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ABSTRACT  

A SELF-LEARNING INTERSECTION CONTROL SYSTEM 

 FOR CONNECTED AND AUTOMATED VEHICLES  

by 

Ardeshir Mirbakhsh 

This study proposes a Decentralized Sparse Coordination Learning System (DSCLS) based 

on Deep Reinforcement Learning (DRL) to control intersections under the Connected and 

Automated Vehicles (CAVs) environment. In this approach, roadway sections are divided 

into small areas; vehicles try to reserve their desired area ahead of time, based on having a 

common desired area with other CAVs; the vehicles would be in an independent or 

coordinated state. Individual CAVs are set accountable for decision-making at each step in 

both coordinated and independent states. In the training process, CAVs learn to minimize 

the overall delay at the intersection. Due to the chain impact of taking random actions in 

the training course, the trained model can deal with unprecedented volume circumstances, 

the main challenge in intersection management. Application of the model to a single-lane 

intersection with no turning movement as a proof-of-concept test reveals noticeable 

improvements in traffic measures compared to three other intersection control systems. 

 A Spring Mass Damper (SMD) model is developed to control platooning behavior 

of CAVs. In the SMD model, each vehicle is assumed as a mass, coupled with its preceding 

vehicle with a spring and a damper. The spring constant and damper coefficient control the 

interaction between vehicles. Limitations on communication range and the number of 

vehicles in each platoon are applied in this model, and the SMD model controls intra-

platoon and inter-platoon interactions. The simulation result for a regular highway section 

reveals that the proposed platooning algorithm increases the maximum throughput by 29% 



and 63% under 50% and 100% market penetration rate of CAVs. A merging section with 

different volume combinations on the main section and merging section and different 

market penetration rates of CAVs is also modeled to test inter-platoon spacing performance 

in accommodating merging vehicles. Noticeable travel time reduction is observed in both 

mainline and merging lanes and under all volume combinations in 80% and higher MPR 

of CAVs.  

 For a more reliable assessment of the DSCLS, the model is applied to a more 

realistic intersection, including three approaching lanes in each direction and turning 

movements. The proposed algorithm decreases delay by 58%, 19%, and 13% in moderate, 

high, and extreme volume regimes, improving travel time accordingly. Comparison of 

safety measures reveals 28% improvement in Post Encroachment Time (PET) in the 

extreme volume regime and minor improvements in high and moderate volume regimes. 

Due to the limited acceleration and deceleration rates, the proposed model does not show 

a better performance in environmental measures, including fuel consumption and CO2 

emission, compared to the conventional control systems. However, the DSCLS noticeably 

outperforms the other pixel-reservation counterpart control system, with limited 

acceleration and deceleration rates. The application of the model to a corridor of four 

interactions shows the same trends in traffic, safety, and environmental measures as the 

single intersection experiment.  

 An automated intersection control system for platooning CAVs is developed by 

combining the two proposed models, which remarkably improves traffic and safety 

measures, specifically in extreme volume regimes compared to the regular DSCLS model.   
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1 

CHAPTER 1 

1 INTRODUCTION 

 

1.1 Background 

Due to rapid population growth and the increased number of vehicles, traffic congestion, 

collisions, and pollution have become leading causes of decreased living standards. Only 

in 2017 and in the USA, traffic congestion has caused 8.8 billion hours of delay and 3.3 

billion gallons of fuel waste, resulting in a total cost of 179 billion United States Dollars 

(USD) [1]. Traffic congestion has increased between 1 and 3 percent annually from 2008 

to 2017 in the USA, and a national congestion cost of 237 billion USD is forecasted for 

2025 [1]. Several studies prove that human errors play a pivotal role in traffic congestion 

and contribute to 75% of roadway crashes worldwide [2]. The global rate of road traffic 

death is 18.2 per 100,000 population. However, there is significant variation across 

different regions; the USA and Europe have the lowest regional rates with 15.6 and 9.3 

death per 100,000 population, respectively [3]. Intersections play a crucial role in traffic 

delays and collisions among urban traffic facilities. In the United States, 44 percent of 

reported traffic accidents occur at urban intersections, leading to 8,500 fatalities and around 

1 million injuries every year [4].  

With advances in communication and sensing technologies within the last decade, 

vehicles are equipped with several driving assistant systems such as Adaptive Cruise 

Control (ACC), blind-spot monitors, back-up cameras, and lane centering. Some high-end 

cars produced within the last couple of years can perform most driving tasks without human 

interference, and the imminent widespread appearance of Connected and Autonomous 

Vehicles (CAVs) on the streets is expected. The most crucial feature of CAVs seems to be 
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the communication capability. Taking advantage of the CAVs’ communication capability 

is promising in congestion relief and safety improvement at roadway facilities. Several 

previous studies have proved that the shorter following gap time between CAVs gained by 

Cooperative Adaptive Cruise Control (CACC) systems can increase the roadway segment 

capacity up to 100% [5]. Moreover, recent advances in computer science, data storage, and 

Artificial Intelligence (AI) have noticeably improved CAV-based intersection control 

systems. As a result, developing CACC models and CAV-based intersection control 

systems are hot topics in the transportation research world. 

Considering CAVs as a revolution in the transportation industry, most public and 

private transportation-oriented agencies are involved with this phenomenon. In 2016 the 

U.S. Department of Transportation (USDOT) awarded a cooperative agreement 

collectively worth more than 45 million USD to three pilot Connected Vehicle (CV) sites 

in New York City, Wyoming, and Tampa [6]. Well-known car manufacturers, including 

Toyota, Honda, and Hyundai, are involved with the pilot program in Tampa [6]. In 2018, 

Waymo (Google) announced that its AVs have successfully driven 8 million miles on U.S. 

public roads [7]. Several companies such as TESLA and Cadillac have commercially 

produced level 3 to 4 CAVs [7]. General Motors is investing more than 20 billion USD 

until 2025 on its electric and CAV production [7]. In 2018 AUDI announced that the 

company would invest 16 billion USD on electric vehicles and AVs over the next five 

years. Ford has built an AVs testing facility in Miami and noticeably increased its 

partnerships and investments in technology companies; building fully automated vehicles 

by the end of 2021 is the primary goal of the Ford Company [7]. 
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Several approaches, such as online optimization, trajectory planning, and rule-

based intersection control logic for CAVs, have been around for the last couple of decades. 

Meanwhile, a revolution in decision-making optimization began in 2013 when researchers 

from a British startup called DeepMind developed a logic that could play almost any Atari 

game, such as “Space Invaders” and “Breakout” from scratch without prior knowledge of 

the rules and eventually outperforming humans. DeepMind researchers had combined 

Reinforcement Learning (RL) with Deep Learning (DL), and that was how Deep 

Reinforcement Learning (DRL) was born.  Google bought DeepMind for 500 million USD 

in 2014. In 2017, a DeepMind robot called “AlphaGo” won the world champions of the 

“Go” game, an abstract strategy game for two people. Eventually, in 2019, Open AI’s 

robots won the “Dota2” match competition against the 2018 human world champions. Dota 

is a multiplayer battle arena game that requires strategy, teamwork, and quick decision to 

win. Building an AI to compete in such a game with numerous variables seems like an 

impossible challenge [8] [9]. If a DRL-based agent can compete in such extremely 

complicated circumstances, it can also be the CAVs’ mastermind at intersections too.  

The development of CACC models dates back to the 1990s. However, field 

experiments have been accelerated within the last years due to technological advances and 

governmental encouragements. The highlights of deployments include the USDOT-

approved CAV test sites, PATH (California Partner of Advanced Transportation 

Technology), and Energy ITS Project. Nevertheless, according to safety, technology, and 

financial limitations for large-scale field tests, the simulation is still one of the best 

approaches for mid to large deployment of CAVs’ evaluation [10]. 
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1.2 Problem Statement and Research Motivation 

In conventional intersection control systems, an intersection controller such as a traffic 

light dictates the rules to the vehicles. However, the recent advances in vehicles’ 

communication systems demand communication from vehicles to controller systems to 

take full advantage of the CAVs’ communication capabilities. Therefore, the CAV-based 

intersection control logic has been a point of interest for the last couple of decades. Several 

approaches such as trajectory planning, real-time optimization, and rule-based intersection 

control logics have been developed to establish a purposive vehicle to vehicle or vehicle to 

infrastructure communication at the intersections.  

The most critical task in developing an intelligent intersection control system is to 

make the algorithm adjustable with stochastic or unprecedented circumstances. Since 

conventional optimization approaches are based on predefined models or fixed rules, 

making them work in a stochastic environment requires several adjustments and 

experiments. Finally, they are unlikely to produce a satisfactory outcome in extraordinary 

circumstances. Following by DRL's astounding performance in playing multi-player video 

games within the last few years, it is considered an outstanding Machine Learning (ML) 

technic for decision-making in stochastic environments. The chain impact of taking 

sequences of random actions in a DRL agent’s learning process will expose the agent to 

enormous different circumstances, regardless of how likely they may happen in a real-

world environment. Pieces of literature exist in using DRL to optimize traffic light phasing 

and timing or processing aerial images to optimize traffic flow at the intersections.  

However, at an ultimate automation level, CAVs are expected to act as individual 

robots, and to the best of the author’s knowledge, there is no DRL control system developed 
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controlling individual CAVs and making them accountable for decision-making in the 

traffic networks. A Decentralized Sparse Coordination Learning System (DSCLS) based 

on DRL is proposed in this study to control CAVs at the intersections. In this approach, 

vehicles try to reserve their desired cells ahead of time. Based on having a shared desired 

cell with other vehicles, they would be in an independent or coordinated state. Individual 

CAVs are set accountable for decision-making in both coordinated or independent states 

at each step. CAVs learn to minimize the overall delay and queue length at the intersection 

in the training process.  

CACC is another promising technology that allows CAVs to be driven 

cooperatively. CACC introduces significant benefits to traffic flow and safety, and several 

CACC control systems have been developed within the last couple of decades. A noticeable 

portion of studies in this area is focused on the dynamics aspect of CACC, such as vehicle 

mass, tire friction, vehicle powertrain. These aspects are vital in bringing CACC to fruition 

yet providing limited insights into the impacts of CACC on the overall traffic network. 

Alternatively, most of the models developed explicitly for traffic assessment of CACC 

have missed several critical aspects of platooning such as platoon evolution process, 

communication range limitations, or interactions between platoons.  

This study applies a classical physics-based model called Spring-Mass-Damper 

(SMD) that reflects the most critical dynamic aspect of vehicles, the mass, and covers the 

platoon evolution process for platooning CAV. A maximum communication range is 

reflected in the model to make it more compatible with real-world circumstances. Strings 

of vehicles are divided into sub-platoons to avoid lengthy platoons and accommodate 

potential merging vehicles, while the SMD model controls both inter-platoon and intra-
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platoon interactions. The model is coded into commercial simulation software to facilitate 

traffic-oriented and potential macroscopic or mesoscopic assessments. 

Considering platooning capability and automated intersection control systems as 

essential characteristics of CAVs, numerous studies have focused on these two areas. 

However, CACC platooning models are mainly developed and tested in uninterrupted flow 

circumstances, and the impact of platooning models on interrupted flow has not been 

examined. Few CAV-based intersection control systems can deal with platoons of vehicles. 

However, these models still lack a robust logic for platooning. This study also develops a 

platooning CAVs-based automated intersection control system for CAVs by 

simultaneously deploying the DSCLS and SMD models.  

 

1.3 Research Scope and Objectives 

The ultimate goal of this study is to develop a DSCLS based on DRL for platooning CAVs 

and compare its performance to other CAV-based and conventional intersection control 

systems. Toward this goal, the following objectives have been addressed. 

• Develop a DSCLS to control individual CAVs at the intersection, and evaluate 

its performance in traffic, environmental, and safety measures compared to other 

intersection control systems. 

• Develop an SMD-based platooning system for CAVs, evaluate its impact on 

maximum throughput at regular and merging roadway sections, and perform 

safety assessment by measuring spacing error between vehicles and comparing it 

with another platooning logic. 

• Apply the DSCLS to a corridor, including several intersections, and compare its 

performance with other intersection control systems.  

• Combine the proposed platooning logic and intersection control systems to 

develop a platooning CAVs-based intersection control system and compare its 

performance with conventional and CAV-based intersection control systems. 
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• Develop microsimulation testbed for all above scenarios. 

• Develop a DSCLS to control individual CAVs at the intersection, and evaluate 

its performance in traffic, environmental, and safety measures compared to other 

intersection control systems. 

 

1.4 Dissertation Organization  

This dissertation is organized as follows; In Chapter 2, the CAV-based intersection control 

systems and CAVs’ car-following models, also known as CACC, are reviewed. CAV-

based intersection control systems are clustered into four categories: rule-based, 

optimization-based, trajectory planning-based, and ML-based; several prominent studies 

in each category are reviewed. Followed by that, the CAV car-following models are 

reviewed with a focus on the SMD model. Chapter 3 explains the general RL processes, 

formulation, and parameters. Specific RL approaches related to this study, including Deep 

Queue Networks (DQN) and Multi-Agent Deep Queue Networks (MADQN), are 

described. Next, the model's intersection environment design, training settings, and 

learning performance are presented. The proposed model’s performance in controlling a 

single lane intersection is evaluated as a proof of concept test.  

 The SMD model is introduced in Chapter 4, including the model formulations and 

explaining the impact of hyperparameter settings on driving behavior. The development of 

the SMD-based CACC model is elaborated, and the model's performance is evaluated in 

several scenarios. In Chapter 5, the DSCLS is applied to a more realistic intersection, 

including several lanes and turning movements and a corridor of four intersections. A 

platooning CAV-based intersection control system is developed by combining the 

proposed platooning logic and intersection control system. The simulation results and 
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discussions are also presented in this chapter. Finally, Chapter 6 presents conclusions and 

a discussion of the future research.   
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CHAPTER 2 

2 LITERATURE REVIEW 

 

This chapter reviews selected studies in two critical CAV-related research areas, including 

1) CAV-based intersection control systems and 2) and Cooperative Adaptive Cruise 

Controls (CACC). 

Based on the existing literature, CAV-based intersection control systems are 

clustered into three main groups, including 1) rule-based algorithms, 2) optimization-based 

algorithms, and 3) Machine Learning (ML)-based algorithms. Several studies in each group 

are reviewed, and it is clarified if any proposed intersection control logic can consider 

platoons of AVs instead of single vehicles. It should be noted that several studies have 

proposed a combination of the mentioned methodologies. In that case, they are included in 

the most related group.  

