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ABSTRACT

INFLUENCE OF LATERAL BOUNDARIES IN TAPPED
DENSIFICATION OF GRANULAR MATERIALS

by
Nathaniel Ching

Granular systems are widely present in the world. Soil, pharmaceutical pills, and

silos filled with grain all are examples of granular systems. Experiments have

long established an empirical understanding of granular systems, but an analytical

understanding has been much more difficult to establish. One of the behaviors of

a granular system that is well documented but poorly understood is the change in

density the system undergoes when excited, also known as the densification process.

This thesis investigates the densification process of a tapped granular system

using Discrete Element Model (DEM) simulations. Contact interactions in the

simulations obey a well-established inelastic soft-sphere model. The computational

volume consists of a rectangular parallelepiped with a square base that is 12 particle

diameters wide and filled with 3456 spheres. A focus of this work is on understanding

the influence of the walls on the densification process.

Several systems are observed to stay in a metastable state for thousands of taps

before further densification occurs. In addition, bulk lateral movement or drift of

the sphere assembly is detected after evolving to maximally dense state, even though

the particles come to a complete rest between taps. Simulations conducted with

solid lateral walls suggest a reduced rate of densification as compared to the periodic

systems, which is hypothesized to be caused in part by a motion restriction of the

spheres imposed by the solid walls.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Granular systems are widely used all over the modern world, and understanding the

mechanics of granular systems can yield cheaper, stronger materials. The road we

drive on, the engines in cars, the sand on the beach, plastic extrusion for smartphones,

and the concrete building foundations all involve granular systems.

There are several areas of current research in the granular field. The arrangement

of spheres in a dense state has been a mathematical problem of interest since 1611,

when Kepler theorized that the Face-Centered-Cubic (FCC) pattern was the densest

possible packing of spheres [1]. The Kepler Conjecture has not been formally proven,

although Hales and Ferguson in 1998 published a preliminary proof [2], and research

is ongoing to find a formal proof.

Another area of research is the field of granular flow, starting with the seminal

research by Bagnold [3] and continuing to today. Practical examples are predicting

the movement of silt in a waterway; chutes, silos, and valves that are used by the grain

industry; and the understanding of landslides and avalanches. Yet another area of

research is granular segregation under vibration, where mixed particles of different sizes

and properties separate, has also been researched extensively. Granular segregation is

applicable to all industries that mix and transport powders, sand, rocks, and other

mixed granular material. Examples are the large chunks of cereal at the top of the

box, or the separation of crushed ore on a moving conveyor belt. Granular segregation

is also known as the Brazil Nut Effect [4] and the Reverse Brazil Nut Effect [5]. Other

research has gone into powder mixing [6]. Powder mixing research explores how to best

mix two granular materials, including mixing dissimilar materials while preventing

1
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granular segregation from happening. A complex process of producing porous gold

and other soft metals is based on completely mixing two dissimilar powders [6].

Research has also been done recently to form a continuum model to describe

the granular systems. The continuum model can then be used in Finite Element

Method (FEM) simulations. FEM simulations are much faster than the simulation

methods used in this thesis because the FEM simulations do not have to track

individual particles. Speed of computation makes FEM simulations much more useful

for modeling industry problems described above with large numbers of particles.

One mathematical model is to compare the granules in a system with molecules in

a thermodynamic system. A granular system that keeps its structure during the

vibrations is in the solid phase. If there is some movement, then it is a liquid. If there

is a lot of movement, then the granular system is in the gas phase. Various methods

of mapping variables in the granular system to thermodynamic variables have been

explored [7]. The phase transitions of a granular system has also been explored [7].

Other models based on cellular automata and random walks have been proposed, as

well as a model based on averaging of granular dynamics [8].

This thesis shall focus on the area of granular compaction under vibration and

tapping. Research into the compaction of granular systems under vibration or tapping

has deep practical implications. Powder metallurgy is one target of the research, as

the strength and uniformity of the finished part is dependent on the uniformity of

the powder before it is pressed or sintered [9]. The area of nuclear fuels manufacture

was a special case of powder metallurgy that was researched in the 1960’s [10]. A

granular packing has a large surface area in comparison to even the roughest metal

plates, so a granular metal anode or cathode with a low solids fraction can be used

to create better batteries [11]. Additionally, complex shapes of molds for castings

need to be made from dense, but porous materials. A sand mold that becomes denser

during the pouring or injection of the metal will produce a deformed part. Vibration
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or tapping is a standard method to compact the sand molds for casting before the

metal is poured or injected [12].

Experiments with densification of granular systems are often done with an

electromechanical shaker and a glass or acrylic tube. The electromechanical shaker

allows the frequency and amplitude to be controlled precisely. The clear tube allows

the researcher to measure the height, and therefore the density, of the system while it

is being shaken. Sometimes, an experimenter will use the dielectric property of glass

to measure the solids fraction of a specific area in a tube; the denser the system is, the

higher the capacitance will be across the tube. Research in crystallography requires

the experimenter to see the positions of the particles in the system. In order to see

the positions of the particles inside a 3D system, the system could be filled with glue

and then sliced, or the system could be put in an MRI scanner.

Early simulations were done with Monte Carlo methods, because they were less

computationally intensive. With advances in computing speed, almost all simulations

are now done with the Discrete Element Method (DEM). The DEM simulations

integrate the equations of motion for each particle, and therefore are more accurate

than the Monte Carlo methods. An overview of the DEM method is in Chapter 2.

As noted multiple times in the Literature Survey, DEM and Monte Carlo simulations

have been well correlated with experimental results at the qualitative level.

Due to the multitudes of affecting parameters, the behavior of a granular system

is complex. Table 1.1 shows the parameter space for the “simple” granular systems

that are being studies in this thesis. Parameters without a symbol are not used with

a symbol in this thesis. A full explanation of these parameters are discussed in this

chapter as well as in Chapter 2.
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Table 1.1 Parameter Space of Simple Tapped Granular Systems

Symbol Parameter

d Particle diameter

N Number of particles in the system

Width of the system

Vertical boundary types

Shape of the tap

Direction of the tap

a Tap acceleration

f Tap frequency

m Particle mass

ν0 Initial solids fraction

µ Coefficient of friction

k Particle stiffness

e Restitution coefficient

1.2 Literature Survey

The sections on continuous vibration and tapping focus on the early research on

granular compaction, while the section on the reversible and irreversible branch

focuses on the most recent research that this thesis builds upon. The section on the

boundary conditions focuses on early research with a periodic boundary condition and

current research that mentions the effects of boundary conditions in granular systems.

1.2.1 Continuous Vibration

Multiple people have looked for and found the range of frequencies and amplitudes

that give the densest possible result. A study by D’Appolonia and D’Appolonia in

1967 [13] tested dry sand with several amplitudes and frequencies. An extension of

D’Appolonia’s study by Dobry and Whitman in 1973 [14] found that the combination

that gives the maximum improvement is not the combination that gives the most rapid

improvement. This suggests that in a time-constrained system, such as manufacturing,
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there is an optimized set of parameters that will give the most improvement in solids

fraction in the least amount of time.

Experimental studies in 1951 by Stewart [15] and in 1967 by Evans and

Millman [16] mapped the solids fraction after a large number of taps to the amplitude

and frequency field. They found that large amplitudes combined with large frequencies

resulted in a low solids fraction. The best solids fraction was found using high

frequency and low amplitude, or low frequency and high amplitude. Their results

pointed towards the dimensionless acceleration parameter Γ shown in Equation (1.1)

as a parameter of interest in granular compaction. f is the frequency of the vibrtaion,

a is the displacement amplitude, and g is the gravitational constant.

