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ABSTRACT

FWER CONTROLLING PROCEDURES IN SIMULTANEOUS AND
SELECTIVE INFERENCE

by
Li Yu

With increasing complexity of research objectives in clinical trials, a variety of

relatively complex and less intuitive multiple testing procedures (MTPs) have been

developed and applied in clinical data analysis. In order to make testing strategies

more explicit and intuitive to communicate with non-statisticians, several flexible

and powerful graphical approaches have recently been introduced in the literature for

developing and visualizing newer MTPs. Nevertheless, some theoretical as well as

methodological issues still remain to be fully addressed. This dissertation addresses

several important issues arising in graphical approaches and related selective inference

problems. It consists of three parts.

In the first part of this dissertation, a generalized graphical approach is

introduced, which allows one to reject more than one hypothesis at each step. This

overcomes a main drawback of existing graphical approaches in which only one

rejection is allowed at each step. Through some clinical examples, the proposed

approach is illustrated to be more flexible and computationally efficient than existing

graphical approaches. Theoretically, it is shown that the generalized graphical

approach strongly controls the FWER under arbitrary dependence. To show the

FWER control of the proposed method, as a by-product, a new concept of a

multivariate critical value function is introduced and based on this function, the

sequential rejection principle (Goeman and Solari, 2010) is generalized from the case

of univariate critical value function to that of multivariate.

In the second part of this dissertation, a new graphical approach for general

logically related multiple hypotheses testing is developed. By re-assigning critical



values between testable and non-testable hypotheses, all local critical values can be

made fully used. Theoretically, it is shown that the proposed graphical approach

strongly controls the FWER at level α under arbitrary dependence, by employing

the generalized sequential rejection principle developed in the first part of this

dissertation. Through some clinical examples, it demonstrates that the proposed

graphical approach is more flexible and computationally efficient than entangled

graphical approach for testing general logically related hypotheses (Maurer and Bretz,

2013).

In the third part of this dissertation, several powerful MTPs based on the very

recently introduced ideas and methods of selective inference are proposed, which

can be applied in large scale data analysis, such as microarray study, genomewise

association study (GWAS), etc. By further developing the idea of independent

filtering (Bourgon et al., 2010; Dai et al., 2012; Du and Zhang, 2014; Ignatiadis

et al., 2016), where hypotheses are splitted into two blocks by selection process,

three two-stage MTPs, adaptive two-stage Bonferroni procedure, selective parallel

gatekeeping procedure and data-driven weighted selective procedure, are proposed.

The proposed MTPs can not only exploit information of selected hypotheses more

explicitly by estimating the true null proportion, but also deal with non-selected

hypotheses. In order to exploit information of each null hypothesis more explicitly,

the proposed procedures are further generalized from two blocks to multiple blocks.

Theoretically, it is shown that the proposed MTPs strongly control the FWER at level

α. Under independence, the proposed procedures are evaluated through extensive

simulation studies.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In current clinical trials practice, the study objectives become increasingly complex,

such as different doses to compare, multiple endpoints to investigate, several

treatment groups to explore, etc. Instead of using single hypothesis testing to explore

one research question, multiple hypotheses testing are used to investigate multiple

study objectives simultaneously. However, multiplicity issue arises in the sense

that type I error rate is inflated with the increasing number of tested hypotheses.

Challenges in the filed of multiple hypotheses testing are that how to address the

multiplicity issue appropriately and how to control overall error rates. Various

multiple testing procedures (MTPs) have been developed to overcome the issue

with the control of proper error rates. Among the proposed MTPs in the past

decades, Bonferroni-based sequentially rejective MTPs are well developed to explicitly

address the problem of multiple testing. But it turns out that the decision tables of

these MTPs may be long and abstract, which make them difficult to present to

non-statisticians clearly and intuitively. Therefore, in the first two parts of this

dissertation, we aim to develop new MTPs which are more flexible and efficient

to present to the clinical team and can also take complex logical structures among

hypotheses into account. In the last part of this dissertation, we focus on developing

MTPs in large scale multiple hypotheses testing. The arising problem of large scale

multiple hypotheses testing, such as microarray study, genomewise association study

(GWAS), is that the number of testing hypotheses is large. We aim to develop

powerful MTPs by using the very recently developed ideas and methods of selective

inference to deal with the problem of large scale multiple testing, which can greatly

reduce the number of tested hypotheses through a selection process.
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1.1.1 Basic Concepts in Multiple Hypotheses Testing

Consider a problem of testing m hypotheses, H1, . . . , Hm, simultaneously. We first

introduce some important concepts related to multiple testing and MTPs.

Error Rates and Power The overall error measurments in multiple testing are

not unqiue. It is important to choose a suitable error rate before developing any

MTP. In the following, we first describe two commonly used error measurements in

multiple testing: familywise error rate (FWER) and false discovery rate (FDR).

• Familywise error rate (FWER) is defined as the probability of making at least
one false rejection, which is given by:

FWER = Pr (at least one false rejection) .

• False discovery rate (FDR) is defined as the expected proportion of false
rejections among all rejected hypotheses, which is given by:

FDR = E

(
Number of false rejections

Total number of rejections

)
.

When dealing with small scale multiple testing problems in clinical trials, FWER

is commonly used to measure type I error rate. There are two types of FWER control.

One is weak control, which controls the FWER only when all null hypotheses are

true, the other is strong control, which controls the FWER under any combination of

true and false null hypotheses. In this dissertation, we only consider strong control

of FWER for our proposed MTPs, due to unknown numbers of true and false null

hypotheses. Moreover, strong control of FWER is mandatory by regulators in all

confirmatory clinical trials (CPMP, 2002).

When dealing with large scale multiple testing problems, such as in genome

wide association study (GWAS), controlling the FWER is often too conservative to

detect any false null hypothesis, thus the FDR is commonly used to measure the

error rate. Besides the FWER and FDR, several other error measurements are also
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introduced in the literature, such as comparisonwise error rate (CWER), perfamily

error rate (PFER), generalized familywise error rate (k-FWER), etc.

In addition to the type I error rate control, we also need to evaluate the power

performance of a MTP. Various definitions of overall power are available in multiple

testing. We describe two commonly used power definitions in the literature as follows.

• The minimal power is the probability of rejecting at least one false null
hypothesis,

minimal power = Pr (reject at least one false null) .

• The average power is the expected proportion of rejected false null hypotheses
among all false null hypotheses,

average power = E

(
Number of rejected false nulls

Total number of false nulls

)
.

1.1.2 Assumptions on p-values

Under true null hypotheses, the distributions of marginal p-values are assumed to be

bounded above by U(0, 1), i.e.,

Pr{Pi ≤ p} ≤ p, for any p ∈ (0, 1) and i ∈ I0,

where I0 is the indices of true null hypotheses.

In multiple testing, several commonly used joint dependence structures of the

p-values are considered, such as independence, positive regression dependence on

subset (PRDS) and arbitarily dependent. In this dissertation, we assume the p-values

are arbitrary dependent, that is, we do not make any assumptation on the joint

dependence of the p-values.

1.1.3 Closure Principle

Closure principle is a fundamental principle in multiple testing which is widely used

for developing FWER controlling procedures (Marcus, Peritz and Gabriel, 1976). The
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closure principle states that an individual hypothesis can be rejected in the context of

multiple testing if and only if all intersection hypotheses including this hypothesis are

rejected by valid local tests in the context of single hypothesis testing. Any MTPs

derived by the closure principle are termed as closed test procedures. In order to

make a decision on a single hypothesis in multiple testing, by using a closed test

procedure, we often need to perform a large number of local tests, which results in a

high demand of computation.

1.1.4 Sequential Rejection Principle

Goeman and Solari (2010) proposed a sequential rejection principle of the FWER

control, which is used for constructing FWER controlling procedures. It can be

considered as equally fundamental as the closure principle. This principle emphasizes

on the sequential aspect of testing in the sense that rejections are made sequentially,

and the rejection of hypotheses at the current step is based on the rejections made

in previous steps.

In order to present this principle formally, we first introduce some notations. A

sequentially rejective procedure is defined on a random and measureable univariate

successor function N with a variable R, where N (R) is a collection of rejections

that can be made in the next step after rejecting a collection of hypotheses R in

the previous steps. Relying on the successor function N , a sequentially rejective

procedure is defined with iteratively rejecting a collection of null hypotheses at each

step. If at the end of step i, we have the collection of rejections Ri, then at the

end of step i + 1, we have the collection of rejections Ri+1 = Ri ∪ N (Ri). Let

R∞ = limi→∞Ri be the final collection of rejections.

A sequential rejection principle (Goeman and Solari, 2010) states sufficient

conditions on N to control the FWER strongly for sequentially rejective procedures.

We denote M as a submodel of a set of statistical models, M, i.e., M ∈ M. A
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probability measure PM is defined on the whole outcome space Ω. H is a collection

of all tested hypotheses. According to the probability measure PM , for any null

hypothesis H in H, we say that H is true if M ∈ H; otherwise, we say that H is

false. A set of true null hypotheses and a set of false null hypotheses are defined as

follows:

T (M) = {H ∈ H : M ∈ H}; F(M) = H\T (M).

For simplicity, we let T = T (M) and F = F(M).

Theorem 1 (Sequential Rejection Principle). Suppose that for every R ⊆ S ⊂ H,

almost everywhere,

N (R) ⊆ N (S) ∪ S, (1.1)

and at each single step, for every M ∈M,

PM(N (F) ⊆ F) ≥ 1− α, (1.2)

then for every M ∈M, we have

PM(R∞ ⊆ F) ≥ 1− α. (1.3)

The sequential rejection principle states that as long as the conditions in (1.1)

and (1.2) are satisfied for the successor function, the sequentially rejective procedure

strongly controls the FWER. Condition in (1.1) means that the successor function is

monotonic, and condition in (1.2) guarantees the FWER control in the critical case

in which all false null hypotheses have been rejected and none of the true ones.
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1.2 Multiple Testing Procedures

In multiple testing, most common MTPs can be divided into two general classes, one

is hypotheses are ordered based on some prior information, such as clinical importance

of tested hypotheses, and the other is hypotheses are ordered based on p-values

1.2.1 Procedures for Testing Pre-ordered Hypotheses

For some clinical applications, the hypotheses often have some inherent structure,

such as hypotheses corresponding to primary endpoints are claimed more important

than those corresponding to secondary endpoints. Thus, primary hypotheses should

be tested first. Fixed sequence procedures are developed for hierarchically ordered

hypotheses H1, H2, . . . , Hm, where the order is pre-specified, usually based on clinical

importance. Several fixed sequence procedures were developed in the literature. The

conventional fixed sequence procedure (Maurer et al., 1995; Westfall and Krishen,

2001) and the fallback procedure (Wiens, 2003) are widely used in clinical trials.

And the fallback procedure is further developed by Wiens and Dmitrienko (2005),

Dmitrienko, Wiens and Westfall (2006), Hommel, Bretz and Maurer (2007), Hommel

and Bretz (2008) and Bretz et al. (2009).

Suppose that the tested hypotheses H1, . . . , Hm are pre-ordered and the

correspond p-values P1, . . . , Pm are available.

• Conventional fixed sequence procedure. The conventional fixed sequence
procedure is proposed for testing multiple hypotheses that have a pre-specified
fixed order. The test starts with the first hypothesis H1, and reject all
hypotheses H1, . . . , Hj, where 1 ≤ j ≤ m is the largest index satisfying

P1 ≤ α, . . . , Pj ≤ α.

The procedure strongly controls the FWER at lelvel α under any dependence of
p-values. However, one drawback of this procedure is that once an acceptance
is observed, the rest hypotheses have no chance to be tested.

• Fallback procedure. The fallback procedure is proposed to overcome the
shortcoming of earlying stopping in the conventional fixed sequence procedure.
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It allows each hypothesis to be tested at least at its local critical value. Initially,
the overall critical value α is allocated to m hypotheses as local critical values,
αi, i = 1, . . . ,m, with

∑m
i=1 αi = α. Let α∗i be the updated critical value for

testing Hi and α∗1 = α1. Hypothesis Hi is rejected if Pi ≤ α∗i , where

α∗i =

{
αi + α∗i−1, if Hi−1 is rejected
αi, otherwise.

(1.4)

With the propagation of critical values, the latter hypotheses may have more
chance to be rejected with higher critical values. The fallback procedure is
pretty general and the conventional fixed sequence procedure can be regarded
as its special case, when α1 = α and αi = 0 for i = 2, . . . ,m.

1.2.2 Procedures Based on Ordered p-values

Stepwise methods, such as step-down, step-up and single-step, are based on ordered

p-values. The stepwise MTPs can be described by using a sequence of non-decreasing

critical constants α1 ≤ α2 ≤ . . . ≤ αm. Let P1, P2, . . . , Pm be marginal p-values

of tested hypotheses H1, H2, . . . , Hm. Let P(1) ≤ P(2) ≤ . . . ≤ P(m) be the ordered

p-values with the corresponding null hypotheses H(1), H(2), . . . , H(m).

• Step-down procedure. A step-down procedure starts with the most significant
hypothesis H(1), and gradually steps down to the least significant hypothesis
H(m). The procedure goes on rejecting hypotheses as long as the corresponding
p-value P(i) ≤ αi. The test stops until no more rejection can be made. That is,
reject H(1), . . . , H(r), where 1 ≤ r ≤ m is the largest index satisfying

P(1) ≤ α1, . . . , P(r) ≤ αr.

And the rest hypotheses H(r+1), . . . , H(m) are accepted. If P(1) > α1, accept all
m null hypotheses.

Holm procedure. One typical example of a step-down procedure is Holm
procedure (Holm, 1979). It controls the FWER under arbitrary dependence.
The critical values of Holm procedure are updated as αi = α

m−i+1
, for i =

1, . . . ,m.

• Step-up procedure. A step-up procedure starts with the least significant
hypothesis H(m), and gradually steps up to the most significant hypothesis
H(1). The procedure goes on accepting hypotheses as long as the corresponding
p-value P(i) > αi. The test stops until a rejection is observed. That is, reject
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H(1), . . . , H(r), and do not reject H(r+1), . . . , H(m), where 1 ≤ r ≤ m is the
largest index such that

P(r) ≤ αr.

If P(m) ≤ αm, we reject all m hypotheses.

Hochberg procedure. One typical example of a step-up procedure is Hochberg
procedure (Hochberg, 1988). It controls the FWER under positive dependence.
The critical values of Hochberg procedure are updated as αi = α

m−i+1
, for i =

1, . . . ,m.

Benjamini-Hochberg procedure. The other typical example of a step-up procdure
is Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), short for
BH procedure. It is a commonly used FDR controlling procedure. The critical
values of BH procedure are updated as αi = iα

m
, for i = 1, . . . ,m.

• Single-step procedure. A single-step procedure is a special stepwise procedure
with the same critical values, i.e., α1 = α2 = . . . = αm = c, where c is a
constant. Hypothesis Hi is rejected if and only of Pi ≤ c, for i = 1, . . . ,m.

Bonferroni procedure. The Bonferroni procedure is one typical and widely used
single-step procedure, which controls the FWER under arbitrary dependence.
Its critical constant is αi = α

m
, for all i = 1, . . . ,m.

1.2.3 Graphical Approaches

The aforementioned MTPs, such as the Holm procedure, conventional fixed sequence

procedure and fallback procedure, are widely used in clinical trials. However, the

decision tables of these MTPs are often long and abstract, which make them difficult

to be presented to non-statisticians clearly and intuitively.

Bretz et al. (2009) and Burman et al. (2009) independently proposed to use

graphical tools to visualize Bonferroni-type sequentially rejective procedures. The

graphical approaches provide a mean for specifying, communicating, and assessing

different hypothesis testing strategies. Moreover, a variety of testing strategies can

be demonstrated and compared to tailor a suitable test scheme to specific study

objectives.

Basically, in the graphical approach, the testing strategy is defined by a graph

that shows each null hypothesis located at a vertex, and depicts the relationships

between null hypotheses via directed edges with an arrowheads. The overall critical
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value α is initially allocated to each vertex with initial critical value (local critical

value), say αi for hypothesis Hi. The number along each directed edge is termed

as transition coefficient (weight), which indicates the fraction of the preserved local

critical value to be shifted along that edge to the receiving hypothesis, when the

hypothesis at the tail end of the edge is significant. For example, gjl indicates the

proportion of αj from Hj can be passed to Hl if Hj is rejected. If at each step,

a hypothesis Hj is rejected, the graph will be updated by removing the rejected

hypothesis Hj. And all local critical values and transition coefficients will be updated

as well based on the following rules:

I → I\{j},

αl =

 αl + αjgjl, if l ∈ I,

0, otherwise,

glk =


glk+gljgjk
1−gljgjl

, if l, k ∈ I, l 6= k, gljgjl 6= 1,

0, otherwise.

I is the indices of the remaining hypotheses. Initially, I = {1, . . . ,m}. Such graphical

approach satisfies the following regularity conditions on critical values and transition

coefficients:

m∑
l=1

αl ≤ α, (1.5)

0 ≤ glk ≤ 1, gll = 0, for l, k = 1, . . . ,m. (1.6)
m∑
k=1

glk ≤ 1, for l = 1, . . . ,m. (1.7)

Bretz et al. (2009) shows that the graphical approach strongly controls the FWER

at level α if conditions in (1.5), (1.6) and (1.7) are satisfied.

At the same time, graphical tools have been extensively used to visualize

different testing strategies in various clinical applications, such as testing of non-
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inferiority and superiority (Hung and Wang, 2010; Guilbaud, 2011; Lawrence, 2011),

assessing of composite endpoints and their components (Huque et al., 2011; Rauch

and Beyersmann, 2013), and subgroup analyses (Bretz et al., 2011a). The original

graphical approaches mostly focus on Bonferroni-based MTPs, but researchers have

also extended to weighted Simes’ or parametric tests based graphical approaches

(Bretz et al., 2011b; Maurer et al., 2011; Millen and Dmitrienko, 2011; Xi et al., 2016;

Lu, 2016). For complex study objectives in clinical trials, the approaches have been

further extended to adaptive designs (Sugitani et al., 2013, 2014; Klinglmueller et al.,

2014), group sequential designs (Maurer and Bretz, 2013b; Xi and Tamhane, 2015)

and families of hypotheses (Kordzakhia and Dmitrienko, 2013; Maurer and Bretz,

2014), etc. The power performance of the graphical approaches is also considered in

Bretz et al. (2011a). The implementation of graphical approaches in SAS and R are

described in Bretz et al. (2011a, b).

1.3 Multiple Testing Procedures for Logically Related Hypotheses

In many clinical applications, tested hypotheses often have some logical relationships.

For example, there are usually multiple endpoints of interest in clinical trials and

these endpoints are generally classified as primary, secondary and sometimes tertiary

endpoints which forms a natural hierarchical structure. The hypotheses corresponding

to the secondary or tertiary endpoints are testable if some logical conditions in

the hypotheses corresponding to primary endpoints are satisfied. Various logical

relationships often exist among tested hypothese or among families of hypotheses. To

deal with such logically related hypotheses testing problems, several general methods

were developed in the literature.
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1.3.1 Gatekeeping Procedures

A common logical structure in clinical trials is that the hypotheses to be tested

are grouped into multiple families, and these families are tested in a sequential

manner. Maurer, Hothorn and Lehmacher (1995) and Bauer et al. (1998) introduced

a convenient and efficient way called gatekeeping strategy in which primary family

is tested first, and whether secondary family is testable contingent upon the testing

results within the primary family. That is, the primary family serves as a gatekeeper

for the secondary one.

Several gatekeeping strategies are commonly used in clinical trials, including

serial gatekeeping, parallel gatekeeping and tree-structured gatekeeping strategies.

• Serial gatekeeping. Westfall and Krishen (2001) proposed a serial gatekeeping
strategy, in which each family can be tested using any FWER controlling
method if and only if all hypotheses in the previous families are statistically
significant. Thus, the logical condition for the current family to be testable is
that all hypotheses are rejected in the previous families.

• Parallel gatekeeping. Dmitrienko, Offen and Westfall (2003) introduced a
parallel gatekeeping strategy, in which the current family can be tested if and
only if at least one hypothesis in the previous family is statistically significant,
that is, in parallel gatekeeping strategy, the logical condition for the current
family to be testable is that at least one hypothesis is rejected in the previous
family.

• Tree-structured gatekeeping. Tree-structured gatekeeping procedure was proposed
by Dmitrienko, Wiens and Tamhane (2007), which is a hybrid procedure
unifying serial gatekeeping strategy and parallel gatekeeping strategy. In this
strategy, the tested hypothese are formulated as a tree structure, where each
node represents a null hypothesis. Instead of exhibiting a simple sequential
structure in the decision making process, the procedure is based on a decision
tree with multiple branches. Tree-structured gatekeeping procedure is derived
based on the closure principle and uses weighted Bonferroni procedure for all
intersection hypotheses.

With increasing complexity of hierachically ordered families of hypotheses, an

extension of the tree-structured gatekeeping procedure, mixture procedure proposed

by Dmitrienko and Tamhane (2011, 2013), were also developed to deal with the
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problems of multiple families of hypotheses. Instead of using the Bonferroni

procedure, the mixture procedure uses more powerful tests for all intersection

hypotheses, such as Simes’ test. Moreover, it can cover more general logical

restrictions than the tree-structured approach. In order to avoid challenging

computational issues caused by the closure principle, Dmitrienko et al. (2006),

Guilbaud (2007) and Dmitrienko, Tamhane and Wiens (2008) developed simple

stepwise approaches in dealing with gatekeeping strategies. Particularly, Dmitrienko,

Tamhane and Wiens (2008) introduced a general multistage gatekeeping procedure,

which includes simple stepwise approaches of Dmitrienko et al. (2006) and Guilbaud

(2007) as its special cases. A key property of the multistage gatekeeping procedure is

that the unused critical values of the current family can be passed to the subsequent

family. In order to quantify the amount of critical value for the current family that

will be transferred to the subsequent family, a new concept of error rate function is

introduced in Dmitrienko, Tamhane and Wiens (2008), which is formally defined as

follows:

Error rate function. Consider a single family, F = {H1, . . . , Hm}, for any I ⊆

{1, . . . ,m}, the error rate function is defined as follows:

e(I) = sup
HI

Pr

⋃
i∈I

{rejectHi}|HI

 , (1.8)

where HI = ∩i∈IHi. And e(I) is the maximum probability of making at least one

Type I error in the subfamily {Hi, i ∈ I}. Generally, an exact expression of e(I) is

difficult to drive and thus a computable upper bound e∗(I) is often used to replace

it. For example, for the conventional Bonferroni procedure, the upper bound of its

error rate function is

e∗(I) =
α|I|
m

, (1.9)

where |I| is the cardinality of the set I.
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Due to the stepwise shortcut, the multistage gatekeeping procedure is apparently

more straightforward and easier to explain to clinicians in practice. However, in terms

of dealing with complex logical conditions, multistage gatekeeping procedure is still

not as flexible as the mixture procedure (Dmitrienko and Tamhane, 2011, 2013).

1.3.2 Graphical Visualization

Several graphical approaches were also developed for testing logically related hypotheses:

• Tree structured method. Meinshausen (2008) formulated a variable selection
problem in high-dimensional regression as a tree-structured hypotheses testing
problem and developed a hierarchy method. It can be regarded as a special
case of the original graphical approach (Bretz et al., 2009), where descendant
hypotheses in the same layer are allocated with equal critical values if their
parent hypotheses are rejected, otherwise they are non-testable.

• Entangled graphical approach. For increasing complex of logical restrictions
among tested hypotheses, proper visualization and presentation of logically
related MTPs should be taken into account. Entangled graphical approach
has been proposed to perform MTPs for testing logical restricted hypotheses
(Maurer and Bretz, 2013a). Each graph represents one logical restriction
among all tested hypotheses, and within each graph, one can use the algorithm
introduced in the original graphical approach by Bretz et al. (2009) to make
rejection or acceptance decisions regarding tested hypotheses. However, a
drawback of the entangled graphical approach is that with the increasing
number of logical restrictions, one needs to construct and update a large number
of graphs, which makes this method computationally inefficient.

• Superchain procedure. Superchain procedure (Kordzakhia and Dmitrienko,
2013) was developed to sequentially test logically structured hypotheses via
graphical approaches. Each family is presented as a vertex and local significant
levels are propagated via transition coefficients between families instead of
hypotheses. However, this approach tests all families of hypotheses simulta-
neously at each step which is not suitable in some clinical trial settings, such as
families of hypotheses having hierachical structure.

