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ABSTRACT

STOCHASTIC MODELING OF FLOWS IN MEMBRANE PORE
NETWORKS

by
Binan Gu

Membrane filters provide immediate solutions to many urgent problems such as

water purification, and effective remedies to pressing environmental concerns such

as waste and air treatment. The ubiquity of applications gives rise to a significant

amount of research in membrane material selection and structural design to optimize

filter efficiency. As physical experiments tend to be costly, numerical simulation

and analysis of fluid flow, foulant transport and geometric evolution due to foulant

deposition in complex geometries become particularly relevant. In this dissertation,

several mathematical modeling and analytical aspects of the industrial membrane

filtration process are investigated. A first-principles mathematical model for fluid

flow and contaminant advection/deposition through a network of cylindrical pores,

and time evolution of membrane pore geometry, is proposed, formulated as a system

of ordinary and partial differential equations. Membrane filter performance metrics,

including total throughput (total volume of filtered fluid) and foulant concentration

at membrane pore outlets, among others, are thoroughly studied against membrane

geometric features such as porosity and tortuosity (average normalized distance

traveled by fluid through pores between membrane top and bottom surfaces). The

influence of the underlying, often complex, pore geometries on the performance of the

membrane filters is explored in the following setups: (1) layered planar membrane

structures with intra-layer pore connections; (2) general pore networks generated by

a random graph generation protocol; (3) pore size variations in a pore network and

(4) pore size gradient in a banded membrane network. Future work should include



studying pore size variations on porosity graded networks and stochastic modeling of

large-particle sieving in pore networks.

In Chapter 1, an overview of the experimental, computational and theoretical

literature on membrane filtration is given to motivate the following Chapters. In

Chapter 2, a mathematical model is proposed for multilayered membrane filters

with interconnected pores in the junction between layers. A side-by-side comparison

is carried out between three simple geometries that have various degrees of pore

connectivity and the same initial pore radius in each layer. Pore size heterogeneities,

modeled as a random perturbation on initial pore size, are also studied in detail. Via

variations in the strength of the pore-size perturbation, the statistical and physical

influence on key properties of membrane filters, such as initial resistance, total

throughput and foulant concentration at pore outlets, are analyzed and discussed.

This work appeared in Journal of Fluid Mechanics.

In Chapters 3 and 4, a random graph generation protocol is devised to generate

pore networks that generalize the structures considered in Chapter 2. A membrane

filter is modeled as a graph with vertices and edges representing pore junctions and

pore throats respectively. Local fluid and foulant transport equations are posed on

each edge, coupled with conservation laws to produce global equations that capture

the connectivity of the network. When a uniform initial pore radius is assumed

(Chapter 3), initial membrane porosity is found to be a strong predictor for total

throughput via a power law; and accumulated foulant concentration at membrane

pore outlets satisfies a negative exponential relationship to membrane tortuosity.

When pore size variations are imposed as pore-wise noise perturbation, however

(Chapter 4), it is observed that network variations induced from the random graph

generation have a stronger influence on membrane performance, unless noise strength

is large. Membrane initial porosity is again found to be a crucial geometric feature.



The work of these Chapters appeared in SIAM Journal on Applied Mathematics and

Journal of Membrane Science, respectively.

In Chapter 5, a variant of the protocol described in Chapter 3 is developed to

generate banded pore networks in which the pore radius decreases from one band

to the next, creating a pore-size gradient. Under specific assumptions, an optimal

radius gradient in the depth of the banded membrane that maximizes either total

throughput of filtrate or the particle retention capability of the membrane, is found.

Finally, in Chapter 6, conclusions from the previous chapters are discussed, along

with two open questions for future work.



STOCHASTIC MODELING OF FLOWS IN MEMBRANE PORE
NETWORKS

by
Binan Gu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
Rutgers, The State University of New Jersey – Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences
Department of Mathematics and Computer Science

August 2022



Copyright © 2022 by Binan Gu

ALL RIGHTS RESERVED



APPROVAL PAGE

STOCHASTIC MODELING OF FLOWS IN MEMBRANE PORE
NETWORKS

Binan Gu

Linda J. Cummings, Dissertation Co-Advisor Date
Professor of Mathematical Sciences, NJIT

Lou Kondic, Dissertation Co-Advisor Date
Distinguished Professor of Mathematical Sciences, NJIT

James N. MacLaurin, Committee Member Date
Assistant Professor of Mathematical Sciences, NJIT

Anand U. Oza, Committee Member Date
Assistant Professor of Mathematical Sciences, NJIT

Ian M. Griffiths, Committee Member Date
Professor of Industrial Mathematics and Royal Society University Research Fellow,
University of Oxford, Oxford, United Kingdom



BIOGRAPHICAL SKETCH

Author: Binan Gu

Degree: Doctor of Philosophy

Date: August 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mathematical Sciences,

New Jersey Institute of Technology, Newark, NJ, USA (2022)

• Master of Science in Mathematics,
New York University, New York, NY, USA (2016)

• Bachelor of Science in Mathematics,
University of Southern California, Los Angeles, CA, USA (2013)

• Bachelor of Arts in Economics,
University of Southern California, Los Angeles, CA, USA (2013)

Major: Mathematical Sciences

Presentations and Publications:

B. Gu, L. Kondic, and L. J. Cummings. “On Pore-size Gradient in Membrane
Networks”. In preparation.

B. Gu, L. Kondic, and L. J. Cummings. “Network-based Membrane Filters: Influence
of Network and Pore Size Variability on Filtration Performance”. Journal of
Membrane Science, 657, 5 (2022).

B. Gu, L. Kondic, and L. J. Cummings. “A Graphical Representation of Membrane
Filtration”. SIAM Journal on Applied Mathematics, 82, 3 (2022).

B. Gu, D. L. Renaud, P. Sanaei, L. Kondic and L. J. Cummings. “On the Influence
of Pore Connectivity on Performance of Membrane Filters”. Journal of Fluid
Mechanics, 902, A5 (2020).

B. Gu, L. Kondic and L. J. Cummings, “A Graphical Representation of Membrane
Filtration,” 16th Northeast Complex Fluids and Soft Matter Workshop
(NCS16), Princeton University, Princeton, New Jersey, Jan 2022.

iv



B. Gu, L. Kondic and L. J. Cummings, “A Graphical Representation of Membrane
Filtration,” 74th American Physical Society Division of Fluid Dynamics,
Phoenix, Arizona, Nov 2021.

B. Gu, L. Kondic and L. J. Cummings, “A Graphical Representation of Membrane
Filtration,” InterPore 13th International Conference on Porous Media &
Annual Meeting (virtual), May 2021.

B. Gu, P. Sanaei, L. Kondic and L. J. Cummings, “Stochastic Modelling of
Adsorption and Sieving in a Pore Network,” InterPore 12th International
Conference on Porous Media & Annual Meeting (virtual), Aug 2020.

B. Gu, P. Sanaei, L. Kondic and L. J. Cummings, “Stochastic Modelling of Sieving in
Membrane Filters with Complex Pore Morphology,” 72nd American Physical
Society Division of Fluid Dynamics, Seattle, Washington, Nov 2019.

B. Gu, P. Sanaei, L. Kondic and L. J. Cummings, “Stochastic Modelling of Sieving,”
Fluid Mechanics of Cleaning and Decontamination, Special Interest Group,
Oxford University, Oxford, United Kingdom, Jul 2019.

B. Gu, D. L. Renaud, P. Sanaei, L. Kondic and L. J. Cummings, “Modeling
Connectivity and Asymmetry in Membrane Filters,” Transport in Disordered
Systems, Princeton University, Princeton, New Jersey, Jan 2019.

B. Gu, D. L. Renaud, P. Sanaei, L. Kondic and L. J. Cummings, “Modeling
Connectivity and Asymmetry in Membrane Filters,” 10th Northeast Complex
Fluids and Soft Matter Workshop (NCS10), Rutgers University, New
Brunswick, New Jersey, Jan 2019.

B. Gu, D. L. Renaud, P. Sanaei, L. Kondic and L. J. Cummings, “Modeling
Connectivity and Asymmetry in Membrane Filters,” 71st American Physical
Society Division of Fluid Dynamics, Atlanta, Georgia, Nov 2018.

B. Gu, D. L. Renaud, P. Sanaei, L. Kondic and L. J. Cummings,
“Modeling Asymmetry of Membrane Filters with Complex Morphology,” 9th
Northeast Complex Fluids and Soft Matter Workshop (NCS9), University of
Pennsylvania, Philadelphia, Pennsylvania, May 2018.

v



先做人，其次做艺术家，再次做音乐家，最后做钢琴家。
You must first of all be a man, then an artist, then a musician
and lastly a pianist.

傅雷
Fu Lei

Dedicated to my loving parents Yinrui Yang, Hongren
Gu, and endearing partner Vivi.

vi



ACKNOWLEDGMENT

I give my deepest thanks to my advisors, Prof. Linda Cummings and Prof. Lou

Kondic. They have not only taught me the ways of scientific research and methods

of effective writing, but also, more importantly, given me the freedom to pursue my

own ideas in the various inquiries on which we have embarked. Their open guidance

has led to the breadth of fields in applied mathematics endowed in this dissertation.

I would like to thank Prof. Pejman Sanaei. He was my student mentor who

happened to see that my research interest and his crossed when I just arrived at NJIT.

It was he who introduced to me the various mathematical aspects of the problem in

membrane filtration. He pointed to the road I have been paving for the past six years.

I also thank my committee members, Prof. James Maclaurin, Prof. Anand Oza,

and Prof. Ian Griffiths for their insightful comments on my work. I also thank Prof.

Griffiths for hosting my visit in the summer of 2019 at Oxford University.

Several professors have taught courses that left marks on my (ongoing) learning

process, including Prof. Cyrill Muratov, Prof. Brittany Froese Hamfeldt and Prof.

David Shirokoff among many others. I give them my sincerest thanks.

I thank the NSF for supporting my research (grant No. DMS-1615719 and

DMS-2133255). I am grateful for NJIT and the Department of Mathematical Sciences

for accommodating my learning and research experience with the most helpful and

gracious staff and ample facilities.

Immense gratitude is given to my friends and colleagues, Axel, Erli and Jimmie,

among many others, for the endless discussions and selfless support through the years

of studies, and for being trustworthy buddies. Jim, we gotta finish that Hele-Shaw

project.

I thank my parents, Yinrui Yang and Hongren Gu, for not only bringing me

up, suggesting the major of mathematics, but also giving me the maximum possible

vii



amount of freedom and space to pursue what I love. The sacrifice they have made

for this Ph.D. to come through, though not tangible to observers, secretly shows up

everywhere.

