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ABSTRACT 

POLARIMETRIC FIBER OPTIC WEIGH-IN-MOTION SENSOR 

by 
Jieping Wang 

During the past decade, the demand for new methods of measuring the 

weight of moving vehicles has grown substantially. In the 1980's, several 

techniques for weighing vehicles in motion were developed. However, they often 

suffer from high installation and maintenance costs as well as low accuracy. This 

thesis describes a new technique based on polarization preserving optical fibers. A 

fibercore HB600 Bow-Tie fiber with an initial beat length of 1.16 mm was 

employed in the present study. Sensor response is discussed in terms of the effects 

of force amplitudes and velocities on the calibration parameter Tf. Tf  is a function 

of the amplitude as well as the velocity of applied loading. Therefore, calibration 

of the sensor should be achieved through regression analysis of the load-fringe 

data for the entire spectrum of the desired force velocities. This also implied that 

the variation of beat length under such loading conditions is dependent on the 

amplitude and velocity. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Objectives 

Axle weights and axleweight distribution statistics for heavy vehicle traffic are 

required for the planning and management of programs for the maintenance, 

rehabilitation, upgrading and preservation of highways. Weight data can also be 

used for screening, identifying and removing potentially overweight vehicles and 

for monitoring the enforcement of license tax and load limit laws and regulations 

[15, 17]. 

For nearly 50 years, State highway agencies have routinely obtained this 

information through vehicle weight surveys consisting of static weighing 

techniques. These weight survey programs have required considerable expense to 

the agencies in terms of special site construction, personnel, and equipment. The 

owners and operators of vehicles selected for weighing have also been subjected to 

excess vehicles operating costs and time loss as a result of being diverted from the 

normal traffic stream to be stopped for weighing. As currently practiced, these 

weight surveys are often easily avoided by truck operators with overloaded 

vehicles, or by those who wish to avoid delays [20]. 



The need for more effective monitoring truck weight and vehicle type 

information has been shown by an analysis conducted by the FHWA Office of 

Highway Planning. In the analysis covering the 10 year period between 1969 and 

1979, it was shown that while truck volumes had increased 25 percent on interstate 

rural highways, total equivalent single axle loading increased 153 percent. This 

was due to both an increase of total and percent trucks in the vehicle population 

and a shift in the truck population to larger, heavier trucks. These large trucks in 

1969 continued 8 percent of the traffic stream on interstate rural highways; They 

now are 19 percent [101 As a result of these increases, highway pavements are 

generally enduring their projected total ,lifetime equivalent singleaxle load 

applications in less than half that period. This analysis demonstrates that there is a 

critical need to upgrade and expand the activities of the States in monitoring truck 

characteristics. 

Weigh-In-Motion (WIM) systems offer an alternative which avoids many of 

the problems identified above for static weighing systems. Types of WIM systems 

include: platforms in the pavement supported by load cells; bending plates and 

bridge deck systems using strain gauges; and lower cost, portable sensors which 

are affixed to the pavement surface. 

Although most of these systems have produced satisfactory results, their 

usefulness has been limited by relatively high initial capital costs and operating 
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costs. This problem could be overcome by the successful development of a low-

cost WIM system [10]. 

1.1.1 Objectives 

Fiber optic sensors offer a number of advantages over the existing techniques 

among which are increased sensitivity, geometric versatility, in that fiber sensors 

can be configured in arbitrary shapes, they can be employed for sensing various 

physical perturbations such as acoustic, pressure, magnetic, temperature, rotation, 

and strain. More importantly, they can be employed under adverse environmental 

conditions where other types of sensors fail to operate. 

The main objective for the work reported herein is to develop an 

understanding for the behavior of High-Birefringent optical fibers subjected to 

high amplitude dynamic compressive loads. This knowledge is fundamental for the 

design of weigh-in-motion sensors. The load can be considerably different 

(typically between 20 to 50 percent) from the static axle loads measured by a 

conventional weighbridge. Accurate determination of weights at different vehicle 

speeds require a sensor that it's signal output is independent of the frequency of 

applied loads. Shape linearity, and variations with frequency of the sensor signal 

have a direct bearing on the accuracy of weigh measurements. Conventional 

piezoelectric cables generate exponentially decaying output waveforms. In other 

words, the piezoelectric output signal peaks to a maximum value upon the 
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application of the load and decrease exponentially with time. On the other hand, 

fiber optic sensors are capable of maintaining linear response in relation to the 

applied load. Moreover, they are immune to the noise generated by electrical, 

temperature, and electromagnetic interference in the pressure transmission 

medium. 

The frequency dependency of piezoelectiic output signals implies that the 

variations in speed and axle spacing of vehicle produce large errors in the 

measured loads. Furthermore, piezoelectric sensors are more prone to damage, 

since their electronic components are in direct contact with the wheel. A key 

advantage in using optical cables as weigh measuring devices is the potential for 

real-time transmission of truck loading statistics via fiber optic telephone lines to a 

central computer to the local transportation authority, and therefore results in 

considerable cost savings in highway expenditures. 

1.1.2 Literature Review and Product Search 

The operating principles and instrumentation techniques employed in most 

portable WIM systems are straightforward. The implementation of these concepts, 

however, has required a relatively high degree of engineering skill and 

sophistication. The operating principles and features of the sensors incorporated in 

a variety of current portable WIM systems are described in the following sections. 
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Most of the existing, portable WIM systems involve the monitoring and 

recording of output voltages which, in terms of magnitude, or magnitude and 

duration, are proportional to the wheel load. The output voltage are typically 

generated by the use of resistive, capacitive, or piezoelectric elements. Sensors 

described as oil filled mats or strips incorporate transducers which convert the 

change in fluid pressure into a measurable output voltage. 

WIM system may conveniently be placed in one of the following 

categories: 

• Where the whole vehicle activates the system. 

• Where the system is successively activated by axle passages with all or half of 

the total wheel effective. 

• Where the sensor is narrow and only part of the total wheel load activates the 

system. 

An example of a system activated by a whole vehicle, category 1, is the 

currently marketed bridge WIM equipment where the strains produced in the 

loadbearing members of bridges by the passage of vehicles are sensed and used 

subsequently to obtain gross and distributed vehicle masses. 

Most systems fall into category 2, in which the sensing element presents an 

area large enough to accommodate the wheels at one or both ends of the vehicle 

axles. Examples of such systems include: 

• Metal deck with supporting load cells. 
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• Metal deck with integral strain gauges. 

• Thin metal and rubber pad with integral strain gauges. 

• Thin Metal and rubber pad constructed as a capacitor. 

• Oil filled pad or mat. 

(1) Capacitive System: The capacitive portable WIM system mentioned 

above is based on measuring the change in capacitance of two parallel horizontal 

plates when a load is imposed on the upper plate. The concept has been used to 

produce portable flexible weighing pads consisting of two or more parallel plates 

separated by a rubber flexible dielectric. Devices of this have been used in 

portable WIM systems in the United Kingdom, South Africa, and United States 

Arizona, Florida, and West Virginia [16-20]. 

The design for a flexible weighpad consisting of two or more parallel plates 

that act as the plates of a capacitor was first patented by Trott and Grainger in 

1968. This sensor consisted of three perforated plates separated by and enclosed in 

layers of natural rubber. Subsequent inventions by others were devices of slightly 

different construction but which operated on the same principle. The most notable 

success with the capacitive weighpad device has been made by the National 

Institute for Transport and Road Research (NITRR) in South Africa [21]. The 

development and critical review of this system is briefly described in the following 

paragraphs. 
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The NITRR 3-plate capacitive sensor was described by Basson in 1977 

[22]. Initial designs used steel mesh conductors separated by a polyurethane 

dielectric. Problems with the mechanical strength of the mesh and dielectric and 

the sensitivity of the polyurethane to changing loads led to a final design of steel 

plates separated by natural rubber and encased in a polychloroprene compound 

that had the required mechanical strength and was resistant to oil and water. The 

sensor unit measuring approximately 5.9 ft x 1.3 ft x 0.3 in ( 1.8m x 0.4m x 7mm ) 

is secured to the road by means of perforated plates popriveted to its sides. The 

plates are fixed to the road with strips of bituminous tape and road nails. The 

sensor is placed in one wheel path and the axle loads are detected by roadside 

circuitry and accumulated in successive 4,400 lb. (2,000kg) bands, up to a 

maximum of 39,650 lb. (18,000 kg). 