Γ =
4π2f 2a

g
(1.1)

A study by Zhang and Rosato in 2006 [17] studied a wide range of frequencies

and amplitudes to find the pairs that would give the most improvement in the solids

fraction. [17] used both DEM simulations and an experiment with acrylic monodisperse

spheres in a cylinder. The system was vibrated for 10 minutes, and the change in solids

fraction was measured. The results from the DEM simulations and the experiments

were correlated and found to qualitatively agree.

Several early studies looked at the solids fraction of a polydisperse system vs.

the time spent vibrating it. Shatalova et al. [9] looked at compacting metal powders

typically used in powder metallurgy. [9] looked at many parameters to the compactions,

with many experiments and values from other papers. McGeary [18] did a smaller

study on a polydisperse systems of steel shot. Both [9] and [18] showed a sharp rise in

solids fraction at the beginning of vibration followed by a tapering off.

Some of the early granular studies were focused on the crystal structure that

can be formed by vibrating a bed of spheres. Since the highest possible solids fraction
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can only be achieved with a crystalline structure, these studies are closely related

to the maximum solids fraction. Berg, et al. in 1969 [19] looked at the crystal

formations in an experimental three-dimensional system with both one-dimensional

and three-dimensional continuous vibration. A system of ball bearings was vibrated

and then frozen in water. As the ice thawed, the researchers were able to see the

crystalline structure of the system. [19] found that the three-dimensional vibration

gave a regular crystalline structure, while the one-dimensional vibration resulted in a

disordered structure. Rocke in 1971 [20] looked at the crystal structure in a cylinder

with a specially formed floor. The floor was shaped to produce cylindrical layers of

hexagonal crystals. [20] then calculated a theoretical infinite-bed solids fraction and

found a good match with extrapolated experimental values.

Due to the extremely complex nature of a vibrated granular system, the

explanation of the phenomena behind compaction is nowhere near complete. In

1967, D’Appolonia et al. [13] attempted to explain the results of their compaction

experiments. A 1994 study by Duran [21] focused on 2-dimensional systems, where

the particle positions could be directly observed. The results from [20] showed that

two-dimensional systems contain many of the same phenomena as 3-dimensional

systems, such as convection, heaping, and size segregation [21]. Duran used aluminum

beads between two glass plates and tracked the system that started from a high

density state and had the solids fraction decrease as it was tapped. The conclusion

in [20] is that the walls are the starting point for the decompaction, and the disorder

propagated through the system from the walls.

Edwards and Oakeshott in 1989 [22] used statistical mechanics to look at a

general powder that has minimal interparticle forces. They drew an analogy to

thermodynamics, using the density as the temperature of the system. Follow up work

on statistical mechanics in a powder system was done by Mehta and Edwards in

1990 [23] and by Oakeshott and Edwards in 1992 [24].
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1.2.2 Tapping

When vibrating a granular system, there are multiple phenomena occurring which

affect the density of the system and its state. The system can enter a second or

higher mode, with waves on the surface of the system. Allowing a system to come

to a rest between taps stops the higher order modes and certain other phenomena

from occurring in the granular system and makes it easier to study the remaining

phenomena. A tapped system and a continuously vibrated system display similar

reactions to stimulation, but due to the missing phenomena, tapped systems are a

separate field of study.

In 1993, Barker and Mehta [25] did Monte Carlo simulations with monodisperse,

frictionless spheres. Their Monte Carlo model was based on a dilation and redeposition

based partially on random events and partially on mechanics. The system was roughly

8 sphere diameters wide and 20 sphere diameters tall, with periodic boundaries. They

plotted the density with respect to the number of taps for a range of intensities, and

found that the density of the system decreased with increasing intensity. A plain

exponential function was not sufficient, but a sum of two exponential functions best

described the data. They theorized that there could be two different phenomena

responsible for the densification process: the short-time-scale relaxation is due to the

reorganization of individual particles, and the long-time-scale relaxation is due to

the reorganization of clusters of particles. The formation of arches and bridges was

observed in their systems, and larger arches were observed in the systems with higher

intensity tapping.

Hong et al. in 1994 [26] proposed a continuum model based on diffusing voids.

The model proposed by Hong et al. predicts a power-law dependence of the change in

solids fraction ∆ν to the number of taps t with Equation (1.2).

∆ν(t) ∝ t−2 (1.2)
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In 1995, Knight et al. [27] experimentally studied the density of a monodisperse

granular system under discrete taps as it progressed from its initial state to an

equilibrium state, getting quantitatively similar results to McGeary [18], who used a

polydisperse system under continuous vibration. The system for [27] was glass beads in

a Pyrex cylinder, with the cylinder 9.4 particle diameters wide. The initial height of the

system was roughly 43.5 particle diameters deep. Knight et al. attempted various fits

to their data. The sum of two exponentials proposed in [25] was found to be close, but

not conclusive. A stretched exponential, also known as the Kohlrausch-Williams-Watts

(KWW) function, fit well. The power law function proposed in [26] did not fit well.

They observed that the relaxation looked logarithmic, and a logarithmic decay function

seen in Equation (1.3) had a better fit than the stretched exponential function. The

logarithmic decay was not theoretically motivated. t is the tap number, ν(t) is the

density after t taps, ν∞ is the final density, ν0 is the initial density, and β and τ are

constants.

ν(t) = ν∞ −
ν0 − ν∞

1 + β ln
(
1 + t

τ

) (1.3)

Linz [28] followed up on [27] in 1996 by using a phenomenological decay law

to model the densification curve. The model was based on the stroboscopic decay

law, with the result shown in Equation (1.4). It was shown in [28] that Equation (1.4)

matched Equation (1.3) within a first order approximation. Ψ is the digamma function,

and C and D are constants.

ν(t) = ν∞ +
ν0 − ν∞

1 + CD [Ψ(t+ 1 +D)−Ψ(1 +D)]
(1.4)

Nowak et al. in 1998 [29] followed up on [27] by doing more studies with Monte

Carlo simulations. They proposed a new model for density relaxation based on the
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parking lot model. The presumption is that the denser a system is, the harder it is to

pack one more particle into the same space. The Monte Carlo simulations were run

with the parking lot model. The parking lot model was able to simulate the rapid rise

in density followed by a slow rise. However, the parking lot model used in [29] was not

able to model the steady-state fluctuations that were seen in the experimental data.

In 2005, Ribière et al. [30] used experiments with large systems of beads and

rice to look at convection in a tapped system. They found the convection to present

in areas that were not compacted to a dense state. The simulations started at a loose

state and immediately started tapping at the final velocity. [30] also had Monte Carlo

simulations with 4096 particles to take a general look at tapped granular systems and

make qualitative comparisons with the experiments.

In follow-up work to [30], Ribière et al. focused on the grain motion during a

tap [31]. They used a simulation to see the effect of disallowing “jumps” made by a

particle in the Γ range where particles normally are caged by their neighbors. The

simulation method did not track the forces between particles as in a DEM method,

but artificially dilated the system and allowed it to come to rest without allowing any

overlap. [31] found that there is a noticeable slowing of the densification process as

well as a reduction in final density caused by disallowing “jumps.”

1.2.3 Reversible and Irreversible Branch

When starting at a loose configuration and tapping a system, there will be a tap

amplitude that will give the densest resulting configuration. The reversible branch is

achieved by decreasing the amplitude of the tap in steps from that densest configuration.

The density of the configuration when reducing the amplitude will stay the same or

increase from the densest configuration achieved while increasing the amplitude. When

starting at a high density and increasing the amplitude, the density decreases, following

the curve by which it increased. Thus, the reversible branch can be reproduced while
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sweeping the amplitude up and down, while the irreversible branch can only be seen

once when increasing the amplitude from a loose state. The process of increasing then

decreasing the amplitude is called “annealing” when drawing comparisons between

granular systems and molecular dynamics.