  Regarding the CACC systems, a brief history of vehicles’ longitudinal control 

systems’ evolution from basic Cruise Control (CC) systems to Cooperative Adaptive 

Cruise Control (CACC) is presented in this chapter. Several proposed CACC models and 

their impact on traffic flow measures are reviewed, and a brief background on the Spring-

Mass-Damper (SMD) model is provided. It is also explained how previous studies have 

used the SMD model to reflect the impact of several variables such as driver 

aggressiveness, vehicle mass, and vehicle stability on CAVs' platooning behavior.  

 

2.1 Rule-based Intersection Control Systems for CAVs 

Most rule-based intersection logics are based on intersection space reservation approach. 

The space reservation approach was initially developed in 2004 by Dresner et al. [11]. This 
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method divides the intersection area into an n×n grid of reservation tiles. Each approaching 

vehicle to the intersection attempts to reserve a time-space block at the intersection area by 

transmitting a reservation request to the intersection manager. The reservation request 

includes information such as speed and arrival time. According to intersection control 

policy, the intersection manager decides whether to approve the request, provide more 

passing restrictions to the driver agent, or reject the reservation request. Dresner et al. 

adopted the First Come First Serve (FCFS) control policy, in which the passing priority is 

assigned to the vehicle with the earliest arrival time, and other vehicles have to yield to it. 

In a following study by Dresner et al. in 2008 [12], several complimentary regulations were 

added to FCFC policy to make it work more reliable, safe, and efficient. Simulation results 

revealed that FCFS policy noticeably reduces the intersection delay compared to traffic 

light and stop sign control systems. The reservation-based approach can be combined with 

various control policies and has been deployed by several researchers since 2008. 

Zhang et al. proposed a state-action control logic based on a Priority First in First 

Out (PriorFIFO) [13]. This control model assumes autonomous motion with spatial-

temporal and kinetic parameters based on a centralized scheduling mechanism. The target 

was to reduce control delay for vehicles with higher priority. The simulation results with a 

combination of high, average, and low priority vehicles showed that the algorithm works 

well for vehicles with higher priority. Meanwhile, causing some extra delay for regular 

vehicles compared to those with lower priority.  

Carlin et al. developed an auction-based intersection control logic based on Clarke 

Groves tax mechanism and pixel reservation [14]. If commonly reserved tiles exist between 

vehicles, an auction is held between the involved vehicles. All vehicles in each direction 
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contribute to their leading vehicle to win the auction, and the control logic decides which 

leading vehicles receive a pass order first. The bid's winner and its contributors (followers) 

have to pay the runner-up bid amount with a proportional payment (based on their 

contribution value in the bid). A "system wallet" component was added to auction-based 

intersection control to ensure low-budget vehicles or emergency vehicles would not be 

over-delayed. Comparison of simulation results showed that the auction-based control 

logic outperforms the FIFO logic. 

Vasirani et al. approached the intelligent intersection management problem in a 

mesoscopic scale and designed a competitive computational market to control a set of 

intersections in urban roadway networks [15]. In this algorithm, buyers are driver agents, 

the suppliers are the intersection managers, and the traded resource is the intersection 

capacity. Each vehicle communicates with the intersection manager and provides its 

desired route. The intersection manager adjusts the prices based on demand and supply 

values. Vehicles can reroute if the offered price is not desired, and the transactions are 

made as the equilibrium price is obtained. Mesoscopic simulation runs for a roadway 

network consisting of several intersections showed that deployment of the algorithm leads 

to travel time reduction for CAVs and density reduction at the network's critical sections.    

Chen et al. developed the win-fit intersection control logic. In this algorithm, the 

“win” logic scores clusters of approaching vehicles to the intersection by the value of delay 

imposed on all other yielding clusters [16]. The cluster with the lowest delay impact on 

other clusters obtains the passing priority. The control algorithm's “fit” function assigns 

idle time slots (resulting from turning movements) to the vehicles in lower priority groups. 

Unlike the previously reviewed control system, the win-fit control logic could consider a 
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cluster of vehicles instead of a single-vehicle at each decision-making step. However, 

holding on to the platoon was not a priority. So the vehicles could leave their platoon to 

pass the intersection. A simulation run in SUMO  revealed that the average delay at the 

intersection was improved compared to both FIFO and actuated traffic lights.  

 

2.2  Optimization-based Intersection Control systems for CAVs 

Several researchers have considered optimization approaches to develop CAV-based 

interaction control logic. A noticeable number of studies have focused on CAVs' trajectory 

planning to optimize the approach time. Meanwhile, other optimization logics, such as 

linear integer programming, are used by other researchers.  

2.2.1 Online Optimization Intersection Control logic for CAVs 

Yan et al. proposed a dynamic programming-based optimization system to find optimal 

vehicle passing sequence and minimize intersection evacuation time [17]. In this algorithm, 

the optimizer agent clusters vehicles into several groups so that each group of vehicles can 

pass the intersection simultaneously without a potential collision. Since vehicles are 

clustered into several groups, the conventional problem of finding an optimal passing order 

of vehicles is transformed into partitioning the vehicles into different groups and finding 

optimal group sequences to minimize the vehicle evacuation time. Approaching vehicles 

to the intersection provide their data to the controller agent, and the controller agent has to 

rerun the dynamic programming optimization if a new vehicle is detected. However, if a 

group of vehicles is authorized to pass the intersection, the recalculation process is delayed 

till the whole group passes the intersection.  
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Wu et al. deployed a timed Petri Net model to develop a simple intersection with 

two conflicting movement control logic [18]. The intersection control was considered a 

distributed system, with parameters such as vehicles' crossing time and time-space between 

successive vehicles. Two control logics, including 1) central controller and 2) car-to-car 

communication, were developed and tested. In central controller logic, approaching 

vehicles to the intersection provide their information to the controller center, and the 

controller center has to provide optimized passing order for the vehicle. While in car-to-

car control logic, each leading vehicle collects its followers' data, and if the distance 

between them is shorter than a threshold, they would be considered a group. Leading 

vehicles of groups communicate with each other, and the passing order priority for each 

group is defined by its leader's proximity to the intersection. The optimization task was 

decomposed into chained sub-problems by a backtracking process, and the final optimal 

solution was found by solving single problems and applying forward dynamic 

programming to find the shortest path from the original problem to the last problem in the 

graph. The simulation results revealed that both algorithms have the same delay reduction 

performance, resulting in almost the same queue length. Wu et al. extended their solution 

to a more realistic 4-way intersection [19]. This problem was treated as a machine 

scheduling problem, considering vehicles as jobs, lanes as families, and the intersection 

control logic as a machine that can process multiple jobs. The optimization problem was 

solved by forward dynamic programming again. Simulation results revealed that the 

proposed approach outperforms traffic lights with fixed timing. In another following study, 

Wu et al. deployed Ant Colony System (ACS) to overcome combinatorial explosion in 

dynamic programming for a large number of vehicles [20]. The optimization problem was 
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converted to a graphical form, considering each vehicle as a node and then finding the 

shortest path covering all nodes using the ACS approach. The simulation results revealed 

that the ACS approach reduces the computation time and outperforms adaptive, FCFS, and 

fixed signals with increased throughput and decreased delay. An NXT robots-based 

prototype was also built to explore the feasibility of autonomous intersection management 

with the proposed method, and no collision was observed in the prototype testing process.  

Fayazi et al. deployed Mixed-Integer Linear Programming (MILP) approach to 

optimize AVs' arrival time at the intersection [21]. In this approach, the intersection 

controller agent receives arrival time and departure time from approaching vehicles and 

optimizes the vehicles’ arrival time. The optimization goal was to minimize the difference 

between the current time and the last vehicle's expected arrival time at the intersection. To 

ensure all vehicles are not forced to travel near the speed limit, the cost value was defined 

as the difference between each vehicle's assigned and desired crossing time. Several 

constraints, such as speed limit, maximum acceleration, minimum headway, and minimum 

cushion for conflicting movements, were applied to the model. A two-movement 

intersection simulation results showed that the MILP-based controller reduces average 

travel time by 70.5% and average stop delay by 52.4%. It was also approved that the control 

logic would encourage platooning under a specific gap setting.  

Lee et al. proposed a Cumulative Travel-time Responsive (CTR) intersection control 

algorithm under CAVs' imperfect market penetration rate [22]. They considered the 

elapsed time spent by vehicles from when they entered the network to the current position 

as a real-time measure of travel time. The Kalman filtering approach was deployed to cover 

CAVs' imperfect market penetration rate for travel time estimation. Simulations were run 
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in VISSIM for an isolated intersection with 40 volume scenarios covering the volume 

capacity ratio ranging from 0.3 to 1.1 and different CAV market penetration rates. 

Simulation results showed that the CTR algorithm improves mobility measures such as 

travel time, average speed, and throughput by 34%, 36%, and 4%, compared to the actuated 

control system. The CO2 emission and fuel consumption were also reduced by 13% and 

10%. It was also revealed that the CTR would produce more significant benefits as the 

market penetration rate passes the threshold of 30%. More benefits are also expected as the 

total intersection volume increases.  

2.2.2 Trajectory Planning Intersection Control Logics for CAVs 

Lee et al. proposed a trajectory planning-based intersection control logic named 

Cooperative Vehicle Intersection Control (CVIC) [23]. The control algorithm provided a 

location-time diagram (trajectory) of individual vehicles and minimized the length of 

overlapped trajectories (conflicting vehicles). The optimization task was considered a 

Nonlinear Constrained Programming (NCP) problem. To ensure an optimal solution is 

achieved, three analytical optimization approaches, including the Active Set Method 

(ASM), Interior Point Method (IPM), and Genetic Algorithm (GA), were deployed. The 

three algorithms were implemented in parallel, and the first acceptable solution was 

implemented. Acceleration, speed range, and safe headway were considered constraints in 

the optimization problem. A simulation testbed in VISSIM was developed to compare the 

proposed algorithm's efficiency with actuated traffic signals under different volume 

conditions. The simulation results revealed that the proposed algorithm improves stopped 

delay, travel time, and total throughput by 99%, 33%, and 8%. A 44% reduction in CO2 
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emission and fuel consumption was also achieved. It was also revealed that the CVIC is 

more advantageous when the intersection is operating under oversaturated conditions.  

Based on the assumption that vehicle trajectories can be defined as cubic 

interpolated splines, having the flexibility to reflect delays from the given signal timing, 

Gutesta et al. developed a trajectory-driven intersection control for the CAVs [24]. Vehicle 

trajectories were developed for several vehicles, passing multiple intersections. The 

optimization task's goal was to minimize the sum of all trajectory curves (which reflect 

control delays) conditioned to meeting safety constraints. Traffic constraints such as speed 

limits were reflected in the model by adjusting the trajectory slopes. A Genetic Algorithm 

(GA) was deployed to evaluate all possible combinations of optimized single-vehicle 

trajectories. In addition, an Artificial Neural Network (ANN), trained with available traffic 

stream factors, was deployed to achieve short-term prediction of vehicle delays to be 

integrated with the optimization model. The simulation results revealed that the proposed 

control algorithm improves traffic measures under stable and unstable traffic conditions, 

even with CAVs’ low market penetration rate.   

Krajewski et al. proposed a decoupled cooperative trajectory optimization logic to 

optimize and coordinate CAVs trajectories at signalized intersections [25]. The 

optimization goal was to minimize delay by coordinating conflicting movements such as 

straight going and left turns. The state-space of each vehicle had three dimensions: position, 

speed, and time. The optimization task was transformed into a graph (nodes representing 

the states and edges representing possible transitions between pairs of states) with a 

combined cost function of delay and comfort. The "decoupled" term refers to splitting the 

optimization problem into two stacked layers, 1) Trajectory Layer (TL) and 2) Negotiation 
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Layer (NL). The TL layer's task was to calculate trajectories for individual vehicles, and 

the NL layer's task was to coordinate all trajectories to prevent potential collisions. The 

latter task was achieved by setting constraints for each vehicle's TL algorithm, and the cost 

function was a weighted sum of the individual cost functions. The weight could also 

prioritize specific vehicle types. Simulation results revealed that the proposed algorithm 

reduces the cost value by 28% compared to the intelligent driver model replicating human-

driven vehicles.  

Hajbabaie et al. formulated the trajectory optimization problem into a Mixed 

Integer Linear Programming (MILP) model [26]. Several constraints such as speed and 

acceleration range and safe headway were introduced to the model. The objective function 

was to minimize the difference between each vehicle's current location and its final 

destination. A stochastic look-ahead technique based on the Monte Carlo Tree Search 

(MCTS) algorithm was developed to solve the MILP problem with several variables, 

including individual vehicles' location and speed. The simulation results for an isolated 

intersection under different volume conditions revealed that the proposed algorithm 

reduces travel time by 59.4% and 83.7% compared to actuated and fixed traffic signal 

controls. Additionally, decreased speed variance was achieved, and the number of stops 

was dropped to zero.  

 

2.3  Machine Learning-Based Intersection Control Logics for CAVs 

Recent access to abundant and cheap computation and storage resources has made ML 

approaches very popular in solving stochastic problems in different fields. Over the last 

few years, some researchers have deployed ML techniques to optimize single traffic signal 
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controllers and corridors or develop signal-free control logics for CAVs. Several ML-based 

interaction control systems related to this study are reviewed in this section. 

Joo et al. proposed an isolated n-way intersection control logic based on Deep Q-

learning (DQL) [27]. Possible movements at the intersection determined the current states. 

The related state was called if a vehicle was stopped and needed to pass the intersection in 

a specific direction. The actions were defined as possible signal phases, and taking specific 

action shifted the agent to a specific new state. The reward was set as a function of two 

variables: 1) the standard deviation of the queue lengths in different directions to ensure a 

balanced distribution of different signals’ queue lengths, and 2) the throughput to maximize 

throughput. The proposed model was simulated in SUMO. The simulation results revealed 

that the proposed model has a better performance in reducing queue length and its standard 

deviation and waiting time compared to the two previously developed DQL-based 

intersection control systems.    

