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ABSTRACT

DERIVATION OF RESPIRATION FROM ELECTROCARDIOGRAM
DURING HEART RATE VARIABILITY STUDIES

by
Lingeng Zhao

A method was developed to derive the respiration signal from Lhe ECG signal
based on the observation that the body-surface ECG is influenced by electrode motion
relative 1o the heart and that fluctuations in the mean cardiac electrical axis accompany
respiration. S-Plus programs were developed to calculate the changes in the value of the
mean cardiac electrical axis during respiration from a two lead ECG signal and to
generate a continuous ECG-derived respiratory signal from the angle information.

Data were taken from 9 healthy subjects during rest, paced breathing and exercise.
The respiration was derived from the recorded ECG signals. The ECG-derived respiration
was compared with the original respiration recorded through an impedance pneumography
device. The derived respiration shows an excellent correspondence with the original
respiration. Statistical analysis indicates that the ECG-derived respiration has a high
correlation with the original respiration in the frequency domain.

Our study provides a method to obtain the respiration from the ECG signal when
respiration information is not directly available. This can be done either directly or from
a Holter recording. It is therefore possible to do spectral analysis of heart rate variability

and determine the frequency of the spectral peak occurring at the respiration frequency.
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CHAPTER 1

BACKGROUND

1.1 Heart Rate Variability

The experiments on "animal electricity” conducted by Galavni and Volta two centuries
ago led to the discovery that electrical phenomena were involved in the spontaneous
contractions of the heart. The activation of cardiac muscle is propagated at a very rapid
rate and in an orderly manner. The process of the depolarization of the cardiac muscle
originates in the sinoatrial (SA) node, which is situated in the wall of the right atrium
near the entrance of the superior vena cava. The cells of the SA node are autorhythmic.
Because of this capability, the SA node is designated as a pacemaker. However, all areas
of the heart muscle have the potential ability to serve in this capacity, but they assume
this role only under abnormal circumstances. From the SA node, the process of
depolarization spreads radially throughout the atria along ordinary atrial myocardial fibers
and is taken over by the atrioventricular (AV) node, which is located near the top of the
ventricular septum. The AV node in turn act»ivales the bundle of His which divides into
two branches serving the right and left ventricles. Through thesc branches the sumulus
finally passes to the ventricles and generates ventricular contraction[1].

The electrocardiogram (ECG) reflects the changes over ume of the electrical
potential between pairs of points on the skin surface. The cardiac impulse progresses
through the hecart in an extremely complex three-dimensional pattern. Hence, the precise

configuration of the ECG varies from individual to individual, and in any given individual



the pattern varics with the anatomical location of the leads. In general, the paticrn consists
of P, QRS, and T waves (Figure 1.1). They represent atrial depolarization, ventricular

depolarization, and ventricular repolarization, respectiyely.
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Figure 1.1 Configuration of a typical scalar electrocardiogram, illustrating the important
deflections and intervals.

The SA node is usually under the tonic influence of both divisions of the
autonomic nervous system. The sympathetic system enhances automaticity, whereas the
parasympathetic system inhibits it. Changes in hcart rate usually involve a reciprocal
action of the two divisions of the autonomic nervous system. Thus an increased heart rate
is produced by a diminution of parasympathetic actuivity (also called vagal tone) and
concomitant increase in 'Sympalhctic activity; deceleration is usually achicved by the
opposite mechanisms. Under certain conditions the heart rate may change by sclective
action of just one division of the autonomic nervous system, rather than by reciprocal

changes in both divisions. For instance, during paccd respiration, the heart rate is

.



decreased by the increase of parasympathetic activity. Ordinarily, in healthy, resting
individuals parasympathetic tone is predominant. In normal adults the average heart rate
at rest is approximately 70 beats per minute. During sleep the heart rate diminishes by
10 to 20 beats per minute, but during emotional excitement or muscular activity it may
accelerate to rates considerably above 100. In well-trained athletes at rest the rate is
usually only 50 to 60 beats per minute[2].

It has been known that healthy individuals have heart rates that fluctuate
considerably even at rest, whereas decreased variability and accentuated periodicities are
associated with disease{3]. Recent evidence suggests that heart rate variability is also a
biologic marker of the aging process; specifically, HRV diminishes with aging. On the
other hand, this loss can be attenuated by habitual exercise over time[4]. Therefore, in

recent years the assessment of heart rate variability has attracted a growing interest.

1.2 Current Research in Power Spectral Analysis of Heart Rate Variability
At rest, spontancous oscillatory fluctuations occur in blood pressure and heart rate. The
study of such behavior may help to elucidate the ncural control of the circulation from
the point of view of basic physiology and to suggest possible clinical applications. The
observed oscillatory behavior is believed to result from the interplay of feedback
mcchanisms involved in physiological control and the concept of interacting oscillatory
systems in homeostasis is now well established[5]. The application of computer
processing has facilitated the use of the techniques of systems analysis to study such
interactions on a beat-by-beat basis. Variations in heart rate have been studied by deriving

a heart rale variability signal, i.c. a continuous variable corresponding to the instantancous



heart rate. It is possible to quantify the relationship between changes in cardiac rhythm
and other cardiorespiratory variables using convenuonal methods of signal processing
such as power spectral analysis.

Power spectral analysis is a process that begins by transforming a signal from the
time domain to the frequency domain. Periodic functions can be represented as a sum of
sines and cosines at a fundamental frequency and its harmonics. This sum is called a
Fourier series. When a function is non-periodic, components may be present at all
frequencies. The Fourier series is expanded to a Fourier Transform to accommodate non-
periodic functions. Using Fourier transform techniques, the frequency components of the
non-periodic function are found.

In power spectral analysis of heart rate variability, an interbeat interval (IBI) signal
is generated by computing the ume difference between successive R waves. The IBI
signal must be interpolated to form an equidistant time series. Then, the heartbeat interval
spectrum is generated by taking the Fourier transform of this IBI signal. Only through the
transformation of these time event series to the frequency domain can the existence of
physiological rhythms oscillating at specific frequencies be appreciated.

Kitney and co-workers[6] analyzed the frequency content of heart rate variability
by measuring their power spectrum. In this pioneering work, they showed that in addition
to the well-known fluctuations in heart rate associated with the respiratory cycle, there
are also periodic fluctuations in heart rate occurring at lower frequencies (Figure 1.2).
Accordingly, the power spectrum of the heart rate {luctuations contains not only a peak
centered at the respiratory frequency but also peaks at two lower frequencies. Their work

suggests that the low-frequency peak is reclated to cyclic fluctuations in peripheral



vasomotor control associated with thermorcgulation, whercas the mid-frequency peak 1s
related to the frequency response of the baroreceptor reflex, and that the blood pressure
is regulated by the harorceeptors the through autonomic nervous system.

Low-frequency peak

——,
0.0%2 -

Mld-frequency peak

e
High—requency peak
Lereaam

0.0%

Power speatrum ef HR fuatuatione

C.1 G.3 0.8

Figure 1.2 Power spectrum of heart rate fluctuations, indicating low-frequency, mid-
frequency, and high-frequency peaks.

For some time there has been a tendency attempting to identifly spectral peaks in
predefined ranges in power spectral analysis of heart rate variability. In this method, the
heart rate spectrum is divided into three frequency bands. A low-frequency band below
0.05 Hz is corrclated with vasomotor control and/or temperature control. A mid-frequency
band ranging from 0.06 to 0.15 Hz is associated with barorcceptor-mediated blood
pressure control. A high-frequency band ranging from 0.15 to 0.4 Hz has been linked
with respiration] 7} 8].

In 1992, Bigger, ct al. using a similar method analyzed 24-hour Holter ECG data
from 867 myocardial infarction paticnts in order to establish the association between

mortality and scveral requency domain measures of heart rate variability[9]. They



computed the 24-hour power spcctral density and calculated the power within four
frequency bands: 1) < 0.0033 Hz, ultra low frequency (ULF) power; 2) 0.0033 to < 0.04
Hz, very low frequency (VLF) power; 3) 0.04 to < 0.15 Hz, low frequency power; and
4) 0.15 to 0.4 Hz, high frequency power as the pure measure of the modulation of
parasympathetic tone by respiratory frequency and depth. They also calculated the total
power (power in the band, =<0.4 Hz) and the ratio of LF to HF power as a measure of
the sympathovagal balance. Therefore, the mortality risk predictors were calculated by
means of Cox proportional hazards analyses based on the six measurement of power
spectrum density.

It has been known for more than one century that there i1s a influence of
respiratory variation on heart rate, so-called respiratory sinus arrhythmia (RSA). RSA is
a rhythmical fluctuation in heart periods at the respiratory frequency that is characterized
by a shortening and lengthening of heart periods in a phase relationship with inspiration
and expiration, respectively[10]. RSA is mediated by vagal nerve. RSA is being used
increasingly as a measure of vagal control of the heart in psychophysiological studies. In
power spectral analysis of heart rate variability, the best-known and best-defined peak
reflects changes in interbeat interval that cycles up and down at the same frequency as
respiration. This respiration peak corresponds approximately to the RSA, and it is purely
parasympathetic in origin{11]. However, the frequencies of spontaneous respiration are
not limited to within the narrow band (0.15-0.4 Hz); they can spread over a wider range
of 0.05 t0 0.66 Hz. The normal respiration rate can be as low as only 3 breaths per
minute (0.05Hz) at rest and as high as up to 40 breaths per minute (0.66Hz) during

intense excreise[12]. The following experimental results obtained at the Kessler Institute



for Rehabilitation show how incorrect the conclusions would be i only the information
within the high frequency band of the heart rate spectrum is considered as the vagal
activity. Figure 1.3 (a) shows the speetra of heart rate (solid line) and respiration (dashed
fine) of a normal subject in a resting test. The vagal peak in the heart rate spectrum is a
good match to the respiration peak but both are located at 0.09 Hz, indicating that this
subjeet has a respiration rate less than 6 breaths per minute at rest. Figure 1.3 (b) shows
the result of a normal subject cxercising at a level of four times resting metabolic rate.
Both the respiration and vagal tone peaks are located higher than 0.5 Hz. Thercfore, if for
these two examples, the power were caleulated within the frequency band of 0.15 10 0.4

Hz as the measurce of vagal tone activity, the results would be completely wrong.

f "
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Figure 1.3 Heart ratc and respiration spectra from two normal subjects. (a): resting test;
(b): a test of exercise at 4 metabolic rate. The vagal tone and heart rate spectra peaks are
all out of the high frequency band (0.15 to 0.4 Hz) in (a) and (b).