An experimental study by Nowak et al. in 1997 [32] plotted the reversible branch

for tapped granular systems. Their study used three systems of 1, 2, and 3mm glass

beads in a tube 18.6mm in diameter and 1000mm high. The number of particles was

roughly 250,000 for the 1mm particles, 32,000 for the 2mm particles, and 9500 for

the 3mm particles. The tube was evacuated to remove the effect of air viscosity. The

density was measured both by fill height and by using capacitive probes on the side

of the tube. The systems were tapped with full sine waves at 30 Hz with varying

amplitudes. Figure 1.2.3 shows a depiction of the reversible and irreversible branch

from [32].

Γ

ν

Figure 1.1 The reversible and irreversible branches of tapped granular systems.
The dotted line represents 102 taps between data points, and the solid line represents
105 taps between data points.
Source: Depiction of data from [32].

The reversible branch is expected in a tapped granular system, as the

understanding of granular systems is that a certain amount of energy is needed
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to form or break up the microstructure. Thus, the low intensity taps are unable to

form a dense microstructure, nor are the low intensity taps able to break up a dense

microstructure that has already been formed.

In [32], Nowak et al. also showed the difference that the number of taps will

make when sweeping the amplitudes up and down. Figure 1.2.3 shows the difference

in density that additional taps has. Nowak et al. note that even after 105 taps, their

systems may not have been run to a true steady state. Therefore, they do not know if

the reversible and irreversible curves collapse to one another with a larger number of

taps. However, Nowak et al. hypothesizes that the low amplitudes are being stuck in

a metastable state that is less than the optimal amplitude. The system is unable to

break out of the metastable states because there is no exponential tail of input energy

as there is in a thermodynamic system.

1.2.4 Boundary Conditions

In physical tapping and vibration experiments, there are vertical walls that act as

boundaries to contain the particles. These walls affect the system in various ways,

including inducing and breaking up order in the system and relieving some of the

pressure on the lower particles. In very large physical systems with small particles,

such as an earthquake or a rail car full of grain, the center of the system is unaffected

by the presence of the walls which are far away. However, running experiments

with wide systems and many particles requires an excitation system with a higher

energy capacity, which can be prohibitively expensive to acquire and run. Thus, most

experiments are done with small systems where the walls effects could have an impact

on the results obtained.

In a simulated system, computational time is expensive. Thus, it is prohibitively

time-consuming to run large systems with many, many particles over long periods

of time. In addition, a computational system with many particles requires a lot of
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memory, which is expensive. In order to remove some of the effects of solid walls from

the experimental results, a computational system can remove the walls and instead

allow the system to “wrap around” itself. This is called a periodic boundary condition.

To illustrate, consider the system in Figure 1.2.4. The striped particle, near the left

boundary, is touching the shaded particles. The forces and interactions of the striped

particle are passing through the boundary. If the forces in the system reorder the

system and push the striped particle to the left, it will “wrap around” and come in on

the right boundary, as seen in Figure 1.2.4.

Figure 1.2 Depiction of forces transmitted through a periodic boundary. The box
represents the boundary. The shaded circles represent particles that are neighbors of
the striped particle, while the light particles are not neighbors of the striped particle.

The periodic boundary condition has been in use almost as long as computers

have been used to simulate granular systems. Walton and Braun in 1985 [33] and

Zhang and Cundall in 1986 [34] ran simulations with periodic boundaries. Their

systems had a few hundred particles. Henrique et. al in 2001 [35] noted that periodic

boundary conditions in a granular gas can cause the granular gas to rotate even though

the initial state was irrotational. The explanation given by Henrique et. al does not

apply to this thesis because the particles in this thesis come to a rest before being

excited again.
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Figure 1.3 Depiction of a particle going through a periodic boundary. The box
represents the boundary. The shaded circles represent particles that are neighbors of
the striped particle, while the light particles are not neighbors of the striped particle.

1.3 Objective

This thesis investigates the effects of boundaries on the evolution of density in

assemblies of granular particles, modeled as inelastic, frictional soft spheres, which

are energized through the imposition “taps” to a supporting floor. The state of the

system is characterized by the bulk solids fraction. The speed of the densification

process is a key tool used to examine the differences between periodic-walled granular

systems and solid-walled granular systems. The average mean squared displacement is

used to investigate the boundary condition’s effect on the movement of the particles

during a tap.

The study will be done with DEM simulations. The modeled systems are 2cm

acrylic beads in a 40cm column with a 12cm wide square base. Taps are applied

as half-sine waves. The simulations use a partially elastic soft-sphere model with

Hookean-spring normal forces, and a Mindlin-Deresiewicz tangential force model. The

vertical boundaries are referred to as “walls” and are either periodic or solid, while

the horizontal boundary is the “floor” and it is always solid.
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1.4 Thesis Outline

The DEM simulation model and details are explained in Chapter 2. Ensemble of

periodic-walled granular systems with a large number of taps in the irreversible region

is discussed in Chapter 3. Chapter 4 is concerned with the solid vs. periodic walls study.

Horizontal taps are explored in Chapter 5. Chapter 6 has a summary, conclusions,

and a discussion of future work. Appendix A contains a typical input file for the DEM

simulation program, and Appendix B has the code modifications required to do mean

squared displacement calculations.



CHAPTER 2

OVERVIEW OF THE DISCRETE ELEMENT MODEL

2.1 Introduction

The Discrete Element Method (DEM) is a model for simulating a granular system

by solving Newton’s equations of motion for a system of particles that interact via

soft or hard contact forces. Here, the term “hard” refers to instantaneous interactions

governed by pre-collisional kinematics and particle properties. “Soft” contact forces

refer to interactions that are typically functions of an allowed overlap between particles

so that there is a finite duration of the contact. The equations of motion are integrated

using the velocity-Verlet algorithm, and the collisions are partially elastic. This chapter

explains key details of the simulations.

2.2 Force Model

Contact interactions used in this study are the soft-sphere models described in detail

in [36]. The particles are spheres that are allowed to overlap, also known as the

soft-sphere model. The normal contact force between the particles is linearly related

with the overlap between the particles, similar to two masses attached to a linear

spring. In order to model the energy loss when two particle collide, the model uses

two equations for the force depending on whether the particles are moving toward

or apart from each other, as seen in Equation 2.1. Fn is the normal force, k1 is the

loading spring constant, k2 is the unloading spring constant, x is the overlap, and α is

the disengagement overlap. α is defined by Equation 2.2, where xmax is the maximum

overlap during the history of the collision.

Fn =

 k1x moving together

k2(x− α) moving apart
(2.1)

15
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k1xmax = k2(xmax − α) =⇒ α = xmax

(
1− k1

k2

)
(2.2)

The two spring constants are related by the restitution coefficient e in

Equation 2.3. k1 is always less than k2.

e =

√
k1
k2

(2.3)

The tangential force is determined by a Mindlin-Deresiewicz model, which allows

for sticking as well as slipping. The tangential force is determined using Equation 2.4,

where Ft is the tangential force, kt is the tangential spring constant, and xt is the

tangential displacement between the particles.

Ft = ktxt (2.4)

The tangential spring constant is described in Equation 2.5. Ft,p is the tangential

force during the last timestep, Ft,max is the maximum tangential force during the

history of the collision, and µ is the coefficient of static friction. The ± corresponds

to decreasing/increasing Ft over the last two timesteps.

kt = 0.8k1

[
1− ± (Ft,max − Ft,p)

µFn ± Ft,max

]1/3
(2.5)

2.3 System Boundaries

Figure 2.3 shows the boundaries of the system. The vertical boundaries, or walls, of

the system are periodic for some cases and solid in other cases. Whether the walls

are periodic or solid is always specified. The floor of the system is always solid. The

vertical boundaries are 12 particle diameters apart. The depth of the system is about
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Figure 2.1 Depiction of system boundaries. The y is the vertical axis, x is across
the page, and z is perpendicular to the plane of the page.