Lamouik et al. developed a multiagent control system based on Deep 

Reinforcement Learning (DRF) to coordinate CAVs’ at the intersection. Each vehicle 

transfers five features to the controller agent in this system, including position, speed, 

dimension, destination, and priority [28]. The controller agent has three possible responses 

for each vehicle, including acceleration, deceleration, and keep-same-speed. Reward value 

is a function of speed, priority, and collision. In the training process, the controller agent 

was expected to learn to avoid collision and prioritize vehicles with higher priority or 

higher speed. The simulation results revealed that the agent was trained since the reward 

value increased after several training epochs. However, the simulations were not run in a 

traffic network setting, and no traffic measures were assessed in this study.  
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Tong Wu et al. developed a multiagent deep reinforcement learning algorithm to 

optimize several traffic lights in a corridor [29]. In This approach, each traffic light was 

considered an agent with green light as actions for different phases. Indicating green for 

different phases was considered as the state for each traffic light. The reward value was set 

as a function of real-time delay for each vehicle, weighted by its priority. The innovation 

in this study was information exchange between controller agents so that each agent could 

estimate the policy of the other agents. According to other agents' estimated policy, each 

agent could adjust the local policy to achieve the globally optimal policy. Two networks 

with different numbers of intersections were developed in SUMO for assessment purposes. 

Simulation results revealed that the proposed model outperforms independent deep Q-

learning (no exchange of information between agents) and deep deterministic policy 

gradient (single-agent controlling all intersections). It was also shown that the model 

outperforms self-organizing and fixed-time traffic lights.  

Touhbi et al. developed a Reinforcement Learning (RF)-based adaptive traffic 

control system [30]. The main goal was to find the impact of using different reward 

functions, including queue length, cumulative delay, and throughput, on intersection 

performance. Unlike previous studies, which considered queue or delay as states, in this 

study, the state value was defined as a maximum residual queue (queue length divided by 

lane length) to reflect the traffic load on each phase. The learning process for a four-way 

single-lane intersection took 100 epochs of 1hr simulation runs, and the simulation results 

revealed that the proposed algorithm remarkably outperforms the pre-timed traffic signal 

controller. Furthermore, the analysis of different reward function deployment showed that 

each function's efficiency is highly dependent on the traffic volume.  
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Wu et al. developed a decentralized coordination algorithm for CAVs' management 

at the intersection. Each vehicle was considered an agent in this approach, and the related 

state to each agent included its lane, speed, and moving intention [31]. The intersection 

area was divided into n×n grid, and each vehicle was supposed to reserve its desired pixel 

ahead of time. Vehicles could enter either a coordinated or an independent state, based on 

having a reserved pixel in common or not. A Conventional Q-learning was deployed in this 

study, meaning that new states and their Q values are added to a look-up table as they came 

up, and the controller agent has to refer to the same cell in the table to make a decision. 

Finally, each agent’s effort to maximize its Q value results in an optimal global reward. 

Simulation results revealed that the proposed model outperforms FCFS, fixed time traffic 

light, and Longest Queue First algorithms in delay reduction.  

 Liang et al. dynamically optimized traffic light duration based on real-time traffic 

information and a deep reinforcement learning approach [32]. Traffic data collected by 

roadway sensors, including vehicle's speed and location, were assumed as states in this 

method. Duration of traffic lights was considered actions, and the reward value was set as 

the cumulative waiting time difference between the cycles. Multiple reinforcement learning 

booster methods such as target network, double Q-learning network, dueling network, and 

prioritized experience replay, were deployed in this study. The simulation results revealed 

that the proposed model could learn a good policy, either in rush hour or in normal traffic 

flow, by reducing the average delay time by over 20% in the training course. The model 

also outperformed other DRL-based models in learning speed and other measures.  

 Gong et al. developed a multi-objective reinforcement learning approach to 

improve traffic safety at the intersections controlled by adaptive signal controls [33]. Their 
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algorithm input was high-resolution real-time traffic data, and the output was an optimized 

traffic signal to reduce delay and crash risk at the intersection. The model was trained based 

on real-time data from an intersection to a simulation testbed. The proposed control system 

was compared with the real-world signal timing for the intersection provided by local 

jurisdictions. The simulation results revealed that the proposed model significantly 

improves traffic safety. Meanwhile, traffic efficiency slightly deteriorated. 

 

2.4 Vehicles' Longitudinal Control Systems Background  

The earliest vehicle longitudinal control systems, Cruise Control (CC), were developed in 

the late 1950s and 1960s. In the initial designs, the driver had to set the desired cruising 

speed by a dash-mounted dial, and the CC's role was to merely provide a full-throttle when 

the vehicle speed drops 6-10 mph below the desired speed. Since the 1980s, with the 

appearance of microprocessor technology, electronic-based controllers and interfaces were 

added to the CC system, improving their ability to provide driving comfort to some degree 

[34]. Still, no advantage in safety or capacity improvement was achieved. 

Adaptive Cruise Control (ACC) can be considered an extension to CC systems. In 

an ACC system, vehicle velocity is adjusted automatically to provide a specified distance 

to the preceding vehicle by controlling the throttle or the brake. ACC systems development 

in the research world dates to the 1960s, even before the term ACC was adopted. However, 

the earliest efforts failed because computers, communication, and sensor technologies were 

not catching up with advances in the research area.  By the 1980s, the transportation 

industry infrastructures were not meeting the rapid increment in the number of vehicles 

worldwide, causing more congestion, accidents, and air pollution. This issue forced 
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governmental, industrial, and research institutions to take severe measures to implement 

the ACC system. Coincided with technological advances, the implementation phase began 

almost simultaneously in Europe, the US, and Japan in 1986.  Currently, ACC is no longer 

a technical term but a prevalent marketing term and most automakers have equipped their 

products with ACC systems [35]. Almost 20 years of research on ACC systems have 

revealed that ACC impact on traffic flow and operation is highly variable and strongly 

dependent on the vehicles’ gap acceptance setting [36].   

With the emergence of CAVs and taking advantage of communication capabilities 

within the last decade, conventional ACC systems have evolved to CACC systems [37]. 

CACC-equipped vehicles can share information with other vehicles and the controller unit; 

this enables the controller to provide safer, smoother, and more natural responses [38]. 

Despite being designed to give the driver more comfort and convenience, CACC can 

increase traffic throughput and safety by allowing a shorter headway between vehicles and 

platoon formation [39]. Since connectivity between vehicles will be mandatory for the new 

cars in the USA shortly, CACC systems are attracting noticeable attention from academia 

and industry [40]. A noticeable number of transportation engineering studies are involved 

with developing CACC longitudinal control system and assessing its impacts on the 

transportation system. A literature review of the existing CACC models and their impact 

on traffic measures is presented in the following sections.  

2.4.1  Development and Assessment of CACC Models  

One of the first studies assessing the impact of CACC on traffic flow was conducted by 

Shaldover et al. [41]. In this study, the distribution of time gap between vehicles was 

collected from human-driven CACC and ACC-equipped vehicles in a field test. According 
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to the test results, in ACC mode, drivers were unlikely to adopt a gap smaller than what 

they chose in manual driving mode. A simulation platform was built in AIMSUN to 

compare ACC and CACC performance based on the car-following time gap derived from 

the field test. A simplified version of ACC and CACC car following models were deployed 

to reduce computational efforts. ACC car-following rules were complying with Nissan 

cars, and the CACC model was derived from [42], which has two main components:  

1) speed control mode, which kept the vehicle's speed close to the speed limit, and 2) the 

gap control mode, which maintained the desired gap between pair of cars. Simulation 

results on a single-lane straight freeway under different Market Penetration Rates (MPR) 

of CACC and ACC revealed that ACC is unlikely to improve highway capacity 

significantly. However, CACC can noticeably increase highway capacity in moderate to 

high MPRs, as the higher dynamic response gives the driver confidence to adopt a shorter 

gap setting.  

Van Arem et al. studied the impact of CACC on a four-lane highway merging 

section in the MIXIC microscopic traffic simulation model, which simulates traffic on link-

level in a network [43]. The CACC acceleration and distance control functions were 

derived from [44]. The acceleration was calculated based on distance and speed difference 

with the preceding vehicle. The clearance length was a function of the speed and 

deceleration capability of the preceding vehicle and the declaration capability of the target 

vehicle. This study revealed that a high MPR of CACC enhances highway capacity after a 

lane drop section with a relatively high volume. However, since the communication was 

limited to longitudinal control, with no control on the length and compactness of CACC 

platoons, CACC vehicles prevented other vehicles from cutting in.  
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Zonuzy et al. designed a CACC control logic with space-based model parameters 

to improve CACC platoons merging maneuver [45]. The idea was to assign each vehicle 

on the sub-stream to a pair of vehicles on the mainstream, then adjust the vehicle's time 

gap and velocity to accommodate the merging vehicle. The vehicles’ longitudinal control 

logic was based on the nonlinear systems dynamic theory, which guarantees string stability 

and single-vehicle stability [46]. Time gap profiles were provided to ensure vehicles 

maintain a safe time gap and a minimum deceleration distance. The control model inputs 

were pre-designed time gap versus location and velocity versus location profiles. The 

numerical simulation results revealed that the proposed logic ensures string stability for 

platooning CACCs. However, vehicles from the sub-stream needed to be positioned at the 

correct location between the mainstream sub-platoons to ensure minor errors would not 

appear at the merging point.  

Lee et al. developed a CACC control logic based on a Multi-Objective Optimization 

Problem (MOOP) approach [47]. Four objective functions were selected to be optimized, 

1) target time headway deviation, to control platoon evolution time and make sure the 

platoon is stabilized under traffic disturbances, 2) unsafe condition, to make each pair of 

cars attain the minimum required headway and secure safety, 3) vehicular Jitter, to 

minimize switch between acceleration and deceleration and avoid a drastic change in any 

of them and improve comfort, 4) fuel consumption, to reduce fuel consumption and 

environmental pollution. A genetic algorithm was deployed to optimize four main 

objective functions and additional constraints. The optimization output was used as control 

logic for platooning CACC vehicles by controlling their acceleration. Simulation Results 

of a single lane 14.5 km freeway segment in VISSIM software with three different target 
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time headway values, revealed that MOOP CACCs with a longer target time headway has 

better performance in time headway deviations. However, a shorter time headway provided 

more throughput. It was also revealed that MOOP keeps a good balance between all 

objective functions compared to the Single Objective Optimization Problem (SOOP) since 

the latter was limited to specific search space for optimization, resulting in biased results.  

2.4.2  SMD-based Longitudinal Vehicle’s Control Systems 

Developing car-following models based on Spring-Mass-Damper (SMD) system dates 

back to the late 1990s, and few researchers have deployed this model for the same purpose 

since then. In 1998 Eyre et al. used an SMD system with linear characteristics to evaluate 

platooning AVs' longitudinal string stability properties [48]. They considered two types of 

interactions: 1) unidirectional, each vehicle being connected only to its predecessor without 

being affected by its follower, and 2) bidirectional, each vehicle being coupled with both 

proceeding and following vehicles. Two different spacing policies were examined:  

1) constant space policy and 2) speed-dependent spacing policy. Simulation results of 

autonomous commercial trucks revealed that: 1) the unidirectional controller only achieves 

stability if it is used with the speed-dependent policy, 2) bidirectional controller with the 

constant spacing policy achieves stability only for a specific range of SMD model 

hyperparameters, 3) in case of speed-dependent spacing policy, the bidirectional controller 

showed the most efficient performance if the space is only adjusted with predecessor 

vehicle.   

Contet et al. studied a single platoon of three vehicles controlled by SMD logic, 

longitudinally and laterally [49]. Two simulation scenarios were developed to analyze 

trajectory spacing error: 1) while maneuvering to avoid an obstacle and 2) after 
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accommodating a merging vehicle. Simulation results revealed that the platooning vehicles 

could successfully avoid the obstacle, and no unsafe spacing error is produced in any 

scenario. A physical experiment was performed by running soccer robots in a prototype 

playground, and spacing errors were collected while facing speed constraints or moving in 

curved paths. The simulation results confirmed the flexibility and adaptability of the model. 

Real-world roadway circumstances were not considered in this study, either in the 

numerical simulation or the physical experiment. 

Munigety et al. performed a sensitivity analysis on the SMD model to its three 

primary hyperparameters, including mass, spring constant, and damper coefficient. They 

proved that the spring constant and damper coefficient could represent driver 

aggressiveness and vehicle stability accordingly [50]. It was also demonstrated that 

speeding capability reduces as the vehicle's mass increases. By simulating a single lane 300 

meters roadway in MATLAB, speed-flow diagrams for four different vehicle types 

(motorbike, auto-rickshaw, car, truck) were derived. It was revealed that as the vehicle size 

increases, the roadway capacity decreases.  

Bang et al. developed a strategy for CAV platoon evolution by reflecting swarm 

intelligence theory to the SMD model [51]. The swarm intelligence theory describes 

animals' clustering behavior, such as bird flocking and fish schooling. It also describes the 

molecular behavior of materials in different phases, including gas, liquid, and solid [52].  

In this study, the spring constant was defined as functions of traffic flow, and the damper 

coefficient was defined as a function of spring constant, mass, and vehicle response time 

functions. Simulation results revealed that the spring constant represents the tendency for 

platoon formation or clustering time, and the damping coefficient represents the stability 
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or oscillation of vehicles. Efficient spring constant and damping coefficient functions for 

minimizing clustering time in high flow circumstances or providing more freedom for lane 

changing in low volume circumstances were introduced.  

Bang et al. also studied platoon stability at merging sections [53]. The idea was to 

adjust the spring constant and damping coefficient for the cut-in vehicle and its follower to 

minimize the cut-in movement's impact. The spring constant and damping coefficient for 

the cut-in vehicle and its immediate follower were defined as functions of spacing and 

speed difference between the two vehicles. Consequently, the cut-in vehicle and its 

follower would maintain a lower spring constant, allowing them to adopt a temporary 

shorter spacing and higher damper coefficient, which reduces speed disturbance since the 

vehicle matches the leader's speed more quickly. The simulation results for merging 

sections showed that the speed and spacing variation and recovery time diminishes 

significantly with the proposed control.  

 

2.5 Chapter Summary 

The literature reviewed in this section emphasizes the tremendous impact of CAV’s 

communication capability in intersections control and CACC form. In this chapter, CAV-

based intersection control systems were clustered into three categories, including ML-

based approaches, and several studies in each cluster were reviewed. A systematic 

literature review on CAV-based intersection control systems proposed between 2008 and 

2019 reveals that only 4% of the proposed models are ML-based; this study also finds ML-

based approaches more promising than other methodologies [2]. Considering the RL as the 

third paradigm of ML and outstanding records of DRL in solving stochastic decision-
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making problems, several RL-based intersection control systems proposed for CAVs were 

reviewed in this section. Some studies have deployed DRL to optimize traffic light phasing 

and timing or processing aerial images to optimize traffic flow at the intersections. CAVs 

are expected to act as individual robots at an ultimate automation level, we could not find 

any literature on controlling individual CAVs based on DRL in traffic roadway 

circumstances.  