Zhang, Reisman, and Tapp proposced a new approach o study the heart rate
variability by treating heart rate as a system of homogencous, sell-sustained oscillators

perturbed by respiration through the autonomic nervous system[ 18], They investigated the



mechanisms underlying cardiac iming and the interaction of heart rate with respiration
by means of phase response curves. Phase shift was defined as the difference between
real-time R-R interval T and nawral period T, , normalized by T, The sumulus was
defined as the increment of respiration amplitude at each coupling interval. The phase
response curve (PRC) is the phase shift versus coupling interval. A paced breathing
experiment has been completed in normal subjects and patient.é with chronic fatigue
syndrome. Their results show that the phase response curvé can predict the entrainment
behavior of heart rate interacting with respiration cycles. There is a large difference in the
phase response curve between the normal and abnormal PRC. Although study of phase
has provided much important information, it is not complete without examining the
relationship between phase shift and the increnient of respiration amplitude.

Power spectral analysis of heart rate variability is a valuable tool through which
neurocardiac function can be assessed non-invasively. However, its usefulness is greatly
limited when the respiration signal is not available. In order to inspect the behavior of the
heart: i.e., the output of the self-sustained oscillating system, the respiration; i.e., the
input of the system, has to be taken into consideration. Figurc 1.4 shows some
experimental results of heart rate vanability studies performed at the Kessler Institute for
Rehabilitation. Figures 1.4 (a) and (b) show the interbeat interval spectrum (solid line)
and the respiration spectrum (dashed line) for a normal subject and a stroke patient
respectively. In Figure 1.4 (a) the high frequency peak of the interbeat interval spectrum
is superimposed with the respiration spectrum peak. indicating that the heart rate is well
regulated by the parasympathetic activity. In Figure 1.4 (b), the vagal peak is not at the

same frequency as the dominant respiration spectral peak. This example clearly indicates



that without the respiration as reference, this decoupling could not be observed and the
interbeat interval spectrum peak would be incorrectly assumed (o be at the respiration

frequency.

B0 D2 04 111 0.8 {5 12 os aa o ca oe 10 12
frequency (Hz) frequency (Hz)
(@) (b)

Figure 1.4 Heart rate and respiration spectra from (a): a normal subject; (b): a stroke
patient. The two spectral peaks are superimposed in (a); whereas, decoupled in (b).

1.3 The Present Research
For some time there has been growing attention to the techniques dedicated to clinical
signal monitoring of ambulatory patients. For cxample, after surviving a stroke, paticnts
were frequently monitored by a Holter rccqrdcir during their normal life in order to record
their cardiovascular system function. However, the monitoring in ambulatory subjccts
respiration suffers from the lack of suitable monitoring methods. As the development
proceeds of power spectral analysis of heart rate variability, more and more ECG data
taken from ambulatory subjects are processed in order to obtain the neurocardiac control
information in health and in discase during normal life throughout the day. Since the

respiration information is absent, the vagal tone is not obtainable because the respiration
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frequency of the vagal tone peak can not be determined. Therefore, the neurocardiac
control mechanism can not be assessed in a confident manner.

Due to the above mentioned drawbacks, we studied a method to derive the
respiration signal from the ECG signal based on the well-known observation[20] that the
body-surface ECG is influenced by electrode motion relative to the heart and that

fluctuations in the mean cardiac electrical axis accompany respiration.

1.4 Cardiac Electrical Vector

The resting cardiac cell, like any other cell of excitable tissues (skeletal muscle, smooth
muscle, nerve) maintains the separation of charged particles (ions) across its membrane.
Positively charged particles (positive 1ons) are lined up along the outside of the membrane
and negatively charged particles (negative ions) along the inside. Spontaneously, or by
an external electrical stimulus, the cardiac fiber membrane becomes immediately and
readily permeable to sodium ions, which therefore pass into the cell and convert its
interior negative potential into a positive one; in other words, the potential of the interior
of the cell exceeds that of the exterior by about 20mV. This phenomenon is called
depolarization and the potential difference occurring, due to depolarization of the cell, is
called an action potential (Figure 1.5). Each cardiac muscle fiber behaves as an electric
dipole which has a positive and a negative terminal. During every cardiac cycle, all
cardiac muscle fibers depolarize and repolarize at a very rapid rate and in an orderly
manner. By summing up these dipoles generated by all cardiac cells, the resultant dipole
is obtained, which represents the total electrical activity of the heart[1].

The human body, by virtue of the chemical nature of its tissue fluids, is
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esscntially a volume conductor (i.c., a medium that permits the conduction of clectricity
in three dimensions), with the boundary being limited by the body surface. Thus, when
the current dipole originates in the heart it scts up an clectrical ficld at the body surface,

and potential variations within this ficld are casily mecasured.

Repolarization

Depolarizatio'ri'

Figure 1.5 Cardiac muscle action potential. Above: monophasic action potential {from
a ventricular muscle fiber during normal cardiac function. Below: electrocardiogram
recorded simultaneously.

In a volume conductor, the paths taken by the current depend upon the structure
and geometry of the volume conductor. When the volume conductor is homogencous,
isotrapic, infinitcly large (in comparison to thc‘ dipole) and the dipole is located centrally,
then the distribution of currents and potentials is symmetrical and obeys the simple law
for the voltage induced at a distant point by a dipole.

According 1o this law, the clectrical potential at any point P in a

volume conductor is

Vp=pcos6/d? (1.0
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where pois the dipole moment (cqual to the product of the charge and the length of the
dipole), d is the distance [rom the point P 1o the center of the dipole, and 8 is the angle
between the dipole axis and the line to that distang point P[1} (Fig. 1.6). Thus the
potential varies inverscly with the square of the distance and is dependent upon the angle

that the line from the dipole to the point P makes with respeet to the axis of the dipole.

AXIS OF
DIPOLE

DIPOLE MOMENT

p=Qd
_ 12 cos G
P~ 42
-Q l
|
|

Figure 1.6 Pictorial representation of the law goveming the voltage induced by a dipole
at a distant point P.

The human body, however, 1s an inhomogencous, anisotropic, finite-sized and
irregular-shaped volume conductor and the heart dipole is located cccentrically. But, in
practice this inhomogeneity scems to be rather unimportant except perhaps for the low
resistance and conscquent short-circuiting effect of blood within the heart cavitics. That
short-circuiting effect of blood within the heart presumably diminishes the cffect of all
the scparate sources and leads to a unification of electrical activity, which lends further
support to the hypothesis that the heart behaves as a single dipole.

The cardiac dipole, gencerated by the working heart, has a certain direction from



- o+, and a certain magnitude and thus can be represented as a vector, This veetor, the
so-called heart vector, 1s oriented in the dircction of the dipole axis and has magnitude
proportional to the dipole moment.

The origin of the heart vector is assumed to be in the center of the heart mass and
to remain in this location throughout the single cardiac cycle. The direction and
magnitude of this vector changes from moment to moment in the course of a single
cardiac cycle.  Consequently, the changes of this vector form a continuous loop in a
J-dimensional space and this loop is called the spatial vectorcardiogram as shown in

Figurc 1.7.

Figure 1.7 Instantaneous heart vectors. The spatial vector loop is formed by the termini
of an infinite number of instantancous heart vector.

The spatial vectorcardiogram consists of 3 successive loops, namely: the "P loop”,
the "QRS loop”, and the "T loop". The P loop represents the time course of all
instantancous vectors produced during atrial depolarization. The QRS loop represents the

time course of all instantancous vectors produced during ventricular depolarization. The
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T loop represents the time course of all instantancous vectors produced during ventricular
repolarization (Figure, 1.X).

MEAN
P VECTOR

MEAN
QRS VECTOR

MEAN
T VECTOR

Figure 1.8 The mean P, QRS, and T vectors in the frontal plane.

The clectrical activity of the heart at any moment of a cardiac cycle is represented
by a single dipole which subscquently is depicted as an instantancous heart vector. For
the whole cardiac cycle there are an infinite number of instantancous heart vectors. At
cach subscquent instant during the cardiac cycle, with different regions of the ventricles
becoming depolarized, the resultant dipole for each instant has a different magnitude and
direction. Several instantancous vectors may be replaced by one mean, or resultant vector,
which is obtained by summation of these instantancous vectors. From the mathematical
point of view there is a difference between the mean and resultant vectors in the sense
that although they have the same dircction, the mean vector may have different magnitude
because it is obtained by dividing the sum of the n instantancous vectors by the number
ol vectors. Figure 1.8 shows the three mean P, QRS, and T vectors resulting from the

instantancous vectors during cach cardiac cycle.
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Electrocardiographic deflections recorded 1n a given lead reflect the magnitude and
dircction of the particular heart spatial vector as it is projected on this lcad axis. The
amplitude of the clectrocardiographic deflection is thus determined by the magnitude of
the heart spatial vector, as well as by the angle between this vector and a given lead axis.
Polarity of the clectrocardiographic deflection depends on how the particular heart vector
projects on the lead axis. If the particular heart vector projects onto the negative side of
the lead axis, a negative deflection is recorded in this lead. Since the ECG deflections
represent the projection of the heart vector on a given lead axis, the dircction and
magnitude of the cardiac spatial vector are read from the ECG deflection.