22 particle diameters before the first tap. In an ordered close packed state, the depth

of the system is around 19 particle diameters.

During vertical tapping, the vertical walls of the system do not move. Since

the code calculates tangential forces, the vertical walls are thus acting as a drag on

the particles touching the walls during a tap. The horizontal floor follows a half-sine

wave in the y direction during the excitation phase, and then is held steady during

the relaxation period. The relaxation period is long enough to allow the system to

come to a rest. Figure 2.3 shows a graph of the floor position vs. time during one tap.

The frequencies of the taps in this thesis are all f = 15Hz.

During horizontal tapping, the vertical walls normal to the x direction follow

the half-sine wave tap shown in Figure 2.3. The horizontal floor follows the movement

of the walls in the x direction. Thus, all boundaries are moving together during a

horizontal tap. All systems that are horizontally tapped have solid walls.

The particles’ interactions with the boundary use the same soft-sphere force

model as between two particles.
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Figure 2.2 Depiction of the boundary position during a tap.

The compuational cell is the region in which the program is looking for particles

to integrate. The compuational cell is the same as the system boundaries when no

excitation is being applied. The system is high enough that there is never any particle

near the top of the computational cell.

2.4 Near Neighbor Search

In order for the simulation program to know which particles are colliding or are going

to collide, the program keeps a Verlet table of interactions between particles. The

Verlet table contains interaction information for all pairs of particles within a particle

radius of each other. This allows the Verlet table to be updated only when it is likely

that a pair of particles not in the Verlet table is going to collide. Because updating

the Verlet table is time-consuming, being able to not update the Verlet table every

timestep allows the program to run faster.

Because the Verlet table is not updated every timestep, the timing of the Verlet

table updates is important. The algorithm used by the simulation program sums

the farthest distance moved by any single particle during a timestep. Once the sum
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reaches a critical value, another Verlet table update is done and the sum reset before

the next timestep is integrated.

Figure 2.4 is a demonstration of what needs to happen to update in time to

catch colliding particles in the worst case scenario. Figure 2.4 shows the two fastest

particles in the system, and these two particles are moving directly towards each other.

In sub-figure a, and update is done. The two particles are just a trifle more than a

search radius apart, so they are not counted as neighbors. Several timesteps happen

between subfigures a and b. During those timesteps, the particles move the exact

same distance towards each other, and that distance is a trifle less than the distance

needed to trigger an update. Between sub-figures b and c, a single timestep happens.

The particles have again moved towards each other, but they are still not touching.

However, the sum of the distances moved for any particle is more than the trigger

distance, and an update is triggered after the timestep shown in sub-figure c.

The critical question is then the question of the trigger distance. A trigger

distance of half of the search radius is clearly too large since the particles could overlap

before an update of the Verlet table happens. The solution used by the simulation

program is to subtract the maximum distance moved by any particle from half of the

search radius. This solution is not perfect, since two accelerating particles that are

moving faster than any other particle, have identical velocities and accelerations, are

moving directly towards each other, start only a trifle outside the search radius, and

travel to only a trifle inside the trigger distance will not be caught before collision.

This is because, during acceleration, the maximum distance traveled during the current

timestep is less than the distance moved during the next timestep, so the overlap

between the particle before they are considered neighbors will be two trifles less than

twice the difference in velocities between the two timesteps. This algorithm, although

flawed, is accepted because of the unlikelihood of all conditions being met at the same
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a) Update done, not neighbors

Trifle less than trigger distance

b) No update

Trifle less than trigger distance

Trifle less than trigger distance

c) Update triggered, neighbors after this timestep

Trifle less than trigger distance

Movement from a single timestep

Movement from a single timestep

Figure 2.3 Demonstration of near neighbor searching. The large dashed circle is
the near neighbor search radius. The solid circles are the current positions, the fine
dashed circles are the previous positions, and the fine dotted lines are the positions
two steps before.
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time in a system of thousands of particles, and because the resulting error will be tiny

in comparison to cumulative rounding errors that happen in the computer simulation.

The chain-cell search method allows the program to update the Verlet table

more quickly at the expense of having a larger Verlet table. The chain-cell search

method divides the computational cell into small cells which are slightly larger than

one particle diameter in dimension. Near neighbors are all particles inside the same cell

or any adjacent cell as the particle in question. Using a rapid algorithm for assigning

particles to cells, this method avoids finding the inter-particle distance between all

particles in the system. However, the chain-cell search algorithm is only faster for

systems of 20,000 particles or more.

The chain-cell search algorithm used in the DEM simulation program for this

work was done by Sweetman [37], but its potential was not realized due to the lack of

computational resources necessary to run the larger systems.

2.5 Solids Fraction

The solids fraction ν is the primary method of determining the state of the system.

It is the volume of a number of particles divided by the volume taken up by those

particles. The solids fraction is also known as the packing density. The average solids

fractions of the systems presented in this thesis are calculated using only 80% of the

fill height of the system. If the fill height after a tap is 20 particle diameters, then

the algorithm uses the box as 12× 12× (20× 0.8) particle diameters as the volume

taken up by the particles. The volume of the particles is the sum of the volumes of

all particles below 20× 0.8 = 16 particle diameters in the y-axis. If a particle is only

partially below 16 particle diameters, then the algorithm will slice that particle and

use only the portion that is below 16 particle diameters in the y-axis.
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The maximum solids fraction that can be reached by a 3D ordered system is

hypothesized to be 0.74048.̇. per Equation 2.6 [2]. This solids fraction is attained in

an Hexagonal Close Pack or Face Centered Cubic crystal structure.

νmax =
π√
18
≈ 0.74048 (2.6)

The initial solids fraction of the periodic-walled systems is 0.617 with a standard

deviation of 0.001. The initial solids fraction of the solid-walled systems is 0.589 with

a standard deviation of 0.001.

The local solids fraction is determined using the Voronoi cell volume of each

particle as the space taken by that particle. The Voronoi cell for a particle is the

locus of all points closer to the particle than to any other particle. Thus, the Voronoi

cell is a metric for space taken by that particle. The Voronoi graph is space-filling.

Equation 2.7 shows the calculation of the local solids fraction. Vcell is the volume of

the Voronoi cell surrounding the particle i.

νlocal(i) =
Vparticle
Vcell

=
πd2

3

Vcell
(2.7)

Figure 2.5 shows the local solids fraction distribution of a poured granular system.

Sub-figure a shows the initial state of the system, immediately after pouring. The

mean of sub-figure a is 0.618 and the standard deviation is 0.031. Sub-figure b shows

the local solids fraction distribution of the same system after it has reached an ordered

close-packed state. The mean of sub-figure b is 0.708 and the standard deviation is

0.032.

2.6 Mean Squared Displacement

The Mean Squared Displacement (MSD) is a parameter that is used to better

understand the effects of the boundary conditions on the evolution of the system. The
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Figure 2.4 Locals solids fraction distribution of a typical system. Sub-figure a has
a mean of 0.618 and a standard deviation of 0.031. Sub-figure b has a mean of 0.708
and a standard deviation of 0.032.

mean squared displacement tracks how much a particle has traveled since the tracking

was begun. Equation 2.8 shows the mean squared displacement. nts is the number of

timesteps since the tracking began. N is the number of particles, and x is the position

of the particle in the x-direction.

MSDx(t) =
〈
|x|2
〉

(t) =
nts∑
i=1

1

N

N∑
j=1

[xj(ti)− xj(ti−1)]2 (2.8)

Dividing the mean squared displacement by the number of taps during the

tracking time represents the relative amount of movement a particle experiences

during a tap. Equation 2.9 shows the mean squared displacement per tap. ntaps is the

number of taps since the tracking began.