This equipment has had extensive testing in South Africa and has been the 

subject of more limited evaluation programs elsewhere. Results from South Africa 

indicate that the system gave accurate results assuming correct initial calibration 

for accumulated axle loading over large samples of vehicles. However, individual 

results are subject to large errors. 

The NITRR axle load sensor is one of the few devices available which is 

truly portable since it does not require pavement excavation for its installation. 

Unfortunately, the high initial cost of the NITRR system and its inability to 

accurately determine individual axle loads has hampered its usefulness [23, 24]. 
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In 1982, the Golden River Corporation began marketing a portable WIM 

system which incorporated the NITRR weight sensor with updated electronics 

[20]. The system consists of the axle weight sensor, a roadside unit, and a data 

retrieval device. The roadside unit scans the capacitive weighmat every 

milliseconds, producing a digital capacitance reading which is handled by signal 

processing algorithms. Axle counts in 12 user defined weight ranges are stored in 

solid state memory for selected time intervals of between 1 minute and 24 hours 

on the internal clock and calendar. Individual axle weights can also be displayed. 

Data retrieval is accomplished via a separate, microprocessor based device, or by 

telephone modem. Internal rechargeable batteries will support the retrieval units 

for several days and the roadside unit for about five weeks. 

The performance of the system was tested in the United Kingdom and 

Arizona . during November and December of 1982 [23]. Standard errors for 

individual axle weights were about +5 percent for heavy axles, corresponding to 

about 10 percent at 95 percent confidence. For medium axles, 95 percent 

confidence limits were about 15 percent. Some speed and temperature trends were 

evident, and subsequent software and hardware modifications were undertaken to 

compensate for these phenomena. 

Road sensors for the Golden River Weighman classification and weighing 

unit include two inductive loops and one capacitive weighmat per lane. Vehicle 

classification is based on the number of axles, axle spacing and chassis height to 
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yield the 13 vehicle type categories specified in the FHWA's "F Series" 

classification scheme. 

The Streeter Richardson Division of the Mangoon Corporation is also 

marketing a portable WIM system which includes the capacitive weighpad 

developed by NITRR [10,25,26]. The weight sensor is connected to a portable 

microcomputer with customized printed circuit boards. This portable WIM system 

is used with a gasoline powered generator. 

Another portable axleweight sensor investigated in this research is the 

Swedish Weighpad developed by the Lund Institute of Technology [10]. This 

device is a 1/2  inch thick capacitive pad which can be nailed or screwed to the 

road surface. The pad consists of 7 elastic strips, each 13/4 inch wide, the 

capacitance of which changes with the passage of a wheel load. The capacitance 

change is converted to and analog voltage by dedicated electronic equipment. The 

pad has a row of lateral position sensors along one edge. It is said to measure load 

to an accuracy of +300 lb (136 kg), lateral placement to +4 inch (102mm), and 

passage times to +40 milliseconds, allowing the calculation of axle weights, 

vehicle placement, and vehicle speed. The device was regarded as research tool 

and has not been developed commercially. 

(2) Piezoelectric Systems: Another axleweight sensor currently in use is 

the Vibracoax piezoelectric cable [27, 28]. The Vibracoax is a coaxial cable, 0.1 

inch (3mm) in diameter, consisting of an inner copper conductor and an outer 
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copper sheath, separated by an insulator of compacted piezoelectric powder. The 

cable is produced in a variety of mountings by Thermocoat et cie of France and is 

commercially available through the Phillips Corporation and is available in an 

unmounted form or mounted in a rubber block with an extruded aluminum support 

[29]. 

Siffert reported in 1974 on work with Vibracoax sensors undertaken at 

Trappes Regional Laboratory (Paris West) [30, 31]. The French government has 

since conducted an extensive research, development, and implementation program 

using this technology. The general approach of these early field trials was to bury 

the unmounted Vibracoax in epoxy resin in a slot in the road surface. Vehicles 

with known axle weights were then driven over the installation and the 

piezoelectric sensor output was recorded. The results of these tests have not had 

wide circulation and have been available only as noted translations. They do, 

however, provide insight into the state of the art of this new technology as 

described below. 

Siffert indicated that piezoelectric sensors were weather resistant and that 

optimum installation, depths were between 0.2 inch (6mm) and 0.4 inch (9mm). 

The signals were sufficiently clear so that axle counting was accurate to within +2 

percent and speed measurements, using a U shaped piezoelectric sensor, were 

within 1 to 2 mi/h (2 to 3 km/h) of readings taken on a radar speedometer. Tests on 

the effect of speed on piezoelectric sensor signals indicated that the amplitudes of 
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raw signals were speed dependent, but that integration of the signals eliminated 

this trend. Work by Gloagan and Herbeuval [32] on the development of a dynamic 

axle weighing system indicated that the peak signal value, taken during an axle 

passage over the Vibracoax sensor was proportional not only to vehicle weight, 

but also to the foot print length of the tire. In addition, the signal amplitude was 

found to be approximately constant with vehicle speed, but was reduced by 30 to 

40 percent if a vehicle decelerated or accelerated over the sensor. This effect was 

attributed to the increased contact area of the tire under these conditions. 

Comparisons of integrated piezo signals and static axle weights were reported to 

be within +10 percent, but only for a given speed. Integrated signals were 

proportional to weight and inversely proportional to speed. Additional research on 

the Vibracoax able indicated that speed measurements were within +8 percent to 

radar speed readings. Comparisons of vehicle weights with Vibracoax sensor 

outputs were conducted at three installations. 

Results obtained from a sample of 75 weighed vehicles at one site where 

9.8 ft (3m) sensors were used indicated that corrected dynamic weight recordings 

were within +20 percent of the static values 97 percent of the time. Vehicle speeds 

at this installation varied between 20 and 50 mi/h (32 and 80 km/h). The accurate 

calibration of each sensor was found to be critical in the determination of axle 

weights [31]. 
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The Vibracoax cable has been used for some years as an axle sensor by 

Messdatd of Bornheim Hersel/Bonn, West Germany, and over 50 Vibracoax 

counters have been installed in that country. West Germany experience indicates 

that the charge produced by the sensor depends not only upon the axle load, but on 

pavement deformation which is, in turn, related to temperature, speed, and lateral 

position. United Kingdom experience with Vibracoax sensors has failed to 

produce accuracies comparable to those indicated in the French report. 

1.1.3 Components of a Weigh-in-Motion System 

There are several dimensions to the problems of vehicle classification and weigh 

in motion, including: the choice of weight sensor; its integration with other sensors 

to form an array for the measurement of speed, axle spacing, overall wheelbase, 

and vehicle class; sensor placement methods; microprocessor hardware and 

software; data storage; and data retrieval. Each of these various aspects is 

discussed below. 

(1) Weight Sensors: The choice of weight sensor is the most fundamental 

aspect of the project. The emphasis of this research is on a portable, low cost 

system for which, to date, no wholly satisfactory weight transducer has been made 

commercially available. The main research and development activities of this 

effort will emphasize the production of a weight transducer capable of accounting 

for the axle forces the traffic flows imposed on the pavement. 
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Several categories of transducer are defined in the literature review. The 

main categories of transducer of interest in this study are: 

• Capacitive systems, intended to measure load by monitoring a change in 

capacitance resulting from the mechanical deformation of a flexible dielectric. 