Figurc 1.9 shows the clectrocardiogram from the standard bipolar limb lcads[22].
In lcad I, the negative terminal of the electrocardiograph is connected to the right arm and
the positive terminal to the left arm. In lcad 11, the negative terminal is connected to the
right arm and the positive terminal to the left leg. In lcad 11, the negative terminal is
connected to the left arm and the positive terminal to the left leg. The reference point

(ground) is connccted to the night Jeg.
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Figure 1.9 Standard bipolar limb leads of clectrocardiogram.



CHAPTER 2

METHODS

2.1 ECG Signals Containing Respiration Information
A biological signal mainly determined by a specific biological system is often influcnced
by other interacting systems. Therefore, it is possible to derive a respiratory signal from
an ECG signal, which is mainly determined by a non-respiratory system but partly
influenced by the respiratory system.

ECG signals recorded from the surface of the chest arc influenced by motion of
the clectrodes with respect to the heart, and by changes in the electrical impedance of the
thoracic cavity. The expansion and contraction of the chest which accompanics respiration
result in motion of the chest clectrodes. In clinical practice, the cxistence of a
conspicuous amplitude modulation in an ECG tracing is often observed as indicated in

Figure 2.1. In terms of the cquivalent dipole model of cardiac clectrical  activity,

‘\//W/

Figure 2.1 Respiration-induced modulation of QRS amplitude. Upper trace: ECG; lower
trace: respiration measured by a impedance pneumography device.

respiration could mnduce a modulation in the direction and the amplitude of the mcan

16
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cardiac electrical vector. It is possible to measure a f{luctuation in the mean cardiac
electrical axis in order to obtain a derived respiration signal. The determination of the way
in which the ECG tracings can be examined to obtain a significant respiratory signal is
an open problem for which the published literature give no solution.

In 1985, Pinciroli began studying methods for determining the direction of the
axis, in order to create "virtual ECG leads", which would represent what might be
obtained from electrodes fixed in position relative to the heart[19]. Moody, et al., derived
respiration from body-surface ECG signals by calculating the fluctuations in mean cardiac
electrical axis and applied the technique in  successfully monitoring sleep apnea
patients[20][21]. However, we have not seen reports on the application of the ECG-
derived respiratory signal in power spectral analysis of heart rate variability.

It has been noted in the preceding discussions that the vector of current flow
through the heart changes rapidly as the impulse spreads through the myocardium. It
changes in two respects: First, the vector increases and decrease in length because of the
increasing and decreasing voltage of the vector. Second, the vector changes its direction
because of changes in the average direction of the electrical potential of the heart. The
vectorcardiogram depicts these changes in the vectors at the different times during the
cardiac cycle, as illustrated in Figure 2.2[12]. Inuwitively, this concept is easily
acceplable: the axis of the cardiac electrical vector points out the prevalent direction of
heart clectrical activity.

In the vectorcardiogram of Figure 2.2, point 5 is the zero reference point, and this
point is the negative end of all the vectors. While the heart is quiescent, the positive end

of the vector also remains at the zero point because there is no electrical potential.



18

However, as soon as current begins to flow through the heart, the positive end of the

vector leaves the zero reference point.

VYWY

1

Depolarizalion
QRS

Figure 2.2 The QRS vectorcardiogram.

When the septum first becomes depolarized, the vector extends downward toward
the apex of the heart, but it is relatively weak, thus generating the first portion of the
vectorcardiogram, as illustrated by the positive end of vector 1. As more of the heart
becomes depolarized, the vector becomes stronger and stronger, usually swinging slightly
to onc side. Thus, vector 2 of Figure 2.2. represents the state of depolarization of the
heart about 0.02 scconds laﬁcr vector L. Aftcr another 0.02 scconds, vector 3 represents
the potential of the heart, and vector 4 occurs in yet another 0.01 sccond. Finally, the
heart becomes totally depolarized, and the vector becomes zero once again, as shown at
point 5. The clliptical figure generated by the positive ends of the vectors is called the
QRS vectorcardiogram.

Clinically, the clectrical axis of the heart is usually determined from the standard

bipolar limb lead clectrocardiograms rather than from the vectorcardiogram. Figure 2.3
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illustrates a method for doing this. After recording the standard leads, one determines the
maximum potential and polarity of the recording in two of the leads. To determine the
actual vector of the ventricular mean electrical potential, one draws perpendicular lincs
from the apices of the two net potentials of leads T and I, respectively. Leads Tand I
arc chosen because their axes are truly orthogonal. The point of intersection of these two
perpendicular lines represents, by vectorial analysis, the apex of the actual mean QRS
veetor in the ventricles, and the point of intersection of the two lead axes represents the
ncgative end of the actual vector. Thercfore, the mean QRS vector is drawn between
these points. The approximate average potential gencrated by the ventricles during
depolarization 1s represented by the length of the vector, and the mean clectrical axis is
represented by the direction of the vector. Thus, the oricntation of the mean clectrical axis

of the normal ventricles is determined as in Figure 2.3.

H
-9g° {& lead |
| B ﬂl
g {!
180 0 lead il
0
i 30 -———&——— lead (i

Figure 2.3 Plotting the mean electrical axis of the heart from two clectrocardiographic
leads.

The influence of respiration to body surface ECG signals can also be shown in
Figure 2.4 _ In time period t,, the subject was asked o do a deep inhalation and hold. In

time period t, the subject was asked to do a deep exhalation and hold. During inhalation
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Figure 2.4 Different lead ECG signals influenced by respiration. (a): lead I ECG; (b):
lead 111 ECG: (c) respiration; t1: deep inhalation and hold; t2; deep exhalation and hold.

and hold. the amplitude of cad T is decreased and that of Iead 1T increased significantly.
During cxhalation and hold, the amplitude of lead 1 is increased and that of lcad 11
decreased greatly. Speculatively this observation can be explained that during inhalation
the apex of the heart is stretched towards the abdomen due to the filling of the lungs and
diaphragm moving inferiorly and during exhalation the apex of the heart is compressed
towards the chest due to the emptying of the lungs and diaphragm moving supcriorly.
Due to the anatomical changes of the heart in the chest during respiration, the angles of
the mcan QRS vector vary within a range as shown in Figure 2.5, which causes the
amplitude changes i leads I and 1L

In our study, the arca of cach normal QRS complex in cach ol two lcads was

measured over a fixed time window. Since the window width was fixed, the arca was
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Figure 2.5 Axis of the mean QRS vector influenced by resph:atjon. a: the angle of the
axis respect to the lead III axis. (a): deep inhalation and hold; (b): deep exhalation and

hold.

Ay

lead |

Figure 2.6 Calculating the direction of the mean QRS vector axis. A;: area for QRS
complex in lead I; Ay area for QRS complex in lead 1II; o the angle of the mean QRS

vector axis respect to lead I axis.

proportional to the amplitude of the ECG signal, henee to the projection of the mean

cardiac clectrical vector on the lead axis (Figure 2.6). Assuming that the Icads arc

orthogonal, the arctangent of the ratio of the arcas measured in the two leads yields the

angle of the mean axis of QRS vector with respeet to one of  the lead axcs. The angle

values were interpolated to produce a continuous ECG-derived respiratory signal.
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2.2 Instrumentation
ECG signals were recorded using a Quinton Q4000 Stress Test Monitor/Controller
(Quinton Instrument, Co., Seatle, WA). The outpyt signals from the monitor were
acquired by a IBM-compatible 386/40 MHz data acquisition computer at a 200Hz
sampling rate. The data acquisition computer had a Keithley Metrabyte Das-16
analog/digital interface board installed. In order to compare the ECG-derived respiratory
signals with the real respiration, a respiration wave was recorded simultaneously by an
impedance pneumography device (RESPI, UFI, Morrow Bay, CA) and also digitized by
the data acquisition computer at the same sampling rate. The impedance pneumography
device recorded the respiration wave indirectly by means of electric impedance
plethysmography. A constant high frequency current was applied to the chest and the
resulting voltage reflecting the impedance changes due to the filling and emptying of the
lungs during respiration was detected. The software program used to control the data

acquisition was Streamer by Keithley, version 3.25.

2.3 Experimental Setup
Since our purpose was to derive the respiratory signal from the ECG signal and use it in
the application of power spectral analysis of heart rate variability, the experimental
protocol followed the routine experimental protocol designed in the investigation of
heart rate variability for stroke survivors performed at the Kessler Institute for
Rehabilitation.
Two leads ECG signals (lead [ and IlI) and the respiration wave were collected

on healthy subjects during eight 2-minute test conditions: 1) resting, non-paced breathing
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(used to determine 1 MET VO,/ml/kg body weight level; 2) resting, paced breathing at
a rate of & breaths per minute (bpm); 3) resting, pacced breathing at 12 bpm; 4) resting,
paced breathing at 18 bpm; 5) exercising at 2 METS; 6) exercising at 3 METS; 7)
exercising at 4 METS; and 9) resting, normal relaxed breathing, immediately following

exercise (recovery).

2.4 Data Analysis
The ECG and respiration data analysis was performed on an IBM-compatible 486/50 MHz
computer. The data analysis software package used was S-Plus for windows V3.1
(Statistical Sciences, Seattle WA), which includes modern statistical techniques and
permits writing of custom S-Plus programs.

In S-Plus, the ECG signals were detrended by using a locally weighted robust
regression procedure and R peaks were detected by a previously developed signal
processing software algorithm. In order to form the ECG-derived respiration signal, the
following processes were performed. Sce the Appendix B and C for details on derivation

procedures and S-Plus programming.

