










CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Shape Optimal Design 

Shape Optimal Design can be defined as the solution to an optimization problem involving 

structural geometry as a design variable. Every shape optimal design problem is formed to 

achieve a predetermined set of design objectives, subject to geometrical and/or behavioral 

constraints. Most of the times, the primary design objective is set to minimize the 

structural weight, without violating the geometrical and functional constraints. The 

constraints may include specific dimensions, and maximum stresses. 

In case of a pure structural optimization problem, the objective is achieved by 

varying the sizes of design variables, such as plate thickness, cross sectional area, moment 

of inertia etc. The point to be stressed is that the geometry of the finite element model, 

material distribution and topology remain unchanged. Such structural problem is a non 

linear mathematical programming problem, to which standard minimization techniques 

could be applied. 

In case of planar structures, thickness of shell element as only design variable, 

weight can not be reduced beyond a limit, due to either a minimum gauge requirement or 

constant thickness requirement, imposed by manufacturing process. The boundary curves 

defining the shape of the structure are selected as design variable with an imposition of 

maximum stress or displacements or natural frequency as optimization constraint. 

The exterior and interior boundaries are controlled to alter the shape of the 

structure. The continuously changing shape of the finite element model requires careful 

consideration to represent the boundary shape, to maintain the integrity of the finite 

element mesh, to refine the finite element mesh as distortion of elements occur, and to 

enhance the accuracy of the sensitivity analysis. Some of these problems are not present in 
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structural optimization problems or are easy to solve, as the geometry is unchanged. In 

this view shape optimization problem is more complex than a sizing optimization. 

Minimizing the weight of the structure is an important consideration in any design 

process. This work also deals with weight minimization of any planar or two dimensional 

structure, as design objective, using changes in the boundary shapes. Considerations of 

limited energy and material resources, technological competition, and special functional 

requirements as in aerospace and biomedical applications, are the driving force to current 

research in this area, and indicate growing significance for the field in the future.  

1.2 Objective and Scope of Present Work 

The primary objective of this work is to develop an integrated approach to the 

independent steps of shape optimization process. The field of study is limited to planar or 

thin shells and two dimensional structures only. IDEAS software, a widely accepted 

Design and Analysis software tool is selected to develop an algorithm, which addresses the 

different problem areas of shape optimization procedure such as, geometrical model 

description, mesh areas formation, finite element mesh generation and adaptive mesh 

refinement, model solution, optimization parameters setup, and execution of shape 

optimization solution. Considerations are also given to different shape representation 

methods and optimization techniques. 

To implement the proposed general algorithm and to demonstrate its flexibility, an 

automotive rear suspension torque arm is selected for the purpose. This work also 

attempts to present an integrated approach including CAD computer codes and finite 

element software having shape optimization capabilities. 



CHAPTER 2 

REVIEW OF RELATED LITERATURE 

One of the first treatments of the problem of obtaining optimum shape of a structure 

without compromising with its functional and geometrical constraints was done by 

Zienkiewicz and Cambell. They used the features of finite element analysis with node 

coordinates as design variables to find an optimum shape. With the advent of digital 

computers and availability of general numerical analysis methods, interest in this field was 

increased greatly. Furthermore, a number of commercial optimization softwares based on 

well established finite element computer codes have been introduced. Some of the widely 

used softwares in this class include; ANSYS, IDEAS, MSC-NASTRAN, PATRAN, 

ABAQUS, SAMTECH etc. 

The advantages of shape optimization procedure have resulted in keen interest to 

develop applications in automotive, aerospace, and biomedical industries. This chapter 

describes briefly the previous research and development work, with respect to present 

study, in this field. The present work also surveys the problem areas encountered in shape 

optimization, and which are absent or easier to deal in structural optimization. These 

problems could be classified into two broad areas. 

First, due to the continuously changing boundaries of the finite element model, it is 

difficult to ensure that the accuracy of the analysis remains satisfactory, throughout the 

design process. Secondly, more processing time is required to obtain good sensitivity 

derivatives with respect to shape design variables than with respect to sizing variables. 

A literature survey presented by Ding(1986) reviewed various numerical and 

analytical methods for shape optimization of structures with special attention paid to 

different steps involved in shape optimization process. The steps considered were model 

description, selection of the objective function and shape variables, representation of the 
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boundary shape, finite element mesh generation and refinement, sensitivity analysis and 

solution methods. 