• Family-based graphical approach. The aforementioned gatekeeping strategies are
often either non-intuitive or less flexible when addressing increasingly complex
logical relationships among families of hypotheses. Qiu, Guo and Yu (2017)
proposed a family-based graphical approach to solve such probelms, in which
equally important families are grouped in the same layer and a directed and
weighted graph is used to develop family-based gatekeeping strategy where
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each node corresponds to a family of hypotheses and two simple updating
rules are used for updating the critical value of each family and the transition
coefficient between any two families. The proposed approach can be used
to easily derive and visualize different gatekeeping strategies. However, this
approach is not suitable for dealing with multiple testing probelms with general
logical restrictions among families of hypotheses.

1.4 Selective Inference

With the increasing number of tested hypotheses, one natural testing strategy is to

first reduce the number of tested hypotheses by some selection process, and then to

simultaneously test the selected hypotheses. The main advantage of this strategy is

to greatly reduce the severe effect of high dimensions. However, the first screening

or selection stage must be properly accounted for in order to maintain some type of

error rate control.

1.4.1 Procedures after Selection/Screening

Benjamin and Yekutieli (2005) introduced a new approach for constructing multiple

selective confidence intervals after screening a large number of parameters with the

control of false coverage rate (FCR), which is the expected proportion of nonovering

confidence interval among all constructed confidence intervals. It is the first time

that the concept of selective inference was formally introduced in the literature.

Benjamini (2010) and Taylor and Tibshirani (2015) also demonstrated imporatnce

of selectvie inference in the era of big data. The construction methods of selection

adjusted multiple confidence intervals with the control of FCR were further developed

by Weinstein, Fithian and Benjamin (2014), Weinstein and Yekutieli (2016) and Peng

et al. (2017).

In high-dimensional regression analysis, several novel breakthroughs have been

recently made by Berk et al. (2013), Barber and Candes (2015), Lee et al. (2016),

Fithian et al. (2014). All of these works emphasize on how to perform valid
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post selection inference after model building. Following these works, many selective

inference/post selection inference methods have been developed for a variety of model

selection algorithms (Barber and Candes, 2016; Fithian et al.,2015; Tian and Taylor,

2015a, b; Yekutieli, 2012; Tian and Taylor, 2018; Tian, Loftus and Taylor, 2018;

Panigrahi and Taylor, 2018; Taylor and Tibshirani, 2018).

Selective inference is also a hot topic in multiple hypotheses testing recently.

Several selective inference methods have been developed in large scale multiple

hypotheses testing (Skol et al., 2006; Bourgon et al., 2010; Benjamini and Bogomolov,

2014; Heller et al., 2016; Guo and Romano, 2017). Among these selective inference

methods, an interesting development is independent filtering method, where selection

statistic and testing statistic are chosen to be independent when the corresponding

hypothesis is true (Bourgon et al., 2010; Dai et al., 2012; Du and Zhang, 2014;

Ignatiadis et al., 2016; Guo and Romano, 2017; Heller et al., 2018), which has several

nice properties: (i). it completely removes the selection effect; (ii). it reduces the

multiplicity effect; (iii). it does not “waste” data while carry out to the selection

testing. In this dissertation, we further develop the ideas and methods of independent

filtering.

1.4.2 Data-driven Weighted MTPs

In multiple hypotheses testing, importance of null hypotheses is often different. It is

natural to assign different weights to different hypotheses. Traditionally, the weights

are pre-specified by some prior knowledge. However, without the prior knowledge at

hand, how can one specify the weights? Roeder and Wasserman (2009) and Poisson

et al. (2012) introduced data-driven weighted multiple testing procedures, where

weights for null hypotheses are constructed by exploiting information in the data.

It is interesting to note that the aferomentioned screening methods can be

regarded as a special case of general data-driven weighted methods. For data-driven
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weighted methods, there are still some important questions remain to be answered,

such as, how to ensure the control of the FWER or FDR when constructing and

assigning weights in a data-driven way? How to ensure such methods are more

powerful than the conventional FWER or FDR controlling procedures? etc. Very

recently, by employing side information to construct weights which are independent of

the test statistics under the corresponding null hypotheses, several Bonferroni-based

and Benjamini-Hochberg based data-driven weighted methods have been developed

to increase power while still controlling the FWER and FDR, respectively (Fino and

Salmaso, 2007; Ignatiadis, et al., 2016; Li and Barber, 2016; Lei and Fithian, 2016;

Ignatiadis and Huber, 2017).

1.5 Motivation and Outline

Although existing sequentially rejective, weighted Bonferroni-based MTPs in the

literature can often address multiplicity issues propoerly, the drawbacks of such

procedures are that the decision tables or results are often abstract and difficult

to present to clinical teams. Even though the original graphical approach (Bretz

et al., 2009) provided a simple and clear graphical visualization to demonstrate the

underlying testing strategies, a main shortcoming of this graphical approach is that

it only allows one rejection at each step. As a result, too many graphs need to be

generated and updated in the whole testing process with the increasing number of

null hypotheses. In this dissertation, we first develop a new graphical approach with

proven control of the FWER, which allows one to reject more than one hypothesis at

each step.

Moreover, with complex logically structured hypotheses, to our knowlegde, there

is no MTP exists in the literature, which can deal with general logical relationships

among tested hypotheses, and at the same time, which has a simple and clear

visualization to non-statisticians. The existing gatekeeping procedures can only be
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used to test families of hypotheses with simple logical restrictions. The existing

graphical approaches provide a way to visualize complex testing strategies clearly

and intuitively, but almost all of them can not deal with general logically related

hypothese. The only exception is the entangled graphical approach, but it needs

to generate and update too many graphs with the increasing complexity of logical

relationships and it has low power performance in the sense that critical values from

non-testable (logical restricted) hypotheses can not be fully used. In this dissertation,

we propose a new graphical approach, which can deal with general logical restrictions

among tested hypotheses as well as fully using critical values from non-testable

hypotheses.

For large scale multiple hypothesis testing, most existing selective inference

procedures emphasize on performing valid inference after selection, when the selection

ruels are given. However, in practice, how to choose an appropriate selection rule to

lead to more powerful testing procedures remains open. In this dissertation, we

propose several powerful selective inference procedures with strong control of the

FWER. Moreover, the proposed procedures appropriately take selection effect into

account.

The graphical approaches mentioned in this dissertation are developed based

on weighted Bonferroni procedures. The weights are usually pre-specified. However,

without having any prior knowledge of the weights, one can only construct the weights

based on data. Several data-driven weighted MTPs were developed very recently. The

main drawback of these MTPs is that it is complicated to construct the weights. In

this dissertation, we also develop simple ways to construct data-driven weights and

thus develop more powerful weighted MTPs, which can be regarded as extensions of

our proposed selective inference procedures.

The rest of this dissertation is outlined as follows: in Chapter 2, we propose

a new graphical approach with proven FWER control by generalizing the sequential
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rejection principle, where one can reject more than one hypothesis at each step.

Through some clinical examples, we illustrate that the proposed approach is more

flexible and computationally efficient than the existing graphical approaches. In

Chapter 3, we develop a new graphical approach for dealing with general logical

relationships. In Chapter 4, we propose several powerful selective inference procedures

with proven FWER control. In Chapter 5, extensive simulation studies are conducted

for the proposed procedures in Chapter 4. In Chapter 6, we summarize and discuss

the future works we are planning to do.
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CHAPTER 2

A NEW GENERALIZED GRAPHICAL APPROACH

2.1 Introduction

In this chapter, we focus on developing a new sequentially rejective, weighted

Bonferroni based graphical approach, which can reject more than one hypothesis at

each step. The existing Bonferroni-based sequentially rejective MTPs include Holm

procedure (Holm, 1979), fixed sequence procedure (Wiens, 2003), Bonferroni-adjusted

gatekeeping procedures (Bauer et al., 1998; Westfall and Krishen, 2001; Dmitrienko,

Offen and Westfall, 2003), etc. However, the decision tables of these MTPs may be

long and non-visualized, which make them difficult to present to non-statisticians

clearly and intuitively. Bretz et al. (2009) proposed to use graphical tools to

describe and develop Bonferroni-type sequentially rejective procedures, which clearly

demonstrate relationships between tested hypotheses via directed edges. In this

dissertation, we term this graphical approach as the original graphical approach.

Applying the original graphical approach, different testing strategies can be visualized

to investigate and thus tailor proper multiple test procedures to specific clinical trial

objectives. It strongly controls the FWER at level α under arbitrary dependence. The

original graphical approach have been further extended by many authors, including

Hung and Wang (2009), Bretz et al. (2011a, b), Maurer et al. (2011), etc. Bretz,

Maurer and Maca (2014) provide a general review of the development of graphical

approaches in Chapter 14 of Young and Chen (2015).

One main drawback of the original graphical approach (Bretz et al., 2009) and

its extensions is that they can only reject one hypothesis at each test step. It is

natural to consider generally how can one reject more than one hypothesis at each

test step using graphical approaches. Since for a large number of tested hypotheses,

if using the original graphical approach, we may need to iteratively generate many
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graphs and present all of theses graphs at the end of the test. For example, suppose we

are interested in testing eight null hypotheses, where the relationships among theses

null hypotheses are illustrated in Figure 2.1. Using the original graphical approach,

if all eight hypotheses can be finally rejected, one needs to update eight different

graphs and present all theses graphs to clinical teams to demonstrate the testing

process of the underlying MTP. As one can see, the original graphical approach is not

computationally efficient.

In this chapter, the main goal is to develop a more flexible and efficient

graphical approach, which can reject more than one hypothesis at each step and

strongly controls the FWER as well. We term it as a generalized graphical approach

throughout our dissertation. The elements in the proposed graphical display is

the same as the original graphical approach as described in Section 1.2.3, where

each hypothesis is located in a vertex, and the relationships among null hypotheses

are mapped by direct edges with associated transition coefficients. However, in

the proposed graphical approach, we test all hypotheses that have positive local

critical values, and reject all hypotheses Hi if its p-value pi ≤ αi. Consider the

motivating example in Figure 2.1, hypotheses H1 and H2 are tested at level α1 and

α2, simultaneously, such that α1 + α2 = α. If H1 and H2 are both rejected, α1 and

α2 will be splitted equally and passed to H3, H4 and H5 relying on the edges. If H3,

H4 and H5 are rejected in the subsequence at their updated local critical values, their

critical values are passed down further. The test stops until no more hypotheses can

be rejected. We will revisit the motivating example in Section 2.5 for more details.

Moreover, in theoretical aspect, regarding strong control of the FWER of the

proposed method, we also develop an alternative way through which we can show its

FWER control. Many existing MTPs using the original graphical approach belong to

a subclass of weighted Bonferroni-based closed testing procedures (Marcus, Eric and

Gabriel, 1976), thus strongly control the FWER via the closure principle. However,
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Figure 2.1 Graphical illustration of the motivating example, with m = 8, initial

allocation α = {α/2, α/2, 0, 0, 0, 0, 0, 0}, and overall level α = 0.05.
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with a different aspect of view, one can show that the Bonferroni-based sequentially

rejective multiple testing procedures strongly control the FWER by the sequential

rejection principle (Goeman and Solari, 2010). Inspired by the original sequential

rejection principle, we show the FWER control of the proposed method by the

generalized sequential rejection principle. Theoretical details are shown in Section

2.4.

The advantages of the proposed generalized graphical approach are: compared

to the original graphical approach, more than one hypothesis can be rejected at each

step, which makes it computationally efficient. Moreover, with the reduction of total

updated graphs, the presentation to clinical teams is more clear. And as a by-product,

we generalize the sequential rejective principle and provide an alternative way to show

the FWER control of some MTPs in clinical trials.

The rest of this chapter is organized as follows: in Section 2.2, we introduce

some general notations used in this chapter. The generalized graphical approach

is formalized with a simple iterative algorithm to perform a MTP with a graphical

display in Section 2.3. The FWER control of the proposed approach is proved in

Section 2.4. In Section 2.5, we demonstrate clinical trial examples to clearly illustrate

the proposed graphical approach. In Section 2.6, some concluding remarks are given.

2.2 Preliminaries

In this section, we introduce some general notations used in this chapter. Consider a

multiple testing problem with m null hypotheses H1, ..., Hm. Let H = {H1, ..., Hm}

be a collection of the m null hypotheses, and I = {1, ...,m} be the corresponding

index set. Suppose α = (α1, ..., αm) be the pre-speficied allocation of the overall

critical value α to each individual hypothesis at the beginning of test, and G=(gij)

be an initial m×m transition coefficient matrix, where the transition coefficient gij,

indicates the proportion of the critical value of hypothesis Hi that will be passed
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down to hypothesis Hj if Hi is rejected. In this dissertation, we assume true null

p-values are always stochastically greater than or equal to a uniform distribution on

[0,1]. That is, for p ∈ [0, 1],

Pr{Pi ≤ p} ≤ p, i ∈ I0, (2.1)

where I0 is the indices of true null hypotheses.

At the beginning of test, the initial critical values α and the transition coefficient

matrix G=(gij) are given. All raw p-values p1, ..., pm are observed, where pi denotes

the observed p-value of Pi, i = 1, . . . ,m.

2.3 The Proposed Graphical Approach

In this section, we introduce a generalized graphical approach, different from the

original one (Bretz et al., 2009), which can reject more than one hypothesis at each

step. In this graphical approach, instead of updating a critical value and transition

coefficient at each step as in the original graphical approach, we update a critical

value function and transition coefficient function based on a set of rejections. Define

αl(R̂i−1) be a function based on R̂i−1 for hypothesis Hl, l = 1, ...,m, at step i =

1, ...,m, where R̂i−1 = (R̂1, ..., R̂i−1)
T is a vector of rejection sets, and R̂1, ..., R̂i−1

are nonempty, mutually exclusive sets of rejections at step 1, ..., i−1, respectively. We

name αl(R̂i−1) as a multivariate critical value function throughout the dissertation.

And glk(R̂i−1) as a multivariate transition coefficient function. Denote that R̂0 = ∅,

αl(R̂0) = αl, and glk(R̂0) = glk. We assume that

m∑
l=1

αl ≤ α, (2.2)

0 ≤ glk ≤ 1, gll = 0, for l, k = 1, . . . ,m, (2.3)

m∑
k=1

glk ≤ 1, for every l = 1, ...,m. (2.4)
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At the beginning of each step i, we have an updated indices of the remaining

hypotheses Ii. Initially, we have I1 = I = {1, ...,m}. For each R̂i at step i, let

the corresponding indices be Ji with J0 = ∅. With all the above notations, the

following algorithm defines a sequentially rejective procedure:

Algorithm 1.

1. For j ∈ I1, test every Hj at level αj. If pj ≤ αj, reject Hj. Then we have

R̂1 = {Hj ∈ H : pj ≤ αj, for any j ∈ I1}; If R̂1 = ∅, then stop.

Update the graph:

I1 → I2 = I1\J1,

αl(R̂1) =


αl +

∑
j∈J1

αjgjl, if l ∈ I2,

0, otherwise,

(2.5)

glk(R̂1) =


glk+

∑
j∈J1

gljgjk

1−
∑
j∈J1

∑
q∈J1

gljgjq−
∑
j∈J1

gljgjl
, if l, k ∈ I2, l 6= k,

0, otherwise.

(2.6)

i(i ≥ 2). For j ∈ Ii, test every Hj at level αj(R̂i−1). If pj ≤ αj(R̂i−1), reject Hj.

Then we have R̂i = {Hj ∈ H\ ∪i−1k=1 R̂k : pj ≤ αj(R̂i−1), for all j ∈ Ii}; If R̂i = ∅,

stop.

Update the graph:

Ii → Ii+1 = Ii\Ji,

αl(R̂i) =


αl(R̂i−1) +

∑
j∈Ji

αj(R̂i−1)gjl(R̂i−1), if l ∈ Ii+1,

0, otherwise,

(2.7)

glk(R̂i) =


glk(R̂i−1)+

∑
j∈Ji

glj(R̂i−1)gjk(R̂i−1)

1−
∑
j∈Ji

∑
q∈Ji

glj(R̂i−1)gjq(R̂i−1)−
∑
j∈Ji

glj(R̂i−1)gjl(R̂i−1)
, if l, k ∈ Ii+1, l 6= k,

0, otherwise.

(2.8)
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Remark 1. In any case for updating the transition coefficient function, if we

encounter the case of the denominators of the right-sides in (2.6) and (2.8) being

equal to zero, we simply set glk(R̂i) = 0, for every i = 1, ...,m.

Remark 2. The updating rules of the critical value function indicate that all critical

values of rejected hypotheses will pass to hypotheses via directed edges. Moreover,

in order to standardize the transition coefficient function at each step, in the

denominators of the right-sides in (2.6) and (2.8), we substract product of any

two transition coefficient functions corresponding to rejected hypotheses if they are

connected with each other.

By removing all rejected hypotheses at the end of each step, not only the critical

value functions, but also the transition coefficient functions need to be updated.

Proposition 1. Under the assumptions stated in (2.2), (2.3), and (2.4) for initial

critical values and transition coefficients, the critical value functions and transition

coefficient functions at each step i = 1, . . . ,m, have the following properties:

For transition coefficient functions,

1.
∑
k∈Ii

glk(R̂i−1) ≤ 1, for i = 1, ...,m, and Ii ⊆ {1, . . . ,m}, (2.9)

2. 0 ≤ glk(R̂i−1) ≤ 1, gkk(R̂i−1) = 0, for i = 1, ....,m. (2.10)

For critical value functions,

3.
∑
l∈Ii

αl(R̂i−1) ≤ α, for i = 1, ...,m, and Ii ⊆ {1, . . . ,m}, (2.11)

4. αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, (2.12)

and for i = 1, ...,m.

The proof of Proposition 1 is deferred to Appendix A.
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2.3.1 Relationship between the Proposed and the Original Approaches

In this section, we explore the relationship between the proposed graphical approach

and the original one. We first define some notations. Let R̃s = {Hi1 , . . . , His} for

1 ≤ s ≤ m denote a rejection set of the original graphical approach, including s

rejected hypotheses, and the order of rejected hypotheses is from Hi1 to His . Let

J̃s = {i1, . . . , is} be the corresponding indices. Note that R̃0 = ∅.

Based on R̃s, we recursively define the critical value functions and the transition

coefficient functions for our proposed method as follows:

For s = 0,

αl(R̃0) = αl, and glk(R̃0) = glk. (2.13)

For 1 ≤ s ≤ m,

αl(R̃s) =

 αl(R̃s−1) + αis(R̃s−1)gisl(R̃s−1), if l ∈ I\J̃s,

0, otherwise,
(2.14)

glk(R̃s) =


glk(R̃s−1)+glis (R̃s−1)gisk(R̃s−1))

1−glis (R̃s−1)gisl(R̃s−1)
, if l, k ∈ I\J̃s, l 6= k,

0, otherwise.
(2.15)

Based on the critical value functions and transition coefficient functions defined

in (2.13), (2.14) and (2.15), the following algorithm describes an original graphical

approach with more than one rejection at each step.

Algorithm 2.

1. For j ∈ I1, test every Hj at level αj(R̃0). If pj ≤ αj(R̃0), reject Hj. Then we

have R̂1 = {Hj ∈ H : pj ≤ αj(R̃0), for any j ∈ I1}, with R1 = R̂1; If R̂1 = ∅, then

stop.
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Update the graph:

I1 → I2 = I1\J1,

αl(R̃0)→ αl(R̃|R1|), for l ∈ I2 (2.16)

glk(R̃0)→ glk(R̃|R1|), for l, k ∈ I2, l 6= k. (2.17)

i(i ≥ 2). For j ∈ Ii, test every Hj at level αj(R̃|Ri−1|). If pj ≤ αj(R̃|Ri−1|), reject

Hj. Then we have R̂i = {Hj ∈ H\Ri−1 : pj ≤ αj(R̃|Ri−1|), for all j ∈ Ii} with

Ri = Ri−1 ∪ R̂i; If R̂i = ∅, stop.

Update the graph:

Ii → Ii+1 = Ii\Ji,

αl(R̃|Ri−1|)→ αl(R̃|Ri|), for l ∈ Ii+1 (2.18)

glk(R̃|Ri−1|)→ glk(R̃|Ri|), for l, k ∈ Ii+1, l 6= k. (2.19)

In Section 2.4, we will provide an alternative proof to show that it strongly

controls the FWER at level α.

Remark 3. For the original graphical approach, since the order of rejections does

not affect the final rejection results in the sense that if hypotheses H1 and H2 are

both rejected by the original graphical approach, no matter either H1 or H2 is rejected

first, the overall rejection set remains the same. Therefore, the critical value functions

and transition coefficient functions in Algorithm 2 are unique based on a set of all

previous rejections.

Remark 4. In Algorithm 2, we extend the original graphical approach to more

general case with more than one hypothesis can be rejected at each step. In this case,

we need to update the univariate critical value functions and the transition coefficient

functions iteratively based on each individual rejection, which means that if we reject

k hypotheses at step i, then the transition coefficient functions need to update k times
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based on the algorithm of the original graphical apptoach. There is no closed form

for updating the transition coefficient function.

Remark 5. The generalized graphical approach propose a way for updating the

transition coefficient function when rejecting more than one hypothesis at each step.

Due to construction of the updating rule for transition coefficient function, the order

of rejections affects the testing results. Thus we introduce an alternative concept of

critical value function – multivariate critical value function αl(R̂i), which is defined

on the collections of rejection of the first i steps, R̂i = (R̂1, ..., R̂i)
T .

2.4 Main Theoretical Results

In this section, we show that the proposed graphical approach strongly controls the

FWER under arbitrary dependence. Goeman and Solari (2010) introduce a sequential

rejection principle to show the FWER control for sequentially rejective procedures,

which provides an alternate besides the closure principle, and avoids the high demand

of computation caused by using the closure principle. A sequentially rejective

procedure is defined based on a univariate successor function N . The sequential

rejection principle states that a sequentially rejective procedure strongly controls the

FWER as long as the univariate successor function N satisfies the following two

conditions almost everywhere:

Condition 1: N (R) ⊆ N (S) ∪ S, for every R ⊆ S ⊂ H; (2.20)

Condition 2: PM(N (F(M)) ⊆ F(M)) ≥ 1− α. (2.21)

Since

N (R) = {Hj ∈ H\R : pj ≤ αj(R)},

the monotonicity of the univariate successor function in (2.20) is equivalent to the

monotonicity of the univariate critical value function. The original graphical approach
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described in Section 2.3.1 is based on a univariate critical value function, we can apply

the sequential rejection principle to show strong control of the FWER in the following:

An alternative proof of the FWER control of the original graphical approach. For

condition 1 in (2.20), we haveN (R) = {Hj ∈ H\R : pj ≤ αj(R)}. SinceR ⊆ S ⊂ H,

by monotonicity of the critical value function, we have

αj(R) ≤ αj(S).

If pj ≤ αj(R), then pj ≤ αj(S). Hence all rejected hypotheses in N (R) must also

belong to N (S). Thus N (R) ⊆ N (S) ∪ S.

For condition 2 in (2.21), we let R = F(M) and T (M) = H\F(M) is the set

of all true null hypothese, we have

PM(reject at least one true null hypothesis)

= PM(∪j∈T (M){pj ≤ αj(R)})

≤
∑

j∈T (M)

PM(pj ≤ αj(R))

≤
∑

j∈T (M)

αj(R) ≤
∑
j∈H

αj(R) ≤ α. (2.22)

The first inequality in (2.22) is due to the Bonferroni inequality. The second inequality

in (2.22) holds under the assumption that all true null p-values are stochastically

greater than or equal to a uniform distribution on [0,1]. The third inequality in

(2.22) holds since αj(R) > 0. Thus, it is a valid sequentially rejective procedure with

strong control of the FWER. �

Note that the proposed graphical approach is based on a multivariate critical

value function as described in Section 2.3, we need to extend the original sequential

rejection principle from the case of univariate critical value function to that of

multivariate. We first define a random and measureable multivariate successor
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function N (R̂), such that,

N (R̂i−1) = R̂i = {Hj ∈ H\
i−1⋃
k=1

R̂k : pj ≤ αj(R̂i−1)}

is a collection of rejected hypotheses that can be made at step i after rejecting a

collection of hypotheses R̂i−1 in the previous i− 1 steps. For convenience, in the rest

of this dissertation, we denote T = T (M) and F = F(M). Let Fi be a collection

of rejected false null hypotheses at step i, i = 1, ...,m. And Fi = (F1, ...,Fi)T be a

vector of collections of all rejected false null hypotheses at the end of step i. Based

on this multivariate successor function, we develop a generalized sequential rejection

principle.

