conservative.

This dissertation is outlined as follows: Chapter 1 provides some basic concepts

on multiple testing and background of selective inference. In Chapter 2, we suggest

a new simultaneous coverage error measurement: γ-FCP and unconditional CI-based

procedures which can control γ-FCP at a desired level. In Chapter 3, we develop a

conditional CI approach. We also introduce γ-FCP controlling procedures based on

conditional CIs. In Chapters 4 and 5, extensive simulation studies of new proposed

methods and real data analysis are included, respectively. In Chapter 6, we summarize

all of the results and findings.
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CHAPTER 2

UNCONDITIONAL CI-BASED γ-FCP CONTROLLING

PROCEDURES

2.1 Introduction

In this chapter, we propose a new error measurement for CI, γ-false coverage

proportion (γ-FCP), and then we develop two powerful unconditional CI-based

procedures. Often in applied research, unconditional CIs are constructed and reported

only for parameters selected after viewing the data (Benjamini and Yekutieli, 2005;

Efron, 2008; Lee et al., 2013). Benjamin and Yekutieli (2005) first point out that

CIs were often only for parameters selected when constructed and reported, and

such selected intervals failed to provide the assumed coverage probability. FCR

was suggested as a measurement of interval coverage following selection. Benjamini

and Yekutieli (2005) suggested a general procedure (BY2005a), where unconditional

1 − α|S|/m CIs are constructed for the |S| selected parameters, in which S is the

selected set. Under the positive regression dependency of Benjamini and Yekutieli

(2001), FCR is controlled at level α for BY2005a procedure. Meanwhile another FCR

controlling procedure under general dependency is proposed (BY2005b). In most

of FCR controlling procedures, only effect of selection is taken into consideration

(Benjamini and Yekutieli, 2005; Benjamini, 2010). Although protection against effect

of selection is sufficient in some cases, simultaneous coverage is also needed in many

real applications, for instance, in clinical trials, the ultimate decision often depends

on the joint outcome of several selected parameters for primary endpoints (Katsevich

and Ramdas, 2018; Benjamini et al., 2019). Benjamini et al. (2019) proposed a

Sidak and Bonferroni based procedure. However, the dimension is relatively small

(the maximum total size of parameters is 100). So, it still need to be studied whether

or not the method can be applied to high dimensional data.
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Though FCR (Benjamin and Yekutieli, 2005) is widely used in both theory

and practice as a error measurement for CIs. The control of FCR does not prohibit

false coverage proportion from varying, even if its average value is bounded. FCR

controlling procedures cannot offer simultaneous coverage, which is the probability

that one or more intervals do not cover corresponding parameters at the same

time. Therefore, we consider a new measurement of control, in a sense that false

coverage proportion is bounded, at least with prescribed probability. We are aiming

to construct multiple CIs, especially for the selected parameters, while we can

offer simultaneous coverage, which implies most of CIs cover the corresponding

parameters. By generalizing dual approach between multiple testings and multiple

CIs (Lehmann and Romano, 2005; Benjamin and Yekutieli, 2005), we suggest a γ-FCP

as an simultaneous error measurement of interval coverage following selection. Two

powerful unconditional CI-based procedures are developed, which can control γ-FCP

at a desired level under corresponding conditions. The corresponding theoretical

results are demonstrated.

The rest of the chapter is organized as follows. Section 2.2 introduces a new error

measurement, γ-FCP. The properties and behavior of γ-FCP are derived in detail.

In Section 2.3, new selective inference procedures are proposed. In Section 2.4, some

desired statistical properties of this procedure are demonstrated. It is proven that

selective inference procedures are able to control γ-FCP at a desired level. In Section

2.5, we summarize and discuss current procedures and results together.

2.2 γ-False Coverage Proportion (γ-FCP)

We consider a new error measurement of CIs, in a sense that false coverage proportion

is bounded, at least with prescribed probability. Such new error measurement, γ-false

coverage proportion (γ-FCP) are hence presented. If a method control γ-FCP, then

it implies most of CIs in such methods cover the corresponding parameters.
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Definition 2.1 (γ-False Coverage Proportion (γ-FCP)). γ-False coverage proportion

is defined as the probability of FCP in Equation 1.1 beyond a pre-specified value, that

is:

γ-FCP = P (FCP > γ),

where γ is a pre-specified value between 0 and 1.

If a method control γ-FCP, then Definition 2.1 implies that the FCP is not

greater than a pre-specified value of γ with high probability. γ-FCP can measure

simultaneous coverage, which means most of CIs cover the corresponding parameters.

In addition to the definition, it is important to derive the properties of γ-FCP.

2.2.1 Properties of γ-FCP

Before we move on developing new proposed procedures, some properties of the new

error measurement γ-FCP are first derived. Dual to the definition of FWER, we

present a simultaneous error measurement, familywise coverage rate (FWCR). Let

VCI be the number of constructed CIs not covering their respective parameters.

Definition 2.2 (Familywise Coverage Rate (FWCR)). Familywise coverage rate is

the probability of at least one non-covering CI is constructed, which can be denoted as

FWCR = P (VCI ≥ 1).

Followed by the Definition 2.2, it is easy to find the relationship between γ-FCP

and FWCR. When γ = 0, γ-FCP reduces to FWCR. It is also of interest to compare

γ-FCP with FCR. We derive the properties in Lemma 2.1.

Lemma 2.1.

FCR− γ
1− γ

≤ γ-FCP ≤ FCR

γ
. (2.1)
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Proof.

FCR = E(FCP|FCP > γ)P (FCP > γ)

+ E(FCP|FCP ≤ γ)P (FCP ≤ γ)

≤ γ-FCP + γ(1− γ-FCP),

(2.2)

which leads to

FCR− γ
1− γ

≤ γ-FCP ≤ FCR

γ
,

with the last inequality follows from Markov’s inequality.

If a method keeps FCR at a desired level α, then Lemma 2.1 implies that such

method controls γ-FCP at level α
γ
. Ratio α

γ
might be quite large, for example, α and

γ are both small. If a method can keep γ-FCP at a desired level α, then Lemma 2.1

implies that it controls FCR in the sense FCR ≤ α+γ(1−α). Therefore, in principle,

a method that controls γ-FCP in the sense of Equation (2.1) can be used to control

FCR and vice versa.

2.2.2 Discussion of γ-FCP for Some Widely Used CIs

Case 1: Constructing Unconditional 1 − α CIs for All Parameters. For a

single parameter, γ-FCP equals to the probability of constructing a non-covering CI.

Hence a 1− α unconditional CI can guarantee γ-FCP ≤ α. Next, we move on to the

multiple CIs. Without selection, RCI = m, and E(VCI) ≤ mα. Thus, multiple 1− α

unconditional CIs can guarantee

P (
VCI

RCI ∨ 1
> γ) ≤ E(VCI)

bmγc+ 1
≤ α

γ
. (2.3)

It is clear that constructing unconditional 1−α CIs for all parameters in Equation 2.3

can keep γ-FCP at level α/γ. If we are able to construct 1−γα CIs for all parameters,

then the corresponding γ-FCP can be controlled at level α.
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Figure 2.1 Simulation based γ-FCP(dashed line) (γ = 0.10) of unconditional 0.95
CIs for the unconditional level .05 selection schemes (left panel) and the Bonferroni
level .05 selection schemes (right panel).

Case 2: Constructing 1− α Unconditional CIs for Independently Selected

Parameters. The meaning of the independent selection is that the selection

criterion is independent to the data from which we use to estimate CIs. One of

the examples is that we construct CIs for the parameters which are determined right

before the data are set up, which can control γ-FCP at level α
γ

as same as Equation

(2.3). Another example is that we use two sets, denote T1 as training set for selection

and T2 as testing set for inference, to construct multiple CIs. Then γ-FCP equals to,

PT1,T2(FCP > γ) ≤ 1

γ
ET1,T2(FCP )

=
1

γ
ET1(I(RCI > 1)

1

RCI

ET2(VCI))

=
1

γ
ET1(I(RCI > 1)

RCIα

RCI

) ≤ α

γ
,

with the first inequality follows from Markov’s inequality. It is apparent to see that

constructing unconditional 1−α CIs for independently selected parameters can keep

γ-FCP at level α/γ. If we construct 1−γα CI for independently selected parameters,

then the corresponding γ-FCP can be controlled at level α.
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Case 3: Constructing a 1−γα CIs for Selected Parameters. In this case, 0 ≤

RCI ≤ m. The selection criterion is not independent to the estimators for constructing

CIs. We process to construct 1 − γα CIs for selected parameters. We will illustrate

the behavior of γ-FCP by a simulation example. Let Ti
i.i.d.∼ N(µi, 1), i = 1, 2, ..., 200,

be estimators of µi. For each simulation, µi = µ remain fixed. This is done for

five values of µ = 0, 0.5, 1, 2, 3. Parameters µi are selected for those |Ti| > Z1−0.05/2

(marginal selection) and |Ti| > Z1−0.05/2/200 (Bonferroni selection). Next, for each

selected parameter, 1− γα CIs are constructed.

As we can see from Figure 2.1 that 1−γα CIs for the selected ones are not able

to control γ-FCP when the true parameter µ tend to be small. In other words, our

existing methods of constructing CIs for the selected parameters has disadvantage

regarding to the poor simultaneous coverage. It is necessary to study and develop a

new procedure such that γ-FCP can be controlled at a desired level.

2.3 Unconditional CI-Based γ-FCP Controlling Procedure

Two unconditional CI-based procedures are proposed in this section. We develop

unconditional CI-based γ-FCP controlling procedures under independence and de-

pendency, respectively. We denote Y = (Y1, ..., Ym) as selection estimators and

T = (T1, ..., Tm) as estimator for CI construction, both for parameter µ = (µ1, ..., µm).

And the selection procedure is given by Ŝ(Y), and the size of the selection is |Ŝ(Y)|.

Procedure 2.1 (Unconditional CI-Based Procedure).

1. Apply the selection criterion Ŝ to Y = (Y1, ...Ym), yielding the selected set

of parameters Ŝ(Y).

2. For each selected parameter µi, i ∈ Ŝ(Y), partition Y into Y(i) and Yi, where

Y(i) = Y \ {Yi}, and find

Rmin(Y(i)) := min
y
{|Ŝ(Y(i), Yi = y)| : i ∈ Ŝ(Y(i), y)}.
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3. For each selected parameter µi, i ∈ Ŝ(Y), construct the following uncondi-

tional CI:

CIi

(bγRmin(Y(i))c+ 1

m
α
)
. (2.4)

Remark 2.1. It is worth to mention that Rmin(Y(i)) can be replaced by RCI for some

commonly used plausible selection methods, such as marginal selection and Bonferroni

selection. Because |Ŝ(Y(i), y)| assumes a single value, given Y(i) for values Yi = y

such that parameter µi is selected, i = 1, ...,m. But there exists some exceptions, such

as Benjamini and Hochberg (2000) and Benjamini Krieger and Yekutieli (2006). For

these exceptions, Rmin(Y(i)) < RCI .

Incorporating RCI into Procedure 2.1, the Equation 2.4 takes on a very simple

form. Definition 2.1 immediately implies that the width of such selective CIs decreases

as number of selected parameter increases and increases as number of total considered

parameter increases. The length is same as Bonferroni adjusted CI if Rmin(Y(i)) <

1/γ. In addition, the average width of CIs is shorter than Bonferroni adjusted CI if

Rmin(Y(i)) ≥ 1/γ.

2.3.1 Theoretical Results

In this section, we first prove our proposed procedure in Procedure 2.1 ia able to

control γ-FCP at level α when (Yi, Ti), i = 1, ...,m are independent. Next, the result

of Procedure 2.1 is extended to control γ-FCP when (Yi, Ti), i = 1, ...,m are positive

regression dependent on subsets.

Theorem 2.1. If (Yi, Ti), i = 1, ...,m are independent, then for any selection

procedure Ŝ(Y), the γ-FCP adjusted selective CIs in Procedure 2.1 enjoys γ-FCP

≤ α.
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Proof. Recall the Definition 2.1 of γ-FCP,

γ-FCP = P
( VCI
RCI ∨ 1

> γ
)

= P (VCI ≥ bγRCIc+ 1)

≤ E
( VCI
bγRCIc+ 1

)
.