Last but not least, I thank my partner, Vivi Liu for spending most of my Ph.D.

years by my side, supporting the quality of my life while also putting up with my

clumsy mental health management. Without her, my mind would have slipped far

away and this journey would have been much more uphill.

viii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation for Membrane Filtration . . . . . . . . . . . . . . . . . . . 1

1.2 Structure of This Dissertation . . . . . . . . . . . . . . . . . . . . . . 5

2 ON THE INFLUENCE OF PORE CONNECTIVITY ON PERFORMANCE
OF MEMBRANE FILTERS . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Homogeneous Model . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Heterogeneous Model . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Measures of Performance . . . . . . . . . . . . . . . . . . . . . 21

2.4 Scaling and Nondimensionalization . . . . . . . . . . . . . . . . . . . 22

2.4.1 Homogeneous Model . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Heterogeneous Model . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Results for Homogeneous Membranes . . . . . . . . . . . . . . 26

2.5.2 Results for Heterogeneous Membranes . . . . . . . . . . . . . . 38

2.6 Ending Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 A GRAPHICAL REPRESENTATION OF MEMBRANE FILTRATION . 53

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Graph Theoretical Setup . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Graph Generation for a Membrane Network . . . . . . . . . . . 59

3.3.3 Flow in an Edge . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

3.3.4 Operators and Function Spaces on Graphs . . . . . . . . . . . 62

3.3.5 Flow on a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.6 Foulant Advection and Adsorptive Fouling . . . . . . . . . . . 65

3.3.7 Measures of Performance . . . . . . . . . . . . . . . . . . . . . 69

3.4 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.1 Geometric Network Parameters . . . . . . . . . . . . . . . . . . 73

3.6.2 Initial Void Volume and Average Number of Neighbors . . . . 74

3.6.3 Tortuosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Ending Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 NETWORK-BASEDMEMBRANE FILTERS: INFLUENCEOF NETWORK
AND PORE SIZE VARIABILITY ON FILTRATION PERFORMANCE 86

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Setup: General Pore Networks . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Network Generation . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.3 Advection and Adsorptive Fouling . . . . . . . . . . . . . . . . 92

4.3.4 Network Notations . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.5 Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Investigation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Detailed Example: Low Porosity Network in Low Noise Regime 101

4.5.2 Results for Varied Noise Amplitude and Porosity . . . . . . . . 105

x



TABLE OF CONTENTS
(Continued)

Chapter Page

4.6 Ending Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 ON PORE-SIZE GRADED MEMBRANE NETWORKS . . . . . . . . . . 115

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Pore Size-Graded Networks . . . . . . . . . . . . . . . . . . . . 120

5.3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6.1 Total Porosity Evolution . . . . . . . . . . . . . . . . . . . . . 136

5.6.2 Band Porosity Evolution . . . . . . . . . . . . . . . . . . . . . 138

5.6.3 Performance Metrics with Flux Threshold . . . . . . . . . . . . 142

5.7 Ending Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 149

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.1 Non-constant Band Radius for Pore-size Graded Networks . . . 153

6.2.2 Sieving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

APPENDIX A SUPPLEMENTARY MATERIAL FOR CHAPTER 2 . . . . 160

A.1 Norms for Accuracy and Sufficient Penetration . . . . . . . . . . . . . 160

A.2 Calculations and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 162

APPENDIX B SUPPLEMENTARY MATERIAL FOR CHAPTER 3 . . . . 166

B.1 Justification for the Pore Radius Evolution Model . . . . . . . . . . . 166

B.2 Tortuosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.3 Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xi



TABLE OF CONTENTS
(Continued)

Chapter Page

APPENDIX C SUPPLEMENTARY MATERIAL FOR CHAPTER 4 . . . . 176

C.1 Network Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.2 The Graph Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.4 Tortuosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.5 Porosity Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

APPENDIX D SUPPLEMENTARY MATERIAL FOR CHAPTER 5 . . . . 182

D.1 Junctions and Pores in a Band . . . . . . . . . . . . . . . . . . . . . . 182

D.2 Number of Random Points in Each Band . . . . . . . . . . . . . . . . 184

D.3 Analytical Results on Pore Closure Time . . . . . . . . . . . . . . . . 185

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xii



LIST OF TABLES

Table Page

2.1 Key Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Key Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Key Dimensional Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Key Dimensionless Parameters . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Key Output Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Key Nondimensional Parameters . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Key Nondimensional Quantities . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Optimal Radius Gradient Value for Each Performance Metric . . . . . . 146

xiii



LIST OF FIGURES

Figure Page

1.1 Schematic of three membrane filtration methods: (a) tangential; (b) dead-
end and (c) direct-flow. Figure courtesy of [54]. . . . . . . . . . . . . . . 4

2.1 Magnified membrane images showing (a) gradation of pores sizes through
membrane depth, and in-plane inhomogeneity of pore sizes [76];
(b) connectivity and junction layer [141] and (c) pore size distributions
[119]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Illustration of a connected, branched-pore membrane and volumetric flow
rate balance at pore junctions. (a) An m = 3 layer pore-network with
unit cell area (2W )2. (b) Schematic bifurcation of a single pore (left)
and two pores merging into one (right), homogeneous in both cases.
In the former case Q1 = 2Q2, and in the latter 2Q1 = Q2, by mass
conservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Schematic of a connected branching pore membrane with m = 2 layers,
pressure drop P0 and upstream particle concentration C0. Flow is
assumed to be entirely in the X-direction. . . . . . . . . . . . . . . . 20

2.4 The three distinct pore architectures compared: (a) single-inlet non-
connected branch membrane; (b) single-inlet connected membrane;
(c) two-inlet connected membrane. The ordered color coding (black,
blue and red) is used throughout Section 2.5. . . . . . . . . . . . . . . 25

2.5 Homogeneous models: pore radius evolution for each layer. (a) Non-
connected branch membrane (b) single-inlet connected (c) two-inlet
connected membrane. For all calculations, ϕtop = 0.539 (maximum
comparable porosity), λ = 30, m = 5 and the initial resistance r0 = 1. 27

2.6 Homogeneous models: volumetric flow rate evolution for non-connected
branch membrane (black), single-inlet connected (blue) and two-inlet
connected membrane (red). The solid black curve lies under the solid
blue curve. For all calculations, ϕtop = 0.539 (maximum comparable
porosity), λ = 30, m = 5 and the initial resistance r0 = 1. . . . . . . . 27

xiv



LIST OF FIGURES
(Continued)

Figure Page

2.7 Homogeneous models: volumetric flow rate versus throughput for
non-connected (black), single-inlet connected (blue), and two-inlet
connected (red) membrane structures. Curves with the same line style
represent equivalent values of ϕtop for each model. The solid black curve
lies under the solid blue curve. For all simulations, λ = 30, m = 5 and
initial resistance r0 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Homogeneous models: (a) total throughput versus ϕtop for non-connected
(black), single-inlet connected (blue), and two-inlet connected (red)
membrane structures. (b) Volumetric flow rate versus throughput for
connected membranes with ν1-inlet pores and ϕtop = 0.539. For all
simulations, λ = 30, m = 5 and initial resistance r0 = 1. . . . . . . . . 29

2.9 Homogeneous models: (a) initial particle concentration at outlet of first
layer, c1(0), versus deposition coefficient λ for single-inlet structures.
Note that the results are identical for both connected and non-connected
single-inlet models because they have the same initial top pore radius
a10. (b) Initial particle concentration at i-th layer pore outlets, ci(0),
versus λ for single-inlet non-connected (black) and connected (blue)
models with ϕtop = 0.709. The vertical range is extended below zero
for clarity only; ci(0) > 0 always. For all simulations, m = 6 and r0 = 1. 31

2.10 Homogeneous models: total throughput versus λ for single-inlet non-
connected (black) and connected (blue) membrane structures. Each
set of curves represents equivalent initial top layer porosity. Each black
dot is an equivalence point between the two models such that the same
total throughput is achieved with the same λ. For all simulations,m = 6
and r0 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Homogeneous models: (a)-(c) concentration at pore outlet versus
throughput for (a) non-connected, (b) single-inlet connected, and
(c) two-inlet connected membrane structures. (d) Two-inlet connected
model: the concentration of particles leaving the first layer downstream
surface (c1, solid red curve) and cross-sectionally averaged first layer
pore velocity (up,1, dashed red curve) are shown. For all calculations,
λ = 30, m = 5, κ = 0.6 and r0 = 1. . . . . . . . . . . . . . . . . . . . . 34

2.12 cdiff (λ;m) defined in Equation (2.45) versus λ for (a) single-
inlet non-connected (b) single-inlet connected and (c) two-inlet
connected membrane structures. (d) Zero level set of the function g
defined in Theorem 1 for single-inlet model (blue), two-inlet model (red)
and the branch model (black). The colored data points are the pairs
of x-intercepts with their respective m values from panels (a), (b) and
(c), respectively. For all simulations, ϕtop = 0.4 and r0 = 2. . . . . . . 37

xv



LIST OF FIGURES
(Continued)

Figure Page

2.13 Heterogeneous models: average volumetric flow rate Equation (2.53)
versus throughput Equation (2.54) of single-inlet (blue) and two-inlet
(red) connected models for varying noise amplitude, b. (a),(c) κ = 0.95
and (b),(d) κ = 0.6. All results are averaged over 104 simulations, with
common parameters λ = 30 and m = 5. . . . . . . . . . . . . . . . . . 42

2.14 Heterogeneous models: average volumetric flow rate versus throughput of
non-connected branch model (black); and connected branch model with
νi = 2i−1 (magenta), (a),(c) κ = 0.95 (b),(d) κ = 0.6. All results are
averaged over 104 simulations, with common parameters λ = 30 and
m = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.15 Heterogeneous models: results for the single-inlet connected model.
(a) Initial average volumetric flow rate ub(0) (blue) and reciprocal
of initial average resistance 1/rb(0) (black) vs. noise amplitude, b.
(b) a large sample approximation of the Jensen gap J (given in
Equation (2.57)), vs. noise amplitude, b. All results are averaged over
104 simulations, with common parameters λ = 30 and m = 5. . . . . . 43

2.16 Heterogeneous models: average initial resistance for (a) single-inlet
connected model and (b) two-inlet connected model. All results are
averaged over 104 simulations, with common parameters m = 5 and
λ = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.17 Heterogeneous models: partial derivative of expected initial resistance
with respect to noise amplitude b for (a) single-inlet connected model
and (b) two-inlet connected model. For all simulations, m = 5 and
λ = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.18 Initial average membrane outlet concentration versus geometric
coefficient, κ, for the single-inlet connected model. For all simulations,
m = 5 and λ = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Schematic: (a) an experimental image with lateral view of a filter
cross-section [6]; (b) a corresponding (partial) graph representation with
inlets on the top surface (blue) and interior pore junctions and throats
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xvi



LIST OF FIGURES
(Continued)

Figure Page

3.2 (a) 2D schematic of the 3D graph generation; (b) 3D realization with
the periodic metric. Labels for (a) and (b): red filled circles form
Vint, blue filled circles form induced inlets Vtop, and black filled circles
form induced outlets Vbot. In (a), blue dotted lines are cutting lines
(planes in 3D), and magenta circles are discarded points. The blue and
orange dotted circles form the search annulus enforced by D and Dmin.
In (b), periodicity is enforced only through the four interior walls per
Equation (3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Total throughput hfinal vs initial void volume Vol0 (loglog scales).
(a) Isolated network setup; (b) periodic setup. Line of best fit for
d = 0.45 is in black, with gradientm given in legend (with R2 = 0.99989
and 0.99993, respectively). Distribution of error for each data point is
given in the histograms in the supplement. . . . . . . . . . . . . . . . 75

3.4 Total throughput hfinal vs average number of neighbors N (loglog scales).
(a) Isolated network setup; (b) periodic setup. Line of best fit for
d = 0.45 is in black, with gradient m given in legend. Distribution of
error for each data point is given in the histograms in the supplement.
Same setup for (c) and (d) with hfinal/Vol0 as vertical axis (loglog scales). 76

3.5 Final accumulated foulant concentration cacm(tfinal) vs initial void volume
Vol0 (loglog scales). (a) Isolated network setup; (b) periodic setup.
Distribution of error for each data point is given in the histograms in
the supplement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Final accumulated foulant concentration cacm (tfinal) vs tortuosity τ
(semilog plot). (a) Isolated network setup; (b) periodic setup. The
line of best fit is in black in each plot, with gradient m given in the
legend (with R2 = 0.99838 and 0.9961, respectively). The blue and
red boxes at top left are shown as zooms in (c) and (d), respectively,
for small tortuosity values (same data as (a) and (b), respectively).
Distribution of error for each data point is given in the histograms in
the supplement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7 Total throughput hfinal vs tortuosity τ (semilog plot). (a) Isolated setup;
(b) periodic setup. Error distribution for each data point is provided
in the supplement. Same scale for hfinal as in Figure 3.3. . . . . . . . . 81

3.8 Initial void volume vs tortuosity (semilog plot). (a) Isolated setup;
(b) periodic setup. Error distribution for each data point is provided
in the supplement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xvii



LIST OF FIGURES
(Continued)

Figure Page

4.1 2D schematic of the 3D network generation with periodic boundary
conditions showing: interior junctions Vint (red filled circles); pore inlets
Vin (blue filled circles) and outlets Vout (black circles) induced by the
cutting process; the cutting planes blue dashed lines; discarded points
(magenta filled circles). Solid lines represent pores, while dash-dotted
lines are pores that arise from the periodic boundary condition (red are
interior to the membrane). lmaxW and δW are prescribed maximum
and minimum pore lengths, respectively. . . . . . . . . . . . . . . . . . 90