Theorem 2 (Generalized Sequential Rejection Principle). Suppose R̂i ⊆ Si ⊂ H

for every i=1, . . . , m, R̂1, . . . , R̂i are all mutually exclusive, non-empty sets, and

S1, . . . ,Si are also all mutually exclusive, non-empty sets, almost everywhere, if

N (R̂i) ⊆ N (Si)
i⋃

k=1

Sk for all i = 1, . . . ,m, (2.23)

and at each single step i, for every M ∈M,

PM(N (Fi) ⊆ F) ≥ 1− α, (2.24)

then for every M ∈M, we have

PM(∪∞k=1R̂k ⊆ F) ≥ 1− α. (2.25)

Proof. By the condition of the single step FWER control in (2.24), we have

PM(N (Fi) ⊆ F) ≥ 1−α. If the event {N (Fi) ⊆ F} is realized, which means at step

i + 1, we did not reject any true null hypotheses. We will show that
i⋃

k=1

R̂k ⊆ F .

Clearly R̂0 = ∅ ⊆ F . By mathematical induction, suppose that
i⋃

k=1

R̂k ⊆ F , we will
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show that
i+1⋃
k=1

R̂k ⊆ F . Since R̂1, R̂2, ..., R̂i are all mutually exclusive sets, we have

R̂1 ⊆ F1,R̂2 ⊆ F\F1,...,R̂i ⊆ F\
i−1⋃
k=1

Fk, then by monotonicity condition in (2.23),

we have

N (R̂i) ⊆ N (Fi)
i⋃

k−1

Fk, where Fi = (F1,F2, ...,Fi)T .

Thus,
i+1⋃
k=1

R̂k ∩ T = R̂i+1 ∩ T = N (R̂i) ∩ T ⊆ {N (Fi) ∪ Fi} ∩ T = ∅. Therefore,

i+1⋃
k=1

R̂k ⊆ F for all i = 1, ...,m. Hence, PM(
i⋃

k=1

R̂k ⊆ F) ≥ PM(N (Fi) ⊆ F) ≥ 1− α.

By Dominated Convergence Theorem,

lim
i→∞

PM(
i⋃

k=1

R̂k ⊆ F) = PM( lim
i→∞

i⋃
k=1

R̂k ⊆ F)

= PM(
∞⋃
k=1

R̂k ⊆ F) ≥ lim
i→∞

(1− α) = 1− α.

�

Remark 6. The conditionin (2.23) states that all multivariate successor function

is monotonic. Since the successor function is defined upon critical value functions,

this condition is equivalent to the monotonicity of multivariate critical value function.

The condition in (2.24) guarantees the FWER control in the critical case in which all

false null hypotheses have been rejected and none of the true ones.

Remark 7. Bretz et al. (2009) showed that the graphs together with the updating rules

of critical values and transition coefficients are equivalent to a short-cut for a closed

test procedure (Hommel, Bretz and Maurer, 2009), thus their graphical approach

controls the FWER in the strong sense. In this dissertation, we use an alternative

way to show the FWER control for the proposed graphical approach, which is based on

the generalized sequential rejection principle. Note that the successor function in the

sequential rejection principle (Goeman and Solari, 2010) is a univariate function, as

well as the critical value function (by definition of successor function). At each step,
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the local critical value for a hypothesis is defined by a unique critical value function.

However, the critical value function in our approach is multivariate. For the original

graphical approach that no more than one hypothesis can be rejected at each step, we

can apply the sequential rejection principle instead of the closure principle to show its

FWER control. For our suggested generalized graphical approach that more than one

hypothesis can be rejected at each step or other sequentially rejective procedures that

the order of the rejections of null hypotheses in previous steps affects the rejections

in the next step, the generalized sequential rejection principle should be applicable to

show their FWER control.

By Theorem 2, we can show that the proposed graphical approach strongly

controls the FWER under arbitrary dependence.

Theorem 3 (FWER control of the generalized graphical approach). The generalized

graphical approach strongly controls the FWER at level α under arbitrary dependence.

For the proof of Theorem 3, see Appendix A.

Even though the sequential rejection principle (Goeman and Solari, 2010) is

widely used for developing MTPs with proper control of the FWER, however, for

some MTPs, it may not be applicable, such as generalized Bartroff-Lai procedure

(Bartroff and Song, 2016). The generalized Bartroff-Lai procedure is a sequential

step-down procedure, where the successor/rejection function ρ (R,A, n) is trivariate

with previous rejection set R, previous acceptance set A and the sample size of

the current testing step n. Clearly, the sequential rejection principle does not work

for this procedure. However, applying the proposed generalized sequential rejection

principle, we reduce the multivariate successor function to a trivariate function in this

case. For each n, as long as the successor function satisfies monotonicity condition

and the single step FWER control, the generalized Bartroff-Lai procedure strongly

controls the FWER (Bartroff and Song, 2016).
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2.5 Clinical Trial Examples

In this section, we apply the proposed graphical approach and the original graphical

approach to two different clinical trial examples.

2.5.1 Example 2.1

In this section, we demonstrate the motivating example in Figure 2.1. The

overall critical value α = 0.05 is allocated to eight tested hypotheses, α =

{α/2, α/2, 0, 0, 0, 0, 0, 0}, and the transition coefficient matrix is

G =



0 0 1/2 1/2 0 0 0 0

0 0 1/2 0 1/2 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1/2 1/2 0

0 0 0 0 0 1/2 0 1/2

0 0 0 1/4 1/4 0 1/4 1/4

0 0 0 0 0 1/2 0 1/2

0 0 0 0 0 1/2 1/2 0



.

Assume the observed unadjusted p-values p1, . . . , p8 are 0.001, 0.002, 0.018, 0.011,

0.009, 0.03, 0.015, 0.021. Applying Algorithm 1, the test is done in the following

steps:

Step 1 : we test all eight null hypotheses at their local critical values. Since

p1 = 0.001 < 0.025 = α/2, p2 = 0.002 < 0.025 = α/2, we reject H1 and H2, so

R̂1 = {H1, H2}. Update the graph (see Figure 2.2) and the critical value functions:

α3(R̂1) = 1/2× α/2 + 1/2× α/2 = α/2,

α4(R̂1) = 1/2× α/2 = α/4,

α5(R̂1) = 1/2× α/2 = α/4,
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while the transition coefficient functions remain the same.

Step 2 : we test the remaining six hypotheses. Since p3 = 0.018 < α/2, p4 =

0.011 < α/4, p5 = 0.009 < α/4, we reject hypotheses H3, H4 and H5, so R̂2 =

{H3, H4, H5}. Update the graph in Figure 2.3, as well as the critical value functions

and transition coefficient functions according to Algorithm 1:

α6(R̂2) = α/2 + 1/2× α/4 + 1/2× α/4 = 3α/4,

α7(R̂2) = 1/2× α/4 = α/8,

α8(R̂2) = 1/2× α/4 = α/8,

g67(R̂2) = g68(R̂2) = 1/2,

g76(R̂2) = g86(R̂2) = 1/2,

g78(R̂2) = g87(R̂2) = 1/2.

Step 3 : we test the rest three hypotheses. Since p6 = 0.03 < 3α/4, we reject

hypothesis H6, so R̂3 = {H6}. Update the graph in Figure 2.4 and the critical value

functions and transition coefficient functions:

α7(R̂3) = α8(R̂3) = α/8 + 1/2× 3α/4 = α/2,

g78(R̂3) = g87(R̂3) = 1.

Step 4 : Test H7 and H8 at their corresponding updated critical values. Since

p7 = 0.015 < α/2, p8 = 0.021 < α/2, we reject H7 and H8, so R̂4 = {H7, H8}.

Overall, it takes four steps to complete the whole test, where all hypotheses are

rejected. However, if we apply the original graphical approach, it will take eight steps

to complete the whole test.
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2.5.2 Example 2.2

We next discuss the example depicted in Figure 2.5, in which one aims to test

nine hypotheses by using the generalized graphical approach, where H1, H2, H3 are

three primary hypotheses, H4, H5, H6 are three secondary hypotheses and H7, H8, H9

are three tertiary hypotheses. The original critical value α is equally distributed

to H1, H2 and H3 such that the initial allocation of overall critical value is α =

{α/3, α/3, α/3, 0, 0, 0, 0, 0, 0}, where α = 0.05, and the transition coefficient matrix is

G =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1/2 1/2 0

0 0 0 0 0 0 0 1 0

0 0 0 1/3 1/3 0 0 0 1/3

0 0 0 0 1/3 1/3 0 0 1/3

0 0 0 0 0 0 1/2 1/2 0



.

Assume the observed unadjusted p-values p1, . . . , p9 are 0.008, 0.011, 0.006, 0.014,

0.03, 0.013, 0.015, 0.001, 0.016. Applying Algorithm 1, the test is done in the following

steps:

Step 1 : we test all nine hypotheses. Since p1 = 0.008 < 0.0167 = α/3, p2 =

0.011 < 0.0167 = α/3, p3 = 0.006 < 0.0167 = α/3, we reject H1, H2 and H3, i.e.

R̂1 = {H1, H2, H3}. Update the graph in Figure 2.6 and the critical values function:

α4(R̂1) = α5(R̂1) = α6(R̂1) = α/3,

while the transition coefficient functions among the remaining hypotheses are still the

same.
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Step 2 : we next test the remaining six hypotheses at their local critical values.

Since p4 = 0.014 < 0.0167 = α/3, p6 = 0.013 < 0.0167 = α/3, we reject H4 and H6,

i.e. R̂2 = {H4, H6}. The updated graph is in Figure 2.7. We update the critical value

functions and transition coefficient functions as:

α5(R̂2) = α7(R̂2) = α8(R̂2) = α/3,

g57(R̂2) = g58(R̂2) = g75(R̂2) = g78(R̂2)

= g79(R̂2) = g97(R̂2) = g98(R̂2)

= g89(R̂2) = 1/2.

Step 3 : we then test H5, H7, H8 and H9 at their local critical values. Since

p7 = 0.015 < α7(R̂2), p8 = 0.001 < α8(R̂2), we reject H7 and H8, i.e. R̂3 = {H7, H8}.

The updated graph is in Figure 2.8. Update the critical value function and transition

coefficient function of the rest hypotheses as:

α5(R̂3) = 2α/3,

α9(R̂3) = α/3,

g59(R̂3) = g95R̂3) = 1.

Step 4 : finally we test the rest hypotheses and reject H5, H9.

Overall, it takes four steps to test and reject all nine hypotheses by using the

proposed graphical approach. However, if we apply the original graphical approach

to the same example, it needs nine steps to complete testing.

2.6 Discussion

In this chapter, we introduce a flexible and efficient graphical approach to contruct,

visualize and perform sequentially rejective, weighted Bonferroni-based multiple test

procedures. Compared to the original graphical approach, the proposed generalized

graphical approach is more flexible and efficient. In terms of efficacy, the proposed
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α/2
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1

1/2
1/4 1/2
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1/2 1/2
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1/2

1/4
1/2

1/4
1/2

Figure 2.2 Graphical illustration of Example 2.1 at step 2.

H6

3α/4

H7

α/8

H8

α/81/2

1/2

1/2
1/2

1/2
1/2

Figure 2.3 Graphical illustration of Example 2.1 at step 3.

H7

α/2

H8

α/21

1

Figure 2.4 Graphical illustration of Example 2.1 at step 4.
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H1

α/3
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α/3
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H3

α/3

1 1 1

1
1/3

1/2
1/3

1/2
1/3

1
1/3

1/3
1/2

1/3
1/2

Figure 2.5 Graphical illustration of Example 2.2, with m = 9, initial allocation

α = {α/3, α/3, α/3, 0, 0, 0, 0, 0, 0}, and overall level α = 0.05.
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Figure 2.6 Updated graph of Example 2.2 at step 2.
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Figure 2.7 Updated graph of Example 2.2 at step 3.
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2α/3

H9

α/3

1 1

Figure 2.8 Updated graph of Example 2.2 at step 4.
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generalized graphical approach is able to reject more than one hypothesis at each

step which remarkably streamlines the testing process. Even though the extended

original graphical approach can also reject more than one hypothesis at each step,

there is no closed form for updating critical value functions and transition coefficient

functions once for a rejection set at each step. Instead, one needs to update them

for each rejected hypothesis iteratively. Regarding the flexibility, hypotheses with

positive local critical values have chances to be rejected no matter wherever they are

in the graphs by the proposed approach. Specifically, if we only allow one hypothesis

to be rejected at each step, then the proposed graphical approach reduces to the

original one. As a by-product, we generalize the sequential rejection principle of

Goeman and Solari (2010) from the univariate case to the multivariate case, and

develop a generalized sequential rejection principle. By using this principle, we show

the FWER control of the generalized graphical approach.

Even though Burman et al. (2009) proposed a recycling-based graphical

approach for Bonferroni-based MTPs, which can reject more than one hypothesis

at each step, their graphical approach is not as general as our proposed graphical

approach. All tested hypotheses are displayed as different sequence according to some

clinical relationships among hypotheses in a graph, and only hypotheses located at

the top of each sequence have chances to be rejected. However, for our proposed

graphical approach, hypotheses with positive local critical values have chances to be

rejected no matter wherever they are in the graphs. Moreover, transition coefficients

among hypotheses are not as general as they are in our proposed graphical approach.

With the increased number of tested hypotheses, it becomes complicated and tedious

to diaplay all possible sequences/paths of tested hypotheses.

In the future, we plan to implement the proposed graphical approach in R

package, such that users can use the proposed approach more conventionally and

quickly.
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CHAPTER 3

A GRAPHICAL APPROACH FOR LOGICALLY RELATED

MULTIPLE HYPOTHESES TESTING

3.1 Introduction

In this chapter, we focus on developing a new graphical approach for logically

related multiple hypotheses testing. With the increasing complexity of study

objectives in clinical trials, one arising question is that how to reflect the complex

research objectives properly, such as how to formulate multiple structured families

of hypotheses for a specific clinical study. Various MTPs, which are used for testing

structured families of hypotheses, have been developed with strong control of the

FWER. For instance, gatekeeping procedures are developed for testing multiple

families of hypotheses with special logical structures (Hommel, Bretz and Maurer,

2007; Guilard, 2007; Dmitrienko, Tamhane and Wiens, 2008; Dmitrienko and

Tamhane, 2011; Dmitrienko and Tamhane, 2013). The conventional fixed sequence

procedures are further extended to accommodate to logically structured multiple

families of hypotheses (Kim, Entsuah and Shults, 2011). However, these MTPs are

usually applied to hierarchically ordered families of hypotheses, not applicable for any

general logically related hypotheses testing.

As discussed in Chapter 2, Bretz et al. (2009) proposed the original graphical

approach to describe MTPs. However, Maurer and Bretz (2013) claimed that this

graphical approach can not work efficiently for logically related hypotheses. To

solve the issue, they proposed an entangled graphical approach (Maurer and Bretz,

2013), which memorizes all logical relationships among tested hypotheses in the sense

that the origin of the propagated critical value is memorized in subsequent tests.

In this graphical approach, each logical relationship is taken into account in an

individual graph, and hypotheses in each individual graph are tested by using the
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same algorithm of the original graphical approach (Bretz et al., 2009). Moreover,

each individual graph is updated step by step by removing rejected hypotheses. The

overall rejections of all individual graphs are the final testing results of the study.

It is shown that the proposed entangled graphs are equivalent to the default graphs

introduced in Burman et al. (2009), where each logical relationship is illustrated

as a sequence of logically related hypotheses in a default graph. Meinshausen

(2008) formulated a variable selection problem in high-dimensional regression as a

tree-structured hypotheses testing problem and developed a hierarchy method. It can

be regarded as a special case of the original graphical approach (Bretz et al., 2009),

where descendant hypotheses in the same layer are allocated with equal critical values

if their parent hypotheses are rejected, otherwise they are non-testable.

The entangled graphical approach provides one solution to deal with general

logical relationships among tested hypotheses. However, even when testing four

hypotheses with two constraints (see the case study in Maurer and Bretz, 2013),

the entangled graph with both solid and dashed edges at each iteration seems to be

complicated and non-intuitive. If more logical relationships among hypotheses there

are, one can image how complicated the graphs will be if using the entangled graphical

approach. Moreover, for each individual graph, no more than one hypothesis can be

rejected at each step, thus it is also not computationally efficient.

In this chapter, the main goal is to develop an efficient and flexible graphical

approach for testing any logically related multiple hypotheses, in which all logical

relationships can be visualized in one graph. For non-testable hypotheses, which are

hypotheses with some unsatisfied logical constraints, we represent them as dashed

circles instead of original solid circles in graphs. The dashed circle is changed to a

solid one if the logical constraint(s) is satisfied. For example, suppose we are interested

in testing eight hypotheses in Figure 3.1, where hypotheses H4 and H5 are testable

if and only if H1 and H2 are rejected, respectively; H7 and H8 are testable if and
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only if H4 and H5 are rejected, respectively; and H6 is testable if and only if H3 is

rejected. Hypotheses H4, . . . , H8 are all non-testable at the initial step, thus they are

all represented as dashed circles.

In order to make full use of positive critical values assigned to non-testable

hypotheses, we propose a re-assignment rule. In Figure 3.1, initially, α7 = α8 = α/4,

these critical values need to be re-assigned to testable hypotheses via edges from

non-testable to testable hypotheses, which increase the chance of rejections. However,

the re-assigned critical values are temporarily “borrowed” to testable hypothese; after

each test step, they need to be returned to their original non-testable hypotheses.

Utilizing the re-assignement rule at the beginning of each step, one can take full use

of thoses critical values assgined to non-testable hypotheses. We will demonstrate the

re-assignment rule in details in Section 3.2.1.

The proposed graphical approach in this chapter is able to reject more than one

hypothesis at each step by employing the generalized graphical approach introduced

in Chapter 2, thus increases the efficacy of multiple testing strategies. By applying the

generalized sequential rejection principle, we can show that the proposed graphical

approach strongly controls the FWER at level α. Theoretical details are presented

in Section 3.4.

The advantages of the proposed graphical approach for logically related multiple

hypotheses testing are: (i). compared to the entangled graphical approach, logical

relationships can be presented in an individual graph transparently, instead of

several individual graphs, which makes it clear and simple to communicate with

clinical teams. Moreover, the proposed re-assignment rule guarantees full use of

assigned critical values, especially for critical values of non-testable hypotheses. (ii)

compared to the original graphical approach in Bretz et al. (2009), the proposed

graphical approach can work efficiently for logically related multiple hypotheses

testing. Moreover, more than one hypothesis can be rejected at each step, which
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1/2 1/2

1 1

Figure 3.1 Graphical illustration of Example 3.1, with m = 8, and initial allocation

α = {α/4, α/4, 0, 0, 0, 0, α/4, α/4}, and overall level α = 0.05.
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makes it computationally efficient. Furthermore, with reduction of total updated

graphs, the graphical presentation to clinical teams is much more explicit. (iii)

the proposed graphical approach seperates the logical relationships and the clinical

importance of tested hypotheses, which is usually not distinguished in many existing

MTPs.

The rest of this chapter is organized as follows: in Section 3.2, we introduce some

general notations, assumptations and definitions used in this chapter. The graphical

approach for logically related multiple hypothese testing is introduced with a simple

and iterative algorithm to perform a MTP in Section 3.3. The FWER control of the

proposed approach is showed in Section 3.4. In Section 3.5, we demonstrate clinical

trial examples to clearly illustrate the proposed graphical approach. In Section 3.6,

conclusion and further discussion are given.

3.2 Preliminaries

In this section, we introduce some general notations, assumptions and definitions used

in this chapter. Consider a logically related multiple testing problem with m null

hypotheses H1, ..., Hm. Let H = {H1, ..., Hm} be a collection of m null hypotheses,

and I = {1, ...,m} be the corresponding indices. Suppose α = (α1, ..., αm) be the

pre-speficied allocation of the overall critical value α to each individual hypothesis at

the beginning of test. We assume all true null p-values are stochastically greater than

or equal to uniform distribution on [0,1]. Initially, the critical values α and transition

coefficient matrix G=(gij) are given. All raw p-values are observed, such that p =

(p1, ..., pm).

Different from the original graphical approach proposed by Bretz et al. (2009),

we employ the graphical approach introduced in Chapter 2, where a multivariate

critical value function and transition coefficient function based on a set of rejections

are presented. Given a function αl(R̂i−1) defined on R̂i−1 for hypothesis Hl, l ∈ Ii,
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at step i, i = 1, ...,m, where R̂i−1 = (R̂1, ..., R̂i−1)
T is a vector of rejections and

R̂1, ..., R̂i−1 are the nonempty, mutually exclusive sets of rejections at step 1, ..., i −

1, respectively. The transition coefficient at step i is defined by a corresponding

transition coefficient function glk(R̂i−1). Denote R̂0 = N (R0) = ∅, αl(R̂0) = αl, and

glk(R̂0) = glk. We assume that
m∑
l=1

αl ≤ α, (3.1)

0 ≤ glk ≤ 1, gll = 0, for l, k = 1, . . . ,m, (3.2)

m∑
k=1

glk = 1, for every l = 1, ...,m. (3.3)

At the beginning of each step i, we have an updated indices of the remaining

hypotheses Ii, and an updated set of the remaining testable hypotheses Ti, where

Ti ⊆ Ii for all i = 1, ...,m. Initially, we have I1 = I = {1, ...,m}. For each R̂i at step

i, let the corresponding indices be Ji with J0 = ∅.

3.2.1 The Re-assignment Rule

In this section, we introduce a re-assignment rule to ensure positive critical values of

the non-testable hypotheses are fully used. If at the beginning of any testing step

i, i = 1, ...,m, for any f ∈ Ii\Ti,we have αf (R̂i−1) > 0, then apply the re-assignment

rule, which is stated as follows.

Definition 1 (Re-assignment Rule (RAR)). If αf (R̂i−1) > 0, for f ∈ Ii\Ti, and

gfl(R̂i−1) > 0, for l ∈ Ti, where i = 1, ...,m, then

bfl(R̂i−1) = gfl(R̂i−1)× αf (R̂i−1)

is re-assigned critical value function to hypothesis Hl from the non-testable hypothesis

Hf at the beginning of step i. Note that bfl(R̂0) = bfl.
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After re-assignment, the critical values of all non-testable hypotheses become

zero. We construct a re-assignment table which illustrates details of overall

re-assignment at the beginning of each step. The first big column in the table is

non-testable hypotheses with positive critical values, while the second big column in

the table is testable hypotheses that “borrowed” critical values from thoses hypotheses

listed in the first column. For Example 3.1 displayed in Figure 3.1, at the beginning

of step 1, we have the re-assignment table, see Table 3.1.

Table 3.1 Re-assignment Table of Example 3.1 at Step 1.

H(test)

H(nontest) H1 H2

H7 0 α/4

H8 α/4 0

Note: H(test) are testable hypotheses that “borrow” critical values from non-testable

hypotheses, while H(nontest) are non-testable hypotheses with positive critical values.

Remark 8. For simplicity of illustration, we assume there exist direct edges

between non-testable and testable hypotheses. In practice, the connection between

a non-testable and a testable hypothesis is not always direct, there may have some

“bridges”, i.e. other non-testable hypotheses, to connect them. In this case, the

eventually re-assigned critical value from the original non-testable hypothesis to the

testable hypothesis is the product of all associated transition coefficients along this

path multiplied by the critical value function of the original non-testable hypothesis.

The re-assignment only affects the local critical value of each individual hypothesis,

but has no effect on the sum of the critical values over all hypotheses at any step i.
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3.3 The Proposed Graphical Approach

In this section, we present our proposed graphical approach for logically related

multiple hypotheses testing. With RAR introduced in Section 3.2.1, using the

same multivariate critical value function and transition coefficient function defined

in Section 2.3, the following algorithm defines a sequentially rejective procedure for

testing logically related hypotheses.

Algorithm 3. :

Step 1.

a). If αf > 0, for any f ∈ I1\T1, apply RAR. Fill in the corresponding re-assignment

table.

b). For j ∈ T1, if pj ≤ αj +
∑
f

bfj, then reject Hj, thus we have R̂1 = {Hj ∈ H : pj ≤

αj +
∑
f

bfj, for all j ∈ T1}; If R̂1 = ∅, stop testing.

c). Return the “borrowed” critical values to their original hypotheses according to the

re-assignment table.

d). Update the graph:

I1 → I2,

αl(R̂1) =


αl +

∑
j∈J1

αjgjl, if l ∈ I2,

0, otherwise,

(3.4)

glk(R̂1) =


glk+

∑
j∈J1

gljgjk

1−
∑
j∈J1

∑
q∈J1

gljgjq−
∑
j∈J1

gljgjl
, if l, k ∈ I2, and l 6= k,

0, otherwise.

