New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

1994

Translation of semantic aspects of OODINI graphical
representation to ONTO OODB data definition language

Xiaoyong Wang
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

b Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation

Wang, Xiaoyong, "Translation of semantic aspects of OODINI graphical representation to ONTO OODB
data definition language" (1994). Theses. 1692.

https://digitalcommons.njit.edu/theses/1692

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1692?utm_source=digitalcommons.njit.edu%2Ftheses%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TRANSLATION OF
SEMANTIC ASPECTS OF
OODINI GRAPHICAL REPRESENTATION TO
ONTOS OODB DATA DEFINITION LANGUAGE

by
Xiaoyong Wang

Inn this thesis. we present a system to translate the semantic elements 1n the
graphical schema language of OODINI from API of OODAL to the Type definition
of ONTOS DB. To translate semantic constraints of the graphical language, we
patch more information to existent cla‘ss data structure in API of OODAL. After a
brief review of OODINI, ONTOS DB and the existent translator without the ability
1o translate semantic constraints, we describe in detail the methods to translate the
essential relationship. dependent relationship, multi-valued essential relationship and
multi-valued dependent relationship. We employ an Inverse Reference to a ”Set of”
Type to achieve the goal. Setof and Tupleof relationship are special cases of the
above relationships. Ior validating the result of the translation, we give examples of

translation of a schema containing each of the relationships discussed.

TRANSLATION OF
SEMANTIC ASPECTS OF
OODINI GRAPHICAL REPRESENTATION TO
ONTOS OODB DATA DEFINITION LANGUAGE

by
Xiaoyong Wang

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer and Information Science

Department of Computer and Information Science

October 1994

APPROVAL PAGE

TRANSLATION OF
SEMANTIC ASPECTS OF
OODINI GRAPHICAL REPRESENTATION TO
ONTOS OODB DATA DEFINITION LANGUAGE

Xiaoyong Wang

Dr. Yehoshua Perl, Thesis Advisor Date
Professor of Computer and Information Science, NJIT

. . . e . . -
Associate ATofessor/of Computer and Information Science, NJIT

4

Dr. Jam e}/g}ﬁ/&{ }C/on’n/}ittee Meﬂier // Date

,/"

Dr. Jaso(n/h‘. Wang, Committee Member Date
Assistaz//l-’rol'essor of Computer and Information Science, NJIT

A\

BIOGRAPHICAL SKETCH

Author: Xiaovong Wang
Degree: Master of Science in Computer and Information Science
Date: October 1994

Undergraduate and Graduate Education:

e Master of Science in Computer and Information Science,
New Jerseyv Institute of Technology, Newark, NJ, 1994

e DBaclielor of Science in Computer Science,
Ivun Ming Institute of Technology, 1982

Major: Computer and Information Science

v

This thesis is dedicated to
my father Denglin Wang
and
my mother Xiaohua Zhang

v

ACKNOWLEDGMENT

I would like 10 express my most sincere gratitude to my advisor Dr. Yehoshua
Per] for his moral support, academic guidance, and precious friendship throughout
this work. I would like to extend my warm thanks to Dr. James Geller and Dr. Jason
T. Wang for their valuable suggestion and comments on this thesis. I also would like
to show special thanks to Dr. Michacl Halper for his guidance and technical support.

Let me also express my thanks to Oscar Ou Yahg and Aruna Kolla who give
me a lot of support and help during the research. 1 would also like to thank my

colleague Venugopal Reddy Cheruku for his cooperation.

vi

Chapter

1 INTRODUCTION
2 GRAPHICAL SCHEMA AND OODAL IN OODINI

2.1

L.

2.2

2.3

2.4

2.3

3 ONTOS DB AND GENERAL CONVERSION

3.1

3.2

3.3
3.4

TABLE OF CONTENTS

Problem Description and Approach
Representation of an Object Class
2.2.1 Representation of an Object Class in OODINT
2.2.2 Representation of an Object Class in OODAL
Access API (Application Programming Interface)
2.3.1 Access OODAL through APLI
2.3.2 Howito Access AP C L.
Patching the Object Classes ‘.
2.4.1 Internal structureof API L.
2.4.2 Patch Inverse Pointertoa Class
2.4.3 Implementation of Patch Inverse Pointer to a class
Glossary ..

Problem description and Approach
Introduction of the ONTOS Database System

3.2.1 Introduction of ONTOS

Activating the ONTOSDB.
General Approach of the Conversion
3.4.1 Object Class definition in ONTOSDB
3.4.2 The Correspondence Between OODINI and ONTOS DB . . .

vii

.. 10
o1

.o 11

.. 14
.. 18
.. 18
.. 19
.. 19
.. 19
.. 20
..oo21

8%
(8]

o
Q%]

Chapter

3.

5

GOSSATY © o o v o e

4 CONVERSION OF BASIC GRAPHICAL ELEMENTS

4.

4.

4.

4

4.

A

5

Problem Description and Approach
The Class and the Attributes oo
The Subclass and the Roleof o oo

The Ordinary Relationship and the Multi-valued Relationship . . .

Topics Remained e

5 CONVERSION OF SEMANTIC GRAPHICAL ELEMENTS

3.

Ut

t

1

35N

Problem Description and Approach o oL
5.1.1 Problem Descriptiono Lo
51.2 Approach Outline
The Essential Relationship . .o 0o
5.2.1 The Semantics of an Essential Relationship
5.2.2 Implementation of an Essential Relationship
5.2.3 Translation of an Essential Relationship
The Dependent Relationship. oo oo o
5.3.1 The Semantics of a Dependent Relationship
5.3.2 Implementation of a Dependent Relationship
5.3.3 Translation of a Dependent Relationship
The Multi-valued Essential Relationship
5.4.1 The Semantics of a Multi-valued Essential Relationship . . .
5.4.2 Implementation of a Multi-valued Essential Relationship

5.4.3 Translation of a Multi-valued Essential Relationship

The Multi-valued Dependent Relationship

(1)

5.5.1 The Semantics of a Multi-valued Dependent Relationship . .

3.

(W3]

.2 Implementation of a Multi-valued Dependent Relationship .

5.5.3 Translation of a Multi-valued Dependent Relationship

viil

Chapter
5.6 Sctof 62
5.6.1 The Constraintsof a Setof oo 62
5.6.2 Implementationof a Setofo oo 62
5.7 Tupleof . .o oo 63
5.7.1 The Constraints of a Tupleof 63
5.7.2 Implementationof a Tupleof 63
6 CONCLUSION 64
APPENDIN A EXAMPLE OF AN ESSENTIAL RELATIONSHIP 66
APPENDIN B EXAMPLE OF A DEPENDENT RELATIONSHIP 78
APPENDIX C EXNANPLE OF A MULTI-VALUED ESSENTIAL REL. 90

APPENDIND ENAMPLE OF A MULTI-VALUED DEPENDENT REL. .. 105
REFERENCES 120

ix

LIST OF TABLES

Table

3.1

3.2

Correspondence between the concepts of ONTOS and C++

Correspondence between the OODINI code and the ONTOS DB

LIST OF FIGURES

Figure Page
2.1 Example of the OODINI graphical schema
2.2 Graphical symbols used in OODINI

2.3 Translation of OODAL’s file to ONTOS code.

2.4 Outline of the API’s internal data structures of OODAL.
2.5 Addition of a patch to a class data structure.

3.1 Implement the class persistence in ONTOSDB
4.1 Anexampleofl a class and an attribute oL
4.2 Anexampleof asubclassand aroleof oL o L
4.3 An example of an ordinary and a multi-valued relationship
5.1 An example of an essential relationship L
5.2 An example of an Inverse Reference
5.3 Thelife timespan of a Type
54 The access scope of ONTOS DB
5.5 The translation of essential relationship

5.6 The translation of a dependent relationship

5.7 The trauslation of a multi-valued essential relationship
5.8 The translation of a multi-valued dependent relationship
5.9 The translation of a Setof to a multi-valued dependent relationship

5.10 The translation of a Tupleof to several dependent relationships

x1

CHAPTER 1

INTRODUCTION

This document discusses in detail the conversion of the OODB graphical repre-
sentation schema language of the OODINI from OODAL, the OODini Abstract
Language, to the ONTOS, a C++ embedded OODB, data definition language.

A graphical editor called OODINI, Object Oriented Diagrams Interface at
the New jersey Institute of technology, was designed and developed successfully
in the Department of Computer and information Science at New Jersey Institute
of Technologv[7. G]. as the need for a powerful interactive interface in the field
of OODB design is arising. Using OODINT software package, an OODB designer
can comfortably design and efficiently manipulate the OODB schema with powerful
graphical interface at application level without concerning himself with the details of
either related database or related database programming language. Then, OODINT’s
graphical representation of the resulting schemas can be translated automatically
by OODINI software package into two abstract object oriented languages, such as
OODAL and DAL. and to research prototype VML of GMD-IPSI.

But unfortunately a big gap does exist between the above mentioned abstract
languages and any one of the commercial object-oriented database management
syvstems. Although these languages have more powerful capability to describe the
real world than ever. they are mainly used in abstract and theoretical level and can
not be used directly by any one of the commercial OODB systems which are available
in recent years. So, transferring these abstract languages into a commercial OODB
system automatically becomes an urgent task . That is the purpose in this research

and thesis works.

We translated the OODAL language into ONTOS DB code. OODAL s
OODini Abstract Language. In [1], OODINI was converted to the VML, (VODAK
MODELING LANGUAGE), designed by GMD-IPSI. Converting an OODINI
graphical schema into VML or DAL code requires the understanding of the OODB
Dual model architecture [4]. All object oriented database languages except VML
do not adhere to this architecture. To overcome this problem, OODAL, a new
and different abstract languages, was proposed|l]. In OODAL, the object class
definition remains and object type definition is totally removed as compared with
dual model architecture. So. the OODAL language do not depend on the dual
mode] architecture and can be translated into commercial object-oriented database
languages.

We converted the OODINT graphical schema directly from the API of OODAL
but not OODAL iself. The OODAL code‘of a graphical schema is a plain text
file obtained from the OODINI graphical representation of the schema. Translating
it further into OODB code requires first to parse the whole text file. Evidently
this 1s a redundant and tedious task. As an alternative, OODINI provided the
APIL. Application Programming Interface. The API is provided in the form of a
C Lbrary and we can invoke the library routine directly. The invocation returns a
pointer pointing the first object class and then we can traverse all the classes in the
schemall].

ONTOS is one of the commercially available object-oriented database manage-
ment systems and is installed i the computer system in NJIT. It is a multi-user,
distributed OODB system and embedded in C++[12]. It provides all the necessary
features needed for an object oriented database system. For instance, it provide type,
property, procedure and reference corresponding to class, data member, member
function and pointer of a class in C++, and this also corresponds to object class,

attribute. method and relationship in the OODAL and the OODINI graphical

schema. In addition. it provides the ability of dynamically changing not only the
properiy but also the (vpe and even the procedure of the OODB.

This work describes in detail the conversion of the OODINI’s OODB graphical
schema from the APl of OODAL to the ONTOS data definition language. The
purpose of the conversion is translating automatically from API into ONTOS type
definition. That allows an OODB user to design schema graphically his application
using OODINI. and then get completed ONTOS type definition. All the information
in a graphical schema including the semantics of the relationships will be correctly
defined in the ONTOS type definition. The user can concentrate then to how to
input. manipulate and query the data in the OODB. Therefor he can save tremendous
effort to design and implenient an application in an OODB system.

This document is organized as following: Chapter 2 discuss the OODINI system
and the changing of the APl so that it can support the conversion of semantic
aspects of a relationship. Chapter 3 discuss the ONTOS system. Chapter 4 describe
the conversion of regular objects, class, attribute, regular relationship, roleof and
subclass. Chapter 5 entails further the conversion of the more sophisticated semantic
elements of the relationships such as. essential, dependent, setof, tupleof, multi-value

essential and multi-value dependent.

CHAPTER 2

GRAPHICAL SCHEMA AND OODAL IN OODINI

This chapter proposes the problems we try to solve and the answer to these problems.
We first review briefly OODINI and its graphical schema representation. Then we
describe how to traverse a graphical schema through the APIL. Finally we discuss how
to create the patch to a class so that the semantic information in a relationship can

be maintained in the class. Some examples are shown in this chapter.

2.1 Problem Description and Approach
Converting the OODAL code into ONTOS type definition code will encounter many
challenges. How we can traverse through each ciass of the graphical schema 1s the
first problem we will mect. TFor regular objects, we can traverse through each class
in a graphical schema and translate 1t directly into the corresponding ONTOS type
definition code. For example, class and attribute can be directly converted into
ONTOS type definition.

The second problem is that for a more sophisticated object which has specific
semantics we can not simplely transfer it into ONTOS code. We need more infor-
mation in the classes involved than in a regular class in order to implement the
semantics between them. The API of OODAL does not have this information
explicitly. Tor instance, suppose a class A has an essential relationship to a class
‘B, so class A has a pointer pointed to B to present this relationship. Class B does
not have a pointer to A as per the OODAL. But we need that pointer because if we
want delete instance b of B, we must check to see if any a of A pointed to b of B
exists. If 1t does. we can not delete b but give some messages. This is determined

by the semantics of the essential relationship.

Traveline throvel all obijects in a graphical schema is not so difficult. OODINI
provides APl to solve this problem. The APl of OODAL allows us to access the
internal data structure lavout of OODAL. In API, all the objects in graphical schema
are organized as various linked list. We can easily traverse through all the objects
in a graphical schema by invoking the library routine, oodal(). We will show this in
detail later in this chapter.

The second problem demonstrates a more difficulty challenge for us. In general,
any class referenced by a special relationship need at least one pointer to refer back to
its referee. To solve this problem we need to add more information to all the object
classes in the graphical schema. One approach is to change OODINI so it can support
such a special semantic application. But this will involve thorough understanding of
OODINT internal structures and the changes will effect the whole OODINI system.
It is very time consuming and dangerous. Another choice is to create a patch to each
object class. All the information necded to be added are put into this patch, and

then we attach tlis patch to the class.

2.2 Representation of an Object Class

2.2.1 Representation of an Object Class in OODINI

In OODINI, all the objects are edited with a graphical interface. The application
problem is organized according to an object-oriented database model. The graphical
interface is running under the X-window environment. It allows a user input,
delete and move the objects in the graphical schema. Many kinds of relations
and relationships are defined. That allows the user to choose the appropriate
one according to the application. At the end of editing the schema, a user can
save the graphical schema into OODAL, DAL and VML. All of them are abstract
object-oriented descriptive languages. The output is a flat file or a source code of

corresponding language.

instructor student

toughtby

teaches

registered

courses

course

Figure 2.1 Example of the OODINI graphical schema

Figure 2.1 is an example of OODINI graphical schema. Figure 2.2 gives all the

symbols used in OODINI.

2.2.2 Representation of an Object Class in OODAL

We choose OODAL as the source to translate to ONTOS code. The graphical schema
in OODINI can be translated into several kinds of intermediate object-oriented
language, i.e. OODAL, and DAL. DAL and VML are the languages based on the
the dual model architecture. DAL is the intermediate language used to translate
OODIXNT into VML, But ONTOS does not support this architecture. Converting

DAL into ONTOS will need more unnecessary effort to understand and handle the

class

sct class

atiribute

relationship

multi-valued relation

tuple class

path method

derived attribute

o VO
P —

E——

subclass

roleof

essential attribute

essential relationship

multi-valued
essential relationship

dependent relationship

multi-valued
dependent relationship

Figure 2.2 Graphical symbols used in OODINI

dual model architecture. So. OODINI supplies a new abstract language OODAL
which does not relv on the dual model architecture. We will translate OODAL code
into ONTOS code.

