
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

1994

Translation of semantic aspects of OODINI graphical Translation of semantic aspects of OODINI graphical

representation to ONTO OODB data definition language representation to ONTO OODB data definition language

Xiaoyong Wang
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Wang, Xiaoyong, "Translation of semantic aspects of OODINI graphical representation to ONTO OODB
data definition language" (1994). Theses. 1692.
https://digitalcommons.njit.edu/theses/1692

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1692?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TRANSLATION OF
SEMANTIC ASPECTS OF

OODINI GRAPHICAL REPRESENTATION TO
ONTOS OODB DATA DEFINITION LANGUAGE

by
Xiaoyong Wang

In this thesis. we present a system to translate the semantic elements in the

graphical schema language of OODINI from API of OODAL to the Type definition

of ONTOS DB. To translate semantic constraints of the graphical language, we

patch more information to existent class data structure in API of OODAL. After a

brief review of OODINI, ONTOS DB and the existent translator without the ability

to translate semantic constraints, we describe in detail the methods to translate the

essential relationship. dependent relationship, multi-valued essential relationship and

multi-valued dependent relationship. We employ an Inverse Reference to a "Set of"

Type to achieve the goal. Setof and Tupleof relationship are special cases of the

above relationships. For validating the result of the translation, we give examples of

translation of a schema containing each of the relationships discussed.

TRANSLATION OF
SEMANTIC ASPECTS OF

OODINI GRAPHICAL REPRESENTATION TO
ONTOS OODB DATA DEFINITION LANGUAGE

by
Xiaoyong Wang

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer and Information Science

Department of Computer and Information Science

October 1994

APPROVAL PAGE

TRANSLATION OF
SEMANTIC ASPECTS OF

OODINI GRAPHICAL REPRESENTATION TO
ONTOS OODB DATA DEFINITION LANGUAGE

Xiaoyong Wang

Dr. Yehoshua Peri, Thesis Advisor 	 Date
Professor of Computer and Information Science, NJIT

Dr. James G 	C Geller, Committee Member 	Date
Associate Professor of Computer and Information Science, MT

/

	

Dr. Jason T. Wang, P. 	Committee Member

	

P. 	 Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	Xiaoyong Wang

Degree: 	Master of Science in Computer and Information Science

Date: 	October 1994

Undergraduate and Graduate Education:

e M aster of Science in Computer and Information Science,
New Jersey institute of Technology, Newark, NJ, 1994

e Bachelor of Science in Computer Science,
Kun Ming Institute of Technology, 1982

Major: 	Computer and Information Science

iv

This thesis is dedicated to
my father Denglin Wang

and
my mother Xiaohua Mang

V

ACKNOWLEDGMENT

I would like to express my most sincere gratitude to my advisor Dr. Yehoshua

Perl for his moral support, academic guidance, and precious friendship throughout

this work. I would like to extend my warm thanks to Dr. James Geller and Dr. Jason

T. Wang for their valuable suggestion and comments on this thesis. I also would like

to show special thanks to Dr. Michael Halper for his guidance and technical support.

Let me also express my thanks to Oscar Ou Yang and Aruna Rolla who give

me a lot of support and help during the research. I would also like to thank my

colleague Venugopal Reddy Cheruku for his cooperation.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 GRAPHICAL SCHEMA AND OODAL IN OODINI 	 4

2.1 	Problem Description and Approach 	4

2.2 	Representation of an Object Class 	5

9 . 9.1 Representation of an Object Class in OODINI 	5

2.2.2 Representation of an Object Class in OODAL 	6

2.3 	Access API (Application Programming Interface) 	9

2.3.1 Access OODAL through API 	9

2.3.2 How to Access API in C 	 10

2.4 Patching the Object Classes 	11

2.4.1 Internal structure of API 	11

2.4.2 Patch Inverse Pointer to a Class 	 12

2.4.3 Implementation of Patch Inverse Pointer to a class 	19

2.5 Glossary 	14

3 ONTOS DB AND GENERAL CONVERSION 	 18

3.1 Problem description and Approach 	 18

3.2 	Introduction of the ONTOS Database System 	 19

3.2.1 Introduction of ONTOS 	 19

3.2.2 The Elements of ONTOS 	 19

3.2.3 Features of ONTOS 	 20

3.3 Activating the ONTOS DB 	 21

3.4 General Approach of the Conversion 	 22

3.4.1 Object Class definition in ONTOS DB 	 22

3.4.2 The Correspondence Between OODINI and ONTOS DB . . 	22

Chapter 	 Page

3.5 Glossary 	 24

4 CONVERSION OF BASIC GRAPHICAL ELEMENTS 	 25

4.1 Problem Description and Approach 	 25

4.2 The Class and the Attributes 	 26

4.3 The Subclass and the Roleof 	 30

4.4 The Ordinary Relationship and the Multi-valued Relationship . . 	 33

4.5 Topics Remained 	 37

5 CONVERSION OF SEMANTIC GRAPHICAL ELEMENTS 	 38

5.1 Problem Description and Approach 	 38

5.1.1 Problem Description 	 38

5.1.2 Approach Outline 	 40

5.2 The Essential Relationship 	 44

5.2.1 The Semantics of an Essential Relationship 	 44

5.2.2 implementation of an Essential Relationship 	 45

5.2.3 Translation of an Essential Relationship 	 46

5.3 The Dependent. Relationship 	 48

5.3.1 The Semantics of a Dependent Relationship 	 48

5.3.2 Implementation of a Dependent Relationship 	 48

.5.3.3 Translation of a Dependent Relationship 	 50

5.4 The Multi-valued Essential Relationship 	 52

5.4.1 The Semantics of a Multi-valued Essential Relationship 	. 	 52

5.4.2 Implementation of a Multi-valued Essential Relationship . 	 52

5.4.3 Translation of a Multi-valued Essential Relationship 	 54

5.5 The Multi-valued Dependent Relationship 	 57

5.5.1 The Semantics of a Multi-valued Dependent Relationship . 	 57

5.5.2 Implementation of a Multi-valued Dependent Relationship 	 58

5.5.3 Translation of a Multi-valued Dependent Relationship . . . 	 59

viii

Chapter 	 Page

5.6 Setof 	 62

5.6.1 The Constraints of a Setof 	 62

5.6.2 Implementation of a Setof 	 62

5.7 Tupleof 	 63

5.7.1 The Constraints of a Tupleof 	 63

5.7.2 Implementation of a Tupleof 	 63

6 CONCLUSION 	 64

APPENDIX A EXAMPLE OF AN ESSENTIAL RELATIONSHIP 	 66

APPENDIX B EXAMPLE OF A DEPENDENT RELATIONSHIP 	 78

APPENDIX C EXAMPLE OF A MULTI-VALUED ESSENTIAL REL 	 90

APPENDIX D EXAMPLE OF A MULTI-VALUED DEPENDENT REL. 	 105

REFERENCES 	 120

ix

LIST OF TABLES

Table 	 Page

3.1 Correspondence between the concepts of ONTOS and C++ 	 19

3.2 Correspondence between the OODINI code and the ONTOS DB 	 23

LIST OF FIGURES

Figure 	 Page

2.1 	Example of the OODINI graphical schema 	 6

2.2 	Graphical symbols used in OODINI 	7

2.3 Translation of OODAL's file to ONTOS code 	 10

2.4 Outline of the API's internal data structures of OODAL 	 11

2.5 Addition of a patch to a class data structure. 	 13

3.1 Implement the class persistence in ONTOS DB 	 21

4.1 	An example of a class and an attribute 	 26

4.2 An example of a subclass and a roleof 	 31

4.3 	An example of an ordinary and a multi-valued relationship 	 34

5.1 	An example of an essential relationship 	 39

5.2 An example of an Inverse Reference 	 40

5.3 	The life time span of a Type 	 41

5.4 The access scope of ONTOS DB 	 42

5.5 The translation of essential relationship 	 45

5.6 The translation of a dependent relationship 	 49

5.7 	The translation of a multi-valued essential relationship 	53

5.8 The translation of a multi-valued dependent relationship 	 58

5.9 	The translation of a Setof to a multi-valued dependent relationship . . 	62

5.10 The translation of a Tupleof to several dependent relationships 	 63

xi

CHAPTER 1

INTRODUCTION

This document discusses in detail the conversion of the OODB graphical repre-

sentation schema language of the OODINI from OODAL, the OODini Abstract

Language, to the ONTOS, a C++ embedded OODB, data definition language.

A graphical editor called OODINI, Object Oriented Diagrams Interface at

the New jersey Institute of technology, was designed and developed successfully

in the Department of Computer and information Science at New Jersey Institute

of Technology[7, 6]. as the need for a powerful interactive interface in the field

of OODB design is arising. Using OODINI software package, an OODB designer

can comfortably design and efficiently manipulate the OODB schema with powerful

graphical interface at application level without concerning himself with the details of

either related database or related database programming language. Then, OODINI's

graphical representation of the resulting schemas can be translated automatically

by OODINI software package into two abstract object oriented languages, such as

OODAL and DAL. and to research prototype VAIL of GMD-IPSI.

But unfortunately a big gap does exist between the above mentioned abstract

languages and any one of the commercial object-oriented database management

systems. Although these languages have more powerful capability to describe the

real world than ever. they are mainly used in abstract and theoretical level and can

not be used directly by any one of the commercial OODB systems which are available

in recent years. So, transferring these abstract languages into a commercial OODB

system automatically becomes an urgent task . That is the purpose in this research

and thesis works.

1

2

We translated the OODAL language into ONTOS DB code. OODAL is

OODini Abstract Language. In [l], OODINI was converted to the VML, (VODAK

MODELING LANGUAGE), designed by GMD-IPSI. Converting an OODINI.

graphical schema into VML or DAL code requires the understanding of the OODB

Dual model architecture [4]. All object oriented database languages except VML

do not adhere to this architecture. To overcome this problem, OODAL, a new

and different abstract languages, was proposed[1]. In OODAL, the object class

definition remains and object type definition is totally removed as compared with

dual model architecture. So. the OODAL language do not depend on the dual

model architecture and can he translated into commercial object-oriented database

languages.

We converted the OODINI graphical schema directly from the API of OODAL

but not OODAL itself. The OODAL code of a graphical schema is a plain text

file obtained from the OODINI graphical representation of the schema. Translating

it further into OODB code requires first to parse the whole text file. Evidently

this is a redundant and tedious task. As an alternative, OODINI provided the

API. Application Programming Interface. The API is provided in the form of a

C library and we can invoke the library routine directly. The invocation returns a

pointer pointing the first object class and then we can traverse all the classes in the

schema[1].

ONTOS is one of the commercially available object-oriented database manage-

ment systems and is installed in the computer system in NJIT. It is a multi-user,

distributed OODB system and embedded in C++[12]. It provides all the necessary

features needed for an object oriented database system. For instance, it provide type,

property, procedure and reference corresponding to class, data member, member

function and pointer of a class in C++, and this also corresponds to object class,

attribute. method and relationship in the OODAL and the OODINI graphical

3

schema. In addition. it provides the ability of dynamically changing not only the

property but also the type and even the procedure of the OODB.

This work describes in detail the conversion of the OODINI's OODB graphical

schema from the API of OODAL to the ONTOS data definition language. The

purpose of the conversion is translating automatically from API into ONTOS type

definition. That allows an OODB user to design schema graphically his application

using OODINI. and then get completed ONTOS type definition. All the information

in a graphical schema including the semantics of the relationships will be correctly

defined in the ONTOS type definition. The user can concentrate then to how to

input, manipulate and query the data in the OODB. Therefor he can save tremendous

effort to design and implement an application in an OODB system.

This document is organized as following: Chapter 2 discuss the OODINI system

and the changing of the API so that it can support the conversion of semantic

aspects of a relationship. Chapter 3 discuss the ONTOS system. Chapter 4 describe

the conversion of regular objects, class, attribute, regular relationship, roleof and

subclass. Chapter 5 entails further the conversion of the more sophisticated semantic

elements of the relationships such as, essential, dependent., setof, tupleof, multi-value

essential and multi-value dependent.

CHAPTER 2

GRAPHICAL SCHEMA AND OODAL IN OODINI

This chapter proposes the problems we try to solve and the answer to these problems.

We first review briefly OODINI and its graphical schema representation. Then we

describe how to traverse a graphical schema through the API. Finally we discuss how

to create the patch to a class so that the semantic information in a relationship can

be maintained in the class. Some examples are shown in this chapter.

2.1 Problem Description and Approach

Converting the OODAL code into ONTOS type definition code will encounter many

challenges. flow we can traverse through each class of the graphical schema is the

first problem we will meet. For regular objects, we can traverse through each class

in a graphical schema and translate it directly into the corresponding ONTOS type

definition code. For example, class and attribute can be directly converted into

ONTOS type definition.

The second problem is that for a, more sophisticated object which has specific

semantics we can not simplely transfer it into ONTOS code. We need more infor-

mation in the classes involved than in a regular class in order to implement the

semantics between them. The API of OODAL does not have this information

explicitly. For instance, suppose a class A has an essential relationship to a class

B, so class A has a pointer pointed to B to present this relationship. Class B does

not have a pointer to A as per the OODAL. But we need that pointer because if we

want delete instance b of B, we must check to see if any a of A pointed to b of B

exists. If it does. we can not delete b but give some messages. This is determined

by the semantics of the essential relationship.

4

5

Traveli n g through all objects in a graphical schema is not so difficult. OODINI

provides API to solve this problem. The API of OODAL allows us to access the

internal data structure layout. of OODAL. In API, all the objects in graphical schema

are organized as various linked list. We can easily traverse through all the objects

in a graphical schema by invoking the library routine, nodal(). We will show this in

detail later in this chapter.

The second problem demonstrates a more difficulty challenge for us. In general,

any class referenced by a special relationship need at least one pointer to refer back to

its referee. To solve this problem we need to add more information to all the object

classes in the graphical schema. One approach is to change OODINI so it can support

such a special semantic application. But this will involve thorough understanding of

OODINI internal structures and the changes will effect the whole OODINI system.

It is very time consuming and dangerous. Another choice is to create a patch to each

object class. All the information needed to be added are put into this patch, and

then we attach this patch to the class.

2.2 Representation of an Object Class

2.2.1 Representation of an Object Class in OODINI

In OODINI, all the objects arc edited with a graphical interface. The application

problem is organized according to an object-oriented database model. The graphical

interface is running under the X-window environment. It allows a user input,

delete and move the objects in the graphical schema. Many kinds of relations

and relationships are defined. That allows the user to choose the appropriate

one according to the application. At the end of editing the schema, a user can

save the graphical schema into OODAL. DAL and VML. All of them are abstract

object-oriented descriptive languages. The output is a flat file or a source code of

corresponding language.