2.4.1 PQ Junction Detection

S-Plus software was written to detect the PQ junction. The algorithm is explained 1n
Figure 2.7. Based on the position of cach R peak, a time period ac was sct backward
from the R peak. Within the time period ac, the minimum value b was detected as the

point of the PQ junction.
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a

Figure 2.7 PQ junction detection algorithm.

2.4.2 Determination of Time Window Width

After all PQ junctions were deteeted, the average length between the PQ junction and the
R peak was calculated. We defined a time window width determined by a ratio of the
average length  between PQ junction and R peak as given in the following equation:

W=kIL, (Yn @.1)

qr

Where W: time window width
L, time interval between Q and R
n: numbcr of QRS complex
k: constant

Sce scction 4.3 for details on determination of the k.



QRS complex area

2.4.3 QRS Complex Area Calculation

\__ time window width

Figure 2.8 Computing QRS complex area.
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Alter subtracting the base line (the arca within the time window below the PQ junction),

the arca under cach QRS complex within the time window was calculated (Figure 2.8)

and an arca function was gencrated from cach ECG signal (Figure 2.9 (¢) and (d)). In

order to rule out the influence of bad R peak and/or PQ junction detection, the area data

was cxamined visually. The outliers (ranging from 0 to 10%) were removed and the R

peaks corresponding to the outliers were detected manually. This procedure might be

performed scveral times until all QRS complex arcas were calculated confidently.

2.4.4 Generation of ECG-Derived Respiration

Figure 2.9 (¢) shows the angle values of the mean clectrical axis of the QRS vector
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Figure 2.9 Procedures of deriving respiration from ECG signals. (a) lead I ECG; (b) lead
[Tl ECG: (¢) QRS complex arcas from (a); (d) QRS complex areas from (b); (e) angle
values of the axis of the QRS vector calculated from (c) and (d); (f) ECG derived
respiration by interpolating (e); (g) spectrum of the ECG-derived respiration.



calculated based on the area data computed from the leads I and III ECG signals in the

following formula:

ofil=arctan(A[iJA yli]) (2.2)

where ofi]: angle value of the mean electrical axis of the ith QRS vector
Ayi]: area value of the ith QRS complex in lead I
Ayli): area value of the ith QRS complex in lead III
To produce a continuous ECG-derived respiration signal, the angle values were
interpolated by a cubic spline approximation (Figure 2.9 (). Since we are interested in
the spectrum of the derived respiration signal, the FFT was applied to the signal (Figure
2.9 (2)). In order to compare the ECG derived respiration signal to the original respiration
signal recorded from the impedance pneumograph, the FFT was also applied to the latter.
Our method to derive respiration from ECG signals is basically the same in theory
as Moody and coworkers’[20][21]. However, they did not specify the lead configuration
and did not present their software. Therefore, the work was an original investigation into
optimum lead configuration as well as original software development. Also, Moody, ct
al. did not utilize derived respiration in heart rate varability studies and did not consider
studies involving exercise where the body motion could have allected the derivation of

respiration.



CHAPTER 3

RESULTS

3.1 Visual Comparison
Figure 3.1 in Appendix A shows the data [rom one normal subject and processed by the
method described in the previous chapter. There are four gr&aphs from cach test. For
example, in Figure 3.1 (a) (data from the resting test), the upper left graph 1s a two
minute sample of the original respiration signal recorded from the  impedance
pncumography device; the upper right graph is the spectrum of the original respiration;
the Jower left graph is the ECG-derived respiration signal, the lower right graph is the
spectrum of the ECG-derived respiration. The respiration signals both from recording and
derivation are arranged in the same column on the left and their spectra in the same
column on the right so as they can be compared casily. In Figure 3.1 (a), there are 11
respiration waves both in the original respiration signal and ECG-derived respiration
signal.  The ECG-derived respiration is 180 degrees out of phase with the original
respiration because the signals are interpreted in the opposite way in these two conditions.
Since the impedance pncumograph measures the impedance during respiration, an increase
in signal amplitude represents inhalation and a decrease in signal amplitude represents
exhalation. In the ECG-derived respiration, we calculated the changes in the angle of the
clectrical axis of the mean QRS vector using the lead 11 axis as reference (Figure 2.5).
The angle value decrcases during inspiration and increases during expiration. Although

there is the difference in phase between the original respiration and the ECG-derived

28
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respiration, it docs not influence the spectra. In the  right column of Figure 3.1(a), the
peak of the spectrum of the ECG-derived respiration 1s at the same frequency as the peak
in the spectrum of the original respiration. Both spectra are very similar in shape. If we
examine the remainder of Figure 3.1, we find that cven the derived spectra from the
exercise tests (Figure 3.1 (¢), (,and (g)) have a remarkable similarity in shape with the

original spectra cven though the body is moving greatly during exercise.

3.2 Central Frequency Comparison
The spectrum of the ECG-derived respiration signal contains the information we arc going
to usc in the power spectral analysis of heart rate variability. We will utilize the spectral

information much more often than the time function of the derived respiration.

Ap
100%

\ x
30%

f1 £, fy

Figure 3.2 Central frequency definition. f: low frequency; fi: high frequency; f.: central
frequency.

To characterize the similarity of the derived spectrum (o the original spectrum
quantitatively, we caleulated the central frequency for both spectra. Figure 3.2 shows how
the central frequency was calculated. The amplitude of the spectral peak was detected

first. Then the frequency values at 30% of the spectral peak were located on both sides;
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i.c. the low [requency f and the high frequency [y in Figure 3.2, The central [requency
{. was computed in such a way that the arca under the spectral curve between [ and f;

<

was cqual to the arca between f and f,; 1.c.

A=A, 3.1
where Ag':‘J‘S(f)A/f (3.2)
A= [ SC)dr (33)

S(f)fspectral function

Table 3.1 gives the central frequency calculation results for both the original
spectrum f and derived spectrum f, from 9 healthy subjects. We also listed the relative

difference in between f, and f; given by the following cquation:
relative difference = ([ - )/ x100 3.4

The first linc of table 3.1 in the column corresponding to subject 1 1s the central
frequency of the original spectrum for thc resting test. The sccond line 1n the same
column shows the central frequency of the derived spectrum for the same test. The third
line in the column is the relative difference between the central frequency of the original
spectrum and that of the derived spectrum. If' we proceed down the column, we sce the
central frequencics of the original and derived spectra and the relative difference for each
test for the same subject. If we proceed from left to right in Table 3.1, we sce the central

frequency of original spectrum, the central frequency of derived spectrum and the



Table 3.1 Results of central frequency calculation (continued on next page).
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Subject 1 2 3 4
original () (Hz) | 0.0903 | 02506 | 0.2856 | 0.2905
rest derivation ([, (Hz) | 0.0879 | 02522 | 02881 | 0.3044
relative difference 2.66 -0.64 -0.88 -4.78
original (L) (Hz) | 0.1440 | 0.1440 | 0.1449 | 0.1408
g‘tg‘; derivation (f,) (Hz) | 0.1432 | 0.1440 | 0.1440 | 0.1432
relauve difference 0.56 0.00 | 0.62 -1.7
original ([) Hz) | 02132 | 02156 | 02124 | 02140
?;C{;gm derivation (f,) (Hz) | 02132 | 02156 | 02116 | 02157
relative difference 0.00 0.00 0.38 -0.79
original ([.) Hz) | 03190 | 03263 | 03174 | 03141
?g‘ggm derivation (f,) (Hz) | 03190 | 03271 | 03182 | 0.3117
relative difference 0.00 -0.25 -0.25 0.77
original (f,,) 0.1522 | 02864 | 03166 | 0.3239
g_xﬁ;ﬁ derivation (f) (Hz) |0.1571 | 02856 | 03174 | 0.3231
relative difference -3.22 0.28 -0.25 0.25
original (f,) (Hz) | 0.1790 | 0.3263 | 03174 | 0.3320
gxgg‘gﬁ derivation (f,) (Hz) |0.1839 | 03271 | 03174 | 03418
relative difference -2.74 -0.25 0.00 -2.95
original (f.) (Hz) | 0.1961 | 04500 | 03206 | --oeeeme +
Zxﬁg,}z derivation (L) (Hz) |0.1945 | 04370 | 03182 | 0.4232
relative difference 0.82 2.89 077 | semeeeee *
original () (Hz) | 0.1123 02978 | 03158 | 0.4354
TECOVELY 1 Gerivation (£,) (Hz) | 0.1164 | 02954 | 03158 | 0.4346
relative difference -3.65 0.81 0.00 0.18




Table 3.1 (continued from last page)

Subject 5 6 7 8 9
original (.,) (17) 0.3011 ] 0.2458 | 03507 | 0.2116 | 0.2563
rest derivation (L) (17) | 0.3019 | 0.2507 | 0.3516 | 0.2083 | 0.2620
relative difference -0.27 -1.99 -0.26 1.56 -2.22
original () (Hz) | - *E0.1473 1 0.1449 1 0.1457 | 0.1465
aced
) ‘}“)If[‘n derivation (1) (Hz) | - w1 0.1464 | 0.1457 | 0.1449 | 0.1465
relative difference | ------ (.61 -0.53 0.55 0.00
original (£.,) (H7) 0.2083 | 0.2148 | 0.2148 | 0.2173 | 0.2230
aced , _ ,
‘;;‘;ﬁ;m derivation ([ (Hz) | 0.2140 | 0.2157 | 02148 | 0.2173 | 0.2222
rclative difference -2.74 -0.42 1 0.00 0.00 0.36
original (I.,) (Hz) | ——--- 03215 1 0.3223 1 0.3304 | 0.3231
aced
?;;;)m derivation (1) (Hz) | - 103206 | 0.3215 | 03296 | 0.3223
relative diffcrence | --=--- 1 0.28 0.25 (.24 0.24
origmal (I,) (Hz) | ---- *E 103068 | 0.3524 | 0.2490 | (0.2897
CXCIeise N [ N . 19 ) c
2 METS derivation (f) (Hz) | - FEOL03215 103467 | 0.2515 | 0.2889
relative difference | ------ ** 0479 .62 -1.00 0.28
original () (Hz) (.4199 | 0.2661 | 0.3597 | 0.2645 | 0.3166
S MET. | derivation () (1) | 0.4167 | 02645 | 03580 | 02637 | 03158
relative difference .76 (.60 0.47 .30 0.25
original () (I1z) | ------ #=E().2840 1 0.3752 | 0.3076 | 0.3385
CXOTCISe . ] )
4 METs derivation () (1z) | ------ 102987 1 0.3743 1 0.3084 | 0.3410
relative difference | ---ee- B 5018 0.24 -0.26 -0.74
original ([_) (Hz) 0.2930 | 0.2747 | 0.2330 | 0.2629 | 0.3003
rccovery o _
derivation () (Hz) | 0.2897 | 0.2507 | 0.2330 | 0.2629 | 0.3052
relative difference .13 -1.33 0.00 0.00 -1.63
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corresponding relative difference ol cach test for all subjects. Some central frequency
numbers in Table 3.1 arc missing. The oncs marked with single asterisk arc missing
hecause the respiration was poorly recorded by the impedance pneumography device due

to a bad preparation. The tests for subject 5 marked with a double asterisk were not

performed.
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Figure 3.3 Scatter plot of the derived central frequency f4 versus the original central
frequency f,.