Piezoelectric transducers, which exhibit a property of certain natural and 

synthetic crystals, or in some cases, polymers whose molecular structure is 

such that an electrical charge is generated in response to dynamic stresses. 

Resistive system, which monitor the change in resistance of metals or other 

materials which are subjected to mechanical deformation due to the imposition 

of wheel loads. 

It is believed that none of these approaches could provide a satisfactory 

accurate WIM sensor. The choice is then the introduction of a wholly new class of 

transducers for sensing the axle weights in a dynamic environment. 

(2) Sensor Arrangement and Placement: Once weight and classification 

sensors have been selected, it is still necessary to decide upon the configuration 

into which they will be placed on the highway. The principle criterion in the 

selection of a suitable array is the ability to measure the vehicular parameters 

necessary for reliable and accurate classification of vehicle. There are several 

possible options which would satisfy the above requirement and these are 

described in detail in the section below in conjunction with a discussion of various 

methods of fixing the sensors into or onto the highway surface. 
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Vehicle classification can be based on the measurement of one or more of 

the following vehicular parameters: length, number of axles, wheelbase 

dimension(s), and sometimes a measure of the vehicle chassis height. However, 

the final choice of sensor for axle load determination will influence the type of 

sensor array that is adopted. It is essential to have at least one axle detector and it 

is anticipated that the weight will fulfrll this role, thereby reducing the number of 

detectors required and total cost of the system. If the system is to be capable of 

detecting bicycles and motorcycles then, depending upon the sensitivity of the load 

measuring sensor, and extra axle detector may be necessary. For example, the 

capacitive weighmat system produced by Streeter Rechardson and Golden River is 

only capable of weighing individual axle loads over 600 lb. 

(3) Microprocessor Hardware and Software: The preceding sections have 

described the development of traffic data collection techniques up to, and 

including, the advent of the microprocessor. Recent advances in this technology 

and the development of compact systems with high storage capacity have 

revolutionized all aspects of data collection. Traffic data acquisition using 

microprocessor based systems is now practical, enabling on-line monitoring of 

vehicle types and flows [33]. 

In 1978, Evans described the microprocessor as a programmable solid state 

device whose technology lies somewhere between the more conventional 

"hardware" solid state logic and the general purpose computer. The basic 
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microprocessor components are known as integrated circuits. A typical system 

includes a central processing unit to perform arithmetic and logical functions and 

to control data transfer between other system components or external data storage 

devices. The characteristics of these units that make them ideal for data collection 

and storage application are as follows: 

• Capacity: large amounts of binarycoded data may be stored in very small units. 

* Operational speed: manipulation of this data may be performed at high speed, 

enabling real-time monitoring of complex inputs. 

• Compactness: complex microprocessor systems of high capacity may be 

housed in very small units. 

• Power requirements: many systems require only a single 6 or 12 volts supply 

and consume very little current making them ideally suited for battery power. 

(4) Data Retrieval and Storage: The way in which data are logged into the 

memory storage facility depends upon the number and type of variables that the 

user of the system wishes to gather. However, since there are a large number of 

potential users of the system, each with different requirements, it is necessary to 

determine the best format of collecting the data which would be of maximum 

benefit to all the parties concerned. Therefore, to ensure that the system could 

continue logging data for long periods of time without any retrieval of the data and 

without the memory becoming full, it is necessary to restrict the number of 

parameters that are stored. 
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1.2 Fiber Optic Sensors 

Fiber Optic sensing techniques have been associated with precise and non-

intrusive measurements. There are many advantages in using fiber optic sensors, 

such as good electrical isolation, immunity to electromagnetic interference, safety 

in explosive environments, compactness, and flexibility. Furthermore, fiber optic 

sensors exhibit high sensitivity. 

In order to measure with high resolution a parameter such as the pressure, 

the Interferometric optical fibers sensors have been proposed during the past years. 

While the resolution is quite good, they present the disadvantage of a reference 

arm in which perturbations can occur. Such situations appear in the Mach-Zehnder 

interferometer. The polarimetric sensors use only one fiber with a strong linear 

birefringence, called hereafter the bias birefringence. The two arms of the 

interferometer become the two linear eigenstates of polarization, and the external 

stimulus like pressure modulates the phase difference between these two 

eigenstates, which has thus to be detected. It is essential in these sensors that the 

bias birefringence be strong enough to avoid any coupling between both 

eigenstates. 

The frber optic sensor used in this system belongs to the fiber optic 

polarimetric sensor. The optical fiber used in these sensors is highly 

birefringent(Hi-Bi). The polarimeter takes advantage of high-birefringence optical 

fiber to convert a stimulus from outside into a change in the state of polarization 
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(SOP). If anisotropy is introduced in the fiber, then the optical fiber can be 

constructed with dissimilar refractive indices along the X and Y axes. Hence, The 

velocities of the components of light transmitted along the two axes will be 

different and a phase difference is developed. Anisotropy can be achieved by 

building stress regions into fiber, as shown in the bow-tie birefringent fiber 

illustrated in Figure 1.1. Here, the slow axis is parallel to the high stress axis of the 

bow tie (parallel to the bow tie) and the fast axis is perpendicular to the high stress 

axis. 

1.3 Matrix Representation of Polarization. The Jones Calculus 

In the study reported here, circularly polarized monochromatic light was launched 

into a polarization maintaining fiber, and the output of light emitted from distal 

end of the fiber was studied as a function of dynamic compressive loads. 

Therefore, the theory and relationships describing polarization are given in this 

section. 

1.3.1 Ways of Representing Light Waves 

The electromagnetic radiation is predicted by Maxwell's theory to be a transverse 

wave motion. Associated with the wave are oscillating electric and magnetic fields 

that can be described with electric and magnetic vectors E and H and either of 
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them can be used to represent the light wave. In this thesis, the electric vector E 

has been employed for the representation of the light wave (Figure 1.2), defined as 

follows: 

where, E is the magnitude of light vector, E0  is the amplitude of the wave, z is the 

position along the axis of propagation, k is called the wave number, w is the 

angular frequency. Here, k and w are further defined respectively as follows: 

where, X. defined as the wavelength, c propagating velocity. For light in the free 

space, the propagating velocity is 30x108  m/sec. 

It is often convenient to make use of the identity, 
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Figure 1.1 Cross section of a bow tie fiber 



Figure 1.2 The elliptical polarized light vectors along the axis of propagation 

at a fixed instant of time 
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and write 

to represent the light wave in alternative way other than equation (1.1). It is 

understood that the real part is the actual physical quantity being represented. The 

real part is identical with the previous expression. The main reason for using the 

complex exponential expression is that it is algebraically simpler than the 

trigonometric expression. 

1.3.2 Representation of Linear, Circular, and Elliptical Polarization 

As we just explained in the preceding section, we can express the light wave by 

using exponential equation. It is sometimes convenient to employ a complex vector 

amplitude (se) defined as follows: 

where, E0  and E'0 represent different amplitudes of two linearly polarized waves 

polarized at right angles to each other along the x and y directions of a coordinate 

axes. Then the corresponding wave is 



and 
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This expression can represent any type of polarization. Thus if so  is real, we 

have linear polarization, which the electric vector E maintains a constant 

orientation in space as follow along x direction in Figure 1.3: 

If it is complex, we have elliptic polarization, which the electric field vector 

traces out an ellipse in space, as follow: 

In the special case of circular polarization, the real and imaginary parts of E 

are equal, which the electric field vector traces out an circle in space (Figure 1.4): 
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Figure 1.3 Fields in a plane wave, linearly polarized 
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Figure 1.4 Fields in a circularly polarized wave 
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1.3.3 Jones Matrix Representation of Polarization 

The complex vector amplitude given in the preceding section, equation (1.6), is not 

the most general expression because it was assumed that the x component was real 

and y component imaginary. A more general way of writing the complex 

amplitude of a light wave is 

where so, and soy  are both, possibly, complex. Accordingly, they can be expressed 

in exponential form as: 

A convenient notation for the above pair of complex amplitudes is the 

following matrix known as the Jones vector [1]: 
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The normalized form of the Jones vector is obtained by dividing by the 

appropriate complex number such that the sum of the squares of the absolute 

values of the two components is unity. A useful, not necessarily normalized, form 

is obtained by division of whatever quantity results in the simplest expression. In 

this way, one can obtain a simple representation for the state of polarization of a 

light wave. For example, 
[ 

1 ] represents a beam linearly polarized in the x 0] 

direction, and [0] a beam linearly polarized in the y direction. The vector 
L 1 j 

or [1] represent a beam linearly polarized in a direction at 45 degree with respect 

to the x axis. 