An approximation concept approach to shape optimal design was given by 

Braibant and Fleury(1985), in which a convenient geometric representation to describe the 

boundaries of the structure by Bezier or B-splines curves was described. A general 

algorithm for shape optimization was devised to combine mixed approximations and dual 

method. A general method to describe complex geometries in a compact way by a set of 

design variables was also suggested. 

Botkin(1982) presented a new approach to shape optimization problem of plate 

and shell structures. This work provided many useful guidelines to develop automatic 

programs for planar structures, during present research. 

Several computational methods for optimization of structural shapes were 

considered. A more accurate approach for shape optimal design sensitivity was given by 

Hou, Cheng, and Sheen(1988). Also a numerical method using direct integration and B-

splines for shape optimization problem including torsional elements, was given by 

Walter(1993). 

The first work in the area of composite laminated plates was carried out by 

Kikuchi and Lee(1989). Another important area of shape optimization process is mesh 

generation and refinement. Kikuchi(1985) presented adaptive finite element methods for 

shape optimization of linearly elastic structures. The quantitative effect of element 

distortion near the design boundaries was identified in terms of interpolation error 

associated with the finite element mesh. A computer program was developed to combine 

numerical grid generation, an automatic remeshing with the grid adaption and design 

change. 

The problem of linking geometrical description with the mesh generation 

capabilities was addressed by Bannet and Botkin(1985). A description format was 

developed, which used only the boundary information and was connected to a finite  
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element mesh generator, which required only the boundary information to generate the 

finite element mesh. Thus, leading to a more accurate estimate of the true solution. A 

general methodology for structural shape optimization problems using automatic adaptive 

remeshing was given by Bugeda(1993). 

The concept to integrate shape optimization and CAD was given by 

Rasmussen(1982). A structural optimization system CADS was developed for the 

integration of structural optimization facilities into a computer-aided design environment. 

A similar approach matching CAD and shape optimization concepts was developed at 

aerospace laboratory, University of Liege, Belgium. According to this method, the 

structure to be optimized, was decomposed into a set of simple sub regions. The shape of 

these sub regions was described by master nodes. The master nodes positions were 

selected as design variables, i.e. the unknowns of the optimization procedure. Sometimes 

these sub regions were also represented by Bezier or B-splines blending functions. This 

optimization capability for shape optimization combined a parametrical representation of 

the regionalized design elements which model the structure, a rigorous sensitivity analysis 

formulation, and an approximation concept approach for solving the optimization 

problem. 

Though, the present work is mainly focused on planar structures or two 

dimensional problems, the concept of shape optimal design of three dimensional solid 

components was also taken into consideration. Imam(1982) presented a a general 

approach for 3-D shape optimization of structural components, which can only be defined 

using solid or thick shell type elements. Three dimensional shape optimization problem is 

geometrically found more complex as compared to planar shape optimal design. 

This chapter reviewed the related literature, which formed some of the basic 

guidelines for the present work. Now, the next chapters would present each concerned 

topic in detail. The very next chapter highlights some of the concepts used in automated 

mesh generation and refinement techniques.  



CHAPTER 3 

AUTOMATED MESH GENERATION AND REFINEMENT 

3.1 Mesh Generation 

Automated mesh generation and refinement is an integral part of any shape optimization 

algorithm. There has always been an increase interest in the development of automatic 

mesh generation algorithms capable of discretizing any geometry into a valid finite element 

mesh without user intervention. One factor contributing to this is the availability of 

advanced geometric modeling systems which have greatly increased the efficiency of the 

design process, thus making the finite element mesh generation portion of the analysis 

process and even more obvious bottlenecks. A second factor is the need to improve the 

robustness of the entire finite element modeling process so it can be reliably used by 

designers that are not finite element experts. The only way to meet these goals is to 

automate the finite element modeling process. For purposes of this discussion an 

automated finite element process accepts a geometric description of the problem with 

analysis attributes tied to it as input and produces results, to a prescpecified level of 

accuracy, as output. At this time such systems are not so popular, however, an active 

work is still going on for the development of the various components that are needed to 

construct such systems. This present work is an attempt to develop an automatic mesh 

generator using computer aided engineering analysis software IDEAS to perform shape 

optimization procedures on planar structures. 