Figure 3.3 plots the derived central frequency [, versus the original central
frequency [, as a visual check on correlation between these two variables. To analyze our
results statistically, we performed correlation test and paired t-test. Before doing the tests,
we uscd exploratory data analysis to verify if our data was outlier-free and nearly normal

hecause the classical method of statistical inferences depend heavily on these assumptions.

Figure 3.4 shows the graphical results of the exploratory data analysis. The
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variable [, used here is the difference between [, and f,. We can get a good picture of
the shape of the distribution gencrating our data, and also detect the presence of outliers,

by looking at the four plots in Figure 3.4.

g -
5 |
ﬂ 4 [=3
[= B —
il g -
a —
o o
—
v -4 5 |
N 2
0ot 002
far
(2) ®)
g 4 8
g - _ .
5" .
g 4 [3
g .
& .
<
001 000 0ot 002 2 Bt 0 i 2
faf quantiles of standard normal
(©) @

Figure 3.4 Exploratory data analysis plots for the difference between [, and f ;. (a)
histogram; (b) box plot; (c) density plot; (d) quantile-quantile plot.

Figure 3.4 (a) and (b) arc the histogram and the box plot of {. A histogram
shows the number of data points that fall in cach of a number of intervals. A box plot is
a simple graphical representation showing the center and spread of a distribution, along

with a display of unusually deviant data points, called outliers. The horizontal line in the



interior of the dark box in Figure 3.4 (b) is located at the median of the f. This estimates
the center of the distribution for the data. The height of the box 1s equal 0 the
interquartile distance, or IQD, which is the difference between the third quartile of the
data and the first quartile. The 1QD indicates the spread or width of the distribution for
the data. The whiskers (the doued lines extending from the top and bottom of the box)
extend to the extreme values of the data or a distance 1.5xIQD from the center,
whichever is less. Data points which fall outside the whiskers may be outliers, indicated
by horizontal lines. In Figure 3.4 (b), the three lines above the whiskers and the four lines
below it represent outliers.The density plot in Figure 3.4 (c¢) is essentially a smooth
version of the histogram, which provides smooth estimates of population frequency, or
the probability density curve. A quantile-quantile plot, or ggplot, is a plot of one set of
quantiles against another set of quantiles. The normal ggplot in Figure 3.4 (d) consists of
a plot of the ordered values of our data versus the corresponding quantiles of a standard
normal distribution. If the ggplot is fairly linear, our data are reasonably Gaussian,
otherwise, they are not.

Of these four plots in Figure 3.4, the histogram and density plot give us the best
picture of the variable distribution shape, which is nearly normal, while the box plot and
normal qgplot give the clearest display of the outliers. The box plot also gives a clear
indication of the median, and the upper and lower quartiles (the upper and lower ends of
the box).

The two samples used in the paired t-test and correlation test were the central
frequency of the original spectrum f,, and that of the derived spectrum f_,. The two tests

were performed on the central frequencies for all tests (test one through eight) from all
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subjects and on cach individual test for all subjects. In the paired t-test, our null
hypothesis is that the differcnce between the mean of the derived central frequency g
and the mean of the original central frequency py, is zero. Our alternative hypothesis is
M@ lio The test was sct to give a 95% confidence interval for g, — Y. Table 3.2 lists
the results of the t-test and the correlation test. The first column of data shows the p
values from each t-test, the second column is the 95% confidence interval for P, = Heo
the third column is the mean of £ -, and the correlation coefficient from the correlation
test is in the last column. From table 3.2, we can see that, except for the resting test, all
p-values are significantly greater than 0.05. That means there is no difference between i
and M. The null hypothesis is actually true and the alternative hypothesis should be
rejected. The intervals for lgy — Hg, 10 fall in at a 95% confidence level are all very
small ranges around zero. The high correlation coefficients in the table indicate that there
is a high association between the derived central f, and the original central frequency [,
If we carefully examine the relative difference values for the resting test listed in Table
3.1, we can find that most of the relative differences are negative numbers. This is
possibly why the p-value is small (0.0783) for this group of data. If we increased the

sample size, this statistical error would be overcome.

3.3 Evaluation of the Holter and Tape Player System Stability
Since our eventual goal for studying this method is to apply 1t to Holter data analysis, we
performed experiments using a Holter recorder (CardioCorder, Model 459, Del Mar
Avionics, Irvine, California). In order to use the Holler and tape player system

conflidently, we first examined the system stability.



Table 3.2 Results of the paired t-test and correlation test between f, and f,.

p-values 95% confidence interval mean of f, - f, correlation coetf.
overall 0.4004 -0.001845, 0.000746 0.000549 0.9977
rest 0.0783 -0.008000, 0.000534 -0.003733 0.9980
paced at 8 bpm 0.9527 -0.000938, 0.000988 -0.000025 0.8241
paced at 12 bpm 0.2999 -0.002293, 0.00804 -0.000744 0.8681
paced at 18 bpm 0.2086 -0.000362, 0.001387 0.000512 0.9831
exercise at 2 METS 0.4138 -0.006886, 0.003186 10.00185 0.9954
exercise at 3 METS 0.5599 -0.003939, 0.002295 -0.00()822 0.9983
exercise at 4 METS 0.9964 -0.007576, 0.007547 0.000014 0.9956
Tecovery 0.4254 -0.004171, 0.008949 0.002388 0.9948

Le
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3.3.1 Sampling Rate Determination

To meet the need of recording a 24-hour ECG signal on an ambulatory subject, a Holter
recorder 1s designed to have a very low recording speed (I mm per sccond). After
rccording, a Holter tape 1s usually sent to a scanning company and analyzed in a specially
designed expensive machine. T_he arrhythmia information (if there are any) recorded on
the tape will be detected and an analysis report will be generated. Since we need the heart
rate variability information recorded on a Holter tape, we have to analyze the tape in our
laboratory.

We have found that we can recover the ECG from a Holter tape by using a
consumer quality cassette player. The player available in our laboratory is a JVC TD-W 10
Cassette Deck. The play back speed is about 47 mm per second. In order to obtain a 200
Hz sampling rate for the original ECG signals recorded with the Holter recorder, we had
to determine the actual sampling rate when the Holter tape was played back on the
cassette player.

A two-hour 60 beat per minute ECG signal generated by an ECG simulator
(HEARTSIM 2000, Laerdal Medical Corp, Armonk, NY) was recorded with the Holter
recorder. The signal was played back on 1hc cassetle player a}nd acquired by the IBM-386
data acquisition computer at an initial sampling ratc of 10kHz. The data was processed
in S-Plus and the R peaks of the simulated ECG signal were detected. The average
interbeat index number was 206.8, indicating that the initial sampling rate was too high.

To sample the Holter ECG signal at 200 Hz, the final sampling rate {; should be:

f.= (200/206.8)x10 = 9.67 (kHz) (3.5)
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3.3.2 Stability Evaluation

Our next task was to cvaluate the tape speed stability of the Holter recorder-cassette
playback system. In order to accomplish this, we should first determine the stability of
the ECG simulator. A two minute 60 beat per minute ECG signal from the simulator was
acquired directly into the data acquisition computer (through an amplifier). The R peaks
were detected and the interbeat index numbers were calculated. The interbeat index
numbers were exact 200 except for three 201°s periodically distributed among the 120
interbeat intervals. This might be caused by our relatively low sampling rate, which could
cause the sampling point for the outliers to not be exactly on the peak of the R waves.
Therefore we will assume that the ECG simulator has an acceptable stability.

Two 2-minute 60 beat per minute simulated ECG recorded by the Holter recorder
were acquired into the data acquisition computer at a sampling rate of 9.67 kHz and
processed in S-Plus. The mean of the interbeat interval (y,,;) and the interbeat interval
with the biggest variation (V,,) were calculated. The relative tape speed stability was

calculated as following:

Relative stability = [1-abs(u,=V i)/ Lipil x 100 (3.6)

The average relative tape speed stability of the Holter recorder-cassette player system

calculated from the two 2-minute simulated ECG samples was determined to be 99.08%.