4.2 Schematic of a 3D network with lmax = 0.15 and Ntotal = 2000. Solid
red lines are interior pores; dashed red lines are pores created by the
periodic boundary conditions. Blue dots are inlets. Black dots are
outlets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Scatter plot of throughput versus porosity, under (a) noise realizations,
(b) network realizations (with each network perturbed once). The black
rectangle in (b) shows the horizontal and vertical range of (a). For both
plots, β = 0.06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Histogram of throughput score, under (a) noise realizations, (b) network
realizations (with each network perturbed once). Same parameters as in

Figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Scatter plot of concentration versus tortuosity. Same description and

parameters as in Figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Histogram of tortuosity under (a) noise realizations (b) network
realizations. Same parameters as in Figure 4.3; same data as Figure 4.5. . 105

4.7 Histogram of concentration and tortuosity scores, respectively under
(a,c) noise realizations and (b,d) network realizations. Same parameters

as in Figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Mean throughput hnoise, hnet (a,b) and mean throughput scores ĥnoise, ĥnet
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ūb (0) over 10

5 simulations; (b) exact large number limit E [rb (0)]. . . . 165

xix



LIST OF FIGURES
(Continued)

Figure Page

B.1 Tortuosity limit: (a) Isolated setup (unit cube); (b) periodic setup (unit
cube and a square of side length 2 containing the bottom surface of the
unit cube). X (blue) and Y (red) are uniformly sampled from the top
and bottom membrane surface, respectively. K (black) in both figures
is the projection of X onto the bottom surface; XK in both figures has
length 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.2 2D schematic of a reflected-Y network with labelled physical quantities
presented in Section 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.1 Schematic of a simplified setup for Theorem 2. Colored junctions and
pores correspond to each band as follows: red upstream pores and indigo
downstream pores. Blue dots are inlets. The red dot is an interior
junction. White dots are outlets. Here nup = 4 and ndown = 5. . . . . 186

xx



CHAPTER 1

INTRODUCTION

1.1 Motivation for Membrane Filtration

The practice of filtration dates back to primitive water filters made with rushes

and plants. Ancient Egyptians used porous clay pots as ceramic filters to remove

sediments from boiled water. The Greek physician Hippocrates invented the

“Hippocrates Sleeve”, a cloth bag that serves a similar purpose with better control

over the undesired content. Sushruta Samhita, an ancient Sanskrit text on medicine,

suggested using sand and gravel to purify water, a water treatment technique still

used in the modern world [9]. However, these water purification methods were still

insufficient to prevent water-borne illnesses caused by microbes and bacteria. Richard

Adolf Zsigmondy invented the first membrane filters at the turn of the 20th century

that saw commercial production and uses in microbiology and assessment of potable

water [146]. Through the long history of filtration, the porous gaps within filter

materials have been getting smaller and smaller, from slivers between leaves and

stems, to sand grains, and finally polymer fibers only microns apart. This trend

primarily owes to advances in other areas such as imaging and chemical analysis, which

inform our knowledge about the size of some of the unwanted substance particles in

the process fluid, from visible rocks and soil sediments to previously undetectable

microorganisms and heavy metal ions [136].

Nowadays, the use of membrane filters spans a wide range of modern appli-

cations. Implementations of membrane filters are ubiquitous in industrial plants

serving a variety of functions such as waste water treatment [59], radioactive sludge

removal [25, 2] and nuclear waste treatment [33]. Commercial membrane filters

also aid in manufacturing processes such as water purification [88], beer clarifi-
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cation [133, 78], semiconductor and microelectronics processing [59] and membrane

bioreactors [88, 35]. Furthermore, daily household cleaning efforts, such as air

conditioning [80, 36, 3, 134], kitchen grease filtration [137] and counter-top water

purification systems [11], also benefit from utilizing membrane filters.

There are two general types of membrane materials used in commercial filters:

polymeric and ceramic [65, 42], with further sub-categorizations depending on the

specific chemical compositions. Most polymeric membranes are made with low-cost

organic materials and thus are popular in industrial applications. However, they are

often not suited for applications involving large thermal fluctuations and aggressive

chemical treatment. Ceramic membrane filters can fill this role, and offer additional

benefits such as high hydrophilicity to produce a larger fluid filtrate flux [79]. Though

ceramic filters tend to yield better filtration results, their specific design using metallic

oxides tends to increase the cost significantly. Finding the proper design with existing

materials to balance production costs has become a central relevant topic in membrane

filtration research.

Membrane filters also admit a variety of underlying pore microstructures that

are either formed naturally or manufactured to satisfy specific needs in applications.

Common configurations include node-fibril [105], flat-sheet [114] and multitube [84].

Four distinct filtration processes may be distinguished, dictated by the scale of the

pore size: microfiltration for removing micron-sized particles such as colloids and

smoke molecules, ultrafiltration for filtering bacteria and viruses, nanofiltration for

removing monovalent ions, and reverse osmosis for removing even smaller multivalent

ions and particles (making it popular in obtaining pure water) [131]. At each

associated pore scale in any filtration process, there are also three main fouling

mechanisms: 1) adsorption, where particles far smaller than the pore size adhere

to the pore walls due to chemical attraction between the particle and the membrane

material; 2) sieving, where particles with size at the order of the pore size partially

2











0 2 4

10-3

0.5

0.52

0.54

(a) (b)

(c) (d)

Figure 5.6 Same setup as Figure 5.4. amax = 0.2.

5.6.3 Performance Metrics with Flux Threshold

The results discussed so far are based on performance metrics evaluated at the end

of the filter’s lifetime, when there is no feasible flow path and flux through it falls to

zero. In practice, when industrialists observe a low flux level in the filtration process,

they tend to discard the fouled filters and replace with fresh ones. In this section, we

mimic this procedure by imposing a minimal threshold for the flux level at which we

halt the process and collect statistics of the performance metrics up to this critical
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time. The symbols for each performance metric F evaluated with an imposed flux

threshold are labelled with a subscript, Fthreshold.

(a) (b)

(c) (d)

Figure 5.7 (a) Total throughput; (b) ACO; (c) filter mass capacity; and (d) porosity
usage. Flux Threshold is 2× 10−6.

Figure 5.7 shows the performance metrics of radius-graded membrane networks

where filtration is halted after the flux level drops below 2 × 10−6, which is

approximately 30% of the initial flux for uniform networks, and roughly 80% of that

for the steepest-graded network with gradient value s = 4 × 10−3 (see the vertical

scale of Figure 5.2b). From this observation alone, we anticipate that filters with

smaller initial fluxes, namely, networks with large radius gradients, are more prone
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to halt filtration prematurely and are thereby disadvantageous under this filtration

mode.

In Figure 5.7a, we plot total filtrate throughput against radius gradient for

radius-graded networks that operate until they reach the imposed flux level. We again

observe a maximizing radius gradient value, but note that its value at s = 1.5× 10−3

is smaller than that in Figure 5.2a (s = 2 × 10−3), where networks operate until

flux extinction. Thus, under the new threshold-based stopping criterion, filters with

smaller radius gradient (and hence larger initial flux) are more favored in terms

of throughput production. In fact, networks with s ≥ 3 × 10−3 underperform

more significantly than the uniform networks because their total filtering time is

greatly shortened due to the imposed flux threshold. Figure 5.7b shows accumulated

concentration of foulant against radius gradient. Here, we observe a monotone trend

in both radius gradient s and in maximal pore length amax. These trends maintain

qualitatively the same shape and order of magnitude as seen in Figure 5.2c, though

we observe that here the concentration is pointwise (for every s) larger than that in

Figure 5.2c. This is expected because filtration is stopped prematurely. In Figure 5.7c,

we show the relationship between filter mass capacity and radius gradient under

the flux threshold. We observe also a smaller maximizing radius gradient than in

Figure 5.2d. This change is consistent with Figures 5.7a and 5.7b by the definition of

capacity (Equation (5.27c)). Lastly, we present the membrane porosity usage against

radius gradient in Figure 5.7d to correlate with Figure 5.7c. Indeed, the trends in

both figures are very similar.

The results in Figure 5.7 imply that with the imposed lower threshold on fluid

flux, membrane networks with a radius gradient of s = 1.5×10−3 should be preferred

over others due to their combined score of filtrate production, particle retention

capabilities, filter mass capacity and porosity usage. Once again, we note that this

optimal value is independent of maximal pore lengths considered and thus is not
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influenced by membrane geometry. We would, however, anticipate that the optimal

radius gradient will change (increase) if the imposed lower flux threshold is changed.

5.7 Ending Remarks

In conclusion, we have devised a general procedure to generate pore-size-graded

banded membrane pore networks. We have studied the influence of the pore-size

(radius) gradient s, and maximal pore length amax, on the performance metrics of

these networks, under two setups of relevance to applications – filtration until flux

extinction, or until a flux lower threshold is reached. We have also determined

optimizing radius gradient values for some of the performance metrics considered

(compiled in Table 5.3).

When filters run to extinction, we find that total filtrate throughput satisfies a

non-monotone trend against pore radius gradient. More precisely, for the parameters

we studied, membrane networks with a pore radius gradient value of s = 2 ×

10−3 achieve maximal total filtrate throughput. However, accumulated foulant

concentration at the membrane outlet is monotonically decreasing in s, suggesting

that, for foulant control purposes only, one should prefer membrane networks with

a radius gradient as large as possible. A metric that attempts to combine these

two requirements is the mass capacity of the membrane, defined as the product of

total throughput and accumulated foulant concentration in the membrane interior

(per Equation (5.27c)). This quantity is also found to be non-monotone in s, with

a pronounced maximum achieved at a pore-radius-gradient value of s = 2.5 × 10−3.

This trend is affirmed by further investigation on band porosity evolution, where

we observe a strong correlation between filter mass capacity and porosity usage in

downstream bands of the membrane.

However, when we stop the filtration at a prescribed minimum flux level, we

observe more universal behaviours in terms of performance metrics. For the chosen
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Table 5.3 Optimal Radius Gradient Value for Each Performance Metric

Performance Metric (Section 5.4) Metric Symbol Optimal Radius Gradient

Until flux extinction

Total throughput hfinal 2× 10−3

Initial flux qout (0) 0

Accumulated concentration of foulant

at membrane outlet

cfinal 0

Filter mass capacity ξ 2.5× 10−3

Membrane porosity usage ∆Φ 3× 10−3

Until flux threshold

Total throughput hthreshold 1.5× 10−3

Accumulated concentration of foulant

at membrane outlet

cthreshold 0

Filter mass capacity ξthreshold 1.5× 10−3

Membrane porosity usage ∆Φthreshold 1.5× 10−3
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model parameters, total filtrate throughput, filter capacity and porosity usage are all

maximized at a radius gradient value of s = 1.5 × 10−3, while accumulated foulant

concentration at membrane outlet remains a monotone decreasing function in radius

gradient. The fact that we observe a smaller optimal radius gradient than that in the

former filtration setup is mainly because of the advantage given to filters with large

initial flux. Uniform networks benefit from this practice as we clearly see them rise up

the ranks into the better performing filters. At the same time, graded networks with

large radius gradients perform poorly because they tend to halt prematurely due to

their small initial fluxes inflicted by the high-resistance downstream pores. We also

anticipate that the optimal gradient value(s) for performance metrics considered in

this chapter will depend on the flux threshold we impose (indeed, we expect that s = 0

may become the optimal value when the imposed flux threshold is small enough).

We also found that the observed trends in pore radius gradient persist for all

values of the maximal pore length amax considered. This suggests that our findings of

how performance metrics depend on pore radius gradient are independent of variations

in membrane interior microstructure (characterized by amax) and solely dependent on

the variations in radius gradient.

For future work, we will include intra-layer pore size variations in radius graded

banded networks. One analytical result based on the governing equations derived

from our model of this chapter suggests that membrane networks with constant band

radius achieve zero flux only when all inlets on membrane top surface have closed. In

other words, filtration does not halt due to critical disconnections in the interior of

the network but only when the radii of all inlets on the top surface have vanished.