As the second section of the literature review, several developed CACC systems 

were reviewed, all approving the significant impact of CACC on traffic and environmental 

measures. Among existing CACC models, the SMD model is this study’s point of interest. 

The SMD model is based on classical physics and reflects the most critical dynamic aspect 

of vehicles, the mass; it also covers the platoons evolution process. There have been few 

SMD-based CACC control systems proposed up to this date. However, the SMD model 

has never been coded into commercial traffic simulation software for a more realistic and 

comprehensive traffic-oriented assessment. Moreover, we believe limitations such as 

maximum communication range and maximum platoon length should be set to the SMD 

model to make it more compatible with real-world circumstances.  

CACCs and CAV-based Intersection control systems play a pivotal role in CAVs' 

efficiency, and both are calling lots of attention in the CAV research area. And few CAV-

based intersection control developers have considered controlling a group of vehicles 

instead single. None of them have deployed a firm platooning logic and an automated 

intersection control system simultaneously.  
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CHAPTER 3 

3 DEVELOPMENT OF A CAV-BASED INTERSECTION  

CONTROL LOGIC AND PROOF OF CONCEPT TEST 

 

In this chapter, a DSCLS is developed to manage CAVs at the intersections. Followed by 

an introduction to RL, the proposed model development is elaborated. A proof-of-concept 

test is performed by application of the model to a single lane intersection and comparing 

the proposed model performance with other intersection control systems.  

 

3.1 An Introduction to Reinforcement Learning 

RL is based on the idea of learning by interactions with the environment. For example, 

when humans learn how to talk, walk, or handle a conversation, no explicit teacher instructs 

them. However, the feedback from the environment provides a wealth of information about 

causes and effects, consequences of actions, and what to do to achieve goals. RL is learning 

how to map situations to actions to maximize the cumulative reward. The learner is not 

told which action to take; instead, it must discover which actions yield the most reward by 

trying them. An action may affect the immediate reward, the future states, and subsequent 

rewards. Considering supervised and unsupervised learning as two paradigms of ML, the 

RL is considered the third paradigm, the closest to humans and other animals' learning. RL 

algorithms were initially inspired by biological learning systems. Exploration (trial-and-

error search) and delayed reward are RL's two most prominent features. 

 One of the challenges that arise in RL, and not the other two ML approaches, is the 

trade-off between exploration and exploitation. To maximize the reward, an agent or 

decision-maker has to take the actions that have been tried before and is found to be 
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effective in producing rewards (exploitation). However, the agent has to try new actions to 

discover such actions (exploration). The challenge is that neither exploration nor 

exploitation can be followed exclusively without failing the task. There is noticeable 

literature in mathematics in solving the exploration-exploitation dilemma, and the problem 

has remained unsolved yet. Another critical feature of RL is that it considers the ultimate 

goal of an agent in contrast to most other approaches that consider sub-problems without 

addressing how the solution might fit in a larger picture and be finally helpful [54].  

 Before offering any solution, an RL problem needs to be classically formulated in 

a precise theoretical form. Markov Decision Processes (MDPs) are a classical 

formalization of sequential decision making, capable of reflecting all RL characteristics, 

including delayed reward and the trade-off between immediate and delayed reward [8]. 

3.1.1 Finite Markov Decision Process 

In the MDP, the agent takes actions, the environment responds to these actions, and 

presents new situations and rewards to the agent. The agent’s goal is formalized in terms 

of unique signals called rewards. The agent seeks to maximize the reward over a series of 

interactions with the environment in discrete time steps (t). Interactions between the agent 

and environment in the MDP are shown in Figure 3.1. 

 

Figure 3.1 The agent-environment interactions MDP. 

Source: [54]. 
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In a finite MDP, the sets of States, Actions, and Rewards (S, A, R) have finite 

elements. So, as shown in Equation (3.1), the random variables 𝑅𝑡 and 𝑆𝑡 follow a discrete 

probability distribution, depending only on the preceding state and action.  

 

𝑝(𝑠 ,, 𝑟 ,|𝑠, 𝑎) ≐ Pr {𝑆𝑡 = 𝑠
,, 𝑅𝑡 = 𝑟, | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} (3.1) 

 

3.1.2 Returns, Episodes, and Learning Process 

Assuming the sequence of rewards received by an agent after several time steps (t) is 

denoted as 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, ….  𝑅𝑇, the goal is to maximize the “expected return” where 

the return can be expressed as a specific function of rewards sequence and the simplest 

case, the sum of rewards, as shown in Equation (3.2).  

 

 𝐺𝑡 ≐ 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 +⋯  𝑅𝑇 (3.2) 

 

Some agent-environment interactions naturally break into episodes (episodic 

tasks), and T is the final time step of an episode which is called a “terminal state”. For 

example, a terminal state could be winning or losing a game, and the next episode starts 

independently of how the previous one ended. However, in some cases, the agent-

environment interaction does not naturally break into episodes, such as an ongoing CAV 

control system, which is a “continuing task”. The return for a continuing task with T = ∞, 

is expressed in Equation (3.3). 

 

𝐺𝑡 ≐ 𝑅𝑡+1 + ϒ𝑅𝑡+2 + ϒ
2 𝑅𝑡+3 +⋯  = ∑ ϒ𝑘

∞

𝑘=0
𝑅𝑡+𝑘+1 (3.3) 
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ϒ is a parameter called “discount rate” ranging from zero to one; ϒ defines the 

present value of future rewards. If ϒ = 0, the agent is myopic, only concerned with 

maximizing the immediate reward. As ϒ approaches one, the agent cares more about future 

rewards and becomes more farsighted. Return at each time step can be calculated as appears 

in Equation (3.4). According to this equation, the instant reward and the next step’s return 

value are required to calculate the return value at each step.  

 

𝐺𝑡 ≐ 𝑅𝑡+1 + ϒ𝑅𝑡+2 + ϒ
2 𝑅𝑡+3 +⋯   

≐ 𝑅𝑡+1 + ϒ(𝑅𝑡+2 + ϒ 𝑅𝑡+3 + ϒ
2 𝑅𝑡+4 +⋯) 

     ≐ 𝑅𝑡+1 + ϒ𝐺𝑡+1 

 

 

(3.4) 

 

The main idea behind RL is to run an experiment several times (episodes) to learn 

the return value for each action in a specific state. The requirement to achieve this goal is 

to balance between exploration and exploitation, which is applied by a parameter called 

epsilon (ε). Thus, the probability of taking a random action (exploration) at each step equals 

ε, and the probability of taking actions based on the learned return values of different 

actions equals (1- ε). Therefore, the ε value needs to be decayed over episodes to make the 

agent gradually shift from exploration to exploitation. 

 

3.2 Reinforcement Learning and Neural Networks  

In conventional RL, the return values for possible actions in each state are saved in multi-

dimension matrices. Each matrix cell is related to a specific state and a unique action taken 

at that state. Therefore, the matrix expands as the agent explores more in the environment. 



 

33 

However, this approach is not practical in complicated environments since lots of space is 

required to save all state-action combinations. Moreover, the agent will take a completely 

random action in case of facing an unprecedented state. In DRL, the look-up tables are 

substituted with neural networks. The neural network inputs are the state, and the output is 

an estimation of each possible action’s value. The neural network weights are updated as 

the agent keeps exploring, and that’s how the learning task is accomplished. Compared to 

RL, the DRL can deal with more complex environments since it will face unprecedented 

states by estimating the return value. Several methods, including Reinforce, SARSA, and 

DQN, are proposed to perform the DRL process. In this study, DQN is used. 

3.2.1 Deep Q-Networks  

The DQN is an algorithm proposed by Minh et al. [55] that estimates the expected return 

using Temporal Difference (TD) learning. DQN formulation for estimating return values, 

called Q-function, is presented in Equation (3.5).  

 

𝑄(𝑠, 𝑎) = 𝑟 +  ϒmax𝑄(𝑠 ,, 𝑎,) (3.5) 

 

Where:  

𝑄(𝑠, 𝑎), is called Q-value and defines how valuable a state-action pair is. 

 

In the DQN approach, states are forwarded to a neural network, and the neural 

network's output is an estimation of Q-values for all possible actions in the current state. 

The training occurs by updating the neural network weights based on having a batch of 

recent historical data (states and actions) as features, and target Q-values for each of them, 
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calculated based on Equation (3.5). A high-level training process of a DQN agent is shown 

in Figure 3.2. When the agent is trained, the leftmost loop in Figure 3.2 would be 

eliminated. 

 

Figure 3.2 High-level training process of a DQN agent. 

The training minimizes the difference between the last estimated Q-values and the 

target Q value. However, performing this task is difficult as the target Q-value constantly 

changes during the training course. To solve this issue, a lagged copy of the Q-network 

called the target network calculates the target Q-values to solve this issue and make the 

neural network’s training process more stable. The target neural network parameters will 

be updated with a specific frequency [8]. 

The Pseudocode presented below helps to understand the general process of 

training an agent in the DQN approach. Several hyperparameters need to be adjusted in the 

DQN training process, and finding a good combination of all parameters requires several 

training trials.  
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Initialize the number of epochs(EP) 

Initialize the number of steps per epoch(STP) 

Initialize discount(ϒ) 
Initialize(ε) 

Initialize ε-decay Factor(DF) 

Initialize replay memory size(RMS) 

Initialize minimum replay memory size(MRMS) 

Initialize mini-batch size(MBS) 

Initialize neural networks 

Initialize target neural networks 

Initialize target neural network update frequency(F) 

for i = 1 … EP: 

 Gather and store RPL experiences 

 for j = 1 … STP: 

  if (0 < random value < 1) > ε: 

   take an action based on trained network 

(exploitation) 

  else: 

   take a random action (exploration) 

  if the number of stored experiences > MRMS: 

   Sample a random MBS size of experiences from RMS 

   for k = 1 … MBS: 

    Calculate target Q-values for each example  

    (Equation (3.5)) 
    calculate the loss (Mean Absolute Error) 

   if a terminal state (Each epoch’s last state): 

    Update the neural networks’ weights  

ε = ε * DF 

 if EP % F == 0: 

  Update the target neural networks’ weight  

 

 

3.2.2 Multi-agent DQN  

Most real-world RL applications such as autonomous driving involve more than a single 

agent, which falls into the realm of Multi-Agent Reinforcement Learning (MARL). The 

MARL addresses the sequential decision-making problem of multiple agents operating in 

a common environment, optimizing the long-term return by interacting with other agents 

and the environment. MARL algorithms could be either fully cooperative, fully 

competitive, or mixed. Each agent tries to optimize the common long-term return in a 

cooperative setting. However, in a competitive setting, each agent tries to maximize its 
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own return, and the summation of all agents’ returns would be zero [56]. Considering an 

intersection as an environment and vehicles approaching it as agents leads us to a 

cooperative setting to optimize the overall return at the intersection.  

This study deploys DQN as the optimization tool. In Multi-Agent Deep Queue 

Learning (MADQL) approach, an agent can be either in an independent state (which does 

not include any interaction with other agents) or a coordinated state (which requires 

interactions with other agents). In the case of being in an independent state, the agent 

receives an individual reward (Equation (3.6)). In a coordinated state, the agent would 

receive a joint reward (Equation (3.7)), and the total distributed reward at each step is 

called global reward (Equation (3.8)).  

 

𝑟(𝑠𝑖 , 𝑎𝑖 ) = 𝑟𝑖  (3.6) 

𝑟(𝑠𝑗 , 𝑎𝑗) = ∑𝑟𝑗𝑏

ℎ

𝑏=1

 

(3.7) 

𝑅(𝑆, 𝐴) = ∑𝑟(𝑖 𝑜𝑟 𝑗) 𝑏

𝑁

𝑏=1

 

(3.8) 

Where: 

Subscripts 𝑖 refer to an agent being in an independent state,  

Subscripts 𝑗 refer to an agent being in a joint state,  

ℎ is the number of agents involved in a joint state, 

N is the total number of agents in an environment,  

R is the global reward. 
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Referring to the nature of RL, which considers future states and rewards, while 

updating the current state’s Q-value, a transition from an independent state to a coordinated 

state or vice versa requires specific settings for updating Q-value in MADQL. The 

transition could also be from a joint state to another joint state, but with different agents 

involved, as shown in Figure 3.3. 

 

Figure 3.3 Potential transition types in MADQL. 
Source: [57]. 

Kok et al. proposed formulations for updating Q-values for possible transition types 

in a conventional Q-learning approach [57]. However, the formulas need to be adjusted to 

be compatible with deep Q-learning. The adjustment includes removing the learning rate 

factor from the formulas since the learning rate is already included in neural network 

settings. In the following, the adjusted updating Q-values formulas for three possible types 

of transitions are presented. 

- Type 1: when an agent moves from a coordinated state to another coordinated 

state or from an independent state to another independent state, the coordinated 

or independent Q-values are updated by Equation (3.9).  

 

𝑄(𝑠, 𝑎)𝑖 𝑜𝑟 𝑗 = 𝑟(𝑠, 𝑎)𝑖 𝑜𝑟 𝑗 +  ϒmax𝑄(𝑠
,, 𝑎,)𝑖 𝑜𝑟 𝑗 (3.9) 
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- Type 2: when an agent moves from a coordinated state to an independent state, 

the joint Q-values are updated by Equation (3.10). 

 

𝑄(𝑠, 𝑎)𝑗 =∑[𝑟(𝑠, 𝑎)𝑗 +  ϒmax𝑄(𝑠
,, 𝑎,)𝑖]

ℎ

𝑗

 

(3.10) 

 

- Type 3: when an agent moves from an independent state to a coordinated state, 

the independent Q-values are updated by Equation (3.11).  

 

𝑄(𝑠, 𝑎)𝑖 = [𝑟(𝑠, 𝑎)𝑖 +  ϒ
1

ℎ
max𝑄(𝑠,, 𝑎,)𝑖 ] 

(3.11) 

 

3.3 Decentralized Sparse Coordination Learning System  

for CAVs’ Management at the Intersections 

The testbed for model development is a single-lane intersection with no turning 

movements. Traffic volume production and roadway configurations are set up in the 

VISSIM software. The DSCLS application is developed in Python, and communication 

between the Python application and the simulation software is established through VISSIM 

Component Object Model (COM) Interface. The developed control system is called 

DSCLS since each vehicle has its own control logic (decentralized), and coordination with 

other agents is not required in all steps (sparse coordination). 