(2.5)

The inequality in Equation (2.5) follows from Markov’s inequality. Now we know that

E
( VCI
bγRCIc+ 1

)
=

m∑
i=1

m∑
r=1

1

bγrc+ 1
P

(
i ∈ Ŝ, RCI = r,

µi /∈ CIi
(bγRmin(Y(i))c+ 1

m
α
))

=
m∑
i=1

m∑
r=1

m∑
k=1

1

bγrc+ 1
P

(
i ∈ Ŝ, RCI = r, Rmin(Y(i)) = k,

µi /∈ CIi
(bγkc+ 1

m
α
))

≤
m∑
i=1

m∑
k=1

1

bγkc+ 1
P

(
i ∈ Ŝ, Rmin(Y(i)) = k,

µi /∈ CIi
(bγkc+ 1

m
α
))

≤
m∑
i=1

m∑
k=1

1

bγkc+ 1
P

(
Rmin(Y(i)) = k, µi /∈ CIi

(bγkc+ 1

m
α
))

.

The first inequality holds since Rmin(Y(i)) ≤ RCI for each value of Y(i) and Yi such

that µi is selected. The second inequality follows from dropping the condition i ∈ Ŝ.

Then, due to the condition of independence,

E
( VCI
bγRCIc+ 1

)
≤

m∑
i=1

m∑
k=1

1

bγkc+ 1
P (Rmin(Y(i)) = k)P

(
µi /∈ CIi

(bγkc+ 1

m
α
))

≤ α

m

m∑
i=1

m∑
k=1

P (Rmin(Y(i)) = k) = α.

The second inequality is due to the marginal coverage. Hence the desired result

follows.
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Note that the condition (Yi, Ti), i = 1, ...,m are independent, can be generalized

as Ti is independent to Y(i), for all i = 1, ...,m. The adjusted level in Procedure 2.1 is

sufficient to control γ-FCP at a desired level α. Such increase is important when one

can not only characterize the effect of selection but also guarantee the simultaneous

coverage is taken into consideration as well. Procedure 2.1 is proven to keep γ-FCP

at level α under independence. In real science, there always exists some dependence

within the data. Thus we now want to discuss whether or not our new proposed

procedure in Procedure 2.1 can control γ-FCP at a desired level under the condition

(Yi, Ti) possessing PRDS. Recall the Definition 1.6 and Definition 1.7, we have the

following results.

Theorem 2.2. If the components of (Y(i), Ti) are PRDS, for i = 1, ...,m, and the

selection criterion Ŝ and the CIs are concordant, then the γ-FCP adjusted selective

CIs in Definition 2.1 enjoys γ-FCP ≤ α.

Proof. Recall the proof of Theorem 2.1, we have,

γ-FCP ≤ E
( VCI
bγRCIc+ 1

)
≤

m∑
i=1

m∑
k=1

1

bγkc+ 1
P

(
Rmin(Y(i)) = k,µi /∈ CIi

(bγkc+ 1

m
α
))

≤ α

m

m∑
i=1

m∑
k=1

P

(
Rmin(Y(i)) = k

∣∣∣∣∣µi /∈ CIi(bγkc+ 1

m
α
))

.

The last inequality is due to the marginal coverage in Definition 2.1. Note that

m∑
k=1

P

(
Rmin(Y(i)) = k

∣∣∣∣∣µi /∈ CIi(bγkc+ 1

m
α
))

=
m∑
k=1

[
P

(
Rmin(Y(i)) ≥ k

∣∣∣∣∣µi /∈ CIi(bγkc+ 1

m
α
))

−
m∑
k=1

P

(
Rmin(Y(i)) ≥ k + 1

∣∣∣∣∣µi /∈ CIi(bγkc+ 1

m
α
))]

,

23



which is

≤
m∑
k=1

[
P

(
Rmin(Y(i)) ≥ k

∣∣∣∣∣µi /∈ CIi(bγkc+ 1

m
α
))

−
m∑
k=1

P

(
Rmin(Y(i)) ≥ k + 1

∣∣∣∣∣µi /∈ CIi(bγ(k + 1)c+ 1

m
α
))]

= P

(
Rmin(Y(i)) ≥ 1

∣∣∣∣∣µi /∈ CIi( αm)
)

− P

(
Rmin(Y(i)) ≥ m+ 1

∣∣∣∣∣µi /∈ CIi(bγ(m+ 1)c+ 1

m
α
))

= 1.

The inequality holds because of the following argument. Without loss of generality,

assume {Y(i) : k ≤ Rmin(Y(i))} is an increasing set. Then by Definition 1.7, with

condition Ŝ and CIs are concordant, {Ti : µi /∈ CIi(α)} is also an increasing set,

which in turn can be expressed as an interval Ti ≥ ai. By monotone property, which

α ≥ α′ implies that CI(α) ⊆ CI(α′). Then we can find that CIi(
bγ(k+1)c+1

m
α) ⊆

CIi(
bγkc+1
m

α), which in turn can be expressed as Ti ≥ b′i and Ti ≥ bi. Then b′i ≥ bi.

Thus by the PRDS of (Y(i), Ti), the inequality follows. Hence

γ-FCP ≤ α

m

m∑
i=1

1 = α.

The result in Theorem 2.2 holds for (Yi, Ti) possessing PRDS property.

2.4 Modified Unconditional CI-Based Procedure

The results in Theorems 2.1 and 2.2 holds for independence and PRDS, respectively.

We now discuss parameter estimators possessing any arbitrary dependence of (Yi, Ti).

Procedure 2.2 (Modified Unconditional CI-based Procedure under Arbitrary

Dependence).

Let cγ,m =
∑bγ(m−1)c+2

i=1
1
i
, then for each selected parameter µi, i ∈ Ŝ(Y), construct

the following unconditional CI:
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CIi

(bγRmin(Y(i))c+ 1

mcγ,m
α
)
. (2.6)

Theorem 2.3. For any monotone unconditional CIs, any selection procedure Ŝ(Y),

and any dependence of (Yi, Ti), for i = 1, ...,m, the γ-FCP of Procedure 2.2 is bounded

by α.

Proof. Recall the proof of Theorem 2.1, we have

γ-FCP ≤ E
( VCI
bγRCIc+ 1

)
≤

m∑
i=1

m∑
k=1

1

bγkc+ 1
P

(
Rmin(Y(i)) = k, µi /∈ CIi

(bγkc+ 1

mcγ,m
α
))

.

Note that

m∑
k=1

1

bγkc+ 1
P

(
Rmin(Y(i)) = k, µi /∈ CIi

(bγkc+ 1

mcγ,m
α
))

=
m∑
k=1

1

bγkc+ 1
P

(
Rmin(Y(i)) ≥ k, µi /∈ CIi

(bγkc+ 1

mcγ,m
α
))

−
m∑
k=1

1

bγkc+ 1
P

(
Rmin(Y(i)) ≥ k + 1, µi /∈ CIi

(bγkc+ 1

mcγ,m
α
))

≤
m∑
k=1

1

bγkc+ 1
P

(
Rmin(Y(i)) ≥ k, µi /∈ CIi

(bγkc+ 1

mcγ,m
α
))

−
m∑
k=1

1

bγ(k + 1)c+ 1
P

(
Rmin(Y(i)) ≥ k + 1, µi /∈ CIi

(bγkc+ 1

mcγ,m
α
))

≤ P

(
µi /∈ CIi

( α

mcγ,m

))

+
m∑
k=2

1

bγkc+ 1

[
P

(
µi /∈ CIi

(bγkc+ 1

m
α
))
− P

(
µi /∈ CIi

(bγ(k − 1)c+ 1

mcγ,m
α
))]

=
m−1∑
k=1

( 1

bγkc+ 1
− 1

bγ(k + 1)c+ 1

)
P

(
µi /∈ CIi

(bγkc+ 1

mcγ,m
α
))

+
1

bγmc+ 1
P

(
µi /∈ CIi

(bγmc+ 1

mcγ,m
α
))

, s
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which is

≤ α

mcγ,m

[
1 +

m−1∑
k=1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

)]
.

The first inequality follows from bγkc ≤ bγ(k + 1)c, for k = 1, ..,m. The third

inequality holds due to marginal coverage of unconditional CI. Thus

γ-FCP ≤
m∑
i=1

α

mcγ,m

[
1+

m−1∑
k=1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

)]
=

α

cγ,m

(
1+

m−1∑
k=1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

))
.

Define ki := max{1 ≤ k ≤ m − 1 : bγkc = i}, k−1 = 0, and imax := bγ(m − 1)c.

Then,
m−1∑
k=1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

)
=

imax∑
i=0

ki∑
k=ki−1+1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

)

For any i, we have

ki∑
k=ki−1+1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

)
=

ki−1∑
k=ki−1+1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

)
+
(

1− bγkic+ 1

bγ(ki + 1)c+ 1

)
= 0 +

1

i+ 2
=

1

i+ 2

And therefore

m−1∑
k=1

(
1− bγkc+ 1

bγ(k + 1)c+ 1

)
=

imax∑
i=0

( 1

i+ 2

)
=

imax+2∑
i=2

(1

i

)

Hence

γ-FCP ≤ α

cγ,m

( bγ(m−1)c+2∑
i=1

1

i

)
= α

The immediate corollary is that for any monotone unconditional CIs, any

selection procedure Ŝ(Y), and any dependence of (Yi, Ti), for i = 1, ...,m, the γ-FCP

of Procedure 2.1 is bounded by αcγ,m, where cγ,m =
∑bγ(m−1)c+2

i=1
1
i
.
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2.5 Conclusion

We have proposed a new error measurement of CIs, γ-FCP in Definition 2.1. Two

unconditional CI-based γ-FCP controlling procedures are present in Procedure 2.1

and Procedure 2.2. It is sufficient to prove that such Procedure 2.1 can keep γ-FCP

at a desired level under independence/PRDS and Procedure 2.2 can keep γ-FCP at a

desired level under arbitrary dependence. Besides unconditional CI-based procedures,

in the next chapter, we develop procedures, based on the conditional CIs (Weinstein

et al., 2013; Benjamini et al., 2019), in which conditional CIs provide shorter width

of CIs.
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CHAPTER 3

CONDITIONAL CI-BASED γ-FCP CONTROLLING PROCEDURES

3.1 Introduction

Weinstein et al (2013) developed conditional CIs and suggested three methods to

offer FCR control. Benjamini et al. (2019) suggested a method of constructing

CIs to control simultaneous coverage over selected parameters. In this chapter,

we develop conditional CI-based γ-FCP controlling procedures, which can take the

effect of selection into consideration and offer simultaneous coverage over selected

parameters as well. Such new conditional CI approach is based on conditional CI,

which is constructed for a parameter if it is selected. A 95% conditional CIs offers

P(conditonal CI covers its parameter | the parameter is selected) ≥ 0.95. However,

conditional CI is quite challenging to obtain. We first illustrate the conditional CIs

with an example. Let T ∼ N(µ, 1) be the estimator for µ. We are interested in the

value of parameter only if T is large enough, i.e., T ≥ 1.96. Since only T |T ≥ 1.96 is

observed, such conditional T no longer follows a normal distributionN(µ, 1). Let fµ(t)

and Fµ(t) be the probability density function and cumulative distribution function of

T . Then the conditional probability density function of T |T ≥ 1.96 is different from

unconditional probability density function of T . Hence, we are not able to directly

use unconditional probability density function to estimate such conditional CIs. In

fact, it is appropriate to use the conditional probability density function to estimate

conditional CIs.

The rest of the chapter is organized as follows. In Section 3.2, we address

the preliminaries of conditional CI. Then, in Section 3.3, new conditional CI-based

γ-FCP controlling procedure is developed. In Section 3.4, a modified conditional

CI-based procedure is developed, which is proven to keep γ-FCP at a desired level

under arbitrary dependence. We also derive the properties of the new conditional
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CI-based procedures in Section 3.5, as well as the discussion of conditional CI. Finally,

we summarize the all of the procedures and results in Section 3.6.

3.2 Preliminaries

We first introduce a conditional error measurement, which complement to the

unconditional error measurement we introduce in Section 2.2. Let Ŝ be the index

set of selected parameters. For any subset S ⊆ {1, ...,m}, where selection criterion is

Ŝ = S.

Definition 3.1 (Conditional γ-False Coverage Proportion (γ-cFCPS)). Conditional

γ-false coverage proportion is defined as, condition on a selection rule Ŝ = S, the

probability of FCP beyond a pre-specified value, where FCP is the ratio of non-covering

CIs among all constructed cCIs, that is,

γ-cFCPS = P
[ VCI
RCI ∨ 1

> γ|Ŝ = S
]
.

γ-cFCP is an application tool for us to develop conditional CI-based γ-FCP

controlling procedures. If a procedure control γ-cFCPS at a desired level, then it

implies control of γ-FCP.

3.3 Conditional CI-Based γ-FCP Controlling Procedure

Denote Y = (Y1, ..., Ym) as selection statistics and T = (T1, ..., Tm) as the estimator

for CIs construction, both for parameter µ = (µ1, ..., µm). And the selection procedure

is given by Ŝ(Y), and the total size of the selection is |Ŝ(Y)|.