(3.5)

Step i(i ≥ 2).

a). For |Ti| ≥ 1, if αf (R̂i−1) > 0, for any f ∈ Ii\Ti, apply RAR. Fill in the

corresponding re-assignment table.

b). For j ∈ Ti, if pj ≤ αj(R̂i−1) +
∑
f

bfj(R̂i−1), then reject Hj, thus we have R̂i =
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{Hj ∈ H : pj ≤ αj(R̂i−1) +
∑
f

bfj(R̂i−1), for all j ∈ Ti}; If R̂i = ∅, stop testing.

c). Return the “borrowed” critical values to their original hypotheses according to the

re-assignment table.

d). Update the graph:

Ii → Ii+1,

αl(R̂i) =


αl(R̂i−1) +

∑
j∈Ji

αj(R̂i−1)gjl(R̂i−1), if l ∈ Ii+1,

0, otherwise,

(3.6)

glk(R̂i) =


glk(R̂i−1)+

∑
j∈Ji

glj(R̂i−1)gjk(R̂i−1)

1−
∑
j∈Ji

∑
q∈Ji

glj(R̂i−1)gjq(R̂i−1)−
∑
j∈Ji

glj(R̂i−1)gjl(R̂i−1)
, if l, k ∈ Ii+1 and l 6= k,

0, otherwise.

(3.7)

Logical relationships and clinical importance are usually involved together in a

multiple testing problem; by using RAR, one can distinguish these two concepts, and

make efficiently use of the critical values that assigned to non-testable hypotheses.

At any step of Algorithm 3, the updates of critical value function and transition

coefficient function apply for both testable and non-testable hypotheses.

Proposition 2. Under the assumptions stated in (3.1), (3.2), and (3.3) for initial

critical values and transition coefficients, at each step i = 1, . . . ,m, the critical value

function and transition coefficient function defined in Algorithm 3 have the following

properties:

For transition coefficient function,

1.
∑
k∈Ii

glk(R̂i−1) = 1, for i = 1, ...,m, and Ii ⊆ {1, . . . ,m}, (3.8)

2. 0 ≤ glk(R̂i−1) ≤ 1, gkk(R̂i−1) = 0, for i, l, k = 1, ....,m, (3.9)
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For critical value function,

3.
∑
l∈Ii

αl(R̂i−1) ≤ α, for i = 1, ...,m, and Ii ⊆ {1, . . . ,m}, (3.10)

4. αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, (3.11)

and for i = 1, ...,m.

The proof of Proposition 2 is deferred to Appendix B.

Remark 9. For Algorithm 3, if we encounter the case of the denominators of the

right-sides in (3.5) and (3.7) being equal to zero, we always set glk(R̂i) to be zero.

At any step, the critical value defined by the critical value function of one specific

hypothesis is fully allocated to its related hypotheses via the transition coefficients

defined by the transition coefficient function, i.e.
∑
k∈Ii

glk(R̂i−1) = 1. This also aims

to make full advantage of the initial critical values of logically related hypotheses.

3.4 Main Theoretical Results

In this section, we will show that the proposed graphical approach strongly controls

the FWER at level α. The MTPs generated by this graphical approach with

Algorithm 3 are sequentially rejective procedures. Emphasizing on the sequential

aspect of this approach, in Theorem 4, we show the FWER control of the proposed

approach by utilizing the generalized sequential rejection principle introduced in

Chapter 2.

Theorem 4 (FWER control of the proposed graphical approach). The graphical

approach for logically related multiple hypotheses testing strongly controls the FWER

at level α under arbitrary dependence.

For the proof of Theorem 4, see Appendix B.
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3.5 Clinical Trial Examples

In this section, we apply the proposed graphical approach to two different clinical trial

examples, where there exists some logical relationships among tested hypotheses.

3.5.1 Example 3.1

In this section, we revisit Example 3.1 displayed in Figure 3.1. The overall critical

value α = 0.05 is allocated to eight hypotheses, α = {α/4, α/4, 0, 0, 0, 0, α/4, α/4},

and the transition coefficient matrix is

G =



0 0 1/2 1/2 0 0 0 0

0 0 1/2 0 1/2 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1/2 1/2 0

0 0 0 0 0 1/2 0 1/2

0 0 0 1/4 1/4 0 1/4 1/4

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



.

Assume the observed unadjusted p-values p1, . . . , p8 are 0.001, 0.002, 0.018, 0.011,

0.009, 0.016, 0.015, 0.012. Applying Algorithm 3, the test is done in the following

steps:

Step 1 :

a). Since the non-testable hypotheses H7 and H8 have positive local critical

values, we apply the re-assignment rule first. See Table 3.1 for details of re-assignment.

Thus the critical values of H1 and H2 are changed from α/4 to α/2.

b). We test all eight hypotheses at their local critical values. Since p1 = 0.001 <

0.025 = α/2, p2 = 0.002 < 0.025 = α/2, we reject H1 and H2, i.e. R̂1 = {H1, H2}.
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c). Before updating the critical value function and transition coefficient

function in Algorithm 3, we first return the “borrowed” critical values to non-testable

hypotheses H7 and H8.

d). The updated graph is displayed in Figure 3.2. We also update the critical

value functions and transition coefficient functions as follows:

α3(R̂1) = 1/2× α/4 + 1/2× α/4 = α/4,

α4(R̂1) = 1/2× α/4 = α/8,

α5(R̂1) = 1/2× α/4 = α/8,

α7(R̂1) = α8(R̂1) = α/4,

g73(R̂1) = g75(R̂1) = g83(R̂1) = g84(R̂1) = 1/2.

The other transition coefficient functions among the rest hypotheses remain the same.

According to the rejection set R̂1, logical conditions of H4 and H5 are fulfilled.

Step 2 :

a). Since the re-assignment rule is still applicable, the critical value of non-

testable hypotheses H7 is equally re-assigned to H3 and H5 and the critical value of

non-testable hypotheses H8 is equally re-assigned to H3 and H4. See Table 3.2 for

the re-assignment of critical values at the beginning of step 2. The critical values of

H3, H4 and H5 are changed from α/4, α/8, α/8 to α/2, α/4, α/4, respectively.

b). We test the remaining six hypotheses. Since p3 = 0.018 < 0.029 = α/2,

p4 = 0.011 < α/4, p5 = 0.009 < α/4, thus we reject hypotheses H3, H4 and H5, i.e.

R̂2 = {H3, H4, H5}.

c). Return the “borrowed” critical values to H7 and H8.

52



d). The updated graph is displayed in Figure 3.3. We also update the critical

value functions and transition coefficient functions:

α6(R̂2) = α/4 + 1/2× α/8 + 1/2× α/8 = 3α/8,

α7(R̂2) = α/4 + 1/2× α/8 = 5α/16,

α8(R̂2) = α/4 + 1/2× α/8 = 5α/16,

g67(R̂2) = g68(R̂2) = g76(R̂2) = g78(R̂2)

= g86(R̂2) = g87(R̂2) = 1/2.

According to the rejection set R̂2, the logical conditions of H7 and H8 are fulfilled.

Step 3 :

The remaining three hypotheses are all testable. Since p6 = 0.016 < 3 ×

α/8, p7 = 0.015 < 5α/16, p8 = 0.012 < 5α/16, we reject the remaining hypotheses, so

R̂3 = {H6, H7, H8}.

Overall, it takes three steps to complete the whole test, and all eight hypotheses

are rejected.

3.5.2 Example 3.2

In this example, we consider simultaneously testing six hypotheses H1, . . . , H6, with

two logical restrictions, see Figure 3.4. The hypothesis H5 is testable if and only if H1

or H2 is rejected. And hypothesis H6 is testable if and only if H3 or H4 is rejected.

The initial critical value is allocated as α = {α/4, α/4, 0, 0, α/6, α/3}, and overall

level α = 0.05. We assume the observed raw p-values p1, . . . , p6 are 0.001, 0.006,

0.015, 0.01, 0.001, 0.028. Applying Algorithm 3, the test is done in the following

steps:

Step 1 :

a). Since for non-testable hypotheses H5 and H6, their corresponding local

critical values α5 > 0 and α6 > 0, thus we apply RAR. The critical value of H5, α5
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is re-assigned proportionally to H1 and H2 based on their transition coefficients g51

and g52; Similarly, the critical value of H6, α6 is re-assigned proportionally to H3 and

H4 based on their transition coefficients g63 and g64. The re-assignment is illustrated

in Table 3.3. After re-assignment, test H1, H2, H3 and H4 at level α/4 + 1/3×α/6 =

11α/36, α/4+1/3×α/6 = 11α/36, 1/2×α/3 = α/6 and 1/2×α/3 = α/6, respectively.

b). Test all six hypotheses. Since p1 = 0.001 < 11α/36, p2 = 0.006 < 11α/36,

we reject H1 and H2, i.e. R̂1 = {H1, H2}.

c). Return the “borrowed” critical values to H5 and H6.

d). The updated graph is displayed in Figure 3.5, where H5 becomes testable.

We also update the graph as well as the critical value functions and transition

coefficient functions by Algorithm 3:

α3(R̂1) = α4(R̂1) = 3/4× α/4 = 3α/16,

α5(R̂1) = α/6 + 1/4× α/4 + 1/4× α/4 = 7α/24,

α6(R̂1) = α/3,

g56(R̂1) = 2/5,

g53(R̂1) = g54(R̂1) = 3/10,

g36(R̂1) = g46(R̂1) = 1,

g63(R̂1) = g64(R̂1) = 1/2.

Step 2 :

a). Since H6 is still non-testable, at the beginning of step 2, we apply RAR.

Re-assign α6(R̂1) to H3 and H4 according to the associated transition coefficients.

The details of the re-assignment is listed in Table 3.4.

b). Test H3, H4 and H5 at level 17α/48, 17α/48 and 7α/24, respectively. Since

p3 = 0.015 < 17α/48, p5 = 0.001 < 7α/24, we reject H3 and H5, i.e R̂2 = {H3, H5}.

c). We first return the “borrowed” critical value to H6.
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d). The updated graph is displayed in Figure 3.6, we also update the critical

value functions and transition coefficient functions:

α4(R̂2) = 3α/16 + 3/10× 7α/24 = 11α/40,

α6(R̂2) = α/3 + 3α/16 + 2/5× 7α/24 = 17α/40,

g46(R̂2) = g64(R̂2) = 1.

Step 3 :

Since the remaining two hypotheses are both testable, we test them at their

local critical values. Since p4 = 0.01 < 11α/40, we reject H4, i.e R̂3 = {H4}.

Step 4 :

We further test H6 at level 28α/40. Since p6 = 0.028 < 28α/40, we finally reject

H6.

Overall, it takes four steps to reject all six tested hypotheses.

Table 3.2 Re-assignment Table of Example 3.1 at Step 2.

H(test)

H(nontest) H3 H4 H5

H7 α/8 0 α/8

H8 α/8 α/8 0

3.6 Discussion

In this chapter, we propose a flexible and efficient graphical approach for logically

related multiple hypotheses testing, which is a further development of the generalized

graphical approach in Chapter 2. In this graphical approach, we introduce different

graphical representations of hypotheses with and without logical restrictions in one
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H3

α/4

H4

α/8

H5

α/8

H6

H7

α/4

H8

α/4

1

1/2
1/4

1/4 1/4

1/2
1/4

1/2 1/2

1/2 1/2

1/2 1/2

Figure 3.2 Graphical illustration of Example 3.1 at step 2.

H6

3α/8

H75α/16 H8 5α/16

1/2
1/2

1/2
1/2

1/2

1/2

Figure 3.3 Graphical illustration of Example 3.1 at step 3.
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H5

α/6

H3 H4

H1

α/4

H2

α/4

H6

α/3

1/4 1/4

3/4 3/4

1/3

1 11/2 1/2

1/2 1/2

Figure 3.4 Graphical illustration of Example 3.2, with m = 6 and initial allocation

α = {α/4, α/4, 0, 0, α/6, α/3}.

H5

7α/24

H3

3α/16

H4

3α/16

H6

α/3

2/5

1 11/2 1/2

3/10 3/10

Figure 3.5 Updated graph of Example 3.2 at step 2.
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Table 3.3 Re-assignment Table of Example 3.2 at Step 1.

H(test)

H(nontest) H1 H2 H3 H4

H5 α/18 α/18 0 0

H6 0 0 α/6 α/6

Table 3.4 Re-assignment Table of Example 3.2 at Step 2.

H(test)

H(nontest) H3 H4

H6 α/6 α/6

graphical display. A re-assignment rule is included in the graph such that one can

make full use of the assigned critical values from non-testable hypotheses. Also, the

allocation of the overall critical value is based on the clinical importance of hypotheses,

which is independent of logical relationships among tested hypotheses. Compared

with the original graphical approach, the proposed graphical approach has at least two

advantages. First, the proposed graphical approach can be used to efficiently perform

MTPs for any general logically related hypotheses. Second, the proposed graphical

approach can reject more than one hypothesis at each step, which is computationally

efficient. Compared with the entangled graphical approach, the proposed graphical

H4

11α/40

H6

17α/40

1

1

Figure 3.6 Updated graph of Example 3.2 after step 3.
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approach can display and perform a MTP in one graph at each step, which is more

simple and intuitive to present to clinical teams. For future research, a main work is

to implement the proposed graphical approach in R package, which can help users to

conduct logically related hypotheses testing more conventionally and quickly.
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CHAPTER 4

SELECTIVE INFERENCE PROCEDURES IN LARGE SCALE

HYPOTHESES TESTING

4.1 Introduction

In this chapter, we focus on developing powerful selective inference methods in

large scale multiple hypotheses testing. When testing a large number of hypotheses

simultaneously, one natural testing strategy is to first reduce the number of tested

hypotheses by some selection process, and then to simultaneously test the selected

hypotheses. The methods developed based on this idea is named as a two-stage

procedure or filtering method or selective inference procedure(Benjamin and Yekutieli,

2005; Fithian et al., 2015; Barber and Candes, 2015; Benjamini and Bogomolov, 2014;

Heller et al., 2016; etc). When selection effects are taken into account, conditional

inference is often used. Therefore, instead of marginal p-values, conditional p-values

should be used to measure statistical significance of every selected hypothesis.

However, the conditional p-values are often difficult to derive. Whether a selective

inference procedure can perform well depends on its conditional p-values have good

statistical properties, which in turn depends on appropriate choices of selection and

testing statistics and the selection threshold.

Independent filtering methods (Bourgon et al., 2010, Dai et al., 2012, Du and

Zhang, 2014, Ignatiadis et al., 2016) were proposed such that the selection and testing

statistics are chosen to be independent when the corresponding null hypothesis is true.

Instead of using conditional p-values, marginal p-values can be used for independent

filtering methods. However, several questions arise about how to best apply the

independent filtering methods: How to choose the selection threshold? How to deal

with the non-selected hypotheses? How to develop powerful procedures such that

filtering information is beneficial?
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The existing independent filtering methods can only deal with selected hypotheses.

And even for selected hypotheses, the information is not fully exploited. Under

the assumptation of independence, we propose three powerful two-stage MTPs,

which can not only exploit information from selected hypotheses more explicitly by

estimating the true null proportion, but also exploit information from the non-selected

hypotheses.

By employing the idea of adaptive procedures, we first propose an adaptive

two-stage Bonferroni procedure, where the proportion of true nulls among selected

hypotheses is estimated from the data and the estimate is incorporated into two-stage

Bonferroni procedure. The adaptive two-stage Bonferroni procedure is generally more

powerful than the corresponding two-stage Bonferroni procedure introduced in Guo

and Romano (2017). A simple selection rule is used for selecting which hypotheses

Hi are to be tested at the second stage. Given a fixed threshold t, Hi is selected iff

Ui ≥ t, where Ui is the selection statistics. Let S = {i ∈ {1, . . . ,m} : Ui ≥ t} denote

the indices of selected hypotheses, with |S| be the number of selected hypotheses.

We estimated true null proportion within S, which is denoted by π̂S. At the second

stage, we apply an adaptive Bonferroni procedure on the selected hypotheses S for

which hypothesis Hi is rejected iff the corresponding p-value Pi ≤ α
π̂S |S|

.

The existing filtering methods only exploit the information contained in

the selected hypotheses, which means the information contained in non-selected

hypotheses are discarded. However, the non-selected hypotheses may have some

useful information. By a selection process, we split hypotheses into two hierarchically

ordered blocks/families, F1 and F2. Based on the hierarchy order of two blocks,

we apply the idea of parallel gatekeeping strategy (Dmitrienko, Offen and Westfall,

2003) and develop a selective parallel gatekeeping procedure. While based on the

importance of two blocks, we apply the idea of data-driven weights (Fino and Salmaso,

2007; Roeder and Wasserman, 2009; Poisson et al., 2012; Ignatiadis et al., 2016; Li
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and Barber, 2016; Lei and Fithian, 2016; Ignatiadis and Huber, 2017) and develop a

data-driven weighted selective procedure.

The main idea of selective parallel gatekeeping procedure is that critical values

of the current family can be passed down to the subsequent families if at least one

significant result is obtained in the current family. Apply the conventional Bonferroni

procedure to test hypotheses of F1 at level α, and let |R1| denote the number of

rejected hypotheses in F1, then a fraction of the critical value of F1,
α
|S| |R1| will be

passed to F2 to further exploit significant results within F2.

The main idea of data-driven weighted selective procedure is that different

weights Wi are assigned to different families Fi, i = 1, 2 to measure their importance.

For construction of data-driven weights, our basic idea is that a family with higher

proportion of false nulls is assigned with a higher weight, such that we have higher

chance to obtain significant results. Moreover, weights can be further improved by

incorporating into the information of proportions of true nulls.

The proposed two-stage MTPs divide hypotheses into two blocks, in order to

exploit information from each null hypothesis more explicitly, we generalize them

from two blocks to multiple blocks. We first propose a blockwise adaptive two-stage

Bonferroni procedure. Inspired by Kim and Schliekelman (2015), tested hypotheses

are ordered according to the selection/filtering staitstics Ui, then are divided into

K (pre-defined) blocks. We then estimate true null proportion π̂Bl for Bl, where

Bl, l = 1, . . . , K is the index set of hypotheses in such block. Within each block,

we apply adaptive Bonferroni procedure, for which hypothesis Hi is rejected iff the

corresponding p-value Pi ≤ α
π̂Bl |Bl|K

.

When we have more than two hierarchy ordered blocks, a blockwise selective

parallel garekeeping procedure is naturally developed. The basic idea is that for

ordered null hypotheses, we assign different weight wl for Bl = 1, . . . , K − 1, where

wl =
∑K−1
j=1 |Bj |

λ
∑l
j=1 |Bj |

. λ is a correction factor to ensure the FWER control of the proposed
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procedure. Such weight construction is followed in Kim and Schliekelman (2015). We

have w1 > . . . > wK = 0. We then apply weighted Bonferroni procedure from B1 to

BK . The critical values are also allocated in this order if any rejections made, i.e.

αl+1 = wl+1α + αl|Rl|
|Bl|

, where Rl is denoted as a collection of rejections made within

Bl. Thus hypotheses in lower weighted block may have a chance to be rejected with

such allocation of critical values.

When we have more than two blocks, based on their importance, it is natural

to propose a blockwise data-driven weighted selective procedure, in which different

weights Wl are assigned to different Bl = 1, . . . , K. For construction of data-driven

weights, our basic idea is similar as the data-driven weighted selective procedure.

After ordering null hypotheses according to the selection statistics Ui, a block with

higher proportion of false nulls is assigned with a higher weight, such that we have

higher chance to obtain significant results. Moreover, weights can be further improved

by incorporating into the information of proportions of true nulls.

The rest of the chapter is organized as follows: in Section 4.2, we formulate our

problem. In Section 4.3, we introduce three different selective procedures as well as

their theoretical results on FWER control. In Section 4.4, we further generalize the

proposed three selective inference MTPs described in Section 4.3. In Section 4.5, a

concluding remark is given.

4.2 Problem Formulation

In this section, we introduce the multiple testing problem that we focus on throughout

this chapter. Assume that for i = 1, . . . ,m, a sample of size ni from a normal

population with unknown mean µi and variance σ2
i = 1. The data

Xij
iid∼ N(µi, σ

2
i ), for j = 1, . . . , ni.
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The m samples are assumed to be mutually independent. For simplicity, we assume

ni = n. For i = 1, . . . ,m, consider testing hypotheses

Hi : µi = 0 vs. H
′

i : µi 6= 0.

Let I = {1, . . . ,m} be the index set of the tested hypotheses. And let Ui and Ti denote

the the selection and testing statistics, respectively, which are defined as follows:

Ui =

ni∑
j=1

X2
ij, (4.1)

Ti =
Xi

σ̂i/
√
ni
, (4.2)

where X i and σ̂2
i are respectively the sample mean and (unbiased) sample variance for

the ith sample, i.e., X i = 1
n

∑n
j=1Xi,j and σ̂2

i = 1
n−1

∑n
j=1(Xi,j −X i)

2. The statistics

Ui is first used to “select” which of the hypotheses to “test” in the second stage, at

which point the statistics Ti is used. It is showed that under true null hypothesis Hi,

Ui follows χ2
n and Ti follows tn−1, and Ui is independent of Ti (Lehmann and Romano,

2005).

For each Hi, i = 1, . . . ,m, we calculate the p-value Pi based on Ti such that

Pi = PrHi{|Ti| ≥ ti},

where ti is the observed value of the T -statistics Ti. Let P(1), . . . , P(m) be the ordered

values of P1, . . . , Pm and H(1), . . . , H(m) be the corresponding null hypotheses.

4.3 Proposed Two-stage Selective Inference MTPs

In order to improve existing two-stage MTPs, we propose three different MTPs in this

section. We first develop an adaptive two-stage Bonferroni procedure by incorporating

into the information of the proportion of true nulls among selected hypotheses. We

then take non-selected hypotheses into account as well, by using a parallel gatekeeping
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strategy, where selected hypotheses serve as a gatekeeper for non-selected hypotheses,

we develop a selective parallel gatekeeping procedure to exploit more information

among non-selected hypotheses. Finally, we develop a data-driven weighted selective

procedure by combining ideas of weighted procedures and adaptive procedures.

4.3.1 Adaptive Two-stage Bonferroni Procedure

In order to improve existing two-stage Bonferroni procedures, we employ the adaptive

Bonferroni procedure among selected hypotheses. Adaptive Bonferroni procedures

estimate the proportion of true null hypotheses and then incorporate it into the

conventional Bonferroni procedure to derive more powerful testing procedures.

Similarly, by incorporating into the information of the proportion of true nulls among

selected hypotheses S, we can develop more powerful MTPs than exisitng two-stage

MTPs. The key point is how to estimate the true null proportion among S. Several

estimators of true null proportion have been introduced in the literature (Schweder

and Spjotvoll, 1982; Benjamini and Hochberg, 2000; Storey et al., 2004; Benjamini,

Krieger and Yekutieli, 2006; Meinshausen and Rice, 2006; Sarkar, 2008; Blanchard

and Roquain, 2009; Sarkar, Guo and Finner, 2012). We use widely-used Storey-type

estimator for the proposed adaptive two-stage Bonferroni procedure in this chapter:

π̂S =
QS(λ)

(1− λ)|S|
, (4.3)

where λ is a fixed constant with 0 < λ < 1, |S| is the number of selected hypotheses,

and QS(λ) =
∑

k∈S I{Pk>λ} is the number of selected hypotheses such that the

corresponding p-values exceed λ.

Based on the pre-defined selection threshold and the conservative Stroey-type

estimator π̂S, an adaptive two-stage Bonferroni procedure is defined as follows:

Definition 2 (Adaptive two-stage Bonferroni procedure).

65



1. For a fixed selection threshold t, we have S = {i ∈ {1, . . . ,m} : Ui > t}.

2. For a fixed λ ∈ (0, 1), calculate QS(λ) =
∑

i∈S I{Pi>λ}, and then calculate π̂S based

on (4.3).

3. Reject H(1), . . . , H(r), where:

r = max{i = 1, . . . , |S| : P(i) ≤
α

π̂S|S|
}.

No rejection if such maximum does no exist.

Before we show the FWER control of the proposed procedure, we first introduce

the following lemma (Benjamini et al., 2006):

Lemma 1. If Y ∼ Bin(N, p), then E{(Y + 1)−1} < {(N + 1)p}−1.

Let S0 be the index set of true null hypotheses among S, and QS0(λ) =∑
i∈S0

I{Pi>λ} be the number of true null hypotheses among S such that the

corresponding p-values exceed λ. Note that PrHi0{Pi > λ} = 1 − λ, by the

independence of true null p-values, we have

QS0(λ) ∼ Bin(|S0|, 1− λ).

By Lemma 1, we have the following result.

Theorem 5. The above defined adaptive two-stage Bonferroni procedure strongly

controls the FWER at level α under the assumption that pairs of (Ui, Ti) are

independent.