3.3.1 Testbed Settings and Reward Function Development 

The intersection and approaching sections are divided into 2.5 × 2.5 m grid areas, as shown 

in Figure 3.4. At the beginning stages of the training process, agents' exploration-oriented 

actions would cause very long queues. Therefore, each intersection leg is extended 2 km 

upstream, so all demanding vehicles would have a chance to enter the network and form a 

queue. The DSCLS controls vehicles’ manoeuvres from 50 meters upstream of the 
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intersection. Assuming a vehicle length of 4.90 meters (Ford Fusion 2019), each vehicle 

would occupy either two or three cells at each time step. For instance, vehicles 1 and 2 in 

Figure 3.4 occupy 2 and 3 cells accordingly.   

 

Figure 3.4 The intersection environment. 

The first vehicle in each approaching direction tries to reserve its desired cell for 

the next step. The number of desired cells describes the moving intention of each vehicle 

at each time step and is calculated based on the current speed and stopping distance of 

vehicles. Based on classical physics formulas, as shown in Equation (3.12),  the survey 

distance equals (𝑉∆𝑡 + 
1

2
𝑎∆𝑡2 ) if the vehicle is moving slower than the maximum speed 

and can still accelerate, or it equals (𝑉∆𝑡) if the vehicle is already moving with the 
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maximum speed, and the stop distance equals (
𝑉2

2𝑎
). The acceleration and deceleration rates 

are set to 3.5 and 7 𝑚/𝑠𝑒𝑐2. 

 

𝐶𝑠 =  

{
 
 

 
  max ([

𝑉2

2𝑎
] , [𝑉∆𝑡 + 

1

2
𝑎∆𝑡2])    𝑉 < 𝑉𝑚

max([
𝑉2

2𝑎
] , [𝑉∆𝑡])                      𝑉 = 𝑉𝑚

 

(3.12) 

Where: 

 ∆𝑡: each step’s time length 

 V: current speed 

 𝑎: acceleration or deceleration capability  

 

If a common desired cell is detected between vehicles, they will enter a coordinated 

state; otherwise, they would be in an independent state. For example, vehicles 1 and 2 in 

Figure 3.4 are in a coordinated state since they try to reserve common cells ahead of them.  

The state of each leading vehicle includes its current speed, current cell, desired cells, and 

queue length behind it. Then, the state of each vehicle is forwarded to the Q-network. The 

output Q-network is either acceleration or deceleration for a leading vehicle to eliminate 

any collision and optimize the global reward. Equations (3.13) and (3.14) present the 

state and possible actions.  

 

𝑆𝑡𝑎𝑡𝑒𝑖 = (𝑆𝑝𝑒𝑒𝑑𝑖 , 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑒𝑙𝑙𝑠𝑖 , 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐶𝑒𝑙𝑙𝑠𝑖𝑄𝑢𝑒𝑢𝑒𝑖) (3.13) 

𝐴𝑐𝑡𝑖𝑜𝑛𝑖 = (−𝑎𝑐𝑐, +𝑎𝑐𝑐,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑐𝑢𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑) (3.14) 
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If an idle vehicle receives a declaration order or a vehicle moving with maximum 

speed receives an acceleration demand, it just keeps idling or moving with the maximum 

speed; the Q-network is expected to learn this behaviour. The maximum speed is 40.2 

km/hr, and the simulation resolution is set to 1sec/step, meaning that each vehicle would 

reserve a maximum of 6 pixels for the next step. However, the communication range is set 

to 50-meter upstream in each direction, so the vehicles would take advantage of being in 

independent stats at the upstream. As mentioned earlier in this study, the RL optimization 

logic is not based on the instant reward but the total return. Therefore, a vehicle in an 

independent state could receive a deceleration order to optimize future sequences and 

maximize the overall return, and being in an independent state in this environment does 

not necessarily result in maintaining the maximum speed 

The return for each leading vehicle at each time step is the summation of the delay 

of the leading vehicle and its followers. The delay value for each approach is calculated 

based on Equation (3.15).  

 

𝑟(𝑠𝑡𝑒𝑝, 𝑎𝑝𝑝𝑟𝑎𝑜𝑐ℎ) =  − ∑(∆𝑡 − 
L𝑖
V𝑚
)

𝑛

𝑖=1

 
(3.15) 

Where: 

 ∆𝑡: Step size (time passed at each step)  

 L𝑖: Surveyed distance  

 V𝑚: Maximum allowable speed 
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3.3.2 Training Settings and Learning Performance  

Four neural networks with different layer structures are developed to take actions in all 

possible states, including 1) coordinated state of 4 vehicles, 2) coordinated state of 3 

vehicles, 3) coordinated vehicle of 2 vehicles, and 4) independent state. In addition, a 

lagged copy of each neural network is also developed to estimate target Q-values (as 

explained in Section 3-3-1. Since the multi-agent Q-network needs information not only 

about current states but also the future states, the replay memory is updated with more 

detailed data about each leading vehicle at each time step, as shown below:  

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑅𝑒𝑤𝑎𝑟𝑑, 𝐹𝑢𝑡𝑢𝑟𝑒 𝑗𝑜𝑖𝑛𝑡 𝑜𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒) 

Several combinations of hyperparameters and neural network structures are 

examined by running numerous training trials. The optimal values of hyperparameter 

settings are presented in the following. Traffic volume is set to 1,800 and 1,200 Veh/hr on 

major and minor streets. Vehicles are stochastically generated with a constant random seed 

by VISSIM software for 900 seconds. Initial Epsilon (ε) value is set to 1, meaning that the 

agents are in a full exploration mode by taking random actions, which may cause long 

queues. Therefore, intersection legs are extended 2 km in each direction to reflect the 

potential queue length. The total epoch length is set to 1500 seconds to ensure that all 

generated vehicles have evacuated the intersection at the end of each epoch. The ε decays 

at the end of each epoch by being multiplied by the ε – decay factor, which gradually 

reduces the chance of taking random actions (transition from exploration to exploitation). 

The simulation resolution is set to 1 step/sec, and the random seed is kept constant 

during all training iterations. As mentioned in the methodology section, to improve the 

DQN performance, a lagged copy of the neural network estimates the target Q-values. The 
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target neural network parameters are updated every five epochs (target network update 

frequency). The replay memory size, which defines how many of the latest experiences 

will be stored in the memory to be used for training, is set to 10,000. The minibatch size, 

which defines the size of random data set from replay memory to be forwarded to the neural 

network, is 32. The training process hyperparameter settings appear in Table 3.1. 

Table 3.1 Training Process Hyperparameters Setting  

 

The ε, Mean Absolute Error (MAE), and global reward changes in the training 

process are shown in Figure 3.5 to Figure 3.7, all three graphs’ Values are smoothed by 

0.98 to remove noises and help readers understand the general training process.  
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Figure 3.5 Transition from exploration to exploitation (decaying ε ) in the training 

process. 

 

 

Figure 3.6 MAE change for four neural networks over learning progress. 
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Figure 3.7 Global reward changes over learning progress. 

According to Figure 3.6 and Figure 3.7, the MAE for all four neural networks is 

reduced over the training process. Furthermore, the global reward is decreased in the same 

way, meaning that the agent is being trained.  

 

3.4 Proof of Concept Test 

The trained model is compared with three other control systems, including: 

1) Fixed traffic signal, 2) actuated traffic signal, and 3) Longest Queue First (LQF) control 

logic. The LQF control algorithm is developed by Wunderlich et al. [58]. In this algorithm, 

the phases have no particular order and are triggered only based on queue length. The 

simulation network is a 4-way intersection, having a single lane at each approach, as shown 

in Figure 3.4. The speed limit is set to 40.2 km/hr, and the intersection legs are extended 

2km upstream at each direction so that the DSCLS can monitor potential long queues at 

the upstream. Three different volume regimes mentioned below are considered for 

evaluation purposes:   
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1. Moderate volume: consists of 600 and 400 Veh/hr on the major and minor streets 

accordingly. This volume combination leads to Level Of Service (LOS) B for the 

major street and LOS C for the minor street at the testbed intersection. 

2. High volume: consists of 800 and 600 Veh/hr on the major and minor streets 

accordingly. This volume combination leads to LOS D for both major and minor 

streets.   

3. Extreme volume: consists of 1000 and 700 Veh/hr on the major and minor streets 

accordingly. This volume combination leads to LOS F or congestion for both major 

and minor streets.   

The LOS is calculated based on HCM 6th edition in VISTRO software, assuming the 

intersection operates under fully actuated traffic signals. 20 simulation runs with different 

random seeds, and a length of 20 minutes is run for each scenario. The simulation results 

are presented in the following sections.   

3.4.1 Target Traffic Measures Comparison  

The reward value in DSCLS in this study is expected to reflect the delay value (Equation 

(3.15)). Therefore, the delay is expected to be improved compared to the other control 

systems. All traffic measures’ data collection section is extended from the intersection area 

to 200 meters upstream for each approach. According to Figure 3.8, the DSCLS is 

noticeably effective in delay reduction in all volume regimes compared to all other control 

systems, specifically in lower volume regimes. Delay reductions of 79%, 32%, and 19% 

are gained compared to the second-best control system in moderate, high, and extreme 

volume regimes accordingly. 
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Figure 3.8 Average delay comparison for proof-of-concept test. 

 Followed by delay reduction, the travel time is expected to be improved. According 

to the average travel time values shown in Figure 3.9, 35% and 17% travel time reductions 

are gained compared to the LQF control system in moderate and high-volume 

circumstances. The proposed control system outperforms the actuated control system with 

a 13% travel time reduction in the extreme volume regime.  
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Figure 3.9 Average travel time comparison for proof-of-concept test. 

 The impact of the DSCLS model on maximum throughput is also examined. In this 

experiment, volumes of 2400 Veh/hr and 1200 Veh/hr are applied on the major and minor 

streets. The simulation time is set to 1 hr, and volume input remains active till the end of 

the simulation period. Detectors are placed at intersection discharge sections, and the total 

discharged volume is recorded. According to the results appearing in Figure 3.10, the 

DSCLS outperforms all other intersection control systems in this measure. A maximum 

throughput increment of 9% is gained compared to the second-best intersection control 

system in this experiment.  
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Figure 3.10 Maximum throughput comparison for proof-of-concept test. 

 

3.5 Emission, Safety and Fuel Consumption  

Along with targeted traffic measures, emission, safety, and fuel consumption are also 

evaluated. Fuel consumption and CO2 emission are calculated based on the VT-Micro 

model. This model can estimate emission and fuel consumption for individual vehicles 

based on instantaneous acceleration and speed [59]. The average fuel consumption results 

are shown in Figure 3.11; fuel consumption reduction of 17%, 8%, and 5% is gained 

compared to the second-best control systems in moderate, high, and extreme volume 

regimes accordingly. The average CO2 emission results are shown in Figure 3.12; an 

emission reduction of 16%, 7%, and 5% is gained compared to the second-best control 

systems in moderate, high, and extreme volume regimes accordingly. Despite acceleration 

and deceleration rates for DSCLS being limited to the maximum values only, fuel 

consumption and emission are still less than other control systems.  
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Figure 3.11 Average fuel consumption comparison for proof-of-concept test. 

 

 

Figure 3.12 Average CO2 emission comparison for proof-of-concept test. 

 

Among different Surrogate Safety Measures (SSM), the Post Encroachment Time 

(PET) is a well-fitting measure to identify safety threats for crossing vehicles at the 

intersection since it represents the time between the departure of the encroaching vehicle 
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from the conflict point and the vehicle's arrival with the right-of-way at the conflict point. 

For rear-end crash risk assessment, another SSM named Time To Collison (TTC) has been 

used [60]. Safety analysis is performed in SSAM software which executes a statistical 

analysis of vehicle trajectory data output from microscopic simulation models.  

The comparison of PET for different traffic control systems is presented in Figure 

3.13. According to the figure, DSCLS and LQF have almost equal PET, which is expected 

since both are pixel reservation-based. The PET increases by 23% in DSCLS and LQF 

compared to the actuated traffic lights in extreme volume conditions. However, less 

improvement is observed in moderate and high-volume regimes. 

 

Figure 3.13 Average PET comparison for proof-of-concept test. 

 According to the TTC results, shown in Figure 3.14, the TTC is decreased by 10% 

in all volume regimes for pixel reservation-based control systems, including LQF and 

DSCLS, compared to the actuated traffic light. However, the increment in TTC may not 
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result in the chance of rear-end accident increment due to the shorter processing time of 

CAVs compared to human-driven vehicles. 

 

Figure 3.14 Average TTC comparison for proof-of-concept test. 

 

3.6 T-Test Result 

A t-test is performed between DSCLS and the other three control systems for all collected 

measures. According to the t-test results shown in Table 3.2, all measures between DSCLS 

and other three intersection control systems in all volume regimes are statistically 

significant except safety measures for both pixel reservation-based control systems, 

including TTC in all volume regimes and PET in the extreme volume regime.  
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Table 3.2 P-value for T-test Results – Proof of Concept Test 

 Fixed Traffic Light  

  Moderate volume 

 Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 
D

SC
LS

 
<0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 Actuated Traffic Light  

  Moderate volume 

 Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

D
SC

LS
 

<0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 LQF 

  Moderate volume 

 Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

D
SC

LS
 

<0.05 <0.05 - <0.05 <0.05 <0.05 >0.05 

High Volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 - <0.05 <0.05 <0.05 >0.05 

Extreme volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 >0.05 >0.05 
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3.7 Chapter Summary 

A DSCLS based on DRL was developed in this chapter to control CAVs at the 

intersections. Followed by elaboration of the methodology and development process of the 

model, a simulation testbed was set up for proof-of-concept test purposes. The developed 

model was compared with three counterpart intersection control systems: fixed traffic light, 

actuated traffic light, and LQF in three different volume regimes. The simulation results 

revealed that the proposed model outperforms other control systems in traffic measures, 

specifically in moderate and high volume regimes. Despite improvements in traffic 

measures, the proposed model shows close performance to other control systems (except 

fixed traffic lights) in environmental and safety measures.  

 In Chapter 5, the DSCL will be applied to a more realistic intersection, including 

several lanes and turning movement, which involves reconfiguring the model and running 

a new training course. The model will also be applied to a corridor of four intersections.  
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CHAPTER 4 

4 DEVELOPMENT OF A PLATOONING POLICY FOR  

CAVs AND PROOF OF CONCEPT TEST 

 

In this chapter, an SMD-based platooning logic is developed for CAVs. The model 

development process is elaborated by describing the SMD model formulations, parameters, 

and their impacts on driving behavior. Simulation testbeds with different scenarios are 

developed for proof of concept test purposes.   

 

4.1  SMD System and Vehicle Platooning   

The SMD model describes how objects reduce their oscillations based on spring constant, 

damping coefficient, and object mass [61]. Figure 4.1 illustrates the SMD system for n 

objects or vehicles. 