6

Figure 2.1 Example of the OODINI graphical schema

Figure 2.1 is an example of OODINI graphical schema. Figure 2.2 gives all the

symbols used in OODINI.

2.2.2 Representation of an Object Class in OODAL

We choose OODAL as the source to translate to ONTOS code. The graphical schema

in OODINI can be translated into several kinds of intermediate object-oriented

language, i.e. OODAL, and DAL. DAL and VNIL are the languages based on the

the dual model architecture. DAL is the intermediate language used to translate

OODINI into VML. But ONTOS does not support this architecture. Converting

DAL into ONTOS will need more unnecessary effort to understand and handle the

7

Figure 2.2 Graphical symbols used in OODINI

8

dual model architecture. So. OODINI supplies a new abstract. language OODAL

which does not rely on the dual model architecture. We will translate OODAL code

into ONTOS code.

OODAL is OODini Abstract Language. OODAL's source code is a plain text

file and has the following syntax template for each object class.

class <class-name>
attributes

<attribute-name> : unknown-type;
<essential-attribute-name> :+ unknown-type;

endattributes;

setof : <class-name>;
roleof : <comma separated class-name list>;
partof : <comma separated class-name list>;
tupleof : <comma separated <connect : class-name> list>;

subclass : <comma separated class-name list>;
relationships

ordinary-relationship-name : <class-name>;
essential-relationship-name :+ <class-name>;
dependent-relationship-name :> <class-name>;
multivalued-relationship-name 	<class-name>;
multivalued-essential-relationship ::+ <class-name>;
multivalued-dependent-relationship ::> <class-name>;

endrelationships;
methods

method-name-10;

method-name-2();
endmethods;

end;

The following is the OODAL source code of the previous example in Figure 2.1

translated by OODINI.

class Courses
setof : Course;

end;

class Course

memberof : Courses;
relationships

9

Toughtby : Instructor;

endrelationships;

end;

class Person

attributes

Ssn : unknown_type;

Name : unknown_type;

endattributes;

end;

class Instructor

categoryof : Person;

relationships

Teaches : Courses;

endrelationships;

end;

class Student

categoryof : Person;

attributes

Major : unknown_type;

endattributes;

relationships

Registered :: Course;

endrelationships;

end;

2.3 Access API (Application Programming Interface)

2.3.1 Access OODAL through API

In OODINI, the OODAL can be thought of as having two parts. One is the output

after translation from graphical schema. It is the OODAL source file and is a flat

text file. Another is the API, Application Programming Interface, of OODAL. It is

the OODAL's internal data. structure. Figure 2.3 shows conceptually these relations.

The API of OODAL is a mechanism that allows a user to access the internal

data structure of the graphical schema. OODAL created by OODINI is a flat source

file. Translating it into ONTOS code needs parsing of the whole text file. This is

10

Figure 2.3 Translation of OODAL's file to ONTOS code.

very tedious and evidently unnecessary. The API of OODAL solves this problem

properly. API connects all the object classes in the graphical schema into a linked

list and will return a pointer to the first. class when oodal() library routine is called.

This gives us great convenience and efficiency to translate the OODAL code into

ONTOS code.

Figure 2.4 describes the outline of API's internal data structures of OODAL

for the previous example.

2.3.2 How to Access API in C

'e can access API of OODAL and then get the return of the first pointer of the class

in schema. Using this pointer, we can traverse through all the classes in the schema

and then translate them into ONTOS code accordingly. The actual accessing of the

API is as follows,

• Include "oodal.h" file in header of the access program.

* Call oodal() library routine in the program. Give heapfile name of the graphical

schema, generally it is .00heap, by default or given explicitly. The returning of

the call will be the pointer pointed to the first object class.

• Link the access program with c library routine.

11

Figure 2.4 Outline of the API's internal data structures of OODAL.

2.4 Patching the Object Classes

2.4.1 Internal structure of API

In API of OODAL. we can see clear the internal data structure of an object class.

We have already seen this previously in Figure 2.4. It contains all the necessary

information for each class without considering the semantic relations of the class.

The standard data structure of the object class is the following,

typedef struct oclass {
struct oclass *next; 	/* Next class pointer */
char 	 *name; 	/* Class name */

/* Other definitions for class */
... 	 /* Relations list pointer */

/* Relations list counter */
char 	*foruser [2] ; 	/* User private slots */
char 	*future [8] ; 	/* Future expansion */

}oclass_t;

12

2.4.2 Patch Inverse Pointer to a Class

-Without consider the semantics of the relationships between classes, the above

structure is sufficient to convert the class code directly into ONTOS code. But when

we consider the semantics of a relationship between two classes, we must have twin

pointers pointed to each other class involved. For example, we have two classes A

and B and have a semantic relation from A to B. The instance a of A should have

a pointer to instance b of B. Instance b should also have a pointer to a. So that it

can access its related instance when necessary.

For this purpose, we must add more information to all object classes. There

are two ways to achieve the goal.

First, we can change the API data structure and add the information to it

as needed. But this will involve profound understanding of OODAL translating

program and internal representation of graphical schema in OODINI. In addition,

any changes in OODINI will effect the whole system and should be very careful. So,

this is time consuming and dangerous.

Second, we can patch an extra data structure to each class and add the infor-

mation to it. In this way, we can add any information as needed and at the same

time keep the API compatible with OODINI. So, this way is safer and more efficient.

We choose patching to add more information. Figure 2.5 demonstrate this idea

conceptually.

2.4.3 Implementation of Patch Inverse Pointer to a class

How can we patch the information to the class in API? In the data structure of the

class in API, we can see pointers for future use. We use one pointer to point to a new

data structure. In this new structure we define the inverse pointer. For example,

class A has an essential relationship to class B. So class A has a pointer to class B.

After patching. the class B also has a pointer back to A.

13

Figure 2.5 Addition of a patch to a class data structure.

We define the new structure with inverse pointers as follows,

/* ONTDS inverse class definition */

typedef struct iclass

/* essential inverse list and counter */

basestruct_t 	*esninvlist;

long 	 esninvcnt;

/* dependent inverse list and counter */

basestruct_t 	*dpninvlist;

long 	 dpninvcnt;

/* multivalue essential inverse list and counter */

basestruct_t 	*mvesninvlist;
long 	 mvesninvcnt;

/* multivalue dependent inverse list and counter */

basestruct_t 	*mvdpninvlist;

14

long 	 mvdpninvcnt;

/* future use list */

char 	*future[10];

} iclass_t;

Then we scan the whole class linked list to attach the patch as follows.

/* for each class patches inverse pointer */

for (cp = classptr; cp; cp = CNEXT(cp))

if ((ip = (iclass_t *) malloc(sizeof(iclass_t))) ==

(iclass_t *) NULL)

printf("oodalontos : failed to allocate iclass_t.\n");

exit(1);

}

/* patch inverse structure to a class */

cp->future[0] = (char *) ip;

}

2.5 Glossary

API:

Application Programming Interface.

Attribute :

A structural aspect of a class that is composed of a name and a data type.

BNF:

Backus-Naur Form. BNF is a metalanguage for programming languages. A

metalanguage is a language that is used to describe another language. BNF is used

to describe the syntax of a programming language. It uses abstractions for syntactic

structures.

Category-of relationship:

15

A semantic relationship between two classes. It relates a specialized class to a

more general class where both these classes are viewed within the same application

context.

Class:

A container of objects which are similar in their structure and their semantics.

Dependent Relationship:

A relationship where the existence of an object depends on the existence of

another object. If the class A has a dependent relationship to class B, then the

existence of an instance a of A is dependent on the existence b of B. If b is deleted,

then a must also be deleted.

Essential Attribute:

The existence of an object is conditioned on the existence of this attribute.

An instance of a class can only exist if the values of its essential attributes are all

different from NIL.

Essential Relationship:

A relationship which is not permitted to have a NIL value.

Member-of Relationship:

A relation between two object. types. Here an object type is said to be a member

of another object type. The latter object type is called a set.

Method:

A program segment with one required parameter of some object type, and any

number of optional parameters. A method always returns a value of an object type

or data type.

Multi Valued Relationship:

A one to many relationship between two classes. It indicates that an instance

of one class can be related to any number of instances of the class to which the

16

relationship is directed. An example of this can be the relationship between the

classes "course" and "section", where a given course can have many sections.

Object:

The concept of an object is universal. Literally everything, from items as

simple as the integer constant to a file handle system, memory, data structures, etc.,

are objects. As objects, they are treated uniformly. Objects have local memory,

inherent processing ability, the capability for communicating with other objects, and

the ability to inherent characteristics from ancestor objects.

Object Type:

In order to express that all instances of a class have a common structure and

behavior one can consider them to be of the same abstract data type. This type is

called the object type of that class.

0 ODA L:

OODINI Abstract Language. The graphical image for a database schema is

first converted to this abstract language and then to other object oriented database

languages.

OODB:

Object Oriented Data Base.

OODINI:

Object Oriented Diagram Interface at New Jersey Institute of Technology. A

graphics editor for drawing and manipulating object oriented database schemas.

Part-of Relationship:

A relationship which is used to connect a part of a complex or assembled object

to its integral object. An example of this relationship can be class chapter and page

with the class book.

Relationship:

17

A user defined connection between classes that can contain either structural or

semantic information in the context. of the application.

Role-of Relationship:

A semantic relation between two classes. It relates a specialized class to a more

general class, where both these classes are viewed in different application contexts.

Set.-of Relationship:

A connection between two object types. Here an object type represents a set

of other member object. types. In a mathematical sense this is also a relation.

Tuple-of Relationship:

A relation constructor used to gather a group of classes(constituent classes)

into a single class(the tuple class) for some purpose. A concrete example of this can

be the tuple class shipment which is involved in a ternary relation with its constituent

classes supplier. product and department.

VML:

The VODAN Data Modeling Language.

CHAPTER 3

ONTOS DB AND GENERAL CONVERSION

The introduction of ONTOS DB and the general approach of the translation is

discussed in this chapter. ONTOS DB is a commercial object-oriented, multi user

and distributed database management system, embedded in C++. After the general

description of the ONTOS database system, we will see how to manipulate the

ONTOS DB. Then we will discuss the general approach of translating OODINI into

ONTOS DB.

3.1 Problem description and Approach

Coversion of the graphical elements in OODINI into a commercial object oriented

database management system is important . Currently OODINI can transfer a

graphical representation of an object oriented graphical schema into one kind of an

object oriented language, namely VML . Unfortunlately, \'ML run on VODAK which

is a research prototype but not a commercial OODB. So, an object oriented graphical

schema of OODINI can not be translated into a commercial database system directly.

OOTOS DB is a commercial database management system. It is an object.-

oriented, multi user and distributed database management system and is embedded

in C++[13]. Most. of the properties and features in graphical representation in

OODINI can be mapped into ONTOS DB. We will translate a graphical schema

of OODINI automatically into ONTOS DB to solve the above problem.

After a brief review of ONTOS DB, we will propose a general approach of

the problem in this chapter. All the graphical elements in OODINI will map into

corresponding features of ONTOS DB. The actual conversion of these elements will

be discussed in more detail in the coming chapters.

18

Table 3.1 Correspondence between the concepts of ONTOS and C++

ONTOS DB C++

type class

property data member

procedure memberfunction

super type base class

sub type derived class

direct reference pointer

3.2 Introduction of the ONTOS Database System

3.2.1 Introduction of ONTOS

ONTOS is an object-oriented database management system. All the data in the

database is treated as objects. The most important features of object- oriented

database is that, any data or data object in the database has only one copy[3, 5].

Any user who wants to access the data item can use a pointer to access it, or we say

refer to it through Reference.

ONTOS database system is embedded in C++. The ONTOS database

language is totally compatible with C++ and C[16, 15]. Its data structure definition

and programming statment is the same as C++ except that ONTOS has some more

statments to support the special database applications. Thus all the features in

C++ and C will automatically be inherited by ONTOS database system.

Table 3.1 shows the correspondence between the concepts of ONTOS and C++.

3.2.2 The Elements of ONTOS

Generally, ONTOS consists of three parts as following. Each of them performs a

specific task.

19

20

• DBATOOL. is the tool which creates and maintenance the ONTOS database

physical file in a working environment[14].

o Classify, is the utility to create class schema according to user supplied class

definition. The data member or property and member function or procedure

are created and then saved in the database.

• Cplus, is the pre-compiler which compiles a user's ONTOS program. Cplus

receives a user program and produces an intermedial C++ program and then

submit it. to C++ to further processing. The output of the cplus is finally an

executable file[11]

3.2.3 Features of ONTOS

ONTOS DB supports the ability of class to be persistent. As we know, the life time

of a class in C++ will be at most the life time of the process. ONTOS extends the life

time of the class, Type in ONTOS, to an unlimited time. This is the persistence of a

class. The class will be stored in the database and then be activated or deactivated

as needed. Figure 3.1 shows how to implement the class persistence in ONTOS DB.

Another important feature in ONTOS DB is the reference. In C++, a reference

can be thought of as a pointer. ONTOS supports two kinds of reference, direct

reference and abstract reference. Direct reference is a pointer which is exactly the

same pointer in C++. Abstract reference can be thought as a virtual pointer to a

class, no matter whether the class is residing in memory or in database. Abstract

reference is more powerful, safer and more convenience to use.

ONTOS provides some useful pre-packaged classes. The most important one

is the Set class in Aggregate classes. The Set class is not supported directly in

C++. By using the Set class of ONTOS DB in an application, groups of objects

21

Figure 3.1 Implement the class persistence in ONTOS DB

can be manipulated as one single object. This brings a great convenience to various

applications.

Other features related to the issue of multi-user, memory management and

crash recovery etc. are also supported in ONTOS DB. The corresponding information

can be found in References of this thesis.

3.3 Activating the ONTOS DB

Generally, we follow these steps to create an ONTOS DB and use it according to

applications.

• Use DBATool utility to create an ONTOS database environment.

• Use classify procedure to create an object class schema. The classify has the

following command format and one example is given also.

classify +X +D<dbName> -I<includeDir> +c<controlFile>
<headerFile>

classify +X +DontosDB +ccontrolFile -I/usr/cis/ontos/h

employee.h

22

department.h

Use classify to create an executable process. The following is the command

format and an example.

cplus [options] <sourceFile> -CFILE<controlFile>

cplus -g -o main -I/usr/cis/ontos/h \

main.0 \

employee.0 \

department.0 \

-L/usr/cis/ontos/lib -Bstatic -10NTOS

3.4 General Approach of the Conversion

3.4.1 Object Class definition in ONTOS DB

Each object class in OODINI will be translated into ONTOS's Type definitions. In

ONTOS DB, a class will be represented by two parts. One is the header definition

of the Type which defines the template of that Type, including the properties and

procedures. Another one is the code definition of that Type which will describe the

procedure of that Type in detail.