OODAL is OODini Abstract Language. OODAL’s source code is a plain text

file and has the following syntax template for each object class.

class <class-name>

attributes
<attribute-name> : unknown-type;
<essential-attribute-name> :+ unknown-type;

endattributes;

setof : <{class-name>;

roleof : <comma separated class-name list>;

partof : <comma separated class-name listd>;

tupleof : <comma separated <connect : class-name> list>;

subclass : <comma separated class-name list>;

relationships
ordinary-relationship-name : <class-name>;
essential-relationship-name :+ <class-name>;
dependent-relationship-name :> <class-name>;
multivalued-relationship-name :: <class-name>;
multivalued-essential-relationship ::+ <class-name>;
multivalued-dependent-relationship ::> <class-name>;

endrelationships;

methods
method-name-1();
method-name-2();

endmethods;

end;

The following is the OODAL source code of the previous example in Figure 2.1

translated by OODINL.

class Courses
setof : Course;
end;

class Course
membercf : Courses;
relationships

Toughtby : Instructor;
endrelationships;

end;

class Person
attributes
Ssn : unknown_type;
Name : unknown_type;
endattributes;
end;

class Instructor
categoryef : Person;
relationships
Teaches : Courses;
endrelationships;

class Student

categoryof . Person;
attributes

Major : unknown_type;
endattributes;
relationships

Registered :: Course;
endrelationships;

2.3 Access API (Application Programming Interface)

2.3.1 Access OODAL through API
In OODINI, the OODAL can be thought of as having two parts. One is the output
after translation from graphical schema. It is the OODAL source file and is a flat
text file. Another is the API, Application Programming Interface, of OODAL. It 1s
the OODAL's internal data structure. Figure 2.3 shows conceptually these relations.

The API of OODAL is a mechanism that allows a user to access the internal
data structure of the graphical schema. OODAL created by OODINI is a flat source

file. Translating 1t into ONTOS code needs parsing of the whole text file. This is

10

i flat text file

class definition language

API:
C internal data structure

Figure 2.3 Translation of OODAL’s file to ONTOS code.

very tedious and evidently unnecessary. The API of OODAL solves this problem
properly. API connects all the object classes in the graphical schema into a linked
list and will return a pointer to the first class when oodal() library routine is called.
This gives us great convenience and efficiency to translate the OODAL code into
ONTOS code.

Figure 2.4 describes the outline of API’s internal data structures of OODAL

T N -
for the previous example.

2.3.2 How to Access API n C

We can access APl of OODAL and then get the return of the first pointer of the class
i schema. Using this pointer, we can traverse through all the classes in the schema
and then translate them into ONTOS code accordingly. The actual accessing of the

APl is as Tollows,
¢ Include "oodal.h” file in header of the access program.

e Call oodal() library routine in the program. Give heapfile name of the graphical
schema, generally it is .ooheap, by default or given explicitly. The returning of

the call will be the pomter pointed to the first object class.

e Link the access program with ¢ library routine.

general cluss duta siructure

class name

next class hist

attribute list

11

- nie X1 class

base structure

attribute 1 attribute 2 ——=

ordinary relations list

mulii valued relationship list

attribute list counter

ordinary list counter

multi valuced relationship list counter

user private slots

future use expansion list

1 base structure
relation 1 name —— refered class

C;l;;n—?._;‘c ——— refered class

Figure 2.4 Outline of the API's internal data structures of OODAL.

2.4 Patching the Object Classes

2.4.1 Internal structure of API

In AP] of OODAL. we can see clear the internal data structure of an object class.

We have already seen this previously in Figure 2.4. It contains all the necessary

information for each class without considering the semantic relations of the class.

The standard data structure of the object class is the following,

typedef struct oclass {
struct oclass *next;

char *name ;
char *foruser[2];
char xfuture[8];

}oclass_t;

/*
/*
/*
/*
/*
/%
/%

Next class pointer */

Class name */

Other definitions for class */
Relations list pointer */
Relations list counter */

User private slots */

Future expansion */

12

2.4.2 Patch Inverse Pointer to a Class

Without consider the semantics of the relationships between classes, the above
structure is sufficient to convert the class code directly into ONTOS code. But when
we consider the semantics of a relationship between two classes, we must have twin
pointers pointed to each other class involved. For example, we have two classes A
and B and have a semantic relation from A to B. The instance a of A should have
a pointer to instance b of B. Instance b should also have a pointer to a. So that it
can access its related instance when necessary.

For this purpose. we must add more information to all object classes. There
are two ways to achieve the goal.

First, we can change the API data structure and add the information to 1t
as needed. But this will involve profound understanding of OODAL translating
program and internal representation of graphical schema in OODINI In addition,
any changes in OODINI will effect the whole system and should be very careful. So,
this is time consuming and dangerous.

Sccond. we can patch an extra data structure to each class and add the infor-
mation to it. In this way, we can add any information as needed and at the same
time keep the API compatible with OODINI. So, this way is safer and more efficient.
We choose patching to add more information. Figure 2.5 demonstrate this idea

conceptually.

2.4.3 Implementation of Patch Inverse Pointer to a class

How can we patch the information to the class in API? In the data structure of the
class in API, we can see pointers for future use. We use one pointer to point to a new
data structure. In this new structure we define the inverse pointer. For example,
class A has an essential relationship to class B. So class A has a pointer to class B.

After patching. the class B also has a pointer back to A.

patch a class daty struciure

[class name
next class list >

atiribute list

user privaic slots

T ; ! P s
future usc expansion list ———1 expenssion C }—*-L expenssion 1 }———'
(’r base structure
essential inverse list [inverse 1 }—={ inverse2 |—=
dependent inverse list " I
multi valued inverse list s ¥
multi deendent inverse 1ist e refered class refered class

Figure 2.5 Addition of a patch to a class data structure.

We define thie new structure with inverse pointers as follows,

i

/* ONTOS inverse class definition */
typedef struct iclass {
/* essential inverse list and counter */

basestruct_t *esninvlist;
long esninvcnt;

/* dependent inverse list and counter */

basestruct_t *dpninvlist;
leng dpninvent;

/* multivalue essential inverse list and counter */

basestruct_t *mvesninvlist;
long mvesninvent;

/* multivalue dependent inverse list and counter */

basestruct_t *mvdpninvlist;

14

long mvdpninvcnt ;
/* future use list */
char sfuturel[10];

} iclass_t;

Then we scan the whole class linked list to attach the patch as follows.

/% for each class patches inverse pointer */

for (cp = classptr; cp; cp = CNEXT(cp)) {

(SN
Lai

((ip = (iclass_t *) malloc(sizeof(iclass_t))) ==
(iclass_t *) NULL) {
printf ("oodalontos : failed to allocate iclass_t.\n");

exit(1);

/* patch inverse structure to a class */

cp->futurefC] = (char *) ip;

2.5 Glossary

APIL:

Application Programming Interface.
Attribute :

A structural aspect of a class that is composed of a name and a data type.
BNF:

Backus-Naur Form. BNF is a metalanguage for programming languages. A
metalanguage is a language that is used to describe another language. BNF is used
to describe the syntax of a programming language. It uses abstractions for syntactic
structures.

Categorv-of relationship:

15

A semantic relationship between two classes. It relates a specialized class to a

more general class where both these classes are viewed within the same application

context.
Class:

A container of objects which are similar in their structure and their semantics.
Dependent Relationship:

A relationship where the existence of an object depends on the existence of
another object. 1f the class A has a dependent relationship to class B, then the
existence of an instance a of A is dependent on the existence b of B. If b is deleted,
then a must also be deleted.

IZssential Attribute:

The existence of an object is conditioned on the existence of this attribute.
An instance of a class can only exist 1f the values of its essential attributes are all
different from NIL.

Essential Relationship:

A relationship wlich is not permitted to have a NIL value.
Aember-of Relationship:

A relation between two object types. Here an object type is said to be a member
of another object type. The latter object type is called a set.
Method:

A program segment with one required parameter of some object type, and any
number of optional parameters. A method always returns a value of an object type
or data type.

Multi Valued Relationship:
A one to many relationship between two classes. It indicates that an instance

of one class can be related to any number of instances of the class to which the

16

relationship is directed. An example of this can be the relationship between the

classes “course” and “"section”, where a given course can have many sections.

The concept of an object is universal. Literally everything, from items as
simple as the integer constant to a file handle system, memory, data structures, etc.,
are objects. As objects, they are treated uniformly. Objects have local memory,
inherent processing ability, the capability for communicating with other objects, and
the ability to inherent characteristics from ancestor objects.

Object Type:

In order to express that all instances of a class have a common structure and
behavior one can consider them to be of the same abstract data type. This type is
called the object tvpe of that class.

OODAL:

OODINT Abstract Language. The graphical image for a database schema is
first converted to this abstract language and then to other object oriented database
languages.
0O0DB:

Object Oriented Data Base.

OODINT:

Object Oriented Diagram Interface at New Jersey Institute of Technology. A
graphics editor for drawing and manipulating object oriented database schemas.
Part-of Relationship:

A relationship which is used to connect a part of a complex or assembled object
to its integral object. An example of this relationship can be class chapter and page
with the class book.

Relationship:

17

A user defined connection between classes that can contain either structural or
semantic information 1 the context of the application.
Role-of Relationship:

A semantic relation between two classes. It relates a specialized class to a more
general class, where both these classes are viewed in different application contexts.
Set-of Relationship:

A connection between two object types. Here an object type represents a set
of other member object types. In a mathematical sense this is also a relation.
Tuple-of Relationship:

A relation constructor used to gather a group of classes(constituent classes)
into a single class(the tuple class) {for some purpose. A concrete example of this can
be the tuple class shipment which is involved in a ternary relation with its constituent
classes supplicr. product and department.

VALL:

The VODANK Data Modeling Language.

CHAPTER 3

ONTOS DB AND GENERAL CONVERSION

The introduction of ONTOS DB and the general approach of the translation is
discussed in this chapter. ONTOS DB is a commercial object-oriented, multi user
and distributed database management system, embedded in C++. After the general
description of the ONTOS database system, we will see how to manipulate the
ONTOS DB. Then we will discuss the general approach of translating OODINI into

ONTOS DB.

3.1 Problem description and Approach

Coversion of the graphical elements in OODINI into a commercial object oriented
database management system is important . Currently OODINI can transfer a
graphical representation of an object oriented graphical schema into one kind of an
object oriented language, namely VML . Unfortunlately, VML run on VODAK which
1s a research prototype but not a commercial OODB. So, an object oriented graphical
schema of OODINI can not be translated into a commercial database system directly.

OO0TOS DB is a commercial database management system. It is an object-
oriented, multi user and distributed database management system and is embedded
in C++[13]. Most of the properties and features in graphical representation in
OODINI can be mapped into ONTOS DB. We will translate a graphical schema
of OODINI automatically into ONTOS DB to solve the above problem.

After a brief review of ONTOS DB, we will propose a general approach of
the problem in this chapter. All the graphical elements in OODINI will map into
corresponding features of ONTOS DB. The actual conversion of these elements will

be discussed in more detail in the coming chapters.

18

19

Table 3.1 Correspondence between the concepts of ONTOS and C++

[ONTOSDB [C++ }

type class

property data member
procedure memberfunction
super type base class

sub type derived class
direct reference | pointer

3.2 Introduction of the ONTOS Database System
3.2.1 Introduction of ONTOS
ONTOS is an objeci-oriented database management system. All the data in the
database is treated as objects. The most ilmportant features of object- oriented
database is that, any data or data object in the database has only one copy(3, 5].
Any user who wants to access the data 1item can use a pointer to access it, or we say
refer to it through Relerence.

ONTOS database system is embedded in C++. The ONTOS database
language is totally compatible with C++ and C[16, 15]. Its data structure definition
and programming statment is the same as C++ except that ONTOS has some more
statments to support the special database applications. Thus all the features in
C++ and C will automatically be inherited by ONTOS database system.

Table 3.1 shows the correspondence between the concepts of ONTOS and C++.

3.2.2 The Elements of ONTOS
Generally, ONTOS consists of three parts as following. Fach of them performs a

specific task.

20

e DBATOOL. is the tool which creates and maintenance the ONTOS database

physical file in a working environment[14).

e Classify, is the utility to create class schema according to user supplied class
definition. The data member or property and member function or procedure

are created and then saved in the database.

e Cplus, is the pre-compiler which compiles a user’s ONTOS program. Cplus
receives a user program and produces an intermedial C++ program and then
submit it to C++ to further processing. The output of the cplus is finally an

executable file[11].

3.2.3 Features of ONTOS
ONTOS DB supports the ability of class to be persistent. As we know, the life time
of a class in C+4 will be at most the life time of the process. ONTOS extends the life
time of the class, Type in ONTOS, to an unlimited time. This is the persistence of a
class. The class will be stored in the database and then be activated or deactivated
as needed. Iigure 3.1 shows how to implement the class persistence in ONTOS DB.

Another important feature in ONTOS DB is the reference. In C++4, a reference
can be thought of as a pointer. ONTOS supports two kinds of reference, direct
reference and abstract reference. Direct reference is a pointer which is exactly the
same pomnter in C++4. Abstract reference can be thought as a virtual pointer to a
class, no matter whether the class is residing in memory or in database. Abstract
reference is more powerful, safer and more convenience to use.

ONTOS provides some useful pre-packaged classes. The most important one
is the Set class in Aggregate classes. The Set class is not supported directly in

C++. By using the Set class of ONTOS DB in an application, groups of objects

process in

memory
activate by
deaclivate by OC_lookup()
putObject() Reference.Binding()
Set.getCluster()
TransactionCommit(})
audit area
In memory
StartTransaction()

permanent second
memory

Figure 3.1 Implement the class persistence in ONTOS DB

can be mampulated as one single object. This brings a great convenience to various

applications.

21

Other features related to the issue of multi-user, memory management and

crash recovery etc. are also supported in ONTOS DB. The corresponding information

can be found in Relerences of this thesis.

3.3 Activating the ONTOS DB

Generally, we follow these steps to create an ONTOS DB and use it according to

applications.

e Use DBATool utility to create an ONTOS database environment.

e Use classify procedure to create an object class schema. The classify has the

following command format and one example is given also.

classify +X +D<dbName> -I<includeDir> +c<controlFile> \

<headerFile>

classify +X +DontosDB +ccontrolFile -I/usr/cis/ontos/h \

employee.h \

22

department . h

e Use classifv to create an executable process. The following is the command

format and an example.

cplus [options] <sourceFile> -CFILE<controlFile>
cplus -g -o main -I/usr/cis/ontos/h \

main.C \

employee.C \

department.C \

-L/usr/cis/ontos/lib -Bstatic -10NTOS

3.4 General Approach of the Conversion

3.4.1 Object Class definition in ONTOS DB
Each object class in OODINT will be translated into ONTOS’s Type definitions. In
ONTOS DB, a class will be represented by two parts. One is the header definition
of the Type which defincs the template of that Type, including the properties and
procedures. Another one is the code definition of that Type which will describe the
procedure of that Type in detail.

A user program then can use them by including Type definition files of all the
related Types.