Another use of the matrix notation is that of computing the effect of 

inserting a linear optical element, or a train of such elements, into a beam of light 

of given polarization. The optical elements are represented by 2 x 2 matrices called 

the Jones matrices. The types of optical devices that can be so represented include 

linear polarizer, circular polarizers, wave plates, and so forth. Table 1.1 [6} are the 

matrices for several optical elements and fiber. 

Any of the elements in Table 1.1 can be rotated with respect to some 

reference frame (usually the frame of the first element) using the standard rotation 

operation: 



Table 1.1 Jones matrices for some linear optical elements 

ϕ

Optical Element 

Linear Polarizer 

Polarization Orientation 

Transmission axis horizontal 

Jones Matrix 

	

ri 	[1 0]  

	

0 	0] 

Transmission axis vertical ro 	of 
Lo 	ii 

Quarter-Wave Plate Fast axis horizontal 
[i 0] 

[0 	ii 

Fast axis vertical r 1 	01 

0 	i 

Half-Wave Plate F-1 	01 
L 0 	ii 

Hi-Bi Fiber 0 	≡  PA L' [ eiϕ 0]   

L 0 	1_ 

 is phase retardation of polarization fiber. 
ᵦ∆ is propagation constant 

L is the length of fiber 
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where, the rotation matrix, [R(8)] is given by, 

In Table 1.1, we have two categories being considered: one is linear 

polarizer and another is quarter-wave plate, half-wave plate, and Hi-Bi fiber which 

all considered as linear retarders with phase retardation along two orthogonal 

polarization foul's. 

For linear polarizer, the general form of Jones matrix expression is as 

follow [6]: 

where, 0 is the angle of the eigenvector of linear polarizer to the x axis. 

For linear retarder, the general form of Jones matrix expression is: 
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where, ϕ is phase retardation between two orthogonal axes of linear retarder, 

whose fast axis subtends an angle 0 with the x axis.. 

Thus, any of the matrix forms in Table 1 can be derived from either Eqn.. 

1.17 or Eqn.. 1.18, depending on which category the optical element belongs to, 

by substituting the necessary parameters into 0 and ϕ in equation, for example: 

• For linear polarizer with transmission axis horizontal, we have 0 = 0, 

substituting into Eqn.. 1.17, we get as in Table 1: 

• For quarter-wave plate, we know that its phase retardation 4, = 90°, if now its 

fast axis makes an 0°  angle with x axis (horizontal), then 0 = 0°, substituting 

into Eqn.. 1.18, we get the matrix as in Table 1: 



where 
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• For Hi-Bi fiber, 4) is phase retardation between its fast and slow axes, if now its 

fast axis makes an 0°  angle with x axis (horizontal), then 0 = 00, substituting 

into Eqn.. 1.18, we get the matrix describing fiber as in Table 1: 

Examples above are just three of matrices in Table 1.1, with the same 

procedure, we can get the rest of matrices in the table. 

Finally, the Jones matrices are used as follows. Let the vector of the 

incident light be [
A  
B] 

or we can say Jin (Jones input) and the vector of the 

[A] 
emerging light be [B'] or Jout  (Jones output). Then 

is the Jones matrix of the optical element. If light is sent through a 

train of optical elements, then the result is given by matrix multiplication: 
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The matrix product above can be replaced by a Jones system matrix such 

that equation above becomes: 

It should be noted that the Jones calculus is of use only for computing 

results with light that is initially polarized in some way. There is no Jones vector 

representation for unpolarized light. 



CHAP l'ER 2 

THEORETICAL BACKGROUND 

2.1 The System Methodology 

The optical arrangement shown in Figure 2.1 has been employed in this thesis. The 

light source is a He-Ne laser (30mW), where the emitted light is linearly polarized. 

The light emerging from the half-wave plate keeps the light linearly polarized 

without any significant change in the amplitude of light emitting from the laser. 

The angle of polarization can be easily changed as needed by rotating the half-

wave plate through desired angles' To produce circularly polarized light, a quarter-

wave plate is positioned at an angle of 45 degrees with respect to the linearly 

polarized light. The circularly polarized light is launched into the fiber and excites 

the two orthogonal principal directions equally. Then the light emitted from the 

optical fiber is send through a quarter-wave plate which is positioned at an angle 

of -45 degrees with respect to the x axis, and analyzed by a polarizer positioned in 

an angle of 0 degrees with respect to the x axis. 

The propagation of polarized light within the sensor system in Figure 2.1 

can be described by Jones calculus as explained in Chapter 1 where it is assumed 

that the optical fiber can be identified as a retarder. 

32 



33 

Figure 2.1 Typical optical arrangement for a fiber optic polarimetric sensor 
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The Jones matrix description of this system (in Fig. 2.1) is as follows: 

where, Jin  stands for half wave plate considered as linear polarizer, whose optical 
axis is vertical. 

Q45 for first quarter-wave plate, whose fast axis makes an angle 45°  with the 
x axis 

Rβ (ϕ) for Hi-Bi fiber with phase retardation ϕ, whose fast axis makes an 
angle f3 with the x axis. 

Q-45 for second quarter-wave plate, whose fast axis makes an angle -45°  
with the x axis. 

P0 for analyzer, whose optical axis is horizontal. 

and the system frame is aligned with the horizontal axis (x axis). 

Here, the output of half wave plate functions the same way as a linear 

polarizer. By using a half wave plate, it is possible to change the direction of the 

linearly polarized light without any loss in amplitude. Therefore, it can give us 

much more flexibility of changing the angle of linear polarized light while keeping 

amplitude of that light. 

The Jones matrix for the quarter-wave plate, whose fast axis makes an angle 

±45°  with the x axis (horizontal), are obtained from Eqn. 1.18 by substituting 90°  

for ϕ and ±45°  for 0. Thus, we obtain either Q45 or Q-45 for 0=45°  or 8 = - 45°  

respectively: 
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Jin and Po can also be represented in matrix form through. Table 1.1 as: 

Then, by taking into account Eqn. 1.18 for Hi-Bi with fast axis oriented ᵦ  degrees 

with respect to the horizontal (0 = j3), we obtain: 

After simplifications, Eqn 2.4 can be reduced to 
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The intensity of the emerging light from the analyzer expressed by Eqn. 2.5 

is: 

Inspection of Eqs. 2.6 indicates that the intensity of light beam emerging 

from the system is a function only of 4) (the phase retardation inside fiber sensor) 

since ,β the angle of fast axis with respect to the system frame (x axis) do not 

appear in the amplitude of the wave. 

2.2 Relationship Between the Fiber Signal and Applied Load 

As we have already seen from Eqs. 2.6, there is a direct sine wave relationship 

between intensity of light wave emerging from the analyzer of a circular 

polariscope (Figure 2.1) and relative retardation 4  between the two perpendicular 

components of the polarized light in Hi-Bi fiber. This relative phase retardation in 

a Hi-Bi fiber of a length Lo  can be expressed as: 
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where, nx-ny  is the different between the effective indices of the polarization 

modes and 

is the birefringence, 

is denoted as propagation constant where X is the wavelength of the light wave. 