Procedure 3.1 (Conditional CI-Based Procedure).

1. Apply the selection criterion Ŝ to Y, yielding the selected set of parameters

Ŝ(Y). Note that |S| is the number of selection conditional on Ŝ(Y) = S.
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2. For each selected parameter µi, i ∈ Ŝ(Y), construct the following conditional

CIs: cCIi(u), where u satisfies the function,

bγ|S|c∑
j=0

(
|S|
j

)
uj(1− u)|S|−j = 1− α. (3.1)

3.3.1 Theoretical Results

We prove our proposed procedure in Procedure 3.1 can control γ-FCP when

(Yi, Ti), i = 1, ...,m are independent.

Theorem 3.1. If (Yi, Ti), i = 1, ...,m are independent, conditional on the selection

ˆS(Y) = S, we construct exact cCI(u) for µi in Definition 3.2, then the γ-cFCPS is

bounded by α.

Proof. Let VS(u) be the number of non-covering constructed cCI(u) for the selected

parameters, conditional on Ŝ(Y) = S. Under condition (Yi, Ti) are independent for

i = 1, ...,m,, VS(u) follows a binomial distribution. By Definition 3.1, to control

γ-cFCPS at level α as

γ-cFCP = Pr(V|S| ≥ bγ|S|c+ 1|S = S)

=

|S|∑
j=bγ|S|c+1

(
|S|
j

)
uj(1− u)|S|−j = 1−

bγ|S|c∑
j=0

(
|S|
j

)
uj(1− u)|S|−j = α.

By using double expectation, γ-FCP can be kept at level α.

3.4 Modified Conditional CI-Based Procedure

The results in Theorem 3.1 holds for independence. We now discuss parameter

estimators possessing any arbitrary dependence of (Yi, Ti). Though the independence

case is relatively complicated, the dependence case is quite intuitive.

Procedure 3.2 (Modified Procedure 3.1 for Dependence).

For each selected parameter µi, i ∈ Ŝ(Y), construct the following conditional
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CIs:

cCIi

(bγ|S|c+ 1

|S|
α
)
.

Theorem 3.2. For any selection procedure Ŝ(Y), and any dependence structure of

(Yi, Ti), for i = 1, ...,m, the γ-cFCPS adjusted selective conditional CIs in Definition

3.2 enjoys γ-cFCPS ≤ α.

Proof. By the Procedure 3.1, we have

γ-cFCPS = P
( VS
RS ∨ 1

|Ŝ = S
)

= P (VS ≥ bγ|S|c+ 1|Ŝ = S)

≤ 1

bγ|S|c+ 1
E(VS|Ŝ = S)

=
1

bγ|S|c+ 1

∑
i∈S

P (µi /∈ cCIi|Ŝ = S)

≤ bγ|S|c+ 1

bγ|S|c+ 1
α ≤ α

If the number of |S| of the selected parameters is less than 1/γ, then it is enough

to construct conditional CIs at level 1− α/|S|.

3.5 Discussion

The following the questions are discussed: (1) What is the meaning that (Yi, Ti), for

i = 1, ...,m, are independent? (2) How can we obtain u? How can we understand u?

(3) Which procedure can be more powerful, Procedure 3.1 or Procedure 3.2, in terms

of shorter CI width?

Explanation of the condition: (Yi, Ti), for i = 1, ...,m, are independent Since

Ti is the estimator of CIs construction for parameter µi, such condition can be replaced

by Ti|Ŝ=S that are independent to each other for all i ∈ S. Such condition may be not
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easy to guarantee. For example, when Yi 6= Ti as the selection statistics for parameter

µi, such condition can be simplified as Ti is independent to Y, and Ti is independent

for i ∈ S. When Yi = Ti, with simple selection rule Ti > c, where c is a constant, we

can find

Ti|Ŝ=S =


Ti|Ti > c if i ∈ S

Ti|Ti ≤ c if i /∈ S

If we can find conditional Ti|Ti > c, then condition can be updated as conditional

Ti|Ti > c is independent for i ∈ S.

Discussion about u We move on to discuss about u. From Equation (3.1), we

can tell u is a value which is affected by the size of selection |S|, α, and γ, which

can be denoted as u = u(α, γ, |S|). We use stochastic ordering as application tools to

derive (i) monotonicity of u(α, γ, |S|) in α and γ, respectively; and (ii) limitation of

u(α, γ, |S|) when |S| is very large.

Lemma 3.1. u(α, γ, |S|) is an increasing function in α.

The details of proofs are in Appendix.

Lemma 3.2. u(α, γ, |S|) is a nondecreasing function in γ.

The details of proofs are in Appendix. The foregoing conditional CIs procedure

is monotone in α.:

α ≥ α′ implies that cCIi(α) ⊆ cCIi(α
′). (3.2)
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Lemma 3.3. If Vn ∼ Bin(n, un), the corresponding γ-cFCP= P (Vn ≥ γn) = α,

where 0 < α < 1, then limn→∞ un = γ.

The details of proofs are in the Appendix. From Lemma 3.3, we derive an fact

that u tends to be a constant when the size of selection |S| is large, and such constant

is γ. With this strong lemma, it implies that we can construct cCI(γ) for a large scale

of selected parameters, which keeps γ-FCP at a desired level.

Discussion about u versus bγ|S|c+1
|S| α We discuss about whether or not u(α, γ, |S|) >

bγ|S|c+1
|S| α, in a sense that conditional CI-based procedure under independence has

shorter CIs width than under dependence. Numerical studies are performed to

compare between u(α, γ, |S|) and bγ|S|c+1
|S| α. Our numerical studies shows the ratio

r = u(α,γ,|S|)
bγ|S|c+1
|S| α

versus α, γ or |S|, respectively. The setting and figures of numerical

study are in Appendix. The numerical studies shows the fact that u(α, γ, |S|) is not

smaller than bγ|S|c+1
|S| α, which further implies Procedure 3.1 has equal or shorter CIs

width than Procedure 3.2.

Conditional CI for Selected Parameters To implement the procedure in

Sections 3.3 and 3.4, we discuss the methods about constructing conditional CIs.

Weinstein, Fithian and Benjamini (2013) introduced a powerful method to construct

conditional CIs for one-sample problem. We develop a method to construct

conditional CIs for two-sample problem. In applied research, two-sample design is

commonly used to determine whether two population means are equal or not (Fithian

et al, 2015; Tian et al, 2018). The construction of such design can be shown with a

classic example, {X1j : 1 ≤ j ≤ n1}, and {X2j : 1 ≤ j ≤ n2} be two independent

random samples, such as,

X1j
i.i.d∼ N(µ1, σ

2
1),

X2j
i.i.d∼ N(µ2, σ

2
2).
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We want to construct conditional CIs for µ1 − µ2, which guarantee the conditional

coverage, that is,

P (µ1 − µ2 ∈ CI(α)|i ∈ S) ≥ 1− α,

where S is the selected set of parameters. We choose Y as selection estimator and T

as the estimator for CIs, which are defined as

Y = X̄1 + X̄2,

T = X̄1 − X̄2.

The selection rule is based on Y . For the convenience of discussion, let σ2
1 = σ2

1 = 1.

(Y, T ) follows a bivariate normal distribution,

Y
T

 ∼ N

µ1 + µ2

µ1 − µ2

 ,


1

n1

+
1

n2

0

0
1

n1

+
1

n2



 .

Since Cov(Y, T ) = 0, we can conclude that Y is independent to T . And conditional

CIs for µ1 − µ2|Y is same to the unconditional CIs for µ2 − µ2.

P (µ1 − µ2 ∈ CI(α)|Y ) = P (µ1 − µ2 ∈ CI(α)).

In Appendix, we construct conditional CI when Y is dependent to T .

3.6 Conclusion

We have proposed two new conditional CI-based γ-FCP controlling procedures.

So far, there are four γ-FCP controlling procedures are proposed, in two types:

unconditional and conditional CIs. We summarize the procedures in Table 3.1. In

Chapter 4, we conduct extensive simulation study about the proposed procedures.

Such studies are intend to dig about the performance of the new procedures. In
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Table 3.1 Summary of Unconditional CI-Based Procedures and Conditional CI-
Based Procedures

Procedure Type of CI Required Condition Adjusted Level

1 unconditional CI independence/PRDS bγ|S|c+1
m

α

2 unconditional CI Dependence bγ|S|c+1
mcγ,m

α

3 conditional CI Independence u(α, γ, |S|)

4 conditional CI Dependence bγ|S|c+1
|S| α

Note that cγ,m =
∑bγ(m−1)c+2

i=1
1
i
.

Chapter 5, we study two real data sets while we apply our newly proposed procedures.

The analysis of real data provides us an intuitive view of pros and cons about our

newly proposed procedures. A possible future work is to develop weighted methods

for constructing conditional CIs. There are three reasons that we are interested in

weighted methods: (1) to incorporate previous knowledge about the parameters; (2)

to construct powerful CI; and (3) to represent difference in importance of estimators.

More details will be discussed in the Chapter 6.
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CHAPTER 4

SIMULATION STUDIES

4.1 Introduction

In this chapter, we perform extensive simulation studies for our proposed procedures.

Simulation studies are designed to (1) evaluate effect of nonzero proportion, selection

level and correlation coefficient under independence, while we apply our proposed

procedures in terms of γ-FCP control and average width of CIs; and (2) apply to

strong dependence such as equal correlation and several weak dependence such as

block-wise dependence. We explore the performance of the proposed procedures

in four different situations: (i) under independence for one sample case; (ii) under

independence for two sample case; (iii) under dependence for one sample case; and

(iv) under dependence for two sample case. In Section 4.2, we clearly introduce the

methods of constructing CI for unconditional CI-based γ-FCP controlling procedures

in Chapter 2 (Procedures 1 and 3 refers to independence and dependence) and

conditional CI-based γ-FCP controlling procedures in Chapter 3 (Procedures 2 and 4

refers to independence and dependence) and the existing FCR controlling procedures

(Procedures 5 and 6 refers to independence and dependence, which were suggested

by Benjamini and Yekutieli, 2005). From Section 4.3 to Section 4.6, we show the

performance of the proposed procedures in four different situations: (i) - (iv). In

Section 4.7, a concluding remark is given.

4.2 Preliminary

We introduce the methods of constructing CIs for one sample case. Xi followsN(µi, σ)

with unknown parameter µi and known parameter σ, X̄i are used to estimate µi. To

simplify the case, we assume σ2 as the sample size of Xi. Therefore X̄i ∼ N(µi, 1).
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Table 4.1 Summary of Various Methods of Constructing CIs for One Sample Case

Procedure CIs for One Sample Case

1 (x̄i − Z bγRc+1
2m

α
, x̄i + Z bγRc+1

2m
α
)

2 (fl(x̄i, uα,γ,R), fu(x̄i, uα,γ,R))

3 (x̄i − Z bγRc+1
2mcγ,m

α
, x̄i + Z bγRc+1

2mcγ,m
α
)

4 (fl(x̄i,
bγRc+1

R
α), fu(x̄i,

bγRc+1
R

α))

5 (x̄i − Z R
2m

α, x̄i + Z R
2m

α)

6 (x̄i − Z R
2mc∗γ,m

α, x̄i + Z R
2mc∗γ,m

α)

Given the proposed procedures and the existing selective inference procedures, there

are six corresponding methods of constructing CIs for µi for one sample case. In

Table 4.1, we list six methods of CIs for one sample case corresponding to the

selective inference procedures. We denote that (1) xi as the observed value of

Xi; (2) R is the number of selected parameters µi, i.e. R = 1, 2, ...,m, where

m is total parameter size; (3) γ is a pre-specified value between 0 and 1; (4)

uα,R,γ := argmin0≤u≤0.5{Fu(bγRc) = 1 − α}, Fu(·) is the cumulative distribution

function of a binomial distribution Bin(R, u), which is introduced in Chapter 3; (5)

cγ,m =
∑bγ(m−1)c+2

i=1
1
i
, which is introduced in Chapter 2; (6) c∗γ,m =

∑m
i=1 1/i, which

was proposed by Benjamini and Yekutieli (2005); and (7) fl(x̄i, α
∗) and fu(x̄i, α

∗) are

lower and upper conditional CI bond of µi, which we modify from Weinstein, Fithian

and Benjamini (2013), α∗ is the adjusted α level in conditional CI-based procedures.