MSDx

tap
=

1

ntaps

nts∑
i=1

1

N

N∑
j=1

[xj(ti)− xj(ti−1)]2 (2.9)
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Appendix A contains the changes to the source code of the program required to

implement mean squared displacement calculations.

2.7 Ensemble Averaging

This thesis makes use of ensembles of systems. The individual cases in the ensemble

are given the exact same tapping regimen. The only difference between the cases is

that the initial pour has different random positions. The initial state of the system is

statistically similar concerning solids fraction.

Because the exact densification path that a system follows is dependent on the

microstructure of the system, different systems that are statistically similar will have

different densification paths. Ensemble averaging is done to remove the effects of the

randomness in the pour, providing an average densification path.

2.8 Values of System Parameters

The simulations in this thesis use 3456 acrylic spheres of diameter 0.02 meters. The

gravitational acceleration is g = 9.81m/s2 and the frequency is f = 15Hz. The

restitution coefficient is 0.9, and the particle density is 1200 kg/m3.

The timestep is based on the period of the loading spring. Equation 2.10 shows

how the timestep is calculated. ∆t is the timestep length, m is the mass of a particle,

and p is the number of timesteps per collision. Previous work has indicated that values

of p between 40 and 60 are reasonable [38]. For Γ = 3 with p = 40, this works out to

be around 6.3× 10−6.

∆t =
πe
√

m
2k1

p
(2.10)

Appendix B contains a sample input file for the DEM simulation program along

with an explanation for select input file parameters.



CHAPTER 3

RELAXATION CASE STUDIES

3.1 Introduction

The relaxation case studies are investigating the long term tapping on an ensemble

of 25 periodic-walled systems. The original purpose of the relaxation case studies

described herein was to model the reversible/irreversible phenomenology observed in

experiments [32], but to start with a system that has already been relaxed at an Γ

below the Γ where the peak density occurs. The expectation is that the systems will

rise a little, but not rise all the way to the reversible branch.

An ensemble of 25 systems are run for 600 to 650 taps at Γ = 3. Figure 3.1

shows the evolution of the solids fraction for those taps at Γ = 3. For comparison,

Figure 3.1 shows the ensemble average of the 25 systems after tapping at different

intensities for 650 taps. The last taps from the 25 systems are then copied and used

as the initial coordinates for 2 ensembles of 25 systems. One ensemble is tapped at

Γ = 2.75, and the other ensemble is tapped at Γ = 3.25.

3.2 Results

The two ensembles are tapped for at least 6000 taps after being started. The systems

did not reach a steady state value even after 6000 taps. Thus, the original goal of

running multiple ensembles at reducing intensities could not be completed.

Figure 3.2a shows the solids fraction of all of the Γ = 3 taps and the subsequent

taps as Γ = 3.25. Several systems reached a mostly ordered state with a solids fraction

around 0.7. Several of those systems first reached a metastable state, with a solids

fraction around 0.67, then continued to densify.

Figure 3.2b shows the solids fraction of all of the Γ = 3 taps and the subsequent

taps at Γ = 2.75. One of the systems relaxed to a mostly ordered state, with a solids

25
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Figure 3.1 Solids fraction of ensembles as a function of tap intensity after 650 taps.
The star represents the ensemble used as a basis for the ensembles in this chapter.
The dashed line is the expectation for the data generated from the relaxation case
studies, while the square markers represent the actual data gathered.
Source: [39]

fraction of 0.70. Many systems came to the minimum random close packed state with

a solids fraction around 0.64. Several systems came to an intermediate metastable

state with a solids fraction around 0.66 to 0.68.

Figure 3.2 shows the average solids fraction from Figure 3.2. There are a lesser

number of taps shown in Figure 3.2 than in Figure 3.2 because not all systems were

run to the same number of taps, and the average is only valid when all systems are

taken into account. Even though the Γ = 3.25 systems were not given as many taps as

the Γ = 2.75 systems, the Γ = 3.25 ensemble average has risen much higher than the

Γ = 2.75 ensemble average. This is because there are more Γ = 3.25 systems settling

to a ordered close packed state.

Figure 3.2 shows realization 18 tapped at Γ = 3.25 after 2300 taps. The bulk

solids fraction is around 0.65, but the local solids fraction varies widely from the

maximum of 0.74 at the bottom to 0.58 in the middle. The dark blue particles at the
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Figure 3.2 Solids fraction of the ensemble run at Γ = 3. Sub-figure a) shows the
solids fraction of every realization, while sub-figure b) shows the ensemble average
solids fraction.
Source: [39]



28

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.6

0.62

0.64

0.66

0.68

0.7

0.72

a) Γ = 3.25

Tap Number

S
o
lid

s
 F

ra
c
ti
o
n

0 2000 4000 6000 8000 10000 12000
0.6

0.62

0.64

0.66

0.68

0.7

0.72

b) Γ = 2.75

Tap Number

S
o
lid

s
 F

ra
c
ti
o
n

 

 

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Run 9

Run 10

Run 11

Run 12

Run 13

Run 14

Run 15

Run 16

Run 17

Run 18

Run 19

Run 20

Run 21

Run 22

Run 23

Run 24

Run 25

Figure 3.3 Solids fraction of systems.
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Figure 3.4 Ensemble average of solids fractions of systems.

top of the realization do not have an accurate Voronoi cell volume because they have

no neighboring particles above them.

A continuous bulk movement is observed in several realizations. Figure 3.2 shows

the y-z positions of the particles in realization 18 tapped at Γ = 3.25 after tap 3500.

Figure 3.2 can be likened to X-ray images of the realization showing only the particle

centers. Figures 3.2, 3.2, and 3.2 show the positions of the particles after tap 3502,

3504, and 3506, respectively. The microstructure is similar between all of the figures,

but the position of the particles steadily shifts to the right between each figure.

Figure 3.2 shows the solids fraction of realization 18 tapped at Γ = 3.25. The

system is in a metastable state around tap 3500.

The bulk movement can also be seen by the movement of individual particles.

Figure 3.2 shows the position of particle 10 in realization 18 tapped at Γ = 3.25.

Particle 10 is near the top of the system, close to but not part of the free surface.

Sub-figures a through c show the movement of the particle in the x, y, and z directions,

respectively. The movement of the particle in the x direction is similar for each tap,

but after the tap, the particle comes to a rest in a different position than when it
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Figure 3.5 Realization 18 tapped at Γ = 3.25 after 2300 taps. Yellow represents
high-density areas where the local solids fraction is 0.74. Blue represents low-density
areas where the solids fraction is 0.5.
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Figure 3.6 The y-z positions of the particles in realization 18 tapped at Γ = 3 after
tap 3500.
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Figure 3.7 The y-z positions of the particles in realization 18 tapped at Γ = 3 after
tap 3502.
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Figure 3.8 The y-z positions of the particles in realization 18 tapped at Γ = 3 after
tap 3504.
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Figure 3.9 The y-z positions of the particles in realization 18 tapped at Γ = 3 after
tap 3506.
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Figure 3.10 Solids fraction of realization 18 at Γ = 3.25.

started. The bulk movement of the particle in the z direction is even more than

the movement of the particle in the x direction. The z direction also displays more

variation in the movement during a tap.

Because the systems are tapped, all momentums in the system should be zero

before every tap. The relaxation time is confirmed to be sufficient to allow the system

to come to a rest before the next tap. Figure 3.2 shows the position of particle 10 in

realization 18 tapped at Γ = 3.25. The position does differ, but the average slopes of

the lines remain the same. The difference is due to accumulated numerical error.

The bulk movement was observed in several other realizations. Equation 3.1

gives a value of the bulk movement averaged over 100 taps, where T is the tap number

and N is the number of particles. Figure 3.2 shows the average bulk movement

during the last 100 taps of each realization. A realization that has high movement at

Γ = 3.25 has low movement in a different direction at Γ = 2.75. Therefore, there does
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Figure 3.12 The position of particle 10 in realization 18 tapped at Γ = 3.25. The
solid line is the change in position of particle 10 with the original relaxation time, and
the dashed line is the change in position of particle 10 with doubled relaxation time.

not appear to be a correlation between the bulk movement in the Γ = 3.25 and the

Γ = 2.75 ensembles.