The actual condition inside the fiber is one of multiple polarization states, 

with two consecutive points of equal phase being a beat length apart from each 

other, where the beat length, LB  is defined as: 

From Eqs. (2.7) and Eqn. (2.9), we can get, 



38 

Bock, et. al. [4] developed the relationship describing the variation in beat 

length due to hydrostatic pressure. Our formulation follows the analysis given in 

[4]. However, in present study's case instead of pressure the sensor is subjected to 

a compressive load, and therefore, we define f to be the applied force per unit 

length, or the force intensity on the fiber, then 

where, F is the force applied by the servo-hydraulic testing machine, and L is the 

length of optical fiber under load. The force intensity, f modulates the relative 

phase retardation, ϕ which already exists between the two axes of the Hi-BI fiber, 

according to the following relationship: 

The modules of compression for silica, K, which is the ratio of compressive 

stress to cubical compression is measured in [5] and it is equal to 0.377* 01  12 d/cm2 

This translates into less than a fraction of one percent for the range of compressive 

loads employed in this thesis. Therefore, the effect of compressive load on length 

of the fiber can be ignored, and Eqn. (2.13) can be reduced to: 
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From the relation in Eqn.(2.9) and equation above, we can get 

Thus, combining Eqs.(2.14) and (2.15), we arrive at, 

As we already defined the beatlength in Eqn.(2.10) and relation in Eqn. 

(2.9), we have another relation, 

From that, we can have, 
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or 

Providing the length of the fiber without external force is equal to a 

multiple of the beat length, 

where, LB0  is the beatlength at f=0, and n is a multiple which does not have to be 

an integer, assuming a decrease of the beat length parameter at applied load f, then 

the change in beat length under load can be represented as follows: 

where k is an integer representing additional k-values of beat length which are 

suppressed within the same distance L0  of the fiber, since the fiber length remains 

fixed. LBO  and LB  are beat lengths without external force and under force, 

respectively. 

By eliminating n from Eqs. (2.20) and (2.21), we arrive at, 
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To rearrange terms in above equation, we have, 

Hence, the change in beat length as a function of compressive load intensity 

can be as: 

where, Tf is defined as the amount of unit force f to induce a 27t phase shift of a 

polarized light and can be determined experimentally by measuring the output 

fringe as a function off as shown in Figure 2.2. It is related to k by 
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Figure 2.2 Tf  defined as 21 phase shift on amount of unit force 
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As shown in Eqn. (2.24), Tf is proportional to the rate of change of beat 

length with respect to the applied unit force, and it can be employed as a 

calibration factor for the computation of loads, provided that its magnitude is 

independent of the velocity of loading. Our experimental results have indicated 

that for sensors subjected to high amplitudes of dynamic compressive force, Tf 

varies both with the amplitude and the velocity of applied loading. Therefore, 

these effects need to be incorporated into Eqn. (2.24). 



CHAPTER 3 

EXPERIMENTAL STRUCTURE AND PROGRAM 

The experimental setup consisting of the polarizing optics and the servo-hydraulic 

loading system are depicted in Figure 3.1. Circularly polarized monochromatic 

light was launched into a Fibercore HB600 Bow Tie fiber. A 30 mW polarized 

Helium-Neon laser operating at 632.8 nm was employed as the light source. The 

relatively high output power of the laser eliminated the need for signal modulation. 

The light at the output end of the PM fiber was launched into a detector-amplifier 

assembly and the data was subsequently fed into a data acquisition device for 

computer processing and data analysis. 

3.1 MTS Testing Machine 

The loading element employed in this thesis for the application of dynamic load to 

the fiber sensor consisted of a stiff frame, closed-loop servo-hydrostatic testing 

machine manufactured by MTS System Corporation and capable of applying up to 

445 KN of tensile or compressive load. 

The MTS testing machine includes three major parts: Model 458.20 

MicroConsoleTM, The Model 458.11 DC Controller, and the Model 458.90 

44 
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Figure 3.1 Experimental setup for dynamic loading of Hi Bi sensor 
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Function Generator and each of them has special function contributing to the 

loading program in this study. The various components of the MTS system are 

described as follow: 

• The Model 458.20 Microconsole, which located in the front panel, provides a 

multifunction digital display, cycle counter, program and record control, 

hydraulic pressure control, and an internal power supply for the plug-in 

modules, it is a main part of the whole controlling system. 

• The Model 458.11 DC Controller is a plug-in module used in the 

MicroConsole to provide: transducer conditioning as to the magnitude of 

desired load or deformation, command conditioning, servovalue control, and 

error detection and limit detection. Its operating controls and indicators are 

located on the DC Controller front panel and the MicroConsole front panel. 

Input and output connections are made at MicroConsole rear panel connection. 

It is this part that decides how much load intensity you want to apply on the 

specimen, and also together with previous model, to get feed back control. 

• The model 458.90 Function Generator is also a plug-in module used in the 

Model 458 MicroConsole to provide the internal dynamic program command 

to the servo control loop. Its output waveform may be selected for square or 

ramp waveform to accommodate actual loading pattern. The output frequency 

may be adjusted to fit for the frequency of the dynamic load or different 

loading rate. Also, its operating controls and indicators for the function 
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generator are located on both the function generator front panel and the 

MicroConsole front panel. 

For dynamic loading application, the loading capacity decrease as a 

function of applied loading velocities. This is due to the limitations associated with 

the hydraulic pump capacity. 

3.2 Optical Source and System 

The optical source is a 632.8 nm STABILITETM  He-Ne laser manufactured by 

Spectra-Physics company. It is a powerful (30 mW) and pre-polarized laser which 

provides a stable laser light. The optical system consisted of a half wave plate, one 

plane-polarizer, two quarter wave plates, and two bare fiber (FC) adapters for 

connecting the polarization-maintaining (PM) fiber to the optical and electronic 

assembly. 

The light from He-Ne laser was first coupled into the half-wave plate and 

then into the first quarter wave plate. The axes of the half wave plate and the 

quarter wave plate were set at 45°  with respect to each other. The PM fiber was 

connected to the quarter wave plate via the FC fiber adapter. 

The bow-tie high birefringence optical fiber (HB600) manufactured by 

Fibercore LTD was employed in this project. The bow-tie fiber which operates at a 

wavelength of 630 nm has a cladding diameter of 125 um, coating diameter of 250 

um, and a maximum attenuation 12 dB/km. 
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At the receive end of the system, the fiber adapter was connected to the 

second quarter wave plate from which the output light was passed through the 

analyzer. The axes of the second quarter wave plate and the analyzer were set at 

45°  with respect to each other. 

The optical signal emerging from the optical system propagates into the 

photo-detector. There, the optical signal which here indicates the amplitude of 

light is converted into the electrical signal and then amplified by the analog 

amplifier. The photo detector and the amplifier assembly are shown in Figure 3.2. 

the photo detector (AXGS-R2F) is manufactured by SHARP. Data which carried 

required information from the amplifier were then transferred via data acquisition 

board to the PC computer to process. 

3.3 Data Acquisition 

A data acquisition board with an analog to digital converter is employed for the 

transfer and storage of data into IBM PC/AT/286 computer. DAS-20 A/D & D/A 

data acquisition board manufactured by KEITHLEY METRABYTE CORP. is a 

multifunction, high-speed, 8 channel/16 channel, I/O expansion board that turns a 

host computer into a precision data-acquisition and signal-analysis instrument. The 

board plugs directly into any expansion slot of IBM PC /AT, or compatibles. The 

full scale input of each channel is ±10 volts. A/D conversion time is typically 8.5 

µs. The description of the structure and the programming details of this board are 



Figure 3.2 Photo detector and amplifier 
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shown in [3]. The output of the analog amplifier is connected to the input of data 

acquisition board Channel 7, along with load cell signal to channel 1. So two 

separate channels of data plus time are recorded simultaneously when the system 

is in operation. To simulate truck loading at various speeds, the fiber optic sensor 

was loaded at different speeds and frequencies. To capture all the information, 

data acquisition rate was varied from 1 to 300 Hz for slow and fast rates of loading 

respectively. 