 
Figure 4.1 A n-body SMD system illustration. 
Source: [61]. 

It is assumed that the friction between masses and surface is negligible, and each 

mass is connected only to its predecessor and not being affected by its follower. Based on 

these assumptions, the forces acting on the leading mass and following masses in a string 

are expressed in Equations (4.1) and (4.2) [61]. 
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m1x1
.. = c(vd − 𝑥1

. )      (4.1) 

𝑚𝑛𝑥𝑛
.. = 𝑘𝑛−1(𝑥𝑛−1 − 𝑥𝑛 − 𝑙) + 𝑏𝑛−1(𝑥𝑛−1

. − 𝑥𝑛
. )

=  𝑘𝑛−1∆𝑥𝑛 + 𝑏𝑛−1∆𝑥𝑛
.  

(4.2) 

Where:  

𝑚𝑖: mass of ith vehicle in the platoon (i = 1 for the lead vehicle) 

𝑥𝑖 , 𝑥𝑖
. , 𝑥𝑖

.. ∶ position, speed, and acceleration of ith vehicle 

𝑣𝑑 :  desired speed of the lead vehicle  

𝑐: acceleration coefficient  

𝑘𝑖 , 𝑏𝑖 : spring constant and damping coefficient for the ith vehicle 

𝑙:  Original, unstretched spring length  

 

Parameter 𝑐 controls the acceleration or deceleration rate of the leading vehicle. 

Based on the assumption that the maximum acceleration is attained when 𝑥1
. = 0, and the 

maximum deceleration is attained when the lead vehicle wants to stop (𝑣𝑑 = 0); 

constraints (4.3) and (4.4) are derived for the 𝑐 parameter. 

 

 𝑐 ≤  
𝑚1𝑎𝑚𝑎𝑥
𝑣𝑑

 (4.3) 

𝑐 ≤  
𝑚1𝑑𝑚𝑎𝑥
𝑥1
.  

(4.4) 

 

The variables 𝑎𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥 are the maximum acceleration and deceleration 

capability of vehicles. According to the characteristics of Ford Fusion, 2019 Hybrid, 

presented in Table 4.1 [62], 𝑎𝑚𝑎𝑥 equals to 3.7 𝑚/𝑠𝑒𝑐2, and 𝑑𝑚𝑎𝑥 equals to 9.023 𝑚/𝑠𝑒𝑐2. 

Inserting 𝑎𝑚𝑎𝑥, 𝑑𝑚𝑎𝑥, 𝑚, and assuming desired speed equals to 30 m/sec,  𝑐𝑚𝑎𝑥 will be 
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equal to 229.67. To achieve the desired speed in the shortest possible time, the maximum 

value for 𝑐, based on Equations (4.3) and (4.4) is assumed in this study.  

Table 4.1  Ford Fusion 2019 Hybrid Specifications  

Specification Value 

Weight  1676 kg (3695 Ib) 

Length 4.87 meter (191.7 inches) 

Acceleration time from zero to 60 mph 7.3 sec 

Braking distance 70 mph to zero mph 178 ft 

Source: [62]. 

The unstarched spring length (𝑙) represents the minimum neutral spacing for speed 

𝑣 and is calculated based on Newell’s simplified car-following model [63]. The 𝑙 value’s 

function is presented in Equation (4.5). Considering 𝑙 as unstarched spring length or desired 

spacing for a specific speed, the term (𝑥𝑛−1 − 𝑥𝑛 − 𝑙) in the model represents deviation 

from desired spacing.  

 

𝑙 = 𝑠0 +  𝜏 × 𝜐  (4.5) 

Where:  

𝑠0 : minimum spacing between two vehicles  

𝜏 : response/processing time  

 

The CAVs processing time (𝜏) ranges from 0.5 to 1.0 sec [5], while Human-Driven 

Vehicles (HDV) reaction time ranges from 1.5 to 2.0 sec [64]. The parameter 𝑠0 represent 

minimum required spacing and is assumed to be 7 meters, which provides an approximate 

bumper to bumper space of 2 meters for medium-size sedan cars in idling condition.  
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4.2 Characteristics of Spring Constant and Damping Coefficient  

The spring constant, 𝑘𝑖  represents the spring stiffness. A spring with a larger 𝑘 is harder to 

stretch or shrink, but once stretched or shrunk, there is a greater force to recover its original 

length. Thus, a large 𝑘 represents a stiff spring with a high body acceleration (high 

frequency). In contrast, a small 𝑘 represents a limp spring with low acceleration (low 

frequency). The spring constant in the SMD model is coefficient of ∆𝑥𝑛 and is regarded as 

a CAV’s sensitivity to deviation from its desired spacing with the ago vehicle.  

The damping coefficient, 𝑏𝑖 represents the degree of resistance that alleviates the 

spring force. The damping force defines how a following CAV approaches its predecessor 

and adjusts its speed based on the ago vehicle’s speed. For example, with a large b, it takes 

longer for a following vehicle to attain the desired distance, but the speed might be adjusted 

faster. Meanwhile, with a smaller b, a CAV attains the desired distance faster by oscillating 

in location and speed. The damping coefficient in the SMD model is the coefficient of 

deviation from the preceding vehicle’s speed and can be regarded as a CAV’s sensitivity 

to speed deviation from its ago vehicle.      

Harmony between the spring constant and damping coefficient is essential for the 

stability and efficiency of CAV platooning. These parameters' critical values lead to the 

shortest time to attain L without collision or oscillations, called critical damping. Two more 

possible damping types are 1) under-damping, which is not desirable since vehicles would 

oscillate back and forth before reaching 𝑙, and 2) over-damping, which takes longer to reach 

L, but there is no oscillation. According to [51], condition of critical-damping and over-
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damping can be achieved if b ≥ 𝑚𝑎𝑥 (
𝑚

𝜏
, √

𝑘

𝑚
), and the system would be critical-damping 

if b =  𝑚𝑎𝑥 (
𝑚

𝜏
, √

𝑘

𝑚
).  

If we assume that ∆𝑥 . = 0, meaning that the force is only coming from the spring, 

the upper bound for 𝑘, which provides the greatest spring force, and makes vehicles cluster 

quickly is obtained as follows: 

 

𝑚𝑥 ..  =  𝑚𝑎𝑚𝑎𝑥 = 𝑘∆𝑥 

𝑘 =  
1

∆𝑥
 𝑚𝑎𝑚𝑎𝑥 

 

Therefore, 

0 ≤ 𝑘 ≤  
1

∆𝑥
 𝑚𝑎𝑚𝑎𝑥 

(4.6) 

 

4.3 Developing CAVs’ Platooning Logic Based on SMD Model  

In this study, a maximum communication range equal to 4𝑙 is assumed for CAVs. So, as 

the speed increases, the communication range increases too, and a CAV only establishes 

platoon-oriented communication with its predecessor vehicle detected in the 

communication range. Each platoon is divided into several sub-platoons with a maximum 

length of four vehicles to avoid very long platoons and accommodate potential merging 

vehicles. The leading vehicle of each platoon communicates with the last vehicle of the 

predecessor platoon, and inter-platoon desired spacing is set equal to 3𝑙. 
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The maximum value for spring constant and critical value for damper coefficient, 

presented in Equations (4.7) and (4.8), are used in the model to minimize clustering time.  

 

𝑘 =  
1

∆𝑥
 𝑚𝑎𝑚𝑎𝑥 

(4.7) 

b  = 𝑚𝑎𝑥 (
𝑚

𝜏
, √

𝑘

𝑚
) 

(4.8) 

 

Different vehicle types in the model based on their platooning circumstances are 

shown in Figure 4.2.  

Vehicle 1: leading vehicle of a platoon with having no ago vehicle in the 

communication range. Equation (2.1) defines this vehicle's acceleration, and it keeps 

accelerating to maintain the desired speed as long as it does not detect any other vehicle in 

the communication range. 

Vehicle 2 and 4: following vehicles in a sub-platoon, maintaining the intra-platoon 

desired spacing (𝑙), and the acceleration is derived from Equation (4.2).  

Vehicle 3:  leading vehicle of a sub-platoon, either its sub-platoon or its predecessor 

sub-platoon, has reached the maximum platoon length. So, this vehicle maintains inter-

platoon spacing (3𝑙) with its ago vehicle within the communication range.  

Vehicle 5: having no vehicle in the communication range and maintaining its desired 

speed is based on Equation (4.1). 

 

Figure 4.2 The SMD-based platooning system details. 



 

61 

4.4 Microsimulation Testbed Development  

The SMD-based CAVs’ platooning logic is developed as a Python application integrated 

with VISSIM traffic microsimulation software. The VISSIM stochastically produces 

vehicles and directs them through specified routes. It also controls potential human-driven 

vehicles based on the Wiedemann 99 car-following model [65], and collects traffic 

measures such as delay and travel time. The python program collects vehicle data such as 

location and speed, establishes communication between vehicles, and controls CAVs’ 

acceleration based on the SMD model.  The Common Object Model (COM) interface 

allows the python program to access the simulation network's data and objects during 

simulation. Adjusting editable objects and variables such as traffic volume and individual 

vehicle’s speed is also possible in the COM interface. Integrating VISSIM and Python 

through the COM interface is shown in Figure 4.3.  

 

Figure 4.3 Integration of VISSIM and Python. 

 

4.5 Proof of Concept Test 

Several scenarios are developed for proof of concept test purposes. Developed scenarios 

and their results are described in the following sections. 
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4.5.1 Spacing Error  

For initial evaluation of the model, platooning vehicles are exposed to a sudden 

deceleration scenario, and the average spacing error between CAVs is collected. In this 

scenario, a platoon of CAVs is following an HDV which suddenly decelerates with a rate 

of 5.5 𝑚/𝑠𝑒𝑐2  and decrease its speed from 120 km/hr to 30 km/hr. The average spacing 

error between platooning vehicles is collected over time. The VISSIM’s built-in CAVs 

platooning model added to VISSIM since the 2020 version is adopted as a counterpart of 

the SMD model. However, the details of this model are unknown, considering that 

modeling another platooning logic in VISSIM is highly time-consuming and requires lots 

of programming; the VISSIM built-in model is selected as a counterpart of SMD for initial 

proof of concept.  

 The adjustable platooning parameters for the VISSIM built-in model are shown in 

Table 4.2; these parameters are set to be complying with SMD model hyperparameters. 

Except for the maximum communication range, which is set to 50 meters in the VISSIM 

built-in model, since defining this value as a speed function, like what we did for the SMD 

model, is not an option in VISSIM.  
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Table 4.2 Vissim Built-in Platooning System Constant Parameters Setting 

VISSIM 2020 built-in platooning parameter setting 

Maximum number of vehicles in each platoon Four vehicles 

Maximum communication range 50 meters 

Platoon follow up gap time 0.5 sec 

Minimum clearance distance 2 meters  

Maximum platooning desire speed  120 km/hr 

Maximum acceleration  3.7 m/sec2 

Maximum deceleration  9.023 m/sec2 

 

According to the VISSIM2021 manual, vehicles' safety distance is calculated 

based on Equation (4.9) [65].  

 

PlatoonMinClear + vReference * 

PlatoonFollowUpGapTm 

(4.9) 

Where:  

vReference: The lead vehicle's speed in the platoon 

 

The simulation is run five times with a 10 step/sec resolution. The simulation’s 

average result is shown in Figure 4.4. 



 

64 

 

Figure 4.4 Spacing error occurrence in harsh deceleration scenario. 

According to the results, minor positive errors (less than one meter) are constantly 

observed for the VISSIM built-in model while following an HDV driver. An increasing 

error appears as soon as the deceleration phase starts and reaches the climax of 8 meters at 

the end of the deceleration phase. After 10 seconds of moving with constant speed, the 

spacing error is reduced to the minimum value. However, no error is observed regularly in 

the SMD model, and a maximum error of 1.5 meters is observed at the end of the 

deceleration phase. The advantage of both models is that no negative spacing error is 

observed, which is equivalent to a safety threat. However, noticeable positive errors are 

observed in VISSIM built-in model, which results in a maximum capacity drop.  

 

4.6 Maximum Throughput Assessment  

A single-lane highway with a length of 4 kilometers is modeled in VISSIM to evaluate the 

proposed model's impact on the roadway's maximum throughput under different CAVs’ 

MPR and processing time (𝜏). HDVs are controlled by VISSIM’s car-following model 
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(Wiedemann 99), and it is assumed that all HDVs are equipped with Vehicle Awareness 

Device (VAD). VAD is an aftermarket positioning and onboard communication unit 

proposed by the US Department of Transportation’s CVs Initiatives to improve CACC 

systems' performance in low MPR. A VAD-equipped vehicle broadcasts a Basic Safety 

Message (BSM), including its location and speed, so its follower CAV can use CACC 

capability [66].  

Simulation results revealed that the maximum throughput increases as the CAVs’ 

MPR increases. A maximum throughput increment of 63% is achieved in a full MPR of 

AVs with 𝜏 = 0.5 𝑠𝑒𝑐. However, a maximum increment of 23% is achieved if  𝜏 = 1 𝑠𝑒𝑐. 

Simulation results for various CAV’s MPR are presented in  Figure 4.5.  

 

Figure 4.5 Maximum throughput under different MPR of platooning CAVs. 
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4.7 Platoon Length Impact on Maximum Throughput  

Assuming a processing time of 0.5 sec for all CAVs, the impact of platoon length on 

maximum throughput is assessed in this experiment. Several scenarios are run, increasing 

the platoon length from 4 vehicles to 12 vehicles with an interval of two vehicles. The 

simulation results are shown in Figure 4.6; the maximum throughput slightly increases as 

with platoon length increment. For instance, a maximum throughput increment of 3% is 

gained if the platoon length increases from 4 vehicles to 12 vehicles with a 0.5 sec 

processing time.  

 

Figure 4.6 Impact of platoon length on maximum throughput. 

 

4.8 Travel Time at Merging Section  

As shown in Figure 4.7, a merging section is modeled in VISSIM. In this scenario, CAVs 

on the mainlane are in platooning mode, and CAVs on the merging lane will change lane 

as soon as enough  space on the mainlane is observed. This scenario aims to assess the 

impact of inter-platoon spacing policy in accommodating merging vehicles. Controlling 
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the merging maneuver is not a point of interest in this study, and lane-changing maneuvers 

are performed by VISSIM software. Vehicles from the merging lane start platoon-oriented 

communication as soon as they enter the mainlane to join the existing platoons on the 

mainlane.  

 

Figure 4.7 Merging section scenario details. 

