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ABSTRACT 

DERIVATION OF RESPIRATION FROM ELECTROCARDIOGRAM 
DURING HEART RATE VARIABILITY STUDIES 

by 
Lingeng Zhao 

A method was developed to derive the respiration signal from the ECG signal 

based on the observation that the body-surface ECG is influenced by electrode motion 

relative to the heart and that fluctuations in the mean cardiac electrical axis accompany 

respiration. S-Plus programs were developed to calculate the changes in the value of the 

mean cardiac electrical axis during respiration from a two lead ECG signal and to 

generate a continuous ECG-derived respiratory signal from the angle information. 

Data were taken from 9 healthy subjects during rest, paced breathing and exercise. 

The respiration was derived from the recorded ECG signals. The ECG-derived respiration 

was compared with the original respiration recorded through an impedance pneumography 

device. The derived respiration shows an excellent correspondence with the original 

respiration. Statistical analysis indicates that the ECG-derived respiration has a high 

correlation with the original respiration in the frequency domain. 

Our study provides a method to obtain the respiration from the ECG signal when 

respiration information is not directly available. This can be done either directly or from 

a Holter recording. It is therefore possible to do spectral analysis of heart rate variability 

and determine the frequency of the spectral peak occurring at the respiration frequency. 
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CHAPTER 1 

BACKGROUND 

1.1 Heart Rate Variability 

The experiments on "animal electricity" conducted by Galavni and Volta two centuries 

ago led to the discovery that electrical phenomena were involved in the spontaneous 

contractions of the heart. The activation of cardiac muscle is propagated at a very rapid 

rate and in an orderly manner. The process of the depolarization of the cardiac muscle 

originates in the sinoatrial (SA) node, which is situated in the wall of the right atrium 

near the entrance of the superior vena cava. The cells of the SA node are autorhythmic. 

Because of this capability, the SA node is designated as a pacemaker. However, all areas 

of the heart muscle have the potential ability to serve in this capacity, but they assume 

this role only under abnormal circumstances. From the SA node, the process of 

depolarization spreads radially throughout the atria along ordinary atrial myocardial fibers 

and is taken over by the atrioventricular (AV) node, which is located near the top of the 

ventricular septum. The AV node in turn activates the bundle of His which divides into 

two branches serving the right and left ventricles. Through these branches the stimulus 

finally passes to the ventricles and generates ventricular contraction[1] 

The electrocardiogram (ECG) reflects the changes over time of the electrical 

potential between pairs of points on the skin surface. The cardiac impulse progresses 

through the heart in an extremely complex three-dimensional pattern. Hence, the precise 

configuration of the ECG varies from individual to individual, and in any given individual 

1 
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the pattern varies with the anatomical location of the leads. In general, the pattern consists 

of P. QRS, and T waves (Figure 1.1). They represent atrial depolarization, ventricular 

depolarization, and ventricular repolarization, respectively. 

Figure 1.1 Configuration of a typical scalar electrocardiogram, illustrating the important 

deflections and intervals. 

The SA node is usually under the tonic influence of both divisions of the 

autonomic nervous system. The sympathetic system enhances automaticity, whereas the 

parasympathetic system inhibits it. Changes in heart rate usually involve a reciprocal 

action of the two divisions of the autonomic nervous system. Thus an increased heart rate 

is produced by a diminution of parasympathetic activity (also called vagal tone) and 

concomitant increase in sympathetic activity; deceleration is usually achieved by the 

opposite mechanisms. Under certain conditions the heart rate may change by selective 

action of just one division of the autonomic nervous system, rather than by reciprocal 

changes in both divisions. For instance, during paced respiration, the heart rate is 
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decreased by the increase of parasympathetic activity. Ordinarily, in healthy, resting 

individuals parasympathetic tone is predominant. In normal adults the average heart rate 

at rest is approximately 70 beats per minute. During sleep the heart rate diminishes by 

10 to 20 beats per minute, but during emotional excitement or muscular activity it may 

accelerate to rates considerably above 100. In well-trained athletes at rest the rate is 

usually only 50 to 60 beats per minute[2]. 

It has been known that healthy individuals have heart rates that fluctuate 

considerably even at rest, whereas decreased variability and accentuated periodicities are 

associated with disease[3]. Recent evidence suggests that heart rate variability is also a 

biologic marker of the aging process; specifically, HRV diminishes with aging. On the 

other hand, this loss can be attenuated by habitual exercise over time[4]. Therefore, in 

recent years the assessment of heart rate variability has attracted a growing interest. 

1.2 Current Research in Power Spectral Analysis of Heart Rate Variability 

At rest, spontaneous oscillatory fluctuations occur in blood pressure and heart rate. The 

study of such behavior may help to elucidate the neural control of the circulation from 

the point of view of basic physiology and to suggest possible clinical applications. The 

observed oscillatory behavior is believed to result from the interplay of feedback 

mechanisms involved in physiological control and the concept of interacting oscillatory 

systems in homeostasis is now well established[5]. The application of computer 

processing has facilitated the use of the techniques of systems analysis to study such 

interactions on a beat-by-beat basis. Variations in heart rate have been studied by deriving 

a heart rate variability signal, i.e. a continuous variable corresponding to the instantaneous 
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heart rate. It is possible to quantify the relationship between changes in cardiac rhythm 

and other cardiorespiratory variables using conventional methods of signal processing 

such as power spectral analysis. 

Power spectral analysis is a process that begins by transforming a signal from the 

time domain to the frequency domain. Periodic functions can be represented as a sum of 

sines and cosines at a fundamental frequency and its harmonics. This sum is called a 

Fourier series. When a function is non-periodic, components may be present at all 

frequencies. The Fourier series is expanded to a Fourier Transform to accommodate non-

periodic functions. Using Fourier transform techniques, the frequency components of the 

non-periodic function are found. 

In power spectral analysis of heart rate variability, an interbeat interval (IBI) signal 

is generated by computing the time difference between successive R waves. The IBI 

signal must be interpolated to form an equidistant time series. Then, the heartbeat interval 

spectrum is generated by taking the Fourier transform of this IBI signal. Only through the 

transformation of these time event series to the frequency domain can the existence of 

physiological rhythms oscillating at specific frequencies be appreciated. 

Kitney and co-workers[6] analyzed the frequency content of heart rate variability 

by measuring their power spectrum. In this pioneering work, they showed that in addition 

to the well-known fluctuations in heart rate associated with the respiratory cycle, there 

are also periodic fluctuations in heart rate occurring at lower frequencies (Figure 1.2). 

Accordingly, the power spectrum of the heart rate fluctuations contains not only a peak 

centered at the respiratory frequency but also peaks at two lower frequencies. Their work 

suggests that the low-frequency peak is related to cyclic fluctuations in peripheral 
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vasomotor control associated with thermoregulation, whereas the mid-frequency peak is 

related to the frequency response of the baroreceptor reflex, and that the blood pressure 

is regulated by the baroreceptors the through autonomic nervous system. 

Figure 1.2 Power spectrum of heart rate fluctuations, indicating low-frequency, mid-

frequency, and high-frequency peaks. 

For some time there has been a tendency attempting to identify spectral peaks in 

predefined ranges in power spectral analysis of heart rate variability. In this method, the 

heart rate spectrum is divided into three frequency hands. A low-frequency band below 

0.05 Hz is correlated with vasomotor control and/or tern perature control. A mid-frequency 

hand ranging from 0.06 to 0.15 Hz is associated with baroreceptor-mediated blood 

pressure control. A high-frequency hand ranging from 0.15 to 0.4 Hz has been linked 

with respiration[7][8]. 

In 1992, Bigger, et al. using a similar method analyzed 24-hour I-Jolter ECG data 

from 867 myocardial infarction patients in order to establish the association between 

mortality and several frequency domain measures of heart rate variability[9]. They 
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computed the 24-hour power spectral density and calculated the power within four 

frequency bands: I) < 0.0033 Hz, ultra low frequency (ULF) power; 2) 0.0033 to < 0.04 

Hz, very low frequency (VLF) power; 3) 0.04 to <0.15 Hz, low frequency power; and 

4) 0.15 to 0.4 Hz, high frequency power as the pure measure of the modulation of 

parasympathetic tone by respiratory frequency and depth. They also calculated the total 

power (power in the band, =<0.4 Hz) and the ratio of LF to HF power as a measure of 

the sympathovagal balance. Therefore, the mortality risk predictors were calculated by 

means of Cox proportional hazards analyses based on the six measurement of power 

spectrum density. 

It has been known for more than one century that there is a influence of 

respiratory variation on heart rate, so-called respiratory sinus arrhythmia (RSA). RSA is 

a rhythmical fluctuation in heart periods at the respiratory frequency that is characterized 

by a shortening and lengthening of heart periods in a phase relationship with inspiration 

and expiration, respectively[10]. RSA is mediated by vagal nerve. RSA is being used 

increasingly as a measure of vagal control of the heart in psychophysiological studies. In 

power spectral analysis of heart rate variability, the best-known and best-defined peak 

reflects changes in interbeat interval that cycles up and down at the same frequency as 

respiration. This respiration peak corresponds approximately to the RSA, and it is purely 

parasympathetic in origin[11]. However, the frequencies of spontaneous respiration are 

not limited to within the narrow band (0.15-0.4 Hz); they can spread over a wider range 

of 0.05 to 0.66 Hz. The normal respiration rate can be as low as only 3 breaths per 

minute (0.05Hz) at rest and as high as up to 40 breaths per minute (0.66Hz) during 

intense exercise[12]. The following experimental results obtained at the Kessler Institute 
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for Rehabilitation show how incorrect the conclusions would be if only the information 

within the high frequency hand of the heart rate spectrum is considered as the vagal 

activity. Figure 1.3 (a) shows the spectra of heart rate (solid line) and respiration (dashed 

line) of a normal subject in a resting test. The vagal peak in the heart rate spectrum is a 

good match to the respiration peak hut both are located at 0.09 Hz, indicating that this 

subject has a respiration rate less than 6 breaths per minute at. rest. Figure 1.3 (b) shows 

the result of a normal subject exercising at a level of four times resting metabolic rate. 