All the experiments were recorded through DAS-20 data acquisition board 

and the process is controlled by LABTECH NOTEBOOK software of Laboratory 

Technologies Corporation. Several NOTEBOOK parameters which needed to be 

set prior to the commencement of test were: 

• Number of Channels: 2 (Chan. 1 for Load, 7 for fiber signal) + time channel 

• Sampling Rate, Hz: 	1 ~ 300 

• Buffer Size: 	10000 

• Run Duration, sec: 	1000 

• Columns in Each File for Data: 	3 (1st for time, 2nd load, 3rd fiber) 

3.4 Specimen Preparation 

The structure and geometry of the specimen employed in this thesis is depicted in 

Figure 3.3. In the current configuration, the 250 micron thick fiber was 
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Figure 3.3 Specimen geometry 
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sandwiched between two 2.5 cm thick stiff rubber pads. Rubber pads provided 

protection against damage by the applied loads. For the configuration shown in 

Figure 3.3, the fiber is fully extended in a straight line and taped to one of the 

rubber pads. Fiber ends were cleaved flat and were subsequently connected to the 

optical system via FC bare fiber adapters. A preload of 40 KN was applied to the 

sensor to ensure instantaneous transfer of load to the fiber through the rubber pad 

assembly. The magnitude of preload was chosen by testing and measuring the 

stiffness of the testing frame/rubber assembly which was 31985.37 KN/m. The 

preload is not incorporated in the experimental results since it was not applied in a 

dynamic manner. 

A fixed length of fiber was employed with all sensors. Hence, the effect of 

sensor length on the dynamic response was not investigated in the present study. 

3.5 System Operations 

Steps involved in the operation of sensor and system are outlined as follows: 

Step 1: He-Ne laser should be turned on at least one hour before the test for laser 

to reach its stable level. 

Step 2: All the system related instruments are turned on: LeCroy 9314 

Oscilloscope, hp 6235A power supply, photo-detector circuit and 

amplifier, half hour before the test for the warm up of the system. 
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Step 3: IBM PC computer with DAS-20 acquisition board are turned on and the 

data acquisition software is triggered so as to prepare for the collection of 

data. Also, the sampling rate is selected ( those values chosen depend on 

different loading rate). 

Step 4: Specimen is set up in the testing system as shown in Figure 3.1. The 

loading ram is provided with a metal bar of 20.32 cm (8 inch) in length. 

This bar is employed for even transmission of the load from the machine 

to the sensor assembly. Care is taken in centering the sensor with respect 

to the loading ram for uniform distribution of load intensity along the 

fiber length. 

Step 5: The MTS testing machine is turned on, the error and offset signals are 

adjusted to zero, and then the necessary parameters in each part of the 

machine (structure detailed in section 1 of this chapter): are selected by 

using 458.11 DC controller to set the amplitude ( or range ) of the applied 

load, 458.90 generator to simulate the loading condition by controlling the 

loading rate as well as the loading pattern' 

Step 6: Finally, the commencement of the experiment begins by first moving the 

load cell down manually with 458.20 MicroConsole controller of MTS 

machine to give the specimen (fiber) a pre-load (40 KN) which can ensure 

instantaneous transfer of load from the machine to the optical fiber, and 
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finally the data acquisition is triggered and the loading program is set to 

start the experiment. 



CHAPTER 4 

EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter gives the experimental results and discussion of load tests for the 

frber optic sensor. Two different loading programs, namely a ramp and a step 

function were chosen for applying time dependent compressive loads to the fiber. 

Ramp function loads were applied at two different frequencies. Two tests involved 

applying a relatively slow, quasi-static load for control, and static calibration 

purposes. Loads were cycled for at least four times for repeatability. Table 4.1, 

and 4.2 depict the experimental program for the ramp, and step function loading 

respectively. Loading velocities were controlled by varying the frequency and the 

value of targeted maximum load amplitudes. For ramp function experiments, two 

different frequencies of 0.5, and 1 hertz were employed in reaching similar 

maximum loads. In tables 4.1 and 4.2, loading rate, or velocity is defined as the 

slope of the applied loading function versus time relationship. Theoretically, for 

the step function, this slope is infinite. However, from the practical stand point, the 

slope of the step function possess a finite value, and it can be calculated. This is 

due to limitations associated with the pumping capacity of the testing machine's 

hydraulics. The 40 KN pre-load is not incorporated in tables 4.1, and 4.2, since it 

was not applied in a dynamic manner. 
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Table 4.1. Experimental program for ramp function, and quasi-static loading 

Test No. 
Designation 

Loading 
Rate 

( KN/m-sec ) 

Time to 
Max Load 

( sec) 

Targeted 
Max. Load 

( KN ) 

Fiber 
Length 

( cm ) 

Targete Max 
Load per 

Unit Length 
(KN/m) 

# of 
Repetitive 

Cycles 

H062309
« 
 2.18 20 8.90 20.32 43.77 4 

1-1062310 43.77 1.00 8.90 20.32 43.77 4 

H062311 87.54 0.50 8.90 20.32 43.77 4 

H062312 87.54 1.00 17.79 20.32 87.54 4 

H062313 175.08 0.50 17.79 20.32 87.54 4 

H062314 131.31 1.00 26.69 20.32 131.31 4 

H062315 262.62 0.50 26.69 20.32 131.31 4 

H062316 175.08 1.00 35.58 20.32 175.08 4 

H062317 350.16 0.50 35.58 20.32 175.08 4 

H062318 218.85 1.00 44.48 20.32 218.85 4 

H062319 437.70 0.50 44.48 20.32 218.85 4 

H062322 2.18 100.00 44.48 20.32 218.85 4 

* calibration 
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Table 4.2. Experimental program for step function loading 

Test No. 
Designation 

Loading 
Rate 

(KN/m-sec) 

Time to 
Max Load 

( sec) 

Targeted 
Max Load 

( KN ) 

Fiber 
Length 

( cm ) 

Targeted Max 
Load per 

Unit Length 
(KN/m) 

# of 
Repetitive 

Cycles 

H07051 668.08 0.068 2.80 20.32 13.86 4 

H07052 988.33 0.068 4.63 20.32 22.76 4 

H07053 1625.56 0.076 9.12  20.32 44.94 4 

H06232 1562.88 0.076 9.10 20.32 44.79 4 

H06233 3112.34 0.076 18.15 20.32 89.29 4 

H06234 4434.78 0.076 26.78 20.32 131.75 4 

H06235 5864.16 0.076 35.67 20.32 175.52 4 

H06236 6718.99 0.076 44.70 20.32 220.02 4 
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A fixed length of fiber was employed with all sensors. Each test of 

specimen under different loading condition was assigned a name. Experiments 

were numbered according to the following scheme, an example in test number 

H062310, where 'IV stands for High-Birefringence, '0623' corresponds to the 

date (6/23/94), and '10' is designated as the test number. 

4.1 Data Analysis 

Typical results representing sensor output data in response to the application of 

ramp function loadings are shown in Figures 4.1 through 4.11. These figures 

indicate the variation in fringe frequency as a function of loading amplitude and 

rate. For instance, at lower load intensity amplitudes, as shown in Figs. 4.1 

through 4.4, fringe patterns exhibit higher amplitudes and lower frequencies. 

While the fringe pattern in Fig. 4.5 is preserved as far as the amplitude is 

concerned, it exhibits a change in frequency. Figures 4.6 through 4.11 are 

examples of fringe patterns having low amplitudes and high frequencies. The 

relationship between the fringe and loading is obtained from the experimental data. 