The header definition file will be used by the classify utility to create a class
schiema. The code definition file will be used by the cplus pre-compiler and its result

will produce a executable file.

3.4.2 The Correspondence Between OODINI and ONTOS DB
The OODINT elements are translated into Type definition of ONTOS DB with corre-

sponding elements. The following table shows the relation between them.

Table 3.2 Correspondence between the OODINI code and the ONTOS DB

[OODINI Elements

ONTOS Elements

]

Class

Type

Attribute

Property

Essential attributle

Property with control file

Ordinary relationship

Reference to a Type

Roleof

A Type with inheritance

Subclass

A Type with inheritance

NMulti-valued relationship

Reference to a Set of Type

Essential relationship

Reference to a Type and
Inverse Reference to a Set of Type

Dependent relationship

Reference to a Type and
Inverse Reference to a Set of Type

Multi-valued Essential

Reference to a Set of Type and
Inverse Reference to a Set of Type

Multi-valued Dependent

Reference to a Set of Type
Inverse Reference to a Set of Type

Set Reference to a Set of Type and
Inverse Reference to a Set of Type
Tuple Reference Types and

Inverse Reference to a Set of Type

Derived attribute

Procedure with a null body

Part-of

Not implement at present

Path Method

Not implement at present

23

24

3.5 Glossary

The terminology used to describe ONTOS DB is explained in this section.
Abstract Reference:

A virtual pointer to a Type. A mechanism provided by ONTOS DB to
implement Type reference.
Inheritance:

The method of defining a class in term of another class.
Persistence:

Extending the life time of a class beyond that of the process in which it is
created.
Procedure:

Member functions of a class whicl define operations that can be performed on
an instance of the class.
Property:

Data members or attributes that define the state of a class.
Reference:

Same as "Relationship”. If a A class refer to another class B, it is said class A
reference class B.
Sub Type:

The child class or derived class in C4++.
Super Type:

The parent class or base class in C++.

CHAPTER 4

CONVERSION OF BASIC GRAPHICAL ELEMENTS

The conversion of basic graphical elements in OODINI from API of OODAL to
ONTOS Type definition is discussed in this chapter. The basic graphical elements
in OODINT include class, attribute, roleof, subclass, ordinary relationship and multi-
valued relationship. The translation of these elements was done previously in our
research group by Reddyv[2]. As a background for translation of more sophisticated
elements in next chapter and for better understanding of next chapter, I include and
discuss brieflv these translations here.

The wayv | discuss the translation m this chapter i1s the following. Given an
example element in the graphical schema in CODINI, we will see the corresponding
OODAL code. Then give the ONTOS DB result after translation. The result of
translation is a Type definition of ONTOS DB which includes two separate files,
Jiand C files and both of them are source codes of ONTOS DB. After that, any

application program can include these type definitions and use it in ONTOS DB.

4.1 Problem Description and Approach
First. we will translate the basic graphical elements in a schema into ONTOS
Type definition. These graphical elements include class, attribute, roleof, subclass,
ordinary relationship and multi-valued relationship.
We can find the corresponding feature required directly from the ONTOS DB.
The class can be mapped as a Type. The attribute of a class can be mapped as
property of that Type. The roleof and subclass can use the feature of inheritance of

ONTOS DB. The Ordinary relationship can be mapped as a Reference referred to a

26

- T~

person

/l\ age ’\J

Figure 4.1 An example of a class and an attribute

Tvpe. The Multi-valued relationship can be mapped as a Reference too, but referred

to a Set of Type. We will sce details in following sections.

4.2

The Class and the Attributes

The most basic graphical elements in OODINT are class and attributes. An example

of class and attributes 1s given in Figure 4.1.

The source code of OODAL generated by OODINI is given below.

class person
attributes

birthDate :

unknown_type

ssn :+ unknown_type;

name
endattributes;
methods
age();
endmethods;
end;

: unknown_type;

b

The translation result of class person into Type definition of ONTOS DB is

shown below.

// Type definition :

#i1fndef PERSON_H

person.h

27

#define PERSON_H
#include <0Object.h>

class person : public Object {

private
unknown_type _birthDate;
unknown_type _ssn;
unknown_type _name,

public
// Constructor :

person(unknown_type __birthDate,
unknown_type __ssnh,
unknown_type __
char*theName={(char*)0);

name,

person(APL*);

virtual Type*getDirectType();

person* person::make(unknown_type __birthDate,
unknown_type __ssn,
unknown_type __
char*thelName=(char*)0);

name,

// Lttribute Accessors :

void birthDate(unknown_type __birthDate);
unknown_type birthDate();

void ssn(unknown_type __ssn);
unknown_type ssn();

void name(unknown_type __name);
unknown_type name () ;

// Derived Attribute Accessories
unknown_type person::age();

// Distructor ...:

“person();

virtual void Destroy(0OC_Boolean aborted = FALSE);
virtual veid putObject(0C_Boolean deallocate = FALSE);

virtval void deleteObject(0C_Boolean deallocate = TRUE);

#tendi?f

// Type definition : person.C

#include "person.h"
#include <Directory.h>
#include <Type.h>

person: :person(APL *theAPL) : Object(theAPL) {
}
person: :person(unknown_type ._birthDate,
unknown_type __ssn,
unknown_type __name,
char* theName)
Object(theliame)

{
initDirectType((Type*)0C_lookup('person"));
_birthDate = __birthDate;
_ssn = __ssn;
_name = __name;
}

person* person: :make(unknown_type __birthDate,

unknown_type __ssn,
unknown_type __nanme,

char* theName)

ODbject(theName)
{
return new person(__birthDate,
_.sSsn,
__name,
theName) ;
}

Type *person::getDirectType() {
return (Typex)0C_lookup("person");
}

// Attribute Accessors

void person::birthDate(unknown_type __birthDate) {

28

29

_birthDate = __birthDate;

)

unknown_type person::birthDate() {
return _birthDate;

)

void person::ssnunknown_type __ssn) {
_Ssn = __ssn;

b

unknown_type person::ssn() {
return _ssn;

}

void person::name(unknown_type __name) {

_name = __name;
unknown_type person::name() {
return _name;

b

// Derived Attribute Accessories :
unknown_type person::age() {

// £ill in the code by user.
}

// Destructor ...:

person:: person() {
Destroy(FALSE);

}

void person::Destroy(0C_Boolean aborted) A
if (aborted) Object::Destroy(aborted);

+

void person::putObject(0C_Boolean deallocate) {
Object::putObject{deallocate);

}

void person::deleteObject(0OC_Boolean deallocate) {
Object::deletelbject(deallocate);

}

As we see, the class and attributes are translated into proper format of ONTOS

DB type definition. Some other translations are required by ONTOS DB.

30

We translate the essential relationship into two parts. First part is the same as
the regular attribute. Second part is a translation of its constraint. The constraint
is translated into a control file according to ONTOS. The translate result is the

following.

// Type definition : person.ctrl

person::_ssn is required

The derived attribute is translated into a procedure. The procedure is correctly
defined but has only a null body. The processing in the procedure will be filled by a

user according to the application.

4.3 The Subclass and the Roleof
The translation of subclass and roleof is entirely according to the inheritance feature
in ONTOS and the translation of subclass and roleof is similar. In OODINI, Subcalss
and roleof are different relationship. A subclass object will inherit object type
from its superclass in dual model. A roleof object will inherit object class from
its superclass[4]. In ONTOS DB, a Type will inherit the properties and procedures
from its superType. So, both subclass and roleof objects can be translated according
to the inheritance and the conversion of these two type of relations are exactly the
same.
Figure 4.2 gives an example of these relations.

The corresponding source code of OODAL is below.

class gradStudent
end;

class employee
end;

class assistant

31

gradStudent ! employee
X
\0
~
~
N
assistant

Figure 4.2 An example of a subclass and a roleof

roleof : gradStudent;
categoryef : employee;
end;

3

The translation result of these two graphical elements of OODINI into
ONTOS Type definition 1s given here. We can see the inheritance of assistant
from gradStudent and employee clearly. As the class gradStudent and employee are
totally null classes. it is unnecessary to include the translation results although they

ex1st.

// Type definition : assistant.h

#ifndef ASSISTANT_H
#define ASSISTANT_H
#include "employee.h"
#include "gradStudent.h"
#include <0Object.h>

class assistant : public employee,
public gradStudent{

private :

public
// Constructor :

assistant(char* theName=(char+*)0);

32

assistant (APL*);
virtual TypexgetDirectType();
assistant* assistant::make(char* theName=(char*)0);

// Distructor ...:

“assistant();

virtual void Destroy(OC_Boolean aborted = FALSE):

virtual void putObject(OC_Boolean deallocate = FALSE);

virtual void deleteObject(0C_Boolean deallocate = TRUE);
;

#endif

// Type definition : assistant.C

#include "assistant.h"
#include <Directory.h>
#include <Type.h>

assistant::assistant(APL *theAPL) : employee(theAPL),
gradStudent (theAPL) {

}

assistant::assistant(char* theName)
employee(theName) ,
gradStudent (theName)

initDirectType((Type*)0C_lookup("assistant"));

Type *assistant::getDirectType() {
return (Typex*)0C_lookup("assistant");

}
assistant* assistant::make(char* theName)
{
return new assistant(theName);
¥

// Destructor ...:

assistant:: assistant () {
Destroy(FALSE);

33

void assistant::Destroy(0C_Boolean aborted) {
if (aborted) employee::Destroy(aborted);
if (aborted) gradStudent::Destroy(aborted);
void assistant::putObject(0C_Boolean deallocate) {
employee: :putObject(deallocate);
gradStudent::putObject(deallocate);

void assistant::deleteObject(OC_Boolean deallocate) {
employee::deleteObject(deallocate);
gradStudent::deleteObject(deallocate);

4.4 The Ordinary Relationship and the Multi-valued Relationship
The translation of ordinary relationship will use an abstract reference in ONTOS.
For an ordinary relationship. a class A has a property referring to a class B. Similarly
1mm ONTOS DB, a relationship can be implemented as an abstract reference of Type
A referring to Type B.

An abstract reference can be thought of as a virtual pointer from Type A to
Tyvpe B. An abstract reference will always return a correct pointer to the property
whenever the data item resides in memory or in the database.

A multi-valued relationship will be mapped to an abstract reference too. But
here. the reference points no longer to a Type. It points to a set of Type.

Figure 4.3 shows an example of an ordinary relationship and a multi-valued
relationship.

The source code of the ordinary relationship and multi-valued relationship of

OODAL is shown as follows.

class gradStudent

relationships
advised : faculty;
takes :: course;

endrelationships;
end;

taculty

course

advised by takes

gradStudent

Figure 4.3 An example of an ordinary and a multi-valued relationship

class course

end;

class faculty
end;

The conversion result is given below only-for the Type gradStudent.

// Type definition : gradStudent.h

#ifndef GRADSTUDENT_H
#define GRADSTUDENT_H
#include '"faculty.h"
#include "course.h"
#include <Object.h>
#include <Reference.h>
#include <Set.h>

class faculty;
class course;

class gradStudent : public Object {
private :
Reference _advised;

Reference _takes;

public :
// Constructor :

gradStudent (char* theName=(char*)0);

34

gradStudent (APL*);
virtual Type*geiDirectType(>;
gradStudent* gradStudent:make(char* theName=(char*)0);

// Relationship Accessors :

void advised(faculty*__faculty);
faculty*advised();
veid Reset_advised();

// Multivalued Relationship Accessories :

Set* takes();

void Add_to_takes(course* __course);

void Remove_from_takes(coursex __course);
long unsigned Cardinality_of_takes();

// Distructor ...:

“gradStudent () ;

virtual void Destroy(0C_Boolean aborted = FALSE);

virtual void putObject(OC_Booleam deallocate = FALSE);

virtual void deleteObject(OC_Boolean deallocate = TRUE);
I

#endaf

// Type definition : gradStudent.C

#include "gradStudent.h"
#include <Directory.h>
#include <Type.h>

gradStudent::gradStudent (APL *theAPL) : Object(theAPL) {
+
gradStudent::gradStudent (char* theName)
Object(theName)
{
initDirectType((Type*)0C_lockup("gradStudent"));
_advised.initToNull();
Type* courseType = (Typex)0C_lookup('course");
_takes.Init(new Set(courseType), this);

35

36

gradStudent* gradStudent::make(char* theName)

r
1

return new gradStudent(theName);

¥

Type *gradStudent::getDirectType() {
return (Type*)0C_lookup(‘'gradStudent");

¥

// Relationship Accessors :

void gradStudent::advised(faculty*__faculty) {
_advised.Reset(__faculty,this);

¥

faculty*gradStudent::advised() {
return (faculty*)_advised.Binding(this); }
void gradStudent::Reset_advised() {
_advised.initToNull();

¥

// Multivalued Relationship Accessories :

Set* gradStudent::takes() {
Set* theSet = (Setx*)_takes.Binding(this);
Set* returnSet = new Set(*theSet);
return(returnSet);

void gradStudent::Add_to_takes(course* __course) {
Set* setof_course = (Set*)_takes.Binding(this);
setof _course->Insert(__course);
setof_course->putCluster();

void gradStudent::Remove_from_takes(course* __course) {
Set* setof_course = (Set*)*takes.Binding(this);
setof _course->Remove(__course);
setof _course->putCluster();

long unsigned gradStudent::Cardinality_of_takes() {
return ((Set*)_takes.Binding(this))->Cardinality();

// Destructor ...:

gradStudent:: “gradStudent() {

37

Destroy(FALSE) ;

void gradStudent::Destroy(OC_Boolean aborted) {
Entity* __takes = (Entity*)_takes.Binding(this);
delete takes;

if (aborted) Object::Destroy(aborted);

void gradStudent::putObject(0C_Boolean deallocate) {
((Set*)_takes.Binding(this))->putObject (FALSE);
Object::putObject(deallocate);

void gradStudent::deleteObject(0C_Boolean deallocate) {
((Set*)_takes.Binding(this))->deleteObject (FALSE);
Object::deleteObject(deallocate);

4.5 Topics Remained
There are still several problems in the translation of the basic elements. We will

discuss them briefly as follows.

e The constraint of sctof is not translated in the previous work. In the previous
work, setof relationship was translated as a multi-valued relationship. But
some information is lost and the constraint between the class and its set class

15 no longer maimtained.

¢ The constraint of tupleof is also not translated in the previous work. In previous
work, tupleof relationship was translated as ordinary relations. Here too, the
constraint information is lost and the constraint between the class and its

tupleof class i1s no longer maintained.

These problems will be discussed further in next chapter.

CHAPTER 5

CONVERSION OF SEMANTIC GRAPHICAL ELEMENTS

In this chapter, the translation of more sophisticated graphical elements in OODINI
from APl of OODAL to the ONTOS Type definition will be discussed. The graphical
elements covered here include essential relationship, dependent relationship, multi-
valued essential relationship, multi-valued dependent relationship, setof relationship
and tupleof relation.

The most important feature of these graphical elements is that all of these
relationships have semantic constraints on the classes. ONTOS DB does not support
this semantic constraint directly. We must find some new way to implement these
semantic constraints using the existing features ONTOS DB supplies. As we can see,
All these relationships are converted to their proper features in ONTOS DB.

In each section, the semantics of the relationship is described. Then a corre-
sponding featurc in ONTOS DB is chosen and the implementation of the translation

1s disussed. Finally an example and its translation are given.