Next, we introduce the methods of constructing CIs for two sample case. Given

that X1i follows N(µ1i, σ) and X2i follows N(µ2i, σ) with unknown parameters µ1i, µ2i

and known parameter σ, X̄1i−X̄2i are used to estimate µ1i−µ2i. To simplify the case,

we assume 2σ2 as the sample size of X1i (or X2i). Therefore X̄1i−X̄2i ∼ N(µ1i−µ2i, 1).
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Table 4.2 Summary of Various Methods of Constructing CIs for Two Sample Case

Procedure CIs for Two Sample Case

1 (x̄1i − x̄2i − Z bγRc+1
2m

α
, x̄1i − x̄2i + Z bγRc+1

2m
α
)

2 (x̄1i − x̄2i − Zuα,R,γ , x̄1i − x̄2i + Zuα,R,γ )

3 (x̄1i − x̄2i − Z bγRc+1
2mcγ,m

α
, x̄1i − x̄2i + Z bγRc+1

2mcγ,m
α
)

4 (x̄1i − x̄2i − Z bγRc+1
2R

α
, x̄1i − x̄2i + Z bγRc+1

2R
α
)

5 (x̄1i − x̄2i − Z R
2m

α, x̄1i − x̄2i + Z R
2m

α)

6 (x̄1i − x̄2i − Z R
2mc∗γ,m

α, x̄1i − x̄2i + Z R
2mc∗γ,m

α)

In Table 4.2, given the Procedures 1 - 6, there are six corresponding methods of

constructing CIs for µ1i − µ2i under two sample case.

4.3 Numerical Comparison under Independence for One-Sample Case

We generated m = 2000 normal random variables {X̄i, ..., X̄m} with covariance matrix

Σ̃ and mean vector µ̃ = (µ1, ..., µm). CIs are constructed only for the selected µi,

i ∈ {1, 2, ...,m}. The mean vector µ̃ has 100π% of nonzero mean µi. That is, 100π%

proportion of µi = 0.5, meanwhile the remaining is zero. Covariance matrix Σ̃ is

defined as

Σ̃ =



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


. (4.1)

Simulation studies are first performed as nonzero proportion π varies, that is π from

0 to 1. This is done for four values of ρ = 0, 0.2, 0.5, 0.8, and two values of selection
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Figure 4.1 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and selection level s = 0.20.
Here, the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.

level s = 0.20 and s = 0.40, corresponding to Figures 4.1 - 4.4. Next, simulation

studies are performed as selection level s varies, that is s from 0 to 1. The covariance

matrix is same as Equation 4.1, this is done for four values of ρ = 0, 0.2, 0.5, 0.8, and

two values of selection level π = 0.10 and π = 0.20, corresponding to Figures 4.5 -

4.8.

In Figures 4.1 and 4.3, we compare the estimated γ-FCP with respect to the

nonzero proportion π with value from 0 to 1 for one sample case. Figures 4.1 and 4.3

show that the estimated γ-FCP is bounded by 0.05 as π varies under independence

(ρ = 0) for all six procedures. And the estimated γ-FCP is controlled by 0.05 as π
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Figure 4.2 Estimated average width of CI of our proposed unconditional CI-based
γ-FCP controlling procedures and conditional CI-based γ-FCP controlling procedures
along with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5 (second
row left panel), ρ = 0.8 (second row right panel) and selection level s = 0.20. Here,
the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.3 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and selection level s = 0.40.
Here, the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.4 Estimated average width of CI of our proposed unconditional CI-based
γ-FCP controlling procedures and conditional CI-based γ-FCP controlling procedures
along with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5 (second
row left panel), ρ = 0.8 (second row right panel) and selection level s = 0.40. Here,
the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.5 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and nonzero proportion
π = 0.10. Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.

varies when ρ = 0.2 and 0.5 for Procedures 1,2,3,4 and 6. The estimated γ-FCP is

not controlled by 0.05 as π varies with extreme large ρ = 0.5 or 0.8 for Procedure 5.

In Figures 4.2 and 4.4, we compare the estimated average width of CIs with respect

to the nonzero proportion π with value from 0 to 1. Figures 4.2 and 4.4 show that

when s and ρ are fixed, the average width of CI of Procedures 1, 3, 5 and 6 decrease

as nonzero proportion π increase. The average width of CI of Procedures 2 and 4

does not vary no matter which value of π is chosen. Procedure 3 has the widest CI;

whereas Procedure 2 has the least wide CI when s and ρ are fixed.
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Figure 4.6 Estimated average width of CI of our proposed unconditional CI-based
γ-FCP controlling procedures and conditional CI-based γ-FCP controlling procedures
along with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5 (second
row left panel), ρ = 0.8 (second row right panel) and nonzero proportion π = 0.10.
Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.7 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and nonzero proportion
π = 0.20. Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.8 Estimated average width of CI of our proposed unconditional CI-based
γ-FCP controlling procedures and conditional CI-based γ-FCP controlling procedures
along with Benjamini and Yekutieli procedures for one sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5 (second
row left panel), ρ = 0.8 (second row right panel) and nonzero proportion π = 0.10.
Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.
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In Figures 4.5 and 4.7, we compare the estimated γ-FCP with respect to

selection parameter s with value from 0 to 1. Figures 4.5 and 4.7 show the estimated

γ-FCP of Procedures 2 and 4 are bounded by 0.05 as selection parameter s varies

when ρ = 0. Procedures 1, 3, 5 and 6 only control γ-FCP when s is small. Figures

4.5 and 4.7 also show that, under the case when ρ = 0.2, 0.5 and 0.8, the estimated

γ-FCP of Procedures 2 and 4 is stilled controlled. The estimated γ-FCP of Procedures

1, 3, 5 and 6 is out of control when the value of s is large. In Figures 4.6 and 4.8,

we compare the estimated average width of CI with respect to selection parameter

s with value from 0 to 1. Figures 4.6 and 4.8 show the CI width of Procedures 2

and 4 decreases as selection parameter s increases. And Figures 4.6 and 4.8 also

show that Procedure 2 can always provide the shortest CI, and Procedure 1 provides

the widest CI width. Therefore, we suggest using Procedure 2 (conditional CI-based

γ-FCP controlling procedure) under independence for one sample case.

4.4 Numerical Comparison under Independence for Two-Sample Case

We generated m = 2000 two-samples normal random, which are {X̄11, X̄12, ..., X̄1m}

with mean vector µ̃1 = (µ11, ..., µ1m) and covariance matrix Σ̃ for treatment group

and {X̄21, X̄22, ..., X̄2m} with mean vector µ̃2 = (µ21, ..., µ2m) and same covariance

matrix Σ̃ for control group. Σ̃ is defined as Matrix equation 4.1. The mean vector µ̃1

has 100π% of nonzero mean µ1i. That is, 100π% proportion of µ1i = 0.5, meanwhile

the remaining is zero; and mean vector µ̃2 = 0̃. Simulation studies are first designed

as nonzero proportion π varies, that is π from 0 to 1. The covariance matrix is

Matrix equation 4.1, this is done for four values of ρ = 0, 0.2, 0.5, 0.8, and two values

of selection level s = 0.20 and s = 0.40, corresponding to Figures 4.9 - 4.12. Next,

simulation studies are performed as selection level s varies, that is s from 0 to 1. The

covariance matrix is Matrix 4.1, this is done for four values of ρ = 0, 0.2, 0.5, 0.8, and
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Figure 4.9 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for two sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and selection level s = 0.20.
Here, the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.

two values of selection level π = 0.10 and π = 0.20, corresponding to Figures 4.13 -

4.16.

In Figures 4.9 and 4.11, we compare the estimated γ-FCP with respect to the

nonzero proportion π with value from 0 to 1. Figures 4.9 and 4.11 show that the

estimated γ-FCP is bounded by 0.05 as π varies when ρ = 0 for all six procedures.

The estimated γ-FCP of Procedure 2 is bounded by and most close to 0.05 as π

varies when ρ = 0. And the estimated γ-FCP is still controlled by 0.05 as π varies

when ρ = 0.2, 0.5 or 0.8 for Procedures 1,3,4 and 6. The estimated γ-FCP is not

controlled by 0.05 as π varies when ρ = 0.2, 0.5 or 0.8 for Procedure 2. The estimated
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Figure 4.10 Estimated average width of CI of our proposed unconditional CI-based
γ-FCP controlling procedures and conditional CI-based γ-FCP controlling procedures
along with Benjamini and Yekutieli procedures for two sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5 (second
row left panel), ρ = 0.8 (second row right panel) and selection level s = 0.20. Here,
the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.11 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for two sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and selection level s = 0.40.
Here, the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.12 Estimated average width of CI of of our proposed unconditional
CI-based γ-FCP controlling procedures and conditional CI-based γ-FCP controlling
procedures along with Benjamini and Yekutieli procedures for two sample case, with
correlation coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel),
ρ = 0.5 (second row left panel), ρ = 0.8 (second row right panel) and selection level
s = 0.40. Here, the value of nonzero proportion π is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.13 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for two sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and nonzero proportion
π = 0.10. Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.

γ-FCP is not controlled by 0.05 as π varies with extreme large ρ for Procedure 5. In

Figures 4.10 and 4.12, we compare the estimated CI width with respect to the nonzero

proportion π with value from 0 to 1. Figures 4.10 and 4.12 show that when s and ρ

are fixed, the CI width of six procedures does not vary no matter which value of π is

chosen. This is the result of the adjusted level, which decides the CI width, is not a

function of/not affected by π. Procedure 3 has the widest CI; whereas Procedure 2

has the least wide CI when s and ρ are fixed.

In Figures 4.13 and 4.15, we compare the estimated γ-FCP with respect to

selection parameter s with value from 0 to 1. Figures 4.13 and 4.15 show the estimated
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Figure 4.14 Estimated average width of CI of our proposed unconditional CI-based
γ-FCP controlling procedures and conditional CI-based γ-FCP controlling procedures
along with Benjamini and Yekutieli procedures for two sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5 (second
row left panel), ρ = 0.8 (second row right panel) and nonzero proportion π = 0.10.
Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.15 Estimated γ-FCP of our proposed unconditional CI-based γ-FCP
controlling procedures and conditional CI-based γ-FCP controlling procedures along
with Benjamini and Yekutieli procedures for two sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5
(second row left panel), ρ = 0.8 (second row right panel) and nonzero proportion
π = 0.20. Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.16 Estimated average width of CI of our proposed unconditional CI-based
γ-FCP controlling procedures and conditional CI-based γ-FCP controlling procedures
along with Benjamini and Yekutieli procedures for two sample case, with correlation
coefficient ρ = 0 (first row left panel), ρ = 0.2 (first row right panel), ρ = 0.5 (second
row left panel), ρ = 0.8 (second row right panel) and nonzero proportion π = 0.10.
Here, the value of selection level s is from 0 to 1. m = 2000, α = 0.05.
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γ-FCP of all procedures are bounded by 0.05 as selection parameter s varies when

ρ = 0. Figures 4.13 and 4.15 also show that, under the case when ρ = 0.2, 0.5 and 0.8,

the estimated γ-FCP of Procedures 1,3,4,6 is stilled controlled. The estimated γ-FCP

of both Procedure 2 is out of control, no matter what value of s is. The estimated

γ-FCP of Procedure 6 are out of control for most value of s, except small value.

In Figures 4.14 and 4.16, we compare the estimated CI width with respect to

selection parameter s with value from 0 to 1. Figures 4.14 and 4.16 show the CI

width of six procedures decreases as selection parameter s increases. Since the more

parameters are selected, the CI width is shorter. And Figures 4.14 and 4.16 also show

that Procedure 2 can always provide the shortest CI, and Procedure 1 provides the

most wide CI width. Therefore, we suggest using Procedure 2 (conditional CI-based

γ-FCP controlling procedure) under independence for one sample case.

4.5 Numerical Comparison under Dependence for One-Sample Case

We generated m = 2000 normal random variables {X̄i, ..., X̄m} with covariance matrix

Σ̃ and mean vector µ̃ = (µ1, ..., µm). CIs are constructed only for the selected µi,

i ∈ {1, 2, ...,m}. The mean vector µ̃ has 100π% of nonzero mean µi. That is,

100π% proportion of µi = 0.5, meanwhile the remaining is zero. Given that ρ is the

correlation relationship between Xij, j = 1, 2, ..m, which is a value between 0 and

1. We considered (1) a equal correlation structure, where covariate matrix is defined

as Equation 4.1. And (2) a mixed correlation structure is considered as well, where

covariate matrix is defined as

Σ̃ =



1 −ρ ρ −ρ · · · ρ −ρ

−ρ 1 −ρ ρ · · · −ρ ρ

ρ −ρ 1 −ρ · · · ρ −ρ
...

...
...

...
. . .

...
...