3.4 Derived Respiration Using Holter Recording

The experimental setup was the same as discussed in section 2.2 and 2.3. except that the
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ECG signals (Iead T and 1) were recorded on the Holter recorder rather than the Quinton
Q4000 Stress Test Monitor. The tape with the recorded ECG signals was played back on
the cassclte tape player and acquired by the IBM-compatible 386 data acquisition
computer at the sampling rate of 9.67 kHz for cach data channel. The data were processed
in S-Plus following the same procedure discussed in scction 2.4

Figure 3.5 in Appendix A shows the original respiration recorded from the
impedance pncumography device and Holter ECG-derived respiration and their spectra
from onc normal subject. Although the ECG signals came from the indirect recording
device and a lot more artifact might be induced through the recording and play back
process, we still obtained  good derived respiration and the spectral information. The

derived spectra shown in Figure 3.5 have good correspondence with the original spectra.
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Figure 3.6 Scatter plot of the derived central frequency f, versus the original central
frequency f, for Holter data.



Table 3.3 Results of central frequency calculation for Holter data.
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Subject 1 2 3
original (f_) (Hz) 0.3410 (0.2987 0.2262
St .
res derivation (£,) (Hz) 0.3548 0.2970 0.2214
relative difference -4.05 0.57 2.12
original (f,,) (Hz) 0.1432 0.1416 0.1473
accd
g’ggm derivation (f.,) (Hz) 0.1440 0.1457 0.1473
relative difference -(0.56 -2.90 0.00
original (I.,) (Hz) 0.2108 0.2157 0.2148
aced
p12 bpm derivation (f) (Hz) 0.2116 0.2157 0.2140
relative difference -(0.38 0.00 0.36
original (f_,) (Hz) 0.3125 (0.3149 0.3109
aced L
e opm derivation (f,) (H7) 0.3133 0.3141 0.3101
rclative difference -0.25 0.25 0.26
original (f) (H7) 0.3329 0.6407 0.2856
O MErs | derivation (o) (Ha) 0.3385 0.5990 0.2897
relative difference -1.71 0.94 -1.44
original (f,) (Hz) 0.3711 0.4134 0.3524
I METS | derivation () (Hz) 0.3752 0.4175 0.3662
rclative difference -1.10 -0.99 -3.92
original (f,) (Hz) 0.4183 0.4346 0.3857
£XCreisc L .
4 METS derivation (f) (Hz) 0.4199 0.4321 0.3678
relative difference 0.38 0.58 4.64
original (f.,) (Hz) 0.3532 0.3849 0.2987
FECOVERY ! derivation (L) (Hz) | 0.3532 0.3540 0.2897
relative difference 0.00 8.03 0.00




Table 3.4 Results of the paired t-test and correlation test between f{_, and f_, for Holter data

p-values 95% confidence interval mean of £, - I correlaton coeff.
overall 0.7820 -0.003248.  0.004265 0.000508 0.9965
rest 0.7134 -0.027188, 0.022321 -0.002433 0.9972
paced at 8 bpm 0.3227 -0.007032, 0.003765 -0.001633 0.6846
paced at 12 bpm 0.9999 -0.001987, 0.001987 0.00 0.9684
paced at 18 bpm 0.6667 -0.002028, 0.002561 0.000266 0.9011
exercise at 2 METS 0.7382 -0.016698, 0.013955 -0.001366 0.9999
exercise at 3 METS 0.1514 -0.021245, 0.006578 -0.007333 0.9903
exercise at 4 METS 0.4017 -0.019273, 0.031806 0.006266 0.9881
recovery 0.4226 -0.034017, 0.054617 0.0103 0.9360

(44
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Table 3.3 lists the original central frequency [, and derived central frequency f,
and the relatve differ calculated by equation 3.4 from 3 healthy subjects. Except for
the recovery test from subject 2, the relatve differences are all within the =5% range.

Figure 3.6 shows the f, versus f,, as a visual check on correlation between the
derived central frequency and the original central frequency for our Holter data.

Table 3.4 gives the paired t-test results and the correlation coefficient between f,

and {,.



CHAPTER 4

DISCUSSION AND CONCLUSIONS

As a tool, the power spectral analysis of heart rate variability has permitted the
biomedical investigator to cxplore the relatively elusive autonomic nervous system in a
noninvasive manner. Some recent studies indicate that power spectral analysis of heart
rate variability holds a significant potential for the diagnosis of neurocardiac disorders.
However, research protocols thus far have focused on establishing the association between
the signal power in some fixed frequency bands and the speculated physiological origins.
Due to the obvious drawbacks discussed in the previous chapters, we invesugate a
method to derive the respiration signal from the ECG signal based on the observation that
the body-surface ECG is influcnced by electrode motion relative to the heart and that

fluctuations in the mean cardiac clectrical axis accompany respiration.

4.1 Correlation Between f_, and f_,
4.1.1 Non-Holter ECG-derived Respiration
Table 3.2 lists the results of the correlation test and paired t-test performed on the central
frequencies of the original and derived spectra. The derived respiration was obtained from
the ECG signals recorded by the Quinton Stress Test Monitor from 9 normal subjects.
From Table 3.2 it can be clearly seen that the correlation coefficients are significantly
high, ranging from 0.8241 10 0.9983. The overall correlation coefficient for the data from

all subjects and all tests is 0.9977. This suggests that there is a strong correlation between

44
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the central frequency of the ECG-derived respiration spectrum {, and that of the original
respiration spectrum {0 It indicates that our ECG-derived respiration bears a good
resemblance to the original respiration recorded from the impedance pncumograph i the
frequency domain, Although the respiration information recorded by mecans of the
impedance plethysmography technique is also an indirect respiration signal, we usc it as
our reference throughout our study because this method gives very good results in most
applications.

In Figure 3.1 in Appendix A, it can be seen that the derived respiration and their
spectra show an cxcchn't correspondence with the original respiration and spectra. From
all data we analyzed, we found that the best correspondence in shape between the spectra
of the derived respiration and that of  the origindl respiration result from the paced
breathing tests. The reason for this might be that the paced breathing test generates a very
regular respiration signal with an cssentially single frequency component. This unitary
property ol the paced breathing test allows a greater crror tolerance for the ECG-derived
respiration.

Although the derived respiration of the paced breathing tests have the best
correspondence in shape with the original rcspimliun, the correlation coefficients in Table
3.2 are relatively low for these tests. The reason for that might be that the central
frequency valucs for both original and derived for each paced breathing test are all very
close for all subjects because they all breathed at the same rate. Compared to others, these
groups do not have a good straight line shape distribution as shown in Figure 4.1.

However, 1if we look at Table 3.1, we can find that the central frequency values for the

paced breathing  tests have the smallest relative difference.
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Figure 4.1 Plot of derived central frequency versus original central frequency for (a) test
of exercising at 3 METS; (b) paced breathing at 8 bpm.

4.1.2 Holter ECG-derived Respiration

The frequency response of the Holter recorder is from 0,05 to 100 Hz. The tape player
(JVC TD-W 10 Cassctie Deck) has a frequency response of 30 to 16000 Hz, £3dB. If all
[requency components recorded by the Holter tape were output from the tape player, the
requircment of  the frequencey response ol the tape player should be from 2.5 to 5000 Hz
because the play back speed is about 50 times greater than the recording speed. Since the
frequency response of the tape player does not cover the required frequency band, we lose
the Holter ECG information at the fow frequency end. The actual frequency components
of the original signal obtained from the tape player is between 0.6 and 100 Hz, which is
suitable to produce an undistorted output of the original ECG signal. A cross corrclation
between the original and tape output signals will be performed in the future to quantify
this obscrvation.

Table 3.4 lists the results of the corrclation test and paired t-test performed on the
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central frequencies of the original and dertved spectra for the Holter data. The corrclation
cocllicients arc still very high. The overall corrclation coclficient 1s 0.9965, indicating
a strong correlation between f, and [, for the Holter data. The reason that we performed
our experiments with the Holter recorder is to verify if the technique can be applied to
the Holter data. We did sec some small peaks on the side of the main peak in the derived
spectra for the exercise and recovery tests. These might result from the mechanical

instability of the tape player.

4.2 Limitations
This ECG-derived respiration technique is based on the phenomenon that respiration
modulates the change in the angle of the cardiac clectrical vector axis. However, from our
obscrvation, this modulation is subject dependent. It might be related to the type of
respiration (abdominal versus thoracic) and the difference in the anatomical structure of
cach individual. Figure 4.2 shows lead I ECG signals from two healthy young female

subjects in the test of paced breathing at 12 breaths per minute. In Figure 4.2 (2), the

(a) (b)

Figure 4.2 Subjcct dependent respiration modulated ECG signals. The respiration
modulation to the ECG signal in (a) is greater than that in (b).
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ECG signal amplitude is modulated by the respiration, whercas, in Figurc 4.2 (b), the
degree of this modulation is much smaller. The difference in the modulation might be
related to udal volume,

Of the three Timb leads, lead T has the most respiration information despite having
the smallest ECG signal amplitude. This is because the normal angle of the cardiac
clectrical vector axis is about 60" relative to the transverse planc. When rcspiration
modulales the angle fluctuating around this value, the change of the projection of the
cardiac cleetrical vector on the lead I axis has the biggest cffect. Since we need an

orthogonal lead configuration, lcads I and III are the best choice.

Ornginal Spectrum ‘ Ongmal Spectrum
00 02 0.4 06 03 00 02 04 0.6 0.8
Frequency (Hz) Frequency (Hz)
Denved Spectrum Denved Spectrum
0o 0.2 04 06 08 00 0.2 04 06 038
Frequency (Hz) Frequency (H2)
(2) (b)

Figure 4.3 ECG-derived respiration spectra from other lead configurations. (a) from lead
II ECG: (b) from a leads Vland V5 configuration.

In order o determine the optimum ECG lead configuration, we performed

experiments with different configurations including one lead and two leads. Figure 4.3
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shows some cxperimental results. In Figure 4.3 (a), the derived spectrum was from a Icad
Il ECG signal during exercise at 3METs. Although the respiration frequency peak is
present, the amplitude of the interference at the Jow frequency end is greater than the that
of the respiration peak. Compared 1o lead I, lead I contains less respiration information
due to its close alignment with the cardiac electrical vector. The signal (o noise ratio in
this case is much lower than for Icads I or 1L Figure 4.3 (b) shows the results of a lcads
VI and V5 conﬁgurmim; from a resting test. The major peak of the derived spectrum is
located approximately at the respiration frequency, but the derived spectrum contains
relatively high noise compared to the clean original spectrum. Since leads VI and V5 are
not truly orthogonal, it is possible to induce noise and give a less accurate result.