The selection of an algorithmic approach to automatic mesh generation begins with 

the determination of the requirements that it must satisfy. Items that must be considered 

in the selection of meshing approach for use in automated finite element modeling 

procedure include:  
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Fig 3.1  Various approaches for mesh generation 
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1. The geometric modeling systems to which the mesh generator will be integrated 

influences the selection since the computational effort required for the needed geometric 

operations, and the difficulty of providing those operators, is a function of both the 

geometric modeler and the finite element mesh generator. In general, some geometric 

modelers will not currently support the geometric operations needed by some meshing 

generation algorithms. 

2. The type of finite element mesh desired may influence the selection of a 

meshing algorithm. For example, some mesh generators can not produce extremely 

coarse meshes while others may have a computational growth rate that causes their use for 

fine meshes with many elements to be computationally prohibitive. 

3. The class of analysis to be carried out and the finite element solution 

procedures have a strong influence on the types of meshes that should be generated. 

4. The form of mesh improvement desired during adaptive analysis as well as the 

development of efficient resolution procedures also have an influence on the meshing 

algorithm to be selected.  

3.2 Algorithms for Automated Mesh Generation 

The problem of mesh generation is to convert the geometry to a form understood by a 

finite element solver (a finite element mesh), in as automatic a manner as possible. Fig. 11 

shows various approaches for mesh generation. Depending on the type of application 

considered, the element type is selected. Fig. 3.2 describes various element types which 

could be utilized to define different finite element models. There are various popular ways 

of generating these meshes and they can be classified into the following categories: 

1. Laplacian Methods - A set of simultaneous nonlinear equations for the position 

vectors of the interior nodes with respect to the neighboring nodes is solved using iterative 

techniques. A starting grid is required, which can be improved using this method. This 

may be used to smooth meshes created using other methods. 
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Fig 3.2  Types of elements 
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2. Mapping Methods - A function is used to map the given geometry into a simple 

geometry. This simple geometry is meshed and all the node points are mapped back to the 

original geometry. Various mapping functions have been used such as isoparametric 

mapping and the Schwarz-Christoffel transformation. Mapping methods do impose a 

number of restrictions on the geometry of the object. 

3. Cell Decomposition or Spatial Enumeration - This involves dividing up the 

space enclosed by an object into regular shapes using the octree or quadtree methods. 

These are then modified or rearranged to get a valid mesh. This method is particularly 

suited to the Cell Decomposition type solid (CSG) modelers. 

4. Surface or Volume Triangulation - This involves cutting up a given surface or 

volume into subsurfaces or subvolumes using standard methods. This "cutting up" is 

continued until acceptable sized finite elements are obtained. This technique can handle 

arbitrarily complex geometries and so can be automated to a higher degree. It is most 

suited to be used with boundary representation type solid modelers, but may also be used 

with all of the types.  

3.3 Adaptive Mesh Refinement 

Adaptive meshing is a way to automatically change a mesh of nodes and elements to refine 

it. Often, a final grid of elements is required in areas of high stress or strain energy. Using 

IDEAS, adaptive meshing task could be programmed to refine a mesh implementing either 

the results obtained from analysis or element distortion values as the basis for the 

refinement. The general procedure involving adaptive mesh refinement to reduce element 

distortion is displayed in Fig. 3.3. 

There are four basic approaches to adaptively improve a finite element mesh 

including: 

1. subdividing selected elements (h-refinement) 

2. increasing the polynomial order of selected elements (p-refinement) 
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Fig 3.3  Application of Adaptive mesh refinement to reduce element distortion  



Fig 3.4 Smoothing of distorted elements by Optimizing method Selection 
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3. moving node points in a fixed element topology (r-refinement), and 

4. defining a new mesh having a better distribution of elements. 

The most important step in the adaptive mesh refinement is to identify the regions 

which require mesh refinement. There are mainly two approaches being widely used to 

select the region for mesh refinement. 

I. The first approach considers the potential energy of the trial finite element 

solution for selecting the critical region. It is argued that since the approximate solution 

gives an upper bound on the true value of potential energy, the best grid may be defined as 

the one that gives lowest possible upper bound. In practice however, the formal solution 

of the problem is avoided because of the highly nonlinear form of the objective and of the 

geometry constraints that depend on nodal locations. Optimality conditions are normally 

too complicated to be operationally useful and, rather than working with these equations 

directly, several authors have developed guidelines that approximate the true optimality 

conditions and at the same time are easy to implement computationally. 