5.1 Problem Description and Approach

5.1.1 Problem Description

The most important {eature of the graphical elements discussed in this chapter is
that all of these relationships have a semantic constraint on their related classes.
ONTOS DB does not support this semantic constraint directly. For instance, a class
A has an essential relationship to a class B. An instance a of A can not be created if
it refers to a null instance of B. We can not find the corresponding notion in ONTOS
DB directly. So, we can not translate these relationships directly to ONTOS DB as

we did in the previous chapter {or the simple elements of OODINI,

38

39

graphical schema

classB

4R
N
\L translate to ONTOS DB
Type A =~ Type B
Type schema
o =D

Type instance

classA

Figure 5.1 An example of an essential relationship

Suppose we have a class A referring to a class B and suppose also the
relationship is essential as shown in Figure 3.1. The essential relationship specifies

semantic constraints in two aspects.

e Create a: when we create an instance a of A we must check if the instance b
of B relerred by the relationship is exist. If 1t does, the creation is successful.

Otherwise we can not create this instance of a.

e Delete b: if we want to delete instance b of B, we must check if there is an
instance a of A referred to b of B. If there is one, we can not delete this instance

b. Otherwise we can do that.

In ONTOS DB, we can check first semantics directly by checking the Reference
of Type A, If the Reference of a returns a NULL we can not create a. But when we

try to delete b, we don’t know which a of A refers to this b. In ONTOS DB, we can

40

Reference

Type schema inverse Reference

Reference

Reference
inverse Reference

Type instance

Figure 5.2 An example of an Inverse Reference

not get this information directly. We then must find some way to implement these

semantic constraints using features that ONTOS DB has already supplied.

5.1.2 Approach Outline
The basic idea to solve this problem is the inverse Reference. All the semantic
constraints can be supported if we create an inverse Reference to a Set of Type, from
this set we can refer back to the original Type. We can see this idea in Figure 5.2.
In this way, we can check the inverse Reference to see if there are any instances of A
referning to b.

As we can see below. the essential relationship and the dependent relationship

are mapped into a Reference to Type and an inverse Reference to a Set of Type.

41

ransactionCommit() SwartTransaction()
putObject() OC_lookup()
accessor() accessor()
createCbject() deleteObject(

[maintain semantic constraints in second method
|«

maintain semantic constrainis in first method

%

X

Figure 5.3 The life time span of a Type

The multi-valued essential relationship and the multi-valued dependent relationship
are translated as a Reference to a Set of Type and an inverse Reference to another
Set of Tvpe. The Setof relationship can be thought of as a multi-valued dependent
relationship and then can be translated into a Reference to a Set of Type. Tupleof
relationship can be thought of as several dependent relationships and can be mapped
into several Reference to several Type.

The important issue in the translation is the scope of the semantic constraints
maintained. This issue is demonstrated in Figure 5.3. The next issue we must
consider is the life time of the Type that its semantic constraints are maintained.
We can see the life time of an instance of a Type clearly from Figure 5.4.

There are mainly two strategies in translation. We describe them as follows.

1. To maintain the semantic constraints at highest level, i.e. beginning at appli-

cation process memory. This method has the following properties.

o The semantic constraints are maintained everywhere including application

process memory. ONTOS DB audit area and the permanent database

42

application program

createObject()

accessor()

application process memory

putObject() '

ONTOS DB audit area

deleteObject()

transactionCommit()

3

ONTOS DB

Figure 5.4 The access scope of ONTOS DB

43

if the application program follows the accessor supplied in the Type.
We must use method make() to create an Object instead of using new
operator.

e There are three control points. we will control creation of the Object using
make(), accessor(), deleteObject() in order to implement the semantic

constraints.
e The semantic constraints are effective on the Type during the whole life
time after make() operation of the Type.

e This method requires that an application program must follow a specific

format when invoking the constructor. The invoking result can be

mdirecthv returned.
e If an application program bypasses the interface supplied, the semantic
constraints of the data will be damaged. So, the semantic constraints of

this data will no longer be maintained both in memory and database.

2. To mamtain the semantic constraints at second level, i.e. beginning at ONTOS

DB audit area. This method has the following properties.

e The semantic constraints are maintained in ONTOS DB audit area and
the permanent database. It does not matter if the application program

follow the accessor supplied in the Type.

e There are two control points. we will control putObject(), deleteObject()

in order to implement the semantic constraints.

e The semantic constraints are effective on the Type in the span beginning

at putObject().

44

e This method require that an application program must follow a specific
format when invoking the constructor. The invokation’s result can be
indirectly returned.

e If an application program bypasses the interface supplied, the semantic

constraints of the data are still maintained.

We try to maintain the semantic constraints during the whole life time of a Type
from creation to deletion of the Type. There are Direct and Indirect solutions for this
1ssue. A Direct solution means that a Type can maintain its semantic constraints
from creation until deletion of the Type, no matter whatever an application program
does. An Indirect solution can not guarantee this and will ask an application program
wlhich follows a specific format to achieve that goal.

Because of the limitations of ONTOS DB and C++, we can not implement
the conversion which satisfies a Direct solution. Both of above methods are Indirect
solutions and have their own advantages and disadvantages. Finally, we have chosen

the first strategy to implement the translation.

5.2 The Essential Relationship
5.2.1 The Semantics of an Essential Relationship
Suppose that we have a class A and class B and class A has an essential relationship
to class B.

The semantic constraints in essential relationship are,

e The creation semantic constraint: if we want to create an instance a of a class

A, 1t must refer to an existing instance b of class B.

o The update semantic constraint: we can not assign a NULL value to an instance

a of class A.

45

eraphical schema in OODINI

employee —O department

worksfor

translates into a Type definition

Reference

employee

inverse Reference

Figure 5.5 The translation of essential relationship

e The deletion semantic consiraini: we can not delete an instance b of class B if

there is anv instance a of A referring to it.

In Figure 5.5, we can see an example of an essential relationship.

5.2.2 Implementation of an Essential Relationship
First we consider the essential relationship as an ordinary relationship. Then we
add more content to implement the essential constraints. We translate the essential
relationship using a Reference to department Type from employee Type and an
inverse Reference to a Set of employee Type {from department Type.

Ior employee Type, we implement the semantic constraints in the following

points. In the constructor, we implement the creation of the semantic constraints.

46

In the relationship accessor. we implement the update of the semantic constraint.
\We maintain the semantic constraints accordingly in deleteObject() function,.

For the department Type, we implement the semantic constraints in the
following points. The deletion semantic constraint is implemented in the deleteObject()
function. For the inverse Reference, we implement this as a regular multi-valued

relationship.

5.2.3 Translation of an Essential Relationship
Following the same essential relationship example, we give the OODAL code and its

translation result of ONTOS DB Tvpe definition.

class department
attributes
name . unknown.type;
endattributes;

class employee
attributes
ssn . unknown_type;
name : unknown_type;
endattributes;
relationships
worksfor :+ department;
endrelationships;
end;

In the constructor of employee, we implement the creation constraint.

// Creation constraint in constructor of employee :

employee: :employee(char* __ssn,
char* __name,

departmentx __department,

char#* thelName)
Object(theName)

47

initDirectType((Type*)OC_lookup(“"employee') J;
_SSn = __ssn;
_name = __nane;

_worksfor.Reset(__department,this);
__department->Add_to_inv_worksfor(this);

employee* employee::make(char* __ssn,
char* __nane,
department* __
char* theName)

department,

if (__department == (department*)NULL)
return NULL;
return new employee(__ssn,
__nhanme,
-_department,
theNanme) ;

In relationship accessor of employee, we implement the update semantic

constraint.

// Update constraint in relationship Accessors :

void employee::worksfor(department*__department) {
if (__department !'= (department*)NULL) {
(worksfer())->Remove_from_inv_worksfor(this);
_worksfor.Reset{(__department,this);
__department->Add_to_inv_worksfor(this);

In deleteObject() of employee, we maintain the semantic constraint in inverse

Set of Type accordingly

// Maintain the inverse Set of Type in employee :
void employee::deleteObject (0C_Boolean deallocate) {

(worksfor())->Remove_from_inv_worksfor(this);
Object::delete0bject(deallocate);

48

In deleteObject() of department, we implement the deletion semantic

constramt.

// Deleting constraint in department
void department::deleteObject(0C_Boolean deallocate) {

if (Cardinality_of_inv_worksfor() != 0) {
return;

b
Object::deleteDbject(deallocate);

5.3 The Dependent Relationship

5.3.1 The Semantics of a Dependent Relationship
The semantic constraints of a dependent relationship are basicly the same as for an
essential relationship except for the deletion constraint. We describe the semantic

constraints of dependent relationship as {ollows.

e The creation semantic constraint: 1f we want to create an instance a of a class

A. it must refer to an existing instance b of a class B.

e The update semantic constraint: we can not assign a NULL value to an instance

aof A,

e The deletion semantic constraint: we delete an instance b of B and all the

instance a of A referred to it.

An example of dependent relationship is given in Figure 5.6.

5.3.2 Implementation of a Dependent Relationship
A dependent relationship can be thought of as an ordinary relationship first. Then

we add more information to implement the dependent constraints. We translate the

graphical schema in OODINI

section

- course

offerto
translate into Type a definition

Reference

section

course

inverse Reference

Figure 5.6 The translation of a dependent relationship

49

50

dependent relationship using a Reference to course Type from section Type and an
inverse Reference 1o a Sct of section Type from the course Type.

In section Type, we control the semantic constraints in these points. In the
constructor, we implement the creation semantic constraints. In the relationship
accessor, we implement the update semantic constraint. We maintain the semantic
constraint accordingly in the deleteObject() function,.

For course Type, we implement the constraint as follows. The deletion semantic
constraint is implemented in the deleteObject() function. For inverse Reference, we

implement it as a regular multi-valued relationship.

5.3.3 Translation of a Dependent Relationship
As the given dependent example, we give the OODAL code and its translation result

of ONTOS DB Type definition.

class course
attributes
code : unknown_type;
name : unknown_type;
endattributes;
end;

class section
attributes
number : unknown_type;
endattributes;
relationships
offerto :> course;
endrelationships;
end;

In the constructor of section, we implement the creation constraint.

// Creating constraint in constructor of section

section::section(char* __number,

51

course* __course,
char* theName)
Object(theName)

{
initDirectType((Type*)OC_lookup("section"))};
_number = __number;
_offerto.Reset(__course,this);
__course->Add_to_inv_offerto(this);
}
section* section::make(char* __number,
course* __course,
char* theName)
{
if (__course == (coursex)NULL)
return NULL;
return new section(__nunmber,
__course,
theName) ;
)

In relationship accessor of section, we implement the update semantic constraint.

// Updating constraint in relationship Accessors

void section::offerto(course*__course) {
if (__course !'= (course*)NULL) {
(offerto())->Remove_from_inv_offerto(this);
_offerto.Reset(__course,this);
__course->Add_to_inv_offerto(this);

In deleteObject() of section, we maintain the semantic constraint in inverse Set

of Type accordingly.
// Maintain the inverse Set of Type in section :
void section::deleteObject(0C_Boolean deallocate) {

(offerto())->Remove_from_inv_offerto(this);
Object::deletelbject(deallocate);

52

In deleteObject() of department, we implement the deletion semantic

constraint. The deleteCluster() will delete the Set and all the members in the Set.

// Deleting constraint in course

void course::delete0Object(0C_Boolean deallocate) {
((Setx) _inv_offerto.Binding(this))->deleteCluster();
Object::deleteObject(deallocate);

et

5.4 The Multi-valued Essential Relationship
5.4.1 The Semantics of a Multi-valued Essential Relationship

The semantic constraints of multi-valued essential relationship are,

e The creation semantic constraint: if we want to create an instance a of a class

A, it must refer to existing instances of a class B.

e The update semantic constraint: we can not assign a NULL value to an instance

a of A. But we can assign an a many bs.

e The deletion semantic constraint: we can not delete an instance b of B if there

is anyv instance a of A which has only one reference to the instance b of B.

An example of multi-valued essential relationship is given in Figure 5.7. In this
example, an employee can work in many departments instead of work only in one

department in previous example of essential relationship.

5.4.2 Implementation of a Multi-valued Essential Relationship
The multi-valued essential relationship i1s basicly a multi-valued relationship. We
translate that as a multi-valued relationship and use a Reference to a Set of

department Type from a employvee Type. Then some more information is added to

graphical schema in OODINI

£

employee) department

worksin

translate into a Type definition

department

‘ inverse Reference

Reference

Figure 5.7 The translation of a multi-valued essential relationship

53

54

maintain the constraints imposed. Here again, we use an inverse Reference to a Set
of the employee Type from department Type.

For the employee Type, we translate the semantic constraints as follows. We
implement the creation constraints in the constructor of employee. In relationship
accessors, we implement the update constraint. As we can see below, it is more
complex than a Reference to a Type. We maintain the constraint at deleteObjeject()
of the employee Type accordingly.

For the department Type. we control the semantic constraints at these points.
we implement the deletion constraint in deleteObject(). For the inverse Reference,

we treatl it as a regular multi-valued relationship.

5.4.3 Translation of a Multi-valued Essential Relationship
As per the given example of multi-valued essential relationship, we have the OODAL

and the translation result of OOTOSDB Type definition.

class employee
attributes
ssn : unknown_type;
name : unknown_type;
endattributes;
relationships
worksin ::+ department;
endrelationships;
end;

class department
attributes
name : unknown_type;
endattributes;
end;

In the constructor of employec, the creation constraint is translated like this.

// Creating constraint in constructor of employee

55

employee::employee(char* __ssn,
char* __name,
Set* __worksinSet,
char* theName)
Object(theName)

initDirectType((Type*)0C_lookup("employee"));
_Ssn = __ssn;
_name = __name;
Type* departmentType = (Typex)OC_lookup('department");
_worksin.Init(new Set(departmentType), this);
Set* departmentSet = (Set*)_worksin.Binding(this);
department* departmentln;
Aggregatelterator* worksinlt = __worksinSet->getIterator();
while (worksinIt -> moreData()) {
departmentIn = (departments*)
(Entity*) (wvorksinIt->operator() ());
if (departmentIn != (department*)NULL) {
departmentIn->Add_to_inv_worksin(this);
departmentSet->Insert(departmentlIn);

employee* employee::make(char* __ssn,
char* __name,
Set* __worksinSet,

char* theName)

department* departmentlIn;
Aggregatelterator* worksinIt = __worksinSet->getIterator();
while (worksinlt -> moreData()) {
departmentIn = (departments*)
(Entity*) (worksinIt->operator()());
if (departmentIn == (department*)NULL)
-.worksinSet->Remove(departmentIn);
by
if (__worksinSet->Cardinality() == 0)
return NULL;

return new employee(__ssn,
__name,
_.worksinSet,
theName) ;

56

-

In the relationship accessor of employee, we implement the update semantic

constraint.
// Updating constraint in relationship Accessors

void employee::Add_to_worksin(department* __department) {
if (__department == (department*)NULL) return;
Set* setof_department = (Set*)_worksin.Binding(this);
setof_department->Insert(__department);
setof _department->putObject();
__department->Add_to_inv_worksin(this);

void employee::Remove_from_worksin(department* __department) {

if (__department == (department*)NULL) return;

Set* setof_department = (Set*)_worksin.Binding(this);

if (setof_department—}Cardinality() <= 1) return;

if ((setof_department->isMember (__department)) == TRUE) {
setof_department->Remove(__department);
setof_department->putObject();
__departments->Remove_from_inv_worksin(this);

In the deleteObject() of emplovee, we maintain the semantic constraint

accordingly.
// Maintain the inverse Set of Type in employee

void employee::deletelbject(0C_Boolean deallocate) {

Set* setof_department = (Set*)_worksin.Binding(this);

department* departmentln;

Aggregatelterator* worksinlt =
setof_department->getIterator();

while (worksinIt -> moreData()) {
departmentIn = (department*) (Entityx*)

(worksinIt->operator()());

departmentIn->Remove_from_inv_worksin(this);

b
Object::deletelbject(deallocate);

57

In the deleteObject() of department. we implement the deletion semantic

constraint. The deleteCluster() will delete the Set and all the members in the Set.