To derive respiration from ECG signals, two conditions have to be sausficd: first,
the recorded ECG signal has to contain respiration information; sccond, the respiration
information has to be extracted correctly from the ECG signals. Because the respiration
information is contained in the amplitude modulation of the recorded ECG signals, the
correct respiration might not be derived reliably if the ECG signal is poorly recorded and
has a very low signal to noise ratio. Speculatively, in the cases that the changes in the
angle of the cardiac electrical vector are a)sQ influcnced by sources besides respiration,
for instance, intense exercise, the respiration signal might not be correctly obtained from

the ECG signal. This can be verificd by properly designing experimental protocols.

4.3 Some Key Points in The Derivation
Although the recorded ECG signal contains respiration information, without correct

extraction, the information could not be obtained. There are three key steps in the



derivation of the respiration ftom ECG signals: 1) R peak detection; 2) PQ junction
detection: 3) QRS complex arca calculation. Each step dircetly influcnces the result of

next step. I anything gocs wrong, it is possible to get a falscly derived result.

Figure 4.4 Incorrect R peak detection. The thin lines from the top to the bottom of the
box indicate the detected R peaks.

Some ECG signals, cspecially the ones from the exercise tests, have a high artifact
level due to the movement of the body and the possible relative movement between the
clectrode and the skin surface. Figure 4.4 shows an R peak detection result of an ECG
signal containing a large amount of noise. The thin lincs from the top to the bottom of
the box indicate the positions of the detected R peaks. Duce to the improper selection of
the required paramecters required for the R peak detection program, all R peaks were
detected incorrectly except for the Tast one. In this casc visual inspection of the detection
result is very important. Correct R peak detection of the signals containing large noise can
be obtained by repetitively sclecting different valucs for the parameters and visually

checking the detection result.
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Frgure 4.5 shows how correet PQ junction detection is important to the derived
respiration, The ECG signal shown in Figure 4.5 (a) has high frcquency noise and some
spikes. Il the length ac (see section 2.4.1 and Figure 2.7) were sct as shown in the figure
when performing the PQ junction determination, the result would be incorrect becausce the

spike present within time period ac has the lowest value and the algorithm would choose

Mt / »WM M'\”WWV ~/
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false junclion ac
PQ junction ac e
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Original Spectnim Onginal Spactrum
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Derived Spactrum Derived Spectram
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Figure 4.5 Influcnce of the PQ junction detection to the ECG-derived respiration
spectrum. The vertical scale for the spectral graph ((¢) and (d)) is arbitrary. (a) incorrect
PQ junction detection duc to the presence of noise: (b) correct PQ junction after the
removal of noise: (¢) original spectrum and false derived spectrum caused by (a); (d)
origmal spectrum and correct derived spectrum. .



that point. Due to the incorrect PQ junction detection, the derived spectrum has no
association with the original spectrum as shown in Figure 4.5 (¢). This problem could be
overcome by using a proper smoothing technique. Figure 4.5 (b) shows the same ECG
signal after smoothing, where the correct PQ junctions were detected and the true
respiration information was derived (Figure 4.5 (d)). An alternative way to solve this
problem is to set the time period ac as close to the expected PQ junction as possible ©
exclude the spikes within ac.

There 1s only one parameter k (see cquation 2.1) which can be changed when
performing the QRS area calculation. The ume window length (see section 2.4.2) is
determined by the average length between the PQ junction and the R peak position as
well as the k value. The value of k is determined-at the beginning of ecach data analysis
by visually inspecting an ECG wave and choosing a k value to get the time window width
as close to the width of the QRS complex as possible. As long as the k value is
determined, there 1s no need to change during a data analysis. Compared to the

parameters in R peak and PQ junction detection, k value selection is less critical.

4.4 Future Work
The clinical sigmficance of heart rate variation can be understood only with reference to
respiration. Our study provides a method to obtain respiration from the ECG signal when
respiration information is not dircetly available. This can be done either directly or from
a Holter recording. It is therefore possible to do spectral analysis of heart rate variability
and determine the frequency of the spectral peak occurring at the respiration [requency.

In future study, the following work should be performed:
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(D) to collect and analyze data on abnormal subjects to verify the conclusions of the
present study.

(2) to opumize the signal processing software to improve the detection and calculation
accuracy and shorten the processing time.

(3) to perform cross correlation test between the original respiration and ECG-derived

respiration to verify the similarity of these two time domain signals.



APPENDIX A

FIGURES OF ORIGINAL AND DERIVED RESPIRATION
AND THEIR SPECTRA
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(b) Resting, paced breathing at a rate of 8 breaths per mimnute

Figure 3.1 Original respiration and  ECG-derived respiration and their speetra. In the
respiration figures (left side), the horizontal axis is time and the vertical axis is voltage.
In the spectral figures (right side). the vertical axis is power density (continued on next

page).
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(d) Resting, paced breathing at 18 breaths per runute

Figure 3.1 (continucd).
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(f) Exercising at 3 METS

Figure 3.1 (continued).
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Figure 3.1 (continucd).
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Figure 3.5 Comparison of original respiration with the ECG-derived respiration and their
spectra for Holer data. In the respiration figures (lelt side). the horizontal axis is time and
the vertical axis is voltage. In the spectral figures (right side), the vertical axis 1s power

density (continucd on next page).
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Figure 3.5 (conunucd).
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Figure 3.5 (continued).
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Figure 3.5 (contunucd).




APPENDIX B

PROCEDURE OF DERIVING RESPIRATION FROM ECG

Since we used the respiration recorded by the impedance pneumography device as our
original respiration throughout the study, we processed the respiration signal using this
procedure. When this original respiration is not available or only one lead ECG signal is
available.  the procedure should be modified properly. We will use a sample data file,
r032594¢. to cxplain the syntax of the programs. It has three columns: 1) original

respiration: 2) Iead I ECG; 3) lead HI ECG.

A. R Peak Detection

After the acquired data are scanned in S-Plus, use FRPK to detect the lead 1 ECG signal.
FRPK is a modificd version of the peak detection part of LWS. The three parameters
(¢hg, mindilf, and hash) should be sclected properly according the signal amplitude, noise

level, and average interbeat index numbers. The syntax for FRPK 1s as following:

> 1032594¢. Ipk_frpk (r032594cl,2})

where 11032594c. I pk is the R peak vector generated. I miss detection is present,

use FMRPK (modificd version of MQRS) to detect the missed R peak manually untl an

R peak vector containing all R peak positions is generated.
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> r032594c.mpk_fmrpk (1032594c(,2], r032594¢. 1pk)
I necessary, use VISCHK (o inspect the detected R peak positions.
> vischk (r032594c|.2], r032594c.1pk)

B. PQ Junction Detection and QRS Area Calculation for Lead I

QRSCA is the program to detect the PQ junctions and calculate the QRS complex areas
using the detected R peak positions. There two parameters (ac and k, sce section 2.4 2.
for detail) must be sclected properly. The default values for ac and k are 7 and 2
respectively. Use the R peak vector generated from last step and Iead 1 ECG signal to

calculate the imformation for lead L
> r032594c. 1gr_qrsca (r032594¢[,2], 1032594¢.1pk)

If manual R peak detection 1s performed in step A, the R peak vector
r032594¢.mpk should be used instead of us‘ing r(132594¢. 1pk. QRSCA displays the result
of the QRS arca calculation automatically in a graph. The presence of the outlicrs of the
arca calculation can be inspected visually through the graph. I present, the outliers must

be removed by using RMBQ.

> 1032594c.rem_rmbgq (r032594c. 1gr)



RMBQ displays the arca values graphically and allows you to remove the outliers
manually by using the mouse button. Since RMBQ actually removes the R peaks
corresponding to the arca outliers, these suspect R peaks have to be re-detected by using
FMRPK and the QRS arca calculation has to be done once again. This step may be
repeated more than once until there are no outlicrs of QRS arca or the outliers are the true

results of the area calculation.

C. PQ Junction Detection and QRS Area Calculation for Lead 11

Use the R peak vector generated in step A or modified in step B and the lead III ECG
signal to calculate the QRS complex areas for lead I1I. Normally, there are no more
outliers in the result of the area calculation since they were removed and the R peaks

were re-detected in the last step.

> 1032594¢.2gr_qgrsca (r032594¢[,3], 1032594c¢. 1pk)

Similarly, if manual R peak detection was performed in step A or arca outliers
removed in step B, the R peak vector used here should be the latest version instead of

> 10)32594e¢. 1pk.

D. Angle Calculation and Interpolation
Program DUALL calculates the angle of the cardiac electrical vector axis using the area
information obtained from steps B and C. The cubic sphine interpolation is performed by

program EDR to produce a continuous ECG-derived respiration signal. No user selected
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parameter is required in this program.
> r(032594c.dr_edr (duall (r032594c¢. 1gr, r032594¢.2qr))

E. Spectrum Generation
After obtaining the derived respiration, use FSP to gencrate the spectrum for both the

original and the derived respiration.
> 1()32594c.dfi_fsp (1032594e[,1], r032594¢.dr)

The original and the derived respiration and their spectra are displayed by DGF.
> dgf (r032594ce.dfi. title="r032594c¢")

F. Central Frequency Calculation

SPCP calculates the central frequencies for both the original and the derived specura.
There are three parameters h, f1, and 2. The h is the percentage of the amplitude of the
spectral peak from which the low frequency f;and high frequency [, are caleulated (sce
Figure 3.2). The default his 0.3, In cases that the interference is higher than the
respiration frequency peak present in the original spectrum, use {1 and {2 to exclude the

interference.