Bulk Movement

tap
=

1

N

N∑
i=1

[
(xi(T )− xi(T − 100))2

+ (yi(T )− yi(T − 100))2

+ (zi(T )− zi(T − 100))2
]1/2

(3.1)

A possible explanation of the bulk movement is that there is some arrangement

of particles that is leaning on itself through the periodic wall. When tapped, some

layers move horizontally. The horizontal movement is arrested by the tangential

friction with the floor, and the system is now moved to one side slightly.

An alternative explanation for the bulk movement is that this is the result of

accumulated numerical error. While this is possible, the magnitude and consistency
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of the movement indicates that this may not be the realization. Further studies may

be warranted.

The Γ = 3.25 ensemble has more bulk movement than the Γ = 2.75 ensemble.

There are multiple possible explanations for this phenomenon. One explanation is

that the systems with a higher solids fraction have more bulk movement. Figure 3.2

shows the final solids fraction of a system vs. the average bulk movement over the last

10 taps for that system. The abscissa is represented by (
√

∆x2 + ∆z2/10)/d, where

the ∆ is the difference between the last and the tenth-to-last tap. Figure 3.2 shows

that there is no correlation between bulk movement and solids fraction.

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

| Buk Movement | / d

S
ol

id
s 

F
ra

ct
io

n

 

 
Γ = 3.25
Γ = 2.75
Realization 18, Γ = 3.25

Figure 3.14 The final solids fraction vs. the average bulk movement over the last
10 taps.

Another explanation is that the Γ = 3.25 taps add more energy to the system,

thus causing more bulk movement. This hypothesis is difficult to prove or disprove

without knowing the exact mechanism of the bulk movement.
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There are two distinct scales of crystalline formation observed. Local scale

densification happens when single particles accrete on a large ordered region. Local

scale densification is represented by a gradual rise in the solids fraction, or gentle

acceleration of the densification rate. Large scale densification is where two or more

separate ordered regions form, with a disjoint between them, and that disjoint is is

rapidly removed and only one ordered region is formed. Large scale densification is

represented by a sharp rise in the solids fraction over the course of 1-4 taps.

Figure 3.2 shows large scale densification happening in 2 taps. There is a large

area of yellow and green particles in the circle on the left that are partially organized.

In the circle on the right, the yellow and green particles have dropped into the larger

crystal.
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Figure 3.15 Comparison image showing large scale densification in realization 12
tapped at Γ = 3.25. Compare the yellow and green particles in the circled regions.
The color of the particle shows x/d, according to the colorbar.



CHAPTER 4

SOLID VS. PERIODIC WALLS

4.1 Introduction

The solid vs. periodic wall case studies highlight the differences between systems with

solid walls and systems with periodic walls to elucidate the wall effects of both periodic

walls and solid walls. Three ensembles of five systems are created. One ensemble has

periodic walls. Two ensembles have solid walls. One of the solid-walled ensembles

has the walls stationary during the tap and is labeled “Solid Walls,” and the other

solid-walled ensemble has the walls moving as if they are connected to the floor and is

labeled “Solid Moving Walls.” Both solid wall setups reflect possible experimental

setups. All three ensembles are tapped at Γ = 3.

The motivation for the solid vs. periodic wall studies is that a continuous bulk

motion between taps is observed in the relaxation case studies. This behavior clearly

can only occur in periodic-walled systems, where particles can exit one side and enter

the other. In a solid-walled system, the solid walls would only allow the particles to

gather toward one side of the system, but not allow a continuous bulk movement.

This was an inspiration to investigate other effects of periodic walls.

4.2 Results

Figure 4.2 shows the solids fraction of the studied systems. The systems have reached

a random close packed state, and any densification is happening slowly. No systems

have jumped to an ordered close-packed state, but some systems are still slowly rising.

The solid moving wall simulations were started later, and thus do not have as many

taps as the other two simulations.

Figure 4.2 shows the average solids fraction for the periodic- and solid-walled

systems. The solid-walled systems took longer to reach the random close packed

41
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of the tap number.
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state, and are at a slightly higher density than the periodic-walled systems. The

solid-moving-walled systems take an even longer time to reach the random close packed

state.
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Figure 4.2 Ensemble average solids fraction for the periodic- and solid-walled
systems as a function of the tap number.

An inspection of Figure 4.2 reveals that the longer initial rise of the solid-walled

systems is a behavior that all of the systems exhibited. Further tapping with larger

ensembles need to be done to determine if the difference in final density is due to

random behavior or whether this is a wall effect.

Figure 4.2 shows the mean squared displacement in realization 1 of the periodic-

and solid-walled systems. The horizontal MSD, shown in sub-figures a and c, is

roughly the same for the periodic- and solid-walled systems. The vertical MSD, seen

in sub-figure b, is much higher for the periodic-walled system than for the solid-walled

system. The overall MSD, shown in sub-figure d, closely follows the vertical MSD

because the vertical MSD is over a magnitude larger than the horizontal MSD.

Table 4.2 shows the ensemble averaged mean square displacements per tap. The

vertical MSD of the solid walls is clearly less than the vertical MSD of the periodic
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walls. It is hypothesized that the solid walls are retarding the upwards motion of the

realization during the tap.

Table 4.1 Mean Squared Displacement for Solid vs. Periodic Case Studies

Ensemble average of Mean Squared

Displacement per tap ×107/d

Intensity Direction Walls x y z total

Γ = 3 Vertical Periodic 0.66 26.58 0.68 26.60

Γ = 3 Vertical Solid 0.69 19.86 0.70 19.88

Γ = 3 Vertical Solid Moving 0.65 19.72 0.65 19.74



CHAPTER 5

HORIZONTAL VS. VERTICAL TAPPING

5.1 Introduction

The motivation for the horizontal tapping investigation comes from both the bulk

movement in the relaxation case studies and from the solid vs. periodic wall studies.

The purpose of the horizontal tapping is to investigate the effect of horizontal excitation.

During a vertical tap, only the floor moves. During a horizontal tap, the walls

and the floor move together. All systems are given taps at Γ = 3. Horizontal taps have

the same amplitude as the vertical taps, thus the same amount of energy in imparted

into the system during a horizontal tap as during a vertical tap. Five systems are

given only vertical taps, i.e. in the y direction. Five systems are given only horizontal

taps in the x direction. Five systems are given alternating taps in the y and the x

direction. For the systems that are given alternating taps, the total number of taps is

the sum of the horizontal and vertical taps. For example, an alternating system that

is given 100 taps was given 50 vertical taps and 50 horizontal taps.

5.2 Results

The solids fractions of the systems are shown in Figure 5.2. All systems are behaving

similarly; no system is stalling in a metastable state and then continuing to densify.

The average solids fraction of all of the systems is shown in Figure 5.2. The

systems that were tapped only with vertical taps have a solids fraction similar to the

solids fractions for solid-walled systems in Figure 4.2. The systems that were given

alternating taps have a solids fraction slightly higher than the systems that were only

given vertical taps. This behavior could be due to random effects because the systems

under vertical tapping have the same solids fraction as the alternating-tapped systems
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around tap number 60, but then the solids fraction of the two ensembles diverges

again.
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Figure 5.2 Ensemble average of the solids fraction of systems with vertical,
horizontal, and alternating taps.

Figure 5.2 shows the mean squared displacement for 4 taps of realization 1,

which is representative of all realizations. The x and y directions show the alternating

taps as larger jumps and smaller jumps.