Proof. For given selection statistics Ui, i = 1, . . . ,m, we have S = {i ∈ {1, . . . ,m} :

Ui > t}, which is the index set of the selected hypotheses. We denote cFWER as the

conditional familywise error rate on selection such that

cFWER = Pr
(
reject at least one true null |U1, . . . , Um

)
.
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Let S0 be the index set of true null hypotheses among S, and let Q
(−i)
S (λ) =∑

k∈S\{i}
I{Pk>λ}, and Q

(−i)
S0

(λ) =
∑

k∈S0\{i}
I{Pk>λ}. Similar to (4.3), define π̂

(−i)
S =

Q
(−i)
S (λ)

(1−λ)|S| .

When Hi is true, by independence of true null p-values, we have

Q
(−i)
S0

(λ) ∼ Bin(|S0| − 1, 1− λ). (4.4)

We first consider the cFWER,

cFWER = Pr

⋃
i∈S0

{Pi ≤
α

π̂S|S|
}|U1, . . . , Um


≤

∑
i∈S0

Pr

(
Pi ≤

α

π̂S|S|
|U1, . . . , Um

)

≤
∑
i∈S0

Pr

(
Pi ≤

α

π̂
(−i)
S |S|

|U1, . . . , Um

)

≤
∑
i∈S0

E

(
α

π̂
(−i)
S |S|

|U1, . . . , Um

)

=
∑
i∈S0

E

(
α(1− λ)

Q
(−i)
S (λ) + 1

|U1, . . . , Um

)

≤
∑
i∈S0

E

 α(1− λ)

Q
(−i)
S0

(λ) + 1
|U1, . . . , Um


= α(1− λ)

∑
i∈S0

E

 1

Q
(−i)
S0

(λ) + 1
|U1, . . . , Um


< α(1− λ)

∑
i∈S0

1

(|S0|)(1− λ)
= α
|S0|
|S0|

= α. (4.5)

where the first inequality in (4.5) is due to Bonferroni inequality. The second

inequality holds since Q
(−i)
S (λ) ≤ QS(λ), according to (4.3), π̂

(−i)
S ≤ π̂S. The third

inequality is because of pariwise independence of (Ui, Ti), independence of Ui and

Ti under Hi, and independence of Pi and π̂
(−i)
S . The fourth inequality holds since

Q
(−i)
S0

(λ) ≤ Q
(−i)
S (λ). Due to Lemma 1 and (4.4), we have the inequality in (4.5).

Therefore, FWER = E (cFWER) ≤ α. The desire result is proved. �
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4.3.2 Selective Parallel Gatekeeping Procedure

In this section, we introduce a selective parallel gatekeeping procedure such that

information of non-selected hypotheses is further exploited. Basically, tested

hypotheses are divided into two families F1 and F2 by a selection process, such that

F1 = {Hi : i ∈ S} and F2 = H\F1.

Using the parallel gatekeeping strategy, F1 serves as a gatekeeper of F2. And within

F1, we apply the conventional Bonferroni procedure. Based on the testing results of

F1, the critical values of rejected hypotheses are passed to F2 to further test hypotheses

within F2.

A selective parallel gatekeeping procedure is defined as follows:

Definition 3 (Selective parallel gatekeeping procedure).

1. Based on a fixed selection threshold t, we have S = {i ∈ {1, . . . ,m} : Ui > t}.

Construct F1 = {Hi : i ∈ S} and F2 = H\F1.

2. Simultaneously test all hypotheses in F1 using the conventional Bonferroni

procedure at level α1 = α. Let R1 denote the rejection set, such that

R1 = {Hi ∈ F1 : Pi ≤
α

|S|
}.

3. If |R1| = 0, stop test. Otherwise, update the critical value of F2, such that

α2 =
α|R1|
|S|

.

Simultaneously test all hypotheses in F2 using any FWER controlling procedure at

level α2.

Remark 10. Consider using the multistage gatekeeping procedure introduced in

Dmitrienko, Tamhane and Wiens (2008) for sequentially testing families F1 and F2.
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F1

α

F2

1

Figure 4.1 Graphical illustration of selective parallel gatekeeping procedure.

If applying the conventional Bonferroni procedure to test the hypotheses within F1 at

level α, then hypotheses within F2 can be tested at level α2 = α − e∗(A1) = α|R1|
|S| ,

where A1 is the acceptance set within F1 and e∗(A1) = α|A1|
|S| is the upper bound of the

error function of the conventional Bonferroni procedure.

The graphical illustration of such procedure is shown in Figure 4.1. For the

proposed procedure, we have the following result.

Theorem 6. The above defined selective parallel gatekeeping procedure strongly

controls the FWER at level α under the assumption that pairs of (Ui, Ti) are

independent.

Proof. For given selection statistics Ui, i = 1, . . . ,m, we have S = {i ∈ {1, . . . ,m} :

Ui > t}, which is the index set of the selected hypotheses. Then F1 = {Hi : i ∈ S}

and F2 = H\F1 are defined. Following closely the proof in Qiu et al. (2017), we first

define an event

Ei(x) = {at least one false rejection in Fi at level x}, i = 1, 2.

Then the FWER can be expressed as follows:

cFWER = Pr
(
E1(α1) ∪ E2(α2)|U1 . . . , Um

)
= Pr

(
E1(α1)|U1, . . . , Um

)
+ Pr

(
Ē1(α1) ∩ E2(α2)|U1, . . . , Um

)
. (4.6)
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Let e∗(·) as an upper bound of error rate function e(·). By the definition of the

error rate function in (1.8), we know that

Pr
(
E1(α1)|U1, . . . , Um

)
≤ e(T1) ≤ e∗(T1),

where T1 is the set of true null hypotheses in F1.

Let A1 denote as the acceptance set within F1. For the second term in (4.6),

if Ē1(α1) is realized, i.e., all rejected hypotheses in F1 are false, then T1 ⊆ A1. By

monotonicity of e∗(·) (Dmitrienko, Tamhane and Wiens, 2008), we have e∗(T1) ≤

e∗(A1) for T1 ⊆ A1 . Therefore,

α2 = α1 − e∗(A1) ≤ α1 − e∗(T1),

which further implies

Ē1(α1) ∩ E2(α2) ⊆ E2(α1 − e∗(T1)).

Thus, by (4.6), we have

cFWER ≤ e∗(T1) + Pr
(
E2(α1 − e∗(T1))|U1, . . . , Um

)
≤ e∗(T1) + α1 − e∗(T1) = α1 = α. (4.7)

The last inequality of (4.7) holds since Pr
(
E2(α1 − e∗(T1))|U1, . . . , Um

)
≤ α1−e∗(T1).

Therefore, FWER = E (cFWER) ≤ α. �

4.3.3 Data-driven Weighted Selective Procedure

The aforementioned two families F1 and F2 are determined by a selection process,

with corresponding index set S and I\S, respectively. Note that there are different

proportions of true and false nulls between S and I\S, we consider to construct

70



different weights by using the proportion information of S and I\S and develop

a new weighted selective MTP. In most cases, we do not have prior knowledge

about the proportions and the resulting weights. Therefore, we plan to develop a

data-driven weighted selective MTP by estimating the proportions of true and false

nulls. For related recent works, see Ignatiadis et al. (2016) and Ignatiadis and Huber

(2017). They developed alternative data-driven weighted methods under independent

filtering.

Ideal case. Suppose we know the true and false null proportions among selected

hypotheses S, which are denoted as π0(S) and π1(S), and those among non-selected

hypotheses I\S, which are denoted as π0(I\S) and π1(I\S). Since the higher the

false null proportion within a family, the more significant results can be obtained; we

then assign a higher weight to that family. Therefore, the weights W ′
1 and W ′

2 for S

and I\S are constructed as

W ′
1 =

π1(S)

π1(S) + π1(I\S)
and W ′

2 =
π1(I\S)

π1(S) + π1(I\S)
, (4.8)

such that W ′
1 +W ′

2 = 1. Then, the same weight is assigned to each hypothesis within

a family. That is, hypotheses within S are assigned with the same weight W ′
1 and

hypotheses within I\S are assigned with the same weight W ′
2. In order to ensure the

sum of the weights of all tested hypotheses is equal to m, we modify W ′
1 and W ′

2 as

follows:

W ′′
1 =

mW ′
1

|S|
and W ′′

2 =
mW ′

2

m− |S|
, (4.9)

such that ∑
i∈S

W ′′
1 +

∑
j∈I\S

W ′′
2 = m.

So far the weights are constructed only based on the proportions of false nulls within

S and I\S. By employing the idea of adaptive procedures, we can further improve
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the weights by incorporating into the information of the proportions of true nulls.

Therefore, our final weights for S and I\S are constructed as follows:

W1 =
W ′′

1

π0(S)
=

mπ1(S)

π0(S)(π1(S) + π1(I\S))|S|
(4.10)

and

W2 =
W ′′

2

π0(I\S)
=

mπ1(I\S)

π0(I\S)(π1(S) + π1(I\S))(m− |S|)
. (4.11)

And for each hypothesis Hi, the weight is assigned as follows:

W̃i =

 W1, if i ∈ S,

W2, if i ∈ I\S.

Finally, we can construct weighted procedures based on the above weights for testing

all m hypotheses simultaneously.

We need to point out that the above weights are derived under the ideal case of

known proportions of true and false nulls. However, in practice, π0(S), π1(S), π0(I\S)

and π1(I\S) are often unknown. With a data at hand, several methods were proposed

to estimate true null proportions in the literature (Schweder and Spjotvoll, 1982;

Benjamini and Hochberg, 2000; Storey et al., 2004; Benjamini, Krieger and Yekutieli,

2006; Meinshausen and Rice, 2006; Sarkar, 2008; Blanchard and Roquain, 2009;

Sarkar, Guo and Finner, 2012), which in turn, can also estimate false null proportions

as well. Then, we can use the estimated true/false null proportions to replace the

true/false null proportions in (4.10) and (4.11) to construct data-driven weights. In

the following, we introduce methods to estimate the true/false null proportions.

Estimation of True/False Null Proportions As we can see in (4.10), W1 is

constructed by two parts, one is W ′′
1 , the other is π0(S); moreover, W ′′

1 is constructed

by false null proportions π1(S) and π1(I\S). In order to ensure independence between
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such two parts, we estimate false null proportions π1(S) and π1(I\S), which are

contributed to construct W ′′
1 , based on selection statistics Ui, and π0(S), which is

contributed to constructed W1 in (4.10), based on testing statistics Ti. The same

argument holds for constructing W2 in (4.11).

Based on selection statistics Ui and testing statistics Ti, we can calculate their

respective p-values with a given data. Let P̃i be a p-value of hypothesis Hi based on

Ui, and let Pi be a p-value of hypothesis Hi based on Ti:

P̃i = PrHi{Ui ≥ u0} and Pi = PrHi{|Ti| ≥ t0},

where u0 and t0 are observed values of Ui and Ti for Hi, respectively.

(i). Estimation of true null proportions based on testing statistics Ti.

By using Storey-type estimator, as we stated in (4.3) in Section 4.3.1, we first estimate

true null proportions among selected hypotheses S and non-selected hypotheses I\S

based on Pi, which are denoted as π̂0(S) and π̂0(I\S) as follows:

π̂0(S) =
QS(λ)

(1− λ)|S|
and π̂0(I\S) =

QI\S(λ)

(1− λ)(m− |S|)
, (4.12)

where QS(λ) =
∑
k∈S

I{Pk>λ}, QI\S(λ) =
∑

k∈I\S
I{Pk>λ}, and λ is a fixed constant.

(ii). Estimation of true null proportions based on selection statistics Ui.

We then estimate true null proportions among S and I\S based on P̃i, which

are denoted as π̃0(S) and π̃0(I\S). Thus the corresponding estimated false null

proportions, denoted as π̃1(S) and π̃1(I\S) can be derived as

π̃1(S) = 1− π̃0(S) and π̃1(I\S) = 1− π̃0(I\S).
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Let λ0 = Pr (Ui > t) and λ1 < λ0 be a fixed constant. The expected number of

true null hypotheses among S with p-values exceed λ1 can be expressed as follows:

m0(S)Pr
(
P̃i > λ1|P̃i < λ0

)
= m0(S)

λ0 − λ1
λ0

, (4.13)

where m0(S) is the number of true null hypotheses among S. The expected number

of true nulls in S can be approximated by the observed number of P̃k exceeding λ1 in

S:

∑
k∈S

I{P̃k>λ1} ≡ QS(λ1). (4.14)

Combining (4.13) and (4.14), the estimated number of true null hypotheses m̂0(S)

among S can be derived:

m̂0(S) =
QS(λ1)
(λ0−λ1)

λ0

, (4.15)

thus, the true null proportion among S can be estimated,

π̃0(S) =
m̂0(S)

|S|
=

QS(λ1)
(λ0−λ1)

λ0
|S|

. (4.16)

Similarly, the expected number of true null hypotheses among I\S with p-values

exceed a fixed contant λ2 > λ0 can be expressed as follows:

m0(I\S)Pr
(
P̃i > λ2|P̃i > λ0

)
= m0(I\S)

1− λ2
1− λ0

, (4.17)

where m0(I\S) is the number of true null hypotheses among I\S. Similarly, the

expected number of true nulls in I\S can be approximated by the observed number

of P̃k exceeding λ2 in I\S:

∑
k∈I\S

I{P̃k>λ2} ≡ QI\S(λ2). (4.18)
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Combining (4.17) and (4.18), the estimated number of true null hypotheses m̂0(I\S)

among I\S can be derived:

m̂0(I\S) =
QI\S(λ2)

1−λ2
1−λ0

, (4.19)

thus, the true null proportion among I\S can be estimated,

π̃0(I\S) =
m̂0(I\S)

(m− |S|)
=

QI\S(λ2)
1−λ2
1−λ0 (m− |S|)

. (4.20)

Therefore, false null proportions based on selection statistics Ui can be estimated as:

π̃1(S) = 1− π̃0(S) = 1− QS(λ1)
(λ0−λ1)

λ0
|S|

, (4.21)

π̃1(I\S) = 1− π̃0(I\S) = 1−
QI\S(λ2)

1−λ2
1−λ0 (m− |S|)

. (4.22)

By replacing false null proportions π1(S) and π1(I\S) with π̃1(S) and π̃1(I\S) in

(4.8), and replacing true null proportions π0(S) and π0(I\S) with π̂0(S) and π̂0(I\S)

in (4.10) and (4.11), our data-driven weights are constructed as stated in (4.10) and

(4.11). Now we are ready to define a data-driven weighted selective procedure as

follows:

Definition 4 (Data-driven weighted selective procedure).

1. For a fixed selection threshold t, we have S = {i ∈ {1, . . . ,m} : Ui > t} and

λ0 = Pr (Ui > t). And for fixed λ ∈ (0, 1), calculate π̂0(S) and π̂0(I\S) based on

(4.12).

2. For fixed λ1 and λ2 ∈ (0, 1), with λ1 < λ0 < λ2, calculate π̃0(S) and π̃0(I\S) based

on (4.16), (4.20), respectively, and then compute π̃1(S) and π̃1(I\S).

3. We then have observed values w1 and w2 respectively for W1 and W2 according to

(4.10) and (4.11).
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4. For each hypothesis Hi among all m hypotheses, assign a weight as follows:

w̃i =

 w1, if i ∈ S,

w2, if i ∈ I\S.

5. Reject Hi if pi ≤ w̃iα
m

, for all i = 1, . . . ,m.

Remark 11. The turning parameter λ in Storey-type estimator is often set to be

λ = 0.5, see Storey et al. (2004). When determining values of the turning parameters

λ1 and λ2 in estimation of true null proportions π̃0(S) and π̃0(I\S) based on P̃i, we

set

Pr
(
P̃i > λ1|P̃i < λ0

)
=
λ0 − λ1
λ0

= 0.5,

thus λ1 = 0.5λ0, such that about 50% true null p-values in S are used to estimate the

proportion of true nulls in S. Similarily, we set

Pr
(
P̃i > λ2|P̃i > λ0

)
=

1− λ2
1− λ0

= 0.5,

thus λ2 = 0.5 + 0.5λ0, such that about 50% true null p-values in I\S are used to

estimate the proportion of true nulls in I\S. And the value of λ0 is determined by

the selection threshold, the more strict the selection threshold, the lower value of λ0

is, and vice versa.

For the proposed procedure, we have the following result.

Theorem 7. The above defined data-driven weighted selective procedure strongly

controls the FWER at level α under the assumption that pairs of (Ui, Ti) are

independent.

Proof. For given selection statistics Ui, i = 1, . . . ,m, we have S = {i ∈ {1, . . . ,m} :

Ui > t}, which is the index set of the selected hypotheses. We denote cFWER as the
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conditional familywise error rate on selection, such that

cFWER = Pr
(
reject at least one true null |U1, . . . , Um

)
.

Let I0 be the index set of true null hypotheses and S0 be the index set of true null

hypotheses among S. Let

Q
(−i)
S (λ) =

∑
k∈S\{i}

I{Pk>λ}, and Q
(−i)
S0

(λ) =
∑

k∈S0\{i}

I{Pk>λ}.

Also let

Q
(−j)
I\S (λ) =

∑
k∈(I\S)\{j}

I{Pk>λ}, and Q
(−j)
I0\S0

(λ) =
∑

k∈(I0\S0)\{j}

I{Pk>λ}.

When Hi and Hj are true, where i ∈ S0 and j ∈ I0\S0, by independence of true null

p-values, we have

Q
(−i)
S0

(λ) ∼ Bin(|S0| − 1, 1− λ) (4.23)

and

Q
(−j)
I0\S0

(λ) ∼ Bin(|I0| − |S0| − 1, 1− λ). (4.24)
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We can find the upper bound of cFWER as follows:

cFWER ≤ Pr

⋃
i∈S0

{Pi ≤
W1α

|S|
}|U1, . . . , Um


+ Pr

 ⋃
j∈I0\S0

{Pj ≤
W2α

m− |S|
}|U1, . . . , Um



= Pr

⋃
i∈S0

{Pi ≤
W ′′

1 α

π̂0(S) · |S|
}|U1, . . . , Um



+ Pr

 ⋃
j∈I0\S0

{Pj ≤
W ′′

2 α

π̂0(I\S) · (m− |S|)
}|U1, . . . , Um



= Pr

⋃
i∈S0

{Pi ≤
W ′′

1 α(1− λ)

QS(λ)
}|U1, . . . , Um



+ Pr

 ⋃
j∈I0\S0

{Pj ≤
W ′′

2 α(1− λ)

QI\S(λ)
}|U1, . . . , Um

 . (4.25)

Let

A1 = Pr

⋃
i∈S0

{Pi ≤
W ′′

1 α(1− λ)

QS(λ)
}|U1, . . . , Um



+ Pr

 ⋃
j∈I0\S0

{Pj ≤
W ′′

2 α(1− λ)

QI\S(λ)
}|U1, . . . , Um

 ,
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then we have

A1 ≤
∑
i∈S0

Pr

(
Pi ≤

W ′′
1 α(1− λ)

Q
(−i)
S (λ)

|U1, . . . , Um

)

+
∑

j∈I0\S0

Pr

Pj ≤ W ′′
2 α(1− λ)

Q
(−j)
I\S (λ)

|U1, . . . , Um



≤
∑
i∈S0

E

(
W ′′

1 α(1− λ)

Q
(−i)
S (λ)

|U1, . . . , Um

)

+
∑

j∈I0\S0

E

W ′′
2 α(1− λ)

Q
(−j)
I\S (λ)

|U1, . . . , Um



≤
∑
i∈S0

E

W ′′
1 α(1− λ)

Q
(−i)
S0

(λ)
|U1, . . . , Um



+
∑

j∈I0\S0

E

W ′′
2 α(1− λ)

Q
(−j)
I0\S0

(λ)
|U1, . . . , Um

 , (4.26)

where the first inequality in (4.26) is due to Bonferroni inequality. The second

inequality holds since Q
(−i)
S (λ) ≤ QS(λ) and Q

(−j)
I\S (λ) ≤ QI\S(λ). The third inequality

is because of independence of Pi and Q
(−i)
S and independence of Pj and Q

(−j)
I\S , which

are due to pariwise independence of (Ui, Ti), and independence between Pi and W ′′
1 ,

and between Pj and W ′′
2 , which are due to pariwise independence of (Ui, Ti) and

independence of Ui and Ti. The last inequality holds since Q
(−i)
S0

(λ) ≤ Q
(−i)
S (λ), and

Q
(−j)
I0\S0

(λ) ≤ Q
(−j)
I\S (λ).

Let

A2 =
∑
i∈S0

E

W ′′
1 α(1− λ)

Q
(−i)
S0

(λ)
|U1, . . . , Um

+
∑

j∈I0\S0

E

W ′′
2 α(1− λ)

Q
(−j)
I0\S0

(λ)
|U1, . . . , Um


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be the upper bound in (4.26), then we have the following result:

A2 = α(1− λ)

∑
i∈S0

E
(
W ′′

1 |U1, . . . , Um
)
· E

 1

Q
(−i)
S0

(λ) + 1
|U1, . . . , Um




+ α(1− λ)

 ∑
j∈I0\S0

E
(
W ′′

2 |U1, . . . , Um
)
· E

 1

Q
(−j)
I0\S0

(λ) + 1
|U1, . . . , Um




< α(1− λ)

∑
i∈S0

E
(
W ′′

1 |U1, . . . , Um
)

(|S0|)(1− λ)
+
∑

j∈I0\S0

E
(
W ′′

2 |U1, . . . , Um
)

(m− |S0|)(1− λ)



= αE
(
W ′′

1 +W ′′
2

)
= α, (4.27)

where the first equality in (4.27) holds since independence of W ′′
1 and Q

(−i)
S0

(λ), and

independence of W ′′
2 and Q

(−j)
I0\S0

(λ). Due to (4.23), (4.24) and Lemma 1, we have the

last inequality in (4.27).

Therefore, FWER = E (cFWER) ≤ α. The desire result is proved. �

4.4 Data-driven Weighted Multiple Testing Procedures

In this section, we generalize the aforementioned proposed three procedures from

the case of two blocks to multiple blocks to further develop more practical and

powerful MTPs. The blockwise adaptive Bonferroni procedure in Section 4.4.1 is

a generalization of the adaptive two-stage Bonferroni procedure. In Section 4.4.2, we

generalize the selective parallel gatekeeping procedure to blockwise selective parallel

gatekeeping procedure. In Section 4.4.3, the proposed blockwise data-driven weighted

procedure is a generalization of the data-driven weighted selective procedure.

4.4.1 Blockwise Adaptive Two-stage Bonferroni Procedure

Motivated by Kim and Schliekelman (2015), we propose a blockwise adaptive

two-stage Bonferroni procedure. Suppose that the m hypotheses are ordered by the
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selection statistics Ui, which attempts to ordering the hypotheses from the most

promising hypothesis to the least promising hypothesis. We then divide the ordered

hypotheses into K (fixed) blocks. Let Bl be the index set of null hypotheses in block

l = 1, . . . , K,

|Bl| =

⌊
m

K

⌋
, l = 1, . . . , K − 1; (4.28)

|BK | = m− (K − 1)× |Bl|. (4.29)

Within each block, we apply adaptive Bonferroni procedure and reject the null

hypothesis Hi, i ∈ Bl if

pi ≤
α

π̂Bl .|Bl|.K
.

And we use the similar way to estimate π̂Bl as in adaptive two-stage Bonferroni

procedure as follows:

π̂Bl =
QBl(λ) + 1

(1− λ)|Bl|
, (4.30)

where λ is a fixed constant and QBl(λ) =
∑

i∈Bl I{Pi>λ} is the number of hypotheses

in block l such that the corresponding p-values exceed λ.

We define the blockwise adaptive two-stage Bonferroni procedure as follows:

Definition 5 (Blockwise adaptive two-stage Bonferroni procedure).

1. For fixed K blocks, calculate π̂Bl , l = 1, . . . , K based on (4.30).

2. Within each Bl = 1, . . . , K, apply adaptive Bonferroni procedure at level

α
π̂Bl .|Bl|

. For i ∈ Bl, reject Hi if

pi ≤
α

π̂Bl .|Bl|.K
.

Remark 12. When the number of blocks K = 2, then the proposed procedure

is similar to the adaptive two-stage Bonferroni procedure as we proposed before.
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Moreover, the true null proportion π̂Bl for each block is estimated from the data, thus

the proposed procedure can be regarded as a data-driven weighted procedure, where

wl = 1
π̂Bl

for block l.

By Lemma 1, we have the following result.

Theorem 8. The above defined blockwise adaptive two-stage Bonferroni procedure

strongly controls the FWER at level α.