A user program then can use them by including Type definition files of all the

related Types.

The header definition file will be used by the classify utility to create a class

schema. The code definition file will be used by the cplus pre-compiler and its result

will produce a executable file.

3.4.2 The Correspondence Between OODINI and ONTOS DB

The OOD1NI elements are translated into Type definition of ONTOS DB with corre-

sponding elements. The following table shows the relation between them.

Table 3.2 Correspondence between the OODINI code and the ONTOS DB

OODINI Elements ONTOS Elements

Class Type

Attribute Property

Essential attribute Property with control file

Ordinary relationship Reference to a Type

Roleof A Type with inheritance

Subclass A Type with inheritance

Multi-valued relationship Reference to a Set of Type

Essential relationship Reference to a Type and
Inverse Reference to a Set of Type

Dependent. relationship Reference to a Type and
Inverse Reference to a Set of Type

Multi-valued Essential Reference to a Set of Type and
Inverse Reference to a Set of Type

Multi-valued Dependent Reference to a Set of Type
Inverse Reference to a Set of Type

Set Reference to a Set of Type and
Inverse Reference to a Set of Type

Tuple

Reference Types and
Inverse Reference to a Set of Type

Derived attribute Procedure with a null body
Part-of Not implement at present
Path Method Not implement at present

23

24

3.5 Glossary

The terminology used to describe ONTOS DB is explained in this section.

Abstract Reference:

A virtual pointer to a Type. A mechanism provided by ONTOS DB to

implement Type reference.

Inheritance:

The method of defining a class in term of another class.

Persistence:

Extending the life time of a class beyond that of the process in which it is

created.

Procedure:

Member functions of a class which define operations that can be performed on

an instance of the class.

Property:

Data members or attributes that define the state of a class.

Reference:

Same as "Relationship". If a A class refer to another class B, it is said class A

reference class B.

Sub Type:

The child class or derived class in C++.

Super Type:

The parent class or base class in C++.

CHAPTER 4

CONVERSION OF BASIC GRAPHICAL ELEMENTS

The conversion of basic graphical elements in OODINI from API of OODAL to

ONTOS Type definition is discussed in this chapter. The basic graphical elements

in OODINI include class, attribute, roleof, subclass, ordinary relationship and multi-

valued relationship. The translation of these elements was done previously in our

research group by Reddy[2]. As a background for translation of more sophisticated

elements in next chapter and for better understanding of next chapter, I include and

discuss briefly these translations here.

The way I discuss the translation in this chapter is the following. Given an

example element in the graphical schema in OODINI, we will see the corresponding

OODAL code. Then give the ONTOS DB result after translation. The result of

translation is a Type definition of ONTOS DB which includes two separate files,

.h and .0 files and both of them are source codes of ONTOS DB. After that, any

application program can include these type definitions and use it in ONTOS DB.

4.1 Problem Description and Approach

First. we will translate the basic graphical elements in a schema into ONTOS

Type definition. These graphical elements include class, attribute, roleof, subclass,

ordinary relationship and multi-valued relationship.

We can find the corresponding feature required directly from the ONTOS DB.

The class can be mapped as a Type. The attribute of a class can be mapped as

property of that Type. The roleof and subclass can use the feature of inheritance of

ONTOS DB. The Ordinary relationship can be mapped as a Reference referred to a

25

26

Figure 4.1 An example of a class and an attribute

Type. The Multi-valued relationship can be mapped as a Reference too, but referred

to a Set of Type. We will see details in following sections.

4.2 The Class and the Attributes

The most basic graphical elements in OODINI are class and attributes. An example

of class and attributes is given in Figure 4.1.

The source code of OODAL generated by OODINI is given below.

class 	person
attributes

birthDate : unknown_type;
ssn :+ unknown_type;
name : unknown_type;

endattributes;
methods

age 0;
endmethods;

end;

The translation result of class person into Type definition of ONTOS DB is

shown below.

1/ Type definition : person.h

#ifndef PERSON_H

#define PERSON_H

#include <Object.h>

class person : public Object {

private :

unknown_type _birthDate;

unknown_type _ssn;

unknown_type _name;

public :

// Constructor :

person(unknown_type __birthDate,

unknown_type __ssn,

unknown_type __name,

char*theName=(char*)0);

person(APL*);

virtual Type*getDirectType();

person* person::make(unknown_type __birthDate,

unknown_type __ssn,

unknown_type __name,

char*theName=(char*)0);

7/ Attribute Accessors :

void birthDate(unknown_type __birthDate);

unknown_type birthDate();

void ssn(unknown_type __ssn);

unknown_type ssn();

void name(unknown_type __name);

unknown_type name();

// Derived Attribute Accessories :

unknown_type person::age();

7/ Distructor

person();

virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

27

virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

// Type definition : person.0

#include "person.h"

#include <Directory.h>

#include <Type.h>

person::person(APL *theAPL) : Object(theAPL) {

}
person::person(unknown_type __birthDate,

unknown_type __ssn,

unknown_type __name,

char* theName) :

Object(theName)

{

initDirectType((Type*)0C_lookup("person")):

_birthDate = __birthDate;

_ssn = __ssn;

_name = __name;

}

person* person::make(unknown_type __birthDate,

unknown_type __ssn,

unknown_type __name,

char* theName) :

Object(theName)

{

return new person(__birthDate,

__ssn,

__name,

theName);

Type *person::getDirectType() {

return (Type*)0C_lookup("person");

}

// Attribute Accessors :

void person::birthDate(unknown_type __birthDate) {

28

29

_birthDate = __birthDate;

}
unknown_type person::birthDate() {

return _birthDate;

}

void person::ssn(unknown_type __ssn) {

_ssn = __ssn;

}

unknown_type person::ssn() {

return _ssn;

}

void person::name(unknown_type __name) {

_name = __name;

}
unknown_type person::name() {

return _name;

}

// Derived Attribute Accessories :

unknown_type person::age() {

// fill in the code by user.

}

// Destructor ...:

person: :person() {

Destroy(FALSE);

}

void person::Destroy(OC_Boolean aborted) {

if (aborted) Object::Destroy(aborted);

}

void person::putObject(OC_Boolean deallocate) {

Object::putObject(deallocate);

}

void person::deleteObject(OC_Boolean deallocate) {

Object::deleteObject(deallocate);

}

As we see, the class and attributes are translated into proper format of ONTOS

DB type definition. Some other translations are required by ONTOS DB.

30

We translate the essential relationship into two parts. First part is the same as

the regular attribute. Second part is a translation of its constraint. The constraint

is translated into a control file according to ONTOS. The translate result is the

following.

// Type definition : person.ctrl

person::_ssn is required

The derived attribute is translated into a procedure. The procedure is correctly

defined but has only a null body. The processing in the procedure will be filled by a

user according to the application.

4.3 The Subclass and the Roleof

The translation of subclass and roleof is entirely according to the inheritance feature

in ONTOS and the translation of subclass and roleof is similar. In OODINI, Subcalss

and roleof are different relationship. A subclass object will inherit object type

from its superclass in dual model. A roleof object will inherit object class from

its superclass[4]. In ONTOS DB, a Type will inherit the properties and procedures

from its superType. So, both subclass and roleof objects can be translated according

to the inheritance and the conversion of these two type of relations are exactly the

same.

Figure 4.2 gives an example of these relations.

The corresponding source code of OODAL is below.

class 	gradStudent

end;

class 	employee

end;

class 	assistant

31

Figure 4.2 An example of a subclass and a roleof

roleof 	gradStudent;

categoryof : employee;

end;

The translation result of these two graphical elements of OODINI into

ONTOS Type definition is given here. We can see the inheritance of assistant

from gradStudent and employee clearly. As the class gradStudent and employee are

totally null classes, it is unnecessary to include the translation results although they

exist.

/1 Type definition : assistant.h

#ifndef ASSISTANT_H

#define ASSISTANT_H

#include "employee.h"

#include "gradStudent.h"

#include <Object.h>

class assistant : public employee,

public gradStudent{

private :

public :

// Constructor

assistant (char* theName=(char*)0);

assistant(APL*);

virtual Type*getDirectType();

assistant* assstant::make(char* theName=(char*)0);

// Distructor

assistant();

virtual void Destroy(0C_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

// Type definition : assistant.0

#include "assistant.h"

#include <Directory.h>

#include <Type.h>

assistant::assistant(APL *theAPL) : employee(theAPL),

gradStudent(theAPL) {

}

assistant::assistant(char* theName) :

employee (theName) ,

gradStudent(theName)
{

initDirectType((Type*)OC_lookup("assistant"));

}

Type *assistant::getDirectType() {

return (Type*)0C_lookup("assistant");

}

assistant* assistant::make(char* theName)
{

return new assistant(theName);

}

// Destructor ...:

assistant::~assistant() {

Destroy(FALSE);

}

32

33

void assistant : :Destroy(OC_Boolean aborted) {

if (aborted) employee: :Destroy (aborted) ;

if (aborted) gradStudent : : Destroy (aborted) ;

void assistant :putObject (OC_Boolean deallocate)

employee: :putObject (deallocate) ;

gradStudent : :putObj ect (deallocate) ;

}
void assistant::deleteObject(OC_Boolean deallocate) {

employee::deleteObject(deallocate);

gradStudent : :deleteObject (deallocate) ;
}

4.4 The Ordinary Relationship and the Multi-valued Relationship

The translation of ordinary relationship will use an abstract reference in ONTOS.

For an ordinary relationship. a class A has a property referring to a class B. Similarly

in ONTOS D13, a relationship can be implemented as an abstract reference of Type

A referring to Type B.

An abstract reference can be thought of as a virtual pointer from Type A to

Type B. An abstract reference \VW always return a correct pointer to the property

whenever the data item resides in memory or in the database.

A multi-valued relationship will be mapped to an abstract reference too. But

here. the reference points no longer to a Type. It points to a set of Type.

Figure 4.3 shows an example of an ordinary relationship and a multi-valued

relationship.

The source code of the ordinary relationship and multi-valued relationship of

OODAL is shown as follows.

class 	gradStudent

relationships

advised : faculty;

takes :: course;

endrelationships;
end:

Figure 4.3 An example of an ordinary and a multi-valued relationship

class 	course

end;

class 	faculty

end;

The conversion result is given below only. for the Type gradStudent.

// Type definition : gradStudent.h

#ifndef GRADSTUDENT_H

#define GRADSTUDENT_H

#include "faculty.h"

#include "course.h"

#include <Object.h>

#include <Reference.h>

#include <Set.h>

class faculty;

class course;

class gradStudent : public Object {

private :

Reference _advised;

Reference _takes;

public :

// Constructor :

gradStudent(char* theName=(char*)0);

34

gradStudent(APL*);

virtual Type*getDirectType();

gradStudent* gradStudent:make(char* theName=(char*)0);

// Relationship Accessors :

void advised(faculty*__faculty);

faculty*advised();

void Reset_advised();

// Multivalued Relationship Accessories :

Set* takes();

void Add_to_takes(course* __course);

void Remove_from_takes(course* __course);

long unsigned Cardinality_of_takes();

// Distructor

~gradStudent();
virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);
};

#endif

/1 Type definition : gradStudent.0

#include "gradStudent.h"

#include <Directory.h>

#include <Type.h>

gradStudent::gradStudent(APL *theAPL) : Object(theAPL)
}

gradStudent::gradStudent(char* theName) :

Object(theName)
{

initDirectType((Type*)OC_lookup("gradStudent"));

_advised.initToNull();

Type* courseType = (Type*)OC_lookup("course");

_takes.Init(new Set(courseType), this);
}

35

gradStudent* gradStudent::make(char* theName)

return new gradStudent(theName);

}

Type *gradStudent::getDirectType() {

return (Type*)OC_lookup("gradStudent");

}

7/ Relationship Accessors :

void gradStudent::advised(faculty*__faculty) {

_advised.Reset(__faculty,this);

}

faculty*gradStudent::advised() {

return (faculty*)_advised.Binding(this); }

void gradStudent::Reset_advised() {

_advised.initToNull();

}

// Multivalued Relationship Accessories :

Set* gradStudent::takes() {

Set* theSet = (Set*)_takes.Binding(this);

Set* returnSet = new Set(*theSet);

return(returnSet);

}

void gradStudent::Add_to_takes(course* __course) {

Set* setof_course = (Set*)_takes.Binding(this);

setof_course->Insert(__course);

setof_course->putCluster();

}

void gradStudent::Remove_from_takes(course* __course)

Set* setof_course = (Set*)_takes.Binding(this);

setof_course->Remove(__course);

setof_course->putCluster();
}

long unsigned gradStudent::Cardinality_of_takes() {

return ((Set*)_takes.Binding(this))->Cardinality();

}

// Destructor ...:

36

gradStudent::-gradStudent() {

37

Destroy(FALSE);

}

void gradStudent::Destroy(OC_Boolean aborted) {

Entity* __takes = (Entity*)_takes.Binding(this);

delete __takes;

if (aborted) Object::Destroy(aborted);

}

void gradStudent::putObject(OC_Boolean deallocate) {

((Set*)_takes.Binding(this))->putObject(FALSE);

Object::putObject(deallocate);

}

void gradStudent::deleteObject(OC_Boolean deallocate) {

((Set*)_takes.Binding(this))->deleteObject(FALSE);

Object::deleteDbject(deallocate);

}

4.5 Topics Remained

There are still several problems in the translation of the basic elements. We will

discuss them briefly as follows.

• The constraint of setof is not translated in the previous work. In the previous

work, setof relationship was translated as a multi-valued relationship. But

some information is lost and the constraint between the class and its set class

is no longer maintained.

• The constraint of tupleof is also not translated in the previous work. In previous

work, tupleof relationship was translated as ordinary relations. Here too, the

constraint information is lost and the constraint between the class and its

tupleof class is no longer maintained.

These problems will be discussed further in next chapter.

CHAPTER 5

CONVERSION OF SEMANTIC GRAPHICAL ELEMENTS

In this chapter, the translation of more sophisticated graphical elements in OODINI

from API of OODAL to the ONTOS Type definition will be discussed. The graphical

elements covered here include essential relationship, dependent relationship, multi-

valued essential relationship, multi-valued dependent relationship, setof relationship

and tupleof relation.

The most important feature of these graphical elements is that all of these

relationships have semantic constraints on the classes. ONTOS DB does not support

this semantic constraint directly. We must find some new way to implement these

semantic constraints using the existing features ONTOS DB supplies. As we can see,

All these relationships are conyerted to their proper features in ONTOS DB.