2. In the second approach, the finite element model accuracy is improved by an 

adaptive mesh refinement scheme using strain energy density gradients to identify regions 

which require mesh refinement. A contour plant of the Strain Energy Density (SED) for 

the object is taken. The areas with undesirably high SED variation are identified and the 

elements belonging to those regions are refined using various techniques. 

The value of SED variation above which an element will be refined is obtained 

from the following: 

CV = ∆Eav  + β(∆Emax ∆Eav) 

where CV is the SED difference cut off value, ∆Eav  the average SED variation for all 

elements, ∆Emax  the maximum SED variation in an element and β  a parameter to be 

selected based upon the problem (generally between 0 and 0.5). 

Fig. 3.5 displays the general process of implementing adaptive mesh refinement 

techniques, based on analysis results. 
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Fig 3.5 Application of Adaptive mesh refinement based on analysis results. 



Fig.3.6  Element distortion in finite element mesh  
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Fig. 3.7  Adaptive mesh refinement using IDEAS 1
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Various combinations of these approaches are also possible. Determining which of 

these approaches is the best for a particular class of problems is a complex decision which 

must consider the cost of the entire solution process. In an automated finite element 

modeling procedure, this cost includes the generation of finite element model, the adaptive 

improvement of that model, the determination of the a posteriori error measures and the 

solutions to the algebraic equations resulting from the various finite element models that 

must be analyzed during the process. Although the majority of investigations to date have 

considered measures in terms of the number of degrees of freedom in the finite element 

model versus the solution accuracy, or the cost of the solution of the resulting equations 

versus the solution accuracy, they have not attempted to measure the total cost of the 

entire finite element modeling process. Since the cost of mesh generation in an automated 

finite element modeling system can be on the order of the cost of the solution to the finite 

element equations, the selection of a mesh generation procedure and its interaction with 

the adaptive mesh improvement procedures is a critical consideration. Fig. 3.7 portrays an 

example of mesh refinement using adaptive methods under finite element modeling module 

of IDEAS. 

Important considerations for automating mesh generation and refinement process 

were discussed. Application of IDEAS adaptive mesh refinement capabilities were 

considered. Next chapter presents an approach of integrating shape optimization 

procedure with a computer-aided design environment. Various shape representation 

techniques are also considered. 



CHAPTER 4 

INTEGRATION OF CAD WITH SHAPE OPTIMIZATION 

4.1 Shape Optimization and CAD 

Inspite of considerable development in the field of computer-aided design, the available systems are 

still considered to be the first generation of a long row of computer-integrated manufacturing 

systems. The future systems will provide an integrated environment for design, analysis, and 

fabrication of products. Thus, the CAD system could be simply regarded as a data base for 

geometrical information, equipped with a number of tools to facilitate the design procedure. Among 

these tools are facilities for structural analysis and optimization, with standard CAD features such 

as, drawing, modeling, and visualization tools. The result of this integration would be CAD 

systems for rational design in which structural optimization is an important design tool. The major 

problems for CAD-integrated shape optimization include: 

1. There are many possible formulations of the shape optimization problem as the design 

objective could be selected as minimize weight, stress, compliance, displacement, or any property 

derived from the geometric model. Mathematically, different formulations lead to very different 

optimization problems. 

2. To use a mathematical programming technique to solve the problem, the continuous 

shape of the geometry must be described by a finite, number of design variables. This problem is 

connected with the data structure of the CAD system, which is not flexible enough to allow for the 

shape changes, required by the optimization module. The solution to this problem is that the 

interface to the optimization system must provide a translation of CAD data to a form more 

convenient for shape optimization. 

3. The geometrical information is interchanged between CAD model and the optimization 

application, rather than just passed on and the optimized geometry goes the opposite way, i.e. from 

Optimization module to CAD model 
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4. In most cases, the initial geometry possesses certain measures and shapes, which are 

important for functional or geometrical constraints and, therefore, cannot be altered during the 

shape optimization process. A method must be devised to maintain the functionality of the 

geometry, throughout the optimization process. 

5. For finite element analysis, the initial CAD model of the structure must be converted to 

mesh areas, and this finite element mesh must conform to the changes of the geometry, as the 

optimization process progresses. 

In present work an attempt has been made to generate mesh areas and finite element mesh, 

from the given geometric information. The IDEAS program takes geometric data for boundary 

curves and inner cutouts, as input and creates effective mesh areas to produce finite element mesh. 