// Deleting constraint in department :

employees* employeesin;
Set* employeesSet = (Set*)_inv_worksin.Binding(this);
Aggregatelterator* inv_worksinlt = employeesSet->getIterator();
while (inv_worksinIt -> moreData()) {
employeesIn = (employees*)
(Entity*) (inv_worksinIt->operator () ());
if (employeesIn->Cardinality_of_worksin() <= 1) {
return;

}
inv_worksinlt = employeesSet->getIterator();
while (inv_worksinIt -> moreData()) {
employeesIn = (employees*)
(Entity*) (inv_worksinIt->operator()());
employeesIn->Remove_from_worksin(this);

Object::deletelbject(deallocate);

5.5 The Multi-valued Dependent Relationship
5.5.1 The Semantics of a Multi-valued Dependent Relationship
Like dependent relationship, the multi-valued dependent relationship is basicly the
same as multi-valued essential relationship. The only difference is that an instance a
of A does no longer exist if an instance b of B is deleted. The semantic constraints

of multi-valued relationship is as follows.

e The creation semantic constraint: if we want to create an instance a of a class

A1t must refer to an existing instance b of a class B.

o The update semantic constraint: we can not assign a NULL value to an instance

a of A. But we can assign a of A more than one b of B.

58

araphical schema in OODINI

=3

.

child parent

g

worksin

translate into a Type definition

Reference inverse Reference

Figure 5.8 The translation of a multi-valued dependent relationship

e The deletion semantic constraint: we delete an instance b of B and all instances

of a of A referred to it.

An example of multi-valued dependent relationship is given in Figure 5.8.

5.5.2 Implementation of a Multi-valued Dependent Relationship

The multi-valued dependent relationship is basicly the same as the multi -valued
essential relationship. The only difference is the deletion semantic constraints. So,
we use a Reference to a Set of parent Type from a child Type and use an inverse

Reference to a Set of child Type to maintain the constraints.

59

In the child Tvpe. we implement the constraints in the constructor, the
relationship accessor and deleteObject(). In parent Type, we implement the

constraints at deleteObject() and the regular multi-valued relationship.

5.5.3 Translation of a Multi-valued Dependent Relationship

For the example given above, we show the OODAL code and result after translation.

class child
attributes
ssn : unknown_type;
name : unknown_type;
endattributes;
relationships
has ::> parent;
endrelationships;
end;

class parent
attributes
ssn : unknown_type;
name : unknown_type;
endattributes;

In the constructor of a child type, the creation constraint is implemented as

below.

// Creation constraint in the constructor of child type:

¢hild::child(char*
char* __name,
Set* __hasSet,
char*theName)
Object(theName)

ssn,

initDirectType((Typex)0C_lookup('child"));
_ssn = __ssn;

_hame = __name;

Type* parentType = (Type*)OC_lookup("parent");

60

_has.Init(new Set(parentType), this);
et~ parentSet = (Setx)_has.Binding(this);
parent* parentin;
Aggregatelterator* hasIt = __hasSet->getIterator();
while (hasIt -> moreData()) {
parentIn = (parent*)
(Entity*) (hasIt->operator(D());
if (parentln !'= (parent*)NULL) {
parentIn->Add_to_inv_has(this);
parentSet->Insert(parentln);

child#* child::make(char* __ssn,
char* __name,

Set* __has,
char* theName)

{
parent* parentln;
Aggregatelterator* hasIt = __has->getIterator();
while (hasIt -> moreData()) {
parentIn = (parent*)
(Entity*) (hasIt->operator(D());
if (parentlIn == (parent*)NULL)
__has->Remove(parentIn);
}
if (__has->Cardinality() == 0)
return NULL;
return new child(__ssn,
__name,
__has,
theName) ;
}

The update constraint is implemented in the relationship accessors as follows.

// Update constraint of child type:

void child::Add_to_has(parent* __parent) {
if (__parent == (parent*)NULL) return;
Set* setof_parent = (Set*)_has.Binding(this);
setof _parent->Insert(__parent);
setof_parent->putCluster();

61
__parent->Add_to_inv_has(this);

void child::Remove_from_has(parent* _.parent) {

if (__parent == (parent*)NULL) return;

Set* setof_parent = (Set*)_has.Binding(this);

if (setof_parent->Cardinality() <= 1) return;

if ((setof_parent->isMember(__parent)) == TRUE) {
setof_parent->Remove(__parent);
setof_parent->putCluster();
__parent->Remove_from_inv_has(this);

At the deleteObject(), we keep the constraint consistent.

// Maintain the consistency in the child type:

void child::deleteObject(DC_Boolean deallocate) {
Set* setof_parent = (Set*)_has.Binding(this);
parent* parentln; ;
Aggregatelterator* haslt =
setof _parent->getIterator();
while (hasIt -> moreData()) {
parentIn = (parent*)(Entity*)
(hasIt->operator()());
parentIn->Remove_from_inv_has(this);

Object::deletelbject(deallocate);

In the parent Type, we implement the deletion constraint at deleteObject().

// Delete constraint in parent type:

void parent::deleteObject(0C_Boolean deallocate) {
((Set*)_inv_has.Binding(this))->deleteCluster();
Object::deleteObject(deallocate);

62

Graghical scahema in OONIDI

courses
COUTSES transfer
= \ setofCourse
course
course

Figure 5.9 The translation of a Setof to a multi-valued dependent relationship

5.6 Setof

5.6.1 The Constraints of a Setof
The Setof relationship can be thought of as a multi-valued dependent relationship.
In the previous work, the Setof relationship is translated as a regular multi-valued
relationship. But Setof relationship has some constraints. If class A is the Setof class
B, any members in instance a of A must be an instance of B. If we try to delete an
mstance b of B, we will delete the member in all the instances of A. That is exactly
the mulu-valued dependent relation.

So we can convert a Setof relationship into multi-valued dependent relationship

as shown 1n Figure 5.9.

5.6.2 Implementation of a Setof
‘The translation of the Setof relationship is the same as the multi-valued dependent

relationship. We can use the same translation result above.

63

‘ transferto
shipment ‘ —_—— shipment
N tupleofSupplier tupleofProduct
supplier product supplier product

Figure 5.10 The translation of a Tupleof to several dependent relationships

5.7 Tupleof

5.7.1 The Constraints of a Tupleof

Tupleof relationship can be transferred to several dependent relationships. In the
previous work. tupleof is mapped to several ordinary relationships. But tupleof also
have some constraints. Suppose class A has a tupleof relationship with class B and
C. The instance a of A can only be exist if it refers to an existent instances b of B
and ¢ of C. If we want to delete b of B, or ¢ of C, the corresponding instance a in A
will be deleted also. This relationship has exactly the same property as dependent
relationships.

We can see this property further in the example shown in Figure 5.10.

5.7.2 Implementation of a Tupleof
According to the above mapping, the translation of tupleof relationship can be trans-
ferred to several dependent relation. We can see the translation result from previous

example.

CHAPTER 6

CONCLUSION

In this thesis we enhanced the previous OODINI to ONTOS DB translator by adding
the ability to translate the sophisticated graphical elements in the graphical repre-
sentation schema of OODINI from API of OODAL to the Type definition of ONTOS
DB. These graphical elements include essential relationship, dependent relationship,
multi-valued essential relationship and multi-valued dependent relationship. Both
the structure and the semantic constraints of these graphical elements are trans-
ferred correctly 1o the Type definition of ONTOS.

In order to implement the translation, we employ several techniques to accom-
modate the conversion of the semantic constraints. We patch an extra data structure
to a class in APl of OODAL. We employ the inverse Reference to maintain the
semantic constraints i a Type. We implement the semantic constraints of the above
graphical elementsin the procedures of the Type involved in the translation. We have
chosen the best indirect solution {rom several choices to implement the translation.

To validate the translation result, we give examples for each of the above
graphical elements in the Appendix. Both the Type definition and the trial main
program are included.

Two relationships, Setof and Tupleof, also have constraints. They are the
special case of the above relationships. Setof is a multi-valued dependent relationship.
Tupleof can be thought of as several dependent relationships.

We implement the translation on a Sun work station under UNIX and Motif
window manager environment using C and C4+.

There is still some more research 1o be done in the future.

64

65

e \We need to translate more sophisticated graphical elements which have complex
semantic constraints, such as Partof and Ownership relationships which are still

under development[8, 9].

e \We need to try to maintain the semantic constraints during the whole life time
of a Type, and so will try to search for a Direct solution but we need to wait
for the availability of the proper software changes in the ONTOS system as it

1s still not supported by the ONTOS system.

APPENDIX A

EXAMPLE OF AN ESSENTIAL RELATIONSHIP

66

J11701177777071171111717] enployee h [//77/171707177711117777177

#ifndef EMPLOYEE_H
#define EMPLOYEE_H
#include "department.h"
#include <0Object.h>
#include <Reference.h>
#include <stream.h>

class department;
class employee : public Object {

private
char* _ssn;
char* _name;
Reference _worksfor;

public
// Constructor :

employee(char* __ssn,

char* __name,

department* department,

char* thellame={char*)0):
employee(APL*);
Type* getDirectType();
static employee* make(char* __ssn,
char* __name,

depariment* __department,
char* theName={char*)0);

// Attribute Accessors :

void ssn{char* __ssn);
char* ssn();

void name(char* __name);
char* name();

// Relationship Accessors :

void worksfor(department* __department);
department* worksfor();

};

68

// Distrucior ...:

“employee();

virtual void Destroy(0OC_Boolean aborted = FALSE);
virtual void putObject(0C_Boolean deallocate = FALSE);
virtual void deleteObject(0C_Boolean deallocate = TRUE) ;

#endif

[1717117177171111117171111] employee.C ///1//11711117111711/17117

#include "employee.h"
#include <Directory.h>
#include <Type.h>

employee::employee(APL *xtheAPL) : Object(theAPL) {

by

employee::employee(char* __ssn,

char* __name,

department* __department,
char* theName)

Object (theName)

initDirectType((Typex)0C_lookup(“employee"));
_Ssn = __ssn;

_name = __nanme;
_worksfor.Reset(__department,this);
__department->Add_to_inv_worksfor(this);

*employee: :getDirectType() {
return (Type*)0C_lookup(“"employee");

employee* employee: :make(char* __ssn,

char* __name,
department* __
char* theName)

department,

if (__department == (department*)NULL)
return NULL;
return new employee(__ssn

b)

_name,

// Attribute Accessors :

void employee::ssn(char* __ssn) {
_SSh = __SSIn;

b

char* employee::ssn() {
return _ssn;

¥

void employee::name(charx* __name) {
_name = __name;
.
char* employee::name() {
Teturn _name;

// Relationship Accessors :

void employee::worksfor(department*__department) {
if (__department != (department*)NULL) {

(worksfor())->Remcve_from_inv_worksfor(this);

_worksfor.Reset(__department,this);
__department->Add_to_inv_worksfor(this);

b
department*employee: :worksfor() {
return (departmentx)_worksfor.Binding(this);

}
// Destructor ...:

employee:: “employee() {
; Destroy (FALSE);

}

void employee::Destroy(0OC_Boolean aborted) {
if (aborted) Object::Destroy(aborted);

+

void employee::putObject(0C_Boolean deallocate) {
(worksfor())->putlObject();
Object::putlbject(deallocate):

69

b

void employee::
(worksfor())~>Remove_from_inv_worksfor(thls);
Object::deletelbject{deallocate);

deletelbject (OC_Boolean deallocate) {

i
[I7117717100177171711171 department. .k [////11177771171717711717

#ifndef DEPARTMENT_H
#define DEPARTMENT_H
#include "employee.h"
#include <Object.h>
#include <Reference.h>
#include <stream.h>
#include <Set.h>

class employee;
class department : public Object {
friend class employee;

private :
char* _name;
Reference _inv_worksfer;

Set* inv_worksfor():

void Add_to_inv_worksfor(employeex __employee);

void Remove_from_inv_vorksfor(employee* __employee);
long unsigned Cardinality_of_inv_worksfor();

public
// Constructor :

department (char* __name,
char* theName={char*)0);
department (APLx*);
Type* getDirectType();
static department* make{(char* __name
char* theName=(char*)0);

3

// Attribute Accessors :

void name(char* __name);

};

71

char* name();
// Distructor ..

“department();

virtual void Destroy(0C_Boolean aborted = FALSE);
virtual void putObject(0C_Boolean deallocate = FALSE);
virtual void deleteObject (0C_Boclean deallocate = TRUE) ;

#endaf

JI1171771011717711717111 department.C /1111111111 11777111711171

#include '"department.h"

#include <Directory.h>
#include <Type.h>

department::department (APL *theAPL) : Object(theAPL) {

¥

department::department(char* __nhame,

Type

char* thelName)
Object (theName)

initDirectType((Typex)0C_lookup('department'));
_hame = __nanme;

Typex employeeType = (Typex*)0C_lookup('employee');
-inv_worksfor.Init(new Set(employeeType), this);

*department::getDirectType() {
return (Typex)0C_lookup('department");

department* department::make(char* __name,

{

char* theName)

return new department(__name,
theName) ;

// Attribute Accessors :

void

department: :name(char* __name) {
_name = __name;

char= department::name()
return _name,

b
// Multivalued Relationship Accessories :

Set* department::inv_worksfor() {
Set* theSet = (Set*)_inv_worksfor.Binding(this);
Set* returnSet = new Set{*theSet);
return{(returnSet);

void department::Add_to_inv_worksfor(employeex __employee) {
Set* setof_employee = (Set*)_inv_worksfor.Binding(this);
setof_employee->Insert(__employee);
setof_employee->putCluster();

void department::Remove_from_inv_worksfor(employee* __employee) {
Set* setof_employee = (Setx)_inv_worksfor.Binding(this);
setof_employee->Remove(__employee);
setof_employee->putCluster();

long unsigned department::Cardinality_of_inv_worksfor() {
return ((Set*)_inv_worksfor.Binding(this))->Cardinality();

// Destructoer ...:

department:: “department () {
Destroy(FALSE);
+
void department::Destroy(0C_Boolean aborted) {
if (aborted) Object::Destroy(aborted);
+
void department::putObject(BC_Boolean deallocate) {
((Setx)_inv_worksfor.Binding(this))->putObject (FALSE);
Object::putObject(deallocate);
+
void department::deleteObject(0C_Boolean deallocate) {
if (Cardinality_of_inv_worksfor() i= 0) {
return;
¥
Object::deleteObject(deallocate);