Both the respiration and vagal tone peaks are located higher than 0.5 Hz. Therefore, if for 

these two examples, the power were calculated within the frequency band of 0.15 to 0.4 

Hz as the measure of vagal tone activity, the results would be completely wrong. 

Figure 1.3 Heart rate and respiration spectra from two normal subjects. (a): resting test; 
(b): a test of exercise at 4 metabolic rate. The vagal tone and heart rate spectra peaks arc 

all out of the high frequency band (0.15 to 0.4 Hz) in (a) and (b). 

Zhang, Reisman, and Tapp proposed a new approach to study the heart rate 

variability by treating heart rate as a system of homogeneous, self-sustained oscillators 

perturbed by respiration through the autonomic nervous system[18]. They investigated the 
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mechanisms underlying cardiac timing and the interaction of heart rate with respiration 

by means of phase response curves. Phase shift was defined as the difference between 

real-time R-R interval T and natural period T0  , normalized by T0. The stimulus was 

defined as the increment of respiration amplitude at each coupling interval. The phase 

response curve (PRC) is the phase shift versus coupling interval. A paced breathing 

experiment has been completed in normal subjects and patients with chronic fatigue 

syndrome. Their results show that the phase response curve can predict the entrainment 

behavior of heart rate interacting with respiration cycles. There is a large difference in the 

phase response curve between the normal and abnormal PRC. Although study of phase 

has provided much important information, it is not complete without examining the 

relationship between phase shift and the increment of respiration amplitude. 

Power spectral analysis of heart rate variability is a valuable tool through which 

neurocardiac function can be assessed non-invasively. However, its usefulness is greatly 

limited when the respiration signal is not available. In order to inspect the behavior of the 

heart: i.e., the output of the self-sustained oscillating system, the respiration; i.e., the 

input of the system, has to be taken into consideration. Figure 1.4 shows some 

experimental results of heart rate variability studies performed at the Kessler Institute for 

Rehabilitation. Figures 1.4 (a) and (b) show the interbeat interval spectrum (solid line) 

and the respiration spectrum (dashed line) for a normal subject and a stroke patient 

respectively. In Figure 1.4 (a) the high frequency peak of the interbeat interval spectrum 

is superimposed with the respiration spectrum peak. indicating that the heart rate is well 

regulated by the parasympathetic activity. In Figure 1.4 (b), the vagal peak is not at the 

same frequency as the dominant respiration spectral peak. This example clearly indicates 
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that without the respiration as reference, this decoupling could not he observed and the 

interbeat interval spectrum peak would he incorrectly assumed to he at the respiration -

frequency. 

Figure 1.4 Heart rate and respiration spectra from (a): a normal subject; (b): a stroke 
patient. The two spectral peaks are superimposed in (a); whereas, decoupled in (b). 

1.3 The Present Research 

For some time there has been growing attention to the techniques dedicated to clinical 

signal monitoring of ambulatory patients. For example, after surviving a stroke, patients 

were frequently monitored by a Holter recorder during their normal life in order to record 

their cardiovascular system function. However, the monitoring in ambulatory subjects 

respiration suffers from the lack of suitable monitoring methods. As the development 

proceeds of power spectral analysis of heart rate variability, more and more ECG data 

taken from ambulatory subjects are processed in order to obtain the neurocardiac control 

information in health and in disease during normal life throughout the day. Since the 

respiration information is absent, the vagal tone is not obtainable because the respiration 
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frequency of the vagal tone peak can not be determined. Therefore, the neurocardiac 

control mechanism can not be assessed in a confident manner. 

Due to the above mentioned drawbacks, we studied a method to derive the 

respiration signal from the ECG signal based on the well-known observation[20] that the 

body-surface ECG is influenced by electrode motion relative to the heart and that 

fluctuations in the mean cardiac electrical axis accompany respiration. 

1.4 Cardiac Electrical Vector 

The resting cardiac cell, like any other cell of excitable tissues (skeletal muscle, smooth 

muscle, nerve) maintains the separation of charged particles (ions) across its membrane. 

Positively charged particles (positive ions) are lined up along the outside of the membrane 

and negatively charged particles (negative ions) along the inside. Spontaneously, or by 

an external electrical stimulus, the cardiac fiber membrane becomes immediately and 

readily permeable to sodium ions, which therefore pass into the cell and convert its 

interior negative potential into a positive one; in other words, the potential of the interior 

of the cell exceeds that of the exterior by about 20mV. This phenomenon is called 

depolarization and the potential difference occurring, due to depolarization of the cell, is 

called an action potential (Figure 1.5). Each cardiac muscle fiber behaves as an electric 

dipole which has a positive and a negative terminal. During every cardiac cycle, all 

cardiac muscle fibers depolarize and repolarize at a very rapid rate and in an orderly 

manner. By summing up these dipoles generated by all cardiac cells, the resultant dipole 

is obtained, which represents the total electrical activity of the heart[1]. 

The human body, by virtue of the chemical nature of its tissue fluids, is 
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essentially a volume conductor (i.e., a medium that permits the conduction of electricity 

in three dimensions), with the boundary being limited by the body surface. Thus, when 

the current dipole originates in the heart it sets up an electrical field at the body surface, 

and potential variations within this field are easily measured. 

Figure 1.5 Cardiac muscle action potential. Above: monophasic action potential from 
a ventricular muscle fiber during normal cardiac function. Below: electrocardiogram 
recorded simultaneously. 

In a volume conductor, the paths taken by the current depend upon the structure 

and geometry of the volume conductor. When the volume conductor is homogeneous, 

isotropic, infinitely large (in comparison to the dipole) and the dipole is located centrally, 

then the distribution of currents and potentials is symmetrical and obeys the simple law 

for the voltage induced at a distant point by a dipole. 

According to this law, the electrical potential at any point P in a 

volume conductor is 
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where µ is the dipole moment (equal to the product of the charge and the length of the 

dipole), d is the distance from the point P to the center of the dipole, and 0 is the angle 

between the dipole axis and the line to that distant point P[1] (Fig. 1.6). Thus the 

potential varies inversely with the square of the distance and is dependent upon the angle 

that the line from the dipole to the point P makes with respect to the axis of the dipole. 

Figure 1.6 Pictorial representation of the law governing the voltage induced by a dipole 

at a distant point P. 

The human body, however, is an inhomogeneous, anisotropic, finite-sized and 

irregular-shaped volume conductor and the heart dipole is located eccentrically. But, in 

practice this inhomogeneity seems to be rather unimportant except perhaps for the low 

resistance and consequent short-circuiting effect of blood within the heart cavities. That 

short-circuiting effect of blood within the heart presumably diminishes the effect of all 

the separate sources and leads to a unification of electrical activity, which lends further 

support to the hypothesis that the heart behaves as a single dipole. 

The cardiac dipole, generated by the working heart, has a certain direction from 
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- to +, and a certain magnitude and thus can he represented as a vector. This vector, the 

so-called heart vector, is oriented in the direction of the dipole axis and has magnitude 

proportional to the dipole moment. 

The origin of the heart vector is assumed to he in the center of the heart mass and 

to remain in this location throughout the single cardiac cycle. The direction and 

magnitude of this vector changes from moment to moment in the course of a single 

cardiac cycle. Consequently, the changes of this vector form a continuous loop in a 

3-dimensional space and this loop is called the spatial vectorcardiogram as shown in 

Figure 1.7. 

Figure 1.7 Instantaneous heart vectors. The spatial vector loop is formed by the termini 
of an infinite number of instantaneous heart vector. 

The spatial vectorcardiogram consists of 3 successive loops, namely: the "P loop", 

the "QRS loop", and the "T loop". The P loop represents the time course of all 

instantaneous vectors produced during atrial depolarization. The QRS loop represents the 

time course of all instantaneous vectors produced during ventricular depolarization. The 
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T loop represents the time course of all instantaneous vectors produced during ventricular 

rcpolarization (Figure. 1.8). 

Figure 1.8 The mean P, QRS, and T vectors in the frontal plane. 

The electrical activity of the heart at any moment of a cardiac cycle is represented 

by a single dipole which subsequently is depicted as an instantaneous heart vector. For 

the whole cardiac cycle there are an infinite number of instantaneous heart vectors. At 

each subsequent instant during the cardiac cycle, with different regions of the ventricles 

becoming depolarized, the resultant dipole for each instant has a different magnitude and 

direction. Several instantaneous vectors may he replaced by one mean; or resultant vector, 

which is obtained by summation of these instantaneous vectors. From the mathematical 

point of view there is a difference between the mean and resultant vectors in the sense 

that although they have the same direction, the mean vector may have different magnitude 

because it is obtained by dividing the sum of the n instantaneous vectors by the number 

of vectors. Figure 1.8 shows the three mean P, QRS, and T vectors resulting from the 

instantaneous vectors during each cardiac cycle. 
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Electrocardiographic deflections recorded in a given lead reflect the magnitude and 

direction of the particular heart spatial vector as it is projected on this lead axis. The 

amplitude of the electrocardiographic deflection is thus determined by the magnitude of 

the heart spatial vector, as well as by the angle between this vector and a given lead axis. 