For each test, Tf  can be computed as the period of the fringe-load 

relationship (Fig. 2.2). As shown in Figure 4.12, experimental results indicate that 

the sensor output is dependent both on the loading rate and amplitude. At first 

glance, data pairs in Fig. 4.12 insinuate that similar load amplitudes induce nearly 

the same number of fringes irrespective of the loading velocity. However, loading 
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rate insensitivity diminish for increasing loading velocities (Figure 4.13). In fact, 

Tf  varies with loading amplitude as well as its velocity. A single calibration factor 

such as Tf  alone is not sufficient for accurate prediction of dynamic loads. This 

can be illustrated by attempting to predict the magnitude of dynamic loads with a 

Tf  which is calculated based on a single quasi-static test (Table 4.3). 

We performed two tests for the purpose of calibration (test No. H062309, 

and H062322 in Table 4.3). Both of the experiments were performed at the same 

quasi-static rate of 2.18 KN/m-sec. These experiments yielded two different 

calibration factors of 10.80 and 11.97 KN/m per fringe for test no. H062322, and 

H062309 respectively. As these results indicate, relative errors in the computation 

of predicted dynamic loads are highly dependent on the calibration load amplitude 

(Table 4.3). Hence, Tf is influenced both by the magnitude, and velocity of the 

loading, and it can not be employed as calibration factor. 

4.2 Experimental Calibration and Results 

Our experimental results indicate that the linear regression of fringe data for the 

range of dynamic loads provides a more rational calibration approach. Results of 

regression analysis for the range of ramp function loads are depicted in Figure 

4.14. In Figure 4.14, k stands for the number of observed fringes at maximum 

load. As results indicate in Table 4.3, computation based on the regression 

relationship provided the least error in the prediction of dynamic loads. 
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4.3 Discussion 

Application of very high loading rates were accomplished by a series of step 

forcing functions (Table 4.2). Figures 15 through 22 illustrate typical results 

obtained from such experiments, It is not possible to directly determine the load 

from fringe data as the fringe pattern is aperiodic. One way to remedy this is to 

further employ the regression relationship developed earlier (Fig. 4.14) for the 

computation of loads from the fringe data. To examine the applicability of such an 

approach, data in Fig. 4.13 was linearly extrapolated to a Tf  value of zero. The 

loading rates at or beyond a Tf  value of zero may be interpreted as loading 

velocities that are too fast for the development of fringe patterns. For our sensor 

configuration, we arrived at a critical loading velocity of 1652 KN/m-sec (Fig. 

4.13). Step function response data was subsequently analyzed based on the linear 

regression approach, and results are presented in Table 4.4. As evident by these 

results, error in the computation of the dynamic loads are less severe at lower 

velocities (lower than 1600 KN/m-sec). However, the generated error is too large 

for arriving at any conclusions pertaining to the computation approach. Our 

experimental parameters were limited by the hydraulic components of the testing 

system, and therefore, we could not achieve intermediate loading rates at the 

amplitudes employed in this thesis. 



Table 4.3 Comparison of predicted load intensities 

Test No 
Designation 

No. of 
Fringes 
to Max. 

Load 

Max. 
Applied 

Load 
Intensity 
(KN/m) 

Computed Load 
Intensity (KN/m), 
based on Tf = 10.80 

KN/m per fringe 

Computed Load 
Intensity (KN/m), 
based on Tf = 11.97 
KN/m  per fringe 	 

Computed Load 
Intensity, based 
on Regression 

(KN/m)  
H0623091  3.90 47.23 42.10 46.7 47.0 

H062310 3.55 43.60 38.40 42.50 43.2 

H062311 
3.43 42.32 37.0 41.0 42.00 

H062312 7.34 85.38 79.20 87,80 83.25 

		  
H062314 11.35 127.70 122.60 135.80 125.46 

H062313 7.08 82.82 
		  

76.50 84.70 80.43 

H062316 15.50 169.90 167.30 185.40 169.25 

H062318 
19.90 212.54 214.90 238.0 215.6 

H062315 10.97 123.85 118.50 131.20 121.50 

H062317 15.00 165.09 162.0 179.50 164.0 

H062319 19.28 206.45 208.20 230.70 209.1 

H0623222  19.99 217.40 216.0 239.30 
	

216.7 

 
1 	calibration test, Tf = 11.97 KN/m per fringe 

2 	calibration test, Tf = 10.80 KN/m per fringe 
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Table 4.4 Comparison of the applied and computed loads for step function loading 
of the optical fiber 

Test No Loading 
Rate 

(KN/m-sec) 

Total No.of 
Fringes to 
Max. Load 

Max. Applied Load 
per Unit Length 

(KN/m) 

Max. ComputedLoad 
per Unit Length 

(KN/m) 

Relative 
Error 
( % ) 

H07051 668.0 0.53 13.0 11.40 12.80 

H07052 988.30 1.18 22.90 18.20 20.40 

1-107053 1625.60 1.51 45.0  21.70 51.50 

1-106232 1562.90 3.25 45.0 40.0 11.30 

H06233 3112.30 3.50 89.30 42.60 52.30 

H06234 4434.80 2.50 131.75 32.10 75.60 

1-106235 5864.20 3.50 175.50 42.60 75.70 

H06236 6719.0 4.50 220.0 53.11 75.80 
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Figure 4.1 Applied ramp function with fiber intensity output for test 1-1062310 
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Figure 4.2 Applied ramp function with fiber intensity output for test H062311 
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Figure 4.3 Applied ramp function with fiber intensity output for test H062312 
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Figure 4.4 Applied ramp function with fiber intensity output for test H062313 
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Figure 4.5 Applied ramp function with fiber intensity output for test H062314 
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Figure 4.6 Applied ramp function with fiber intensity output for test H062315 
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Figure 4.7 Applied ramp function with fiber intensity output for test H062316 
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Figure 4.8 Applied ramp function with fiber intensity output for test H062317 



71 

Figure 4.9 Applied ramp function with fiber intensity output for test H062318 
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Figure 4.10 Applied ramp function with fiber intensity output for test H062319 
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Figure 4.11 Applied ramp function with fiber intensity output for test H062322 
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Figure 4.12 Rate of loading versus number of observed fringes 
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Figure 4.13 Variation of the calibration factor with loading rate 
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Figure 4.14 Regression analysis of load intensity versus fringe data 
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Figure 4.15 Applied step function with fiber intensity output for test H06232 
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Figure 4.16 Applied step function with fiber intensity output for test H06233 
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Figure 4.17 Applied step function with fiber intensity output for test H06234 
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Figure 4.18 Applied step function with fiber intensity output for test H06235 
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Figure 4.19 Applied ramp function with fiber intensity output for test H06236 
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Figure 4.20 Applied ramp function with fiber intensity output for test H07051 
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Figure 4.21 Applied ramp function with fiber intensity output for test H07052 
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Figure 4.22 Applied ramp function with fiber intensity output for test H07053 



CHAPTER 5 

CONCLUSIONS 

Results presented in this study clearly indicate that it is possible to accurately 

measure the magnitude of dynamic compressive loads with the proposed sensor. 

Output of the sensor is a function of the amplitude as well as the velocity of 

applied loading. Therefore, within the spectrum of desired velocities, calibration of 

the sensor should be achieved through regression analysis. The ramification of this 

finding is that Tf  by itself does not represent the calibration factor for these 

sensors. This further implies that Eqs. (2.24) and (2.25) shall be modified through 

replacement of Tf with regression parameters. Hence, the following relationship is 

suggested for relating the change in beat length to f: 

where, Tf is the slope of the regression line, and c is the intercept and has the units 

of force per unit length. The relationship between k and Tf is given as: 
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By substituting the results of regression analysis in Eqn. (5.1), it is possible 

to monitor the change in beat length for the optical fiber as a function of load 

intensity. For instance, substitution of the regression analysis parameters from 

present study's data into Eqn. (5.1), yields the following relationship for which the 

results are given in Figure 5.1: 

In Eqn. (5.3), L B0  is equal to 1.16 mm, and the zone between L of 1.16 

mm and the first data point in Fig. 5.1 corresponds to the previously mentioned 

static pre-load of 40 KN (Chap. 3). In using Eqn. (5.2), one should note that it is of 

general form, and the regression parameters c, and Tf pertain to the particular 

sensor characteristics (fiber length, type etc.), and loading conditions. 