The maximum speed on the main and merging lanes is 30 meters/second. Several 

scenarios with combinations of high and extreme volumes on the mainlane and moderate, 

high, and extreme volumes on the merging lane, with different MPR of CAVs, are run. The 

CAVs’ processing time is assumed to be 0.5 sec in all scenarios, and the maximum platoon 

length on the mainlane is limited to four vehicles. Simulation time is set to 15 minutes, and 

the resolution is set to 10 steps/sec. The presented results are the average of five simulation 

runs with different random seeds. The travel time’s data collection length is 280 meters for 

both merging lane and mainlane. The travel time values for the vehicle on the mainlane are 

presented in Figure 4.8 and Figure 4.9 for high and extreme volume regimes on the 

mainlane. According to the results, the travel time on the mainlane decreases as the CAV’s 

MPR increases, specifically if the mainlane volume is extreme. For instance, assuming 

extreme volume regimes on the mainlane and merging lane, travel time reductions of 36% 

and 47% are observed in the case of CAVs’ MPR shifting from 0% to 40% and from 40% 

to 100% accordingly (Figure 4.9).  
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Figure 4.8 Travel time on the mainlane – mainlane volume = 1400 Veh/hr. 

 

 

Figure 4.9 Travel time on the mainlane – mainlane volume = 1800 Veh/hr. 

 

The travel time values for vehicles on the merging lane are presented in Figure 4.10 

and Figure 4.11. According to the results, deploying CACC on the mainlane remarkably 

decreases travel time on the merging lane if the CAVs’ MPR is 80% and higher and the 
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merging volume is high. For instance, a travel time reduction of 33% is gained on the 

merging lane in case of extreme volume on the mainlane and merging lane and a full MPR 

of CAVs. 

 

Figure 4.10 Travel time on the merging lane – mainlane volume = 1400 Veh/hr. 

 

 

Figure 4.11 Travel time on the merging lane – mainlane volume = 1800 Veh/hr. 
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4.9 Chapter summary 

In this chapter, a car following logic for platooning CAVs was developed based on an 

existing SMD model. Adjustments such as setting limitations on maximum CAVs’ 

communication range and maximum platoon length were applied to the model to make it 

more aligned with real-world circumstances. The proposed model was coded into VISSIM 

software for proof-of-concept test purposes and future traffic-oriented assessments. The 

proof-of-concept test results revealed that the SMD model produces a smaller spacing error 

than a counterpart platooning logic in a harsh deceleration scenario. It was proved that the 

maximum throughput noticeably increases with an increment in CAVs’ MPR or CAVs’ 

processing time. The platoon length increment has a very slight impact on maximum 

throughput. The proposed model can noticeably improve travel time for the mainlane in 

the merging section even with low CAVs’ MPR in the case of extreme volume regimes. 

Travel time improvement on the merging lane was also observed in the high MPR of CAVs.  
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 CHAPTER 5 

5 EXPANSION OF DSCLS AND DEVELOPMENT OF A INTERSECTION 

CONTROL LOGIC FOR PLATOONING CAVS 

 

In Chapter 3, an RL-based intersection control system called DSCLS was developed to 

manage CAVs at the intersections. As a proof-of-concept test, the model was applied to a 

single-lane intersection with no turning movement; the simulation results revealed 

noticeable improvements in traffic measures. In Chapter 4, a SMD-based car following 

model was developed to control CAVs’ platooning behavior; the initial evaluations of the 

model confirmed traffic measures and safety improvements in uninterrupted traffic flow 

circumstances. In this chapter, the proposed intersection control system will be applied to 

a more realistic intersection, requiring model reconfiguration and running a new training 

course. The DSCLS is also applied to a corridor of 4 intersections. Finally, the SMD model 

and DSCLS are combined, and an intersection control system for platooning CAVs is 

developed.  

 

5.1 Application of DSCLS to a Multilane Intersection 

The testbed in this experiment is an urban intersection, including three lanes on each 

approach and turning movements. The intersection’s environment settings appear in Figure 

5.1.  
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Figure 5.1 The intersection environment physical settings. 

The following adjustments have been applied to the model in the new experiment: 

Colliding vehicles in the training course would receive a negative reward equal to (-10×∆𝑡). 

According to Equation (3.15), the collision reward is equal to reward values for ten stopped 

vehicles at the intersection (L𝑖 = 0). In the proof of concept test experiment, independent 

states and coordinated states of two, three, and four vehicles were forwarded to different 

neural networks. In this experiment, followed by proper adjustments to the model, a single 

neural network performs the reward estimation task for all states.  

 

5.2 Evaluation of DSCL in the Multi-lane Intersection Setting 

Same as DSCLS’s proof of concept test experiments, presented in Chapter 3, the multi-

lane intersection trained model is compared with three other control systems, including 1) 

fixed traffic signal, 2) actuated traffic signal, and 3) Longest Queue First (LQF). The 

simulation settings such as simulation resolutions, simulation time, number of simulation 
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runs, and vehicles’ maximum speed are the same as proof-of-concept test experiments. The 

testbed environment complies with Figure 5.1. Three different volume regimes described 

below are considered for evaluation purposes: 

1. Moderate volume: consists of 1,150 and 850 Veh/hr on the major and minor 

streets, respectively. This volume combination leads to LOS B for the major 

street and LOS C for the minor street. 

2. High volume: consists of 1,600 and 1,100 Veh/hr on the major and minor 

streets, respectively. This volume combination leads to LOS D for both major 

and minor streets.   

3. Extreme volume: consists of 2,000 and 1,300 Veh/hr on the major and minor 

streets, respectively. This volume combination leads to LOS E to F or 

congestion for major and minor streets.  

 The LOS is calculated based on HCM 6th edition in VISTRO software, 

assuming the intersection operates under fully actuated traffic signals. 

5.2.1 Traffic Measures Comparison  

Since the proposed control system's optimization goal is to minimize the delay, the delay 

is specified as the target traffic measure. A comparison of the average delay between 

different control systems appears in Figure 5.2. According to the figure, the DSCLS 

effectively reduces delay in all volume regimes, specifically in moderate volume, with a 

58% delay reduction compared to the second-best control system. A delay reduction of 

19% and 13% is achieved compared to the second-best control systems in high and extreme 

volume regimes.  

 One reason for the poor performance of LQF in extreme volume regimes is that, 

unlike the DSCLS, this model does not consider approaching vehicles’ speed in decision 

making. The model strictly asks the vehicles in the direction with a shorter queue length to 

yield to vehicles in the other direction, regardless of the current speed of vehicles in both 
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directions.  The LQF model could also cause occasional switching between giving passing 

orders to vehicles. However, the DSCL logic has definitely learned to avoid this behavior 

if it causes a delay increment.  

 

Figure 5.2 Multi-lane intersection average delay comparison. 

 Followed by delay reductions, travel time improvement is also expected. The 

average travel time values shown in Figure 5.3 reveal that the proposed model gains 26% 

and 10% travel improvement in moderate and high-volume regimes compared to the LQF 

control system. The DSLS outperforms the actuated control system with a 9% travel time 

reduction in the extreme volume regime.  
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Figure 5.3 Multi-lane intersection average travel time comparison. 

 Volumes of 4000 Veh/hr and 2400 Veh/hr are applied on the major and minor 

streets to assess the impact of model on maximum throughput. According to the results 

appearing in Figure 5.4, the DSCLS outperforms all other intersection control systems in 

this measure. A maximum throughput increment of 10% is gained compared to this 

experiment's second-best intersection control system. 
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Figure 5.4 Multi-lane intersection maximum throughput comparison. 

5.2.2 Other Measures Comparison  

Along with target traffic measures, the environmental and safety impacts of the model are 

also evaluated. Fuel consumption and CO2 emission are calculated based on the VT-Micro 

model. The average fuel consumption results appear in Figure 5.5; 13% and 4% reductions 

are gained compared to the second-best control systems in moderate and high-volume 

regimes. However, in the extreme volume regime, the fuel consumption is 4% higher than 

the actuated traffic lights. Despite noticeable improvements in delay, travel time, and 

maximum throughput, the proposed model does not significantly improve environment 

measures since the model assumes constant acceleration and deceleration rates for CAVs. 

However, the DSCLS noticeably outperforms LQF in all volume regimes, which is also 

based on constant acceleration and deceleration rates for CAVs. 
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Figure 5.5 Multi-lane intersection average fuel consumption. 

 As shown in Figure 5.6, average CO2 emission follows the same pattern as average 

fuel consumption. An emission reduction of 12%, 4% gained compared to the actuated 

traffic signal in moderate and high volume regimes. However, the actuated traffic light 

outperforms DSCLS by 4% in CO2 emission in the extreme volume regime.  

 

Figure 5.6 Multi-lane intersection average CO2 emission comparison. 
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 The comparison of PET for different traffic control systems appears in Figure 5.7. 

According to the figure, both pixel reservation-based logics, including DSCLS and LQF, 

have close PET values. The PET increases by 28% in DSCLS and LQF compared to the 

actuated traffic lights in extreme volume conditions; 5% and 7% improvements are 

recorded in moderate and high-volume regimes. Pixel-reservation-based control systems 

consist of more stop and go, which increases the chance of side-impact accidents in regular 

intersections. Therefore, even minor improvement in PET compared to conventional 

control systems is noticeable.  

 

Figure 5.7 Multi-lane intersection average PET comparison. 

 According to the TTC measures comparison shown in Figure 5.10, both pixel 

reservation models show poor performance compared to the conventional control systems 

with 10%, 7%, and 6% decrement in TTC in moderate, high, and extreme volume regimes 

accordingly. However, the increment in TTC may not result in the chance of rear-end 

accident increment due to the shorter processing time of CAVs compared to human-driven 

vehicles.  
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Figure 5.8 Multi-lane intersection average TTC comparison. 

5.2.3  Statistical Analysis of the Simulation Results  

According to the t-test results appearing in Table 5.1, fuel consumption and CO2 emissions 

results between DSCLS and actuated traffic lights are not statistically significant in high 

and extreme volume regimes. Safety measures, including PET and TTC, are not 

statistically significant between DSCLS and LQF, which is expected since both models are 

based on the pixel reservation approach. 
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Table 5.1 P-values for T-test Results for DSCLS - Single Intersection  

 Fixed Traffic Light  

  Moderate volume 

 Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 
D

SC
LS

 
<0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 Actuated Traffic Light  

  Moderate volume 

 Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

D
SC

LS
 

<0.05 <0.05 - <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 - >0.05 >0.05 <0.05 <0.05 

Extreme volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 <0.05 >0.05 >0.05 <0.05 <0.05 
 LQF 

  Moderate volume 

 Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

D
SC

LS
 

<0.05 <0.05 - <0.05 <0.05 >0.05 >0.05 

High Volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 - <0.05 <0.05 >0.05 >0.05 

Extreme volume  

Delay 
Travel 
Time  

Maximum  
Throughput 

Fuel 
Consumption 

CO2 
Emission 

PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 >0.05 >0.05 
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5.3 Application of DSCLS to a Corridor of Four Intersections  

The DSCLS is applied to a corridor of four intersections to assess its impact on traffic flow 

in a more extensive network. The simulation results are compared with three other control 

systems under moderate, high, and extreme volume regimes, resulting in LOS E to F, LOS 

D to E, and LOS A to B for most intersections, if they are controlled by conventional 

control systems. In this experiment, all intersections have the same lane configuration as 

in Figure 5.1, and they are 500 meters apart. The simulation settings are set the same as 

proof-of-concept test experiments, and the results are presented in the following sections. 

5.3.1 Traffic Measures Comparison  

A comparison of the average delay between different control systems appears in Figure 

5.9. The DSCLS effectively reduces delay compared to the second-best control system in 

moderate, high, and extreme volume regimes by 50%, 29%, and 23% accordingly. The 

DSCLS noticeably outperforms LQF in all volume regimes. Application of the model to a 

corridor shows more delay improvement than the single intersection experiment, 

specifically in high and extreme volume regimes. 
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Figure 5.9 Corridor’s average delay comparison. 

 The average travel time values follow the same trend as the delay. Travel time 

improvements of 22%, 16%, and 11% are gained compared to the actuated traffic light in 

moderate, high, and extreme volume regimes.  

 

Figure 5.10 Corridor’s average travel time comparison. 
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5.3.2 Other Measures Comparison  

According to the average fuel consumption results presented in Figure 5.11, the DSCLS 

gains a 9% fuel consumption reduction in the moderate volume regime compared to the 

actuated control system. However, the actuated traffic light outperforms DSCLS with 2% 

and 6% fuel consumption reductions in high and extreme volume regimes. The proposed 

control system noticeably outperforms the other pixel reservation-based model (LQF) in 

all volume regimes. The fuel consumption measures follow a similar trend as the single 

intersection experiment. 

 

Figure 5.11 Corridor’s average fuel consumption comparison. 

 The average CO2 emission results are shown in Figure 5.12. The DSCLS 

outperforms actuated traffic lights with a 9% CO2 emission improvement. However, the 

actuated traffic light performs better than DSCLS with 4% and 7% less CO2 emission in 

high and extreme volume regimes.  



 

84 

 

Figure 5.12 Corridor’s average CO2 emission comparison. 

 The comparison of PET for different traffic control systems appears in Figure 5.13. 

According to the figure, pixel reservation-based logics, including DSCLS and LQF, have 

almost equal PET. Both have a better performance than the actuated traffic light, 

specifically in extreme volume regimes with a 22% improvement in PET. The results 

comply with the single intersection experiment.  
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Figure 5.13 Corridor’s average PET comparison. 

 According to the TTC measures shown in Figure 5.14, both pixel reservation 

models show poor performance compared to the conventional control systems, with around 

a 10% TTC decrement in all volume regimes. However, the increment in TTC may not 

result in the chance of rear-end accident increment due to the shorter processing time of 

CAVs compared to human-driven vehicles. 

 

Figure 5.14 Corridor’s average TTC comparison. 
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5.3.3 Statistical Analysis of the Simulation Results  

According to the t-test results, TTC between LQF and DSCLS is not significant in any 

volume regime. PET is not significant in high and extreme volume regimes. The 

environmental measures, including Co2 emission and fuel consumption between DSCLS 

and the actuated traffic light in the high volume regime. All other measures are statistically 

significant. T-test results are shown in Table 5.2.  
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Table 5.2 P-values for T-test Results for DSCLS - Corridor 

 Fixed Traffic Light  
  Moderate volume 
 Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

D
SC

LS
  

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 Actuated Traffic Light  

  Moderate volume 
 Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

D
SC

LS
  

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 >0.05 >0.05 <0.05 <0.05 

Extreme volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 LQF 

  Moderate volume 
 Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

D
SC

LS
  

<0.05 <0.05 <0.05 <0.05 <0.05 >0.05 

High Volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 >0.05 >0.05 

Extreme volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 >0.05 >0.05 
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5.4 Development of a Platooning CAV-based Intersection Control System 

One of the main goals of this study is to develop a platooning CAV-based intersection 

control system, which includes the simultaneous deployment of SMD platooning logic and 

the DSCLS. It also requires making adjustments to the models to be compatible. A general 

layout of platooning CAV-based intersection control system based on the SMD model and 

DSCLS is shown in Figure 5.15. This model is called DSLCS&SMD. 