With intra-layer pore size variations, adsorptive behaviours at the global scale may

become more complicated and more interesting than the constant band radius case.

Additionally, other fouling mechanisms such as sieving may be introduced to provide

a fuller view of the membrane filtration process. Furthermore, though we did not vary
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λ (a band-independent parameter that captures particle-membrane affinity) in this

study, we anticipate that variations in λ will only shift the results vertically without

affecting the overall trend in radius gradient. An idea for future work would be to

introduce band specific λk’s, which represent multilayered membrane filters consisting

of different materials.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Here, we conclude the findings from previous Chapters and present some ongoing

and future work. In Section 6.1, we highlight the essentials of the constructed

mathematical models and summarize important messages from this dissertation. In

Section 6.2, we present two open questions with some supporting preliminary details.

6.1 Conclusions

In Chapter 2, we explored the effect of intra-layer pore interconnectivity and

pore size heterogeneity in multilayered membrane filters via three simple layered

pore structures (representing basic building-blocks of a membrane): single-inlet

non-connected branching pores; single-inlet connected pores; and two-inlet connected

pores (see Figure 2.4). We found that for homogeneous models (membranes with the

same initial pore radius in each layer), the relative performance of the structures is

not strongly influenced by intra-layer connections. However, this observation did not

persist in the heterogeneous case, when the pore size in each layer was perturbed by

uniform noise. There, we discovered that the performance metrics of non-connected

pore structures incur much wider variations as perturbation strength increases than

the relatively robust connected models. As a result, intra-layer connectivity should

be favored as part of the membrane design when the membrane has intrinsic or

manufactured pore size variations.

In addition to the findings on the influence of intra-layer connectivity and pore

size heterogeneity, we also observed some other curious phenomena. For instance, we

saw that foulant concentration at the membrane outlet may increase over time because

the rate of particle advection temporarily dominates that of particle deposition on the

wall during pore constriction. Another example pertained to the effect of increasing
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the magnitude of the pore-size perturbations (the “noise strength”) on the average

initial resistance of the three considered membrane pore structures. We found that

the initial resistance of the single-inlet connected membrane does not always decrease

as noise strength increases, but that of the two-inlet case does. This observation

suggested that a two-inlet (or multi-inlet) connected membrane design is favorable.

In Chapter 3, we generalized the models of Chapter 2 to a network of connected

pores. We first devised a random graph generation protocol designed to mimic real

membrane pore networks. Pore junctions are connected when they lie within a certain

maximal pore length, but outside a prescribed minimal distance. We then formulated

the fluid flow, foulant advection and pore radius evolution first in each pore and then

on the entire network using conservation principles. This system of equations was

expressed as weighted graph operators acting on physical quantities such as pressure

and foulant concentration at each pore junction. Meanwhile, these weighted graph

operators fully characterized how the pores are connected. All simulations in this

chapter assumed that the pores in the network have the same initial radius.

The main findings of Chapter 3 were two strong relationships between selected

membrane geometric factors and performance metrics, nearly independent of model

input parameters such as the maximal pore length (which we vary in our simulations).

First, we found that membrane total throughput satisfies a power law against

initial membrane porosity. This relation was particularly strong when initial

porosity is larger than 0.5, a typical range for real commercial membrane filters.

Second, we noted that the accumulated foulant concentration at the membrane

outlet satisfies a negative exponential relationship against membrane tortuosity (the

average normalized distance travelled by a fluid particle from membrane inlets on

the top surface to outlets on the bottom surface). We also provided a primary

recommendation for industrial practitioners: one should always favor membrane

networks with shorter characteristic pore lengths, whether the industrial requirement

150



is on minimal foulant concentration threshold or a fixed amount of filtration

production.

In Chapter 4, we extended the general network model of Chapter 3 to include

pore size (radius) variations as a model for manufacturing defects/inhomogeneities of

the membrane pores. To model the pore size variations, we perturb each pore radius

by a uniformly distributed noise with prescribed amplitude. We simulated the fluid

flow, foulant advection and pore radius evolution on this network for a variety of noise

distribution widths, and studied their influence on membrane performance metrics.

We also compared this influence to the impact of network variations due to the random

network generation procedure. Lastly, by noting that pore size variations inevitably

change initial membrane porosity (an influential feature as noted in Chapter 3), we

constructed porosity-corrected performance metrics, that is, a score involving the

change in the chosen metric relative to that of an equivalent uniform pore-size network

with equal porosity.

Our main finding was that the effect of pore size variations on membrane

performance is eclipsed by that of network variations inherent to the random network

generation protocols, unless the amplitude of the noise added to the pore sizes

is overwhelmingly large. We further confirmed that initial membrane porosity is

an important feature of the filter, by studying the trends of porosity-corrected

performance metrics against noise amplitude. Lastly, we showed that having pore size

variations appears to be a double-edged sword as regards membrane performance –

it increases both total throughput (favorable) and accumulated foulant concentration

in the filtrate (unfavorable) as the noise amplitude increases.

In Chapter 5, we studied fluid and foulant advection on pore size-graded

networks and investigated how pore size gradient influences membrane performance

metrics. We first constructed banded networks (large pores upstream, small pores

downstream) that are natural extensions of the networks used in Chapters 3 and 4.

151



We reduced the size of the parameter space to study by enforcing two constraints:

equal porosity in each band of the network; and fixed average pore radius across all

bands, for any radius gradient considered. The goal was to quantify the effect of pore

size gradient on performance metrics under two industrial standards – running the

filtration until 1) zero flux or 2) a prescribed flux lower threshold.

Under the first standard, our results suggest that there is a radius gradient value

that maximizes total throughput. Accumulated foulant concentration at membrane

pore outlets appears to be a monotone decreasing function of radius gradient. Particle

retention capability of the membrane (the total mass of impurity retained by the

membrane over its lifetime) also appears to be optimized by a certain pore radius

gradient (smaller than that which maximizes throughput). Within the limitations of

our study, all findings were independent of maximal pore length, suggesting that the

conclusions may be universal for the considered membrane pore structures.

Under the second standard where filtration is halted at some prescribed flux

level, we found that the aforementioned trends from the first standard persisted,

however, with optimal radius gradients shifting to smaller values. We believe this

phenomenon is due to the flux-based cutoff adding much weight to the initial flux

that such networks admit, a quantity that may be small for the more severely graded

networks due to the relatively large initial resistance originating from their smaller

downstream pores.

Through the main body of this dissertation, we have noticed the convenience and

significance of the general pore network model. It lends to a systematic formulation of

simple fluid dynamics on complicated geometries by capturing the network structure

with conservation laws. We find this approach particularly promising as a general

study of membrane filtration problems and look forward to applying it to other

interesting dynamical problems posed on networks.
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6.2 Future Work

In this section, we provide some basic setups for two future projects. In Section 6.2.1,

we consider intra-layer pore radii variations in the banded networks introduced in

Chapter 5 and explain the numerical procedures that generate radius-graded banded

networks with prescribed physical and statistical constraints. In Section 6.2.2,

we discuss membrane filtration in a network of pores with adsorption and sieving

operating simultaneously. We investigate how the two fouling mechanisms interact

and affect the performance of membrane networks in terms of total throughput and

accumulated foulant concentration.

6.2.1 Non-constant Band Radius for Pore-size Graded Networks

In this section, we explain the necessary modifications to the procedure shown in

Section 5.3.1 in order to incorporate pore size variations in each band. By this point,

we already know the constant band radius Rk that follows Equation (5.1). We start

by fixing a single network as generated in Section 5.3.1 with radius gradient s and

initial band pore radii Rk. Our goal then is to determine the statistical parameters,

namely, mean and standard deviation, of the pore radius distribution so that the

average porosity is the same for each band (similar to Equation (5.5)).

We assume that Rk,ij, the radius in the kth band for pore eij, follows some pore

size distribution Fk (with nonnegative support). We denote the expectation operator,

the mean and variance under this distribution by E [·], µk and σ2
k, respectively. The

average band porosity satisfies

E [Φk] =

π
2
E
[
R2

k,ij

]∑
eij∈E Lk,ij

W 3/m
=

π
2
(µ2

k + σ2
k)
∑

eij∈E Lk,ij

W 3/m
, (6.1)

where we use the definition of the second moment of a probability distribution.
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For each band, we have two unknown parameters µk and σ2
k, for which we

provide two constraints as follows. First, we set

µ2
k + σ2

k = R2
k, (6.2)

where Rk is the constant band radius introduced in Equation (5.1) in Section 5.3.1.

This ensures that the average band porosity E [Φk] = Φconst
k (see Equation (5.6)), for

k = 1, . . . ,m.

Second, we set

CVk :=
σk

µk

= α, k = 1, . . . ,m, (6.3)

where CVk is known as the Coefficient of Variation (CV in short) of the distribution

Fk. Setting CVk equal to some prescribed value α for every band ensures that the

extent of pore radius variation relative to the mean radius is the same. We refer to α

as the self-similarity constant and study the influence of its variations on membrane

network properties and performance.

We observe that implementing Equations (6.2) and (6.3) yields a different

gradient for the average band radius E [Rk,ij]. Indeed, using both constraints, we

have

µk =
Rk√
1 + α2

(6.4)

which implies that the average band radius has a gradient of s√
1+α2 . This makes sense

because when α = 0, we retrieve the constant band radius case.

Altogether, for a fixed network generated from Section 5.3.1 with gradient s,

we now have devised a pore radius distribution Fk for the kth band, with mean µk

and variance σ2
k prescribed by Equations (6.2) and (6.3). We present an example

distribution below.
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Example 1. If Fk is a log-normal distribution with parameter pair
(
µk,p, σ

2
k,p

)
,

determined by the desired mean pore size µk and variance σ2
k (and thus R2

k is also

known), then

µk,p = ln

(
µ2
k√

µ2
k + σ2

k

)
, σ2

k,p = ln

(
1 +

σ2
k

µ2
k

)
. (6.5)

6.2.2 Sieving

The motivation for this section originates partly from experiments and numerical

simulations conducted by Beuscher [13]. In that work, mono-sized spherical particles

were sent through several layers of parallel circularly-cylindrical tubes with various

radii. Each particle traverses through the layers until it encounters a tube with radius

smaller than its own. This size exclusion mechanism, or sieving, eventually fouls the

multilayered membrane filter.

In practice, the sieving process involves particles of size comparable to the pore

sizes (simply, sieving particles, hereafter). The blockage time scale is also much shorter

than that of adsorption. Sieving manifests in primarily two ways characterized by

the extent of blockage – complete blocking and incomplete blocking. In the former

case, sieving particles completely cover an inlet or clog a pore throat in the interior

of the membrane, prohibiting local fluid flow henceforth. In the latter case, sieving

particles partially cover the entrance of a pore throat and thus impede (but not

completely prohibit) fluid flow by significantly narrowing the size of the entrance in a

short amount of time (occurs much faster than adsorption). Feed solution still leaks

through the partially blocked channel but at a considerably smaller volumetric flow

rate. Due to the different natures of the sieving process in the two cases, we make a

distinction between complete and incomplete blocking in our discussion.

Assumptions

We introduce some general assumptions about the sieving process and then provide

the proper definitions to set up the numerical simulation. We will continue to
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use terminology defined for the graphical representation of a membrane network in

Section 3.3.

Sieving particles in the feed solution are assumed to arrive at the membrane

top surface following a Poisson process N (T ) with rate Γ, i.e.,

Prob (N (T ) = k) =
(ΓT )k

k!
e−ΓT , k = 0, 1, 2 . . . . (6.6)

where Prob (N (T ) = k) is the probability of having k arrivals by time T . Particle

sizes Sk (indexed by arrival) are independent and identically distributed (i.i.d.) with

cumulative distribution function F , i.e.,

Prob (Sk < s) = F (s) .

When the k-th particle of size Sk arrives at the entry of a particular edge (pore)

eij, a size comparison is made: if the particle is strictly smaller than the radius

of the edge Rij, it will immediately pass through and arrive at the vertex j (pore

junction). The subsequent direction of particle movement at the junction is governed

by preferential flow (defined more precisely in the next subsection) — the larger the

flux in an edge, the more likely the particle will take that route. A particle will

continue to travel in this fashion through the membrane until either it enters an edge

with radius smaller than (or equal to) its size and thereby blocks the pore; or it exits

the membrane.