−ρ ρ −ρ ρ · · · −ρ 1


, (4.2)
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where the element in Σ̃ is defined as ρij, where i and j are row and column of the

element, where ρij = (−1)i−jρ. The covariance matrices are supposed to be positive

semi-definite. We need to ensure the covariance matrix in Matrix Equation 4.2 is

positive semi-definite. See the proof in Appendix. And (3) a block-wise structure is

also considered, where within each block (where size is mb = 200),

Σ̃mb =



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


,

and between blocks,

Σ̃ =



Σ̃mb 0̃ · · · 0̃

0̃ Σ̃mb · · · 0̃

...
...

. . .
...

0̃ 0̃ · · · Σ̃mb


. (4.3)

And last (4) we consider AR structure, where

Σ̃ =



1 ρ ρ2 · · · ρm−1

ρ 1 ρ · · · ρm−2

...
...

...
. . .

...

ρm−1 ρm−2 ρm−3 · · · 1


. (4.4)

There are four types of covariance matrix, Matrix Equations 4.1 - 4.4. The nonzero

proportion π = 0.1 and π = 0.2, and two values of selection level s = 0.20 and

s = 0.40. Correlation coefficient ρ is from 0 to 1, corresponding to Figures 4.17 -

4.20. Figure 4.17 displays the γ-FCP and average CI width under equal correlation

structure as ρ varies from 0 to 1. Procedures 1, 3 and 4 control γ-FCP at level

0.05 as correlation coefficient ρ varies (γ-FCP of Procedures 1 is close to 0.05 in this
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Figure 4.17 Estimated γ-FCP (left panel) and average width of CI (right panel)
of our proposed unconditional CI-based γ-FCP controlling procedures and condi-
tional CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli
procedures for one sample case under equal correlation dependence, with π = 0.10,
s = 0.2. Here correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.

Figure 4.18 Estimated γ-FCP (left panel) and average width of CI (right panel)
of our proposed unconditional CI-based γ-FCP controlling procedures and condi-
tional CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli
procedures for one sample case under mixed correlation dependence, with π = 0.10,
s = 0.2. Here correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.19 Estimated γ-FCP (left panel) and average width of CI (right panel) of
our proposed unconditional CI-based γ-FCP controlling procedures and conditional
CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli proce-
dures for one sample case under block-wise dependence, block number is 40, with
π = 0.10, s = 0.2. Here correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.

Figure 4.20 Estimated γ-FCP (left panel) and average width of CI (right panel)
of our proposed unconditional CI-based γ-FCP controlling procedures and condi-
tional CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli
procedures for one sample case under AR structure, with π = 0.10, s = 0.2. Here
correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.

59



case). Procedures 2 and 6 control γ-FCP at level 0.05 when correlation coefficient ρ

is moderate. Procedure 5 does not control γ-FCP at level 0.05 except ρ = 0. As ρ

increases, the average CI width of Procedures 2 and 4 decrease. Meanwhile the other

procedure slightly decreases. Procedure 4 outperforms than the others. Since it has

the shortest CI width among the procedures that controls γ-FCP under dependence

at level 0.05.

Figure 4.18 shows the γ-FCP and average CI width under mixed correlation

structure as ρ varies from 0 to 1. Procedures 1, 3 and 4 control γ-FCP at level 0.05

as correlation coefficient ρ varies. Procedures 2 and 6 control γ-FCP at level 0.05 for

most values of correlation coefficient ρ (except ρ = 1 in this case). Procedure 5 does

not control γ-FCP at level 0.05 when correlation coefficient ρ are not large (smaller

than 0.5 in this case). As ρ increases, average CI width of Procedures 2 and 4 increase.

Meanwhile the other procedure slightly decreases. Procedure 4 outperforms than the

others. Since it has the shortest CI width among the procedures that controls γ-FCP

under dependence at level 0.05. If we exclude the case ρ = 1, Procedure 2 is better

than Procedure 4, since it has the shortest CI width. Both Figures 4.17 and 4.18

indicate that Procedure 3 performs the worst in terms of the CI width.

Figure 4.19 displays the γ-FCP and average CI width under block-wise structure

as ρ varies from 0 to 1. The block size is 5 and the block number is 40. Procedure 1,

3, 4 and 6 control γ-FCP at level 0.05 as correlation coefficient ρ varies. Procedure 2

and 5 control γ-FCP at level 0.05 when correlation coefficient ρ is not large (smaller

than and equal to 0.9 in this case). As ρ increases, average CI width of Procedure 1

- 6 slightly change except ρ = 1.

Figure 4.20 shows the γ-FCP and average CI width under AR structure as

ρ varies from 0 to 1. Procedures 1, 2, 3, 4 and 6 control γ-FCP at level 0.05 as

correlation coefficient ρ varies. Procedure 5 does not control γ-FCP for all value of

correlation coefficient ρ. As ρ increases, average CI width of Procedures 1 - 6 slightly
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change. Figures 4.17 to 4.20 indicate that Procedure 3 performs the worst in terms

of the CI width, though it controlled γ-FCP at level 0.05. Procedure 4 outperforms

against the others. Since it has the shortest CI width among the procedures that

controls γ-FCP under dependence at level 0.05. If we exclude some large value ρ (i.e.:

ρ = 0.75, 0.8, ..., 1), Procedure 2 performs better than Procedure 4. Therefore, under

the various dependence structure, there is no such procedure which is always more

powerful than the others. In different practical situation, one needs to choose a most

suitable procedure.

4.6 Numerical Comparison under Dependence for Two-Sample Case

We generated m = 2000 two-samples random variable, which are {X11, X12, ..., X1m}

with mean vector µ̃1 = (µ11, ..., µ1m) and covariance matrix Σ̃ for treatment group and

{X21, X22, ..., X2m} with mean vector µ̃2 = (µ21, ..., µ2m) and same covariance matrix

Σ̃ for control group. Σ̃ is similarly defined as Matrix Equation 4.1. The mean vector µ̃1

has 100π% of nonzero mean µ1i. That is, 100π% proportion of µ1i = 0.5, meanwhile

the remaining is zero; and mean vector µ̃2 = 0̃. Given that ρ is the correlation

relationship between Xij, j = 1, 2, ..m, and ρ is between 0 and 1. We considered (1)

a equal correlation structure, where covariate matrix is similarly defined as Matrix

Equation 4.2; (2) a mixed correlation structure, where covariate matrix is similarly

defined as Matrix Equation 4.3; a block-wise structure, where covariate matrix is

similarly defined as Matrix Equations 4.4 - 4.5; and (4) AR structure, where covariate

matrix is similarly defined as Matrix Equation 4.6. The nonzero proportion π = 0.1

and π = 0.2, and two values of Selection level s = 0.20 and s = 0.40. Correlation

coefficient ρ is from 0 to 1, corresponding to Figures 4.21 - 4.24.

Figure 4.21 displays the γ-FCP and average CI width under equal correlation

structure as ρ varies from 0 to 1. As seen from Figure 4.21, only when ρ = 0, all

the procedures control γ-FCP at level 0.05. Procedures 1, 3 and 4 control γ-FCP at
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Figure 4.21 Estimated γ-FCP (left panel) and average width of CI (right panel) of
our proposed unconditional CI-based γ-FCP controlling procedures and conditional
CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli proce-
dures for two sample case under equal correlation structure, with π = 0.10, s = 0.2.
Here correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.

Figure 4.22 Estimated γ-FCP (left panel) and average width of CI (right panel) of
our proposed unconditional CI-based γ-FCP controlling procedures and conditional
CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli proce-
dures for two sample case under mixed correlation structure, with π = 0.10, s = 0.2.
Here correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.
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Figure 4.23 Estimated γ-FCP (left panel) and average width of CI (right panel)
of our proposed unconditional CI-based γ-FCP controlling procedures and condi-
tional CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli
procedures for two sample case under block-wise structure, block size is 200, with
π = 0.10, s = 0.2. Here correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.

Figure 4.24 Estimated γ-FCP (left panel) and average width of CI (right panel)
of our proposed unconditional CI-based γ-FCP controlling procedures and condi-
tional CI-based γ-FCP controlling procedures along with Benjamini and Yekutieli
procedures for two sample case under AR structure, with π = 0.10, s = 0.2. Here
correlation coefficient ρ is from 0 to 1. m = 2000, α = 0.05.
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level 0.05 under equal dependence. Procedures 4 has the shortest CI width; at the

same time it can control γ-FCP under equal correlation structure. Figure 4.22 shows

the γ-FCP and average CI width under mixed correlation structure as ρ varies from

0 to 1. As seen from Figure 4.22, Procedures 1, 3 and Benjamini & Yekutieli can

control γ-FCP at level 0.05 under mixed dependence. The other three procedures,

including Procedure 2 can control γ-FCP at level 0.05 when ρ is moderate. Figure

4.23 displays the γ-FCP and average CI width under block-wise structure as ρ varies

from 0 to 1. Procedures 1,3,4 and Benjamini & Yekutieli can control γ-FCP at level

0.05 under block-wise dependence. Procedure 2 can control γ-FCP at level 0.05 when

ρ is moderate. Procedures 4 has the shortest CI width; at the same time it can

control γ-FCP under block-wise structure. Figure 4.24 shows the γ-FCP and average

CI width under AR structure as ρ varies from 0 to 1. Procedures 1,3,4 and Benjamini

& Yekutieli can control γ-FCP at level 0.05 under AR dependence. Procedure 2 can

control γ-FCP only when ρ is small. It worth to mention that Procedure 3 can control

γ-FCP under all four types of dependence configurations, since it has the widest CI

width. Therefore, under the various dependence structure, there is no such procedure

which is always more powerful than the others. In different practical situations, one

needs to choose the most suitable procedure.

4.7 Conclusion

Through the extensive simulation studies, we evaluate our proposed procedures

with existing FCR-controlling procedures (BY2005). The simulation studies are

performed, regarding to the estimated γ-FCP and average width of CI. Under the

independence for both one sample case and two sample case, Procedure 2 is more

powerful in the sense that Procedure 2 has shorter CI width and it is able to control

γ-FCP at level α as well. Under the various dependence structure, there is no such

procedure which is always more powerful than the others with proper control of
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γ-FCP under dependence. In different practical situations, one needs to choose a

most suitable procedure, for example, our proposed procedures (Procedures 1, 3 and

4) perform well under weak dependence such as block-wise dependence in terms of

estimated γ-FCP, while they may lose γ-FCP control under strong dependence such

as equal correlation in some scenario.
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CHAPTER 5

REAL DATA ANALYSES

5.1 Introduction

In this chapter, we focus on real data analyses, while applying all of the proposed

procedures and existing procedures (Benjamini and Yekutieli FCR controlling

procedures) to two real data sets. One is microarray data of prostate cancer,

the other one is microarray data of HIV. The two real data sets are available at

the following website: http://statweb.stanford.edu/∼ckirby/brad/LSI/datasets-and-

programs/datasets.html, which is a useful website to provide high dimensional data.

We are interested in the microarray data of prostate cancer and HIV, since both

types of the disease are recognized as high risk in death (Dhanasekaran et al, 2001;

Giri et al, 2006; Gallerano et al, 2015). Prostate cancer is one of the most common

types of cancer in men, among the most heterogeneous of cancers. Acquired immune

deficiency syndrome (AIDS) is caused by infection of HIV, which is commonly known

as high risk in death as well. In the recent years, these two diseases have caused more

than an estimated 35 million deaths worldwide. It is necessary to conduct genetic

background check to detect the risk of a disease, as prostate cancer is not caused by

one single gene. In fact, many different genes have been implicated to the disease.

Microarray expression analysis has been used to identify genes that might anticipate

the clinical behavior of the disease. Meanwhile, Wout et al.(2003) conduct a study

on several classes of genes inhibited by HIV infection. Microarray analysis contribute

to study of HIV host cell interactions and permitted identification of specific cellular

pathways previously implicated in HIV infection.

For Sections 5.2 and 5.3, we construct CIs for our proposed procedures as well

as BY FCR controlling procedures. Procedures 1 and 2 perform our proposed un-

conditional CI-based γ-FCP controlling procedures (independence, and dependence,
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respectively), Procedures 3 and 4 perform our proposed conditional CI-based γ-FCP

controlling procedures (independence, and dependence, respectively), Procedures 5

and 6 perform BY procedures (independence, and dependence, respectively). We

conduct the analysis in four aspects: (a) the average width of CIs, (b) the count

number of CIs not covering zero, (c) the average distance between CIs and zero, and

(d) the average distance between CIs and zero only if the CIs are constructed by all

6 procedures. In Section 5.4, we summarize all the results.