Table 5.2 shows the average mean squared displacement per tap for the last

10 taps and the standard deviation of the average over the ensembles. Note that

alternating taps, which has a mean squared displacement as fast or faster than the

vertical taps, has 38% less total mean squared displacement. The x direction MSD of

the horizontal taps is much less than the y direction MSD of the vertical taps. This

brings the total MSD of the horizontal taps much lower than the total MSD of either

the vertical or the alternating taps.
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Figure 5.3 The mean squared displacement for alternating taps a) in the x direction,
b) in the y direction, c) in the z direction, and d) total mean squared displacement.
Note the three different orders of magnitude in the ordinates.

Table 5.1 Mean Squared Displacement for Horizontal vs. Vertical Case Studies

Ensemble average of Mean Squared Displacement

per tap ×107/d

Intensity Direction Walls x y z total

Γ = 3 Vertical Solid 0.69 19.72 0.66 19.74

Γ = 3 Horizontal Solid 8.51 3.18 0.68 9.11

Γ = 3 Alternating Solid 5.49 10.70 0.67 12.18



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

Chapter 3 investigates density relaxation with periodic walls. The necessity of

thousands of taps is shown. The bulk movement is found and partially analyzed. Two

scales of densification are discussed.

Chapter 4 delves into the effects of the walls. Periodic boundary conditions and

two types of solid boundary conditions are compared with the density evolution. The

mean squared displacement is used to analyze the differences.

Chapter 5 examines the solid walls in more detail using horizontal taps. Vertical,

horizontal, and alternating vertical-horizontal taps are applied. The density evolution

is again used to compare the boundary conditions, and the mean squared displacement

offers some insight.

6.2 Observations

The relaxation case studies show that the solids fraction can temporarily halt as the

system enters a metastable state. The system can leave the metastable state and

continue to densify. Reaching a temporary steady state is not enough to predict

whether a realization will continue to densify after more taps. The length of time that

a tapped system stays in the metastable state varies, but the higher intensity taps

generally results in shorter periods of time in the metastable states.

When looking at videos of cross-sections similar to Figure 3.2, it is observed

that there are two scales of densification, a local-scale densification and a large-scale

densification. Local scale densification happens when individual particles accrete on

a large ordered region, and large scale densification happens when multiple ordered

regions combine.
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A notable observation from the relaxation case studies is that there can be a

bulk movement in periodic-walled systems, but a cause for the bulk movement was

not determined. It is noted that the higher tap intensity generally produces more bulk

movement, but there is no correlation between bulk movement and solids fraction.

6.3 Conclusions

Compare the periodic walls from solid vs periodic with the alternating taps. Figure 6.3

shows the ensemble with alternating taps from Chapter 5 on the same graph as

the solids fraction of the ensemble with the periodic walls from Chapter 4. The

periodic-walled ensemble has reached a solids fraction of 0.636 in 50 taps, while the

alternating-taps ensemble takes 4 times as long, or 200 taps, to reach a solids fraction of

0.636. In 200 taps, the alternating-taps ensemble has had 100 vertical taps. Therefore,

the
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Figure 6.1 Comparison of the ensemble with periodic walls and vertical taps from
Chapter 4 against the ensemble of solid walls and alternating taps from Chapter 5.
Γ = 3 for both ensembles.
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The periodic walls allow the densification process to happen more quickly. The

conflict between the ordered regions originating from the floor and the ordered regions

originating from the walls is hypothesized to slow down the densification process and

interfere with the system’s ability to reach an ordered close packed state.

The vertical movement of the walls during a vertical tap does not greatly affect

the density evolution rate of the tapped system under these conditions. This may be

coincidental, because only one set of conditions are comparable.

The horizontal tapping study showed that the systems subjected only to

horizontal taps do not densify as fast as the systems subjected to vertical taps,

but alternating horizontal and vertical taps densify as quickly or more quickly than

vertical taps alone.

6.4 Future Work

All systems can be run longer to study long-term effects. As Chapter 3 shows, well

over 10,000 taps may be necessary to achieve a steady-state value. Possibly 100,000

taps are necessary per [32].

The solid vs. periodic walls can be run for a range of intensities and system

widths. As a system gets wider, the effect of the solid walls is expected to drop relative

to the effects of the floor.

Investigating the cause of the bulk movement. It is necessary to investigate the

movement of many individual particles over the duration of a tap for multiple systems,

because multiple systems may have different exact causes for movement.

The horizontal-vertical alternating taps can be run with a range of intensities.

Similarly, the moving vs. not moving solid walls under vertical tapping can be run for

a range of frequencies and amplitudes.



APPENDIX A

MEAN SQUARED DISPLACEMENT CODE

Below is a patch file to the DEM simulation code to calculate the mean squared

displacement. The code is in FORTRAN 90.

The patch format is unified diff. The lines beginning with “diff -u” and the

triple plus-signs and dashes indicate which file is being edited. The double are codes

indicating line numbers. The lines beginning with a single “+” are the new code being

inserted. The lines beginning with a space are staying the same.

1 diff -u ../ source.old/3 dshear.f ./3 dshear.f

2 --- ../ source.old/3 dshear.f 2013 -05 -15

20:13:28.000000000 -0400

3 +++ ./3 dshear.f 2013 -11 -05 22:03:56.000000000 -0500

4 @@ -178,6 +178 ,12 @@

5 mt1 =1

6 is0 = 0

7 ircg = 0

8 +c---- The following is for the mean square displacement.

It is the cumulative

9 +c---- mean square displacement since the beginning of the

tap.

10 + msdsum (1) = 0.

11 + msdsum (2) = 0.

12 + msdsum (3) = 0.

13 +c---- End of code for mean square displacement.

14 write (24,*) rad(ind1)

15
16 DO 10000 i = 1, mp

17 diff -u ../ source.old/integ2.f ./ integ2.f

18 --- ../ source.old/integ2.f 2012 -12 -23

20:28:51.000000000 -0500

19 +++ ./ integ2.f 2013 -11 -09 09:36:55.000000000 -0500

20 @@ -11,6 +11 ,14 @@

21 subroutine integ2

22 include ’s3dscmm ’

23 real tarray (2),etime

24 +c---- The following is for the mean square displacement.

It is the cumulative

25 +c---- mean square displacement since the beginning of the

tap.

53
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26 + real*8 msdstep (3)

27 + msdstep (1) = 0.

28 + msdstep (2) = 0.

29 + msdstep (3) = 0.

30 +c---- End of code for mean square displacement.

31 +

32 c-----finish this integration step to obtain coordinates

at end of

33 c-----current time step and estimation of velocities there

34 c

35 @@ -34,6 +42 ,12 @@

36 dx(i) = vhx(i)*dt

37 dy(i) = vhy(i)*dt

38 dz(i) = vhz(i)*dt

39 +c---- The following is for the mean square displacement.

It is the cumulative

40 +c---- mean square displacement since the beginning of the

tap.

41 + msdstep (1) = msdstep (1) + ((dx(i)) ** 2)

42 + msdstep (2) = msdstep (2) + ((dy(i)) ** 2)

43 + msdstep (3) = msdstep (3) + ((dz(i)) ** 2)

44 +c---- End of code for mean square displacement.

45 c

46 c-----coordinates at end of time step

47 x(i) = x(i) + dx(i)

48 @@ -208,6 +222 ,16 @@

49 c-----The above part was added as part of the

modifications -----------

50 c---------------------------------------------

51 c

52 +c---- The following is for the mean square displacement.

It is the cumulative

53 +c---- mean square displacement since the beginning of the

tap.

54 + msdsum (1) = msdsum (1) + (msdstep (1) / 3456);

55 + msdsum (2) = msdsum (2) + (msdstep (2) / 3456);

56 + msdsum (3) = msdsum (3) + (msdstep (3) / 3456);

57 + open(unit=81,file=’zmsd ’,ACCESS=’APPEND ’,status=’

unknown ’)

58 + write (81 ,392)t,msdsum (1),msdsum (2),msdsum (3)

59 + 392 format(e14.8 ,3(1x,e14.8))

60 + close (81)

61 +c---- End of code for mean square displacement.