In each section, the semantics of the relationship is described. Then a corre-

sponding feature in ONTOS DB is chosen and the implementation of the translation

is disussed. Finally an example and its translation are given.

5.1 Problem Description and Approach

5.1.1 Problem Description

The most important feature of the graphical elements discussed in this chapter is

that all of these relationships have a semantic constraint on their related classes.

ONTOS DB does not support this semantic constraint directly. For instance, a class

A has an essential relationship to a class B. An instance a of A can not be created if

it refers to a null instance of B. We can not find the corresponding notion in ONTOS

DB directly. So, we can not translate these relationships directly to ONTOS DB as

we did in the previous chapter for the simple elements of OODINI.

38

39

Figure 5.1 An example of an essential relationship

Suppose we have a class A referring to a class B and suppose also the

relationship is essential as shown in Figure 5.1. The essential relationship specifies

semantic constraints in two aspects.

• Create a: when we create an instance a of A we must check if the instance b

of B referred by the relationship is exist. If it does, the creation is successful.

Otherwise we can not create this instance of a.

• Delete b: if we want to delete instance b of B, we must check if there is an

instance a of A referred to b of B. If there is one, we can not delete this instance

b. Otherwise we can do that.

In ONTOS DB, we can check first semantics directly by checking the Reference

of Type A. If the Reference of a returns a NULL we can not create a. But when we

try to delete b. we don't know which a of A refers to this b. In ONTOS DB, we can

40

Figure 5.2 An example of an Inverse Reference

not get this information directly. We then must find some way to implement these

semantic constraints using features that ONTOS DB has already supplied.

5.1.2 Approach Outline

The basic idea to solve this problem is the inverse Reference. All the semantic

constraints can be supported if we create an inverse Reference to a Set of Type, from

this set we can refer back to the original Type. We can see this idea in Figure 5.2.

In this way, we can check the inverse Reference to see if there are any instances of A

referring to b.

As we can see below, the essential relationship and the dependent relationship

are mapped into a Reference to Type and an inverse Reference to a Set of Type.

41

Figure 5.3 The life time span of a Type

The multi-valued essential relationship and the multi-valued dependent relationship

are translated as a Reference to a Set of Type and an inverse Reference to another

Set of Type. The Setof relationship can be thought of as a multi-valued dependent

relationship and then can be translated into a. Reference to a Set of Type. Tupleof

relationship can be thought of as several dependent relationships and can be mapped

into several Reference to several Type.

The important issue in the translation is the scope of the semantic constraints

maintained. This issue is demonstrated in Figure 5.3. The next issue we must

consider is the life time of the Type that its semantic constraints are maintained.

We can see the life time of an instance of a Type clearly from Figure 5.4.

There are mainly two strategies in translation. We describe them as follows.

1. To maintain the semantic constraints at highest level, i.e. beginning at appli-

cation process memory. This method has the following properties.

The semantic constraints are maintained everywhere including application

process memory. ONTOS DB audit area and the permanent database

Figure 5.4 The access scope of ONTOS DB

42

43

if the application program follows the accessor supplied in the Type.

We must use method make() to create an Object instead of using new

operator.

• There are three control points. we will control creation of the Object using

make(), accessor(), deleteObject() in order to implement the semantic

constraints.

• The semantic constraints are effective on the Type during the whole life

time after make() operation of the Type.

• This method requires that an application program must follow a specific

format when invoking the constructor. The invoking result can be

indirectly returned.

• If an application program bypasses the interface supplied, the semantic

constraints of the data will be damaged. So, the semantic constraints of

this data will no longer be maintained both in memory and database.

2. To maintain the semantic constraints at second level, i.e. beginning at ONTOS

DB audit area. This method has the following properties.

• The semantic constraints are maintained in ONTOS DB audit area and

the permanent database. It does not matter if the application program

follow the accessor supplied in the Type.

• There are two control points. we will control putObject(), deleteObject()

in order to implement the semantic constraints.

® The semantic constraints are effective on the Type in the span beginning

at putObject().

44

® This method require that. an application program must follow a specific

format when invoking the constructor. The involution's result can be

indirectly returned.

® If an application program bypasses the interface supplied, the semantic

constraints of the data are still maintained.

We try to maintain the semantic constraints during the whole life time of a Type

from creation to deletion of the Type. There are Direct and Indirect solutions for this

issue. A Direct solution means that a Type can maintain its semantic constraints

from creation until deletion of the Type, no matter whatever an application program

does. An Indirect solution can not guarantee this and will ask an application program

which follows a specific format to achieve that goal.

Because of the limitations of ONTOS DB and C++, we can not implement

the conyersion which satisfies a Direct solution. Both of above methods are Indirect

solutions and have their own advantages and disadvantages. Finally, we have chosen

the first strategy to implement the translation.

5.2 The Essential Relationship

5.2.1 The Semantics of an Essential Relationship

Suppose that we have a class A and class B and class A has an essential relationship

to class B.

The semantic constraints in essential relationship are,

• The creation semantic constraint: if we want to create an instance a of a class

A, it must refer to an existing instance b of class B.

• The update semantic constraint: we can not assign a NULL value to an instance

a of class A.

45

Figure 5.5 The translation of essential relationship

The deletion semantic constraint: we can not delete an instance b of class B if

there is any instance a of A referring to it.

In Figure 5.5, we can see an example of an essential relationship.

5.2,2 Implementation of an Essential Relationship

First we consider the essential relationship as an ordinary relationship. Then we

add more content to implement the essential constraints. We translate the essential

relationship using a Reference to department Type from employee Type and an

inverse Reference to a Set of employee Type from department Type.

For employee Type, we implement. the semantic constraints in the following

points. In the constructor, we implement the creation of the semantic constraints.

46

In the relationship accessor. we implement the update of the semantic constraint.

We maintain the semantic constraints accordingly in deleteObject() function,.

For the department Type, we implement the semantic constraints in the

following points. The deletion semantic constraint is implemented in the deleteObject()

function. For the inverse Reference, we implement this as a regular multi-valued

relationship.

5.2.3 Translation of an Essential Relationship

Following the same essential relationship example, we give the OODAL code and its

translation result of ONTOS DB Type definition.

class 	department
attributes

name : unknown_type;
endattributes;

end;

class 	employee
attributes

ssn : unknown_type;
name : unknown_type;

endattributes;
relationships

worksfor :+ department;
endrelationships;

end ;

In the constructor of employee, we implement the creation constraint.

// Creation constraint in constructor of employee

employee::employee(char* __ssn,
char* __name,
department* __department,
char* theName) :
Object (theName)

47

initDirectType((Type*)OC_lookup("employee"));

_ssn = __ssn.;

_name = __name;

_worksfor.Reset(__department,this);

__department->Add_to_inv_worksfor(this);

}

employee* employee::make(char* __ssn,

char* __name,

department* __department,

char* theName)

{

if (__department == (department*)NULL)

return NULL;

return new employee(__ssn,

__name,

__department,

theName);

}

In relationship accessor of employee, we implement the update semantic

constraint.

// Update constraint in relationship Accessors :

void employee::worksfor(department*__department) {

if (__department != (department*)NULL) {

(worksfor())->Remove_from_inv_worksfor(this);

_worksfor.Reset(__department,this);

__department->Add_to_inv_worksfor(this);

}

}

In deleteObject() of employee, we maintain the semantic constraint in inverse

Set of Type accordingly.

// Maintain the inverse Set of Type in employee :

void employee::deleteObject(OC_Boolean deallocate) {

(worksfor())->Remove_from_inv_worksfor(this);

Object::deleteObject(deallocate);

48

In deleteObject() of department, we implement the deletion semantic

constraint.

// Deleting constraint in department :

void department::deletenject(OC_Boolean deallocate) {

if (Cardinality_of_inv_worksfor() != 0) {

return;

Object::deleteObject(deallocate);

}

5.3 The Dependent Relationship

5.3.1 The Semantics of a Dependent Relationship

The semantic constraints of a dependent relationship are basicly the same as for an

essential relationship except for the deletion constraint. We describe the semantic

constraints of dependent relationship as follows.

• The creation semantic constraint: if we want to create an instance a of a class

A. it must refer to an existing instance b of a class B.

o The update semantic constraint: we can not assign a NULL value to an instance

a of A.

o The deletion semantic constraint: we delete an instance b of B and all the

instance a of A referred to it.

An example of dependent. relationship is given in Figure 5.6.

5.3.2 Implementation of a Dependent Relationship

A dependent relationship ca.n be thought of as an ordinary relationship first. Then

we add more information to implement the dependent constraints. We translate the

Figure 5.6 The translation of a dependent relationship

49

50

dependent. relationship using a Reference to course Type from section Type and an

inverse Reference to a Set of section Type from the course Type.

In section Type, we control the semantic constraints in these points. In the

constructor, we implement the creation semantic constraints. In the relationship

accessor, we implement the update semantic constraint. We maintain the semantic

constraint accordingly in the deleteObject() function,.

For course Type, we implement the constraint as follows. The deletion semantic

constraint is implemented in the deleteObject() function. For inverse Reference, we

implement it as a regular multi-valued relationship.

5.3.3 Translation of a Dependent Relationship

As the giyen dependent example, we give the OODAL code and its translation result

of ONTOS DB Type definition.

class 	course
attributes

code : unknown_type;
name : unknown_type;

endattributes;
end;

class 	section

attributes

number : unknown_type;

endattributes;

relationships

offerto :> course;

endrelationships;
end;

In the constructor of section, we implement the creation constraint.

// Creating constraint in constructor of section :

section::section(char* __number,

51

course* __course,
char* theName) :
Object (theName)

{

initDirectType((Type*)OC_lookup("section"));

_number = __number;
_offerto.Reset(__course,this);
__course->Add_to_inv_offerto(this);

}

section* section::make(char* __number,
course* __course,
char* theName)

{

if (__course == (course*)NULL)
return NULL;

return new section(__number,
__course,

theName);
}

In relationship accessor of section, we implement the update semantic constraint.

// Updating constraint in relationship Accessors :

void section: :offerto(course*__course)
if (__course != (course*)NULL)

(offerto()) ->Remove_from_inv_of ferto (this) ;
_off erto . Reset (__course ,this) ;
__course->Add_to_inv_offerto(this);

}

}

In deleteObject() of section, we maintain the semantic constraint in inverse Set

of Type accordingly.

7/ Maintain the inverse Set of Type in section :

void section::deleteObject(OC_Boolean deallocate)
(offerto())->Remove_from_inv_offerto(this);
Object::deleteObject(deallocate);

}

52

In deleteObject () of department, we implement the deletion semantic

constraint. The deleteCluster() will delete the Set and all the members in the Set.

1/ Deleting constraint in course :

void course::deletenject(OC_Boolean deallocate) {
((Set*)_inv_offerto.Binding(this))->deleteCluster();
Object::deleteObject(deallocate);

5.4 The Multi-valued Essential Relationship

5.4.1 The Semantics of a Multi-valued Essential Relationship

The semantic constraints of multi-yalued essential relationship are,

• The creation semantic constraint: if we want to create an instance a of a class

A, it must refer to existing instances of a class B.

• The update semantic constraint: we can not assign a NULL value to an instance

a of A. But we can assign an a many bs.

•

 The deletion semantic constraint: we can not delete an instance b of B if there

is any instance a of A which has only one reference to the instance b of B.

An example of multi-valued essential relationship is given in Figure 5.7, In this

example, an employee can work in many departments instead of work only in one

department in previous example of essential relationship,

5.4.2 Implementation of a Multi-valued Essential Relationship

The multi-valued essential relationship is basicly a multi-valued relationship. We

translate that as a multi-valued relationship and use a Reference to a Set of

department Type from a employee Type. Then some more information is added to

Figure 5.7 The translation of a multi-valued essential relationship

53

54

maintain the constraints imposed. Here again, we use an inverse Reference to a Set

of the employee Type from department Type.

For the employee Type, we translate the semantic constraints as follows. We

implement the creation constraints in the constructor of employee. In relationship

accessory, we implement the update constraint. As we can see below, it is more

complex than a Reference to a Type. We maintain the constraint at deleteObjeject()

of the employee Type accordingly.

For the department Type. we control the semantic constraints at these points.

we implement the deletion constraint in deleteObject(). For the inverse Reference,

we treat it as a regular multi-valued relationship.

5.4.3 Translation of a Multi-yalued Essential Relationship

As per the given example of multi-yalued essential relationship, we have the OODAL

and the translation result of OOTOSDB Type definition.

class 	employee
attributes

ssn : unknown_type;
name : unknown_type;

endattributes;

relationships

worksin ::+ department;
endrelationships;

end;

class 	department

attributes
name : unknown_type;

endattributes;
end;

In the constructor of employee, the creation constraint is translated like this.

1/ Creating constraint in constructor of employee :

55

employee::employee(char* __ssn,

char* __name,

Set* __worksinSet,

char* theName) :

Object (theName)

{

initDirectType((Type*)DC_lookup("employee"));

_ssn = __ssn;

_name = __name;

Type* departmentType = (Type*)OC_lookup("department");

_worksin.Init(new Set(departmentType), this);

Set* departmentSet = (Set*)_worksin.Binding(this);

department* departmentln;

Aggregatelterator* worksinit = __worksinSet->getIterator();

while (worksinit -> moreData())

departmentIn = (departments*)

(Entity*)(worksinIt->operator()());

if (departmentln != (department*)NULL)

departmentln->Add_to_inv_worksin(this);

departmentSet->Insert(departmentIn);

}

}

}

employee* employee::make(char* __ssn,

char* __name,

Set* __worksinSet,

char* theName)

{

department* departmentln;

Aggregatelterator* worksinIt = __worksinSet->getIterator();

while (worksinit -> moreData())

departmentIn = (departments*)

(Entity*)(worksinIt->operator()());

if (departmentIn == (department*)NULL)

__worksinSet->Remove(departmentIn);
}

if (__worksinSet->Cardinality() == 0)

return NULL;

return new employee(__ssn,

__name,

__worksinSet,

theName);

56

In the relationship accessor of employee, we implement the update semantic

constraint..

// Updating constraint in relationship Accessors :

void employee::Add_to_worksin(department* __department) {

if (__department == (department*)NULL) return;

Set* setof_department = (Set*)_worksin.Binding(this);

setof_department->Insert(__department);

setof_department->putObject();

__department->Add_to_inv_worksin(this);

}

void employee::Remove_from_worksin(department* __department) {

if (__department == (department*)NULL) return;

Set* setof_department = (Set*)_worksin.Binding(this);

if (setcf_department->Cardinality() <= 1) return;

if ((setof_department->isMember(__department)) == TRUE) {

setof_department->Remove(__department);

setof_department->putObject();

__departments->Remove_from_inv_worksin(this);

}

In the deleteObject() of employee, we maintain the semantic constraint

accordingly.