Polarity of the electrocardiographic deflection depends on how the particular heart vector 

projects on the lead axis. If the particular heart vector projects onto the negative side of 

the lead axis, a negative deflection is recorded in this lead. Since the ECG deflections 

represent the projection of the heart vector on a given lead axis, the direction and 

magnitude of the cardiac spatial vector arc read from the ECG deflection. 

Figure 1.9 shows the electrocardiogram from the standard bipolar limb leads[22]. 

In lead I, the negative terminal of the electrocardiograph is connected to the right arm and 

the positive terminal to the left arm. In lead II, the negative terminal is connected to the 

right arm and the positive terminal to the left leg. In lead III, the negative terminal is 

connected to the left arm and the positive terminal to the left leg. The reference point 

(ground) is connected to the right leg. 

Figure 1.9 Standard bipolar limb leads of electrocardiogram. 



CHAPTER 2 

METHODS 

2.1 ECG Signals Containing Respiration Information 

A biological signal mainly determined by a specific biological system is often influenced 

by other interacting systems. Therefore, it is possible to derive a respiratory signal from 

an ECG signal, which is mainly determined by a non-respiratory system but partly 

influenced by the respiratory system. 

ECG signals recorded from the surface of the chest arc influenced by motion of 

the electrodes with respect to the heart, and by changes in the electrical impedance of the 

thoracic cavity. The expansion and contraction of the chest which accompanies respiration 

result in motion of the chest electrodes. 	In clinical practice, the existence of a 

conspicuous amplitude modulation in an ECG tracing is often observed as indicated in 

Figure 2.1. In terms of the equivalent dipole model of cardiac electrical activity, 

Figure 2.1 Respiration-induced modulation of QRS amplitude. Upper trace: ECG; lower 
trace: respiration measured by a impedance pneumography device. 

respiration could induce a modulation in the direction and the amplitude of the mean 

16 
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cardiac electrical vector. It is possible to measure a fluctuation in the mean cardiac 

electrical axis in order to obtain a derived respiration signal. The determination of the way 

in which the ECG tracings can be examined to obtain a significant respiratory signal is 

an open problem for which the published literature give no solution. 

In 1985, Pinciroli began studying methods for determining the direction of the 

axis, in order to create "virtual ECG leads", which would represent what might be 

obtained from electrodes fixed in position relative to the heart[19]. Moody, et al., derived 

respiration from body-surface ECG signals by calculating the fluctuations in mean cardiac 

electrical axis and applied the technique in successfully monitoring sleep apnea 

patients[20][21]. However, we have not seen reports on the application of the ECG-

derived respiratory signal in power spectral analysis of heart rate variability. 

It has been noted in the preceding discussions that the vector of current flow 

through the heart changes rapidly as the impulse spreads through the myocardium. It 

changes in two respects: First, the vector increases and decrease in length because of the 

increasing and decreasing voltage of the vector. Second, the vector changes its direction 

because of changes in the average direction of the electrical potential of the heart. The 

vectorcardiogram depicts these changes in the vectors at the different times during the 

cardiac cycle, as illustrated in Figure 2.2[14 Intuitively, this concept is easily 

acceptable: the axis of the cardiac electrical vector points out the prevalent direction of 

heart electrical activity. 

In the vectorcardiogram of Figure 2.2, point 5 is the zero reference point, and this 

point is the negative end of all the vectors. While the heart is quiescent, the positive end 

of the vector also remains at the zero point because there is no electrical potential. 
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However, as soon as current begins to flow through the heart, the positive end of the 

vector leaves the -zero reference point. 

Figure 2.2 The QRS vectorcardiogram. 

 

When the septum first becomes depolarized, the vector extends downward toward 

the apex of the heart, hut it is relatively weak, thus generating the first portion of the 

vectorcardiogram, as illustrated by the positive end of vector 1. As more of the heart 

becomes depolarized, the vector becomes stronger and stronger, usually swinging slightly 

to one side. Thus, vector 2 of Figure 2.2. represents the state of depolarization of the 

heart about 0.02 seconds after vector I. After another 0.02 seconds, vector 3 represents 

the potential of the heart , and vector 4 occurs in yet another 0.01 second. Finally, the 

heart becomes totally depolarized, and the vector becomes zero once again, as shown at 

point 5. The elliptical figure generated by the positive ends of the vectors is called the 

QRS vectorcardiogram. 

Clinically, the electrical axis of the heart is usually determined from the standard 

bipolar limb lead electrocardiograms rather than from the vectorcardiogram. Figure 2.3 
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illustrates a method for doing this. After recording the standard leads, one determines the 

maximum potential and polarity of the recording in two of the leads. To determine the 

actual vector of the ventricular mean electrical potential, one draws perpendicular lines 

from the apices of the two net potentials of leads I and III, respectively. Leads I and III 

are chosen because their axes are truly orthogonal. The point of intersection of these two 

perpendicular lines represents, by vectorial analysis, the apex of the actual mean QRS 

vector in the ventricles, and the point of intersection of the two lead axes represents the 

negative end of the actual vector. Therefore, the mean QRS vector is drawn between 

these points. The approximate average potential generated by the ventricles during 

depolarization is represented by the length of the vector, and the mean electrical axis is 

represented by the direction of the vector. Thus, the orientation of the mean electrical axis 

of the normal ventricles is determined as in Figure 2.3. 

Figure 2.3 Plotting the mean electrical axis of the heart from two electrocardiographic 
leads. 

The influence of respiration to body surface ECG signals can also be shown in 

Figure 2.4 In time period t,, the subject was asked to do a deep inhalation and hold. In 

time period (2 , the subject was asked to do a deep exhalation and hold. During inhalation 
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Figure 2.4 Different lead ECG signals influenced by respiration. (a): lead I ECG; (b): 
lead III ECG: (c) respiration; tl: deep inhalation and hold; t2; deep exhalation and hold. 

and hold, the amplitude of lead I is decreased and that of lead III increased significantly. 

During exhalation and hold, the amplitude of lead I is increased and that of lead III 

decreased greatly. Speculatively this observation can he explained that during inhalation 

the apex of the heart is stretched towards the abdomen due to the filling of the lungs and 

diaphragm moving inferiorly and during exhalation the apex of the heart is compressed 

towards the chest due to the emptying of the lungs and diaphragm moving superiorly. 

Due to the anatomical changes of the heart in the chest during respiration, the angles of 

the mean QRS vector vary within a range as shown in Figure 2.5, which causes the 

amplitude changes in leads I and III. 

In our study, the area of each normal QRS complex in each of two leads was 

measured over a fixed time window. Since the window width was fixed, the area was 
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Figure 2.5 Axis of the mean QRS vector influenced by respiration. a: the angle of the 
axis respect to the lead III axis. (a): deep inhalation and hold; (b): deep exhalation and 
hold. 

Figure 2.6 Calculating the direction of the mean QRS vector axis. Ai: area for QRS 
complex in lead I; Am: area for QRS complex in lead III; a: the angle of the mean QRS 
vector axis respect to lead III axis. 

proportional to the amplitude of the ECG signal, hence to the projection of the mean 

cardiac electrical vector on the lead axis (Figure 2.6). Assuming that the leads arc 

orthogonal, the arctangent of the ratio of the areas measured in the two leads yields the 

angle of the mean axis of QRS vector with respect to one of the lead axes. The angle 

values were interpolated to produce a continuous ECG-derived respiratory signal. 
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2.2 Instrumentation 

ECG signals were recorded using a Quinton Q4000 Stress Test Monitor/Controller 

(Quinton Instrument, Co., Seattle, WA). The output signals from the monitor were 

acquired by a IBM-compatible 386/40 MHz data acquisition computer at a 200Hz 

sampling rate. The data acquisition computer had a Keithley Metrabyte Das-16 

analog/digital interface board installed. In order to compare the ECG-derived respiratory 

signals with the real respiration, a respiration wave was recorded simultaneously by an 

impedance pneumography device (RESPI, UFI, Morrow Bay, CA) and also digitized by 

the data acquisition computer at the same sampling rate. The impedance pneumography 

device recorded the respiration wave indirectly by means of electric impedance 

plethysmography. A constant high frequency current was applied to the chest and the 

resulting voltage reflecting the impedance changes due to the filling and emptying of the 

lungs during respiration was detected. The software program used to control the data 

acquisition was Streamer by Keithley, version 3.25. 

2.3 Experimental Setup 

Since our purpose was to derive the respiratory signal from the ECG signal and use it in 

the application of power spectral analysis of heart rate variability, the experimental 

protocol followed the routine experimental protocol designed in the investigation of 

heart rate variability for stroke survivors performed at the Kessler Institute for 

Rehabilitation. 

Two leads ECG signals (lead I and III) and the respiration wave were collected 

on healthy subjects during eight 2-minute test conditions: 1) resting, non-paced breathing 
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(used to determine 1 MET VO2/ml/kg body weight level; 2) resting, paced breathing at 

a rate of 8 breaths per minute (bpm); 3) resting, paced breathing at 12 bpm; 4) resting, 

paced breathing at 18 bpm; 5) exercising at 2 METS; 6) exercising at 3 METS; 7) 

exercising at 4 METS; and 9) resting, normal relaxed breathing, immediately following 

exercise (recovery). 

2.4 Data Analysis 

The ECG and respiration data analysis was performed on an IBM-compatible 486/50 MHz 

computer. The data analysis software package used was S-Plus for windows V3.1 

(Statistical Sciences, Seattle WA), which includes modern statistical techniques and 

 permits writing of custom S-Plus programs. 