72

73

JI1171707770700070707777700471 wain . C /L1071 0170777007787777177177

#include <string.h>
#include <stream.h>
#include <Database.h>
#include <Type.h>
#include <Directory.h>
#include <Exception.h>
#include "department.h"
#include "employee.h"

void createDepartment();
void deleteDepartment();
void printDepartment();
void createEmployee();
void deleteEmployee();
void printEmployee();
void changeEmployee();

main()
{

0C_open(“"ontesDB1");

char choice;
while (1) A

cout << "\nTesting Semantic Means of Essential Relationship\n\n";

cout << " 1. Create a Department\n";

cout << U 2. Delete a Department\n";

cout << " 3. Print Departments\n\n";

cout << " 4. Create an Employee\n";

cout << M 5. Delete an Employee\n';

cout << " 6. Print Employees\n\n";

cout << " 7. Change Employee’s Department\n\n";
cout << " g. Exit.\n\n";

cout << "Please enter a choice : ";
cin >> choice;

switch (choice) {
case '17:

0C_transactionStart();
createlepartiment ();

OC_transactionCommit();

case '27:
DC_transactionStart();
deleteDepartment () ;
0C_transactionCommit();
break;

case '37:
0C_transactionStart();
printDepartment () ;
0C_transactionCommit ()
break;

case '4’:
OC_transactionStart();
createEmployee();
0C_transactionCommit();
break;

case '57:
0C_transactionStart();
deleteEmployee();
0C_transactionCommit(};
break;

case ’'6':
DC_transactionStart();
printEmployee();
DC_transactionCommit ();
break;

case ‘77
OC_transactionStart();

changeEmployee();
OC_transactionCommit{();
break;

+

if (choice == ’q’) break;

else cout << "\n\n\n";

OC_close();

void createDepartment ()

void

75

[H]

cout << “Enter name of Department : ",
cin >> name;

department* d = (department*) 0C_lookup(name);
if (d == (department*)NULL) {
d = department::make(name, name);
if (d == NULL)
cout << "\nCreation failed, name : ' << name <<''\n';
else
d->putObject();
} else {
cout << "Department " << d->name() << " already exists.\n";

deleteDepartment ()
char namel(40];

cout << "Enter department to be deleted : ";
cin >> name;
department* d = (department*) OC_lookup(name);
if (4 == (department*)NULL) {
cout << "No department " << name << " exists.\n";
} else {
d->deletelbject();

printDepartment ()

Instancelterator dIt((Type*)OC_lookup(“"department™));
department* d;
int 1 = 1;

while (dIt.moreData()) {
d = (department#) (Entity*) dIt();
cout << "Department " << i << " : " << d-dname() << "\n";
1+

}
if (4 == 1) {

void

{

void

it

out << 'No department exists !\n'";

(@]

e

createEmployee()

char name([40];
cout << "Enter name of employee : “;
cin >> name;

char ssn[40];
cout << "Enter ssn of employee : ",
cin >> ssn;

char dpmt[40];
cout << "Enter department of employee : “;
cin >> dpmt;

employeex e = (employee*) OC_lookup(name);
if (e == (employee*)NULL) {
department* d = (department*) OC_lookup(dpmt);
employee* e = employee::make(ssn, name, d, name);

if (e == NULL)
cout << "\nCreation failed, name : " << name <<'"\n";
else
e->putlbject();
¥ else {
cout << "Employee " << e->name() << " already exists.\n";
¥
deleteEmployee()

char name[40];

cout << "Enter employee to be deleted : ";
cin >> name;
employee* e = (employeex) OC_lookup(name);
if (e == (employee*)NULL) {
cout << "No employee " << name << " exists.\n'";
} else {
e->deleteObject();

76

-

void

77

printEmployee()

Instancelterator elt((Type*)0C_lookup('employee"));
employee* e;
int 1 = 1;

while (elt.moreData()) {
e = (employeex)(Entity*) eIt();
cout << "Employee " << i << " name : " << e->name() << "\n";
cout << "Employee " << i << " ssn : " << e->ssn() << "\n";
cout << "Employee " << 1 << " dpmt : "
<< (e->worksfor())->name() << "\n";
14+,

b
1f (1 == 1) {
cout << "No employee exists !\n";

changeEmployee ()

char name[40];
cout << "Enter name of employee : ";
cin >> name;

char dpmt[40];
cout << "Change department of employee : “;
cin >> dpmt;

employee* e = (employeex*) OC_lookup(name);
department* d = (department*) 0C_lookup(dpmt);
if (e == (employee*)NULL) {
cout << "Employee " << name << " does not exists.\n";
} else {
if (d == (department*)NULL) {
cout << "Department " << dpmt << " does not exists.\n";
¥

e->worksfor(d);

APPENDIX B

EXAMPLE OF A DEPENDENT RELATIONSHIP

78

1111717 1777071771111711 sectionh [/11771711177171177177717

#ifndef SECTION_H
#idefine SECTION_H
#include "course.h"
#include <Cbject.h>
#include <Reference.h>
#include <stream.h>

class course;
class section : public Object {

private :
char* _number;
Reference _offerto;

public :
// Constructor :

section(char* __number,

course* __course,
charx thelame=(char*)0);
section(APL*);

Type* getDirectType();

static section* make(char* __number,

course* __course,

char* thelName={(char*)0);

// Attribute Accessors

void number (char* __number);
char* number();

// Relationship Accessors

void offerto{coursex __course);

course* offerto();
// Distructor ...:

“section();

virtual veoid Destroy(0OC_Boolean aborted = FALSE);

virtual voigd putObject(0C_Boolean deallocate

= FALSE);

79

virtual void deleteObject(0C_Boolean deallocate = TRUE);

TR

;ndif
[1117017777071077071771771 section.C /111117717117 117107777717/

#include "section.h"
#include <Directory.h>
#include <Type.h>

section: :section(APL *theiPL) : Object(theAPL) {
}
section: :section(char* __number,

coursex _course,

char* theName)
Dbject (theName)

{
initDirectType((Type*)0C_lookup("section"));
_number = __number;
_offerto.Reset{__course,this);
__course->Add_to_inv_offerto{this);

b

Type #section::getDirectType() {
return (Type*)0C_lookup(“section");
b

section* section::make(char* __number,
course* __course,
char* theliame)

{
if (__course == (course*)NULL)
return NULL;
return new section(__number,
__course,
theName) ;
}

// Attribute Accesscrs :

void section: :number(char* __number) {
_number = __number;

char* section::number() {

80

81

return _number;

// Relationship Accessors

void section::offerto(course*__course) {
if (__course != (course*)NULL) {
(offerto())->Remove_from_inv_offerto(this);
_offerto.Reset(__course,this);
__course->Add_to_inv_offerto(this);

¥

course*section: offerto() {
return (coursex*)_offerto.Binding(this);

// Destructor ...:

section:: section() {
Destroy(FALSE);

b

void section::Destroy(DC_Boolean aborted) {
if (aborted) Object::Destroy(aborted);

by

void section::putObject(0C_Boolean deallocate) {
(offerto())->putlbject();
Object::putbbject(deallocate);

b

void section::deleteObject(0C_Boolean deallocate) {
(offerto())->Remove_from_inv_offerto(this);
Object::deleteObject(deallocate);

[ITT11770771777777711717 course.n /1771111117117 171171717717

#ifndef COURSE_H
#define COURSE_H
#include "section.h"
#include <Object.h>
#include <Reference.h>
#include <stream.h>
#include <Set.h>

class section;

friend class section;

private
char* _code;
char* _name;
Reference _inv_offerto;

Set* inv_offerto();

void Add_to_inv_offerto(section* __section);

void Remove_from_inv_offerto(section* __section);
long unsigned Cardinality_of_inv_offerto();

public
// Constructor

course(char* __code,
char*x __name,
char* theName={(char+*)0);
course(APLx*)
Type* getDirectType();
static coursex make(char* __code,
char* __name,

char* theName=(char*)0);
// Attribute Accesscrs

void code(char* __code);
char* code();

void name(char* __name);
char* name();

// Distructor

“course();
virtual void Destroy(0OC_Boolean aborted = FALSE);
virtual void putObject(0C_Boolean deallocate = FALSE);
virtual void deleteObject(0C_Boolean deallocate = TRUE);
I
#endif

171777 1717017700711171117 course.C /1117117 11117177017117¢7777

#include "course.h"
#include <Directory.h>
#include <Type.h>

course: :course{APL *theAPL) : Object(theAPL) {
+

course: :course(char* __code,
char* name,

char* theName)

Object (thelame)

{
initDirectType((Type*)0C_lookup(*course"));
_code = __code;
_name = __nanme;
Type* sectionType = (Type*)0C_lookup('section");
_inv_offerto.Init(new Set(sectionType), this);

}

Type *course::getDirectType() {
return (Type*)0C_lookup('course");
}

course* course::make(char¥ __code,

char* __name,
charx theName)

{
return new course(__code,
__name,
theName) ;
}

// Attribute Accessors :

void course::code(char* __code) {
_code = __code;

}

char#* course::code() {
return _code;

void course::name(char* __name) {
_hame = __name;

83

84

A . _ 14 T
char* course: name() {

return _name;

// Multivalued Relationship Accessories :

Set* course::inv_offerte() {
Set* theSet = (Set*)_inv_offerto.Binding(this);
Set* returnSet = new Set(*theSet);
return(returnSet);

void course::Add_to_inv_offerto(section* __section) {
Set* setof_section = (Setx)_inv_offerto.Binding(this);
setof_section->Insert(__section);
setof_section->putCluster();

void course: :Remove_from_inv_offerto(section* __section) {
Set* setof_section = (Setx)_inv_offerto.Binding(this);
setof_section->Remove(__section);
setof _section->putCluster();

long unsigned course::Cardinality_of_inv_offerto() {
return ((Set=)_inv_offerto.Binding(this))->Cardinality(});

—

// Destructor ...:

course:: course() {
Destroy(FALSE);
}
void course::Destroy(0OC_Boolean aborted) {
if (aborted) Object::Destroy(aborted);
}
void course::putObject(0C_Boolean deallocate) {
((Set*)_inv_offerto.Binding(this))->putObject (FALSE);
, Object::putObject(deallocate);
by
void course::deleteObject(0C_Boolean deallocate) {
((set*)_inv_offerto.Binding(this))->deleteCluster();
Object::deletelbject(deallocate);

LETTITPIITTI P11 7707777 1 main.C /)1 1171117110071177171171717

85

#include <strirg.h>
#include <stream.h>
#include <Database.h>
#include <Type.h>
#include <Directory.h>
#include "“course.h"
#include "section.h"

void createCourse();
void deleteCourse();

void printCourse();

void createSection();
void deleteSection();
void printSection();
void changeSection();

main()
{

OC_open(‘ontosDB2");

char choice;
while (1) {

cout << "\nTesting Semantic Means of Dependent Relationship\n\n";
cout << ¥ 1. Create a Course\n';

cout << " 2. Delete a Course\n';
cout << " 3. Print Courses\n\n";
cout << M 4. Create a Section\n'";
cout << 5. Delete a Section\n";
cout << " 6. Print Sections\n\n'";
cout << " 7. Change Section\n\n";
cout << " q. Exit.\n\n";

cout << '"Please enter a choice : ";
cin >> choice;
switch (choice) {
case '17':
OC_transactionStart();
createCourse();
O0C_transactionCommit () ;
break;
case '27':
OC_transactionStart();

case '3
0C_transactionStart();
printCourse();
0OC_transactionCommit () ;
break;

case ’'4’:
OC_transactionStart();
createSection();
OC_transactionCommit () ;
break;

case '57:
0C_transactionStart (J;
deleteSection();
DC_transactionCommit () ;
break;

case '6':
OC_transactionStart();
printSection();
OC_transactionCommit ();
break;

case ’'77:
0C_transactionStart();
changeSection();

C_transactionCommit {);
break;
+
if (choice == ’g’) break;
else cout << “\n\n\n";

b
0C_close();

void createCourse()

char name[40];
char code[40];

cout << "Enter name of Course : “:
cin >> name;

void

void

87

LA

cout << "Enter code of Course : ;

cin >> code;

course* ¢ = (coursex) 0C_lookup(name);
if (¢ == (course*)NULL) {
c = course::make(name, code, name);
if (¢ == NULL)
cout << "\nCreation failed, name : " << name <<'"\n";
else
c->putObject () ;

} else {
cout << "Course " << c->name() << " already exists.\n";

deleteCourse()
char name[40];

cout << "Enter course to be deleted : “;
cin >> name;

course* ¢ = (coursex*) 0C_lookup(name);

if (c == (course*)NULL) {
cout << "No course " << name << " exists.\n";

} else {
cout << "Course " << c->name() << " deleted.\n";
c->deletelbject();

printCourse()

InstanceIterator cIt((Type*)0C_lookup('course"));
course* c:
int 1 = 1;

vhile (cIt.moreData()) {
c = (course*) (Entity*) cIt();
cout << "Course " << 1 << M 1 " << c->name() << "\n";
1++

cout << "No course exists !\n";

void createSection()

{

char namel40];
cout << “"Enter number of section

cin >> name;

char cous[40];
cout << "Enter course of section
cin >> cous;

i

section* s = (section*) 0C_lookup(name);

if (s == (section*)NULL) {

course* ¢ = (course*) 0C_lookup(cous);

s = section::make(name, ¢, name);

if (s == NULL)

cout << "\nCreation failed, name

else
s->putlbject();
} else {

o name <<“\\Il“;

88

cout << "Section " << s->number() << " already exists.\n";

void deleteSection{()

char namel[40];

cout << "Enter section to be deleted : Y;

cin >> name;

section* s = (sectionx) OC_lookup(name);

if (s == (section*)NULL) {

cout << "No section
} else {

<< name << " exists.\n';

cout << "Section " << s->number() << " deleted.\n";

s->deletelbject();

oid printSection()

g

Instancelterator sIt((Typex*)DC_lookup("section"));

89

while (sIt.moreData()) {

s = (section*) (Entity*) sIt();

cout << YSection " << i << " name : " << s->number() << '"\n";

cout << “Section " << 1 << " course "

<< (s=>offerto())->name() << "\n";

1++;
}
if (1 == 1) {

cout << "No section exists !\n'";

void changeSection()

char name[40];
cout << "Enter number of section : ",
cin >> name;

char cous![40];
cout << '"Change course of section : ";
cin >> cous;

section* s = (section*) OC_lookup(name);
coursex c = (coursex) 0C_lockup(cous);
if (s == (section*)NULL) {
cout << "Section ' << name << " does not exists.\n';
} else {
if (¢ == (course*)NULL) A
cout << '"Course " << cous << " does not exists.\n";

}

s->offerto(c);

APPENDIX C

EXAMPLE OF A MULTI-VALUED ESSENTIAL REL.