// Maintain the inverse Set of Type in employee :

void employee::deleteObject(OC_Boolean deallocate) {

Set* setof_department = (Set*)_worksin.Binding(this);

department* departmentIn;

AggregateIterator* worksinit =

setof_department->getIterator();

while (worksinit -> moreData())

departmentIn = (department*)(Entity*)

(worksinIt->operator()());

departmentIn->Remove_from_inv_worksin(this);

}

Object::deleteObject(deallocate);

57

In the deleteObject () of department. we implement the deletion semantic

constraint. The deleteCluster() will delete the Set and all the members in the Set.

// Deleting constraint in department :

employees* employeesln;
Set* employeesSet = (Set*)_inv_worksin.Binding (this) ;
Aggregatelterator* inv_worksinit = employeesSet->getIterator();
while (inv_worksinIt -> moreData()) {

employeesln = (employees*)
(Entity*)(inv_worksinIt->operator()());

if (employeesln->Cardinality_of_worksin() <= 1) {
return;

}

}

inv_worksinIt = employeesSet->getIterator();
while (inv_worksinIt -> moreData())

employeesln = (employees*)
(Entity*) (inv_works inIt->operator() ());

employeesln->Remove_from_worksin(this);

Object : : deleteObject (deallocate) ;
}

5.5 The Multi-valued Dependent Relationship

5.5.1 The Semantics of a Multi-valued Dependent Relationship

Like dependent relationship, the multi-valued dependent relationship is basicly the

same as multi-valued essential relationship. The only difference is that an instance a

of A does no longer exist if an instance b of B is deleted. The semantic constraints

of multi-yalued relationship is as follows.

• The creation semantic constraint: if we want to create an instance a of a class

A, it must refer to an existing instance b of a class B.

O The update semantic constraint: we can not assign a NULL value to an instance

a of A. But we can assign a of A more than one b of B.

58

Figure 5.8 The translation of a. multi-valued dependent relationship

The deletion semantic constraint: we delete an instance b of B and all instances

of a of A referred to it.

An example of multi-valued dependent relationship is given in Figure 5.8.

5.5.2 Implementation of a Multi-valued Dependent Relationship

The multi-valued dependent relationship is basicly the same as the multi -valued

essential relationship. The only difference is the deletion semantic constraints. So,

we use a Reference to a. Set of parent Type from a child Type and use an inverse

Reference to a Set of child Type to maintain the constraints.

59

In the child Type. we implement the constraints in the constructor, the

relationship accessor and deleteObject(). In parent Type, we implement the

constraints at deleteObject() and the regular multi-valued relationship.

5.5.3 Translation of a Multi-valued Dependent Relationship

For the example given above, we show the OODAL code and result after translation.

class 	child
attributes

ssn : unknown_type;
name : unknown_type;

endattributes;
relationships

has ::> parent;

endrelationships;

end;

class 	parent
attributes

ssn : unknown_type;
name : unknown_type;

endattributes;
end;

In the constructor of a child type, the creation constraint is implemented as

below.

II Creation constraint in the constructor of child type:

child: :child(char* __ssn,
char* __name,
Set* __hasSet,
char*theName) :
Object (theName)

{

initDirectType((Type*)OC_lookup("child"));
_ssn = __ssn;
_name = __name;

Type* parentType = (Type*)OC_lookup("parent");

60

_has.Init(new Set(parentType), this);

Set* parentSet = (Set*)_has.Binding(this);

parent* parentIn;

Aggregatelterator* haslt = __hasSet->getIterator();

while (haslt -> moreData()) {

parentln = (parent*)

(Entity*)(hasIt->operator()());

if (parentln != (parent*)NULL) {

parentln->Add_to_inv_has(this);

parentSet->Insert(parentln);

}

}

}

child* child::make(char* __ssn,

char* __name,

Set* __has,

char* theName)

{

parent* parentln;

Aggregatelterator* haslt = __has>getIterator();

while (haslt -> moreData()) {

parentln = (parent*)

(Entity*)(hasIt->operator()());

if (parentln == (parent*)NULL)

__has->Remove(parentIn);

}

if (__has->Cardinality() == 0)

return NULL;

return new child(__ssn,

__name,

__has,

theName);

}

The update constraint is implemented in the relationship accessors as follows.

// Update constraint of child type:

void child::Add_to_has(parent* __parent) {

if (__parent == (parent*)NULL) return;

Set* setof_parent = (Set*)_has.Binding(this);

setof_parent->Insert(__parent);

setof_parent->putCluster();

61

__parent->Add_to_inv_has(this);

}

void child::Remove_from_has(parent* __parent) {

if (__parent == (parent*)NULL) return;

Set* setof_parent = (Set*)_has.Binding(this);

if (setof_parent->Cardinality() <= 1) return;

if ((setof_parent->isMember(__parent)) == TRUE) {
setof_parent->Remove(__parent);

setof_parent->putCluster();

__parent->Remove_from_inv_has(this);

}

}

At the deleteObject(), we keep the constraint consistent.

// Maintain the consistency in the child type:

void child::deleteObject(OC_Boolean deallocate) {

Set* setof_parent = (Set*)_has.Binding(this);

parent* parentln;

AggregateIterator* haslt =

setof_parent->getIterator();

while (haslt -> moreData()) {

parentln = (parent*)(Entity*)

(haslt->operator()());

parentIn->Remove_from_inv_has(this);

}

Object::deleteObject(deallocate);

}

In the parent. Type, we implement the deletion constraint at deleteObject().

// Delete constraint in parent type:

void parent: :deleteObject(OC_Boolean deallocate)
((Set*)_inv_has.Binding(this))->deleteCluster() ;
Object: :deleteObject(deallocate);

62

Figure 5.9 The translation of a Setof to a multi-yalued dependent relationship

5.6 Setof

5.6.1 The Constraints of a Setof

The Setof relationship can be thought of as a multi-valued dependent relationship.

In the previous work, the Setof relationship is translated as a regular multi-valued

relationship. But Setof relationship has some constraints. If class A is the Setof class

B, any members in instance a of A must be an instance of B. If we try to delete an

instance b of B, we will delete the member in all the instances of A. That is exactly

the multi-valued dependent relation.

So we can convert a Setof relationship into multi-valued dependent relationship

as shown in Figure 5.9.

5.6.2 Implementation of a Setof

The translation of the Setof relationship is the same as the multi-valued dependent

relationship. We can use the same translation result above.

63

Figure 5.10 The translation of a Tupleof to several dependent relationships

5.7 Tupleof

5.7.1 The Constraints of a Tupleof

Tupleof relationship can be transferred to several dependent relationships. In the

previous work. tupleof is mapped to seyeral ordinary relationships. But tupleof also

have some constraints. Suppose class A has a tupleof relationship with class B and

C. The instance a of A can only be exist if it refers to an existent instances b of B

and c of C. If we want to delete b of B, or c of C, the corresponding instance a in A

will be deleted also. This relationship has exactly the same property as dependent

relationships.

We can see this property further in the example shown in Figure 5.10.

5.7.2 Implementation of a Tupleof

According to the above mapping, the translation of tupleof relationship can be trans-

ferred to several dependent relation. We can see the translation result from previous

example.

CHAPTER 6

CONCLUSION

In this thesis we enhanced the previous OODINI to ONTOS DB translator by adding

the ability to translate the sophisticated graphical elements in the graphical repre-

sentation schema of OODINI from API of OODAL to the Type definition of ONTOS

DB. These graphical elements include essential relationship, dependent relationship,

multi-yalued essential relationship and multi-valued dependent relationship. Both

the structure and the semantic constraints of these graphical elements are trans-

ferred correctly to the Type definition of ONTOS.

In order to implement the translation, we employ several techniques to accom-

modate the conversion of the semantic constraints. We patch an extra data structure

to a class in API of OODAL. We employ the inverse Reference to maintain the

semantic constraints in a Type. We implement the semantic constraints of the above

graphical elements in the procedures of the Type involved in the translation. We have

chosen the best. indirect solution from several choices to implement the translation.

To validate the translation result, we give examples for each of the above

graphical elements in the Appendix. Both the Type definition and the trial main

program are included.

Two relationships, Setof and Tupleof, also have constraints. They are the

special case of the aboye relationships. Setof is a multi-valued dependent relationship.

Tupleof can be thought. of as several dependent relationships.

We implement. the translation on a Sun work station under UNIX and Motif

window manager environment using C and C++.

There is still some more research to be done in the future.

64

65

• We need to translate more sophisticated graphical elements which have complex

semantic constraints, such as Partof and Ownership relationships which are still

under development[8,

• We need to try to maintain the semantic constraints during the whole life time

of a Type, and so will try to search for a Direct solution but we need to wait

for the availability of the proper software changes in the ONTOS system as it

is still not supported by the ONTOS system.

APPENDIX A

EXAMPLE OF AN ESSENTIAL RELATIONSHIP

66

///////////////////////// employee.h //////////////////////////

#ifndef EMPLOYEE_H

#define EMPLOYEE_H

#include "department.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

class department;

class employee : public Object {

private :

char* _ssn;

char* _name;

Reference _worksfor;

public :

// Constructor

employee(char* __ssn,

char* __name,

department* __department,

char* theName=(char*)0);

employee(APL*);

Type* getDirectType();

static employee* make(char* __ssn,

char* __name,

department* __department,

char* theName=(char*)0);

// Attribute Accessors :

void ssn(char* __ssn);

char* ssn();

void name(char* __name);

char* name();

// Relationship Accessors :

void worksfor(department* __department);

department* worksfor();

67

// Distructor

employee();

virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);

#endif

///////////////////////// employee.0 //////////////////////////

#include "employee.h"

#include <Directory.h>

#include <Type.h>

employee::employee(APL *theAPL) : Object(theAPL) {

}

employee::employee(char* __ssn,

char* __name,

department* __department,

char* theName) :

Object (theName)
{

initDirectType((Type*)OC_lookup("employee"));

_ssn = __ssn;

_name = __name;

_worksfor.Reset(__department,this);

__department->Add_to_inv_worksfor(this);
}

Type *employee::getDirectType() {

return (Type*)OC_lookup("employee");
}

employee* employee::make(char* __ssn,

char* __name,

department* __department,

char* theName)
{

if (__department == (department*)NULL)

return NULL;

return new employee(__ssn,

__name,

68

__department,

theName);

}

// Attribute Accessors :

void employee::ssn(char* __ssn) {

_ssn = __ssn;

}

char* employee::ssn() {

return _ssn;

}

void employee::name(char* __name) {

_name = __name;

}

char* emoloyee::name() {

return _name;

}

// Relationship Accessors :

void employee::worksfor(department*__department) {

if (__department != (department*)NULL) {

(worksfor())->Remove_from_inv_worksfor(this);

_worksfor.Reset(__department,this);

__department->Add_to_inv_worksfor(this);
}

}

department*employee::worksfor() {

return (department*)_worksfor.Binding(this);
}

/7 Destructor ...:

employee::~employee() {

Destroy(FALSE);

}

void employee::Destroy(OC_Boolean aborted) {

if (aborted) Object::Destroy(aborted);

}

void employee::putObject(OC_Boolean deallocate) {

(worksfor())->putObject();

Object::putObject(deallocate);

69

}
void employee::deleteObject(DC_Boolean deallocate) {

(worksfor())->Remove_from_inv_worksfor(this);

Object::deleteObject(deallocate);

}

//////////////////////// department.h /////////////////////////

#ifndef DEPARTMENT_H

#define DEPARTMENT_H

#include "employee.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

#include <Set.h>

class employee;

class department : public Object {

friend class employee;

private :

char* _name;

Reference _inv_worksfor;

Set* inv_worksfor();

void Add_to_inv_worksfor(employee* __employee);

void Remove_from_inv_worksfor(employee* __employee);

long unsigned Cardinality_of_inv_worksfor();

public :

// Constructor :

department(char* __name,

char* theName=(char*)0);

department(APL*);

Type* getDirectType();

static department* make(char* __name,

char* theName=(char*)0);

II Attribute Accessors :

void name(char* __name);

70

char* name();

// Distructor

~department();
virtual void Destroy(0C_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

//////////////////////// department.0 /////////////////////////

#include "department.h"

#include <Directory.h>

#include <Type.h>

department::department(APL *theAPL) : Object(theAPL) {

}

department::department(char* __name,

char* theName) :

Object (theName)

initDirectType((Type*)OC_lookup("department"));

_name = __name;

Type* employeeType = (Type*)OC_lookup("employee");

_inv_worksfor.Init(new Set(employeeType), this);
}

Type *department::getDirectType() {

return (Type*)OC_lookup("department");
}

department* department::make(char* __name,

char* theName)

{

return new department(__name,

theName);
}

// Attribute Accessors :

void department::name(char* __name) {

_name = __name;

71

}

char* department::name() {

return _name;

}

// Multivalued Relationship Accessories :

Set* department::inv_worksfor() {

Set* theSet = (Set*)_inv_worksfor.Binding(this);

Set* returnSet = new Set(*theSet);

return(returnSet);

}

void department::Add_to_inv_worksfor(employee* __employee) {

Set* setof_employee = (Set*)_inv_worksfor.Binding(this);

setof_employee->Insert(__employee);

setof_employee->putCluster();

}

void department::Remove_from_inv_worksfor(employee* __employee) {

Set* setof_employee = (Set*)_inv_worksfor.Binding(this);

setof_employee->Remove(__employee);

setof_employee->putCluster();

}

long unsigned department::Cardinality_of_inv_worksfor() {

return ((Set*)_inv_worksfor.Binding(this))->Cardinality();

}

// Destructor ...:

department::~department() {

Destroy(FALSE);

}

void department::Destroy(OC_Boolean aborted) {

if (aborted) Object::Destroy(aborted);

}

void department::putObject(OC_Boolean deallocate) {

((Set*)_inv_worksfor.Binding(this))->putObject(FALSE);

Object::putObject(deallocate);

}

void department::deleteObject(OC_Boolean deallocate) {

if (Cardinality_of_inv_worksfor() != 0) {

return;

}

Object::deleteObject(deallocate);

}

72

73

/////////////////////////// main.0 ////////////////////////////

#include <string.h>

#include <stream.h>

#include <Database.h>

#include <Type.h>

#include <Directory.h>

#include <Exception.h>

#include "department.h"