We also consider the following general assumptions that apply to any sieving

process considered in this work.

Assumption 1. We assume the following:

1. Blocking is irreversible, i.e., once an edge is blocked, it cannot be unblocked.

2. The size and the arrival of sieving particles are independent.
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Probabilistic Setup

We simulate blocking by first generating Poisson arrival times according to

Equation (6.6). At each arrival time, a particle arrives at the top surface and chooses

the entrance (any vi ∈ Vtop) with probability proportional to the flux outgoing vi

relative to the total flux from all vi ∈ Vtop. The sieving particle then goes through

a series of size comparisons to the edge it attempts to go through. If the particle

exits an edge, it will go to one of the neighboring downstream pores via the edge

that connects them with probability determined by preferential flow, described more

precisely below.

The general setup would be similar to that of Chapter 3. We first solve the

discrete Laplace equation on the graph G = (V,E) for pressure p with conductance

as weights. Then we determine the flux matrix Q (also known as the in-degree flux

weighted Laplacian) via Hagen-Poiseuille. Sieving particles perform a random walk

following a transition matrix P obtained by normalizing the flux matrix by each row.

Definition 7. (Preferential flow) Let vi ∈ Vtop ∪ Vint. For vj ∈ N (i) (neighbors of

vi), the probability of moving from vi to vj (via eij) is defined by

Pij (T ) := Prob {vi → vj} =


Qij(T )∑

vj∈N (i) Qij(T )
, ∀vi ∈ V \Vbot

0, otherwise

, (6.7)

π0,i =


∑

vj∈N (i) Qij∑
vi∈Vtop

∑
vj∈N (i) Qij

, ∀vi ∈ Vtop

0, otherwise

(6.8)

where Qij (T ) is the (local) flux that goes from vertices vi and vj through the edge eij,

N (i) the set of neighbors adjacent to vi, and π0 the initial distribution of the position

of sieving particle on the top surface of the membrane.

P is referred to as the normalized in-degree adjacency. Note that the neighbor

set N (i) over which we sum the i-th row of Q works consistently with the definition

157



of flux-weighted adjacency matrix Q as it contains only positive entries for flux to

go from an upstream pore to a downstream one (while the reverse direction incurs

zero flux). The initial distribution µ0 of the random walker (representing the sieving

particle) is the probability of entering the membrane at each vertex on the membrane

surface. It is quantified by the proportion of outgoing flux at each vertex on the

membrane surface relative to the total outgoing flux from all vertices on the membrane

surface.

In light of Equation (6.7), we consider that sieving particles will more likely go

to the downstream pore that has higher flux. One can view its motion as a random

walker following the flow. More precisely, we say that a random walk (k-th arrived

particle, k arbitrary) with position Yk ∈ V follows the one-step transition matrix P

on V . By standard Markov chain terminology, Y
(n)
k is the position of the random

walk after n transitions that abides the n-step transition matrix Pn, i.e., n-th power

of P .

We say that under both adsorption and blocking, the conductance of the edge

eij is given by

Kij (T ) =
πR4

ij (T )

8µAij

1{eij open} (T ) , (6.9a)

Kij (T ) := EPois [Kij (T )] =
πR4

ij (T )

8µAij

αij (T ) , (6.9b)

where αij (T ) is the unconditional probability that the edge eij is open by time T

(a cumulative probability). In other words, αij (T ) describes the proportion of time

that pore ij is open. We consider Equation (6.9a) as a simulation-based approach,

while Equation (6.9b), the mean-field counterpart under the Poisson measure, is to

describe the average effect of blocking on the conductance of the pore.

In the latter analytical approach, we are thus interested in calculating αij (T ),

which should contain factors involving arrival, transition on the graph and particle size

distribution. Using standard theory of the Poisson process, we need to characterize
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the instantaneous probability of a blocking particle arriving at pore ij, labelled as

βij (T ). Then, αij (T ) is equivalent to the probability of observing zero arrival of

blocking particles at this edge. More precisely,

αij (T ) = e−Γ
∫ T
0 βij(T

′)dT ′
. (6.10)

We will utilize the network structure by describing the relationship between

the instantaneous blocking probability of βij and those of the upstream neighbors

of the edge ij (by now we know the direction of flow via Q). The key is to define

a Markov chain operating on edges with a proper transition matrix. Each entry of

the matrix depends on the state of all edges. This argument may be adapted from

the mean-field theory of Markov chains such as [5, 58, 57, 129, 124] and dynamical

systems on networks [101].

159



APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

In this appendix, we provide a brief numerical justification of the coarse-grained model

introduced in Section 2.3 and the parameter value λ.

A.1 Norms for Accuracy and Sufficient Penetration

Consider the homogeneous model. Let ai (x, t) and âi (x, t) be the radii in the i-th

layer, found from the solutions of the continuum model and the coarse grained model,

respectively (see Equations (2.8)–(2.10), and Equations (2.11)–(2.13)). We solve both

models numerically using the same time step. We wish to ensure a sufficiently accurate

coarse-grained approximation âi to ai, as well as identify parameter regimes that lead

to particle penetration to some specified depth of the membrane. More precisely, we

look for parameter pairs (m,λ) that satisfy the following conditions,

1. Accuracy:

∥ai (x, t)− âi (x, t)∥L∞(R+;L2(Ωi))
< δ1, i = 1, 2, . . . , N < m,

where

Ωi =

{
x :

i− 1

m
< x <

i

m

}
, N = ⌊βm⌋ , 0 < β < 1;

and

∥f∥L∞(R+;L2(Ωi))
= sup

t≥0

(∫
Ωi

|f (x, t)|2 dx
) 1

2

.

2. Sufficient penetration:

∥aN (x, 0)− aN (x, tfinal)∥L2(ΩN )

∥aN (x, 0)∥L2(ΩN )

> δ2.
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Figure A.1 Single-inlet model: region of parameters that are δ1-accurate and allow
sufficient δ2 penetration. Parameter choice: δ1 = 0.05, δ2 = 0.3, β = 1

3
, r0 = 1,

ϕtop = 0.4.

For (i), we consider the L2 error in space, which essentially records the volume

of each pore. Once we find errori (t) := ∥ai (x, t)− âi (x, t)∥L2(Ωi)
, we compute its

maximum (or L∞ norm) over all time and compare it to our tolerance δ1. We only

check accuracy up to a certain layer depth, controlled by the parameter N .

For (ii), we measure the relative L2 difference of the radius of a pore in the N -th

layer, between times t = 0 and t = tfinal. We desire that a sufficient amount of its

volume is occupied by particles at the final time, with δ2 as a minimum threshold.

N is technically arbitrary but should be chosen with care. For example, if we desire

roughly 30% of the membrane to be penetrated, we put β = 0.3. The floor function

simply ensures that N is an integer.

We refer to Figure A.1 for a region of parameter pairs (m,λ) for the single-inlet

model, with δ1 = 5 × 10−2, δ2 = 0.3 and β = 1
3
while other membrane geometric

parameters are held fixed.
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A.2 Calculations and Proofs

Proof of Theorem 1

The two main non-dimensional equations associated with Theorem 1 are

Equations (2.32) and (2.33), where di = 1/m. Note that Equation (2.33) can be

viewed as a recurrence relation as follows:

ci (t) =

(
1

1 + λ
mai(t)up,i(t)

)
ci−1 (t) , (A.1)

a′i (t) = −ci−1 (t) , (A.2)

(where prime denotes d/dt) with initial and boundary conditions

c0 (t) = 1, a1 (0) = a0, ai (0) = a0κ
i−1, i = 1, . . . ,m.

Proof. Iterating Equation (A.1) m times on i, we obtain

cm (t) =
m∏
j=1

(
1

1 + λ
maj(t)up,j(t)

)
,

where we used c0 (t) = 1 for all t > 0. Using Equation (2.32), we rewrite cm (t) as

cm (t) =
m∏
j=1

(
1

1 + ηνjaj (t) r (t)

)
=:

m∏
j=1

fj (t) , (A.3)

where η = πλ/(4m).

To derive a condition for the existence of a maximum, we first characterize the

end time behaviour of cm (t). Using Equation (2.43), we see that

aj (t) r (t) =
aj (t)

r̂0

m∑
i=1

di
νia4i (t)

→ ∞, as t → tfinal,

which implies cm (t) → 0 as t → tfinal. Note that since aj (t) ∈ C1 (0, tfinal) for all j

and all fj are positive quantities without singularities, cm (t) ∈ C1 (0, tfinal). Hence by

the mean value theorem, cm (t) will achieve a maximum whenever c′m (0) > 0.
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Taking a time derivative of cm (t) using the product rule of multiple functions,

we have

c′m (t) =
m∏
j=1

fj (t)
m∑
j=1

f ′
j (t)

fj (t)
(A.4)

where we can find the derivative of fj,

f ′
j (t) =

−ηνj
(
a′j (t) r (t) + aj (t) r

′ (t)
)

(1 + ηνjaj (t) r (t))
2 = −ηνj

(
r (t) a′j (t) + aj (t) r

′ (t)
)
f 2
j (t) .

(A.5)

We combine Equation (A.2) with Equation (A.3) to obtain

a′j (t) = −cj−1 (t) = −
j−1∏
i=1

fi (t) , 2 ≤ j ≤ m, (A.6)

a′1 (t) = −c0 (t) = −1 =: −f0 (t) . (A.7)

Inserting Equations (A.5)–(A.7) into Equation (A.4) and evaluating at t = 0, we have

c′m (0) = −η

(
m∏
j=1

fj (0)

)[
m∑
j=1

νjfj (0)

(
−r (0)

(
j−1∏
i=0

fi (0)

)
+ aj (0) r

′ (0)

)]
,

whence we see that c′m (0) > 0 is equivalent to

m∑
j=1

νjfj (0)

(
−r (0)

(
j−1∏
i=0

fi (0)

)
+ aj (0) r

′ (0)

)
< 0, (A.8)

as η and fj are positive quantities.

Using Equation (2.43) to express r (t), its time derivative, and the initial

conditions for ai (0) in Equation (A.8),

r (t) =
1

mr̂0

m∑
i=1

1

νia4i (t)
, r′ (t) = − 4

mr̂0

m∑
i=1

a′i (t)

νia5i (t)
,

we arrive at the following equivalent condition to c′m (0) > 0,(
m∑
j=1

νj

j∏
i=0

fi (0)

)(
m∑
j=1

1

νjκ4(j−1)

)
> 4

(
m∑
j=1

∏j−1
i=0 fi (0)

νjκ5(j−1)

)(
m∑
j=1

νjκ
j−1fj (0)

)
.
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Analytical Formula for E [rb (0)]

Given the form of the initial resistance with random perturbations in Equation (2.50),

we can explicitly compute

E [rb (0)] = E

a−4
0

r̂0

m∑
i=1

di

(
νi∑
j=1

(1 + ϵij)
4

)−1
 =

a−4
0

r̂0

m∑
i=1

diE

[
1∑νi

j=1 (1 + ϵij)
4

]

where the last step follows by linearity of expectations. We now compute the

expectation in the summand with a fixed index i. First, since ϵij ∼ U (−b, b),

it has cumulative distribution function Fϵij (x) = x+b
2b

. Therefore, if we define

Yij = (1 + ϵij)
4, then

FYij
(y) = P

(
(1 + ϵij)

4 ≤ y
)
= P

(
ϵij ≤ y

1
4 − 1

)
=

y
1
4 − 1 + b

2b
, (1− b)4 ≤ y ≤ (1 + b)4 ,

and thus the probability density of Yij is

fYij
(y) = F ′

Yij
(y) =

1

8b
y−

3
4 , (1− b)4 ≤ y ≤ (1 + b)4 .