A fixed length of fiber was employed with all sensors, hence, the effect of 

sensor length on the sensor response was not investigated in the present study. 

Therefore, this issue shall be further investigated in future research. Another issue 

which deserves further attention is the development of a testing program to carry 

on experiments covering a wider spectrum of loading rates. 
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Figure 5.1 Relation between beat length of fiber and applied load intensity 



APPENDIX 

Programming List for Calculating the Number of Fringes 

/*** wjp, fringe.c is to develop a software which can automatically 
calculate the number of fringes from intensity(nfringe), 
the loading speed (frequence), 
to calibration( kips_per_second), 
input--- from h*.* like h05305g1.prn or h0530141.prn 
output---on the screen with 'dtime', 'nfringe', 

'calibration', 'frequence', 'max_load' ****/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <graph.h> 
#include <string. h> 
#include <io.h> 
#include <math.h> 

"dlf.h" 

#define MIN -I 
#define MAX 1 

int main() 
{ FILE *file_ptr, *fp, *time_ptr; 

char *file_in; 
float time, load, intensity; 
float tmp_t, tmp_1, tmp_i, tmp; 
float min_load, max_load, min_time, max_time, dtime, begin_time, end_time; 
float min_intensity, max_intensity, end_intensity; 
float nfringe, first_fringe, last_fringe, frequence, calibration; 
int s, light, sl; 
int i, j; /* how many times the fringe changes */ 

int t; 
int menu(); 

_clearscreen( _GCLEARSCREEN ); 

while( (t=menu())=1 ) 
_clearscreen( _GCLEARSCREEN ); 

printf( "\n\nPlease enter your data file: "); 
gets( file_in ); 

printf("\n\n\nThe input file is \'%s\"', file_in ); 
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/** file which stores original data **/ 
if( (file_ptr=fopen(file_in, "rt")) == NULL ) 
{ _clearscreen( _GCLEARSCREEN ); 

printf( "\n\nData file could not be opened.\n" ); 
exit( 0 ); 

/** file which will be used to store the result **/ 
if( (fp=fopen("c:\\wjp\\hb \\0622.prn", "a+")) == NULL ) 
{ _clearscreen( _GCLEARSCREEN ); 

printf( "\n\nData file could not be opened. \n" ); 
exit( 0 ); 

} 

i=0; j=0; 

fscanf( file_ptr, "%f%f%f", &time, &load, &intensity ); /* get first data */ 
tmp_t = time; min_time = time; begin_time = time; 
tmp_1 = load; min_load = load; 
tmp_i = intensity; min_intensity = intensity; 
fringe[i].sp = intensity; period[j].sp = time; 
light = MIN; 

s = 0; /** 0 for begin, I for up, -1 for down **/ 
while( !feof(file_ptr) ) 
{ fscanf( file_ptr, "%f%f%f", &time, &load, &intensity ); 

Imp = intensity - tmp_i; 	/* to decide when one fringe reachs the end */ 
if( s==0 ) 

if( tmp > 0 ) 
{ s = 1; 

else 
{ s = -1; 

} 

if( (s==1 && tmp>=0)||(s==-1 && tmp<=0) ) /* case between two end */ 
{ end_time = time; 	/* in case of reaching the end of file */ 

max load = load; 
end_intensity = intensity; 
tmp_t = time; 
tmp_1 = load; 
tmp_i = intensity; 

} 
else if{ s==1 && tmp<0 ) 	/* case which reaches the top */ 

s = -I; 
end_time = time; 	/* in case of reaching the end of file */ 
max_load = load; 
if( light == MIN ) 

{ fringe[++i].sp = tmp_i; 
max_intensity = 
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period[++j].sp = tmp_t; 
max_time = tmp_t; 
light = MAX; 

else 
{ fringe[++i].sp = tmp_i; 

min_intensity = tmp_i; 
period[++j].sp = tmp_t; 
min_time = tmp_t; 
light = MIN; 

end_intensity = intensity; 
tmp_i = intensity; 
tmp_t = time; 
tmp_1 = load; 

fringe[--i].distance = fabs(max_intensity - min_intensity); 
++i; /* distance and startpoint has one step gap */ 

period[--j].distance = fabs(max_time - min_time); 
/** 	fprintf( time_ptr, "%12f%12f\n", period[j].sp, period[j].distance ); **/ 

++j;  
} 

else if( s==-1 && tmp>0 ) 	/* case which reaches bottom */ 
{ s = I; 

end_time = time; /* in case of reaching the end of file */ 
max load = load; 
if( light == MIN ) 
{ fringe[++i].sp = tmp_i; 

max_intensity = tmp_i; 
period[++j].sp = tmp_t; 

max_time = tmp_t; 
light = MAX; 

} 
else 

fringe[++i].sp = tmp_i; 
min_intensity = tmp_i; 

period[++j].sp = tmp_t; 
min_time = tmp_t; 
light = MIN; 

end_intensity = intensity; 
tmp_i = intensity; 
tmp_t = time; 

= load; 
fringe[--i].distance = fabs(max_intensity - min_intensity); 
++i;  
period[- tdistance = fabs(max_time - min_time); 

I** 	fprintf( time_ptr, "%12f%12f\n", period[j].sp, period[j].distance ); **/ 
++j;  

} 
} 

/* end of recursive */ 

if( light == MIN ) 	 /* to store the last point */ 



{ fringeli++].distance = fabs(end_intensity - min_intensity); 
period[j].distance = fabs(end_time - min_time); 

/* 	fprintf( time_ptr, "%12f%12f\n", period[j].sp, period[j].distance ); */ 
} 

else 
fringe[i++].distance = fabs(end_intensity - max_intensity); 

period[j].distance = fabs(end_time - max_time); 
/* fprintf( time_ptr, "%12f%12f\n", period[j].sp, period[j].distance ); */ 

/*** j=number of fringe - 1 ***/ 

/*** to calculate the fringe number ***/ 
first_fringe = (fringe[0].distance>=fringe[1].distance)?1:(fringe[0].distance/fringe[1].distance); 
last_fringe = (fringe[i-1].distance>=fringe[i-2].distance)?1:(fringe[i-1],distance/fringe[i-2].distance); 
nfringe = first_fringe + i - 2 + last_fringe; 

/*** to calculate the other reference ***/ 

calibration = fabs(max_load - min_load)/nfringe; 
dtime = end_time - begin_time; 
frequence = fabs(max_load - min_load)/dtime; 

printf( "\n\nNumber of fringes = %f", nfringe ); 
printf( "\n\nCalibration = %f (kips/fringe)", calibration ); 
printf( "\n\nfrequence = %f (kips/sec)", frequence ); 

/**************************************** 

if( sl == 1 ) 
{ printf("\n\nMaximum load = %f (kips)", max_load ); 

else 
{ printf("\n\nMaximum load = %f (kips)", min_load ); 

max_load = fabs( max_load - min_load ); 
printf("\n\nMaximum load = %f (kips)", max_load ); 

fprintf( fp, "\n%12f%12f%12f%12f%12f', dtime, nfringe, calibration, frequence, max_load ); 

printf("\n\nThis is the end of test."); 
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fcloseall(); 
exit( 0 ); 

1******************************************************************/ 

int menu() 
{ char ch; 

printf("\n\nDo you want to enter another file(y/n): "); 
ch=getch(); 

 
return( (ch=='y')?1 :0 ); 
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