#include "employee.h"

void createDepartment();

void deleteDepartment();

void printDepartment();

void createEmployee();

void deleteEmployee();

void printEmployee();

void changeEmployee();

main()

{

OC_open("ontosDB1");

char choice;

while (1)

cout << "\nTesting Semantic Means of Essential Relationship\n\n";

cout << " 	1. Create a Department\n";

cout << " 	2. Delete a Department\n";

cout << " 	3. Print Departments\n\n";

cout << " 	4. Create an Employee\n";

cout << " 	5. Delete an Employee\n";

cout << " 	6. Print Employees\n\n";

cout << " 	7. Change Employee's Department\n\n";

cout << " 	q. Exit.\n\n";

cout << "Please enter a choice : ";

cin >> choice;

switch (choice) {

case '1':

OC_transactionStart();

createDepartment();

OC_transactionCommit();

break;

case '2':

OC_transactionStart();

deleteDepartment();

OC_transactionCommit();

break;

case '3':

OC_transactionStart();

printDepartment();

OC_transactionCommit ();

break;

case '4':

OC_transactionStart();

createEmployee();

OC_transactionCommit();

break;

case '5':

OC_transactionStart();

deleteEmployee();

OC_transactionCommit();

break;

case '6':

OC_transactionStart();

printEmployee();

OC_transactionCommit();

break;

case '7':

OC_transactionStart();

changeEmployee();

OC_transactionCommit();

break;

}

if (choice == 'q') break;

else coot << "\n\n\n";

}

OC_close();

}

void createDepartment()

74

75

{

char name[40];

cout << "Enter name of Department : ";

cin >> name;

department* d = (department*) OC_lookup(name);

if (d == (department*)NULL) {

d = department::make(name, name);

if (d == NULL)

cout << "\nCreation failed, name : " << name <<"\n";

else

d->putObject();

} else {

cout << "Department " << d->name() << " already exists.\n";

}

}

void deleteDepartment()

{

char name[40];

cout << "Enter department to be deleted : ";

cin >> name;

department* d = (department*) OC_lookup(name);

if (d == (department*)NULL) {

cout << "No department " << name << " exists.\n";

} else {

d->deleteObject();

}

}

void printDepartment()
{

Instancelterator dIt((Type*)OC_lookup("department"));

department* d;

int i = 1;

while (dIt.moreData()) {

d = (department*)(Entity*) dIt();

cout << "Department " << i << " 	" << d->name() << "\n";
i++;

}

if (i == 1) {

cout << "No department exists !\n";
}

}

void createEmployee()
{

char name[40];
cout << "Enter name of employee : ";

cin >> name;

char ssn[40];
cout << "Enter ssn of employee : ";
cin >> ssn;

char dpmt[40];
cout << "Enter department of employee : ";
cin >> dpmt;

employee* e = (employee*) OC_lookup(name);

if (e == (employee*)NULL) {
department* d = (department*) OC_lookup(dpmt);

employee* e = employee::make(ssn, name, d, name);
if (e == NULL)

cout << "\nCreation failed, name : " << name <<"\n";
else

e->putObject();
} else {

cout << "Employee " << e->name() << " already exists.\n";
}

}

void deleteEmployee()
{

char name[40];

cout << "Enter employee to be deleted : ";
cin >> name;

employee* e = (employee*) OC_lookup(name);
if (e == (employee*)NULL) {

cout << "No employee " << name << " exists.\n";
else {

e->deleteObject();
}

76

77

1

void printEmployee()

{

Instancelterator eIt((Type*)OC_lookup("employee"));

employee* e;

int i = 1;

while (eIt.moreData()) {

e = (employee*)(Entity*) eIt();

cout << "Employee " << i << " name : " << e->nameO << "\n";

cout << "Employee " << s << " ssn : " << e->ssn() << "\n";

cout << "Employee " << i << " dpmt : "

<< (e->worksfor())->name() << "\n";

i++;

}

if (i == 1) {

cout << "No employee exists !\n";

}

}

void changeEmployee()

char name[40];

cout << "Enter name of employee : ";

cin >> name;

char dpmt[40];

cout << "Change department of employee : "•

cin >> dpmt;

employee* e = (employee*) OC_lookup(name);

department* d = (department*) OC_lookup(dpmt);

if (e == (employee*)NULL) {

cout << "Employee " << name << " does not exists.\n";

} else {

if (d == (department*)NULL) {

cout << "Department " << dpmt << " does not exists.\n";
}

e->worksfor(d);

}

}

APPENDIX B

EXAMPLE OF A DEPENDENT RELATIONSHIP

78

//////////////////////// section.h /////////////////////////

#ifndef SECTION_H

#define SECTION_H

#include "course.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

class course;

class section : public Object {

private :

char* _number;

Reference _offerto;

public :

// Constructor :

section(char* __number,

course* __course,

char* theName=(char*)0);

section(APL*);

Type* getDirectType();

static section* make(char* __number,

course* __course,

char* theName=(char*)0);

// Attribute Accessors :

void number(char* __number);

char* number();

// Relationship Accessors :

void offerto(course* __course);

course* offerto();

// Distructor

~section();
virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

79

virtual void deleteObiect(OC_Boolean deallocate = TRUE);

};

#endif

//////////////////////// section.0 /////////////////////////

#include "section.h"

#include <Directory.h>

#include <Type.h>

section::section(APL *theAPL) : Object(theAPL) {

}

section::section(char* __number,

course* __course,

char* theName) :

Object (theName)

{

initDirectType((Type*)OC_lookup("section"));

_number = __number;

_offerto,Reset(__course,this);

__course->Add_to_inv_offerto(this);

}

Type *section::getDirectType() {

return (Type*)OC_lookup("section");

}

section* section::make(char* __number,

course* __course,

char* theName)
{

if (__course == (course*)NULL)

return NULL;

return new section(__number,

__course,

theName);
}

1/ Attribute Accessors :

void section::number(char* __number) {

_number = __number;
}

char* section::number() {

80

return _number;

}

// Relationship Accessors :

void section::offerto(course*__course) {

if (__course != (course*)NULL) {

(offerto()) ->Remove_from_inv_offerto(this);

_offerto.Reset(__course,this);

__course->Add_to_inv_offerto(this);

}

}

course*section::offerto() {

return (course*)_offerto.Binding(this);

}

/7 Destructor ...:

section::~ section() {

Destroy(FALSE);

}

void section::Destroy(OC_Boolean aborted) {

if (aborted) Object::Destroy(aborted);
}

void section::putObject(OC_Boolean deallocate) {

(offerto())->putObject();

Object::putObject(deallocate);

}

void section::deleteObject(OC_Boolean deallocate) {

(offerto())->Remove_from_inv_offerto(this);

Object::deleteObject(deallocate);
}

//////////////////////// course.h //////////////////////////

#ifndef COURSE H

#define COURSE_H

#include "section.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

#include <Set.h>

81

class section;

82

class course : 	 Object

friend class section;

private :

char* _code;

char* _name;

Reference _inv_offerto;

Set* inv_offerto();

void Add_to_inv_offerto(section* __section);

void Remove_from_inv_offerto(section* __section);

long unsigned Cardinality_of_inv_offerto();

public :

// Constructor :

course(char* __code,

char* __name,

char* theName=(char*)0);

course(APL*);

Type* getDirectType();

static course* make(char* __code,

char* __name,

char* theName=(char*)0);

// Attribute Accessors :

void code(char* __code);

char* code();

void name(char* __name);

char* name();

// Distructor

course();

virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

//////////////////////// course.0 //////////////////////////

#include "course.h"

#include <Directory.h>

#include <Type.h>

course::course(APL *theAPL) : Object(theAPL) {

}

course::course(char* __code,

char* __name,

char* theName) :

Object(theName)

{

initDirectType((Type*)OC_lookup("course"));

_code = __code;

_name = __name;

Type* sectionType = (Type*)OC_lookup("section");

_inv_offerto.Init(new Set(sectionType), this);

}

Type *course::getDirectType()

return (Type*)OC_lookup("course");

}

course* course::make(char* __code,

char* __name,

char* theName)

{

return new course(__code,

__name,

theName);

}

// Attribute Accessors

void course::code(char* __code) {

_code = __code;

}

char* course::code() {

return _code;
}

void course::name(char* __name) {

_name = __name;

83

char* course: :name() {

return _name;

}

// Multivalued Relationship Accessories :

Set* course::inv_offerto() {

Set* theSet = (Set*)_inv_offerto.Binding(this);

Set* returnSet = new Set(*theSet);

return(returnSet);

}
void course::Add_to_inv_offerto(section* __section) {

Set* setof_section = (Set*)_inv_offerto.Binding(this);

setof_section->Insert(__section);

setof_section->putCluster();

}

void course::Remove_from_inv_offerto(section* __section) {

Set* setof_section = (Set*)_inv_offerto.Binding(this);

setof_section->Remove(__section);

setof_section->putCluster();

}

long unsigned course::Cardinality_of_inv_offerto() {

return ((Set*)_inv_offerto.Binding(this))->Cardinality();

}

7/ Destructor ...:

course::~course() {

Destroy(FALSE);

}

void course::Destroy(OC_Boolean aborted) {

if (aborted) Object::Destroy(aborted);

}

void course::putObject(OC_Boolean deallocate) {

((Set*)_inv_offerto.Binding(this))->putObject(FALSE);

Object::putObject(deallocate);

}

void course::deleteObject(OC_Boolean deallocate) {

((Set*)_inv_offerto.Binding(this))->deleteCluster();

Object::deleteObject(deallocate);

}

///////////////////////// main.0 ///////////////////////////

84

85

#include <string.h>

#include <stream.h>

#include <Database.h>

#include <Type.h>

#include <Directory.h>

#include "course.h"

#include "section.h"

void createCourse();

void deleteCourse();

void printCourse();

void createSection();

void deleteSection();

void printSection();

void changeSection();

main()

OC_open("ontosDB2");

char choice;

while (1)

cout << "\nTesting Semantic Means of Dependent Relationship\n\n";

cout << " 	1. Create a Course\n";

cout << " 	2. Delete a Course\n";

cout << " 	3. Print Courses\n\n";

cout << " 	4. Create a Section\n";

cout << " 	5. Delete a Section\n";

cout << " 	6. Print Sections\n\n";

cout << " 	7. Change Section\n\n";

cout << " 	q. Exit.\n\n";

cout << "Please enter a choice : ";

cin >> choice;

switch (choice)

case '1':

OC_transactionStart();

createCourse();

OC_transactionCommit();

break;

case '2':

OC_transactionStart();

deleteCourse();

CC_transactionCommit();

break;

case '3':

OC_transactionStart();

printCourse();

OC_transactionCommit();

break;

case '4':

OC_transactionStart();

createSection();

OC_transactionCommit();

break;

case '5':

OC_transactionStart();

deleteSection();

OC_transactionCommit();

break;

case '6':

OC_transactionStart();

printSection();

OC_transactionCommit();

break;
'7':

OC_transactionStart();

changeSection();

OC_transactionCommit();

break;

}

if (choice == 'q') break;

else cout << "\n\n\n";

}

OC_close();

}

void createCourse()
{

char name[40];

char code[40];

cout << "Enter name of Course

cin >> name;

86

case

cout << "Enter code of Course : ";

cin >> code;

course* c = (course*) OC_lookup(name);

if (c == (course*)NULL) {

c = course::make(name, code, name);

if (c == NULL)

cout << "\nCreation failed, name : " << name <<"\n";

else

c->putObject();

} else {

cout << "Course " << c->name() << " already exists.\n";

}

}

void deleteCourse()

char name[40];

cout << "Enter course to be deleted 	";

cin >> name;

course* c = (course*) OC_lookup(name);

if (c == (course*)NULL) {

cout << "No course " << name << " exists.\n";

} else {

cout << "Course " << c->name() << " deleted.\n";

c->deleteObject();
}

}

void printCourse()
{

Instancelterator cIt((Type*)OC_lookup("course"));

course* c;

int i = 1;

while (cIt.moreData()) {

c = (course*)(Entity*) cIt();

cout << "Course " << i << " 	" << c->name() << "\n";
i++;

if (i == 1) {

cout << "No course exists !\n";

87

}

}

void createSection()

{

char name[40];

cout << "Enter number of section : ";

cin >> name;

char cous[40];

cout << "Enter course of section : ";

cin >> cous;

section* s = (section*) OC_lookup(name);

if (s == (section*)NULL) {

course* c = (course*) OC_lookup(cous);

s = section::make(name, c, name);

if (s == NULL)

cout << "\nCreation failed, name :

else

s->putObject();

88

" << name <<"\n";

} else {

cout << "Section " << s->number() << " already exists.\n";

}

}

void deleteSection()
{

char name[40];

cout << "Enter section to be deleted : "•

cin >> name;

section* s = (section*) OC_lookup(name);

if (s == (section*)NULL) {

cout << "No section " << name << " exists.\n";

else {

cout << "Section " << s->number() << " deleted.\n";

s->deletenject();

}

}

void printSection()

InstanceIterator sIt((Type*)OC_lookup("section"));

89

section* s;

int i = 1;

while (sIt.moreData()) {

s = (section*)(Entity*) sIt();

cout << "Section " << i << " name : " << s->number() << "\n";

cout << "Section " << i << " course : "

<< (s->offerto())->name() << "\n";

i++;

}

if (i == 1) {

cout << "No section exists !\n";

}
}

void changeSection()

{

char name[40];

cout << "Enter number of section : ";.

can >> name;

char cous[40];

cout << "Change course of section : ";

cin >> cous;

section* s = (section*) OC_lookup(name);

course* c = (course*) OC_lockup(cous);

if (s == (section*)NULL) {

cout << "Section " << name << " does not exists.\n";

else {

if (c == (course*)NULL) {

cout << "Course " << cous << " does not exists.\n";
}

s->offerto(c);

APPENDIX C

EXAMPLE OF A MULTI-VALUED ESSENTIAL REL.