 

Figure 5.15 Platooning CAV-based intersection control system. 

 In this experiment, a full MPR of CAVs is assumed, meaning that the SMD car-

following model controls all vehicles in the network. The leading vehicles of the first 

platoon approaching the intersection will be forwarded to the DSCLS to define passing 

order priority. Once the leading vehicle receives an acceleration or deceleration command 

from DSCLS, all the following vehicles in its platoon follow that command till the platoon 

passes the intersection. In this case, the DSCLS needs to be reconfigured to consider a 

platoon of vehicles instead of a single-vehicle. To this end, the platoon length has been 
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added to each leading vehicle’s state, as appears in Equation (5.1). The training course has 

been rerun with the new settings. 

 

𝑆𝑡𝑎𝑡𝑒𝐿𝑖 = (𝑆𝑝𝑒𝑒𝑑𝐿𝑖 , 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑒𝑙𝑙𝐿𝑖 , 𝑄𝑢𝑒𝑢𝑒𝐿𝑖 , 𝑃𝑙𝑎𝑡𝑜𝑜𝑛 𝐿𝑒𝑛𝑔ℎ𝑡𝐿𝑖) (5.1) 

  Where: 

 SpeedLi: platoon’s leading vehicle speed   

 Current CellLi: platoon’s leading vehicle current cell 

 QueueLi: Queue length behind platoon’s leading vehicle  

 Platoon LenghtLi: Leading vehicle’s platoon length  

 

 Since the simulation results for the single lane intersection, multi-lane intersection, 

and the corridor of four intersections comply in the aspect of gains or losses of the proposed 

model. The simulation testbed in this experiment is the same as the proof-of-concept test 

experiment presented in Figure 3.4. The proposed model is compared with four other 

intersection control systems, including fixed traffic light, actuated traffic light, LQF, and 

DSCLS, in three different volume regimes. The simulation settings are set the same as 

proof-of-concept test experiments, and the simulation results are presented in the following 

sections. 

5.4.1 Traffic Measures Comparison  

According to the delay results comparison shown in Figure 5.16, the DSCLS&SMD model 

noticeably improves the delay in the extreme volume regime with a 31% delay reduction 

compared to the DSCLS. A delay reduction of 10% is observed in moderate and high 

volume regimes. Since fewer platoons are formed in the moderate and high volume regimes 

due to lower occupancy, the model is less effective in delay reduction than in the extreme 
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volume regime. The delay results confirm that clustering vehicles into platoons can 

improve DSCLS decision-making efficiency.   

 

Figure 5.16 Average delay comparison, including DSCLS&SMD. 

 The DSCLS&SMD gains a 10.7% travel time reduction compared to the DSCLS 

in the extreme volume regimes. However, the impact of the model on travel time is not 

noticeable in moderate and high volume regimes. The travel time results appear in Figure 

5.17. 
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Figure 5.17 Average travel time comparison, including DSCLS&SMD. 

 According to the maximum throughput results in Figure 5.18, the DSCLS&SMD 

noticeably outperforms the DSCLS by an 18% increment in the maximum throughput.   

 

Figure 5.18 Maximum throughput comparison, including DSCLS&SMD. 
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5.4.2 Other Measures Comparison  

The average fuel consumption results appear in Figure 5.19. The  DSCL&SMD increases 

the fuel consumption by 21%, 25%, and 31% compared to the DSCLS model in moderate, 

high, and extreme volume regimes. The fuel consumption increment results from the SMD 

model pushing all vehicles to strictly follow the leading vehicle, which is controlled by 

DSCLS with limited acceleration and deceleration rates. However, the DSCLS&SMD still 

has almost equal or better performance in fuel consumption compared to the conventional 

control systems and the LQF.  

 The average CO2 emission shown in Figure 5.20 follows the same pattern as fuel 

consumption with 20%, 24%, and 31% fuel consumption increment for platooning CAVs 

compared to the DSCLS.  

 

Figure 5.19 Average fuel consumption comparison, including DSCLS&SMD. 
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Figure 5.20 Average CO2 emission comparison, including DSCLS&SMD. 

 The comparison of PET, shown in Figure 5.21, reveals that the platooning CAVs 

have a safer crossing maneuver at the intersections. The PET value is improved by 1%, 

6%, and 10% in moderate, high, and extreme volume regimes. The reason is that instead 

of single vehicles being involved in a crossing maneuver, platoons of vehicles are involved, 

reducing the number of conflicts and the chance of side collisions.  
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Figure 5.21 Average PET comparison, including DSCLS&SMD. 

 The TTC measure comparison appears in Figure 5.22. The platooning CAVs have 

a better performance than the DSCLS in the TTC measure, with around a 45% increment 

in all volume regimes. The reason is that in DSCLS&SMD, all vehicles in the network are 

controlled by the SDM model, catching up with the leading vehicle’s acceleration and 

deceleration smoothly.  
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Figure 5.22 Average TTC comparison, including DSCLS&SMD. 

5.4.3 Statistical Analysis of the Simulation Results  

The t-test results between DSCLS&SMD and four other control systems are shown in 

Table 5.3. Differences in fuel consumption are not statistically significant between 

DSCLS&SMD and LQF in the high volume regime, and differences in CO2 emissions are 

not statistically significant in the extreme volume regime for the two models. 
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Table 5.3 P-values for T-test Results - DSCLS&SMD  
 Fixed Traffic Light  

  Moderate volume 
 Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

D
SC

LS
 &

 S
M

D
 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 Actuated Traffic Light  

  Moderate volume 
 Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

D
SC

LS
 &

 S
M

D
 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
 LQF 

  Moderate volume 
 Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

D
SC

LS
 &

 S
M

D
 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 >0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 >0.05 <0.05 <0.05 
 DSCLS  

  Moderate volume 
 Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

D
SC

LS
 &

 S
M

D
 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

High Volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Extreme volume  

Delay Travel Time  Fuel Consumption CO2 Emission PET TTC 

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
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5.5 Chapter Summary  

Followed by developing a CAV-based intersection control system and a platooning logic 

for CAVs in Chapters 3 and 4, the developed models were expanded as the following in 

Chapter 5. 

 The DSCLS was applied to a more realistic intersection consisting of three lanes 

and turning movements, which required reconfiguring the model and rerunning the training 

course. Comparing the proposed model’s performance with other control systems revealed 

that the DSCLS noticeably improves traffic measures, including delay and travel time, 

specifically in moderate and high-volume regimes. However, a maximum throughput 

increment of 10% was gained in the extreme volume regime. Due to the limited 

acceleration and deceleration rates assumed for the vehicles in the DSCLS, the model does 

not show a noticeable improvement in environmental measures compared to the 

conventional control systems. However, the DSCLS outperforms the other pixel 

reservation-based models with limited acceleration and deceleration rates (LQF). Both 

pixel reservation-based control systems gain noticeable improvements in PET measure, 

referring to the side collision risk. The TTC measure is decreased compared to the 

conventional intersection control systems, however due to CAVs’ shorter processing time 

compared to HDVs, this may not be considered as a rear-end collision risk increment. 

 The developed automated intersection control system and platooning logic were 

combined, and a new intersection control system was developed to control platooning 

CAVs at the intersection, called DSCLS&SMD. Development of this model required 

adjustments on both models and the rerun of the training course. Simulation results 

revealed that the DSCLS&SMD noticeably improves traffic measures in the extreme 
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volume condition with a 31% delay reduction and 18% maximum throughput increment. 

However, minor improvements were observed in moderate and high volume regimes in 

traffic measures since fewer platoons had been formed due to lower occupancy. Since the 

SMD model pushes all vehicles to strictly follow the leading vehicle, which is being 

controlled by DSCLS with limited acceleration and deceleration ranges, poor performance 

was observed in environmental measures. Involving platoons of vehicles instead of single 

vehicles in crossing maneuvers has improved the PET measure by 6% and 10% in high and 

extreme volume regimes. The TTC measure was improved by around 45% in all volume 

regimes due to all vehicles being controlled by either SMD or DSCLS model. 
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE RESEARCH  

 

This chapter summarizes findings, research contributions, and recommendations for 

further research. 

 

6.1 Conclusions 

This dissertation addressed two critical aspects of the CAVs research world, including 

platooning behavior and coordination at the intersections. An advanced machine learning 

method called Deep Reinforcement Learning and a famous conflict point detection logic 

in CAVs’ literature, known as the pixel reservation system, were deployed to detect 

conflicting maneuvers and minimize overall delay at the intersections. Deep 

Reinforcement Learning is proven to have a stunning performance in decision-making in 

complex stochastic circumstances, and the pixel reservation logic guarantees collision-free 

coordination. A platooning system for CAVs was developed based on a classical physics 

logic known as the Spring-Mass-Damper model, which adjusts the acceleration and 

deceleration of vehicles to maintain the desired headway. Finally, a platooning-CAV-based 

intersection control system was developed by combining the two models and applying the 

required adjustments.  

 Two conventional intersection control systems, including fixed traffic light and 

actuated traffic light, and a CAV-based control system called LQF were selected as 

counterparts of the proposed intersection control system. The simulation results for a 

multilane intersection revealed that the proposed model noticeably outperforms other 

control system1s in traffic measures, with 58%, 19%, and 13% delay reduction in 
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moderate, high, and extreme volume regimes. The travel time was improved accordingly, 

and a 10% maximum throughput increment was also recorded compared to the second-best 

intersection control system. Compared to conventional control systems, the proposed 

model does not improve environmental measures, including CO2 emission and fuel 

consumption. Meanwhile, it noticeably outperforms the LQF model by 20% to 30% 

improvement in environmental measures in different volume regimes. Regarding the safety 

parameters, both pixel reservation-based models improve PET measures by around 20% 

and the TTC measure was slightly increased, however due to CAVs’ shorter processing 

time, this may not be considered as a rear-end accident risk increment. The application of 

the control system to a corridor of four intersections has produced compatible results with 

the single intersection experiment.  

 Application of the developed SMD-based platooning logic to a single lane highway 

revealed that the model improves the maximum throughput by 63% and 27% in the full 

and 50% MPR of CAVs with a response time of 0.5 𝑠𝑒𝑐. A maximum throughput 

increment of 23% and 17% was achieved in the full and 50% MPR of CAVs with a 

response time of 1.0 𝑠𝑒𝑐. Assessment of CAV's travel time at a merging section proved the 

effectiveness of the inter platoon spacing policy with 50% and 67% travel time reduction 

on the mainlane in 60% and 100% CAVs’ market penetration rates. Noticeable travel time 

reduction on the merging lane was observed in 80% and higher CAV’s MPR and high 

merging demand. The SMD platooning logic produced 75% less positive average spacing 

error than the VISSIM 2020 platooning module in a harsh declaration scenario, which 

guarantees stable throughput in unstable driving circumstances. No negative error was 

recorded, which guarantees a safe deceleration maneuver.  
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 As the last step of this study, an automated intersection control system for 

platooning CAVs was developed, called DSLCS&SMD. This model outperformed the 

DSCLS in traffic measures with a 9% delay reduction and 18% maximum throughput 

increment. The safety measures were also remarkably improved since all vehicles in the 

network were controlled by the SMD model. However, limited acceleration and 

deceleration rates assumed in DSCLS resulted in poor performance in environmental 

measures.  

 

6.2 Research Contributions  

The main contributions of this research are as follows: 

• The intersection control system proposed in this study assumes individual vehicles 

as independent agents, coordinating with other agents only if required, which is 

most likely how highly automated vehicles will act.  

• The developed intersection system can improve its performance or adjust to the 

new circumstances during its life cycle. 

• Based on the existing literature and experiments, deep reinforcement learning is an 

outstanding decision-making logic in decision making in stochastic environments. 

And to the best of the author’s knowledge, this research is the first try in deploying 

deep reinforcement learning to manage CAVs’ conflicting maneuvers in a roadway 

network setting.  

• The platooning logic developed in this study reflects real-world platooning 

circumstances and requirements such as maximum communication range, inter 

platoon spacing, vehicle acceleration and deceleration capability, vehicle mass, and 

platoon evolution process.  

• Two crucial features of CAVs, including platooning behavior and coordination at 

the intersections, were aligned together. Platooning CAVs were exposed to 

interrupted traffic flow in an arterial network setting, including several 

intersections, and the automated intersection control system managed the platoons’ 

conflicting maneuvers.  
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• All developed models were coded in a commercial traffic microsimulation 

software, and their performance was compared with conventional and CAV-based 

intersection control systems through real-world scenarios. 

 

6.3 Future Research 

As mentioned in the conclusion section, due to limited acceleration and deceleration ranges 

assumed for the DSCLS model in this study, no improvement is gained in environmental 

measures compared to the conventional intersection control systems. To better assess the 

proposed models’ impact on environmental measures, considering different acceleration 

and deceleration rates for the DSCLS is recommended in future studies.  

 Passengers’ throughput optimization-based intersection control systems have been 

a point of interest for a long time, and noticeable literature exists on related systems such 

as Transit Signal Priority (TSP), which give priority to transit vehicles. However, in an 

ultimate level of automation and communication, the control system can optimize 

individual passenger delay, regardless of vehicle type. The DSCLS model is flexible 

enough to reflect passenger delay in the optimization process, which could be considered 

in subsequent studies. The DSCLS model developed in this dissertation only controls the 

leading vehicle at each approach, which has resulted in rear-end collision risk increment 

compared to the conventional control systems in some scenarios. However, this issue was 

resolved in the DSCLS&SMD model; controlling all vehicles in the network based on the 

pixel reservation approach if the DSCLS is deployed by itself is recommended in future 

studies.  
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 Other recommendations for future studies are as follows: 

1- Adding a lane changing logic to the SMD model or expanding the model to control 

CAV’s lateral interactions,  

2- Improving the performance of DSCLS by deploying other DRL booster methods 

such as Double DQN and Prioritized Experience Replay in the training course,  

3- Developing a more generic DSCLS to be applicable to different intersections 

without adjustment or re-running the training course. 
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