Proof. Following closely the proof in Section 4.3.1, we show the FWER control

for general case as follows. Let Nl = l ∗
⌊
m
K

⌋
. For given Bl = 1, . . . , K, we have

Bl = {i ∈ {1, . . . ,m} : U(Nl−1+1) ≤ U(i) ≤ U(Nl)}, which is the index set of hypotheses

in Bl, where U(i) is ordered selection statistics. We denote cFWER1 as the conditional

familywise error rate on selection statistics for B1 such that

cFWER1 = Pr
(
reject at least one true null in B1 |U1 . . . , Um

)
.

Let B10 be the index set of true null hypotheses among B1, and let Q
(−i)
B1

(λ) =∑
k∈B1\{i}

I{Pk>λ}, and Q
(−i)
B10

(λ) =
∑

k∈B10\{i}
I{Pk>λ}. Similar to (4.30), define π̂

(−i)
B1

=

Q
(−i)
B1

(λ)

(1−λ)|B1| . When Hi is true, by independence of true null p-values, we have

Q
(−i)
B10

(λ) ∼ Bin(|B10| − 1, 1− λ). (4.31)
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We first consider the cFWER1,

cFWER1 = Pr

 ⋃
i∈B10

{Pi ≤
α

π̂B1|B1|K
}|U1, . . . , Um


≤

∑
i∈B10

Pr

(
Pi ≤

α

π̂B1|B1|K
|U1, . . . , Um

)

≤
∑
i∈B10

Pr

Pi ≤ α

π̂
(−i)
B1
|B1|K

|U1, . . . , Um


≤

∑
i∈B10

E

 α

π̂
(−i)
B1
|B1|K

|U1, . . . , Um


=

∑
i∈B10

E

 α(1− λ)

(Q
(−i)
B1

(λ) + 1)K
|U1, . . . , Um


≤

∑
i∈B10

E

 α(1− λ)

(Q
(−i)
B10

(λ) + 1)K
|U1, . . . , Um


=

α(1− λ)

K

∑
i∈B10

E

 1

Q
(−i)
B10

(λ) + 1
|U1, . . . , Um


<

α(1− λ)

K

∑
i∈B10

1

(|B10|)(1− λ)
=

α|B10|
K|B10|

=
α

K
, (4.32)

where the first inequality in (4.32) is due to Bonferroni inequality. The second

inequality holds since Q
(−i)
B1

(λ) ≤ QB1(λ), according to (4.30), π̂
(−i)
B1
≤ π̂B1 . The

third inequality is because of pariwise independence of (Ui, Ti), independence of Ui

and Ti under Hi, and independence of Pi and π̂
(−i)
B1

. The fourth inequality holds since

Q
(−i)
B10

(λ) ≤ Q
(−i)
B1

(λ). Due to Lemma 1 and (4.31), we have the last inequality in

(4.32).

Therefore, cFWER1 = E (cFWER1) ≤ α
K
. Similarily, we can show FWERi ≤ α

K
,

for i = 2, . . . , K. Thus,

FWER ≤
K∑
i=1

FWERi ≤
K∑
i=1

α

K
= α. (4.33)

Therefore, the desire result is proved. �
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4.4.2 Blockwise Selective Parallel Gatekeeping Procedure

We proposed a blockwise selective parallel gatekeeping procedure, which is an

extension of selective parallel gatekeeping procedure. We further exploit information

of each hypotheses more explicitly by splitting tested hypotheses into multiple blocks.

Suppose that the m hypotheses are ordered by the selection statistics Ui, which

attempts to ordering the hypotheses from the most promising hypothesis to the least

promising hypothesis. We then divide the ordered hypotheses into K (fixed) blocks.

Let Bl be the index set of null hypotheses in Bl = 1, . . . , K.

Hypotheses in the first K − 1 blocks are in family F1, while the remaining

hypotheses in family F2, which is regarded as the Kth block. Initially, each Bl is

assigned with critical value αl = wlα, l = 1, . . . , K − 1, and αK = 0. Hypotheses are

tested from lower ranked block to higher ranked block, i.e., from B1 to BK . Critical

values are also allocated in such order if hypotheses are rejected. Following the weight

construction in Kim and Schliekelman (2015),

wl =

∑K−1
j=1 |Bj|

λ
∑l

j=1 |Bj|
(4.34)

is the weight of Bl, where λ is the correction factor. Thus w1 > . . . > wK−1 > wK = 0.

Note that in order to determine the correction factor λ, we set

K∑
l=1

wlα =
K∑
l=1

∑K−1
j=1 |Bj|

λ
∑l

j=1 |Bj|
α = α, (4.35)

such that λ can be solved from (4.35).

We define a blockwise selective parallel gatekeeping procedure as follows:

Definition 6 (Blockwise selective parallel gatekeeping procedure).

1. For a fixed K, calculate wl for l = 1, . . . , K − 1 based on (4.34).

2. Test each hypothesis Hi in B1. Reject Hi if pi ≤ w1α
|B1| . Rejections are in

R1 = {i ∈ B1 : pi ≤ w1α
|B1|}. Update the critical value of B2:
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α2 = w2α +
α1|R1|
|B1|

.

3. Test each hypothesis Hi in Bl(2 ≤ i ≤ K − 1). Reject Hi if pi ≤ αi
|Bl|

.

Rejections are in Rl = {i ∈ Bl : pi ≤ αl
|Bl|
}. Update the critical value of Bl+1:

αl+1 = wl+1α +
αl|Rl|
|Bl|

.

4. Test each hypothesis Hi in BK. Reject Hi if pi ≤ αK
|BK |

. Rejections are in

RK = {i ∈ BK : pi ≤ αK
|BK |
}.

Remark 13. The constructed weights w1, . . . , wK are monotonic decreasing, thus

hypotheses in lower ranked block have a higher chance to reject. Moreover, with

the allocation of critical values, one can have more rejections in lower weighted

blocks. We divide hypotheses of F1 into K − 1 blocks, which is more explicit than the

selective parallel gatekeeping procedure introduced in Section 4.3.2, where no further

specification among F1.

For the proposed procedure, we have the following result.

Theorem 9. The above defined blockwise selective parallel gatekeeping procedure

strongly controls the FWER at level α.

Proof. In selective parallel gatekeeping procedure, we showed that FWER ≤ α, that

is the case when we have two blocks. Following closely the proof in Qiu et al. (2017),

we use mathematical induction to show the cFWER control for general case.

Assume that when n = K,K ≥ 2,

cFWER(α1, . . . , αk) ≤
K∑
l=1

αi ≤ α, (4.36)
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In the following, we show that (4.36) holds when n = K + 1, that is

cFWER(α1, . . . , αk+1) ≤
K+1∑
l=1

αi ≤ α. (4.37)

We first define an event

E1 = {at least one false rejection in B1},

E2 = {at least one false rejection in all blocks except B1}.

Then the cFWER can be expressed as follows:

cFWER(α1, . . . , αK+1) = Pr
(
E1 ∪ E2|U1, . . . , Um

)
= Pr

(
E1|U1, . . . , Um

)
+ Pr

(
Ē1 ∩ E2|U1, . . . , Um

)
.(4.38)

Let e∗(·) as an upper bound of error rate function e(·). By the definition of the

error rate function, we know that

Pr
(
E1|U1, . . . , Um

)
≤ e(T1) ≤ e∗(T1),

where T1 is the set of true null hypotheses in B1.

Let A1 denote as the acceptance set within B1. After testing hypotheses in B1,

α1− e∗(A1) will be transferred to B2, . . . , Bn. Let α∗l be the updated significant level

for Bl ≥ 2, such that

α∗l = αl + αl−1 − e∗1(Al). (4.39)
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Then

cFWER(α1, . . . , αK+1)

≤ e∗1(T1) + cFWER(α∗2, . . . , α
∗
K+1)

≤ e∗1(T1) +
K+1∑
l=2

α∗i

≤ e∗1(T1) + α1 − e∗1(T1) +
K+1∑
l=2

αi

= α1 +
K+1∑
l=2

αi =
K+1∑
l=1

wiα = α, (4.40)

where the first inequality in (4.40) holds by the definition of erro rate function. The

second inequality in (4.40) is due to the assumption in (4.36). And the last inequality

in (4.40) holds by the updating rule of α∗l in (4.39).

Therefore, FWER = E (cFWER) ≤ α. The desire result is proved. �

4.4.3 Blockwise Data-driven Weighted Selective Procedure

Unlike the blockwise selective parallel gatekeeping procedure, where no critical value

is initially assigned to F2, in this section, we propose a blockwise data-driven weighted

selective procedure, which is an extension of the data-driven weighted selective

procedure. By the similar estimation of true null proportion stated in (4.16), (4.20),

for all K blocks, we estimate their true null proportion π̃Bl0 , such that

π̃Bl0 =
m̂Bl0

|Bl|
=

QBl(λl)
λ0−λl
λ0
|Bl|

, for l = 1, . . . , K, (4.41)

where m̂Bl0 is the estimated number of true null hypotheses among Bl, and λl is the

fixed constant for Bl. Thus we can estimate false null proportion π̃Bl1 = 1 − π̃Bl0 .

Therefore, similar to (4.10), we construct the weights as follows:

Wl =
W ′
l

π̂Bl0
, (4.42)
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where W ′
l =

mπ̃Bl1

|Bl|
(
K∑
l=1

π̃Bl1

) . And for each hypothesis Hi, the weight is assigned as

follows:

W̃i = Wl, if i ∈ Bl.

Finally, we can construct weighted procedures based on the above weights for testing

all m hypotheses simultaneously.

We propose a blockwise data-driven weighted selective procedure as follows:

Definition 7 (Blockwise data-driven weighted selective procedure).

1. For fixed K blocks, calculate π̂Bl0 , l = 1, . . . , K based on (4.41). Then

calculate wl for Bl based on (4.42).

2. Apply weighted Bonferroni procedure at level w̃iα
m

, reject Hi if

pi ≤
w̃iα

m
.

For the proposed procedure, we have the following result.

Theorem 10. The above defined blockwise data-driven weighted selective procedure

strongly controls the FWER at level α.

Proof. Similar to the proofs in Section 4.3.3, we show the FWER control of blockwise

data-driven weighted selective procedure as follows. Let Nl = l ∗
⌊
m
K

⌋
. For given

Bl = 1, . . . , K, we have Bl = {i ∈ {1, . . . ,m} : U(Nl−1+1) ≤ U(i) ≤ U(Nl)}, which is the

index set of hypotheses in Bl, where U(i) is ordered selection statistics. We denote

cFWERl as the conditional familywise error rate on selection statistics for Bl, such

that

cFWERl = Pr
(
reject at least one true null in Bl |U1, . . . , Um

)
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Let I0 be the index set of true null hypotheses and Bl0 be the index set of true null

hypotheses among Bl. Let

Q
(−i)
Bl

(λ) =
∑

k∈Bl\{i}

I{Pk>λ}, and Q
(−i)
Bl0

(λ) =
∑

k∈Bl0\{l}

I{Pk>λ}.

When Hi is true, where i ∈ Bl0, by independence of true null p-values, we have

Q
(−i)
Bl0

(λ) ∼ Bin(|Bl0| − 1, 1− λ), for l = 1, . . . , K. (4.43)

We can find the upper bound of cFWER as follows:

cFWER ≤
K∑
l=1

Pr

 ⋃
i∈Bl0

{Pi ≤
Wlα

|Bl|
}|U1, . . . , Um



=
K∑
l=1

Pr

 ⋃
i∈Bl0

{Pi ≤
W ′′
l α

π̂Bl0 · |Bl|
}|U1, . . . , Um



=
K∑
l=1

Pr

 ⋃
i∈Bl0

{Pi ≤
W ′′
l α(1− λ)

QBl(λ) + 1
}|U1, . . . , Um



≤
K∑
l=1

Pr

 ⋃
i∈Bl0

{Pl ≤
W ′′
l α(1− λ)

Q
(−i)
Bl

(λ) + 1
}|U1, . . . , Um



≤
K∑
l=1

∑
i∈Bl0

E

W ′′
l α(1− λ)

Q
(−i)
Bl

(λ) + 1
|U1, . . . , Um



≤
K∑
l=1

∑
i∈Bl0

E

W ′′
l α(1− λ)

Q
(−i)
Bl0

(λ) + 1
|U1, . . . , Um

 , (4.44)

where the first inequality in (4.44) is due to Bonferroni inequality. The second

inequality holds since Q
(−i)
Bl

(λ) ≤ QBl(λ). The third inequality is because of

independence of Pi and Q
(−i)
Bl

, which is due to pariwise independence of (Ui, Ti), and

independence between Pi and W ′′
l , which is due to pariwise independence of (Ui, Ti)

and independence of Ui and Ti. The fourth inequality holds since Q
(−i)
Bl0

(λ) ≤ Q
(−i)
Bl

(λ).
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Let

B =
K∑
l=1

∑
i∈Bl0

E

W ′′
l α(1− λ)

Q
(−i)
Bl0

(λ) + 1
|U1, . . . , Um

 ,

then we have

B = α(1− λ)
K∑
l=1

∑
i∈Bl0

E
(
W ′′
l |U1, . . . , Um

)
· E

 1

Q
(−i)
Bl0

(λ) + 1
|U1, . . . , Um




< α(1− λ)
K∑
l=1

∑
i∈Bl0

E
(
W ′′
l |U1, . . . , Um

)
(|Bl0|)(1− λ)


=

α(1− λ)|Bl0|
(1− λ)|Bl0|

K∑
l=1

E
(
W ′′
l |U1, . . . , Um

)
= α

K∑
l=1

E
(
W ′′
l

)
= α, (4.45)

where the third equality in (4.45) holds since independence of W ′′
l and Q

(−i)
Bl0

(λ). Due

to (4.43) and Lemma 1, we have the last inequality in (4.45).

Therefore, FWER = E (cFWER) ≤ α. The desire result is proved. �

Remark 14. Compared to the data-driven weighted selective procedure in Section

4.3.3, the proposed procedure in this section is more explicit in exploting information

by splitting hypotheses into more than two blocks. Furthermore, if WK is non-negative,

even though it may be small, we can still test those hypotheses and have significant

results.

4.5 Summary

Although independent filtering methods have been commonly used in high-dimensional

data analysis, such as microarray data, genomic data, etc, their statistical properties

are not well understood. In this chapter, we explore independent filtering procedures

where tested hypothese are divided into two blocks by a selection process and propose
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three different powerful MTPs. We first develop a powerful adaptive two-stage

Bonferroni procedure by incorporating into the information of the proportion of

true nulls among selected hypotheses, with the proven of FWER control. We then

take non-selected hypotheses into account as well, by using a parallel gatekeeping

strategy, where F1 serves as a gatekeeper for F2, and develop a powerful selective

parallel gatekeeping procedure to exploit more information among F2, with the proven

of FWER control. Finally, we develop a powerful data-driven weighted selective

procedure by combining ideas of weighted procedures and adaptive procedures, with

the proven of FWER control.

In order to exploit information more sufficiently than above proposed three

procedures, we further develop alternative data-driven weighted procedures, which

generalize the case from two blocks to multiple blocks. By using a similar idea in

Kim and Schliekelman (2015), we first order hypotheses from the most promising

hypotheses to the least promising hypotheses by the selection statistics U , and then

divide the ordered hypotheses into K (fixed) blocks. By incorporating into the

information of the proportion of true nulls within each block l, we first develop

a blockwise adaptive two-stage Bonferroni procedure, with the proven of FWER

control. We then allow critical values pass from lower rank block to higher rank

blocks with at least one rejection within each block, and develop a blockwise selective

parallel gatekeeping procedure, with the proven of FWER control. Finally, we

develop a blockwise data-driven weighted selective procedure by combining ideas of

weighted procedures and adaptive procedures within each block l, with the proven of

FWER control. By such data-driven weight construction in the proposed blockwise

procedures, the constructed weights ensure more promising hypotheses in lower

ranked blocks are assigned with higer weights, which will result in more rejections.
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CHAPTER 5

SIMULATION STUDIES OF SELECTIVE INFERENCE MULTIPLE

TESTING PROCEDURES

5.1 Introduction

In this chapter, we perform simulation studies for the proposed procedures in Chapter

4. We aim to explore the difference between the proposed procedures and the existing

MTPs, by comparing the performance of the proposed procedures with those exisitng

MTPs, with respect to the FWER control and average power. The existing MTPs to

be compared are two-stage Bonferroni procedure in Guo and Romano (2017), and the

conventional Bonferroni procedure. In Section 5.2-5.4, we explore the performance

of the proposed procedures under independent data structure, while in Section 5.5,

we explore the performance of the proposed procedures under different types of

dependent structures. In Section 5.6, a concluding remark is given.

5.2 Numerical Study for Adaptive Two-stage Bonferroni Procedure

In this simulation study, we consider simultaneously testing Hi : µi = 0 vs. H
′
i :

µi 6= 0, for i = 1, . . . ,m, at level α = 0.05. Each simulated data set is obtained by

generating m = 100 independent normal random samples N(µi, σ
2)(i = 1, . . . ,m),

and sample size n = 10. Among the 100 hypotheses, that is among 100µ′is, 100π0

are equal to 0, and the remaining are equal to µi > 0, where π0 is the proportion of

µi = 0. And the population variance σ2 is drawn from U(0.5, 1.5) to ensure that the

population variance is unknown. For the adaptive two-stage Bonferroni procedure,

the two-stage Bonferroni procedure and the conventional Bonferroni procedure, we use

one-sample t-statistics as our testing statistic. For the proposed adptive two-stage

Bonferroni procedure and the two-stage Bonferroni procedure, we use the sum of

squares as the selection statistic. The selection threshold we choose is a sequence
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of numbers from 6 to 20. Guo and Romano (2017) proposed a method to derive

an asymptotically optimal selection threshold. Based on the same selection statistic,

sum of squares, the selection threshold can be expressed as

t = χ2
n(1− β),

where β = m−(1−γ) indicates roughly how much proportion of hypotheses can be

selected. The number of selected hypotheses is βm = mγ, roughly. Particularly, let

d = log(m)
n

= log(100)
10
≈ 0.46. According to the relationship between d and γ (see Figure

4.1 in Guo and Romano, 2017), the optimal γ in our simulation setting is γ ≈ 0.68.

Thus, we can compute β ≈ 0.229. Hence the optimal selection threhold t ≈ 12.9.

Since in our numerical study, we explore the average power and estimated FWER

with different selection thresholds, we extend the range of our selection threshold

about ±0.5× 12.9 from 12.9, which is approximate (6, 20).

For the proposed adaptive two-stage Bonferroni procedure, we use a Storey-type

estimator to estimate the true null proportion π̂0 among the selected hypotheses as

stated in Section 4.3.1, with tuning parameter λ = 0.5.

Our simulation is repeated for 1,000 times. The simulated FWER is the

proportion of times that at least one false rejection occurring among the 1,000

replications and the simulated power is the average of the proportions of correct

rejections over 1,000 runs. As seen from Figure 5.1, the proposed procedure performs

best in terms of average power, while still controlling the FWER at level α as seen

from Figure 5.2.

In Figure 5.3, for different true null proportion π0, we compare the estimated

true null proportion among selected hypotheses π̂0 to the selection threshold. As we

can see, with the increasing selection threshold, π̂0 is decreasing. Thus the more strict

the selection threshold, the lower chance that true null hypotheses can be selected.
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One interesting observation from Figure 5.1 when µ1 = 1 is that at the optimal

selection threshold t ≈ 12.9 (calculated according to the method in Guo and Romano,

2017), the maximum average power is achieved when π0 = 0.3. And with the increased

true null proportion, π0, the value of the optimal selection threshold is increasing.

5.3 Numerical Study for Selective Parallel Gatekeeping Procedure

We also conduct a simulation study to compare the performance of the proposed

selective parallel gatekeeping procedure with several existing MTPs with respect to

the FWER control and average power. The procedures to be compared are two-stage

Bonferroni procedure and the conventional Bonferroni procedure.

In this simulation study, we consider simultaneously testing Hi : µi = 0 vs. H
′
i :

µi 6= 0, for i = 1, . . . ,m, at level α = 0.05. Each simulated data set is obtained by

generating m = 100 independent normal random samples N(µi, σ
2)(i = 1, . . . ,m),

and equal sample size is n. Among the 100 hypotheses, that is among 100µ′is, 100π0

are equal to 0, and the remaining are equal to µi = 1, where π0 is the proportion

of µi = 0. And the population variance σ2 is drawn from U(0.5, 1.5) to ensure that

the population variance is unknown. For the three procedures, we use one-sample

t-statistics as our testing statistic. For the proposed selective parallel gatekeeping

procedure and the two-stage Bonferroni procedure, we use the sum of squares as the

selection statistic . The selection threshold we choose is a sequence of numbers from

6 to 30. The range of the selection threshold is broader than that for the adaptive

two-stage Bonferroni procedure. The reason we extend the range from (6, 20) to

(6, 30) is that the larger the selection threshold, the more hypotheses are non-selected.

And the more non-selected hypotheses, the more proper to use the selective parallel

gatekeeping procedure.

For the selected hypotheses S, we perform the conventional Bonferroni procedure,

and for the non-selected hypotheses I\S, we perform the adaptive Bonferroni
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.1 Average power of the proposed adaptive two-stage Bonferroni procedure

(Adp. TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the

conventional Bonferroni procedure (Bonf.), with true null proportion π0 from 0.3 to

0.9, and variance σ2 ∼ U(0.5, 1.5). For the mean values, 100π0 are equal to 0 and

the rest are equal to one. Here, the value of selection threshold t is from 6 to 20,

m = 100, n = 10, α = 0.05.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.2 Estimated FWER of the proposed adaptive two-stage Bonferroni

procedure (Adp. TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.)

and the conventional Bonferroni procedure (Bonf.), with true null proportion π0 from

0.3 to 0.9, and variance σ2 ∼ U(0.5, 1.5). For the mean values, 100π0 are equal to 0

and the rest are equal to one. Here, the value of selection threshold t is from 6 to 20,

m = 100, n = 10, α = 0.05.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.3 Estimated true null proportion π̂0 of the proposed adaptive two-stage

Bonferroni procedure with true null proportion π0 from 0.3 to 0.9, and variance σ2 ∼

U(0.5, 1.5). For the mean values, 100π0 are equal to 0 and the rest are equal to one.

Here, the value of selection threshold t is from 6 to 20, m = 100, n = 10, α = 0.05.

97



procedure. We use a Storey-type estimator to estimate the true null proportion

π̂0(I\S) =
QI\S(λ)

(m−|S|)(1−λ) , with tuning parameter λ = 0.5.

Our simulation is repeated for 1,000 times. Scenario 1 is when n = 10, and

Scenario 2 is when n = 15. The simulated FWER is the proportion of times that

at least one false rejection occurring among the 1,000 replications and the simulated

power is the average of the proportions of correct rejections over 1,000 runs. As

seen from Figure 5.4, when sample size n = 10, the average power of the proposed

procedure almost perfoms the best, except when the selection threhold is around

30 at π0 = 0.9. This may be because when the selection threhold is too strict, few

hypotheses is selected, thus few critical values are passed to F2 to conduct adaptive

Bonferroni procedure. Figure 5.5 shows that the proposed selective procedure controls

the FWER at level α.

When the sample size is changed from n = 10 to n = 15, as seen from Figure 5.6,

the proposed procedure perfoms best in terms of average power compared to the two-

stage Bonferroni procedure and the conventional Bonferroni procedure, and controls

the FWER at level α, as shown in Figure 5.7. Moreover, more strict the selection

threshold, higher difference of the average power between the proposed procedure and

the two-stage Bonferroni procedure among almost all scenarios.

5.4 Numerical Study for Data-driven Weighted Selective Procedure

We finally conduct a simulation study to compare the performance of the proposed

data-driven weighted selective procedure with the proposed adaptive two-stage

Bonferroni procedure, the selective parallel gatekeeping procedure and several existing

MTPs, with respect to the FWER control and average power. The existing MTPs

to be compared are two-stage Bonferroni procedure and the conventional Bonferroni

procedure.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.4 Average power of the proposed selective parallel gatekeeping procedure

(Parallel TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the

conventional Bonferroni procedure (Bonf.), with true null proportion π0 from 0.3 to

0.9, and variance σ2 ∼ U(0.5, 1.5). For the mean values, 100π0 are equal to 0 and

the rest are equal to 1. Here, the value of selection threshold t is from 6 to 30,

m = 100, n = 10, α = 0.05.