This program can be implemented to produce finite mesh areas for three dimensional components 

also, with small modifications. 

4.2 Shape Representation Techniques  

For the geometric definition of any object, it is first described by indicating its geometrical 

boundaries. During shape optimal design process, the boundary of the structure continuously 

varies, leading to many complexions. It is difficult to maintain an adequate finite element mesh for 

analysis, keeping elemental distortion values within allowable range. Also proper care is required 

to be taken to enhance the accuracy of the sensitivity analysis. In most of the cases, the problems 

are associated with reducing stresses at a boundary by altering the boundary. Therefore, the 

manner in which the boundaries are represented is a key clement in the process of obtaining 

optimum shape. The important methods to represent shape of any structure include: 

1. Boundary representation by boundary nodes 

2. Polynomial representation of boundaries 

3. Spline representation of boundaries 

4. The Design element concept 

5. Boundary representation by spline blending functions 
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First method is the simplest approach to represent boundary of a two dimensional 

structure. Generally, the design variables of the shape optimal problem are chosen as the node 

coordinates of the finite element model. Besides simplicity, another advantage offered is to obtain a 

general curved boundary that is automatically followed by the finite element mesh without 

depending on the necessary shape required to obtain the minimum weight. This approach leads to 

many problems such as, increase in the number of design variables, tendency to produce unrealistic 

designs and, problems related to element distortion leading to inaccurate results. 

The boundary curves may also be represented in the form of polynomials and, polynomial 

coefficients as design variables to characterize the shape. A more general approach is to define the 

boundary as a linear combination of shape functions with the coefficients as the design variables. 

This approach will surely reduce the net number of shape variables but may result in an oscillatory 

boundary shape with high order polynomials due to the numerical instability of the higher order 

curves. This problem can be eliminated by using the spline representation of the boundaries. 

The splines are composed of low-order polynomial pieces, combined to give smoothness. 

The natural choice to define a moving boundary can be a cubic spline function, which has two 

continuous derivatives at every point and also possesses minimum mean curvature. The advantage 

of using spline representation is, better sensitivity accuracy and , application of the Bezier and B-

spline blending functions provide great flexibility for the geometrical description. Another 

advantage with the B-spline formulation is, boundary regularity requirements arc taken into 

consideration automatically. 

One of the newest approach to achieve an adequate finite element model is to use the 

design element concept. In this approach the structure is divided into a few regions. These regions, 

or design elements can be described by a set of master nodes, that controls the geometry. 

Associated with the design element is a set of design variables, that describe the location of the 

master nodes, which orient during the shape optimization process. Each design element consists of 
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Fig 4.1 The design element 
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many finite elements as depicted in Fig 4.1. The boundary of a design element can be described by 

using two-dimensional isoparametric finite element interpolation functions or, spline blending 

functions. The major advantage of using design element concept is to describe complex geometries 

and three dimensional components. 

The current chapter presented some of the important features of integration concept for 

CAD system and shape optimization process. The problems in this area were also highlighted. 

Various shape representation techniques were studied and for the practical example of torque arm, 

the geometric boundary was represented using boundary nodes method and the spline 

representation for outer boundary curves. Next chapter deals with the mathematical representation 

of shape optimization problem. Different optimization methods are discussed with respect to shape 

optimal design of planar structures. 



CHAPTER 5 

MATHEMATICAL REPRESENTATION AND OPTIMUM SOLUTION 

5.1 Problem Formulation for Shape Optimization 

The shape optimization problem can be represented mathematically as 

min F(S1, S2, ..., Sn) 	 (1) 

subject to: 	di  (S1, S

2, ..., 

Sn) = 0 	i = 1, . . . p 

ej (S1, S2, ..., 

Sn) ≤  0 	j = 1, . . . q 

Skl  ≤  Sk  ≤  Sku 	k = 1, . . . n 

where: 	F 	Objective function 

di: 	Equality constraint function describing ith structural 

response 

ej: 	Inequality constraint function describing ith structural 

response 

Si: 	Vector of n design variables representing shape of the 

object 

Skl

: 	Lower limit of shape variables 

Sku

:     Upper limit of shape variables 

p : 	Total number of equality constraints 

q : 	Total number of inequality constraints 

n : 	Total number of shape variables 

5.2 Definition of Objective Function 

The objective function is specified by the user as a part of optimization specification and 

can be selected in various ways, depending on which variable is required to be optimized. 