90

///////////////////////// employee.h //////////////////////////

#ifndef EMPLOYEES_H

#define EMPLOYEES_H

#include "departments.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

#include <Set.h>

class departments;

class employees : public Object

private :

char* _ssn;

char* _name;

Reference _worksin;

public :

// Constructor :

employees(char* __ssn,

char* __name,

Set* __worksin,

char* theName=(char*)0);

employees(APL*);

Type* getDirectType();

static employees* make(char* __ssn,

char* __name,

Set* __worksin,

char* theName=(char*)0); //

 Attribute Accessors :

void ssn(char* __ssn);

char* ssn();

void name(char* __name);

char* name();

// Multivalued Relationship Accessories :

Set* worksin();

91

void Add_to_worksin(departments* __departments);

void Remove_from_worksin(departments* __departments);

long unsigned Cardinality_of_worksin();

1/ Distructor

"employees();

virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

///////////////////////// employee.0 //////////////////////////

#include "employees.h"

#include <Directory.h>

#include <Type.h>

employees::employees(APL *theAPL) 	Object(theAPL) {

}

employees::employees(char* __ssn,

char* __name,

Set* __worksin,

char* theName) :

Object(theName)

{

initDirectType((Type*)OC_lookup("employees"));

_ssn = __ssn;

_name = __name;

Type* departmentsType = (Type*)OC_lookup("departments");

_worksin.Init(new Set(departmentsType), this);

Set* departmentsSet = (Set*)_worksin.Binding(this);

departments* departmentsIn;

Aggregatelterator* worksinIt = __worksin->getIterator();

while (worksinIt -> moreData()) {

departmentsln = (departments*)

(Entity*)(worksinIt->operator()());

if (departmentsIn != (departments*)NULL) {

departmentsIn->Add_to_inv_worksin(this);

departmentsSet->Insert(departmentsIn);

I

}
}

92

93

Type *employees::getDirectType() {

return (Type*)OC_lookup("employees");

}

employees* employees:make(char* __ssn,

char* __name,

Set* __worksin,

char* theName)

{

departments* departmentsIn;

AggregateIterator* worksinit = __worksin->getIterator();

while (worksinIt -> moreData()) {

departmentsIn = (departments*)

(Entity*)(worksinIt->operator()());

if (departmentsIn == (departments*)NULL)

__worksin->Remove(departmentsIn);

}

if (__worksin->Cardinality() == 0)

return NULL;

return new employees(__ssn,

__name,

__worksin,

theName);

}

// Attribute Accessors :

void employees::ssn(char* __ssn)

_ssn = __ssn;

}

char* employees::ssn() {

return _ssn;

}

void employees::name(char* __name) {

_name = __name;
}

char* employees::name() {

return _name;
}

// Multivalued Relationship Accessories :

Set* employees::worksin()

Set* theSet = (Set)_worksin.Binding(this);

Set* returnSet = new Set(*theSet);

return(returnSet);

}
void employees::Add_to_worksin(departments* __departments) {

if (__departments == (departments*)NULL) return;

Set* setof_departments = (Set*)_worksin.Binding(this);

setof_departments->Insert(__departments);

setof_departments->putCluster();

__departments->Add_to_inv_worksin(this);

}
void employees::Remove_from_worksin(departments* __departments) {

if (__departments == (departments*)NULL) return;

Set* setof_departments = (Set*)_worksin.Binding(this);

if (setof_departments->Cardinality() <= 1) return;

if ((setof_departments->isMember(__departments)) == TRUE) {

setof_departments->Remove(__departments);

setof_departments->putCluster();

__departments->Remove_from_inv_worksin(this);

}

}

long unsigned employees::Cardinality_of_worksin() {

return ((Set*)_worksin.Binding(this))->Cardinality();

}

// Destructor ...:

employees::~employees() {

Destroy(FALSE);
}

void employees::Destroy(OC_Boolean aborted) {

Entity* __worksin = (Entity*)_worksin.Binding(this);

delete __worksin;

if (aborted) Object::Destroy(aborted);
}

void employees::putObject(OC_Boolean deallocate) {

((Set*)_worksin.Binding(this))->putObject(FALSE);

Object::putObject(deallocate);

}

void employees::deleteObject(OC_Boolean deallocate) {

Set* setof_departments = (Set*)_worksin.Binding(this);

departments* departmentsIn;

Aggregatelterator* worksinIt =

94

setof_departments->getIterator();

while (worksinit -> moreData()) {

departmentsln = (departments*)(Entity*)

(worksinIt->operator()());

departmentsIn->Remove_from_inv_worksin(this);

}

Object::deleteObject(deallocate);

}

//////////////////////// department.h /////////////////////////

#ifndef DEPARTMENTS_H

#define DEPARTMENTS_H

#include "employees.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

#include <Set.h>

class employees;

class departments : public Object {

friend class employees;

private :

char* _name;

Reference _inv_worksin;

Set* inv_worksin();

void Add_to_inv_worksin(employees* __employees);

void Remove_from_inv_worksin(employees* __employees);

long unsigned Cardinality_of_inv_worksin();

public :

// Constructor :

departments(char* __name,

char* theName=(char*)0);

departments(APL*);

Type* getDirectType();

static departments* make(char* __name,

char* theName=(char*)0);

95

// Attribute Accessors :

void name(char* __name);

char* name();

// Distructor

~departments();
virtual void Destroy(OC_Boolean aborted = FALSE);
virtual void putObject(OC_Boolean deallocate = FALSE);
virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

//////////////////////// department.0 /////////////////////////

#include "departments.h"
#include <Directory.h>

#include <Type.h>

departments::departments(APL *theAPL) : Object(theAPL) {
}

departments::departments(char* __name,
char* theName)

Object (theName)

initDirectType((Type*)OC_lookup("departments"));

_name = __name;
Type* employeesType = (Type*)OC_lookup("employees");

_inv_worksin.Init(new Set(employeesType), this);

}

Type *departments::getDirectType() {

return (Type*)OC_lookup("departments");
}

departments* departments::make(char* __name,

char* theName)
{

return new departments(__name,

theName);

}

// Attribute Accessors

96

void departments::name(char* __name) {

_name = __name;

}

char* departments::name() {

return _name;

}

7/ Multivalued Relationship Accessories :

Set* departments::inv_worksin() {

Set* theSet = (Set*)_inv_worksin.Binding(this);

Set* returnSet = new Set(*theSet);

return(returnSet);

}

void departments::Add_to_inv_worksin(employees* __employees) {

if (__employees == (employees*)NULL) return;

Set* setof_employees = (Set*)_inv_worksin.Binding(this);

setof_employees->Insert(__employees);

setof_employees->putCluster();

}

void departments::Remove_from_inv_worksin(employees* __employees) {

if (__employees == (employees*)NULL) return;

Set* setof_employees = (Set*)_inv_worksin.Binding(this);

setof_employees->Remove(__employees);

setof_employees->putCluster();

}

long unsigned departments::Cardinality_of_inv_worksin() {

return ((Set*)_inv_worksin.Binding(this))->Cardinality();

}

// Destructor ...:

departments::~departments() {

Destroy(FALSE);

}

void departments::Destroy(OC_Boolean aborted) {

if (aborted) Object::Destroy(aborted);

}

void departments::putObject(OC_Boolean deallocate) {

((Set*)_inv_worksin.Binding(this))->putObject(FALSE);

Object::putObject(deallocate);

}

void departments::deleteObject(OC_Boolean deallocate) {

97

98

employees* employeesln;
Set* employeesSet = (Set*)_inv_worksin.Binding(this);
Aggregatelterator* inv_worksinIt = employeesSet->getIterator();
while (inv_worksinit -> moreData())

employeesln = (employees*)
(Entity*)(inv_worksinIt->operator()());

if (employeesln->Cardinality_of_worksin() <= 1)
return;

}
}
inv_worksinIt = employeesSet->getIterator();
while (inv_worksinIt -> moreData())

employeesln = (employees*)
(Entity*)(inv_worksinIt->operator()());

employeesIn->Remove_from_worksin(this);
}

Object::deleteObject(deallocate);
}

/////////////////////////// main.0 ////////////////////////////

#include <string.h>
#include <stream.h>
#include <Database.h>
#include <Type.h>
#include <Directory.h>
#include "departments.h"
#include "employees.h"

void createDepartment();
void deleteDepartment();
void printDepartment();
void createEmployee();
void deleteEmployee();
void printEmployee();
void addDepartment();
void removeDepartment();

main()
{

OC_open("ontosDB3");

char choice;

99

while (1) {

cout << "\nTesting Semantic Means of Multivalue Essential Relationship\n\r.

cout << " 	1. Create a Department\n";

cout << " 	2. Delete a Department\n";

cout << " 	3. Print Departments\n\n";

cout << " 	4. Create an Employee\n";

cout << " 	5. Delete an Employee\n";

cout << " 	6. Print Employees\n\n";

cout << " 	7. Add a Departments to an Employee\n";

cout << " 	8. Remove a Departments from an Eniployee\n\n";

cout << " 	q. Exit.\n\n";

cout << "Please enter a choice : ";

cin >> choice;

switch (choice) {

case '1':

OC_transactionStart();

createDepartment();

OC_transactionCommit();

break;

case '2':

OC_transactionStart();

deleteDepartment();

OC_transactionCommit();

break;

case '3':

OC_transactionStart();

printDepartment();

OC_transactionCommit();

break;

case '4':

OC_transactionStart();

createEmployee();

OC_transactionCommit();

break;

case '5':

OC_transactionStart();

deleteEmployee();

OC_transactionCommit();

break;

case '6':

OC_transactionStart();

printEmployee();

100

OC_transactionCommit();

break;

case '7':

OC_transactionStart();

addDepartment();

OC_transactionCommit();

break;

case '8':

OC_transactionStart();

removeDepartment();

OC_transactionCommit();

break;

}

if (choice == 'q') break;

else cout << "\n\n\n";

}

OC_close();

}

void createDepartment()

{

char name[40];

cout << "Enter name of Department : ";

cin >> name;

departments* d = (departments*) OC_lookup(name);

if (d == (departments*)NULL) {

d = departments::make(name, name);

if (d == NULL)

cout << "\nCreation failed, name : " << name <<"\n";

else

d->putObject();

else {

cout << "Department " << d->name() << " already exists.\n";
}

}

void deleteDepartment()

{

char name[40];

cout << "Enter department to be deleted : ";

cin >> name;

departments* d = (departments*) OC_lookup(name);

if (d == (departments*)NULL) {

tout << "No department " << name << " exists.\n";

else {

d->deleteObject();

}

}

void printDepartment()

{

Instancelterator dIt((Type*)OC_lookup("departments"));

departments* d;

int i = 1;

while (dIt.moreData()) {

d = (departments*)(Entity*) dIt();

cout << "Department " << i << " 	" << d->name() << "\n";

i++;

} 	

if (i == 1) {

cout << "No department exists !\n";

}
}

void createEmployee()
{

char name[40];

cout << "Enter name of employee : ";

cin >> name;

char ssn[40];

cout << "Enter ssn of employee : ";

cin >> ssn;

employees* e = (employees*) OC_lookup(name);

if (e == (employees*)NULL) {

char dpmt[40];

char dpmtSet[40];

int i;

for (i = 0; name[i]; dpmtSet[i] = name[i], i++);

dpmtSet[i] = 'S';

dpmtSet[i+1] = '\0';

101

102

Set* s = new Set((Type*)OC_lookup("departments"), dpmtSet);

while (1)
cout << "Enter department of employee (exit): ";

cin >> dpmt;

if (strcmp(dpmt, "exit") == 0)

break;

}

departments* d = (departments*) OC_lookup(dpmt);

s->Insert(d);

}

e = employees::make(ssn, name, s, name);

if (e == NULL)

cout << "\nCreation failed, name : " << name <<"\n";

else

e->putObject();

} else {

cout << "Employee " << e->name() << " already exists.\n";

}

}

void deleteEmployee()

{

char name[40];

cout << "Enter employee to be deleted : ";

cin >> name;

employees* e = (employees*) OC_lookup(name);

if (e == (employees*)NULL)

cout << "No employee " << name << " exists.\n";

} else {

e->deleteObject();
}

}

void printEmployee()

{

Instancelterator eIt((Type*)OC_lookup("employees"));

employees* e;

int i = 1;

Aggregatelterator* worksinIt;

departments* departmentsIn;

for (i = 1; eIt.moreData(); i++) {

e = (employees*)(Entity*) eIt();

103

cout << "Employee " << i << " name : " << e->name() << "\n";

cout << 'Employee " << 1 << " ssn : " << e->ssn() << "\n";

worksinit = ((Set*)e->worksin())->getIterator();

while (worksinIt -> moreData()) {

departmentsIn = (departments*)(Entity*)

(worksinIt->operator()());

cout << "Employee " << i << " dpmt : "

<< departmentsIn->name() << "\n";

}

}

if (1 == 1) {

cout << "No employee exists !\n";

}

}

void addDepartment()

{

char name[40];

char dpmt[40];

cout << "Enter name of employee : ";

cin >> name;

cout << "Enter department adding : ";

cin >> dpmt;

employees* e = (employees*) OC_lookup(name);

departments* d = (departments*) OC_lookup(dpmt);

if (e == (employees*)NULL) {

cout << "No employee " << name << " exists.\n";

} else {

e->Add_to_worksin(d);

}

}

void removeDepartment()

{

char name[40];

char dpmt[40];

cout << "Enter name of employee : ";

cin >> name;

cout << "Enter department removing : ";

cin >> dpmt;

employees* e = (employees*) OC_lookup(name);

departments* d = (departments*) OC_lookup(dpmt);

if (e == (employees*)NULL)

cout << "No employee " << name << " exists.\n";

else

e->Remove_from_worksin(d);

}

104

APPENDIX D

EXAMPLE OF A MULTI-VALUED DEPENDENT REL.