In S-Plus, the ECG signals were detrended by using a locally weighted robust 

regression procedure and R peaks were detected by a previously developed signal 

processing software algorithm. In order to form the ECG-derived respiration signal, the 

following processes were performed. See the Appendix B and C for details on derivation 

procedures and S-Plus programming. 

2.4.1 PQ Junction Detection 

S-Plus software was written to detect the PQ junction. The algorithm is explained in 

Figure 2.7. Based on the position of each R peak, a time period ac was set backward 

from the R peak. Within the time period ac, the minimum value b was detected as the 

point of the PQ junction. 
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Figure 2.7 PQ junction detection algorithm. 

2.4.2 Determination of Time Window Width 

After all PQ junctions were detected, the average length between the PQ junction and the 

R peak was calculated. We defined a time window width determined by a ratio of the 

average length between PQ junction and R peak as given in the following equation: 

Where 	W: time window width 

L • time interval between Q and R 

n: number of QRS complex 

k: constant 

See section 4.3 for details on determination of the k. 
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Figure 2.8 Computing QRS complex area. 

2.4.3 QRS Complex Area Calculation 

After subtracting the base line (the area within the time window below the PQ junction), 

the area under each QRS complex within the time window was calculated (Figure 2.8) 

and an area function was generated from each ECG signal (Figure 2.9 (c) and (d)). In 

order to rule out the influence of bad R peak and/or PQ junction detection, the area data 

was examined visually. The outliers (ranging from 0 to 10%) were removed and the R 

peaks corresponding to the outliers were detected manually. This procedure might he 

performed several times until all QRS complex areas were calculated confidently. 

2.4.4 Generation of ECG-Derived Respiration 

Figure 2.9 (e) shows the angle values of the mean electrical axis of the QRS vector 
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Figure 2.9 Procedures of deriving respiration from ECG signals. (a) lead I ECG; (b) lead 
III ECG: (c) QRS complex areas from (a); (d) QRS complex areas from (b); (e) angle 
values of the axis of the QRS vector calculated from (c) and (d); (f) ECG derived 
respiration by interpolating (e); (g) spectrum of the ECG-derived respiration. 
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calculated based on the area data computed from the leads I and III ECG signals in the 

following formula: 

where α[i]: angle value of the mean electrical axis of the ith QRS vector 

AI N: area value of the ith QRS complex in lead I  

Ana* area value of the ith QRS complex in lead III 

To produce a continuous ECG-derived respiration signal, the angle values were 

interpolated by a cubic spline approximation (Figure 2.9 (f)). Since we are interested in 

the spectrum of the derived respiration signal, the FFT was applied to the signal (Figure 

2.9 (g)). In order to compare the ECG derived respiration signal to the original respiration 

signal recorded from the impedance pneumograph, the FFT was also applied to the latter. 

Our method to derive respiration from ECG signals is basically the same in theory 

as Moody and coworkers' [20][21]. However, they did not specify the lead configuration 

and did not present their software. Therefore, the work was an original investigation into 

optimum lead configuration as well as original software development. Also, Moody, et 

al. did not utilize derived respiration in heart rate variability studies and did not consider 

studies involving exercise where the body motion could have affected the derivation of 

respiration. 



CHAPTER 3 

RESULTS 

3.1 Visual Comparison 

Figure 3.1 in Appendix A shows the data from one normal subject and processed by the 

method described in the previous chapter. There are four graphs from each test. For 

example, in Figure 3.1 (a) (data from the resting test), the upper left graph is a two 

minute sample of the original respiration signal recorded from the 	impedance 

pneumography device; the upper right graph is the spectrum of the original respiration; 

the lower left graph is the ECG-derived respiration signal, the lower right graph is the 

spectrum of the ECG-derived respiration. The respiration signals both from recording and 

derivation are arranged in the same column on the left and their spectra in the same 

column on the right so as they can be compared easily. In Figure 3.1 (a), there are 11 

respiration waves both in the original respiration signal and ECG-derived respiration 

signal. The ECG-derived respiration is 180 degrees out of phase with the original 

respiration because the signals are interpreted in the opposite way in these two conditions. 

Since the impedance pneumograph measures the impedance during respiration, an increase 

in signal amplitude represents inhalation and a decrease in signal amplitude represents 

exhalation. In the ECG-derived respiration, we calculated the changes in the angle of the 

electrical axis of the mean QRS vector using the lead III axis as reference (Figure 2.5). 

The angle value decreases during inspiration and increases during expiration. Although 

there is the difference in phase between the original respiration and the ECG-derived 

28 
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respiration, it does not influence the spectra. In the right column of Figure 3.1(a), the 

peak of the spectrum of the ECG-derived respiration is at the same frequency as the peak 

in the spectrum of the original respiration. Both spectra are very similar in shape. If we 

examine the remainder of Figure 3.1, we find that even the derived spectra from the 

exercise tests (Figure 3.1 (c), (f),and (g)) have a remarkable similarity in shape with the 

original spectra even though the body is moving greatly during exercise. 

3.2 Central Frequency Comparison 

The spectrum of the ECG-derived respiration signal contains the information we are going 

to use in the power spectral analysis of heart rate variability. We will utilize the spectral 

information much more often than the time function of the derived respiration. 

Figure 3.2 Central frequency definition. f1: low frequency; fh: high frequency; fc: central 
frequency. 

To characterize the similarity of the derived spectrum to the original spectrum 

quantitatively, we calculated the central frequency for both spectra. Figure 3.2 shows how 

the central frequency was calculated. The amplitude of the spectral peak was detected 

first. Then the frequency values at 30% of the spectral peak were located on both sides; 
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i.e. the low frequency 1, and the high frequency fh in Figure 3.2. The central frequency 

fc was computed in such a way that the area under the spectral curve between f1, and 

was equal to the area between fc  and 1h; i.e. 

Table 3.1 gives the central frequency calculation results for both the original 

spectrum fco and derived spectrum fa  from 9 healthy subjects. We also listed the relative 

difference in between fco  and fcd given by the following equation: 

The first line of table 3.1 in the column corresponding to subject 1 is the central 

frequency of the original spectrum for the resting test. The second line in the same 

column shows the central frequency of the derived spectrum for the same test. The third 

line in the column is the relative difference between the central frequency of the original 

spectrum and that of the derived spectrum. If we proceed down the column, we see the 

central frequencies of the original and derived spectra and the relative difference for each 

test for the same subject. If we proceed from left to right in Table 3.1, we see the central 

frequency of original spectrum, the central frequency of derived spectrum and the 
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Table 3.1 Results of central frequency calculation (continued on next page). 

Subject 1 2 3 4 

rest 
original (f„) (Hz) 0.0903 0.2506 0.2856 0.2905 

derivation (fcd)(Hz) 0.0879 0.2522 0.2881 0.3044 

relative difference 2.66 -0.64 -0.88 -4.78 

paced 
8 bpm 

original (fco) (Hz) 0.1440 0.1440 0.1449 0.1408 

derivation (fed)  (Hz) 0.1432 0.1440 0.1440 0.1432 

relative difference 0.56 0.00 0.62 -1.7 

paced 
12 bpm 

original (fco) (Hz) 0.2132 0.2156 0.2124 0.2140 

derivation (fcd) (Hz) 0.2132 0.2156 0.2116 0.2157 

relative difference  0,00 0.00 0.38 -0.79 

paced 
18 bpm 

original (fco) (Hz)  0.3190 0.3263 0.3174 0.3141 

derivation  (fcd) (Hz) 0.3190 0.3271 0.3182 0.3117 

relative difference 0.00 -0.25 -0.25 0.77 

exercise 
2 METs 

• original (fco) 0.1522 0.2864 0.3166 0.3239 

derivation (fcd) (Hz) 0.1571 0.2856 0.3174 0.3231 

relative difference -3.22 0.28 -0.25 0.25 

• exercise 
3 METs 

original (fco) (Hz) 0.1790 0.3263 0.3174 0.3320 

derivation (fcd) (Hz) 0.1839 0.3271 0.3174 0.3418 

relative difference -2.74 -0.25 0.00 -2.95 

exercise 
4 METs 

original (f„) (Hz) 0.1961 0.4500 0.3206 	* 

derivation (fcd) (Hz) 0.1945 0.4370 0.3182 0.4232 

relative difference 0.82 2.89 0.77 	* 

recovery 
original (fco) (Hz) 0.1123 0.2978 0.3158 0.4354 

derivation (fed) (Hz) 0.1164 0.2954 0.3158 0.4346 

relative difference -3.65 0.81 0.00 0.18 



Table 3.1 (continued from last page) 

Subject 5 6 7 8 9 

rest 
original 	(fco) 	(11z) 0.3011 0.2458 0.3507 0.2116 0.2563 

derivation (fa) (Hz) 0.3019 0.2507 0.3516 0.2083 0.2620 

relative difference -0.27 -1.99 -0.26 1.56 -2.22 

paced 8 bpm 

original (fco) (Hz) 	** 0.1473 0.1449 0.1457 0.1465 

derivation (fa) (Hz) 0.1464 0.1457 0.1449 0.1465 

relative difference 	** 0.61 -0.55 0.55 0.00 

paced 
12 bpm 

original (fco) (Hz) 0.2083 0.2148 0.2148 0.2173 0.2230 

derivation (fcd) (Hz) 0.2140 0.2157 0.2148  0.2173 0.2222 

relative difference -2.74 -0.42  0.00 0.00 0.36 

paced 
18 bpm 

original (lc) (Hz) 	** 0.3215 0.3223 0.3304 0.3231 

derivation (fcd) (Hz) 0.3206 0.3215 0.3296 0.3223 

relative difference 	** 0.28 0.25 0.24 0.24 

exercise 
2 METs 

original (fco) (11z) 	** 0.3068 0.3524 0.2490 0.2897 

derivation (fcd) (Hz) 0.3215 0.3467 0.2515 0.2889 

relative difference 	** -4.79 1.62 -1.00 0.28 

exercise 
3 METs 

original (fco) (Hz) 0.4199 0.2661 0.3597 0.2645 0.3166 

derivation (J 	(z) 0.4167 0.2645 0.3580 0.2637 0.3158 

relative difference 0.76 0.60 0.47 0.30 0.25 

exercise 
• 4 METE 

original (fco) (z) 	** 0.2840 0.3752 0.3076 0.3385 

derivation (fa) (z) 	** 0.2987 0.3743 0.3084 0.3410 _ 

relative difference 	** -5.18 0.24 -0.26 -0.74 

original (fco) (1-1z) 0.2930 0.2747 0.2330 0.2629 0.3003 
recovery 

derivation (la) (Hz) 0.2897 0.2507 0.2330 0.2629 0.3052 

relative difference 1.13 -1.33 0.00 0.00 -1.63 
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corresponding relative difference of each test for all subjects. Some central frequency 

numbers in Table 3.1 are missing. The ones marked with single asterisk arc missing 

because the respiration was poorly recorded by the impedance pneumography device due 

to a bad preparation. The tests for subject 5 marked with a double asterisk were not 

performed. 