Employing the following integral statement,

E

[
1

X1 + . . .+Xn

]
= E

[∫ ∞

0

e−t(X1+...+Xn)dt

]
,

where the expectation is taken with the density fYij
, we have (via Fubini’s theorem

to justify the swapping of expectation and integration)

E

[
1∑νi

j=1 Yij

]
= E

∫ ∞

0

e−t
∑νi

j=1 Yijdt =

∫ ∞

0

E
[
e−t

∑νi
j=1 Yij

]
dt. (A.9)

By the independent identically distributed assumption (of ϵij and thus Yij), we rewrite

the integrand as

E
[
e−t

∑νi
j=1 Yij

]
=
(
Ee−tYi1

)
. . .
(
Ee−tYi,νi

)
=
[
Ee−tY

]νi
,
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Figure A.2 Heterogeneous models: initial resistance for single-inlet model
(a) Average ūb (0) over 10

5 simulations; (b) exact large number limit E [rb (0)].

where we defined Y
d
= Yij, which exists by the identical distribution assumption. We

carry out the computation of the right hand side for Y and find

E
[
e−tY

]
=

1

8b

∫ (1+b)4

(1−b)4
e−tyy−

3
4dy

z=ty
=

1

8b

∫ t(1+b)4

t(1−b)4
e−z
(z
t

)− 3
4

(
1

t

)
dz

=
1

8bt
1
4

[
γ

(
1

4
, t (1 + b)4

)
− γ

(
1

4
, t (1− b)4

)]
,

where γ (s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function. Altogether,

we have

E [rb (0)] =
a−4
0

r̂0

m∑
i=1

diκ
−4(i−1)

∫ ∞

0

[
1

8bt
1
4

[
γ

(
1

4
, t (1 + b)4

)
− γ

(
1

4
, t (1− b)4

)]]νi
dt.

(A.10)

Figure A.2 shows the excellent agreement between the numerical and analytical

results.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

In this appendix, we first provide justification for the pore radius evolution model

shown in Equation (3.26), then define tortuosity and derive its formula using

a probabilistic argument, and lastly set up a worked example that illustrates

Algorithm 3.1.

B.1 Justification for the Pore Radius Evolution Model

In this section, we justify the form of the pore radius evolution equation

Equation (3.26) using the (exact) solution for the foulant concentration model,

Equation (3.18), to relate the rate of change of particle volume accretion inside a

single pore to pore radius shrinkage. In the following derivation, we drop the indices

ij for notational simplicity and assume that the radius R is spatially constant at each

time T (though the arguments can be adapted to the variable radius case with a

suitable bound on ∂R/∂Y ).

Let Vp be the particle volume. In a single pore (assumed circularly cylindrical),

we consider an infinitesimally thin circular disk at distance Y from the pore inlet,

with thickness dY . The particle flux difference across this disk is

(C (Y + dY, T )− C (Y, T ))Q (T ) ≈ ∂C

∂Y
(Y, T )Q (T ) dY, (B.1)

i.e., the number of particles per time deposited in the disk. The total particle volume

adsorped in this pore is Vp times this quantity. We integrate Equation (B.1) over the

length of the pore to obtain the total volume of deposited particles per time in the

pore,

VpQ (T )

∫ A

0

∂C

∂Y
(Y, T ) dY = VpQ (T ) [C (A, T )− C (0, T )] (B.2a)
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= VpQ (T )C (T )

(
exp

(
−ΛR (T )A

Q (T )

)
− 1

)
(B.2b)

≈ −VpC (T ) ΛR (T )A (B.2c)

where we used the analytical expression Equation (3.18) for C (Y, T ) in the second

equality. The final approximate Taylor expansion Equation (B.2c) is justified for

sufficiently small values of the exponent, that is (using the scales in Section 3.4),

provided

q (t) ≫ λr0d, (B.3)

where d is the largest pore length (see Equation (3.1)).

As foulant particle volume accumulates at the rate given in Equation (B.2c),

pore volume Vol (T ) also changes at this rate via

dVol (T )

dT
= −VpC (T ) ΛR (T )A. (B.4)

At the same time, we relate the volume of the pore to its radius Vol (T ) = πR2 (T )A

and obtain

dVol (T )

dT
= 2πR (T )

dR

dT
A. (B.5)

Equating Equation (B.4) and Equation (B.5), we arrive at the form of Equation (3.26)

with α = Vp

2π
.

B.2 Tortuosity

In this section, we define tortuosity of a graph representing a membrane filter

pore network, and provide an explicit formula using the geometric and initial flow

information from the network (found in Section 3.3). In all of our investigations, we

restrict attention to the tortuosity of the initial pore network, with no regard for how
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it subsequently evolves under fouling, hence in the following discussion it should be

understood that we consider properties of the network at time t = 0.

We define tortuosity as the average distance travelled by a fluid particle through

the membrane via the network, relative to the thickness of membrane W . Now, given

a path from any inlet to any outlet, we can associate it with its total initial flux, which

we use as a weight for the path. This is equivalent to having the fluid particle perform

a discrete random walk on the graph G directed by fluid flux at each junction. More

precisely, the transition matrix P of this random walk is defined as follows. We omit

the argument of t = 0 for notational simplicity.

We first enforce non-negativity of the flux matrix via the following modification.

Consider Q+ and Q−, the positive and negative parts of Q respectively, such that

Q = Q+ +Q−. Owing to the skew-symmetry of Q, we construct

Q̃ = Q+ −QT
−, (B.6)

which preserves the flow information (direction and magnitude) while enforcing non-

negativity.

Definition 8. (Transition Matrix) Given modified flux matrix Q̃ in Equation (B.6),

the transition matrix P is determined by rescaling Q̃ by its row sum:

Pij =



Q̃ij∑
vj :(vi,vj)∈E

Q̃ij

, (vi, vj) ∈ E, vi ∈ Vtop ∪ Vint,

1, vi ∈ Vbot, j = i,

0, otherwise.

(B.7)

For vertices in the bottom surface, fluid particles are absorbed, i.e. once they reach

any v ∈ Vbot, they stay there with probability one.

Let Xn be a random walk with transition P, i.e. Xn is the vertex after the fluid

particle has taken n steps on V . Let P be the induced probability measure. This
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random walk has a natural initial distribution (a column vector of length |V |),

π0i = P {X0 = vi} :=



∑
vj :(vi,vj)∈E

Q̃ij∑
vi∈Vtop

∑
vj :(vi,vj)∈E

Q̃ij

, vi ∈ Vtop,

0, otherwise,

(B.8)

namely, the probability of going to each inlet on the top surface is determined by the

proportion of flux going through that inlet, relative to total flux.

Definition 9. (Tortuosity) Let ln be the total path length after the random walk has

taken n steps. Tortuosity of the graph G is defined by E [τ ] where τ := lm
W

and m

is the (deterministic) number of steps of the longest path from any inlet on the top

surface to any outlet in the bottom surface.

The integer m can be understood as a graph diameter where the notion of

graph distance for m is encoded in the unweighted adjacency matrix W (entries are

indicators of the existence of an edge). m is trivially bounded above by |Vint|+2 (one

step from Vtop to Vint and Vint to Vbot respectively, and traverse all of Vint at worst),

which we use here. Although this bound can be tightened by connectivity measures

such as the smallest number of vertices that must be removed to disconnect a graph

(see Coll et al. [27], for example), our algorithm (discussed after proving the formula

Equation (B.9)) for E [τ ] does not incur significant computational cost from the size

of m.

One may estimate this expected value by sending a large number of particles

through the network and computing the average of path lengths. We here provide

an explicit formula for E [τ ] that depends on the transition matrix P and a distance

weight matrix WE, whose entries are

WE,ij =


χ (vi, vj) , (vi, vj) ∈ E,

0, otherwise,
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where χ (vi, vj) is the distance between vertices vi and vj via the metric χ defined

in Equation (3.2). Using this formula directly obviates the use of large-number-of-

particle simulations and thus reduces computational load significantly.

Proposition 2. (Tortuosity formula)

E [τ ] =
1

W
E [lm] =

πT
0

W

(
m∑

n=1

Pn−1

)
diag (PWE) , (B.9)

where diag (A) is a column vector that lists the diagonal elements of a matrix A.

Proof. We compute E [lm]. Denote the conditional probability and expectation

P [· | X0 = i] = Pi [·] , E [· | X0 = i] = Ei [·] .

First, we observe by law of total expectation that

E [lm] =

|V |∑
i=1

E [lm | X0 = i]P {X0 = i} =

|V |∑
i=1

Ei [lm] π0i := πT
0 U ,

where π0 is given by Equation (B.8) and U := (Ei [lm])vi∈V . We now focus on an

arbitrary element of U . Noting that Ei [L0] = 0, and using linearity of expectation,

law of total expectation, the Markov property of the random walk and symmetry of

WE, we have

Ei [lm] = Ei

[
m∑

n=1

(ln − ln−1)

]
=

m∑
n=1

Ei (ln − ln−1)

=
m∑

n=1

∑
j∈V

Ei (ln − ln−1 | Xn−1 = j)Pi (Xn−1 = j)

=
m∑

n=1

∑
j∈V

(∑
k∈V

WE,jkPjk

)
P

(n−1)
ij =

m∑
n=1

∑
j∈V

P
(n−1)
ij (PWE)jj
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where P
(k)
ij is the k-th iterate of P. Thus, in matrix form,

U =
m∑

n=1

∑
j∈V



P
(n−1)
1j

.

.

.

P
(n−1)
|V |j


(PWE)jj =

(
m∑

n=1

Pn−1

)
diag (PWE) ,

using the fact that P(n−1) = Pn−1, completing the proof.

In practice, to avoid taking large matrix powers when evaluating Equation (B.9),

we have devised a fast algorithm in evaluating the geometric series
∑m

n=1 P
n−1, by

appealing to a geometric sum formula on matrices involving matrix inversions. We

utilize the block upper triangular structure ofP by block partitioning into components

(known as a divide and conquer-type scheme) including the identity block in its

southeast corner, to ease the computational load of inversions. Naive evaluation

of the series is of complexity O
(
m |V |3

)
(cubic term from matrix multiplication and

m additions) while our algorithm is O
(
|V |3

)
.

We argue that the constant initial radius assumption on the pores deems τ a

geometric parameter independent of fluid flow, even though its definition requires

initial flow information and geometric information such as a distance weighted

adjacency (see Equation (B.9)). In essence, we claim that τ does not vary too much

until the filtration stopping criterion. Firstly, foulant concentration is monotonically

decreasing along each edge, and thus the radii of all inlets, under the influence of

foulant concentration in the feed solution (see Equation (3.29b)), go to zero earlier

than all other downstream channels. Thus, adjacencies of the network do not change

until the filter top surface is clogged. Secondly, though outflowing flux from an

arbitrary junction changes over time as the filter fouls, the relative contribution from

each outgoing edge does not vary greatly. Altogether, we expect that tortuosity
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does not depend heavily on the time of filtration but only on the initial geometry

of the network. This feature makes tortuosity a universal parameter for foulant

concentration.

Lastly, we note that a theoretical limit exists for tortuosity for both setups. As

Ntotal → ∞ (so that the membrane interior, top and bottom surface are uniformly

densely packed with pore junctions), we can provide a simple lower bound for the

limit in the following sense. Consider an arbitrary inlet-outlet pair. They will be

connected by a path with vertical component 1. For the isolated setup, the horizontal

component can be estimated as the average distance between two uniformly random

points in 2D in a unit square, and is about 0.521 (length of Y K in Figure B.1a).

Together, these numbers provide a lower bound for the limiting tortuosity τmin of

around 1.128 =
√
12 + 0.5212 for the isolated case. The argument for the periodic

case is slightly more elaborate – while the vertical component of an average path is still

1, the horizontal component now is the average distance between two random points

uniformly sampled from the squares [0.5, 1.5]2 and [0, 2]2, respectively (found to be

0.838 (length of Y K in Figure B.1b)); thus an average path length is about 1.304. The

difference arises because with the periodic metric, any inlet uniformly sampled from a

unit square can potentially connect to outlets that are outside the unit square (bottom

surface) but within 0.5 distance to the boundary (due to the constraint that search

radius d < 0.5). These arguments provide some justification for the observations

that the tortuosity in the periodic case may be larger than the isolated case. The

numerical values given above are obtained by standard probabilistic calculations and

numerical integration. We look forward to a more theoretical study of how tortuosity

is affected by initial number of points, search radius and the underlying metric.
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(a) (b)

Figure B.1 Tortuosity limit: (a) Isolated setup (unit cube); (b) periodic setup (unit
cube and a square of side length 2 containing the bottom surface of the unit cube). X
(blue) and Y (red) are uniformly sampled from the top and bottom membrane surface,
respectively. K (black) in both figures is the projection of X onto the bottom surface;
XK in both figures has length 1.