	

(i) Weight, Mass or Volume Optimization 
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In most of the cases, the weight of the object is selected as the objective function which 

can be represented as 

(2) 

where Ωe(S) is the volume of eth finite element, and in general varies nonlinearly with 

respect to Sk. 

(ii) Maximum Von Mises Stress 

The objective function can also be selected in order to determine the shape which has the 

maximum Von Mises stress along a given part or a whole part of the boundary. 

Mathematically, 

F (S) = Max σvm 	 (3) 

(iii) Difference Between Maximum and Minimum Tangential Stresses 

F (S) = σθmax  - σθmin 	 (4) 

where σθ

max 

 and σθmin  are the maximum and minimum tangential stresses at all the 

sampling points. 

(iv) Stress Leveling 

This objective function can be represented in the form 

F (S) = ϕ(σ  - σa)2  dA 	 (5) 

where σ  is maximum principal stress and σa  is the average stress at initial shape and A is 

the part of a whole surface of the body. 

(v) Weighted Objective Function 

F (S) = (0.5Ω  / ΩO) + ((

ϕ (σ  - σa)2  dA

) / 

(ϕ (σO - σa)2 dA))            (6) 

where Ω  is the volume of the object, ΩO  represents volume of the initial shape, σ  is the 

maximum principal stress and σa, σO  represents average and maximum principal stresses, 

respectively of the initial shape. 
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Other examples of possible objective functions are maximum elastic displacement 

at any point in the structure and compliance. The use of the objective function reduces the 

effect of stress concentration in the altered boundary. Along with that it controls the 

continuity of changing boundary shape. 

Mathematically, different objective functions lead to very different optimization 

problems. Elastic displacement and stress are ordinary scalar quantities that can be 

derived directly from the output from the finite element analysis. Minimizing weight is of 

the integral type and require some post-processing of the results. 

In this work the objective function is selected to minimize the weight or volume of 

the structure. 

5.3 Optimization Techniques 

The same considerations that affect traditional structural optimization will be important in 

shape optimization; that is, the number of analyses should be small and the derivatives 

should be calculated as efficiently as possible. 

5.3.1 Treatment of Stress Constraints 

There are inherent difficulties associated with treating stress constraints in discretized 

structures which are compounded when shape is used as a design variable. If the stress 

data point is a continuous function of the design variables, the finite element stress results 

can only approximate this function which results in a highly nonlinear constraint behavior 

characterized by many local peaks and valleys. To some extent, this nonlinearity is 

inevitable as the remeshing guarantees some of this behavior. 

In addition, some decision must be made as to how the constraints are to be 

defined. Associating the constraints with a finite element is unattractive since the finite 

element mesh will change during the design process. Clearly the stress constraint needs to 

be associated with some point in the structure. For the present time, the following limited 

approach has been chosen. It is assumed that the maximum  stress occurs along a  
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boundary element. For this purpose each boundary element can be broken into a 

predetermined number of stress constraint segments. In each segment, the stress 

constraint is taken as the maximum stress in any finite element touching that segment of 

the boundary.  

5.3.2 Method of Optimization 

The traditional methods of nonlinear optimization have two severe drawbacks for 

extensive shape optimization. First, they permit large excursions in the design variables 

which may be not justified based on the starting finite element analysis. This radically 

altered design may be so infeasible as to seriously compromise the convergence of the 

optimization. Second, they tend to spend most of the computational time tracking active 

constraints. The irregularity of the constraints will seriously compromise this convergence 

process. In addition, of course, the direct methods require an excessive number of finite 

element solutions. 

The approximation concept impose intermediate move limits on the design 

variables, large changes in the shape can be limited. This also allows for an orderly 

introduction and updating of the extrapolation for the constraint values based on coarse 

mesh solutions as described earlier. The idea that is being proposed is deficient in that, as 

the mass is reduced, the approximation used to predict the stress level becomes more 

unconservative. Therefore, at the end of each step, the design is usually infeasible and, in 

general, more infeasible than the approximations predict. 

When the approximation concepts are used, the success of the optimization is 

often determined by the side constraints imposed on the approximate problem, which are 

usually called move limits. The particular implementation of move limits used is based on 

a percentage of the total motion allowed. Then, for the jth subproblem,  