62 close (61)

63 close (62)

64 close (63)

65 diff -u ../ source.old/s3dscmm ./ s3dscmm
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66 --- ../ source.old/s3dscmm 2013 -03 -24

11:08:31.000000000 -0400

67 +++ ./ s3dscmm 2013 -11 -05 22:05:38.000000000 -0500

68 @@ -35,6 +35 ,10 @@

69 c CCCI Next line added for chaining cells

70 real*8 celli ,ttot ,cellix ,celliy ,celliz

71 real maxtapvel

72 +c---- The following is for the mean square displacement.

It is the cumulative

73 +c---- mean square displacement since the beginning of the

tap.

74 + real msdsum (3)

75 +c---- End of code for mean square displacement.

76
77 c

78 c lcm linklist

79 @@ -259,6 +263 ,10 @@

80 common lenfp ,lenchr ,ilastll

81 common ndump1 , nrun1 , nout1 , istart1

82 common inosave

83 +c---- The following is for the mean square displacement.

It is the cumulative

84 +c---- mean square displacement since the beginning of the

tap.

85 + common msdsum

86 +c---- End of code for mean square displacement.

87 c

88 dimension dypxxk(myzone),dypyxk(myzone),dypzxk(

myzone)

89 1 ,dypxyk(myzone),dypyyk(myzone),dypzyk(

myzone)



APPENDIX B

SAMPLE INPUT FILE FOR THE DEM CODE

This input file is used for the Γ = 2.75 ensemble in Chapter 3. Modifications of certain

parameters were used for the other ensembles. The format of the input file follows a

FORTRAN 90 namelist.

np on line 4 is not the number of particles in the system, but the total number

of simulated particles. It is the number of free particles plus the number of boundary

“particles,” which are used to simulate the solid boundaries.

tpour on line 35 is the relaxation time of the system.

search on line 40 is the search distance between particles in meters. It is

discussed in more detail in Section 2.4.

ycell on line 41 is the height of the cell in meters.

xyrat and zyrat on lines 42 and 43 are the aspect ratios of the computational cell

in the x and the z directions, respectively. Thus, the total width of the computational

cell in the x direction is xcell = xyrat× ycell = 0.25× 0.96 = 0.24.

rmassz on line 56 is the mass of a sphere with unit radius.

number(1) on line 68 is the number of free particles in the system, or 3456.

elastb on line 73 is the restitution coefficient.

The velocity amplitude vamp of the boundary is shown in Equation B.1. vamp is

on line 75.

vamp = a2πf =
Γg

4π2f 2
2πf =

Γg

2πf
(B.1)

1 s3dsNEwb i3ds343b particles 30.00 deg n=47 n/mm =.55294 drag

=0.0 z=6.7mm

2 fmub =0.25 fmu =0.1

3
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4 &var np = 3457 /Total number of particles in cell

5 &var nxby0 = 1 /No of boundary particles in x-dir. at y = 0

6 &var nzby0 = 1 /No of boundary particles in z-dir. at y = 0

7 &var nxby1 = 0 /No of boundary particles in x-dir. at ycell

8 &var bdry = 1 /flag for boundry type (1;cubic , 2; tringular)

9 &var nzby1 = 0 /No of boundary particles in z-dir. at ycell

10 &var nxbz0 = 0 /No of boundary particles in x-dir. at z = 0

11 &var nybz0 = 0 /No of boundary particles in y-dir. at z = 0

12 &var nxbz1 = 0 /No of boundary particles in x-dir. at zcell

13 &var nybz1 = 0 /No of boundary particles in y-dir. at zcell

14 &var nybx0 = 0 /No of boundary particles in y-dir. at x = 0

15 &var nzbx0 = 0 /No of boundary particles in z-dir. at x = 0

16 &var nybx1 = 0 /No of boundary particles in y-dir. at xcell

17 &var nzbx1 = 0 /No of boundary particles in z-dir. at xcell

18 &var nfix = 0 / number of fixed particles

19 &var nzcyl = 0 / number of fixed cylinders parallel to z-

axis

20 &var nycyl = 0 / number of fixed cylinders parallel to y-

axis

21 &var ncmax = 0 /number of collisions during entire run

22 &var nout = 0 /No. of time to print out results

23 &var nczero = 0 /number of collisions before start cum. ave

.

24 &var ntcol = 40 /number of time steps during a collision

25 &var nvel = 20 /number of intervals for vel. distrib.

26 &var nyzone = 48 /number of y zones

27 &var mzcell = 4 /

28 &var nycell = 10 /

29 &var itervm = 1 /max iterations per time step

30 &var icoord = 0 /flag for coordinates print out

31 &var itty = 0 /flag for tty interaction

32 &var ixyz = 0 /flag to read init coords of fxd & bnd

particles

33 &var istart = 1000 /to restart the code rename d3ds to

d3ds1000 and set istart =1000

34 &var tmax = 4800 /max time for calculation

35 &var tpour = 0.52 /time for pouring

36 &var dt = 0. /time step

37 &var dtout = 0.5 /time interval for printing out results

38 &var dtdump = 2.0 /time interval for dumping

39 &var tzero = 0.25 /restart long -term cum. ave.

40 &var search = 0.008 /search distance for near neighbors;

must be greater than 0

41 &var ycell = 0.96 /cell height (m)

42 &var xyrat = 0.25 /ratio used to compute xcell

43 &var zyrat = 0.25 /ratio used to compute zcell

44 &var vave = 0.0 /average deviatoric transl. velocity
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45 &var vseed = 0.9 /seed for random initial particle

velocities

46 &var vxzero = 0.0 /initial velocity in the x-direction (ave

)

47 &var vyzero = 0.0 /initial velocity in y-direction (ave)

48 &var vzzero = 0.0 /loading stiffness K1

49 &var skn1 = 2.8e+05 /normal force coefficient

50 &var elast = 0.899999976 /coefficient of restitution

51 &var slope = 1.0e+05 /alternative parameter for unloading

52 &var ratk = 0.8 /ratio of tangential/normal stiffness

53 &var fmu = 0.1 /coefficient of friction

54 &var fmub = 0.3 /friction for boundary and fixed particles

55 &var power = 0.3333333 /tangential force exponent

56 &var rmassz = 5026 /mass of unit sphere

57 &var tstart= 0.0 /

58 &var gravx = 0.0 /acceleration of gravity in x direction

59 &var gravy = -9.81 /acceleration of gravity in y direction

60 &var gravz = 0.0 /acceleration of gravity in z direction

61 &var vxby0 = 0.0 /x velocity of real boundary at y = zero

62 &var vxby1 = 0.0 /x velocity of real boundary at y = ycell

63 &var vyby0 = 0.0 /

64 &var vyby1 = 0.0 /

65 &var t2move = 30.0 /time when the floor starts to move

66 &var vyfloor = 0.0 /velocity of the floor when moving

67 &var draddt = 50. /rate of increase of particle radii

68 &var number (1) = 3456 /number of particles in group 1

69 &var radius (1) = 0.01 /particle radii for group 1

70 &var number (2) = 1 /number of particles in group 2

71 &var radius (2) = 0.01 /radius of cylindrical boundry

72 &var skn1b = 2.8e+06 /

73 &var elastb = 0.9 /

74 &var slopeb = 1.0e+05 /

75 &var vamp = 0.2863247544 /velocity amplitude of boundary

76 &var frq = 15 /frequency of bump

77 &var tbump = 0.033333 /duration of one bump

78 &var nrcg = 10000 /number of bumps to be processed

79 &var finis = 1. /end
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