B.3 Worked Example

In this section, we provide an example of a simple network (see Figure B.2) to illustrate

how the governing equations described in Sections 3.3.3–3.3.6 depend on the model

parameters. The network is a reflected Y-shape, with two inlets and outlets of length

1/2 and one interior edge of length 1/3.

Each edge has conductance kij (t) per Equation (3.27). For this network, the

conductance-weighted graph Laplacian, acting on the pressures at interior vertices,

yields Equation (3.15) (the graph Laplace equation),

Lkp (t) =

 k13 (t) + k23 (t) + k34 (t) −k34 (t)

−k34 (t) k34 (t) + k45 (t) + k46 (t)


 p2 (t)

p3 (t)


=

 k13 (t) + k23 (t)

0

 (B.10)

where the final equality incorporates the boundary conditions Equation (3.28b).

Then, the fluxes qij satisfy

q13 (t) = k13 (t) (1− p3 (t)) ,
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q23 (t) = k23 (t) (1− p3 (t)) ,

q34 (t) = k34 (t) (p3 (t)− p4 (t)) ,

q45 (t) = k45 (t) p4 (t) ,

q46 (t) = k46 (t) p4 (t) .

To proceed, we then solve Equation (3.29a) (the advection graph Laplace equation)

to find the foulant concentration at each vertex,

Lin
q c =



q13 + q23 0 0 0

−q34b34 q34 0 0

0 −q45b45 q45 0

0 −q46b46 q46





c3 (t)

c4 (t)

c5 (t)

c6 (t)


=

(q ◦ b)T c0 =



q13b13 q23b23

0 0

0 0

0 0


 1

1

 =


q13b13 + q23b23

0

0

0


(B.11)

where the 3rd equality uses the boundary condition Equation (3.29b).

After obtaining the concentrations ci (t) for each vertex, we evolve edge radius

via Equation (3.30).

By appealing to the symmetry of this network, one may reduce the system for

the dynamics of network evolution to a system of two non-autonomous nonlinear

ordinary differential equations (ODEs), describing the radius evolution r34 (t) and

r45 (t) (which by symmetry is equal to r46(t)), with a closed solution for the linear

shrinkage rate of r13(t) = r23(t). Since our principal concern here is the end state of

the network, we do not present or study this system here.
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Figure B.2 2D schematic of a reflected-Y network with labelled physical quantities
presented in Section 3.4.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

In this appendix, we provide a brief description of the network generation procedure,

the associated graph operators, detailed definitions of performance metrics and

tortuosity (also see its derivation in Appendix B.2), and lastly the porosity correction

procedure.

C.1 Network Generation

We generate a membrane pore network via a variant of the Random Geometric

network. To generate the set of pore junctions V , we place Ntotal randomly distributed

points (following a uniform distribution) in a rectangular box of height 2W , with

square cross-section of length W . We connect points that lie within a distance

of lmaxW , but also at least δW apart, where δ is a control parameter (fixed

throughout this work) such that when chosen large enough, it ensures validity of

the Hagen-Poiseuille framework used to model fluid flow. These connections form

a set of pores E and together with the junction set V we obtain an initial network

G = G (V , E). We say (vi, vj) ∈ E when two junctions vi, vj ∈ V form a pore.

We then cut through the rectangular box with two horizontal planes at heights

0.5W and 1.5W , respectively. The intersections of these two planes and the set of

pores E form the set of inlets Vin and outlets Vout, respectively. Altogether, the above

procedure forms the domain for fluid flow and fouling, described in Section 4.3.

C.2 The Graph Laplacian

We associate each network G with a (weighted) graph Laplacian, a generalization of

the finite difference discretization of the classic Laplace operator ∇·∇. It is a square

matrix whose off-diagonal terms indicate connection weights, and whose diagonal
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terms record the total weights of neighbors of each discretization point (junction). In

our work, the most relevant weight is the conductance Kij of each pore, given by

Kij =
πR4

ij

8µLij

.

Then the K-weighted graph Laplacian is defined as

LK := D−K, (C.1)

where

Dij =


∑|V|

l=1Kil, j = i,

0, otherwise,

(C.2)

where |V| is the number of junctions.

While the above setup characterizes the flux inside an individual pore, we

employ conservation of flux at each interior vertex vi throughout the network,

0 =
∑

vj :(vi,vj)∈E

Qij. (C.3)

Combining Equations (3.3) and (C.3), we form a graph Laplace equation for the

pressures P at each vertex, to which we add the specified pressure drop boundary

conditions,

LKP (vi) = 0, vi ∈ Vint, (C.4)

P (v) = P0, v ∈ Vin, (C.5)

P (v) = 0, v ∈ Vout. (C.6)

Once the pressures P (vi) are found for all interior junctions vi ∈ Vint, we use

Equation (3.3) to find flux Qij in each pore to form a flux matrix Q with i and

j as row and column indices, respectively.
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Using conservation of particle flux at each junction, we arrive at the following

advection Laplace equation for foulant concentration Ci (T ) at each vertex vi ∈ Vint,

Lin
QC = (Q ◦B)TC0, Bij = exp

(
−ΛRijLij

Qij

)
, (C.7)

C0 = (Ctop, . . . , Ctop, 0, . . . , 0)
T , (C.8)

where Lin
Q = DQT − (Q ◦B)T is the advection Laplacian with a sink B (also see

Equation (3.23)), whose form arises from an analytical solution to Equation (3.17a).

T and ◦ denote matrix transpose and the element-wise multiplication, respectively.

See [48] for a detailed derivation of this linear system.

C.3 Performance Metrics

Volumetric throughput of a membrane filter over its operational lifetime is a

commonly-used measure of overall efficiency. The volumetric throughput H(T )

through the filter is defined by

H (T ) =

∫ T

0

Qout (T
′) dT ′, (C.9)

Qout (T ) =
∑

vj∈Vout

∑
vi:(vi,vj)∈E

Qij (T ) , (C.10)

where Qout (T ) is the total flux exiting the filter. With the scales chosen in

Equation (2.29), throughput H has scale

H =
W 3

αC0

h. (C.11)

In particular, we compute hfinal := h (tfinal), the total volume of filtrate processed by

the filter over its lifetime.

To connect with experiments and applications, we briefly discuss the order of

magnitude of the dimensional throughput H in Equation (C.11). The parameter

α is of the order of foulant (contaminant) particle volume while C0 is the number
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of particles per fluid (solvent) volume. The product αC0 then yields an estimate

of the volume ratio of the (contaminant) solute and the (fluid) solvent. For

example, the permissible exposure limit by OSHA (Occupational Safety and Health

Administration) for 1-dioxane in contaminated water is at a concentration of about

100 mg/L [130]. The density of 1-dioxane is close to that of water, and thus this level

of concentration translates to a volume ratio (αC0) of 10
−4. With this estimate and

the order of magnitude for dimensionless throughput H seen in Figure 4.3a (about

10−2), H then is of the order of 102W 3 where W 3 represents the volume of a cubic

unit of a membrane filter of side length W . This estimate suggests that this cubic

unit will process filtrate volume of order 100 times its membrane material volume,

given the parameters used in this work.

Another performance measure is the accumulated foulant concentration in the

filtrate, which captures the aggregate particle capture efficiency of the filter. The

accumulated foulant concentration is defined by

Cacm (T ) =

∫ T

0
Cout (T

′)Qout (T
′) dT ′∫ T

0
Qout (T ′) dT ′

,

where

Cout (T ) =

∑
vj∈Vout

∑
vi:(vi,vj)∈E

Cj (T )Qij (T )

Qout (T )
.

Cacm has scale Cacm = Ctopcacm. Of particular interest is cfinal := cacm (tfinal), which

provides a measure of the aggregate particle capture efficiency of the filter over its

lifetime.

We further simplify the notations hfinal and cfinal to h and c in the main text as

we consider only the end states of these performance measures in our analysis.
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C.4 Tortuosity

Tortuosity τ of a membrane network is defined by the average distance travelled by a

fluid particle from membrane top surface to bottom, relative to membrane thickness

W . We here provide a formula via a probabilistic approach,

τ =
πT
0

W

(
m∑

n=1

Pn−1

)
diag (PWE) , (C.12)

where T means vector transpose and diag means the diagonal component of a matrix.

Here we provide some intuition for each term. The initial distribution π0 describes

the probability of the fluid particle choosing an inlet on the membrane top surface. To

calculate π0, we compute the proportion of flux entering each inlet on the upstream

surface relative to total flux. P within the sum describes the law of how a fluid

particle traverses the network from one junction to its adjacent neighbors (known as

a step); the upper limit m is the largest number of steps a particle takes to exit the

membrane bottom surface, which can be found for each network. Lastly, diag (PWE)

describes the average distance travelled by the fluid particle in one step starting from

each junction. We refer the reader to [48] for details of the derivation.

In our study, since we perturb each pore radius via Equation (2.48), tortuosity

τ implicitly depends on the noise amplitude β through π0 and P because they both

involve the fluxes (affected by the pores’ perturbed conductances).

C.5 Porosity Correction

In Item 3 (porosity correction) of the algorithm, we derive the expression of rpc such

that ϕnoise = ϕpc. It relies on writing ϕpc in terms of ϕ0 (see Item 1 and consider

Equation (4.7) with β = 0), the porosity of the unperturbed network with initial

radius r0:

ϕnoise = ϕpc =
π

2
r2pc
∑
edge

(edge length)
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=

(
π

2
r20
∑
edge

(edge length)

)(
rpc
r0

)2

= ϕ0

(
rpc
r0

)2

and thus rpc = r0

√
ϕnoise

ϕ0
.
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APPENDIX D

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

In this appendix, we first define pores and junctions in a specified band, and then

provide the benchmark estimates for the number of junctions to be placed in each

band of the porosity-graded networks introduced in Chapter 5. Lastly, we present

several analytical results on the relationship between upstream and downstream pore

closure time, which then leads to some insight on membrane network dynamics.

D.1 Junctions and Pores in a Band

In this appendix, we define the set of junctions (vertices) and pores (edges), and their

respective band-specific counterparts. We use junctions and vertices, and pores and

edges interchangeably.

In this work, we treat a junction and a pore as a point and a straight line

respectively that lie in our dimensionless domain – the unit cube, even though the

notion of a vertex and an edge is generally more abstract in terms of graph theory.

Each junction v of the junction set V has a Euclidean coordinate v = (vx, vy, vz) ∈

[0, 1]3, with z-direction positive pointing (down) from membrane top (z = 0) to

bottom surface (z = 1). The coordinate of a junction depends on the random

generation protocol outlined in Section 5.3.1. We further define the set of membrane

pore inlets and outlets,

Vtop = {v ∈ V : vz = 0} , (D.1a)

Vtop = {v ∈ V : vz = 1} . (D.1b)

.
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The set of edges E is formed by connecting the junctions via

E = {evw ∈ V × V : amin < χ (v, w) < amax} , (D.2)

where amin and amax are the dimensionless minimal and maximal distance allowed

between two junctions, respectively; χ (·, ·) is a periodic metric, defined by

χ (v, w) = min
z

∥∥v − w (z, 0) | z = {−1, 0, 1}2
∥∥
2
, amax ≤

1

m
. (D.3)

that is, junctions close to the four sides parallel to the z-direction may be connected

through the boundary. We require that amax does not exceed the thickness of a band

because otherwise edges may cross more than two bands and thus reduce or defeat

the purpose of having a gradient of pore radii.