5.2 Analysis of Microarray Data for Prostate Cancer

The principal goal of the study was to discover a small number of genes of interest

(GOI), that is genes whose expression levels differs between the prostate and normal

subjects. Once the genes are identified, the interest is to conduct CIs of GOI. The

data containing genetic expression levels for N = 6, 033 genes were obtained for

n = 102 male objects, in which there are n1 = 50 normal control subjects and

n2 = 52 prostate cancer patients. Let Xij = expression level for gene i on patient j.

Note that we calculate three descriptive statistics: X̄1,i, X̄2,i and variance s2
i , which

are defined as:

X̄1,i =

n1∑
j=1

Xij/n1, and X̄2,i =

n1+n2∑
j=n1+1

Xij/n2,

s2
i =

∑n1

j=1 (Xij − X̄1,i)
2 +

∑n1+n2

j=n1+1 (Xij − X̄2,i)
2

n1 + n2 − 2
.

(5.1)

Based on Equation 5.1, we generate two types of estimator:

Si = X̄1,i + X̄2,i for gene selection,

Yi =
X̄2,i − X̄1,i

si
√

1
n1

+ 1
n2

for CI construction.
(5.2)

Si is independent to Yi, which implies distribution for Yi|Si is same as unconditional

Yi, which is student t distribution. The GOI is determined in the following methods:
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Table 5.1 Average Width of CIs by Procedure 1 to Procedure 6 for GOI of Prostate
Cancer Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 7.776 4.173 6.180 8.627 6.956 7.400

0.025 0.05 7.319 4.132 5.613 8.213 6.449 6.921

0.050 0.05 6.956 4.096 5.151 7.887 6.041 6.538

0.100 0.05 6.575 4.056 4.652 7.548 5.608 6.135

0.010 0.10 7.437 3.490 6.180 8.367 6.580 7.400

0.025 0.10 6.960 3.458 5.613 7.940 6.046 6.921

0.050 0.10 6.579 3.431 5.151 7.604 5.613 6.538

0.100 0.10 6.179 3.400 4.652 7.253 5.151 6.135

0.010 0.20 7.079 2.718 6.180 8.090 6.179 7.400

0.025 0.20 6.569 2.693 5.613 7.650 5.613 6.921

0.050 0.20 6.170 2.672 5.151 7.302 5.151 6.538

0.100 0.20 5.755 2.648 4.652 6.938 4.651 6.135

select gene i if Si * (Si,0.10, Si,0.90), where Si,p is the 100 ∗ p% quantile among all

Si. CIs of Procedure 1 - 6 are constructed for GOI. The number of GOI for the

data is 1208 (out of 6033). We calculate CIs, based on four different levels of α =

0.01, 0.025, 0.05, 0.10, and three different levels of γ = 0.05, 0.10, 0.20. The results for

prostate are displayed in Tables 4.3 - 4.10.

In Table 5.1, Procedure 3 always provides the shortest width of CIs within all

three independence Procedures 1, 3 and 5. At the same time, Procedure 4 provides

the shortest width of CIs within all three dependence Procedures 2, 4 and 6. To sum

up all Procedures 1 - 6, Procedure 3 always provides the shortest width of CIs among
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Table 5.2 Number of CIs not Covering Zero by Procedure 1 to Procedure 6 for GOI
of Prostate Cancer Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 2 75 10 1 4 2

0.025 0.05 2 77 15 1 6 4

0.050 0.05 4 78 19 2 13 6

0.100 0.05 6 80 38 2 15 10

0.010 0.10 2 138 10 1 6 2

0.025 0.10 4 143 15 2 13 4

0.050 0.10 6 151 19 2 15 6

0.100 0.10 10 155 38 2 19 10

0.010 0.20 3 275 10 2 10 2

0.025 0.20 6 278 15 2 15 4

0.050 0.20 10 280 19 2 19 6

0.100 0.20 14 287 38 4 38 10

all procedures. For the genetics study, estimated CIs of GOI are expected to exclude

from zero, which means scientific effectiveness.

In Table 5.2, it is obviously to see that Procedure 3 can provide the most large

count number of CIs not covering zero among all three independence Procedures 1,

3 and 5. Procedure 4 can offer the most large number of CIs not covering zero for all

dependence Procedures 2, 4 and 6. Combined the results in Table 5.2, Procedure 3

is over-perform against the others in the sense for the amount of nonzero CIs.

Given α = 0.010, 0.025, Procedure 3 in Table 5.3 has the most far-away distance

to zero among all three independence Procedures 1, 3 and 5. Given α = 0.050, 0.10,

Procedure 5 has bigger far-away distance to zero than Procedure 3. Meanwhile, for
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Table 5.3 Distance between CIs and Zero by Procedure 1 to Procedure 6 for GOI of
Prostate Cancer Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 0.4997 0.6319 0.5863 0.3116 0.4899 0.4455

0.025 0.05 0.4729 0.6358 0.6238 0.4545 0.5527 0.4983

0.050 0.05 0.4902 0.6299 0.6540 0.4444 0.5870 0.5294

0.100 0.05 0.5338 0.6387 0.6460 0.4729 0.6267 0.6018

0.010 0.10 0.4533 0.6487 0.5863 0.4106 0.5390 0.4455

0.025 0.10 0.4880 0.6441 0.6238 0.4174 0.5845 0.4983

0.050 0.10 0.5393 0.6346 0.6540 0.4796 0.6240 0.5294

0.100 0.10 0.5868 0.6356 0.6459 0.4373 0.6542 0.6018

0.010 0.20 0.4380 0.6306 0.5863 0.4081 0.5865 0.4455

0.025 0.20 0.5393 0.6328 0.6238 0.4951 0.6240 0.4983

0.050 0.20 0.5868 0.6315 0.6540 0.4338 0.6542 0.5294

0.100 0.20 0.6107 0.6302 0.6459 0.4899 0.6461 0.6018

all three dependence Procedures 2, 4 and 6, Procedure 4 is outstanding than the other

two as shown in Table 5.3. We also compared all the six procedure together. 6/12

combination of α and γ has Procedure 3 as the most far-away distance to zero among

all the procedures, and 3/12 combination of α and γ has Procedure 4 as the most

far-away distance to zero among all the procedures, and 3/12 combination of α and

γ has Procedure 5 as the most far-away distance to zero among all the procedures.

There is no absolute winner regarding the average distance between all the

constructed CIs and zero. Hence, we further study the average distance between the

constructed CIs and zero if the CIs are commonly not covering zero. As shown in

Table 5.4, Procedure 3 provides the longest distance between the constructed CIs
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Table 5.4 Distance between CIs and Zero by Procedure 1 to Procedure 6 for
Commonly Selected and Nonzero CIs of GOI for Prostate Cancer Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 0.7370 2.5384 1.5351 0.3116 1.1468 0.9251

0.025 0.05 0.9014 2.4950 1.7542 0.4546 1.3365 1.1004

0.050 0.05 0.9098 2.3395 1.8122 0.4444 1.3673 1.1184

0.100 0.05 0.9593 2.2187 1.9208 0.4729 1.4428 1.1790

0.010 0.10 0.8757 2.8491 1.5041 0.4106 1.3039 0.8941

0.025 0.10 0.9076 2.6586 1.5810 0.4174 1.3648 0.9272

0.050 0.10 0.9917 2.5661 1.7060 0.4796 1.4750 1.0123

0.100 0.10 0.9744 2.3640 1.7379 0.4373 1.4886 0.9961

0.010 0.20 0.9140 3.0944 1.3635 0.4081 1.3636 0.7535

0.025 0.20 1.0305 2.9736 1.5136 0.4951 1.5137 0.8598

0.050 0.20 0.9953 2.7486 1.5093 0.4338 1.5094 0.8155

0.100 0.20 1.0815 2.6349 1.6329 0.4899 1.6330 0.8911

and zero within the common selected ones for all three independence Procedures 1, 3

and 5. And Procedure 4 have the longest distance between the constructed CIs and

zero within the common selected ones for all three dependence Procedures 2, 4 and 6.

Moreover, for all the combination in our analysis, Procedure 3 is the most far-away

distance to zero among all the procedures.

5.3 Analysis of Microarray Data for HIV

Now we consider the microarray data for HIV, which contains genetic expression levels

for N = 7, 688 genes were obtained for n1 = 4 normal control subjects and n2 = 4

HIV patients. The principal goal of the study is to discover a small number of genes
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of interest (GOI), that is, genes whose expression levels differs between the prostate

and normal subjects. Once the genes are identified, the interest is to conduct the CIs

of GOI. Let Xij = expression level for gene i on patient j. Note that we calculate

three descriptive statistics: X̄1,i, X̄2,i and pooled variance s2
i , which are same defined

as Equation 5.1. But if we keep using Equation 5.2 in the previous prostate study,

the central histogram is less dispersed than a standard normal distribution as shown

in Figure 5.1. Hence, we use a different CI estimator: logarithm of Yi in Equation

5.2. Specially, we generate two types of estimator:

Si = X̄1,i + X̄2,i for gene selection,

Yi = log(
X̄2,i − X̄1,i

si
) for CI construction.

(5.3)

The GOI is determined in the following methods: select gene i if Si * (Si,0.10, Si,0.90),

where Si,p is the 100∗p% quantile among all Si. CIs of Procedures 1 - 6 are constructed

for GOI. The selection size is 1544 (out of 7680). We construct CIs for Procedures

1-6. And we construct CIs, based on four different α = 0.01, 0.025, 0.05, 0.10, and

three different γ = 0.05, 0.10, 0.20. The results for HIV data are displayed in Tables

5.5 - 5.8.

In Table 5.5, Procedure 3 always provides the shortest width of CIs among all

three independence procedures, Procedures 1, 3 and 5. Meanwhile Table 5.5 shows

that Procedure 4 has the shortest width of CIs among all three dependence procedures,

Procedures 2, 4 and 6. Considering all six procedures, Procedure 3 shows the shortest

width of CIs.

From Table 5.6, Procedure 3 has the most count number of CIs not covering

zero among all three independence procedures, Procedures 1, 3 and 5. And Table

5.6 points out Procedure 4 provides the most count number of CIs not covering zero

among all three dependence procedures, Procedure 2, 4 and 6. Considering all six

procedures, Procedure 3 has the most number of CIs not covering zero.
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Figure 5.1 Distribution of standard normal and distribution of the estimator Y
for prostate microarray data (first row left panel), distribution of standard normal
and the estimator Y for HIV microarray data (first row right panel), distribution of
standard normal and the logarithm of estimator Y for HIV microarray data (second
row).
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Table 5.5 Average Width of CIs by Procedure 1 to Procedure 6 for GOI of HIV
Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 7.780 4.149 6.180 8.647 6.960 7.413

0.025 0.05 7.323 4.112 5.614 8.234 6.453 6.935

0.050 0.05 6.960 4.081 5.152 7.909 6.045 6.554

0.100 0.05 6.580 4.045 4.653 7.571 5.612 6.151

0.010 0.10 7.437 3.465 6.180 8.382 6.580 7.413

0.025 0.10 6.960 3.437 5.614 7.957 6.045 6.935

0.050 0.10 6.580 3.413 5.152 7.621 5.612 6.554

0.100 0.10 6.179 3.386 4.653 7.271 5.151 6.151

0.010 0.20 7.079 2.699 6.180 8.105 6.179 7.413

0.025 0.20 6.580 2.677 5.614 7.666 5.612 6.935

0.050 0.20 6.179 2.658 5.152 7.318 5.150 6.554

0.100 0.20 5.755 2.637 4.653 6.954 4.651 6.151
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Table 5.6 Number of CIs not Covering Zero by Procedure 1 to Procedure 6 for GOI
of HIV Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 20 120 45 13 28 21

0.025 0.05 21 123 59 19 40 28

0.050 0.05 28 126 72 19 46 37

0.100 0.05 37 128 92 20 59 45

0.010 0.10 21 171 45 17 37 21

0.025 0.10 28 174 59 19 46 28

0.050 0.10 37 177 72 20 59 37

0.100 0.10 45 183 92 22 72 45

0.010 0.20 27 262 45 19 45 21

0.025 0.20 37 264 59 20 59 28

0.050 0.20 45 267 72 21 72 37

0.100 0.20 53 270 92 28 92 45

In Table 5.7, 11/12 combination of α and γ has Procedure 3 as the most far-away

distance to zero among all independence procedures, Procedures 1, 3 and 5. Except

for the combination α = 0.10 and γ = 0.05, Procedure 5 has slightly advantage against

Procedure 3. Table 5.7 shows that 8/12 combination of α and γ has Procedure 4 as

the most far-away distance to zero among all dependence procedures, Procedures 2,

4 and 6. Combined all six procedures, 11/12 combination of α and γ has Procedure

3 as the most far-away distance to zero.