99



(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.5 Estimated FWER of the proposed selective parallel gatekeeping

procedure (Parallel TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.)

and the conventional Bonferroni procedure (Bonf.), with true null proportion π0 from

0.3 to 0.9, and variance σ2 ∼ U(0.5, 1.5). For the mean values, 100π0 are equal to 0

and the rest are equal to 1. Here, the value of selection threshold t is from 6 to 30,

m = 100, n = 10, α = 0.05.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.6 Average power of the proposed selective parallel gatekeeping procedure

(Parallel TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the

conventional Bonferroni procedure (Bonf.), with true null proportion π0 from 0.3 to

0.9, and variance σ2 ∼ U(0.5, 1.5). For the mean values, 100π0 are equal to 0 and

the rest are equal to 1. Here, the value of selection threshold t is from 6 to 30,

m = 100, n = 15, α = 0.05.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.7 Estimated FWER of the proposed selective parallel gatekeeping

procedure (Parallel TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.)

and the conventional Bonferroni procedure (Bonf.), with true null proportion π0 from

0.3 to 0.9, and variance σ2 ∼ U(0.5, 1.5). For the mean values, 100π0 are equal to 0

and the rest are equal to 1. Here, the value of selection threshold t is from 6 to 30,

m = 100, n = 15, α = 0.05.
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In this simulation study, we consider simultaneously testing Hi : µi = 0 vs. H
′
i :

µi 6= 0, for i = 1, . . . ,m, at level α = 0.05. Each simulated data set is obtained by

generating m = 100 independent normal random samples N(µi, σ
2)(i = 1, . . . ,m) of

equal sample size n = 15. Among the 100 hypotheses, that is among 100µ′is, 100π0

are equal to 0, and the remaining are equal to µi = 1, where π0 is the proportion

of µi = 0. And the population variance σ2 is drawn from U(0.5, 1.5) to ensure

that the population variance is unknown. For all compared five procedures, we use

one-sample t-statistics as our testing statistic. For our proposed three procedure

and the two-stage Bonferroni procedure, we use the sum of squares as the selection

statistic. The selection threshold we choose is a sequence of numbers from 6 to 40.

The range of the selection threshold is broader than that for the selective parallel

gatekeeping procedure. The reason we extend the range from (6, 30) to (6, 40) is

that the larger the selection threshold, the more hypotheses are non-selected. And

the more non-selected hypotheses, the more proper to exploit the information among

them. Based on t, λ0 can be computed as λ0 = Pr (Ui > t). Thus, values of the other

two turning parameters λ1 = 0.5λ0 and λ2 = 0.5 + 0.5λ0 are determined.

The weights W1 and W2 for S and I\S are computed according to (4.10) and

(4.11). If the number of selection |S| = 0 or |S| = m, we perform the conventional

Bonferroni procedure to all m hypotheses, i.e., W2 = 1 or W1 = 1. If we encounter

W1 = W2 = 0, we also perform the conventional Bonferroni procedure to all m

hypotheses. Moreover, if we encounter W1 = 0 and W2 6= 0, we perform the adaptive

Bonferroni procedure to I\S and vice versa.

Our simulation is repeated for 1,000 times. The simulated FWER is the

proportion of times that at least one false rejection occurring among the 1,000

replications and the simulated power is the average of the proportions of correct

rejections over 1,000 runs. As seen from Figure 5.8, among a certain range of selection

threshold, the data-driven weighted selective procedure almost performs best in terms
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of average power with the compared procedures, except when π0 = 0.9. When the

selection threshold becomes strict, the average power of the two-tage Bonferroni

procedure and the adaptive two-stage Bonferroni procedure drops dramatically.

The proposed data-driven weighted selective procedure performs better than the

two-tage Bonferroni procedure and the adaptive two-stage Bonferroni procedure in

this situation, but getting close to the conventional Bonferroni procedure with the

increased true null proportion. When the selection threshold becomes strict, the

selective parallel gatekeeping procedure performs almost best in terms of average

power with the compared procedures. And the adaptive two-stage Bonferroni

procedure performs best when the selection threshold is mild. When µi of false null

hypothesis Hi varies such that µi ∼ U(0.5, 1.5), among a certain range of selection

threshold, the selective parallel gatekeeping procedure almost performs best in terms

of average power with the compared procedures, see Figure 5.10. In Figure 5.9 and

Figure 5.11 we show that the proposed three procedures control the FWER at level

α in both cases, i.e. when µi = 1 and µi ∼ U(0.5, 1.5).

Overall, by comparing the average power performance among all five procedure,

there is no such procedure which is always more powerful than the others. In different

practical situation, one needs to choose a most suitable procedure.

5.5 Dependent Structure

In this section, we aim to explore the performance of the proposed procedures in

terms of average power and FWER control under dependent structure. Two types of

dependent structures are considered, which are equal correlation in Section 5.5.1 and

block dependence in Section 5.5.2.
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5.5.1 Equal Correlation

In this simulation, under equal correlation of testing statistics among all tested

hypotheses, we aim to explore the difference between the proposed selective inference

procedures with two-stage Bonferroni and conventional Bonferroni procedure by

comparing the average power and FWER control vs. correlation coefficient (ρ).

Our simulation runs 1000 times, where B = 1000. And we assign different

values to correlation coefficient ρ from 0 to 0.95. The whole sample size n = 15. For

each fixed B and t, we will simulate a data as follows to test m = 100 two-sided

hypotheses:

Hi : µ = 0 vs. H
′

i : µ 6= 0.

The sample is from a multivariated normal population, that is

Xi ∼MVN(µ̃,Σ),

where the correlation ρij = ρ btween Hi and Hj for all i, j = 1, . . . ,m, and i 6=

j. Among the 100 hypotheses, that is among 100µ′is, 100π0 are equal to 0, and

the remaining are equal to µi = 1, where π0 is the proportion of µi = 0. And

the population variance σ2 is drawn from U(0.5, 1.5) to ensure that the population

variance is unknown.

In our simulation, we use an alternative way to simulate our data which follows

the same distribution mentioned above:

Xi =
√
ρZ0 +

√
1− ρZi + µi,

where Z0, Zi ∼ N(0, σ2), for i = 1, . . . ,m. For all compared five procedures, we use

one-sample t-statistics as our testing statistic. For our proposed three procedure

and the two-stage Bonferroni procedure, we use the sum of squares as the selection
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statistic. The selection threshold we choose is t = c(15, 20, 25, 40), which gurantees

50%, 20%, 5% and < 1% of hypotheses are selected, respectively.

For known µi = 1, as seen from Figure 5.12, when we select 50%(t = 15),

20%(t = 20) and 5%(t = 25) of tested hypotheses, adaptive two-stage Bonferroni

procedure performs best regarding to average power for π0 = 0.5. However, the

FWER of adaptive two-stage Bonferroni procedure is out of control, see Figure 5.13.

When the number of selected hypotheses is less than 1%(t = 40) and π0 = 0.5,

the average power of selective parallel gatekeeping procedure performs best with the

control of FWER in a certain range of ρ, see Figures 5.12 and 5.13. Similarily, we

observe the same pattern when µi of false null hypotheses is unknwn with a uniform

distribution, i.e. µi ∼ U(0.5, 1.5) for both π0 = 0.5, see Figure 5.14 and Figure 5.15.

From Figure 5.16 and Figure 5.17, we also investigate the average power

performance and estimated FWER with different selection threshold t. Adaptive

two-stage Bonferroni procedure performs best when t is mild, however its estimated

FWER is out of control. When t becomes strict, selective parallel gatekeeping

procedure almost performs best, and its estimated FWER is around level α = 0.05,

with a slightly greater than 0.05 at certain points. This may be due to the repeated

time of simulation is only 1, 000. However, for lower true null proportion, data-driven

weighted selective procedure performs best when t is strict with the control of FWER.

5.5.2 Block Dependence

In this simulation, under block dependent structure of testing statistics among

all tested hypotheses, we aim to explore the difference between the proposed

selective inference procedures with two-stage Bonferroni and conventional Bonferroni

procedure by comparing the average power and FWER control vs. correlation

coefficient (ρ).

106



Our simulation runs 1000 times, where B = 1000. And we assign different

values to correlation coefficient ρ from 0 to 0.95. The whole sample size n = 15. For

each fixed B and t, we will simulate a data as follows to test m = 100 two-sided

hypotheses:

Hi : µ = 0 vs. H
′

i : µ 6= 0.

Within each block, a sample is from a multivariated normal population, that is

Xi ∼MVN(µ̃,Σ),

where the correlation ρij = ρ btween Hi and Hj for all i, j = 1, . . . ,m, and i 6= j.

Among the 100 hypotheses, that is among 100µ′is, 100π0 are equal to 0, and the

remaining are equal to µi = 1, where π0 is the proportion of µi = 0. And the

population variance σ2 = 1

In our simulation, we use an alternative way to simulate each block data which

follows the same distribution mentioned above:

Xi =
√
ρZ0 +

√
1− ρZi + µi,

where Z0, Zi ∼ N(0, σ2), for i = 1, . . . ,m. Overall, we have K blocks with size q,

K × q = m. Within each block, we have the same true null proportion π0. Between

blocks, the testing statistics are independent while within blocks, they are dependent

with same correlation coefficient ρ. We use two block settings, that is from K = 50

to K = 5. With the decreaseing of K, the block dependence becomes stronger.

As seen from Figure 5.19, when the selection threshold t = 15 and t = 20, which

guarantees approximately 50% and 20% of hypotheses are selected,respectively, the

proposed three procedures almost perform better than the compared two procedures.

While t = 40, the selective parallel gatekeeping procedure has the best power

performance. The estimated FWER almost control at level α, though in some cases,
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it is a slightly greater than α. This may be due to the fact that our simulation only

runs 1, 000.

5.6 Summary and Future Work

Through extensive simulation studies, we evaluate the proposed two-stage procedures

by comparing the average power performance among all five procedure, and find out

that there is no such procedure which is always more powerful than the others with

proper control of FWER under independence. In different practical situations, one

needs to choose a most suitable procedure. And our proposed two-stage procedures

perform well under block dependence in terms of estimated FWER, while they may

lose FWER control under equal correlation in some scenario. In the future, additional

simulation studies will be conducted for the generalized three procedures: blockwise

adaptive two-stage Bonferroni procedure, blockwise selective parallel gatekeeping

procedure and blockwise data-driven weighted selective procedure.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.8 Average power of the proposed data-driven weighted selective procedure

(Weighted TS Bonf.), selective parallel gatekeeping procedure (Parallel TS Bonf.),

adaptive two-stage Bonferroni procedure (Adp.TS Bonf.) along with two-stage

Bonferroni procedure (TS Bonf.) and the conventional Bonferroni procedure (Bonf.),

with true null proportion π0 from 0.3 to 0.9, and variance σ2 ∼ U(0.5, 1.5). For the

mean values, 100π0 are equal to 0 and the rest are equal to 1. Here, the value of

selection threshold t is from 6 to 40, m = 100, n = 15, α = 0.05.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.9 Estimated FWER of the proposed data-driven weighted selective

procedure (Weighted TS Bonf.), selective parallel gatekeeping procedure (Parallel

TS Bonf.), adaptive two-stage Bonferroni procedure (Adp.TS Bonf.) along with two-

stage Bonferroni procedure (TS Bonf.) and the conventional Bonferroni procedure

(Bonf.), with true null proportion π0 from 0.3 to 0.9, and variance σ2 ∼ U(0.5, 1.5).

For the mean values, 100π0 are equal to 0 and the rest are equal to 1. Here, the value

of selection threshold t is from 6 to 40, m = 100, n = 15, α = 0.05.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.10 Average power of the proposed data-driven weighted selective procedure

(Weighted TS Bonf.), selective parallel gatekeeping procedure (Parallel TS Bonf.),

adaptive two-stage Bonferroni procedure (Adp.TS Bonf.) along with two-stage

Bonferroni procedure (TS Bonf.) and the conventional Bonferroni procedure (Bonf.),

with true null proportion π0 from 0.3 to 0.9. For false null hypothesis Hi, µi ∼

U(0.5, 1.5) and variance σ2 ∼ U(0.5, 1.5). Here, the value of selection threshold t is

from 6 to 40, m = 100, n = 15, α = 0.05.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.11 Estimated FWER of the proposed data-driven weighted selective

procedure (Weighted TS Bonf.), selective parallel gatekeeping procedure (Parallel

TS Bonf.), adaptive two-stage Bonferroni procedure (Adp.TS Bonf.) along with two-

stage Bonferroni procedure (TS Bonf.) and the conventional Bonferroni procedure

(Bonf.), with true null proportion π0 from 0.3 to 0.9. For false null hypothesis Hi,

µi ∼ U(0.5, 1.5) and variance σ2 ∼ U(0.5, 1.5). Here, the value of selection threshold

t is from 6 to 40, m = 100, n = 15, α = 0.05.
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(a) t = 15 (b) t = 20

(c) t = 25 (d) t = 40

Figure 5.12 Under equal correlation, average power of the proposed data-driven

weighted selective procedure (Weighted TS Bonf.), selective parallel gatekeeping

procedure (Parallel TS Bonf.), adaptive two-stage Bonferroni procedure (Adp.TS

Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the conventional

Bonferroni procedure (Bonf.), with true null proportions π0 = 0.5, when n = 15,

m = 100, for false null hypothesis Hi, µi = 1, and σ2
i = σ2 ∼ U(0.5, 1.5). The

correlation coefficient ρ takes values from 0 to 0.95.
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(a) t = 15 (b) t = 20

(c) t = 25 (d) t = 40

Figure 5.13 Under equal correlation, estimated FWER of the proposed data-driven

weighted selective procedure (Weighted TS Bonf.), selective parallel gatekeeping

procedure (Parallel TS Bonf.), adaptive two-stage Bonferroni procedure (Adp.TS

Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the conventional

Bonferroni procedure (Bonf.), with true null proportions π0 = 0.5, when n = 15,

m = 100, for false null hypothesis Hi, µi = 1, and σ2
i = σ2 ∼ U(0.5, 1.5). The

correlation coefficient ρ takes values from 0 to 0.95.
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(a) t = 15 (b) t = 20

(c) t = 25 (d) t = 40

Figure 5.14 Under equal correlation, average power of the proposed data-driven

weighted selective procedure (Weighted TS Bonf.), selective parallel gatekeeping

procedure (Parallel TS Bonf.), adaptive two-stage Bonferroni procedure (Adp.TS

Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the conventional

Bonferroni procedure (Bonf.), with true null proportions π0 = 0.5, when n = 15,

m = 100, for false null hypothesis Hi, µi ∼ U(0.5, 15), and σ2
i = σ2 ∼ U(0.5, 1.5).

The correlation coefficient ρ takes values from 0 to 0.95.
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(a) t = 15 (b) t = 20

(c) t = 25 (d) t = 40

Figure 5.15 Under equal correlation, estimated FWER of the proposed data-driven

weighted selective procedure (Weighted TS Bonf.), selective parallel gatekeeping

procedure (Parallel TS Bonf.), adaptive two-stage Bonferroni procedure (Adp.TS

Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the conventional

Bonferroni procedure (Bonf.), with true null proportions π0 = 0.5, when n = 15,

m = 100, for false null hypothesis Hi, µi ∼ U(0.5, 15), and σ2
i = σ2 ∼ U(0.5, 1.5).

The correlation coefficient ρ takes values from 0 to 0.95.
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.16 Under equal correlation with correlation coefficient ρ = 0.5, average

power of the proposed data-driven weighted selective procedure (Weighted TS Bonf.),

selective parallel gatekeeping procedure (Parallel TS Bonf.), adaptive two-stage

Bonferroni procedure (Adp.TS Bonf.) along with two-stage Bonferroni procedure (TS

Bonf.) and the conventional Bonferroni procedure (Bonf.), with different true null

proportions π0, when n = 15, m = 100, for false null hypothesis Hi, µi ∼ U(0.5, 15),

and σ2
i = σ2 ∼ U(0.5, 1.5).
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(a) π0 = 0.3 (b) π0 = 0.5

(c) π0 = 0.7 (d) π0 = 0.9

Figure 5.17 Under equal correlation with correlation coefficient ρ = 0.5, estimated

FWER of the proposed data-driven weighted selective procedure (Weighted TS

Bonf.), selective parallel gatekeeping procedure (Parallel TS Bonf.), adaptive

two-stage Bonferroni procedure (Adp.TS Bonf.) along with two-stage Bonferroni

procedure (TS Bonf.) and the conventional Bonferroni procedure (Bonf.), with

different true null proportions π0, when n = 15, m = 100, for false null hypothesis

Hi, µi ∼ U(0.5, 15), and σ2
i = σ2 ∼ U(0.5, 1.5).
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(a) block = 50, t = 15 (b) block = 50, t = 20 (c) block = 50, t = 40

(d) block = 5, t = 15 (e) block = 5, t = 20 (f) block = 5, t = 40

Figure 5.18 Under block dependent structure, average power of the proposed

data-driven weighted selective procedure (Weighted TS Bonf.), selective parallel

gatekeeping procedure (Parallel TS Bonf.), adaptive two-stage Bonferroni procedure

(Adp.TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the

conventional Bonferroni procedure (Bonf.), with true null proportion π0 = 0.5, when

n = 15, m = 100, for false null hypothesis Hi, µi = 1, and σ2
i = σ2 = 1. The

correlation coefficient ρ takes values from 0 to 0.95.
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(a) block = 50, t = 15 (b) block = 50, t = 20 (c) block = 50, t = 40

(d) block = 5, t = 15 (e) block = 5, t = 20 (f) block = 5, t = 40

Figure 5.19 Under block dependent structure, estimated FWER of the proposed

data-driven weighted selective procedure (Weighted TS Bonf.), selective parallel

gatekeeping procedure (Parallel TS Bonf.), adaptive two-stage Bonferroni procedure

(Adp.TS Bonf.) along with two-stage Bonferroni procedure (TS Bonf.) and the

conventional Bonferroni procedure (Bonf.), with true null proportion π0 = 0.5, when

n = 15, m = 100, for false null hypothesis Hi, µi = 1, and σ2
i = σ2 = 1. The

correlation coefficient ρ takes values from 0 to 0.95.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this dissertation, we first introduce a novel graphical approach, which allows one

to reject more than one hypothesis at each step. This overcomes a main drawback

of existing graphical approaches in which only one rejection is allowed at each

step. Through clinical trail examples, we illustrate that the proposed approach is

more flexible and computationally efficient than existing graphical approaches. As

a by-product, we propose a generalized sequential rejection principle to show the

FWER control of the proposed approach. Then, in Chapter 3 we propose a graphical

approach for general logically restricted hypotheses testing. By re-assigning critical

values between testable and non-testable (logically restricted) hypotheses, all critical

values are made fully used. Through clinical trial examples, we demonstrate that the

proposed graphical approach is more simple and flexible than few existing approaches

for logically restricted hypotheses testing. Finally, we introduce three powerful

two-stage selective inference procedures as well as their generalized procedures to

deal with large scale data analysis in Chapter 4 and extensive simulation studies are

provided in Chapter 5. The future works are discussed in the following.

For proposed graphical approaches in Chapter 2 and 3, a main work we plan

to do is to implement them in R package. Thus users can easily and quickly conduct

our approaches.

For proposed selective inference procedures, extensive simulation studies are

to be done to evaluate and compare the performance of the proposed blockwise

procedures with the proposed two-stage procedures and those of several existing

methods in terms of FWER control and average power. We also plan to apply the

constructed data-driven weights in Chapter 4 to the proposed weighted Bonferroni-
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based graphical approaches in Chapter 2 and 3 to develop newer and more powerful

graphical approaches.
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APPENDIX A

THE GENERALIZED GRAPHICAL APPROACH

A.1 Proof of (2.9) in Proposition 1

We use mathematical induction to show that (2.9) holds, that is

∑
k∈Ii

glk(R̂i−1) ≤ 1 for all i = 1, ...,m.

For i = 1, I1 = {1, ...,m}, we have R̂i−1 = R̂0 = ∅, and glk(R̂0) = glk, by
m∑
k=1

glk ≤1 in (2.4), we prove that
∑
k∈I1

glk(R̂0) ≤1.

By induction, we assume for i = s − 1(s ≤ m), the inequality holds, i.e.,∑
k∈Is−1

glk(R̂s−2) ≤1 for every l ∈ Is−1. Then for i = s, by the updating rule of

transition coefficient function in Algorithm 1, for every fixed l ∈ Is, we have

∑
k∈I(l)s

glk(R̂s−1) =
∑
k∈I(l)s

glk(R̂s−2) +
∑

j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

=

∑
k∈I(l)s

(
glk(R̂s−2) +

∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

)
1−

∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
,

(A.1)
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where I
(l)
s = Is\{l}. Expanding the numerator of the right-side in (A.1), we have

∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)



=
∑
k∈I(l)s

glk(R̂s−2) +
∑
k∈I(l)s

∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

=
∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)
∑
k∈I(l)s

gjk(R̂s−2)

≤
∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)

1−
∑
q∈Js−1

gjq(R̂s−2)− gjl(R̂s−2)



=
∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)
∑
q∈Js−1

gjq(R̂s−2)

−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

=
∑
k∈I(l)s−1

glk(R̂s−2)−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

≤ 1−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2),

where the first inequality holds since

∑
k∈Is−1

gjk(R̂s−2) =
∑
k∈I(l)s

gjk(R̂s−2) + gjl(R̂s−2) +
∑
q∈Js−1

gjq(R̂s−2) ≤ 1,

thus,

∑
k∈I(l)s

gjk(R̂s−2) ≤ 1− gjl(R̂s−2)−
∑
q∈Js−1

gjq(R̂s−2).
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The last equality holds since I
(l)
s ∪ Js−1 = I

(l)
s−1, and I

(l)
s ∩ Js−1 = ∅. And the second

inequality holds since

∑
k∈Is−1

glk(R̂s−2) =
∑
k∈I(l)s−1

glk(R̂s−2) +
∑
l=k

gkk(R̂s−2) =
∑
k∈I(l)s−1

glk(R̂s−2) ≤ 1.

Therefore, we have

∑
k∈I(l)s

(
glk(R̂s−2) +

∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

)
1−

∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
≤ 1,

which implies
∑
k∈I(l)s

glk(R̂s−1) ≤ 1 for i = s. Moreover, we know that gkk(R̂s−1) = 0 is

always true based on the updating rule of transition coefficient function in Algorithm

1. Thus
∑
k∈Is

glk(R̂s−1) ≤ 1 for i = s.

Summarizing the above arguments,
∑
k∈Ii

glk(R̂i−1) ≤1 holds for all i = 1, ...,m. �

A.2 Proof (2.10) in Proposition 1

We use mathematical induction to show (2.10) holds, that is

0 ≤ glk(R̂i−1) ≤ 1 for all i = 1, ...,m.

For i = 1, we have R̂i−1 = R̂0 = ∅, and glk(R̂0) = glk. By 0 ≤ glk ≤ 1 in (2.3),

we prove that 0 ≤ glk(R̂0) ≤ 1.

By induction, we assume for i = s − 1(s ≤ m), the inequality holds, i.e.,

0 ≤ glk(R̂s−2) ≤ 1 for all l, k ∈ Is−1. Then for i = s, by the updating rule of the

transition coefficient function in Algorithm 1, for all l, k ∈ Is, l 6= k, we have

glk(R̂s−1) =

glk(R̂s−2) +
∑

j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
, (A.2)
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where the numerator of the right-side in (A.2) is always non-negative due to the

assumption that 0 ≤ glk(R̂s−2) ≤ 1. Moreover, in A.1 we showed that

∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)



≤ 1−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2).

And by the assumption again, we have

∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

 ≥ 0, (A.3)

thus, 1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2) ≥ 0, which is the

denominator of the right-side in (A.2). And when

1−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2) = 0,

we set glk(R̂s−1) = 0 as presented in the article. Therefore, glk(R̂s−1) ≥ 0. Since we

showed in A.1 that
∑
k∈Is

glk(R̂s−1) ≤1, thus glk(R̂s−1) ≤ 1.

Therefore, 0 ≤ glk(R̂i−1) ≤ 1 holds for all i = 1, ...,m. When l = k, it is always

true that gkk(R̂i−1) = 0 for all i = 1, ...,m, based on the updating rule of transition

coefficient function in Algorithm 1. �

A.3 Proof of (2.11) in Proposition 1

We use mathematical induction to show that (2.11) holds, that is

∑
l∈Ii

αl(R̂i−1) ≤ α for all i = 1, ...,m.
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For i = 1, I1 = {1, ...,m}, we have R̂i−1 = R̂0 = ∅, and αl(R̂0) = αl. By
m∑
l=1

αl ≤ α in (2.2), we prove that

∑
l∈Ii

αl(R̂0) ≤ α.