Next, we define precisely junctions and edges in a band. Denote the kth band

as the set of coordinates

Vk =

{
v ∈ [0, 1]3 | k − 1

m
≤ vz <

k

m

}
. (D.4)

We say a junction w lies in the kth band if w ∈ Vk.

We treat each edge as a straight line in the unit cube,

evw =
{
u ∈ [0, 1]3 | u = ζv + (1− ζ)w, 0 ≤ ζ ≤ 1

}
.

Let L (evw) be the one-dimensional Lebesgue measure of evw such that L (evw) =

χ (v, w). Define a band-specific length measure Lk such that

Lk (evw) = L (evw ∩ Vk) , (D.5)

which computes the length of the edge strictly inside the kth band (known in general

as an intersection measure). We say that a pore belongs to the k-th band when the

largest proportion of its length lies strictly inside the k-th band. More precisely, we
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define the set of the pores in the kth band as

Ek =
{
evw ∈ E | Lk (evw) = max

n
Ln (evw)

}
. (D.6)

In this definition, we see that if v, w ∈ Vk, then evw ∩ Vk = evw while evw ∩ Vn = ∅ for

all n, which implies that the inequality is automatically satisfied.

The formula Equation (D.5) also facilitates the computation of Φk, the band

porosity of the kth band (Equation (5.3)), in the sense that we consider the lengths

of edges that strictly lie in Vk; edges reaching two bands will contribute to the band

porosities of the two bands separately. We simplify the notation as

Lk,vw := Lk (evw) .

D.2 Number of Random Points in Each Band

With prescribed Φ and m, we provide an estimate of how many random points should

be used in the kth band, labelled Nk. We write total pore length as χij := χ (i, j) per

Equation (D.3). More precisely, we use basic arguments to deduce that total edge

length in the kth band scales with N2
k , i.e.∑

eij∈E

Lk,ij ≈
∑

eij∈Ek

χij = χ |Ek| = χ
DkNk

2
= (D.7)

=
χ

2
[(Nk − 1) p (Amin, Amax)]Nk =

χ

2
p (Amin, Amax)Nk (Nk − 1) (D.8)

where χ, Dk and p (Amin, Amax) are the average edge length, average number of

neighbors in the kth band and the probability of finding two random points being

connected, respectively. The first approximation relies on the fact that the edges

in the kth band that cross boundaries do not have too much excess length outside

the kth band. The first equality is trivial. The second equality is because total

number of edges in the kth band is exactly equal to average number of neighbors

times the number of junctions divided by 2 (to account for double counting). The
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third equality expresses the average number of neighbors Dk as the total number

of neighbors a junction could have times the probability of obtaining a neighbor

p (Amin, Amax), which is independent of k and Nk. Assuming that we use a small

Amax, χ does not depend too heavily on Nk and thus is approximately the same for

all k. Since χ is a sample mean with |Ek| as the sample size, it can be approximated

by the expected edge length (based on hypercube line-picking [135]) and therefore a

constant independent of k.

D.3 Analytical Results on Pore Closure Time

In this section, we show that lifetime of a simplified network is governed by the radius

of the top pore(s). More precisely, for such a simplified network, the radius of the

inlets will always go to zero earlier than that downstream pores, independent of

the initial upstream and downstream pore radii and model parameters. This result

contributes to the claim that networks considered will also only clog at membrane

inlet. This result also serves as a worked example for the general network solver (see

also [48] for another example).

A membrane network stops functioning when there exists no more path

connecting any inlet on the top surface to any outlet on the bottom surface. The

critical event leading to filtration arrest is when the radius of a pore vanishes as the last

straw that disconnects the main network into at least two disconnected subnetworks

such that each subnetwork contains only a subset of the inlets or outlets but not both.

We consider a simple setup (depicted in Figure D.1) which consists of an arbitrary

pore junction connecting nup upstream and ndown downstream pores.

The upstream and downstream pores all have a length of 1 unit (though they

appear to have different lengths in Figure D.1, this choice of a common length does

not affect our result). We solve the dimensionless governing equations (per scales

presented in Section 5.5) for the unknown pressure pjunc (t) and concentration cjunc (t)
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Figure D.1 Schematic of a simplified setup for Theorem 2. Colored junctions and
pores correspond to each band as follows: red upstream pores and indigo downstream
pores. Blue dots are inlets. The red dot is an interior junction. White dots are outlets.
Here nup = 4 and ndown = 5.
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at the interior junction. Since the pore lengths are assumed the same, and the

upstream (resp. downstream) pores obey the same boundary conditions for pressure

and concentration, the radius and concentration evolution in these pores are therefore

also the same. As a result, we simply monitor the evolution of quantities for one

upstream and one downstream pore. Let r1 (t) and r2 (t) be the radius of each

upstream and downstream pore, respectively.

Fluxes through each upstream and downstream pore, labelled q1 (t) and q2 (t)

respectively, satisfy the dimensionless Hagen-Poiseuille equations,

q1 (t) = (1− pjunc (t)) r
4
1 (t) ;

q2 (t) = pjunc (t) r
4
2 (t) .

where pjunc (t) is the (unknown) pressure at the exit of the top pore. Conservation of

flux yields

nupq1 (t) = ndownq2 (t) (D.9)

and therefore

pjunc (t) =
nupr

4
1 (t)

nupr41 (t) + ndownr42 (t)
=⇒ q1 (t) =

ndownr
4
1 (t) r

4
2 (t)

nupr41 (t) + ndownr42 (t)
. (D.10)

Foulant concentration in the upstream pore, c1 (y, t), satisfies the dimensionless

advection equation,

q1
∂c1
∂y

= −λr1c1, c1 (0, t) = 1,

which has an analytical solution

c1 (y, t) = c1 (0, t) exp

(
−λyr1 (t)

q1 (t)

)
Equation (D.10)

= exp

(
−λy

[
nupr1 (t)

ndownr42 (t)
+

1

r31 (t)

])
.

The evolution of the pore radii satisfies

dr1
dt

= −1, r1 (0) = ϵ1 =⇒ r1 (t) = ϵ1 − t;
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dr2
dt

= −cjunc (t) , r2 (0) = ϵ2.

By conservation of particle flux at the junction, we have ndownq2 (t) cjunc (t) =

nupq1 (t) c1 (1, t). Conservation of flux (per Equation (D.9)) reduces this to cjunc (t) =

c1 (1, t). Hence,

dr2
dt

= −c1 (1, t) = − exp

(
−λ

(
nup (ϵ1 − t)

ndownr42 (t)
+

1

(ϵ1 − t)3

))
, r2 (0) = ϵ2. (D.11)

Theorem 2. The solution r2 (t) to Equation (D.11) satisfies r2 (t) > 0 for all t ∈

T := [0, ϵ1], for all ϵ1, ϵ2, λ > 0 and arbitrary positive integers nup and ndown.

Proof. We note first that r2 (t) ≥ 0 for all t ∈ T since the initial condition is positive,

i.e., ϵ2 > 0, the right hand side of Equation (D.11) is a nonpositive function, which

goes to zero as r2 → 0, i.e., dr2
dt

→ 0− as r2 → 0+. In other words, the radius of the

downstream pore decreases to zero until it reaches zero and will not yield negative

values. Therefore, to prove the claim that r2 (t) > 0 for all t ∈ T , we suppose that

there exists t∗ ∈ T such that r2 (t
∗) = 0 and arrive at a contradiction as follows.

We noted earlier that r2 (t) is a monotone decreasing function, and in fact, is

equal to 0 for all t ≥ t∗. Now, when r2 (t) is bounded away from 0, i.e., t < t∗, we

divide both sides of Equation (D.11) by r2 (t) and integrate to obtain

log (r2 (t)) = log (ϵ2)− I (t) , (D.12)

where

I (t) =

∫ t

0

1

r2 (τ)
exp

(
−λ

[
nup (ϵ1 − t)

ndownr42 (τ)
+

1

(ϵ1 − τ)3

])
dτ. (D.13)

Note that under the assumption that r2 (t
∗) = 0, I (t) → −∞ as t ↗ t∗. We now

prove that 0 ≤ limt↗t∗ I (t) < ∞ to arrive at our contradiction. Here, the lower

bound is obvious since the integrand is nonnegative.
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First, we note that (by simply removing a positive term from the argument of

the exponential)

lim
t↗t∗

I (t) ≤ lim
t↗t∗

∫ t

0

1

r2 (τ)
exp

(
−κ (ϵ1 − t)

r42 (τ)

)
dτ =: lim

t↗t∗

∫ t

0

f (τ ;κ, ϵ1) dτ, (D.14)

where κ = λnup

ndown
.

It would suffice to show that the integrand f is bounded on [0, t] for t ≤ t∗. We

first note that when r2 (τ) is bounded away from 0, the integrand is continuous in r2

(as an independent variable). We check the behaviour of the integrand in the limit

as t → t∗ or equivalently r2 (t) → 0+.

lim
r2(τ)→0+

1

r2 (τ)
exp

(
−κ

(
ϵ1 − τ

r42 (τ)

))
u(τ)= 1

r2(τ)= lim
u(τ)→∞

u (τ)

exp (κ (ϵ1 − τ)u4 (τ))

L’Hopital
= lim

u(τ)→∞

1

4u3 (τ) exp (κ (ϵ1 − τ)u4 (τ))

= 0.

Therefore, f is a continuous function on [0, t∗] and achieves a maximum value Cκ,ϵ1 :=

∥f (t)∥∞ < ∞. We must then have

lim
t↗t∗

I (t) ≤ lim
t↗t∗

∫ t

0

f (τ ;κ, ϵ1) dτ ≤ t∗Cκ,ϵ1 < ∞.

Thus, the right hand side of Equation (D.12) is finite, but the left hand side of it

is not. We arrive at our contradiction. Therefore, there exists no t∗ ∈ T such that

r2 (t
∗) = 0, which then proves the claim.

However, the situation becomes far more complicated once pore size variation

within each layer is involved. In fact, we show via examples that the radius of a

downstream pore can go to zero before the upstream ones. Consider an inverted-Y

shaped network with one upstream pore and two downstream pores, with initial radius

ϵ1, ϵ2 and ϵ3, respectively. Without loss of generality, we assume ϵ2 > ϵ3. Using a

similar set of calculations to the case above using nup = 1 and ndown = 2, we find that
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the outlet radii r2 (t) and r3 (t) satisfy the set of coupled ODEs,

dr2
dt

=
dr3
dt

= − exp

(
−λ

(
ϵ1 − t

r42 (t) + r43 (t)
+

1

(ϵ1 − t)3

))
. (D.15)

The difference between this setup and the one in Theorem 2 is that now the evolution

of each downstream pore depend on each other because they have different initial

conditions. Note that r2 and r3 simply differ by a constant ϵ2 − ϵ3. Thus, we can

further deduce that

dr3
dt

= − exp

(
−λ

(
ϵ1 − t

(r3 (t) + ϵ2 − ϵ3)
4 + r43 (t)

+
1

(ϵ1 − t)3

))
(D.16)

From this, we observe that one can make ϵ2 − ϵ3 sufficiently large so that regardless

of how small r3 becomes, r3 decreases at a nontrivial rate. This is a scenario different

than the case in Equation (D.11). An explicit condition involving ϵ1, ϵ2, ϵ3 and λ may

be derived.

We have tested using a numerical example with ϵ1 = ϵ2 = 0.01, ϵ3 = 3 × 10−3,

λ = 5× 10−7 (the same value used in Section 5.6) and have found that r3 (t) goes to

zero earlier than r1 (t).

We conclude that the difference in initial conditions for pore radii does play a

role in driving the dynamics of each pore. Downstream pore closure can be earlier

than the upstream one. However, even if one downstream pore closes earlier, the local

structure at the junction always reduces to the case where we have multiple upstream

pores and one single downstream one, which is the setup used in Theorem 2 with

nup arbitrary and ndown = 1. In other words, the moment we encounter a lone

downstream pore, then it will not close until all upstream pores have closed. With

this heuristic argument (that can be chained upstream), we believe that a general

membrane network with various initial conditions will only close on the top surface

under adsorption. The introduction of sieving would contribute to instantaneous

blocking of interior pores (see Section 6.2.2).
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