Table 5.8 shows the average distance between constructed CIs and zero if the

CIs are commonly not covering zero for all procedures. Table 5.8 demonstrate

that Procedure 3 is the most far-away distance to zero among there independence
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Table 5.7 Distance between CIs and Zero by Procedure 1 to Procedure 6 for GOI of
HIV Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 0.6189 0.8103 0.6903 0.4917 0.6918 0.7267

0.025 0.05 0.7589 0.8065 0.7312 0.4715 0.6565 0.7015

0.050 0.05 0.6918 0.8010 0.7866 0.6000 07307 0.6662

0.100 0.05 0.6552 0.8043 0.8059 0.7025 0.7320 0.7022

0.010 0.10 0.7184 0.8320 0.6903 0.4675 0.6552 0.7267

0.025 0.10 0.6918 0.8303 0.7312 0.5811 0.7307 0.7015

0.050 0.10 0.6552 0.8270 0.7866 0.6826 0.7320 0.6662

0.100 0.10 0.6909 0.8120 0.8059 0.7428 0.7874 0.7022

0.010 0.20 0.6697 0.8179 0.6903 0.5225 0.6909 0.7267

0.025 0.20 0.6552 0.8206 0.7312 0.6645 0.7320 0.7015

0.050 0.20 0.6909 0.8191 0.7866 0.7609 0.7874 0.6662

0.100 0.20 0.7501 0.8187 0.8059 0.6940 0.8068 0.7022

procedures, Procedures 1, 3 and 5. And Procedure 4 has the most far-away distance

to zero among there dependence procedures, Procedures 2, 4 and 6, as shown in Table

5.8.

5.4 Conclusion

All the results and analysis about real data are summarized in Table 5.9, in which we

show that either Procedure 3 or Procedure 4 have advantage among the procedures

under independence or arbitrary dependence, receptively. We can figure out some

findings: (1) Procedure 3 has shortest average width of CIs , and (2) Procedure 3 has

the most count number of nonzero covering CIs, and (3) there is no absolute winner
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Table 5.8 Distance between CIs and Zero by Procedure 1 to Procedure 6 for
Commonly Selected and Nonzero CIs of GOI for HIV Microarray Data

Parameter Procedure

α γ 1 3 5 2 4 6

0.010 0.05 1.2805 3.0959 2.0802 0.8468 1.6904 1.4638

0.025 0.05 1.2291 2.8345 2.0837 0.7737 1.6642 1.4231

0.050 0.05 1.2888 2.7282 2.1930 0.8145 1.7463 1.4920

0.100 0.05 1.2898 2.5569 2.2532 0.7942 1.7734 1.5039

0.010 0.10 1.2573 3.2430 1.8854 0.7845 1.6858 1.2690

0.025 0.10 1.2989 3.0604 1.9720 0.8007 1.7564 1.3113

0.050 0.10 1.3058 2.8890 2.0197 0.7853 1.7894 1.3188

0.100 0.10 1.3297 2.7264 2.0928 0.7839 1.8443 1.3435

0.010 0.20 1.3281 3.5182 1.7773 0.8150 1.7780 1.1608

0.025 0.20 1.3386 3.2900 1.8214 0.7956 1.8223 1.1608

0.050 0.20 1.3840 3.1443 1.8976 0.8146 1.8984 1.1966

0.100 0.20 1.3956 2.9546 1.9466 0.7958 1.9476 1.1973
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Table 5.9 Summary for the Independence Procedures and Dependence Procedures,
Which Has More Far away Distance from Zero than the Other Procedures

Table Independence procedures Dependence procedures

1 Procedure 3 Procedure 4

2 Procedure 3 Procedure 4

3 Procedure 3* Procedure 4

4 Procedure 3 Procedure 4

5 Procedure 3 Procedure 4

6 Procedure 3 Procedure 4

7 Procedure 3** Procedure 4***

8 Procedure 3 Procedure 4

Note*: Among all 12 combinations of (α, γ), 6 combination shows that Procedures 3 has

more far away distance from zero than other independence procedures.

Note**: Among all 12 combinations of (α, γ), 11 combination shows that Procedure 3 has

more far away distance from zero than other independence procedures.

Note***: Among all 12 combinations of (α, γ), 8s combination shows that Procedure 4 has

more far away distance from zero than other dependence procedures.
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when comparing the distance between CIs and zero for all selected ones as shown

in Table 5.9, and (4) Procedure 3 is more likely to provide a CIs away from zero

for commonly selected ones among all six procedures. Considering the theoretical

results, if one can control γ-FCP, then a method which can provide a shorter nonzero

covering CIs, as well as longer distance between CIs and zero, is preferred.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, a new concept, γ-FCP, is presented as a measure of simultaneous

coverage for the multiple CIs following the selection. We suggest four new and

powerful procedures: (i) an unconditional CI-based procedure, (ii) a modified

unconditional CI-based procedure, (iii) a conditional CI-based procedure, and (iv)

a modified conditional CI-based procedure. Among all of the new procedures, (i) is

developed to control γ-FCP under PRDS/independence; (ii) and (iv) are developed

to control γ-FCP under arbitrary dependence; and (iii) is developed to control γ-FCP

under independence.

We evaluate the performance of our proposed procedures via the extensive

simulation studies in terms of estimated γ-FCP and average width of CIs. The effect

of nonzero proportion, selection level, and correlation coefficient are evaluated, while

we apply the proposed procedures in terms of γ-FCP control and average width of

CIs. The simulation studies are applied to strong dependence such as equal correlation

and several weak dependences such as block-wise dependence. Our simulation studies

are able to show that the proposed procedures are able to either control γ-FCP or

have shorter width of CIs than existing methods such as FCR controlling procedures

(Benjamini and Yekutieli, 2005). Next, all of the proposed procedures are applied on

two sets of micro-array gene expression data. Compared to same existing methods,

the proposed conditional CI-based procedure is demonstrated to provide (i) shorter

width of CI; and (ii) more count of CI not covering zero; and (iii) longer distance of

CI away from zero.

A potential work is to present a weighted CI-based procedure, which can keep

γ-FCP at a desired level. With the Poisson binomial distribution, we have some

theoretical results for weighted conditional CI γ-FCP controlling procedure under
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independence condition. But it is not computationally efficient. In the future, (1)

we plan to extent our current result from independence to arbitrary dependence;

and (2) we are interested in further studying and developing a more explicit and

computational procedure; and (3) besides the conditional CI based procedures, we

want to develop a weighted unconditional CI based procedure to control γ-FCP at a

desired level under (i) independence and (ii) arbitrary dependence structure.
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APPENDIX A

PROOFS FOR SELECTIVE INFERENCE

Proof of Lemma 3.1. To begin with the discussion, we will first introduce a idea:

stochastic ordering and its related properties to help us learn about VS(u).

Definition A.1 (Stochastic Ordering). A random variable X is less than a random

variable Y in the stochastic order if

P (X > x) ≤ P (Y > x) for all x ∈ (−∞,∞),

This is denoted as X ≤st Y .

With Definition A.1, we can learn about the comparison between two random

variables. Hence we can figure out more information about the random variable VS(u).

Lemma A.1 (Klenke and Mattner, 2010). Let X, Y be two random variable, where

X ∼ Bin(n, p1) and Y ∼ Bin(n, p2). If p1 ≤ p2 then X ≤st Y .

Lemma A.2. If X ≤st Y and f(·) is a non-decreasing function, then E(f(X)) ≤

E(f(Y )).

With these two lemma, we can further compare any random variable which

follows a binomial distribution.

Proof. We will prove this Lemma by contradiction. Assume there exists α′ > α

such that u(α′, γ, |S|) ≤ u(α, γ, |S|), which can be denoted as u′ ≤ u. Based on the

condition Ŝ = S, Then

VS(u′) ∼ Bin(|S|, u′), and VS(u) ∼ Bin(|S|, u).
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According to Lemma A.1, VS(u′) ≤st VS(u). Then,

α = P (VS(u) ≥ bγ|S|c+ 1|Ŝ = S)

= E(I(VS(u) ≥ bγ|S|c+ 1|Ŝ = S))

≥ E(I(VS(u′) ≥ bγ|S|c+ 1|Ŝ = S))

= P (VS(u′) ≥ bγ|S|c+ 1|Ŝ = S) = α′,

which leads to a contradiction. Here, the inequality holds because of the Lemma

A.2.

We can assume the foregoing conditional CIs procedure is monotone in the

conditional confidence level:

α ≥ α′ implies that cCIi(α) ⊆ cCIi(α
′). (A.1)

Proof of Lemma 3.2.

Proof. We will prove this Lemma by contradiction. Assume there exist γ′ > γ such

that u(α, γ′, |S|) < u(α, γ, |S|), for convince, we use the short term u′ < u. Based on

the condition Ŝ = S, Then

VS(u′) ∼ Bin(|S|, u′), and VS(u) ∼ Bin(|S|, u).

According to Lemma 3.1, VS(u′) ≤st VS(u). Then,

α = P (VS(u) ≥ bγ|S|c+ 1|Ŝ = S)

= E(I(VS(u) ≥ bγ|S|c+ 1|Ŝ = S))

> E(I(VS(u′) ≥ bγ|S|c+ 1|Ŝ = S))

= P (VS(u′) ≥ bγ|S|c+ 1|Ŝ = S)

≥ P (VS(u′) ≥ bγ′|S|c+ 1|Ŝ = S) = α,

which leads to a contradiction. Here, the first inequality holds because of the Lemma

3.1.
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Remark A.1. u(α, γ, |S|) is not a monotone function in |S|. But if we fix bγ|S|c,

then u(α, γ, |S|) is a monotone function in |S|. Since bγ|S|c = i − 1 is equivalent

to |S| ∈ ( i
γ
− 1

γ
, i
γ
− 1), where i = 1, 2, ..., in which case γ decrease as |S| increase.

Consider that u(α, γ, |S|) is a nondecreasing function in γ. And thus u(α, γ, |S|) is a

non-increasing function in |S| when bγ|S|c is fixed.

Lemma A.3. If u satisfy Equation (3.1) and we can construct cCI(u) for µ

conditional on Ŝ = S such that

P (µ /∈ cCI(u)|Ŝ = S) ≤ u.

Then γ-cFCPS in Definition 3.1 can be controlled.

Before introducing conditional CIs, we assume to construct exact adjusted level

u, namely P (µi /∈ cCIi(u)|Ŝ = S) = u. To solve Equation (3.1) numerically may

result in the fact u is a approximation value, namely P (µi /∈ cCIi(u)|Ŝ = S) ≤ u

instead of P (µi /∈ cCIi(u)|Ŝ = S) = u. Hence we wonder whether γ-cFCPS can be

controlled for the case that conditional CIs with adjusted level u such that P (µi /∈

cCIi(u)|Ŝ = S) ≤ u.

Proof. Assume we construct cCI(u) and cCI(u’) for µi conditional on Ŝ = S such

that

P (µi /∈ cCIi(u)|Ŝ = S) = u,

P (µi /∈ cCIi(u′)|Ŝ = S) = u′ ≤ u,

(A.2)

where γ-cFCP= P (VS(u) ≥ bγ|S|c + 1) = α. Applying Lemma A.1, according to

Equation 3.6, the corresponding VS(u) ≥st VS(u′) . Then by applying Lemma A.2,

we have

P (VS(u′) ≥ bγ|S|c+ 1) ≤ P (VS(u) ≥ bγ|S|c+ 1) = α.

Thus, the desired result follows.
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Proof of Lemma 3.3 We want to introduce an interesting fact that u tends to be

a constant when the size of selection is large, and such constant is γ.

Proof. We will prove this Lemma by contradiction. Assume there exists a subsequence

{unj} of {un} such that limnj→∞ u = c 6= γ. First, let c > γ, for 0 < ε < c−γ
2

:

∃ a large number N such that for nj ≥ N, unj > c− ε > γ + ε.

Let Wn ∼ Bin(n, γ + ε). When nj ≥ N, Vnj ≥st Wnj . And hence

α = P (Vnj ≥ γnj) ≥ P (Wnj ≥ γnj) = P (
Wnj

nj
≥ γ)→ 1, as nj →∞,

which leads to a contradiction. The first inequality follows from Lemma A.2. The

last equality holds due to the strong law of large number, that is P (limnj→∞
Wnj

nj
=

γ + ε) = 1. Second, let c < γ, for 0 < ε < γ−c
2

:

∃ a large number N such that for nj ≥ N, unj < c+ ε < γ − ε.

Let Wn ∼ Bin(n, γ − ε). When nj ≥ N, Vnj ≤st Wnj .