By induction, we assume for i = s − 1(s ≤ m), the inequality holds, i.e.,∑
l∈Is−1

αl(R̂s−2) ≤ α. Then for i = s, by the updating rule of the critical value function

in Algorithm 1, we have

∑
l∈Is

αl(R̂s−1) =
∑
l∈Is

αl(R̂s−2) +
∑
j∈Js−1

gjl(R̂s−2)αj(R̂s−2)


=
∑
l∈Is

αl(R̂s−2) +
∑
l∈Is

∑
j∈Js−1

gjl(R̂s−2)αj(R̂s−2)

=
∑
l∈Is

αl(R̂s−2) +
∑
j∈Js−1

αj(R̂s−2)
∑
l∈Is

gjl(R̂s−2)

≤
∑
l∈Is

αl(R̂s−2) +
∑
j∈Js−1

αj(R̂s−2) =
∑
l∈Is−1

αl(R̂s−2) ≤ α,

where the first inequality holds since for non-negative transition coefficients functions,

and Is ⊆ Is−1, we have
∑
l∈Is

gjl(R̂s−2) ≤
∑

l∈Is−1

gjl(R̂s−2) ≤ 1. The last equality holds

since Is ∪ Js−1 = Is−1, and Is ∩ Js−1 = ∅. And the last inequality is due to the

assumptation that
∑

l∈Is−1

αl(R̂s−2) ≤ α.

Summarizing the above argument,
∑
l∈Ii

αl(R̂i−1) ≤ α holds for all i = 1, ...,m. �

A.4 Proof of monotonicity of transition coefficient function

We use mathematical induction to show that the monotonicity of transition coefficient

function holds, that is

glk(R̂i−1) ≤ glk(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m,

here, R̂i−1 = (R̂1, ..., R̂i−1)
T , and Si−1 = (S1, ...,Si−1)T .
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For i = 1, we have R̂i−1 = R̂0 = S0 = ∅, and glk(R̂0) = glk(S0) = glk. Thus, we

prove that the monotonicity of trasnsition coefficient function holds when i = 1.

By induction, we assume for i = s − 1(s ≤ m), the inequality holds, i.e.,

glk(R̂s−2) ≤ glk(Ss−2) for every R̂j ⊆ Sj, j = 1, ..., s − 2, and l, k ∈ Is−1. Then for

i = s, when l 6= k, by the updating rule of transition coefficient function in Algorithm

1, we have

glk(R̂s−1) =

glk(R̂s−2) +
∑

j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
(A.4)

and

glk(Ss−1) =

glk(Ss−2) +
∑

j∈Ts−1

glj(Ss−2)gjk(Ss−2)

1−
∑

j∈Ts−1

∑
q∈Ts−1

glj(Ss−2)gjq(Ss−2)−
∑

j∈Ts−1

glj(Ss−2)gjl(Ss−2)
, (A.5)

where Ts−1 is the index set of a collection of rejections in Ss−1. For non-negative

transition coefficient function (showed in A.2), we have

glk(R̂s−2) +
∑

j∈Js−1

glj(R̂s−2)gjk(R̂s−2) (A.6)

≤ glk(Ss−2) +
∑

j∈Js−1

glj(Ss−2)gjk(Ss−2) (A.7)

≤ glk(Ss−2) +
∑

j∈Ts−1

glj(Ss−2)gjk(Ss−2), (A.8)

where (A.6) is the numerator of the right-side in (A.4), and the right-side in (A.8)

is the numerator of the right-side in (A.5). The inequality in (A.7) holds due to the

assumptation made at step s−1. And the inequality in (A.8) holds since Js−1 ⊆ Ts−1.

Moreover, for both denominators of right-side in (A.4), (A.5), we have

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

≥ 1−
∑

j∈Js−1

∑
q∈Js−1

glj(Ss−2)gjq(Ss−2)−
∑

j∈Js−1

glj(Ss−2)gjl(Ss−2) (A.9)

≥ 1−
∑

j∈Ts−1

∑
q∈Ts−1

glj(Ss−2)gjq(Ss−2)−
∑

j∈Ts−1

glj(Ss−2)gjl(Ss−2), (A.10)
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the inequality in (A.9) holds due to the assumptation made at step s − 1. And the

inequality in (A.10) holds since Js−1 ⊆ Ts−1. Therefore, by the above argument, we

prove that when l 6= k, glk(R̂s−2) ≤ glk(Ss−2). When l = k, it is always true that

glk(R̂s−2) = glk(Ss−2) = 0 by the updating rule of transition coefficient function in

Algorithm 1. Therefore, glk(R̂s−1) ≤ glk(Ss−1), for every R̂j ⊆ Sj, j = 1, ..., s− 1.

Summarizing the above argument, we conclude that

glk(R̂i−1) ≤ glk(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m. �

A.5 Proof of (2.12) in Proposition 1

We use mathematical induction to show that (2.12) holds, that is

αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m,

where, R̂i−1 = (R̂1, ..., R̂i−1)
T , and Si−1 = (S1, ...,Si−1)T .

For i = 1, we have R̂i−1 = R̂0 = S0 = ∅, and αl(R̂0) = αl(S0) = αl. Thus, we

prove that (2.12) holds when i = 1.

By induction, we assume for i = s − 1(s ≤ m), the inequality holds, i.e.,

αl(R̂s−2) ≤ αl(Ss−2) for every R̂j ⊆ Sj, j = 1, ..., s − 2. Then for i = s, by the

updating rule of critical value function in Algorithm 1, we have

αl(R̂s−1) = αl(R̂s−2) +
∑
j∈Js−1

gjl(R̂s−2)αj(R̂s−2) (A.11)

and

αl(Ss−1) = αl(Ss−2) +
∑
j∈Ts−1

gjl(Ss−2)αj(Ss−2), (A.12)

where Ts−1 is the index set of a collection of rejections in Ss−1. The right-side in

(A.11) has the following property by the monotonicity of transition coefficient function
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showed in A.4

αl(R̂s−2) +
∑

j∈Js−1

gjl(R̂s−2)αj(R̂s−2) (A.13)

≤ αl(R̂s−2) +
∑

j∈Js−1

gjl(Ss−2)αj(R̂s−2) (A.14)

≤ αl(Ss−2) +
∑

j∈Js−1

gjl(Ss−2)αj(Ss−2) (A.15)

≤ αl(Ss−2) +
∑

j∈Ts−1

gjl(Ss−2)αj(Ss−2). (A.16)

The inequality in (A.15) holds due to the assumptation made at step s − 1, i.e.,

αl(R̂s−2) ≤ αl(Ss−2). And the inequality in (A.16) holds since Js−1 ⊆ Ts−1.

Therefore, by the above argument, we prove that αl(R̂s−1) ≤ αl(Ss−1), for every

R̂j ⊆ Sj, j = 1, ..., s− 1.

Summarizing the above arguments, we conclude that

αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m. �

A.6 Proof of Theorem 3

We apply the extended sequention rejective principle in Theorem 2 to prove the

FWER control of the proposed graphical approach. First, we show that the

monotonicity condition of the successor function in Theorem 2 is satisfied. The

successor function is defined as follows:

N (R̂i−1) = R̂i = {Hl ∈ H\ ∪i−1k=1 R̂k : pl ≤ αl(R̂i−1)}

and

N (Si−1) = Si = {Hl ∈ H\ ∪i−1k=1 Sk : pl ≤ αl(Si−1)},

where R̂i−1 = (R̂1, ..., R̂i−1)
T , and Si−1 = (S1, ...,Si−1)T .

In A.5, we showed that

αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, where j = 1, ..., i−1, and for all i = 1, ...,m.
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Thus, for every Hl ∈ N (R̂i−1), we have pl ≤ αl(R̂i−1), by the monotonicity of

critical value function, we show that pl ≤ αl(Si−1), thus, Hl ∈ N (Si−1). Therefore,

N (R̂i−1) ⊆ N (Si−1), which satisfies the monotonicity condition of successor function

in Theorem 2.

Next, we show that the singel step FWER control in Theorem 2 is also satisfied

for the proposed approach. Assume we reject all false null hypotheses in previous

i− 1 steps, then we have

P (reject at least one true null hypothesis at step i)

= P (N (Fi−1) * F)

= P{∪j∈T {pj ≤ αj(Fi−1)}}

≤
∑
j∈T

P (pj ≤ αj(Fi−1)) ≤
∑
j∈T

αj(Fi−1) ≤ α,

where T and F are collection of true null hypotheses and false null hypotheses,

respectively. And Fi−1 = (F1, ...,Fi−1)T , is a vector, which includes all rejected false

null hypotheses, and F1, ...,Fi−1 are all mutually exclusive sets. The first inequality

is due to Bonferroni Inequality. The second inequality is under the assumption that

all unadjusted p-values follow uniform distribution. The third inequality is due to

the property of critical value function (shown in A.3), that is:

∑
l∈Ii

αl(R̂i−1) ≤ α for all i = 1, ...,m.

Thus, the single step FWER control is also satisfied for the proposed approach. By

the extended sequention rejective principle, we prove that the proposed graphical

approach strongly controls FWER at level α. �
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APPENDIX B

THE GRAPHICAL APPROACH FOR LOGICALLY RELATED

HYPOTHESES TESTING

B.1 Proof of (3.8) in Proposition 2

We use mathematical induction to show that (3.8) holds, that is

∑
k∈Ii

glk(R̂i−1) = 1 for all i = 1, ...,m.

For i = 1, I1 = {1, ...,m}, we have R̂i−1 = R̂0 = ∅, and glk(R̂0) = glk, by
m∑
k=1

glk =1

in (3.3), we prove that
∑
k∈I1

glk(R̂0) =1.

By induction, we assume that for i = s − 1(s ≤ m), the inequality holds, i.e.,∑
k∈Is−1

glk(R̂s−2) =1 for every l ∈ Is−1. Then for i = s, by the updating rule of

transition coefficient function in Algorithm 3, for every fixed l ∈ Is, we have

∑
k∈I(l)s

glk(R̂s−1) =
∑
k∈I(l)s

glk(R̂s−2) +
∑

j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

=

∑
k∈I(l)s

(
glk(R̂s−2) +

∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

)
1−

∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
,

(1)
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where I
(l)
s = Is\{l}. Expanding the numerator of the right-side in (1), we have

∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)



=
∑
k∈I(l)s

glk(R̂s−2) +
∑
k∈I(l)s

∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

=
∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)
∑
k∈I(l)s

gjk(R̂s−2)

=
∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)

1−
∑
q∈Js−1

gjq(R̂s−2)− gjl(R̂s−2)



=
∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)
∑
q∈Js−1

gjq(R̂s−2)

−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

=
∑
k∈I(l)s−1

glk(R̂s−2)−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)

−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

=
∑
k∈I(l)s−1

glk(R̂s−2) + gkk(R̂s−2)−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)

−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

= 1−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2),
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where the third equality holds since

∑
k∈Is−1

gjk(R̂s−2) =
∑
k∈I(l)s

gjk(R̂s−2) + gjl(R̂s−2) +
∑
q∈Js−1

gjq(R̂s−2) = 1,

thus,

∑
k∈I(l)s

gjk(R̂s−2) = 1− gjl(R̂s−2)−
∑
q∈Js−1

gjq(R̂s−2).

The fifth equality holds since I
(l)
s ∪ Js−1 = I

(l)
s−1, and I

(l)
s ∩ Js−1 = ∅. And the last

equality holds since

∑
k∈Is−1

glk(R̂s−2) =
∑
k∈I(l)s−1

glk(R̂s−2) +
∑
l=k

gkk(R̂s−2) =
∑
k∈I(l)s−1

glk(R̂s−2) = 1.

Therefore, we have

∑
k∈I(l)s

(
glk(R̂s−2) +

∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

)
1−

∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
= 1,

which implies
∑
k∈I(l)s

glk(R̂s−1) = 1 for i = s. Moreover, we know that gkk(R̂s−1) = 0 is

always true based on the updating rule of transition coefficient function in Algorithm

3. Thus
∑
k∈Is

glk(R̂s−1) = 1 for i = s.

Summarizing the above arguments,
∑
k∈Ii

glk(R̂i−1) =1 holds for all i = 1, ...,m. �

B.2 Proof of (3.9) in Proposition 2

We use mathematical induction to show that (3.9) holds, that is

0 ≤ glk(R̂i−1) ≤ 1 for all i = 1, ...,m.

For i = 1, we have R̂i−1 = R̂0 = ∅, and glk(R̂0) = glk. By 0 ≤ glk ≤ 1 in (3.2),

we prove that 0 ≤ glk(R̂0) ≤ 1. By induction, we assume for i = s − 1(s ≤ m),
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the inequality holds, i.e., 0 ≤ glk(R̂s−2) ≤ 1 for all l, k ∈ Is−1. Then for i = s,

by the updating rule of the transition coefficient function in Algorithm 3, for all

l, k ∈ Is, l 6= k, we have

glk(R̂s−1) =

glk(R̂s−2) +
∑

j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
, (2)

where the numerator of the right-side in (2) is always non-negative due to the

assumption that 0 ≤ glk(R̂s−2) ≤ 1. Moreover, in B.1 we showed that

∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)



= 1−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2).

And by the assumption again, we have

∑
k∈I(l)s

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

 ≥ 0, (3)

thus,

1−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2) ≥ 0,

which is the denominator of the left-side in (2). And when

1−
∑
j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑
j∈Js−1

glj(R̂s−2)gjl(R̂s−2) = 0,

we always set glk(R̂s−1) = 0. Therefore, glk(R̂s−1) ≥ 0. Since we showed in B.1 that∑
k∈Is

glk(R̂s−1) =1, thus glk(R̂s−1) ≤ 1.

Therefore, 0 ≤ glk(R̂i−1) ≤ 1 holds for all i = 1, ...,m. When l = k, it is always

true that gkk(R̂i−1) = 0 for all i = 1, ...,m, based on the updating rule of transition

coefficient function in Algorithm 3. �
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B.3 Proof of (3.10) Proposition 2

We use mathematical induction to show that (3.10) holds, that is

∑
l∈Ii

αl(R̂i−1) ≤ α for all i = 1, ...,m.

For i = 1, I1 = {1, ...,m}, we have R̂i−1 = R̂0 = ∅, and αl(R̂0) = αl. By
m∑
l=1

αl ≤ α

in (??), we prove that ∑
l∈Ii

αl(R̂0) ≤ α.

By induction, we assume for i = s − 1(s ≤ m), the inequality holds, i.e.,∑
l∈Is−1

αl(R̂s−2) ≤ α. Then for i = s, by the updating rule of the critical value function

in Algorithm 3, we have

∑
l∈Is

αl(R̂s−1) =
∑
l∈Is

αl(R̂s−2) +
∑
j∈Js−1

gjl(R̂s−2)αj(R̂s−2)


=
∑
l∈Is

αl(R̂s−2) +
∑
l∈Is

∑
j∈Js−1

gjl(R̂s−2)αj(R̂s−2)

=
∑
l∈Is

αl(R̂s−2) +
∑
j∈Js−1

αj(R̂s−2)
∑
l∈Is

gjl(R̂s−2)

≤
∑
l∈Is

αl(R̂s−2) +
∑
j∈Js−1

αj(R̂s−2) =
∑
l∈Is−1

αl(R̂s−2) ≤ α,

where the first inequality holds since for non-negative transition coefficient functions,

and Is ⊆ Is−1, we have
∑
l∈Is

gjl(R̂s−2) ≤
∑

l∈Is−1

gjl(R̂s−2) = 1. The equality holds only

when for all k ∈ Js−1, gjk = 0, thus
∑
l∈Is

gjl(R̂s−2) =
∑

l∈Is−1

gjl(R̂s−2) = 1. And the last

inequality is due to the assumptation that
∑

l∈Is−1

αl(R̂s−2) ≤ α.

Summarizing the above arguments, we conclude that

∑
l∈Ii

αl(R̂i−1) ≤ α holds for all i = 1, ...,m.�

136



B.4 Proof of monotonicity of transition coefficient function

We use mathematical induction to show that the monotonicity of transition coefficient

function holds, that is

glk(R̂i−1) ≤ glk(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m,

here, R̂i−1 = (R̂1, ..., R̂i−1)
T , and Si−1 = (S1, ...,Si−1)T .

For i = 1, we have R̂i−1 = R̂0 = S0 = ∅, and glk(R̂0) = glk(S0) = glk. Thus, we

prove that the monotonicity of trasnsition coefficient function holds when i = 1.

By induction, we assume that for i = s − 1(s ≤ m), the inequality holds, i.e.,

glk(R̂s−2) ≤ glk(Ss−2) for every R̂j ⊆ Sj, j = 1, ..., s − 2, and l, k ∈ Is−1. Then for

i = s, when l 6= k, by the updating rule of transition coefficient function in Algorithm

3, we have

glk(R̂s−1) =

glk(R̂s−2) +
∑

j∈Js−1

glj(R̂s−2)gjk(R̂s−2)

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)
, (4)

glk(Ss−1) =

glk(Ss−2) +
∑

j∈Ts−1

glj(Ss−2)gjk(Ss−2)

1−
∑

j∈Ts−1

∑
q∈Ts−1

glj(Ss−2)gjq(Ss−2)−
∑

j∈Ts−1

glj(Ss−2)gjl(Ss−2)
, (5)

where Ts−1 is the index set of a collection of rejections in Ss−1. For non-negative

transition coefficient function (showed in B.2), we have

glk(R̂s−2) +
∑
j∈Js−1

glj(R̂s−2)gjk(R̂s−2) ≤ glk(Ss−2) +
∑

j∈Js−1

glj(Ss−2)gjk(Ss−2) (6)

≤ glk(Ss−2) +
∑

j∈Ts−1

glj(Ss−2)gjk(Ss−2), (7)

where the left-side in (6) is the numerator of the right-side in (4), and the right-side

in (7) is the numerator of the right-side in (5). The inequality in (6) holds due to the

assumptation made at step s− 1. And the inequality in (7) holds since Js−1 ⊆ Ts−1.
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Moreover, for both denominators of right-side in (4) and (5), we have

1−
∑

j∈Js−1

∑
q∈Js−1

glj(R̂s−2)gjq(R̂s−2)−
∑

j∈Js−1

glj(R̂s−2)gjl(R̂s−2)

≥ 1−
∑

j∈Js−1

∑
q∈Js−1

glj(Ss−2)gjq(Ss−2)−
∑

j∈Js−1

glj(Ss−2)gjl(Ss−2) (8)

≥ 1−
∑

j∈Ts−1

∑
q∈Ts−1

glj(Ss−2)gjq(Ss−2)−
∑

j∈Ts−1

glj(Ss−2)gjl(Ss−2), (9)

the inequality in (8) holds due to the assumptation made at step s − 1. And the

inequality in (9) holds since Js−1 ⊆ Ts−1. Therefore, by the above argument, we

prove that when l 6= k, glk(R̂s−2) ≤ glk(Ss−2). When l = k, it is always true that

glk(R̂s−2) = glk(Ss−2) = 0 by the updating rule of transition coefficient function in

Algorithm 3. Therefore, glk(R̂s−1) ≤ glk(Ss−1), for every R̂j ⊆ Sj, j = 1, ..., s− 1.

Summarizing the above arguments, we conclude that

glk(R̂i−1) ≤ glk(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m. �

B.5 Proof of (3.11) in Proposition 2

We use mathematical induction to show that (3.11) holds, that is

αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m,

where, R̂i−1 = (R̂1, ..., R̂i−1)
T , and Si−1 = (S1, ...,Si−1)T .

For i = 1, we have R̂i−1 = R̂0 = S0 = ∅, and αl(R̂0) = αl(S0) = αl. Thus, we

prove that (3.11) holds when i = 1.

By induction, we assume that for i = s − 1(s ≤ m), the inequality holds, i.e.,

αl(R̂s−2) ≤ αl(Ss−2) for every R̂j ⊆ Sj, j = 1, ..., s − 2. Then for i = s, by the

updating rule of critical value function in Algorithm 3, we have

αl(R̂s−1) = αl(R̂s−2) +
∑

j∈Js−1

gjl(R̂s−2)αj(R̂s−2) (10)
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and

αl(Ss−1) = αl(Ss−2) +
∑

j∈Qs−1

gjl(Ss−2)αj(Ss−2), (11)

where Qs−1 is the index set of a collection of rejections in Ss−1. The right-side in

(10) has the following property by the monotonicity of transition coefficient function

showed in B.4

αl(R̂s−2) +
∑
j∈Js−1

gjl(R̂s−2)αj(R̂s−2) ≤ αl(R̂s−2) +
∑

j∈Js−1

gjl(Ss−2)αj(R̂s−2) (12)

≤ αl(Ss−2) +
∑

j∈Js−1

gjl(Ss−2)αj(Ss−2) (13)

≤ αl(Ss−2) +
∑

j∈Qs−1

gjl(Ss−2)αj(Ss−2). (14)

The inequality in (13) holds due to the assumptation made at step s − 1, i.e.,

αl(R̂s−2) ≤ αl(Ss−2). And the inequality in (14) holds since Js−1 ⊆ Qs−1. Therefore,

by the above argument, we prove that αl(R̂s−1) ≤ αl(Ss−1), for every R̂j ⊆ Sj, j =

1, ..., s− 1.

Summarizing the above arguments, we conclude that

αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m. �

B.6 Proof of Theorem 4

We apply the extended sequention rejective principle in Theorem 2 to prove the

FWER control of the proposed graphical approach. First, we show that the

monotonicity condition of the successor function in Theorem 2 is satisfied. The

successor function is defined as follows:

N (R̂i−1) = R̂i = {Hj ∈ H\ ∪i−1k=1 R̂k : pj ≤ αj(R̂i−1) +
∑
f

bfj(R̂i−1)},
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and

N (Si−1) = Si = {Hj ∈ H\ ∪i−1k=1 Sk : pj ≤ αj(Si−1) +
∑
f

bfj(Si−1)},

where R̂i−1 = (R̂1, ..., R̂i−1)
T , and Si−1 = (S1, ...,Si−1)T .

In B.4, we showed that

glk(R̂i−1) ≤ glk(Si−1), for every R̂j ⊆ Sj, j = 1, ..., i− 1, and for all i = 1, ...,m.

And in B.5, we showed that

αl(R̂i−1) ≤ αl(Si−1), for every R̂j ⊆ Sj, where j = 1, ..., i−1, and for all i = 1, ...,m.

The re-assigned critical value function bfj(R̂i−1) at any step i is a multiply of non-

negative monotonic functions, thus it is also a monotonic function, as well as the the

summation of such re-assigned critical value functions
∑
f

bfj(R̂i−1). So we have

αj(R̂i−1) +
∑
f

bfj(R̂i−1) ≤ αj(Si−1) +
∑
f

bfj(Si−1), (15)

for every R̂k ⊆ Sk, where k = 1, ..., i− 1, and for all i = 1, ...,m.

Thus, for every Hj ∈ N (R̂i−1), we have pj ≤ αj(R̂i−1) +
∑
f

bfj(R̂i−1), by

the monotonicity showed in (15), we show that pj ≤ αj(Si−1) +
∑
f

bfj(Si−1), thus,

Hj ∈ N (Si−1). Therefore, N (R̂i−1) ⊆ N (Si−1), which satisfies the monotonicity

condition of successor function in Theorem 2.

Next, we show that the singel step FWER control in Theorem 2 is also satisfied

for the proposed approach. Assume we reject all false null hypotheses in previous
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i− 1 steps, then we have

P (reject at least one true null hypothesis at step i)

= P (N (Fi−1) * F)

= P

∪j∈T {pj ≤ αj(Fi−1) +
∑
f

bfj(Fi−1)}


≤

∑
j∈T

P

pj ≤ αj(Fi−1) +
∑
f

bfj(Fi−1)


≤

∑
j∈T

αj(Fi−1) +
∑
f

bfj(Fi−1)


≤

∑
j∈Ii

αj(Fi−1) +
∑
f

bfj(Fi−1)


=

∑
j∈Ti

αj(Fi−1) +
∑

f∈Ii\Ti

αf (Fi−1) ≤ α

where T and F are collection of true null hypotheses and false null hypotheses,

respectively. And Fi−1 = (F1, ...,Fi−1)T , is a vector, which includes all rejected false

null hypotheses, and F1, ...,Fi−1 are all mutually exclusive sets. The first inequality

is due to Bonferroni inequality. The second inequality is under the assumption that

all true null p-values follow uniform distribution. The third inequality is because of

Ti ⊆ Ii. The last inequality is due to the property of critical value function (showed

in B.3), that is: ∑
l∈Ii

αl(R̂i−1) ≤ α for all i = 1, ...,m,

and the property of re-assignment that is the sum of critical values over all hypotheses

at any step i remains the same before and after re-assignment.

Thus, the single step FWER control is also satisfied for the proposed approach.

By the extended sequential rejection principle, we prove that the proposed graphical

approach strongly controls the FWER at level α. �
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