Figure 3.3 Scatter plot of the derived central frequency fcd versus the original central 
frequency fco. 

Figure 3.3 plots the derived central frequency fcd  versus the original central 

frequency fco as a visual check on correlation between these two variables. To analyze our 

results statistically, we performed correlation test and paired t-test. Before doing the tests, 

we used exploratory data analysis to verify if our data was outlier-free and nearly normal 

because the classical method of statistical inferences depend heavily on these assumptions. 

Figure 3.4 shows the graphical results of the exploratory data analysis. The 
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variable fdf used here is the difference between fco and fcd. We can get a good picture of 

the shape of the distribution generating our data, and also detect the presence of outliers, 

by looking at the four plots in Figure 3.4. 

Figure 3.4 Exploratory data analysis plots for the difference between fco  and fcd. (a) 

histogram; (b) box plot; (c) density plot; (d) quantile-quantile plot. 

Figure 3.4 (a) and (h) are the histogram and the box plot of fa. A histogram 

shows the number of data points that fall in each of a number of intervals. A box plot is 

a simple graphical representation showing the center and spread of a distribution, along 

with a display of unusually deviant data points, called outliers. The horizontal line in the 
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interior of the dark box in Figure 3.4 (b) is located at the median of the I. This estimates 

the center of the distribution for the data. The height of the box is equal to the 

interquartile distance, or IQD, which is the difference between the third quartile of the 

data and the first quartile. The IQD indicates the spread or width of the distribution for 

the data. The whiskers (the dotted lines extending from the top and bottom of the box) 

extend to the extreme values of the data or a distance 1.5xIQD from the center, 

whichever is less. Data points which fall outside the whiskers may be outliers, indicated 

by horizontal lines. In Figure 3.4 (b), the three lines above the whiskers and. the four lines 

below it represent outliers.The density plot in Figure 3.4 (c) is essentially a smooth 

version of the histogram, which provides smooth estimates of population frequency, or 

the probability density curve. A quantile-quantile plot, or qqplot, is a plot of one set of 

quantiles against another set of quantiles. The normal qqplot in Figure 3.4 (d) consists of 

a plot of the ordered values of our data versus the corresponding quantiles of a standard 

normal distribution. If the qqplot is fairly linear, our data are reasonably Gaussian; 

otherwise, they are not. 

Of these four plots in Figure 3.4, the histogram and density plot give us the best 

picture of the variable distribution shape, which is nearly normal, while the box plot and 

normal qqplot give the clearest display of the outliers. The box plot also gives a clear 

indication of the median, and the upper and lower quartiles (the upper and lower ends of 

the box). 

The two samples used in the paired t-test and correlation test were the central 

frequency of the original spectrum fco and that of the derived spectrum fcd. The two tests 

were performed on the central frequencies for all tests (test one through eight) from all 
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subjects and on each individual test for all subjects. In the paired t-test, our null 

hypothesis is that the difference between the mean of the derived central frequency µfcd 

and the mean of the original central frequency µfco is zero. Our alternative hypothesis is 

µfcd≠µfco. The test was set to give a 95% confidence interval for Pfd - µfco. Table 3.2 lists 

the results of the t-test and the correlation test. The first column of data shows the p 

values from each t-test, the second column is the 95% confidence interval for LI µfcd - µfco,  

the third column is the mean of fco-fcd, and the correlation coefficient from the correlation 

test is in the last column. From table 3.2, we can see that, except for the resting test, all 

p-values are significantly greater than 0.05. That means there is no difference between µfcd 

and µfco. The null hypothesis is actually true and the alternative hypothesis should be 

rejected. The intervals for µfcd - µfco to fall in at a 95% confidence level are all very 

small ranges around zero. The high correlation coefficients in the table indicate that there 

is a high association between the derived central fcd  and the original central frequency fco. 

If we carefully examine the relative difference values for the resting test listed in Table 

3.1, we can find that most of the relative differences are negative numbers. This is 

possibly why the p-value is small (0.0783) for this group of data. If we increased the 

sample size, this statistical error would be overcome. 

3.3 Evaluation of the Hotter and Tape Player System Stability 

Since our eventual goal for studying this method is to apply it to Holter data analysis, we 

performed experiments using a Holter recorder (CardioCorder, Model 459, Del Mar 

Avionics, Irvine, California). In order to use the Holier and tape player system 

confidently, we first examined the system stability. 



Table 3.2 Results of the paired t-test and correlation test between fco  and fcd. 

p-values 95% confidence interval mean of fco  - fcd  correlation coeff. 

overall 0.4004 -0.001845, 	0.000746 0.000549 0.9977 

rest 0.0783 -0.008000, 	0.000534 -0.003733 0.9980 

paced at 8 bpm 0.9527 -0.000938, 	0.000988 -0.000025 0.8241 

paced at 12 bpm 0.2999 -0.002293, 	0.00804 -0.000744 0.8681 

paced at 18 bpm 0.2086 -0.000362, 	0.001387 0.000512 0.9831 

exercise at 2 METS 0.4138 -0.006886, 	0.003186 -0.00185 0.9954 

exercise at 3 METS 0.5599 -0.003939, 	0.002295 -0.000822 0.9983 

exercise at 4 METS 0.9964 -0.007576, 	0.007547 0.000014 0.9956 

recovery 
0.4254 -0.004171, 	0.008949 0.002388 0.9948 

3
7
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3.3.1 Sampling Rate Determination 

To meet the need of recording a 24-hour ECG signal on an ambulatory subject, a Hotter 

recorder is designed to have a very low recording speed (1 mm per second). After 

recording, a Holier tape is usually sent to a scanning company and analyzed in a specially 

designed expensive machine. The arrhythmia information (if there are any) recorded on 

the tape will be detected and an analysis report will be generated. Since we need the heart 

rate variability information recorded on a Holter tape, we have- to analyze the tape in our 

laboratory. 

We have found that we can recover the ECG from a Holter tape by using a 

consumer quality cassette player. The player available in our laboratory is a JVC TD-W10 

Cassette Deck. The play back speed is about 47 min per second. In order to obtain a 200 

Hz sampling rate for the original ECG signals recorded with the Holter recorder, we had 

to determine the actual sampling rate when the Holter tape was played back on the 

cassette player. 

A two-hour 60 beat per minute ECG signal generated by an ECG simulator 

(HEARTSIM 2000, Laerdal Medical Corp, Armonk, NY) was recorded with the Holter 

recorder. The signal was played back on the cassette player and acquired by the IBM-386 

data acquisition computer at an initial sampling rate of 10kHz. The data was processed 

in S-Plus and the R peaks of the simulated ECG signal were detected. The average 

interbeat index number was 206.8, indicating that the initial sampling rate was too high. 

To sample the Holter ECG signal at 200 Hz, the final sampling rate f, should be: 
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3.3.2 Stability Evaluation 

Our next task was to evaluate the tape speed stability of the Holter recorder-cassette 

playback system. In order to accomplish this, we should first determine the stability of 

the ECG simulator. A two minute 60 beat per minute ECG signal from the simulator was 

acquired directly into the data acquisition computer (through an amplifier). The R peaks 

were detected and the interbeat index numbers were calculated. The interbeat index 

numbers were exact 200 except for three 201's periodically distributed among the 120 

interbeat intervals. This might be caused by our relatively low sampling rate,. which could 

cause the sampling point for the outliers to not be exactly on the peak of the R waves. 

Therefore we will assume that the ECG simulator has an acceptable stability. 

Two 2-minute 60 beat per minute simulated ECG recorded by the Holier recorder 

were acquired into the data acquisition computer at a sampling rate of 9.67 kHz and 

processed in S-Plus. The mean of the interbeat interval (µibi) and the interbeat interval 

with the biggest variation (Vibi) were calculated. The relative tape speed stability was 

calculated as following: 

The average relative tape speed stability of the Holter recorder-cassette player system 

calculated from the two 2-minute simulated ECG samples was determined to be 99.08%. 

3.4 Derived Respiration Using Holter Recording 

The experimental setup was the same as discussed in section 2.2 and 2.3. except that the 
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ECG signals (lead I and 111) were recorded on the Holier recorder rather than the Quinton 

Q4000 Stress Test Monitor. The tape with the recorded ECG signals was played back on 

the cassette tape player and acquired by the IBM-compatible 386 data acquisition 

computer at the sampling rate of 9.67 kHz for each data channel. The data were processed 

in S-Plus following the same procedure discussed in section 2.4. 