90

JII11111777717771111111117 exployee.n [////7171111771111111171]/

#ifndef EMPLOYEES_H
#define EMPLOYEES_H
#include 'departments.h”
#include <0Object.h>
#include <Reference.h>
#include <stream.h>
#include <Set.h>

class departments;
class employees : public Object {

private
char* _ssn;
char* _name;
Reference _worksin;

public
// Constructor :

employees(char* __ssn,
char* __name,
Set* __worksin,
char* theName=(char+)0);
employees(APL*);
Type* getDirectType();
static employees* make(char* __ssn,
char* __name,
Set* worksin,

char* theName=(char*)0);
// Attribute Accessors :

void ssn{char* __ssn);

char* ssn{);

void name(char* __name);
char* name();

// Multivalued Relationship Accessories :

Set* worksin();

+;

92

void Add_to_worksin(departmenis* __departments);
vord Remove_from_worksin(departments* __departments);
long unsigred Cardinality_of_worksin();

// Distructor ...:

“employees();

virtual void Destroy(0C_Boolean aborted = FALSE);
virtual void putObject (DC_Boolean deallocate = FALSE);
virtual void deleteObject(0C_Boolean deallocate = TRUE) ;

#tendif

JI1IT11117177707777117117 employee.C ///I1111171171100771711717

#include “employees.h"

#include <Directory.h>
#include <Type.h>

employees: :employees(APL *theAPL) : Object(theAPL) {

¥

employees::employees(char* __ssn,

char* __name,
Set* __worksin,

char* theName)
Object(theName)

initDirectType((Type*)0C_lookup('employees'));
_SSn = __ssn;
_hame = __name;
Type* departmentsType = (Typex*)0C_lookup("departments");
_worksin.Init(new Set(departmentsType), this);
Set* departmentsSet = (Set*)_worksin.Binding(this);
departments* departmentsIn;
Aggregatelterator* worksinIt = __worksin->getIterator();
while (worksinIt -> moreData()) {
departmentsIn = (departmentsx*)
(Entity*) (worksinIt->operator()());
if (departmentsIn {= (departments*)NULL) {
departmentsIn->Add_to_inv_worksin(this);
departmentsSet->Insert (departmentsIn);

-

Type *employees::getDirectType() {
return (Type*)0C_lookup('employees');

}

employees¥* employees::make(char* __ssn,
char* __name,
Set* __
char* theName)

worksin,

departments* departmentsln;
Aggregatelterator* worksinlt = __worksin->getIterator();
while (worksinIt -> moreData()) {
departmentsln = (departments*)
(Entity*) (worksinIt->operator () ());
if (departmentsIn == (departments*)NULL)
__worksin->Remove(departmentsIn);
}
if (_ _worksin->Cardinalitv() == 0)
return NULL;
return new employees(__ssn,
__name,
__worksin,
thelName) ;

// Attribute Accessors

void employees::ssn(char* __ssn) {
_Ssn = __ssn;

+

char* employees::ssn() {
return _ssn;

void employees::name(char* __name) {
_hame = __name;

char* employees::name() {
return _name;

¥

// Multivalued Relationship Accessories :

93

Set*

void

void

long

employees: :worksin() {

Set+ theSetr = (Set*)_worksin.Binding(this);
Set* returnSet = new Set(*theSet);
return(returnSet);

employees::Add_to_worksin(departments* __departments) {
if (__departments == (departments*)NULL) return;

Set* setof_departments = (Set*)_worksin.Binding(this);
setcf_departments->1nsert(__departments);
setof_departments->putCluster();
__departments->Add_to_inv_worksin(this);

employees: :Remove_from_worksin(departments* __departments) {

if (__departments == (departments*)NULL) return;

Set* setof_departments = (Set*)_worksin.Binding(this);

if (setof_departments->Cardinality() <= 1) return;

if ((setof_departments->isMember(__departments)) == TRUE) {
setof_departments->Remove(__departments);
setof _departments->putCluster();
__departments->Remove_from_inv_worksin(this);

unsigned employees::Cardinality_of_worksin() {
return ((Setx)_worksin.Binding(this))->Cardinality();

// Destructer ...:

employees::“employees() {

)

veld

void

void

Destroy (FALSE);

employees: :Destroy(0C_Boolean aborted) {
Entity* __worksin = (Entity=)_worksin.Binding(this);
delete __worksin;

if (aborted) Object::Destroy(aborted);

employees: :putObject(0C_Boolean deallocate) {
((Set*)_worksin.Binding(this))->putObject (FALSE);
Object::putObject(deallocate);

employees: :deleteObject(0C_Boolean deallocate) {

Set* setof_departments = (Set*)_worksin.Binding(this);
departments* departmentsln;

Aggregatelterator* worksinIt =

94

95

setof_departments—>get1terator();
wnile (worksinit -> moreData()) {
departmentsIn = (departments*)(Entity*)
(worksinIt->operator()());
departmentsIn—>Remove_from_inv,worksin(this);
¥
Object::deleteObject(deallocate);

bg
[17711117717717771111177 department.h ///1//171171171777111111]

#ifndef DEPARTMENTS_H
#define DEPARTMENTS_H
#include "employees.h"
#include <Object.h>
#include <Reference, h>
#include <stream.h>
#include <Set.h>

class employees;
class departments : public Object {
friend class employees;

private :
char* _name;
Reference _inv_worksin;

Set* inv_worksin();

void Add_to_inv_worksin(employees* __employees);

void Remove_from_inv_worksin(employees* __employees);
long unsigned Cardinality_of_inv_worksin();

public :
// Constructoer :

departments(char* __name,
char* theName=(charx*)0);
departments (APL*) ;
Type* getDirectType();
static departmentsx* make(char* __name,
char* theName=(char*)0);

// Attribute Accessors

void name{(char* __name);
char* name();

// Distructor ...:

“departments();

virtual void Destroy(0OC_Boolean aborted = FALSE);

virtual void putObject(0OC_Boolean deallocate = FALSE);

virtual void deleteObject(0OC_Boolean deallocate = TRUE) ;
¥

#endaf
J1177117770077111117117] department.C //////177771711171177717717

#include 'departments.h"
#include <Directory.h>
#include <Type.h>

departments: :departments (APL *theAPL) : Object(theAPL) {
}
departments: :departments{(char* __name,

char* theName)

Object(thelName)

{
initDirectType((Type*)0C_lookup("departments'));
_name = __nanme;
Type* employeesType = (Type*)0C_lookup('employees");
_inv_worksin.Init(new Set(employeesType), this);

b

Type *departments::getDirectType() {
return (Typex*)0C_lookup(''departments");

¥

departments* departments::make(char* __name,
char* theName)
{
return new departments(__name,
theName) ;

// Rttribute Accessors

. N N . ~ r
void departments::name(char¥ __name) {
_hame = __name;
char* departments::name() {
return _name,

}
// Multivalued Relationship Accessories :

Set* departments::inv_worksin() {
Set* theSet = (Set*)_inv_worksin.Binding(this);
Set* returnSet = new Set(*theSet);
return(returnSet);

void departments::Add_to_inv_worksin(employees* __employees) {
if (__employees == (employees*)NULL) return;
Set* setof_employees = (Set*)_inv_worksin.Binding(this);
setof_employees->Insert(__employees);
setof _employees->putCluster();

¥

void departments::Remove_from_inv_worksin(employees* __employees) {
if (__employees == (employees*)NULL) return;
Set* setof_employees = (Set*)_inv_worksin.Binding(this);
setof_employees->Remove(__employees);
setof_employees->putCluster();

}

long unsigned departments::Cardinality_of_inv_worksin() {
return ((Set*)_inv_worksin.Binding(this))->Cardinality();

// Destructor ...:

departments:: “departments() {
Destroy(FALSE);

}

void departments::Destroy(0C_Boolean aborted) {
if (aborted) Object::Destroy(aborted);

}

void departments::putObject(0C_Boolean deallocate) {
((Set*)_inv_worksin.Binding(this))->putObject (FALSE);
Object::putbbject(deallocate);

)

void departments::deleteObject(0C_Boclean deallocate) {

97

98

employees* employeeslIn;
et* employeesSet = (Setx)_inv_worksin.Binding(this);
Aggregatelterator* inv_worksinlt = employeesSet->getIterator()}
while (inv_worksinIt -> moreData()) {
employeesIn = (employees*)
(Entity*) (inv_worksinIt->operator() ());
if (employeesIn->Cardinality_of_worksin() <= 1) {
return;
3
}
inv_worksinIt = employeesSet->getIterator();
while (inv_worksinIt -> moreData()) {
employeesIn = (employeesx)
(Entity*)(inv,worksinlt->operator()())}
employeesIn->Remove_from_worksin(this);

Object::deletelbject(deallocate);

b
LIP1T770007700777707700777 main.C /1177171777001 77771777111777

#include <string.h>
#include <stream.h>
#include <Database.h>
#include <Type.h>
#include <Directory.h>
#include ''departments.h"
#include "employees.h"

void createDepartment();
void deleteDepartment () ;
void printDepartment();
void createEmployee();
void deleteEmployee();
void printEmployee();
void addDepartment();
void removeDepartment();

main()
{
OC_open('"ontosDB3");

char choice;

99

while (1) {

"\nTesting Semantic Means of Multivalue Essential Relationshipi\n\r

cout <<

cout << 1. Create a Department\n";

cout << v 2. Delete a Department\n';

cout << v 3. Print Departments\n\n";

cout << 4. Create an Employee\n";

cout << " 5. Delete an Employee\n";

cout << " 6. Print Employees\n\n";

cout << 7. Add a Departments to an Employee\n";

cout << " 8. Remove a Departments from an Employee\n\n";
cout << " g. Exit.\n\n";

1,

cout << "Please enter a checice : ";
cin >> choice;
switch (choice) {
case ’1’7:
OC_transactionStart();
createDepartment ();
OC_transactionCommit();
break:
case ’'2':
OC_transactionStart();
deleteDepartment ();
OC_transactionCommit();
break;
case '3':
OC_transactionStart();
printDepartment();
OC_transactionCommit();
break;
case '4':
OC_transactionStart();
createEmployee();
OC_transactionCommit();
break;
case '5':
OC_transactionStart();
deleteEmployee();
OC_transactionCommit();
break;
case ’'6’:
0OC_transactionStart();
printEmployee();

100

OC_transactionCommit();
break;
case '77:
OC_transactionStart();
addDepartment();
OC_transactionCommit ()
break;
case '8’:
OC_transactionStart();
removeDepartment () ;
OC_transactionCommit();
break;
+
if (choice == ’q’) break;
else cout << "\n\n\n";

DC_close();

void createDepartment ()

char namel{40];
cout << "Enter name of Department : ";
cin >> name;
departments* d = (departments*) DC_lookup(name);
if (d == (departments*)NULL) {
d = departments::make(name, name);
if {4 == NULL)
cout << "\nCreation failed, name : " << name <<'\n";
else
d->putObject();
} else {
cout << "Department " << d->name() << " already exists.\n";

void deleteDepartment ()
char name[40];

cout << "Enter department to be deleted : “;

3

101

cin >> name;
departments* d = (departments*) OC_lookup(name);
if (¢ == (departments*)NULL) {
cout << "No department " << name << ' exists.\n";
} else {
d->deletelObject();
b
}
void printDepartment()
{
Instancelterator dIt((Typex)0C_lockup("departments'));
departments* d;
int 1 = 1;
while (dIt.meocreData()) {
d = (departmentsx*)(Entity*) dIt();
cout << "Department ' << 1 << " 1 " <K< d->name() << "\n';
14+
}
if (1 == 1) {
cout << "No department exists !\n";
by
}

void createEmployee()

char name[40];
cout << "Enter name of employee : ';
cin >> name;

char ssn[40];
cout << "Enter ssn of employee : ";
cin >> ssn;

employees* e = (employees*) 0C_lookup(name);
} if (e == (employees*)NULL) {

char dpmt [40];

char dpmtSet([40];

int 1i;

for (i = 0; name[i]; dpmtSet[i] = name[i], i++);
dpmtSet[1] = 'S’ ;

dpmtSet[i+1] = '\0’;

[

cout << "Enter department of employee (exit): '
cin >> dpmt;
if (strcmp(dpmt, "exit") == 0) {

break;

b
departments* d = (departments*) 0C_lockup(dpmt);

s->Insert(d);

102

}
e = employees: :make(ssn, name, S, name);
if (e == NULL)
cout << "\nCreation failed, name : ' << name <<'"\n";
else
e->putObject();
} else {
cout << "Employee " << e->name() << " already exists.\n";
b

void deleteEmployee()

{

char name[40]:

t

cout << "Enter employee to be deleted : ';
cin >> name;
employees* e = (employees*) OC_lookup(name);
if (e == (employees*)NULL) {

cout << 'No employee " << mame << " exists.\n";
} else {

e->deletelbject();

void printEmployee()

{

Instancelterator elt((Type*)0C_lookup("employees"));
employees* e;

int 1 = 1;

Aggregatelterator* worksinlt;

departments* departmentsln;

for (1 = 1; elt.moreData(); i++) {
e = (employeesx) (Entity*) eIt ():

void

103

11

cout << "Employee " << 1 << " ssn @ " << e->ssn() << "\n";
worksinIt = ((Setx)e->worksin())->getIterator();
while (worksinIt -> moreData()) {
departmentsIn = (departmentsx) (Entity*)
(worksinIt->operator() ());
cout << "Employee " << 1 << " dpmt
<< departmentsIn->name() << "\n";

(@
O

ot

<< "Emplovee " << 1 << " pame : " << e->name() << "\n";

13

b
if (4 == 1) {
cout << "No employee exists !'\n";

addDepartment ()

char namel[40];

char dpmt[40];

cout << "Enter name of employee : ";
cin >> name;

cout << "Enter department adding : ";
cin >> dpmt;

employees* e = (employees*) OC_lookup(name);
departments* d = (departments*) OC_lookup(dpmt);

if (e == (employees*)NULL) {

cout << "No employee ' << name << " exists.\n";
} else {

e->Add_to_worksin(d);

removeDepartment ()

char name[40];
char dpmt[40];

cout << "Enter name of employee : "
cin >> name;

104

(5}

cout << "Enter department removing : ';

cin >> dpmt;

employees* e = (employees*) OC_lookup(name);
departments* d = (departments*) 0C_lookup(dpmt);

if (e == (employeesx)NULL) {
cout << "No employee " << name << " exists.\n";

} else {
e->Remove_from_worksin(d);

APPENDIX D

EXAMPLE OF A MULTI-VALUED DEPENDENT REL.