> spep (r032594¢.di)



1.

function(x, zf = 15, mindiff = 50, ghg = 0.25, zdelta

APPENDIX C

S-PLUS PROGRAMS

FRPK

0, tooruff
= 0.8, hash = 30)
{
#x: ecg signal
x.pk <- 1lwzx(x, £ = zf, mindiff = mindiff, gx =
ghg, delta
= zdelta, hash = hash)
pk <- x.pkS$pk
ibi <- diff (pk)
mruff <- max(abs(ruff(ibi)))
if (mruff >= tooruff) ({
print (paste("IBI'S MAY BE TOO RUFF"))
print (paste ("MAX IBI IS", max(ibi), "["
, (1:1length/
ibi)) [ibi »>= max(ibi)], "1"))
print (ibi)
}
pk
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2. FMRPK

function (x, gx)
{ ,
#x: ecg datal(col 2); gx: output of frpk
xout «<- pout (diff (gx))
if (length(xout$high) == 0) {

gfx <- list(gx = gx, 1ibi = diff (gx))

return{gfx)

stop ()
}
print ("bracket missing peaks using mouse",
e = F)
cx <- vector ("numeric", 0)
print (xout$high)
for(i in xout$high[l:length(xout$high)l) {
il <- 1 - 2 :
12 <= 1 + 2
if(il1 < 1)
11 <- 1
if(i2 > length(gx))
i2 <- length(gx)
plot{gx[il] :gx[i2], x[gx{i1l]:gx[i2]],
ype = "1")
abline (v = qgx[(11):(i2)])
bx «<- locator()sx
if (length(bx) > 0) {
if (length(bx) > 2) {
bx <- unique (bx)
}
if (length(bx) %% 2 > 0) {
bx <- bx[1l:(length(bx)
- (length(
bx) %% 2))]
}
for(j in seqg(l, length(bx),
{

bb <- floor(bx[jl)
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t

2))

be <- ceiling(bx[j + 1]

tx «<- order({x[bb:bel) (1

ength (bb:be
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)] + bb
abline(v = tx, lty = 2)
cx <- clcx, tx)

}
}

print (cx)

for(i in 1l:length(cx))
gxu <- gx[gx < cx[1i]]
gqxo <- gxlgx > cx[i]]
ax <- cl{gxu, cx[i], gxo)
print (length (gx))

}

fgfx <- list(gx = gx, 1bi=diff (gx))
gfx <- gx
gfx



3.QRSCA

function(x, pkx, ac = 7, k = 2)
{
#x:ecg data(col 2), pkx: R peak, hwin:
hwin_ ac
if (pkx (1] < hwin) {
pkx <- pkx[2:length(pkx)]
}

if (length(x) < (pkx[length(pkx)] + 3 * hwin)) ({
pkx <- pkx([1l:(length(pkx) - 1)]
}
lwf <-.lowess(l:length(x), x, £ = 45/length(x),
iter = 2,
delta = 0.1)$y
X «<- x - lwf

minx <- vector ("numeric", 0)
for(i in 1:length(pkx)) {
minxl <- ((pkx[i] - hwin):pkx[i]) [{(x[(p
kx[i] - .
hwin) :pkx[1]]) <= min(x[{(pkx[i]
- hwin} :
pkx[i]1)]

if (length{minx1) > 1) {
minxl <- minxl [length(minx1)]
)

minx <- c{minx, minxl)
}
if (length(pkx) != length(minx)) {
print (paste("Number of Q's is not eqgual
to that of R's"
))

print (paste("Q's:", length(minx)))
print (paste("R's:", length(pkx)))
stop ()

}

shwd <- round(mean(pkx - minx) * k)
grsca <- vector{"numeric", 0)
for(i in l:length(minx)) {
cols <- x[(minx{i] + 1) :{(minx([i] + shwd

cal <- sum{cols)
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dft <- x[minx{1]] * shwd

rca <- cal - dft
grsca <- c(grsca, rca)

}
par (mfrow

plot (grsca)
z <- list(grsca = grsca,

c(1, 1))

pkx = pkx, X = %, minx

= minx)
z



4. RMBQ

function(x)
{
#x:output of grsca
x1 <- x$grsca
x2 <- xSpkx
plot {(x1)
xs <- l:length(x1)

bga <- identify (xs,

7 <- 0

x1, plot

for(i in 1:length(bga)) {

X2 <- x2]
j<-j+l

X2

(bga[i]

= T)

- 3]
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5. DUALL

function(xl, x2)

{

#x1:first lead grsca;x2:second lead grsca

gcal <- x1S$grsca

gcaz <- x2$%$grsca

grsca <- atan(gcal/qgca?2)
z <- list(grsca = grsca,
Z

pkx

x1$pkx)



6. EDR

function{x)

{
#H x:

output of grsca
pkx <- x$pkx
grsca <- x$grsca

n <- pkx[length(pkx)] - pkx[1] + 1

iedr <- spline(pkx,
sted «<- c{iedxrs$x{1l],

grsca, n)
iedré$x(length(iedrs$x)])

z <- list(iedr = iedrSy, sted = sted)

z
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7. FSP

function(x

{

1, x2, title = "", f2 = 0.2)

#fx1l: resp signal; x2: edr output
orresp <- x1

edresp <- x2$iedr

stp <- x2%$sted(1]

edp <- x2$stedl[2]

orresp <- orresp(stp:edp]

d.orp <- orresplseq(l, length(orresp), 10)]
d.orpl <- lowess{l:length(d.orp), d.orp, £ = 0.
3, iter = 2,
delta = ceiling{(length(d.orp) * 0.3)/8
) ) Sy
d.orps «<- spect(d.orp - d.orpl, nt = 8192, ns =
6)
d.edr <- edresplseq{(l, length({edresp), 10)]
d.edrl <- lowess(l:length(d.edr), d.edr, £ = £2
, liter 2, : ,
delta = ceiling((length(d.edr) * 0.3)/8
)) Sy
d.edrs <- spect(d.edr - d.edrl, nt = 8192, ns =
6)
z <- list{d.orp = d.oxrp, d.edr = d.edr, d.orps
= d.orps[1:

330], d.edrs = d.edrs[1:330])



8. DGF

function(x, title = "")

{

#x: output if fsp
d.orp <- x$d.orp
d.edr <- x8d.edr
d.orps <- x$d.orps
d.edrs <- x%d.edrs

xf <- ((1:330) - 1)/8182 * 20

dev.get{which = 2)

par{mfrow = c(2, 1), mar

plot(d.orp, type = "1", main
riginal"))

plot(d.edr, type = "1", main
erivation")

)
dev.set (which = 3)

par{mfrow = c(2, 1), mar

plot{xf, d.orps[1:330],
quency (Hz) ",
ylab = "Power",
riginal"))
plot (xf, d.edrs{1:330],
gquency (Hz) ",
yvlab = "Power",
erivation")

}

)

= c{4,

= c(4

type

main

type

main

7

5, 3, 1))
paste(title,

paste(title,

5, 3, 1))
mlv, xlab =

paste(title,
"l”, xlab =

paste(title,

l!_O

H__D

"Fre

e

"Fre

L



9.SPCP

f2

It
i
Il
ot

8192, sr 20, f1

i
)

function{(x, h = 0.3, nt
00)
{
#x:output of fsp
fn <- sr/{nt * 3)
X1l <~ x$d.orps
X2 <- x8d.edrs
xscal <- 1:330
X1 <- spline({xscal, x1)Sy
x2 <- spline(xscal, x2)S$y
£1 <- round(length(xl) * (£1/100))
£2 <- round(length(xl) * (£2/100))
xl.c <- x1[f1:£2]
x2.Cc <- x2[f1:£2]
xl.mc <- (1l:length(xl.c)) [(xl.c >= max(x1l.c))]
x2.mc <- (l:length(x2.c)) [(x2.c >= max(x2.c))]
xl.m <- xl.mc + f1 - 1
Xx2.m <- x2.mc + £1 - 1
X1l.r <- rev{xi[l:x1.m])
X12 <- x1[x1l.m:length(x1l)]
x21.r <- rev(x2[l:x2.m])
X22 <- x2[x2.m:length(x2)}]
£1.1lr <- fml(x1l.r, x1[x1l.m] * h)
f1.1 <- x1.m - £1.1r + 1
fi.hm <- fml(x12, x1l[x1l.m}] * h)
f1.h <- x1.m + £1.hm - 1
£2.1r <- fmi({x21l.r, x2[x2.m] * h)
£2.1 <- x2.m - £f2.1r + 1
f2.hm <- fml(x22, x2[x2.m] * h)
f2.h «- x2.m + £2.hm - 1
al «<- sum(x1([f1.1:(f1.h - 1)1)
a2 <- sum(x2[f2.1:(f2.h - 101)
ai.l <- al/(x1[x1.m] * {(£f1.h - £1.1))
ai.2 <~ az2/{x2[x2.m}] * (f2.h - £2.1))
hal.sm <- x1[f1.1]
for(i in (f1.1 .+ 1):f1.h) {
hal <- x1{i]
hal.sm <- sumf{hal.sm, hal)
if (hal.sm >= (ai1/2)) {
cfl <- (1l:length(x1)) [(x1 == x1
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break
}
}
ha2.sm <- x2[f2.1]
for(i in (f2.1 + 1):f2.h) {
ha2.sm <-

sum{ha2.sm, x2[i})
if (ha2.sm >= a2/2) {

cf2 <- (l:length(x2)) [(x2 == x2
[11)]
break
}
}
Z <- list(fl = c(f1.1, f1.h, cf1) * fn, £2 = c/{
£2.1, £2.h,
cf2) * fn, ra = clai.1, ai.2))
Z
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