Figure 3.5 in Appendix A shows the original respiration recorded from the 

impedance pneumography device and Honer ECG-derived respiration and their spectra 

from one normal subject. Although the ECG signals came from the indirect recording 

device and a lot more artifact might he induced through the recording and play back 

process. we still obtained good derived respiration and the spectral information. The 

derived spectra shown in Figure 3.5 have good correspondence with the original spectra. 

Figure 3.6 Scatter plot of the derived central frequency fed  versus the original central 
frequency fco for Holzer data. 
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Table 3.3 Results of central frequency calculation for Holter data. 

Subject 1 2 3 

rest 
original (fco) (Hz) 0.3410 0.2987 0.2262 

derivation (fcd) (Hz) 0.3548  
0.2970 0.2214 

relative difference -4.05 0.57 2.12 

paced 
8 bpm 

original (fco) (Hz) 0.1432 0.1416 0.1473 

derivation (fcd) (Hz) 0.1440 0.1457 0.1473 

relative difference -0.56 -2.90 0.00 

paced 
12 bpm 

original (fco) (Hz) 0.2108 0.2157 0.2148 

derivation (fed) (Hz) 0.2116 0.2157 0.2140 

relative difference -0.38 0.00 0.36 

paced 
18 bpm 

original 	(fco) (Hz) 0.3125 0.3149 0.3109 

derivation (fcd) (Hz) 0.3133 0.3141 0.3101 

relative difference -0.25 0.25 0.26 

exercise 
2 METS 

original (fco) (Hz) 0.3329 0.6407 0.2856 

derivation (fcd) (Hz) 0.3385 0.5990 0.2897 

relative difference -1.71 0.94 -1.44 

• exercise 
3 METS 

original (fco) (Hz) 0.3711 0.4134 0.3524 

derivation (fcd) (Hz) 0.3752 0.4175 0.3662 

relative difference -1.10 -0.99 -3.92 

original (fco) (Hz) 0.4183 0.4346 0.3857 
exercise 
4 METS derivation (fcd) (Hz) 0.4199 0.4321 0.3678 

relative difference 0.38 0.58 4.64 

original (fco) (Hz) 0.3532 0.3849 0.2987 
recovery 

derivation (fcd) (Hz). 0.3532 0.3540 0.2897 

relative difference 0.00 8.03 0.00 



Table 3.4 Results of the paired t-test and correlation test between fco  and fcd  for Holter data 

p-values 95% confidence interval mean of fco  - f cd  correlation coeff. 

overall 0.7820 -0.003248. 	0,004265 0.000508 0.9965 

rest 0.7134 -0.027188, 	0.022321 -0.002433 0,9972 

paced at 8 bpm 0.3227 -0.007032, 	0.003765 -0.001633 0.6846 

paced at 12 bpm 0.9999 -0.001987, 	0.001987 0.00 0.9684 

paced at 18 bpm 0.6667 -0.002028, 	0.002561 0.000266 0.9011 

exercise at 2 METS 0.7382 -0.016698, 	0.013955* -0.001366 0.9999 

exercise at. 3 METS 0.1514 -0.021245, 	0.006578 -0.007333 0.9903 

exercise at 4 METS 0.4017 -0.019273, 	0.031806 0.006266 0.9881 

recovery 0.4226 -0.034017, 	0.054617 0.0103 0.9360 
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Table 3.3 lists the original central frequency fco and derived central frequency fcd  

and the relative difference calculated by equation 3.4 from 3 healthy subjects. Except for 

the recovery test from subject 2, the relative differences are all within the ±5% range. 

Figure 3.6 shows the f versus fco as a visual check on correlation between the 

derived central frequency and the original central frequency for our Holier data. 

Table 3.4 gives the paired t-test results and the correlation coefficient between fco  

and fcd. 



CHAPTER 4 

DISCUSSION AND CONCLUSIONS 

As a tool, the power spectral analysis of heart rate variability has permitted the 

biomedical investigator to explore the relatively elusive autonomic nervous system in a 

noninvasive manner. Some recent studies indicate that power spectral analysis of heart 

rate variability holds a significant potential for the diagnosis of neurocardiac disorders. 

However, research protocols thus far have focused on establishing the association between 

the signal power in some fixed frequency bands and the speculated physiological origins. 

Due to the obvious drawbacks discussed in the previous chapters, we investigate a 

method to derive the respiration signal from the ECG signal based on the observation that 

the body-surface ECG is influenced by electrode motion relative to the heart and that 

fluctuations in the mean cardiac electrical axis accompany respiration. 

4.1 Correlation Between fcd  and fco  

4.1.1 Non-Holter ECG-derived Respiration 

Table 3.2 lists the results of the correlation test and paired t-test performed on the central 

frequencies of the original and derived spectra. The derived respiration was obtained from 

the ECG signals recorded by the Quinton Stress Test Monitor from 9 normal subjects. 

From Table 3.2 it can be clearly seen that the correlation coefficients are significantly 

high, ranging from 0.8241 to 0.9983. The overall correlation coefficient for the data from 

all subjects and all tests is 0.9977. This suggests that there is a strong correlation between 
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the central frequency of the ECG-derived respiration spectrum fa  and that of the original 

respiration spectrum fco. It indicates that our ECG-derived respiration bears a good 

resemblance to the original respiration recorded from the impedance pneumograph in the 

frequency domain. Although the respiration information recorded by means of the 

impedance plethysmography technique is also an indirect respiration signal, we use it as 

our reference throughout our study because this method gives very good results in most 

applications. 

In Figure 3.1 in Appendix A, it can be seen that the derived respiration and their 

spectra show an excellent correspondence with the original respiration and spectra. From 

all data we analyzed, we found that the best correspondence in shape between the spectra 

of the derived respiration and that of the original respiration result from the paced 

breathing tests. The reason for this might be that the paced breathing test generates a very 

regular respiration signal with an essentially single frequency component. This unitary 

property of the paced breathing test allows a greater error tolerance for the ECG-derived 

respiration. 

Although the derived respiration of the paced breathing tests have the best 

correspondence in shape with the original respiration, the correlation coefficients in Table 

3.2 are relatively low for these tests. The reason for that might be that the central 

frequency values for both original and derived for each paced breathing test are all very 

close for all subjects because they all breathed at the same rate. Compared to others, these 

groups do riot have a good straight line shape distribution as shown in Figure 4.1. 

However, if we look at Table 3.1, we can find that the central frequency values for the 

paced breathing tests have the smallest relative difference. 
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Figure 4.1 Plot of derived central frequency versus original central frequency for (a) test 

of exercising at 3 METS; (b) paced breathing at 8 bpm. 

4.1.2 Hotter ECG-derived Respiration 

The frequency response of the Holter recorder is from 0.05 to 100 Hz. The tape player 

(JVC TD-W 10 Cassette Deck) has a frequency response of 30 to 16000 Hz, ±3dB. If all 

frequency components recorded by the Holter tape were output from the tape player, the 

requirement of the frequency response of the tape player should be from 2.5 to 5000 Hz 

because the play back speed is about 50 times greater than the recording speed. Since the 

frequency response of the tape player does not cover the required frequency band, we lose 

the I loiter ECG information at. the low frequency end. The actual frequency components 

of the original signal obtained from the tape player is between 0.6 and 100 Hz, which is 

suitable to produce an undistorted output of the original ECG signal. A cross correlation 

between the original and tape output signals will he performed in the future to quantify 

this observation. 

Table 3.4 lists the results of the correlation test and paired t-test performed on the 
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central frequencies of the original and derived spectra for the Holier data. The correlation 

coefficients are still very high. The overall correlation coefficient is 0.9965, indicating 

a strong correlation between f, and fco  for the Holier data. The reason that we performed 

our experiments with the Holier recorder is to verify if the technique can be applied to 

the Holter data. We did sec some small peaks on the side of the main peak in the derived 

spectra for the exercise and recovery tests. These might result from the mechanical 

instability of the tape player. 

4.2 Limitations 

This ECG-derived respiration technique is based on the phenomenon that respiration 

modulates the change in the angle of the cardiac electrical vector axis. However, from our 

observation, this modulation is subject dependent. It might be related to the type of 

respiration (abdominal versus thoracic) and the difference in the anatomical structure of 

each individual. Figure 4.2 shows lead I ECG signals from two healthy young female 

subjects in the test of paced breathing at 12 breaths per minute. In Figure 4.2 (a), the 

Figure 4.2 Subject dependent respiration modulated ECG signals. The respiration 
modulation to the ECG signal in (a) is greater than that in (b). 
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ECG signal amplitude is modulated by the respiration, whereas, in Figure 4.2 (b), the 

degree of this modulation is much, smaller. The difference in the modulation might be 

related to tidal volume. 

Of the three limb leads, lead I has the most respiration information despite having 

the smallest ECG signal amplitude. This is because the normal angle of the cardiac 

electrical vector axis is about 600  relative to the transverse plane. When respiration 

modulates the angle fluctuating around this value, the change of the projection of the 

cardiac electrical vector on the lead I axis has the biggest effect. Since we need an 

orthogonal lead configuration, leads I and III are the best choice. 

Figure 4.3 ECG-derived respiration spectra from other lead configurations. (a) from lead 

II ECG: (b) from a leads V1 and V5 configuration. 