105

LI11070771077001711771717 cnaxc.n /f707000777777007777777777

#ifndef CHILD_H
#define CHILD_H
#include 'parent.h"
#include <Object.h>
#include <Reference.h>
#include <stream.h>
#include <Set.h>

class parent;
class child : public Object {

private :
char* _ssn;
char* _name;

Reference _has;

public
// Constructor :

child(char* __ssn,

char* __name,

Set* __has,

char* theName=(char*)0);
child (APL*) :
Type* getDirectType();

static child* make(char* __ssn,

char* __name,
Set* __has,
char* theName=(char*)0);

// Attribute Accessors :

void ssn(char* __ssn);
char* ssn();

void name(char* __name);
char* name();

// Multivalued Relationship Accessories :

106

107

Set* has();

void Add_to_has(parent* __parent);

void Remove_from_has(parentx __parent);
long unsigned Cardinality_of_has();

// Distructor ...:

“child();
virtual void Destroy(0C_Boolean aborted = FALSE);
virtual void putObject(0C_Boolean deallocate = FALSE);
virtual void deleteCObject(DC_Boolean deallocate = TRUE);
s
#endif

JITI0700001 7007700177777 7 cnaidd.C /1177710700 17170077717177

#include "child.h"
#include <Directory.h>
#include <Type.h>

child::child(APL #theiPL) : Object(theAPL) {
b
child::child(char* __ssn,

char* __name,

Set* __has,

char* theName)
Object (thelName)

{
initDirectType((Type*)0C_lookup(“child"));
_SSn = __ssn;
_hame = __name;

Type* parentType = (Type*)0C_lookup('parent');
_has.Init(new Set(parentType), this);
Set* parentSet = (Set*)_has.Binding(this);
parent* parentln;
Aggregatelterator* haslIt = ,_has—>get1terator();
while (hasIt -> moreData()) {
parentIn = (parentx*)
(Entity*) (hasIt->operator()());
if (parentIn != (parent*)NULL) {
parentIn->Add_to_inv_has(this);
parentSet->Insert(parentIn);

Type *child::getDirectType() {
return (Type*)Dc_lookup(nchild”);

}

child#* child: :make{char* __ssn,
char* __name,
Setx* has,

char* theName)

{
parent* parentln;
Aggregatelterator* hasIt = __has->getIterator();
while (hasIt -> moreData()) {
parentIn = (parentx)
(Entity#) (hasIt->operator(D());
if (parentIn == (parent*)NULL)
__has->Remove(parentIn);
}
if (__has->Cardinality() ==.0)
return NULL;
return new child(__ssn,
__name,
__has,
theName) ;
}

// Attribute Accessors

veid child::ssn(char* __ssn) {
_SSn = __ssn;

}
char* child::ssn{) {
return _ssn;

void child: :name(char* __name) {

_nhame = _name;

}
char* child::name() {
return _name;

// Multivalued Relationship Accessories

108

Set*

void

void

long

109

child::has() {
Set* theSet = (Set*)_has.Binding(this);
Set* returnSet = new Set(*theSet);

return(returnSet);

child::Add_to_has(parent* __parent) {

if (__parent == (parent*)NULL) return;

Set* setof_parent = (Sets)_has.Binding(this);
setof_parent->Insert(__parent);
setof_parent->putCluster();
__parent->Add_to_inv_has(this);

child::Remove_from_has(parent* __parent) {

if (__parent == (parent*)NULL) return;

Set* setof_parent = (Set*)_has.Binding(this);

if (setof_parent->Cardinality() <= 1) return;

if ((setof_parent->isMember(__parent)) == TRUE) {
setof _parent->Remove(__parent);
setof_parent->putCluster();
__parent->Remove_from_inv_has(this);

unsigned child::Cardinality_of_has() {
return ((Set*)_has.Binding(this))->Cardinality();

// Destructor ...

child::"child() {

void

void

void

Destroy(FALSE);

child: :Destroy(0OC_Boolean aborted) {
Entity* __has = (Entity*)_has.Binding(this);
delete __has;

if (aborted) Object::Destroy(aborted);

child::putObject (0C_Boolean deallocate) {
((Set*)_has.Binding(this))->putObject (FALSE);
Object::putBbject(deallocate);

child::deleteObject (0C_Boolean deallocate) {
Setx setof_parent = (Set*)_has.Binding(this);
parent* parentln;

Aggregatelterator* haslt =
setof _parent->getlterator();
while (hasIt -> moreData()) {
parentIn = (parentx)(Entityx)
(hasIt->operator()());
parentIn->Remove_from_inv_has(this);
}
Object::deleteObject(deallocate);

[17177707700777777777717777 parent. b [/7//1777777711170777717/

#i1fndef PARENT_H
#define PARENT_H
#include '"child.h"
#include <Object.h>
#include <Reference.h>
#include <stream.h>
#include <Set.h>

class child;
class parent : public Object {
friend class child;
private :
char* _ssn;
char* _name;
Reference _inv_has;
Set* inv_has();

void Add_to_inv_has(childx*
void Remove_from_inv_has(child=*

child);
child);
long unsigned Cardinality_of_inv_has();

public :
// Constructor :
parent(char* __ssn,
char* __name,
char* theName=(char*)0):
parent (APL*);
Type* getDirectType();

110

static parent* make(char* __ssn,
char* __name,
char* theName=(charx)0);

// Attribute Accessors :

void ssn(char* __ssn);
char* ssn();

void name(char* __name);
char* name();

// Distructor ...:

“parent{);
virtual void Destroy(0C_Boolean aborted = FALSE);
virtual void putObject(0C_Boolean deallocate = FALSE);
virtual void deleteObject(0C_Boolean deallocate = TRUE);
¥
#endif

[177777777711711777117777 paxent.C /1117111177070 07117777777

#include "parent.h”
#include <Directory.h>
#include <Type.h>

parent::parent (APL *theAPL) : Object(theAPL) {
}
parent::parent(char* _.ssn,

char* __name,

charx theName)

Object (theName)

{
initDirectType((Type*)OC_lookup("parent"));
_ssn = __ssn;
_name = __name;
Type* childType = (Typex*)0C_lookup('child");
-inv_has.Init(new Set(childType), this);

}

Type *parent::getDirectType() {
return (Type*)0C_lookup(“parent");

111

parent* parent::make(char* __ssn,
char* __name,
char# thelame)

{
return new parent(__ssn,
__name,
theName) ;
}

// Attribute Accessors :

void parent::ssn(char* __ssn) {
_Ssn = __ssn;

}

char* parent::ssn() {
return _ssn;

¥

void parent::name{char* __name) {
name = __name;

char* parent::name() {
return _name;

}
// Multivalued Relationship Accessories :

Set* parent::inv_has() {
Set* theSet = (Set*)_inv_has.Binding(this);
Set* returnSet = new Set(*theSet);
return(returnSet);

+

void parent::Add_to_inv_has(child* __child) {
if (__child == (child=*)NULL) return;

Set* setof_child = (Set*)_inv_has.Binding(this);

setof_child->Insert(__child);
setof_child->putCluster();
}

void parent::Remove_from_inv_has(child* __child) {

if (__child == (child*)NULL) return;

Set* setof_child = (Set*)_inv_has.Binding(this);

setof_child->Remove(__child):
setof_child->putCluster();

112

113

b
long unsigned parent::Cardinality_of_inv_has() {
return ((Setx)_inv_has.Binding(this))->Cardinality();

}
// Destructor ...:

parent:: parent() {
Destroy(FALSE) ;

s

void parent::Destroy(0C_Boolean aborted) {
Entity* __inv_has = (Entity*)_inv_has.Binding(this);
delete __inv_has;
if (aborted) Object::Destroy(aborted);

b

void parent::putObject(0C_Boolean deallocate) {
((Set*)_inv_has.Binding(this))->putObject (FALSE);
Object::putObject(deallocate);

b

void parent::deleteObject(0C_Boolean deallocate) {
((Setx)_inv_has.Binding(this))->deleteCluster();
Object::deletelbject(deallocate);

[EEEPTT700 0007707007717 7 main . C /11177717700 11707717777¢477

#include <string.h>
#include <stream.h>
#include <Database.h>
#include <Type.h>
#include <Directory.h>
#include “parent.h"
#include "child.h"

void createParent();
void deleteParent();
void printParent();
void createChild();
void deleteChild();
void printChild();
void addParent();
void removeParent();

main{)

114

char choice;
while (1) {

cout <<
cout <X
cout <K<
cout <<
cout <<
cout <<
cout <X

cout

cout
cout <<

cout <<

"\nTesting Semantic Means of Multivalue Dependent Relationship\n\n
" 1. Create a Parent\n';

Delete a Parent\n";

Print Parents\n\n";

Create a Child\n";

Delete a Child\n'";

Print Children\n\n";

<< 7. Add a Parent to a Child\n";

<< 8. Remove a Parent from a Child\n\n";

o g. Exit.\n\n";

D N N

5

"Please enter a choice : ;

cin >> choice;
switch (choice) {
case '1':

OC_transactionStart();
createParent () ;
OC_transactionCommit{):
break;

case '27:

OC_transactionStart();
deleteParent();
OC_transactionCommit ();
break;

case ’'3’:

OC_transactionStart();
printParent();
OC_transactionCommit () ;
break;

case ’'4’:

OC_transactionStart();
createChild();
OC_transactionCommit () ;
break;

case ’'5’:

OC_transactionStart();
deleteChild();
OC_transactionCommit();

void

break;
case '6°:
DC_transactionStart();
printChild();
0C_transactionCommit();
break;
case ’7’:
0C_transactionStart();
addParent () ;
0C_transactionCommit();
break;
case '87:
0C_transactionStart();
removeParent();
0C_transactionCommit();
break;
T
if (choice == ’q’) break;
else cout << “\n\n\n";

T
OC_close();

createParent ()

char name{40];
cout << "Enter name of Parent : "
cin >> name;

char ssn[40];
cout << "Enter ssn of Parent : ';
cin >> ssn;

parent* p = (parent*) 0OC_lookup(name);
if (p == (parent*)NULL) {
p = parent::make(ssn, name, name);
if (p == NULL)
cout << "\nCreation failed, name : " << name <<'"\n";
else
p->putObject();
} else {
cout << "Parent " << p->name() << " already exists.\n";

115

116

¥
void deleteParent()
{
char name[40];
cout << "Enter parent to be deleted : “;
cin >> nanme;
parent* p = (parentx) 0C_lookup(name);
if (p == (parent*)NULL) {
cout << "No parent " << name << " exists.\n";
} else {
p->deletelbject();
}
}
void printParent()
{
Instancelterator pIt{(Type*)0C_lookup('parent"));
parent* p;
int 1 = 1;
while (pIt.moreData()) {
p = (parent*)(Entity*) pIt();
cout << '"Parent " << i << " name : " << p->name() << "\n";
cout << "Parent " << 1 << " ssn : " << p-dssn() << "\n";
1++;
}
if (1 == 1) {
cout << "No parent exists !\n";
}
}

void createChild()

char name[40];
cout << "Enter name of child : ";
cin >> nane;

char ssn[40];
cout << "Enter ssn of child : “:

}

cin >> ssn;

child* ¢ = (child+*) OC_lookup(name);

void

if (¢ == (child=)NULL) {

char par[40];

char parSet[40];

int i

for (i = 0; name(i); parSet[i] = namel[i], i++);
parSet[i] = ’S’;

parSet [i+1] = *\0’;

Set* s = new Set((Type*)0C_lookup("parent'), parSet);

while (1) {
cout << "Enter parent of child (exit): ";
cin >> par;
if (stremp(par, "exit') == 0) {
break;

}
parent* p = (parent*) 0C_lookup(par);
s->Insert(p);
by
c ;

i1ld::make(ssn, name, s, name);

= c¢ch
if {¢ == NULL)

cout << "\nCreation failed; name : " << name <<"\n";
else

c->putObject();
} else {

cout << "Child " << c->name() << " already exists.\n";
)

deleteChild ()

char name[40];
cout << "Enter child to be deleted : ";
cin >> nane;

child* ¢ = (child*) OC_lookup(name);
if (¢ == (child*)NULL) A

cout << "No child " << name << " exists.\n";
} else {

cout << "Child " << c->name() << " deleted.\n";

c->deletelbject();

(S

117

118

void printChild()

p
1

void

Instar

ncelterator cIt((Type*)0C_lookup('child"));

childx* c;

Aggregatelteratorx haslt;

parent* parentlIn;

int 1;

for (i = 1; cIt.moreData(); i++) {
¢ = (child=*) (Entity*) cIt();
cout << "Child " << i << ' name : " << c->name() << '"\n";
cout << "Child " << i << " ssn : " << c¢c=>ssn() << "\n";

¥

if (1

hasIt = ((Set*)c->has())->getlterator();
while (hasIt -> moreData()) {
parentln = (parent*)(Entity*)
(hasIt->operator() ());
cout << "Child " << 1 << " parent :
<< parentIn->name() << "\n";

== 1) {

cout << "No child exists !\n";

addParent ()

char
char

cout
cin >

cout
cin >

name [40] ;
par[40];

<< "Enter name of child : ";
> name;

<< "Enter paret adding : ";
> par,

child* ¢ = (child*) 0C_lookup(name);
parent* p = (parent*) 0C_lookup(par);

if (c == (child*)NULL) {

} els

cout << "No child " << name << " exists.\n";
e {
c->Add_to_has(p);

119

void removeParent ()
{
char namel[40];
char par[40];

t

cout << "Enter name of child : ";
cin >> name;

cout << "Enter parent removing : “;
cin >> par;

child* ¢ = (child*) 0C_lookup(name);
parent* p = (parent*) 0C_lookup(par);

if (¢ == (child*)NULL) {

cout << "No child " << name << " exists.\n";
T else {

c->Remove_from_has(p);

)

o]

10.

11.

13.

REFERENCES

. S. Chatterjee, “Graphical image persistence and code generation for object

oriented database,” Master's thesis, New Jersey Institute of Technology,
Newark, NJ., May 1992.

V. R. Cheruku, “Graphical image persistence and code generation for object
oriented database,” Master’s thesis, New Jersey Institute of Technology,
Newark, NJ., May 1994.

C. J. Date. An Iniroduction to Database Systems, Addison-Wesley Publishing
Co.. Inc., Reading MA ., 1986.

J. G. E. T\'euhold Y. Perl and V. Turau, “The dual model for object oriented
databases.” Tech. Rep. 30, New Jersey Institute of Technology, Newark,
NJ., 1991.

R. LElmasti and S. B. Navathe, Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA.,
1989,

Y. P. M. Halper, J. Geller and E. Neuhold, “A graphical schema representation
for object oriented databases,” Tech. Rep. 17, New Jersey Institute of
Technology, Newark, NJ., 1992,

YL PN Halpers 3o Geller and . Neuliold, “An oodb graphical schema repre-

sentation.” Tech. Rep. 1, New Jersey Institute of Technology, Newark,
NJ.L 1992,

J. G O. 0. Yang, M. Halper and Y. Perl, “The oodb ownership relationship,”
Proceedings, 0015’94, London, UK, Dec 1994.

. J. G. M. Halper, J. Geller and Y. Perl, “Part Relations for Object-Oriented

Databases,” Tech. Rep. 18, New Jersey Institute of Technology, Newark,
NJ., 1994.

J. G. 0. 0. Yang, M. Halper and Y. Perl, “The oodb ownership relationship,”
Tecli. Rep. 18, New Jersey lunstitute of Technology, Newark, NJ., 1994.

1. ONTOS, ONTOS DB 2.2 Developers Guide, ONTOS, Inc., Three Burlington
Woods, Burlington, MA., 1993.

I. ONTOS, ONTOS DB 2.2 First Time Users Guide, ONTOS, Inc., Three
Burlington Woods, Burlington, MA., 1993.

I. ONTOS, ONTOS DB 2.2 Reference Manual, Volume 1, ONTOS, Inc., Three
Burlington Woods, Burlington, MA., 1993.

120

121

14. 1. ONTOS. ONTO0S DB 2.2 Tools and Utilities Guide, ONTOS, Inc., Three
Burlington Woods. Burhngton, MA., 1993.

15. 1. Polil. TUKRBO C++, The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA., 1991.

16. B. Stroustrup, The C++ Programming Language, Addison-Wesley Publishing
Co., Inc., Reading MA ., 2nd ed., 1991.

	Translation of semantic aspects of OODINI graphical representation to ONTO OODB data definition language
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Graphical Schema and OODAL in OODINI
	Chapter 3: ONTOS DB and General Conversion
	Chapter 4: Conversion of Basic Graphical Elements
	Chapter 5: Conversion of Semantic Graphical Elements
	Chapter 6: Conclusion
	Appendix A: Example of an Essential Relationship
	Appendix B: Example of a Dependent Relationship
	Appendix C: Example of a Multi-Valued Essential Rel.
	Appendix D: Example of a Multi-Valued Dependent Rel.
	References

	List of Tables
	List of Figures