α = P (Vnj ≥ γnj) ≤ P (Wnj ≥ γnj) = P (
Wnj

nj
≥ γ)→ 0, as nj →∞,

which leads to a contradiction. The first inequality follows from Lemma A.2. The

last equality holds due to the strong law of large number, that is P (limnj→∞
Wnj

nj
=

γ − ε) = 1. To sum up, lim|S|→∞ u = γ.

Discussion about u versus bγ|S|c+1
|S| α

Figures A.1 and A.2 draw the ratio r = u
bγ|S|c+1
|S| α

versus α. Figures A.3 and A.4 draw

the ratio r versus γ. Figures A.5 and A.6 draw the ratio r versus |S|.

The settings of Figures A.1 to A.6 are defined as fellowing. Figure A.1: γ = 0.1.

This is done for four values of |S| : 5, 20, 80 and 500. Figure A.2: |S| = 20. This is

done for four values of γ : 0.05, 0.1, 0.15, 0.2. Figure A.3: α = 0.05. This is done
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Figure A.1 Ratio r (black line) versus α with γ = 0.1. The red line shows r = 1.
This is done for four values of |S|: 5 (first row left panel), 20 (first row right panel),
80 (second row left panel), 500 (second row right panel).

for four values of |S| : 5, 20, 80, 500. Figure A.4: |S| = 20. This is done for four

values of α : 0.05,0.1,0.15,0.2. Figure A.5: α = 0.05. This is done for four values

of γ : 0.05,0.10,0.15,0.2. Figure A.6: γ = 0.10. This is done for four values of α :

0.05,0.1,0.15,0.20.

The numerical studies have the following conclusion: Figures A.1 to A.2 shows

that (1) given the γ, |S| are fixed, smaller α results in larger ratio r, which in turns

means u(α, γ, |S|) is greater than bγ|S|c+1
|S| α; (2) given the γ, |S| are fixed as value 0.10

and 5 respectively, the ratio r not only increase as α increase, but also is greater than

1; (3) given the γ, |S| are fixed as value 0.10 (or 0.05, or 0.15, or 0.20) and 20 (or 80,

or 500) respectively, the ratio r not only decrease as α increase, but also is greater

than 1.
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Figure A.2 Ratio r (black line) versus α with |S| = 20. The red line shows r = 1.
This is done for four values of γ: 0.05 (first row left panel), 0.1 (first row right panel),
0.15 (second row left panel), 0.2 (second row right panel).
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Figure A.3 Ratio r (black line) versus γ with α = 0.05. The red line shows r = 1.
This is done for four values of |S|: 5 (first row left panel), 20 (first row right panel),
80 (second row left panel), 500 (second row right panel).

Figures A.3 to A.4 show that (1) given α, |S| are fixed, larger γ results in larger

ratio r, which in turns means u(α, γ, |S|) is greater than bγ|S|c+1
|S| α; (2) given α, |S|

are fixed as value 5 and 0.05 respectively, r = 1 when 0 ≤ γ ≤ 1; (3) given α, |S| are

fixed, the ratio r does not only increase as α increases, but also is greater than or

equal to 1. Figures A.5 to A.6 show that (1) given α, γ are fixed, larger ‖S| results

in larger ratio r, which in turns means u(α, γ, |S|) is greater than bγ|S|c+1
|S| α; (2) given

α, γ are fixed, the ratio r are not only increase as α increase, but also is greater than

or equal to 1.
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Figure A.4 Ratio r (black line) versus γ, |S| = 20. The red line shows r = 1. This is
done for four values of α: 0.05 (first row left panel), 0.1 (first row right panel), 0.15
(second row left panel), 0.2 (second row right panel).
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Figure A.5 Ratio r (black line) versus |S| with α = 0.05. The red line shows r = 1.
This is done for four values of γ: 0.05 (first row left panel), 0.1 (first row right panel),
0.15 (second row left panel), 0.2 (second row right panel).

90



Figure A.6 Ratio r (black line) versus |S| with γ = 0.10. The red line shows r = 1.
This is done for four values of α: 0.05 (first row left panel), 0.1 (first row right panel),
0.15 (second row left panel), 0.2 (second row right panel).
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Methods of Constructing Conditional Confidence Intervals.

The following will discuss the three cases as above for any dependence in details. Let

w1, w2 be two weighed values, which we can pre-specify w1 6= 1, w2 6= 1. Informally,

the values of w1 and w2 show the dependence between Y and T . We will summarize

how we can construct conditional CI of µ1 − µ2 for the first case under dependence

in details.

Details for Case 1: Known variance σ2
1 = σ2

2 = σ2. We define the selection

estimator Y and a CI estimator T as

Y = w1X̄1 + X̄2,

T = w2X̄1 − X̄2.

Hence (Y, T ) follows a bivariate normal distribution,

Y
T

 ∼ N

w1µ1 + µ2

w2µ1 − µ2

 ,


w2

1

n1

+
1

n2

w1w2

n1

− 1

n2

w1w2

n1

− 1

n2

w2
2

n1

+
1

n2

σ2

 .

The conditional distribution of T |Y = s follows a normal distributionN (µT |Y=s, σT |Y=s).

Let r = n1/n2. Then,

µT |Y=s = µT + ρ
σT
σY

(s− µY )

= w2µ1 − µ2 +
w1w2 − r√

(w2
1 + r)(w2

2 + r)

√
w2

2

n1
+ 1

n2√
w2

1

n1
+ 1

n2

(s− w1µ1 − µ2)

=
w1w2 − r
w2

1 + r
s+

w1 + w2

w2
1 + r

(rµ1 − w1µ2),

σ2
T |Y=s = (1− ρ2)σ2

T = (1− (w1w2 − r)2

(w2
1 + r)(w2

2 + r)
)(
w2

2

n1

+
1

n2

)σ

=
(w1 + w2)2

n2(w2
1 + r)

σ.
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where ρ = Cov(Y,T )
σY σT

=
w1w2
n1
− 1
n2√

w2
1
n1

+ 1
n2

√
w2
2
n1

+ 1
n2

=
w1w2 − r√

(w2
1 + r)(w2

2 + r)
. If w = r is fixed, then

µT |Y=s is a linear function of µ1 − µ2. Then the selection estimator Y and the CI

estimator T can be updated as,

Y = rX̄1 + X̄2,

T = wX̄1 − X̄2.

(A.3)

Then when applying a fixed selection rule Y = s, a simple one-sided (1−α) conditional

C.I. for (µ1 − µ2) can be defined as following.

Result A.1. A simple one-sided (1− α) conditional C.I. for (µ1 − µ2) is

(
−∞, f1(X̄1, X̄2) + σ

√
1

n1

+
1

n2

Z1−α

)
, (A.4)

where f1(X̄1, X̄2) =
1 + r

w + r
T − w − 1

w + r
s.

Details for Case 2: Known variance σ2
1 6= σ2

2. We define a selection estimator

S and a CI estimator T as

S = r1X̄1 + r2X̄2,

T = wX̄1 − r2X̄2.

(A.5)

where r1 = n1

n2
, r2 = σ1

σ2
and σ2

1 = r2
2σ

2
2 = σ2. (S, T ) follows a bivariate normal

distribution,

S
T

 ∼ N

r1µ1 + r2µ2

wµ1 − r2µ2

 ,


r2

1

n1

+
1

n2

r1w

n1

− 1

n2

r1w

n1

− 1

n2

w2

n1

+
1

n2

σ2

 .
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The conditional distribution of T |S = s follows a normal distributionN (µT |S=s, σT |S=s).

µT |S=s =
w − 1

r1 + 1
s+

r1 + w

r1 + 1
(µ1 − µ2),

σ2
T |S=s =

(r1 + w)2

n2(r2
1 + r1)

σ.

Then when applying a fixed selection rule S = s, a simple one-sided (1−α) conditional

C.I. for (µ1 − µ2) can be defined as following.

Result A.2. A simple one-sided (1− α) conditional C.I. for (µ1 − µ2) is,

(
−∞, f2(X̄1, X̄2) + σ

√
1

n1

+
1

r2n2

Z1−α

)
, (A.6)

where f2(X̄1, X̄2) =
r1 + 1

w + r1

T − w − 1

w + r1

s.

Details for Case 3: Unknown variance σ2
1 = σ2

2 = σ2 We define a selection

estimator S and a CI estimator T as

S = rX̄1 + X̄2,

T = wX̄1 − X̄2.

(A.7)

Hence, (S, T ) follows a bivariate t distribution,

S
T

 ∼ t


r1µ1 + r2µ2

wµ1 − r2µ2

 ,


r2

1

n1

+
1

n2

r1w

n1

− 1

n2

r1w

n1

− 1

n2

w2

n1

+
1

n2

σ2

 .

The conditional distribution of T |S = s follows a t distribution t(µT|S=s, σT|S=s).

µT |S=s =
w − 1

r1 + 1
s+

r1 + w

r1 + 1
(µ1 − µ2),

σ2
T |S=s =

(r1 + w)2

n2(r2
1 + r1)

σ.

Then when applying a fixed selection rule S = s, a simple one-sided (1−α) conditional

C.I. for (µ1 − µ2) can be defined as following.
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Result A.3. Then a simple one-sided (1− α) cCI for (µ1 − µ2) is(
−∞, f3(X̄1, X̄2) + sp

√
1

n1

+
1

n2

t(1−α,n1+n2−2)

)
, (A.8)

where f3(X̄1, X̄2) =
1 + r

w + r
T − w − 1

w + r
s, s2

p =
(n1−1)s21+(n2−1)s22

n1+n2−2
, s2

1 =
∑n1
i=1 (X1i−X̄1)2

n1−1
,

s2
2 =

∑n2
i=1 (X2i−X̄2)2

n2−1
.

Since the value of w shows the dependence between selection estimator S and

CI estimator T . Now we focus on the w and compare the unconditional CI with

conditional CI.

Case 1: w = 1. All the cCI is same as unconditional CI since CI estimator T is

independent to selection estimator Y . There is no need to discuss this part. But

what we concern more is the situation w 6= 1.

Case 2: w 6= 1. Now, we use first case as an example. We want to compare Result

A.1 with unconditional CI. Without loss of any generality, we assume r = 1. Now

the selection estimator of cCI and unconditional CI are the same as

Y = X̄1 + X̄2.

But the CI estimator are different. Let T1 = X̄1 − X̄2 be the unconditional CI

estimator and T2 = wX̄1 − X̄2 be the cCI estimator. Given the fixed selection rule

Y = s, we can show that these two estimators can construct same CI eventually.

That is, the upper bound of one-side CI can be showed as

2

w + 1
(wX̄1 − X̄2)− w − 1

w + 1
(X̄1 + X̄2) + error term = X̄1 − X̄2 + error term.

To sum up, no matter whether w is equal to 1 or not the cCI is same as the

unconditional CI. In this sense, though we may assume selection estimator Y and CI

estimator T have some dependence, we can still easily construct cCI. And this cCI
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can deal with the effect of selection. The selection rule we suggest is Y = s. And

this simple selection rule is not commonly used in real research. Since it is too strict

to make any discovery. In the future, we want to extend our results to selection rule

Y ≥ s, which is much more acceptable as a selection rule.

Proof of the Covariance Matrix is Positive Semi-definite

Proof. By the definition of positive semi-definite, a n× n Hermitian complex matrix

Σ̃ is said to be positive semi-definite if xT Σ̃x ≥ 0 for all non-zero x in Rn. Let A be a

arbitrary nonzero vector A = (a1, a2, ..., a2n−1, a2n)T , where ai 6= 0, i = 1, 2, ..., 2n and

Hermitian complex matrix Σ̃ is 2n by 2n matrix as defined in Equation 4.2 (m = 2n).

Given a fixed ρ ∈ [0, 1] for any nonzero vector A,

AT Σ̃A =

(
a1 a2 · · · a2n−1 a2n

)


1 −ρ ρ −ρ · · · ρ −ρ

−ρ 1 −ρ ρ · · · −ρ ρ

ρ −ρ 1 −ρ · · · ρ −ρ
...

...
...

...
. . .

...
...

−ρ ρ −ρ ρ · · · −ρ 1





a1

a2

...

a2n−1

a2n


= (1− ρ)

2n∑
i=1

a2
i + ρ(

n∑
j=1

a2j−1)2 − 2ρ(
n∑
j=1

a2j−1)(
n∑
k=1

a2k) + ρ(
n∑
k=1

a2k)
2

= (1− ρ)
2n∑
i=1

a2
i + ρ(

n∑
j=1

a2j−1 −
n∑
k=1

a2k)
2 ≥ 0.

Hence the covariance matrix in Equation 4.2 is positive semi-definite.
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