In order to determine the optimum ECG lead configuration, we performed 

experiments with different configurations including one lead and two leads. Figure 4.3 
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shows some experimental results. In Figure 4.3 (a), the derived spectrum was from a lead 

II ECG signal during exercise at 3METs. Although the respiration frequency peak is 

present, the amplitude of the interference at the low frequency end is greater than the that 

of the respiration peak. Compared to lead I, lead II contains less respiration information 

due to its close alignment with the cardiac electrical vector. The signal to noise ratio in 

this case is much lower than for leads I or III. Figure 4.3 (h) shows the results of a leads 

VI and V5 configuration from a resting test. The major peak of the derived spectrum is 

located approximately at the respiration frequency, hut the derived spectrum contains 

relatively high noise compared to the clean original spectrum. Since leads VI and V5 are 

not truly orthogonal, it is possible to induce noise and give a less accurate result. To

 derive respiration from ECG signals, two conditions have to be satisfied: first, 

the recorded ECG signal has to contain respiration information; second, the respiration 

information has to he extracted correctly from the ECG signals. Because the respiration 

information is contained in the amplitude modulation of the recorded ECG signals, the 

correct respiration might not be derived reliably if the ECG signal is poorly recorded and 

has a very low signal to noise ratio. Speculatively, in the cases that the changes in the 

angle of tbe cardiac electrical vector are also influenced by sources besides respiration, 

for instance, intense exercise, the respiration signal might not be correctly obtained from 

the ECG signal. This can he verified by properly designing experimental protocols. 

4.3 Some Key Points in The Derivation 

Although the recorded ECG signal contains respiration information, without correct 

extraction, the information could not be obtained. There are three key steps in the 
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derivation of the respiration from ECG signals: I) R peak detection; 2) PQ junction 

detection: 3) QRS complex area calculation. Each step directly influences We result of 

next step. If anything goes wrong, it is possible to get a falsely derived result. 

Figure 4.4 Incorrect R peak detection. The thin lines from the top to the bottom of the 

box indicate the detected R peaks. 

Some ECG signals, especially the ones from the exercise tests, have a high artifact 

level due to the movement of the body and the possible relative movement between the 

electrode and the skin surface. Figure 4.4 shows an R peak detection result of an ECG 

signal containing a large amount of noise. The thin lines from the top to the bottom of 

the box indicate the positions of the detected R peaks. Due to the improper selection of 

the required parameters required for the R peak detection program, all R peaks were 

detected incorrectly except for the last one. In this case visual inspection of the detection 

result is very important. Correct R peak detection of the signals containing large noise can 

be obtained by repetitively selecting different values for the parameters and visually 

checking the detection result. 
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Figure 4.5 shows how correct PQ junction detection is important to the derived 

respiration. The ECG signal shown in Figure 4.5 (a) has high frequency noise and some 

spikes. 	[he length ac (see section 2.4.1 and Figure 2.7) were set as shown in the figure 

when performing the PQ junction determination, the result would be incorrect because the 

spike present within time period ac has the lowest value and the algorithm would choose 

Figure 4.5 Influence of the PQ junction detection to the ECG-derived respiration 
spectrum. The vertical scale for the spectral graph ((c) and (d)) is arbitrary. (a) incorrect 
PQ junction detection due to the presence of noise: (b) correct PQ junction after the 
removal of noise: (c) original spectrum and false derived spectrum caused by (a); (d) 

original spectrum and correct derived spectrum. 
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that point. Due to the incorrect PQ junction detection, the derived spectrum has no 

association with the original spectrum as shown in Figure 4.5 (c). This problem could be 

overcome by using a proper smoothing technique. Figure 4.5 (b) shows the same ECG 

signal after smoothing, where the correct PQ junctions were detected and the true 

respiration information was derived (Figure 4.5 (d)). An alternative way to solve this 

problem is to set the time period ac as close to the expected PQ junction as possible to 

exclude the spikes within ac. 

There is only one parameter k (see equation 2.1) which can be changed when 

performing the QRS area calculation. The time window length (see section 2.4.2) is 

determined by the average length between the PQ junction and the R peak position as 

well as the k value. The value of k is determined at the beginning of each data analysis 

by visually inspecting an ECG wave and choosing a k value to get the time window width 

as close to the width of the QRS complex as possible. As long as the k value is 

determined, there is no need to change during a data analysis. Compared to the 

parameters in R peak and PQ junction detection, k value selection is less critical. 

4.4 Future Work 

The clinical significance of heart rate variation can he understood only with reference to 

respiration. Our study provides a method to obtain respiration from the ECG signal when 

respiration information is not directly available. This can be done either directly or from 

a Holzer recording. It is therefore possible to do spectral analysis of heart rate variability 

and determine the frequency of the spectral peak occurring at the respiration frequency. 

In future study, the following work should be performed: 
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(1) to collect and analyze data on abnormal subjects to verify the conclusions of the 

present study. 

(2) to optimize the signal processing software to improve the detection and calculation 

accuracy and shorten the processing time. 

(3) to perform cross correlation test between the original respiration and ECG-derived 

respiration to verify the similarity of these two time domain signals. 



APPENDIX A 

FIGURES OF ORIGINAL AND DERIVED RESPIRATION 
AND THEIR SPECTRA 

54 



55 

Figure 3.1 Original respiration and ECG-derived respiration. and their spectra. In the 

respiration figures deli side). the horizontal axis is time and the vertical axis is voltage. 
In the spectral figures (right side), the vertical axis is power density (continued on next 

page). 
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Figure 3.1 (continued). 
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Figure 3.1 (continued): 



58 

Figure 3.1 (continued). 
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Figure 3.5 Comparison of original respiration with the ECG-derived respiration and their 

spectra for I loiter data. In the respiration figures (left side), the horizontal axis is time and 

the vertical axis is voltage. In the spectral figures (right side), the vertical axis is power 

density (continued on next page). 
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Figure 3.5 (continued). 
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Figure 3.5 (continued). 
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Figure 3.5 (continued). 



APPENDIX 13 

PROCEDURE OF DERIVING RESPIRATION FROM ECG 

Since we used the respiration recorded by the impedance pneumography device as our 

original respiration throughout the study, we processed the respiration signal using this 

procedure. When this original respiration is not available or only one lead ECG signal is 

available. the procedure should be modified properly. We will use a sample data file, 

r032594e. to explain the syntax of the programs. It has three columns: 1) original 

respiration: 2) lead I ECG; 3) lead III ECG. 

A. R Peak Detection 

After the acquired data are scanned in S-Plus, use FRPK to detect the lead I ECG signal. 

FRPK is a modified version of the peak detection part of LWS. The three parameters 

and hash) should he selected properly according the signal amplitude, noise 

level, and average interbeat index numbers. The syntax for FRPK is as following: 

where r032594e.1 pk is the R peak vector generated. If miss detection is present, 

use FMRPK (modified version of MQRS) to detect the missed R peak manually until an 

R peak vector containing all R peak positions is generated. 
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If necessary, use VISCHK to inspect the detected R peak positions. 

B. PQ Junction Detection and QRS Area Calculation for Lead I 

QRSCA is the program to detect the PQ junctions and calculate the QRS complex areas 

using the detected R peak positions. There two parameters (ac and k, see section 2.4 2. 

for detail) must he selected properly.The default values for ac and k are 7 and 2 

respectively. Use the R peak vector generated from last step and lead I ECG signal to 

calculate the information for lead I. 

If manual R peak detection is performed in step A, the R peak vector 

r032594e.mpk should he used instead of using r032594e. 1pk. QRSCA displays the result 

of the QRS area calculation automatically in a graph. The presence of the outliers of the 

area calculation can he inspected visually through the graph. If present, the outliers must 

he removed by using RME3Q. 
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RMBQ displays the area values graphically and allows you to remove the outliers 

manually by using the mouse button. Since RMBQ actually removes the R peaks 

corresponding to the area outliers, these suspect R peaks have to be re-detected by using 

FMRPK and the QRS area calculation has to be done once again. This step may be 

repeated more than once until there are no outliers of QRS area or the outliers are the true 

results of the area calculation. 

C. PQ junction Detection and QRS Area Calculation for Lead III 

Use the R peak vector generated in step A or modified in step B and the lead III ECG 

signal to calculate the QRS complex areas for lead III. Normally, there are no more 

outliers in the result of the area calculation since they were removed and the R peaks 

were re-detected in the last step. 

Similarly, if manual R peak detection was performed in step A or area outliers 

removed in step B, the R peak vector used here should be the latest version instead of 

> r032594e. I pk. 

D. Angle Calculation and Interpolation 

Program DUALL calculates the angle of the cardiac electrical vector axis using the area 

information obtained from steps B and C. The cubic spline interpolation is performed by 

program EDR to produce a continuous ECG-derived respiration signal. No user selected 



66 

parameter is required in this program. 

E. Spectrum Generation 

After obtaining the derived respiration, use FSP to generate the spectrum for both the 

original and the derived respiration. 

The original and the derived respiration and their spectra are displayed by DGF. 

F. Central Frequency Calculation 

SPCP calculates the central frequencies for both the original and the derived spectra. 

There are three parameters h, f I, and f2. The h is the percentage of the amplitude of the 

spectral peak from which the low frequency f1 and high frequency fh are calculated (see 

Figure 3.2). The default h is 0.3. In cases that the interference is higher than the 

respiration frequency peak present in the original spectrum, use f1 and f2 to exclude the 

interference. 