105

///////////////////////// child.h //////////////////////////

#ifndef CHILD_H

#define CHILD_H

#include "parent.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

#include <Set.h>

class parent;

class child : public Object

private :

char* _ssn;

char* _name;

Reference _has;

public :

// Constructor :

child(char* __ssn,

char* __name,

Set* __has,

char* theName=(char*)0);

child(APL*);

Type* getDirectType();

static child* make(char* __ssn,

char* __name,

Set* __has,

char* theName=(char*)O);

// Attribute Accessors :

void ssn(char* __ssn);

char* ssn();

void name(char* __name);

char* name();

// Multivalued Relationship Accessories :

106

Set* has();

void Add_to_has(parent* __parent);

void Remove_from_has(parent* __parent);

long unsigned Cardinality_of_has();

/7 Distructor

~child();
virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

///////////////////////// child.0 //////////////////////////

#include "child.h"

#include <Directory,h>

#include <Type.h>

child::child(APL *theAPL) : Object(theAPL) {

}

child::child(char* __ssn,

char* __name,

Set* __has,

char* theName) :

Object(theName)

{

initDirectType((Type*)OC_lookup("child"));

_ssn = __ssn;

_name = __name;

Type* parentType = (Type*)OC_lookup("parent");

_has.Init(new Set(parentType), this);

Set* parentSet = (Set*)_has.Binding(this);

parent* parentln;

Aggregatelterator* haslt = __has->getIterator();

while (hasIt -> moreData()) {

parentln = (parent*)

(Entity*)(hasIt->operator()());

if (parentIn != (parent*)NULL) {

parentln->Add_to_inv_has(this);

parentSet->Insert(parentIn);
}

}

107

}

Type *child:;getDirectType() {

return (Type*)OC_lookup("child");

}

child* child::make(char* __ssn,

char* __name,

Set* __has,

char* theName)

{

parent* parentIn;

Aggregatelterator* hasIt = __has->getIterator();

while (hasIt -> moreData()) {

parentln = (parent*)

(Entity*)(hasIt->operator()());

if (parentln == (parent*)NULL)

__has->Remove(parentIn);

}

if (__has->Cardinality() ==.0)

return NULL;

return new child(__ssn,

__name,

__has,

theName);

}

1/ Attribute Accessors

void child::ssn(char* __ssn) {

_ssn = __ssn;

char* child::ssn() {

return _ssn;

}

void child::name(char* __name) {

_name = __name;

char* child::name() {

return _name;

}

// Multivalued Relationship Accessories :

108

Set* child::has() {

Set* theSet = (Set*)_has.Binding(this);

Set* returnSet = new Set(*theSet);

return(returnSet);

}

void child::Add_to_has(parent* __parent)

if (__parent == (parent*)NULL) return;

Set* setof_parent = (Set*)_has.Binding(this);

setof_parent->Insert(__parent);

setof_parent->putCluster();

__parent->Add_to_inv_has(this);

}

void child::Remove_from_has(parent* __parent) {

if (__parent == (parent*)NULL) return;

Set* setof_parent = (Set*)_has.Binding(this);

if (setof_parent->Cardinality() <= 1) return;

if ((setof_parent->isMember(__parent)) == TRUE) {

setof_parent->Remove(__parent);

setof_parent->putCluster();

__parent->Remove_from_inv_has(this);

}

}

long unsigned child::Cardinality_of_has() {

return ((Set*)_has.Binding(this))->Cardinality();

}

1/ Destructor ...:

child::~child() {

Destroy(FALSE);
}

void child::Destroy(OC_Boolean aborted) {

Entity* __has = (Entity*)_has.Binding(this);

delete __has;

if (aborted) Object::Destroy(aborted);

}

void child::putObject(OC_Boolean deallocate) {

((Set*)_has.Binding(this))->putObject(FALSE);

Object::putObject(deallocate);

}

void child::deleteObject(OC_Boolean deallocate) {

Set* setof_parent = (Set*)_has.Binding(this);

parent* parentln;

109

Aggregatelterator* haslt =

setof_parent->getIterator();

while (haslt -> moreData()) {

parentln = (parent*)(Entity*)

(haslt->operator()());

parentIn->Remove_from_inv_has(this);

}

Object::deleteObject(deallocate);

}

///////////////////////// parent.h /////////////////////////

#ifndef PARENT_H

#define PARENT_H

#include "child.h"

#include <Object.h>

#include <Reference.h>

#include <stream.h>

#include <Set.h>

class child;

class parent : public Object {

friend class child;

private :

char* _ssn;

char* _name;

Reference _inv_has;

Set* inv_has();

void Add_to_inv_has(child* __child);

void Remove_from_inv_has(child* __child);

long unsigned Cardinality_of_inv_has();

public :

// Constructor :

parent(char* __ssn,

char* __name,

char* theName=(char*)0);

parent(APL*);

Type* getDirectType();

110

static parent* make(char* __ssn,

char* __name,

char* theName=(char*)0);

// Attribute Accessors :

void ssn(char* __ssn);

char* ssn();

void name(char* __name);

char* name();

// Distructor

~parent();
virtual void Destroy(OC_Boolean aborted = FALSE);

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);

};

#endif

///////////////////////// parent.0 /////////////////////////

#include "parent.h"

#include <Directory.h>

#include <Type.h>

parent::parent(APL *theAPL) : Object(theAPL) {

}

parent::parent(char* __ssn,

char* __name,

char* theName) :

Object(theName)

initDirectType((Type*)OC_lookup("parent"));

_ssn = __ssn;

_name = __name;

Type* childType = (Type*)OC_lookup("child");

_inv_has.Init(new Set(childType), this);
}

Type *parent::getDirectType() {

return (Type*)OC_lookup("parent");
}

111

112

parent* parent::make(char* __ssn,

char* __name,

char* theName)

{

return new parent(__ssn,

__name,

theName);

}

// Attribute Accessors :

void parent::ssn(char* __ssn) {

_ssn = __ssn;

}

char* parent::ssn() {

return _ssn;

}

void parent::name(char* __name) {

_name = __name;

}

char* parent::name() {

return _name;

}

// Multivalued Relationship Accessories :

Set* parent::inv_has() {

Set* theSet = (Set*)_inv_has.Binding(this);

Set* returnSet = new Set(*theSet);

return(returnSet);

}

void parent::Add_to_inv_has(child* __child) {

if (__child == (child*)NULL) return;

Set* setof_child = (Set*)_inv_has.Binding(this);

setof_child->Insert(__child);

setof_child->putCluster();

}

void parent::Remove_from_inv_has(child* __child) {

if (__child == (child*)NULL) return;

Set* setof_child = (Set*)_inv_has.Binding(this);

setof_child->Remove(__child);

setof_child->putCluster();

}
long unsigned parent::Cardinality_of_inv_has() {

return ((Set*)_inv_has.Binding(this))->Cardinality();

}

7/ Destructor ...:

parent::~parent() {
Destroy(FALSE);

}
void parent::Destroy(OC_Boolean aborted)

Entity* __inv_has = (Entity*)_inv_has.Binding(this);

delete __inv_has;
if (aborted) Object::Destroy(aborted);

}

void parent::putObject(OC_Boolean deallocate) {
((Set*)_inv_has.Binding(this))->putObject(FALSE);

Object::putObject(deallocate);

void parent::deleteObject(OC_Boolean deallocate) {
((Set*)_inv_has.Binding(this))->deleteCluster();
Object::deleteObject(deallocate);

}

////////////////////////// main.0 //////////////////////////

#include <string.h>
#include <stream.h>
#include <Database.h>

#include <Type.h>

#include <Directory.h>
#include "parent.h"

#include "child.h"

void createParent();
void deleteParent();
void printParent();
void createChild();
void deleteChild();
void printChild();
void addParent();

void removeParent();

main()

113

114

{

OC_open("ontosDB4");

char choice;

while (1) {

cout << "\nTesting Semantic Means of Multivalue Dependent Relationship\n\n

cout << " 	1. Create a Parent\n";

cout << " 	2. Delete a Parent\n";

cout << " 	3. Print Parents\n\n";

cout << " 	4. Create a Child\n";

cout << " 	5. Delete a Child\n";

cout << " 	6. Print Children\n\n";

cout << " 	7. Add a Parent to a Child\n";

cout << " 	8. Remove a Parent from a Child\n\n";

cout << " 	q. Exit .\n\n";

cout << "Please enter a choice : ";

cin >> choice;

switch (choice)

case '1':

OC_transactionStart();

createParent();

OC_transactionCommit();

break;

case '2':

OC_transactionStart();

deleteParent();

OC_transactionCommit();

break;

case '3':

OC_transactionStart();

printParent();

OC_transactionCommit();

break;

case '4':

OC_transactionStart();

createChild();

OC_transactionCommit();

break;

case '5':

OC_transactionStart();

deleteChild();

OC_transactionCommit();

break;

case '6':

OC_transactionStart();

printChild();

OC_transactionCommit();

break;

case '7':

OC_transactionStart();

addParent();

OC_transactionCommit();

break;

case '8':

OC_transactionStart();

removeParent();

OC_transactionCommit();

break;

}

if (choice == 'q') break;

else cout << "\n\n\n";

}

OC_close();

}

void createParent()
{

char name[40];

cout << "Enter name of Parent : ";

cin >> name;

char ssn[40];

cout << "Enter ssn of Parent : ";

cin >> ssn;

parent* p = (parent*) OC_lookup(name);

if (p == (parent*)NULL) {

p = parent::make(ssn, name, name);

if (p == NULL)

cout << "\nCreation failed, name : " << name <<"\n";

else

p->putObject();

else {

cout << "Parent " << p->name() << " already exists.\n";

}

115

116

}

void deleteParent()

{

char name[40];

cout << "Enter parent to be deleted : ";

cin >> name;

parent* p = (parent*) OC_lookup(name);

if (p == (parent*)NULL) {

cout << "No parent " << name << " exists.\n";

} else {

p->deleteObject();

}

}

void printParent()

Instancelterator pIt((Type*)OC_lookup("parent"));

parent* p;

int i = 1;

while (pIt.moreData()) {

p = (parent*)(Entity*) pit();

cout « "Parent " « i << " name : " << p->name() << "\n";

cout << "Parent " << i << " ssn : " << p->ssn() << "\n";
i++;

}

if (i == 1) {

cout << "No parent exists !\n";

}
}

void createChild()

char name[40];

cout << "Enter name of child : ";

cin >> name;

char ssn[40];

cout << "Enter ssn of child : ";

cin >> ssn;

child* c = (child*) OC_lookup(name);

if (c == (child*)NULL) {

char P---
char char parSet[40];

int i;

for (i = 0; name[i]; parSet[i] = name[i], i++);

parSet[i] = 'S';

parSet[i+1] = '\0';

Set* s = new Set((Type*)OC_lookup("parent"), parSet);

while (1) {

cout << "Enter parent of child (exit): ";

cin >> par;

if (strcmp(par, "exit") == 0) {

break;

}

parents* p = (parent*) OC_lookup(par);

s->Insert(p);

}

c = child::make(ssn, name, s, name);

if (c == NULL)

cout << "\nCreation failed, name : " << name <<"\n";

else

c->putObject();

else {

cout << "Child " << c->name() << " already exists.\n";

}

}

void deleteChild()

{

char name[40];

cout << "Enter child to be deleted : ";

cin >> name;

child* c = (child*) OC_lookup(name);

if (c == (child*)NULL) {

cout << "No child " << name << " exists.\n";

} else {

cout << "Child " << c->name() << " deleted.\n";

c->deleteObject();

}
}

117

118

void printChild()

{
InstanceIterator cIt((Type*)OC_lookup("child"));

child* c;

Aggregatelterator* haslt;

parent* parentIn;

int i;

for (i = 1; cIt.moreData(); i++)

c = (child*)(Entity*) cIt();

cout << "Child " << i << " name : " << c->name() << "\n";

cout << "Child " << i << " ssn : " << c->ssn() << "\n";

haslt = ((Set*)c->has())->getIterator();

while (haslt -> moreData()) {

parentIn = (parent*)(Entity*)

(haslt->operator()());

cout << "Child " << i << " parent : "

<< parentln->name() << "\n";

}

}

if (i == 1) {

cout << "No child exists !\n";

}

}

void addParent()

{

char name[40];

char par[40];

cout << "Enter name of child : ";

cin >> name;

cout << "Enter paret adding : ";

cin >> par;

child* c = (child*) OC_lookup(name);

parent* p = (parent*) OC_lookup(par);

if (c == (child*)NULL) {

cout << "No child " << name << " exists.\n";

else {

c->Add_to_has(p);

}

void removeparent()

{

char name[40];

char par[40];

cout << "Enter name of child : ";

cin >> name;

cout << "Enter parent removing : ";

cin >> par;

child* c = (child*) OC_lookup(name);

parent* p = (parent*) OC_lookup(par);

if (c == (child*)NULL) {

cout << "No child " << name << " exists.\n";

} else {

c->Remove_from_has(p);

}

119

REFERENCES

1. S. Chatterjee, "Graphical image persistence and code generation for object
oriented database," Master's thesis, New Jersey Institute of Technology,

Newark, NJ., May 1992.

2. V. R. Cheruku, "Graphical image persistence and code generation for object
oriented database," Master's thesis, New Jersey Institute of Technology,

Newark, NJ., May 1994.

3. C. J. Date. An Introduction to Database Systems, Addison-Wesley Publishing

Co., Inc., Reading MA., 1986.

4. J. G. E. Neuhold, Y. Perl and V. Turau, "The dual model for object oriented
databases." Tech. Rep. 30, New Jersey Institute of Technology, Newark,
NJ.. 1991.

5. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, The

Benjamin/Cummings Publishing Company, Inc., Redwood City, CA.,
1989.

6. Y. P. M. Halper, J. Geller and E. Neuhold, "A graphical schema representation
for object. oriented databases," Tech. Rep. 17, New Jersey Institute of
Technology, Newark, NJ., 1992.

7. Y. P. M. Ilalper. J. Geller and E. Neuhold, "An oodb graphical schema repre-
sentation." Tech. Rep. 1, New Jersey Institute of Technology, Newark,
NJ.. 1992.

8. J. G. 0. 0. Yang, M. Halper and Y. Perl, "The oodb ownership relationship,"
Proceedings, OOIS'94, London, UK, Dec 1994.

9. J. G. M. Haiper, J. Geller and Y. Perl, "Part Relations for Object-Oriented
Databases," Tech. Rep. 18, New Jersey Institute of Technology, Newark,
NJ., 1994.

10. J. G. 0. O. Yang, M. Halper and Y. Perl, "The oodb ownership relationship,"
Tech. Rep. 18, New Jersey Institute of Technology, Newark, NJ., 1994.

11. I. ONTOS, ONTOS DB 2.2 Developers Guide, ONTOS, Inc., Three Burlington
Woods, Burlington, MA., 1993.

12. I. ONTOS, ONTOS DB 2.2 First Time Users Guide, ONTOS, Inc., Three
Burlington Woods, Burlington, MA., 1993.

13. I. ONTOS, ONTOS DB 2.2 Reference Manual, Volume 1, ONTOS, Inc., Three
Burlington Woods, Burlington, MA., 1993.

120

121

14. 1. ONTOS. ONTOS D13 2.2 Tools and Utilities Guide, ONTOS, Inc., Three
Burlington Woods. Burlington, MA., 1993.

15. 1. Pohl, TURBO C++, The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA., 1991.

16. B. Stroustrup, The C++ Programming Language, Addison-Wesley Publishing
Co., Inc., Reading MA., 2nd ed., 1991.

	Translation of semantic aspects of OODINI graphical representation to ONTO OODB data definition language
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Graphical Schema and OODAL in OODINI
	Chapter 3: ONTOS DB and General Conversion
	Chapter 4: Conversion of Basic Graphical Elements
	Chapter 5: Conversion of Semantic Graphical Elements
	Chapter 6: Conclusion
	Appendix A: Example of an Essential Relationship
	Appendix B: Example of a Dependent Relationship
	Appendix C: Example of a Multi-Valued Essential Rel.
	Appendix D: Example of a Multi-Valued Dependent Rel.
	References

	List of Tables
	List of Figures