APPENDIX C 

S-PLUS PROGRAMS 

1. FRPK 

function(x, zf = 15, mindiff = 50, qhg = 0.25, zdelta 
0, tooruff 

= 0.8, hash = 30) 

#x: ecg signal 
x.pk <- lwzx(x, f = zf, mindiff = mindiff, qx = 

qhg, delta 
= zdelta, hash = hash) 

pk <- x.pk$pk 
ibi <- diff(pk) 
mruff <- max(abs(ruff(ibi))) 
if(mruff >= tooruff) { 

print(paste("IBI'S MAY BE TOO RUFF")) 
print(paste("MAX IBI IS", max(ibi), "[" 

, (1:length( 
ibi))[ibi >= max(ibi)], "]")) 

print(ibi) 
} 
pk 

} 

67 



68 

2. FMRPK 

function(x, qx) 

{ 
ecg data(col 2); qx: output of frpk 

xout <- pout(diff(qx)) 
if(length(xout$high) == 0) { 

qfx <- list(qx = qx, ibi = diff(qx)) 
return (qfx) 
stop() 

print("bracket missing peaks using mouse", quot 
e = F) 

cx <- vector("numeric", 0) 
print(xout$high) 
for(i in xout$high[1:length(xout$high))) { 

il <- i - 2 
i2 <- i + 2 
if(i1 < 1) 

ii <- 1 
if(i2 > length(qx)) 

i2 <- length(qx) 
plot(qx[i1] :qx[i2], x[qx[i1]:qx[i2]], t 

ype = "1") 
abline(v = qx[(i1):(i2)]) 
bx <- locator()$x 
if(length(bx) > 0) { 

if(length(bx) > 2) { 
bx <- unique(bx) 

} 
if(length(bx) %% 2 > 0) { 

bx <- bx[1:(length(bx) 
- (length( 

bx) %% 2))] 

} 
for(j in seq(1, length(bx), 2)) 

{ 
bb <- floor(bx[j]) 
be <- ceiling(bx[j + 1] 

tx <- order(x[bb:be]) [1 
ength(bb:be 



)] 	bb 
abline(v = tx, 1ty = 2) 
cx <- c(cx, tx) 

} 
} 

} 
print(cx) 

for(i in 1:length(cx)) 
qxu <- qx[qx < cx[i]] 
qxo <- qx[qx > cx[i]] 
qx <- c(qxu, cx[i], qxo) 
print(length(qx)) 

#qfx <- list(qx = qx, ibi=diff(qx)) 
qfx <- qx 
qfx 
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3.QRSCA 

function(x, pkx, ac = 7, k = 2) 

{ 
#x:ecg data(col 2), pkx: R peak, hwin: 

hwin_ac 
if(pkx(1) < hwin) { 

pkx <- pkx[2:length(pkx)) 

if(length(x) < (pkx[length(pkx)] + 3 * hwin)) { 
pkx <- pkx[1:(length(pkx) - 1)] 

lwf <-.lowess(1:length(x), x, f = 45/length(x), 
iter = 2, 

delta = 0.1)$y 
x <- x - lwf 
minx <- vector("numeric", 0) 
for(i in l:length(pkx)) { 

minxl <- ((pkx[i] - hwin):pkx[i]) [(x[(p 

kx[i] 
hwin):pkx[i]]) <= min(x[(pkx[i] 

- hwin): 
pkx[i]])] 

if(length(minx1) > 1) { 
minx1 <- minx1[length(minx1)] 

} 
minx <- c(minx, minx1) 

if(length(pkx) != length(minx)) { 
print(paste("Number of Q's is not equal 

to that of R's" 
)) 

print(paste("Q's:", length(minx))) 
print(paste("R's:", length(pkx))) 
stop() 

shwd <- round(mean(pkx - minx) * k) 
qrsca <- vector("numeric", 0) 
for(i in 1:length(minx)) { 

cols <- x[(minx[i] + 1):(minx[i] + shwd 
) ] 

cal <- sum(cols) 
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dft <- x[minx[i]] * shwd 
rca <- cal - dft 
qrsca <- c(qrsca, rca) 

} 
par(mfrow = c(1, 1)) 
plot(qrsca) 
z <- list(qrsca = qrsca, pkx = pkx, x = x, minx 

= minx) 
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4. RMBQ 

function(x) 

{ 
#x:output of qrsca 

xl <- x$qrsca 
x2 <- x$pkx 
plot(xl) 
xs <- l:length(x1) 
bqa <- identify(xs, x1, plot = T) 
j <- 0 
for(i in 1:length(bqa)) 

x2 <- x2[ - (bqa[i] - j)] 
j <- j 	1 

} 
x2 

} 
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5. DUALL 

function(xl, x2) 

#x1:first lead qrsca;x2:second lead qrsca 
qcal <- xl$qrsca 

qca2 <- x2$qrsca 
qrsca <- atan(qcal/qca2) 
z <- list(qrsca = qrsca, pkx = x1$pkx) 
z 
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6. EDR 

function(x) 
{ 
# x: output of qrsca 

pkx <- x$pkx 
qrsca <- x$qrsca 
n <- pkx[length(pkx)] - pkx[1] + 
iedr <- spline(pkx, qrsca, n) 
sted <- c(iedr$x[1], iedr$x[length(iedr$x)]) 
z 	list(iedr = iedr$y, sted = sted) 
z 
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7. FSP 

function(xl, x2, title = "", f2 = 0.2) 

#x1: resp signal; x2: edr output 
orresp <- x1 
edresp <- x2$iedr 
stp <- x2$sted[1] 
edp <- x2$sted[2] 
orresp <- orresp[stp:edp] 
d.orp <- orresp[seq(1,  length(orresp), 10)] 
d.orpl <- lowess(1:length(d.orp), d.orp, f = 0. 

3, iter = 2, 
delta 	ceiling((length(d.orp) * 0.3)/8 

))$y 
d.orps <- spect(d.orp - d.orpl, nt = 8192, ns = 

6) 
d.edr <- edresp[seq(1, length(edresp), 10)] 
d.edrl <- lowess(1:length(d.edr), d.edr, f = f2 

, iter = 2, 
delta = ceiling((length(d.edr) * 0.3)/8 

) )$Y 
d.edrs <- spect(d.edr - d.edrl, nt = 8192, ns = 

6) 
z <- list(d.orp = d.orp, d.edr = d.edr, d.orps 

= d.orps[1: 
330], d.edrs = d.edrs[1:330]) 

z 

} 



8. DGF 

function(x, title = "") 

#x: output if fsp 
d.orp - x$d.orp 
d.edr - x$d.edr 
d.orps - x$d.orps 
d.edrs <- x$d.edrs 
xf <- ((1:330) - 1)/8192 * 20 
dev.set(which = 2) 
par(mfrow = c(2, 1), mar = c(4, 5, 3, 1)) 
plot(d.orp, type = "1", main = paste(title, "-O 

riginal")) 
plot(d.edr, type = "1", main = paste(title, "-D 

erivation") 

dev.set(which = 3) 
par(mfrow = c(2, 1), mar = c(4, 5, 3, 1)) 
plot(xf, d.orps[1:330], type = "1", xlab = "Fre 

quency(Hz)", 
ylab = "Power", main = paste(title, "-0 

riginal")) 
plot(xf, d.edrs[1:330], type = "1", xlab = "Fre 

quency(Hz)", 
ylab = "Power", main = paste(title, "-D 

erivation") 
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9.SPCP 

function(x, h = 0.3, nt = 8192, sr = 20, fl = 1, f2 = 1 

00) 

#x:output of fsp 
fn - sr/(nt * 3) 
x1 <- x$d.orps 
x2 <- x$d.edrs 
xscal <- 1:330 
x1 <- spline(xscal, xl)$y 
x2 - spline(xscal, x2)$y 
f1 <- round(length(xl) * (f1/100)) 
£2 - round(length(xl) * (f2/100)) 
x1.c - xl[f1:f2] 
x2.c <- x2[fl:f2] 
x1.mc - (1:length(xl.c))[(xl.c >= max(x1.c))] 
x2.mc <- (1:length(x2.c)) [(x2.c >= max(x2.c))] 
xl.m <- xl.mc + fl - 1 
x2.m <- x2.mc + fl - 1 
xll.r <- rev(x1[1:x1.m]) 
x12 - xl[xl.m:length(x1)] 
x21.r <- rev(x2[1:x2.m]) 
x22 <- x2[x2.m:length(x2)] 
fl.r <- fm1(x11.r, xl[xl.m] * h) 
f1.1 <- x1.m - fl.lr + 1 
f1.hm - fml(x12, x1[xl.m] * h) 

f1.h <- xl.m + fl.hm - 1 
f2 .lr - fm1(x21.r, x2[x2.m] * h) 
f2.1 <- x2.m - f2.lr + 1 
f2.hm <- fml(x22, x2[x2.m] * h) 
f2.h - x2.m + f2.hm - 1 

al <- sum(xl[fl.l:(f1.h - 1)]) 
a2 <- sum(x2[f2.1:(f2.h - 1)]) 
ai.1 - al/(x1[xl.m] * (fl .h - f1.1)) 
ai.2 <- a2/(x2[x2.m] * (f2.h - f2.1)) 
hal.sm <- x1[f1.1] 
for(i in (f1.1 + 1):fl.h) 

hal - xl[i] 
hal.sm - sum(hal.sm, hal) 
if(hal.sm >= (a1/2)) { 

cfl <- (1:length(x1))[(x1 == x1 
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[in] 
break 

} 
} 
ha2.sm <- x2 [f2.1] 
for(i in (f2.1 + 1):f2.h) 

ha2.sm <- sum(ha2.sm, x2[i]) 
if(ha2.sm >= a2/2) { 

cf2 <- (1:length(x2))[(x2 == x2 

[i] ) 
break 

} 
} 
z <- list(fl = c(f1.1, fl.h, cfl) * fn, f2 = c( 

f2.1, f2.h, 
cf2) * fn, ra = c(ai.1, ai.2)) 
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