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ABSTRACT

TOWARDS PRACTICALIZATION OF BLOCKCHAIN-BASED
DECENTRALIZED APPLICATIONS

by
Songlin He

Blockchain can be defined as an immutable ledger for recording transactions,

maintained in a distributed network of mutually untrusting peers. Blockchain

technology has been widely applied to various fields beyond its initial usage of

cryptocurrency. However, blockchain itself is insufficient to meet all the desired

security or efficiency requirements for diversified application scenarios. This disser-

tation focuses on two core functionalities that blockchain provides, i.e., robust storage

and reliable computation. Three concrete application scenarios including Internet of

Things (IoT), cybersecurity management (CSM), and peer-to-peer (P2P) content

delivery network (CDN) are utilized to elaborate the general design principles for

these two main functionalities. Among them, the IoT and CSM applications involve

the design of blockchain-based robust storage and management while the P2P CDN

requires reliable computation. Such general design principles derived from disparate

application scenarios have the potential to realize practicalization of many other

blockchain-enabled decentralized applications.

In the IoT application, blockchain-based decentralized data management is

capable of handling faulty nodes, as designed in the cybersecurity application.

But an important issue lies in the interaction between external network and

blockchain network, i.e., external clients must rely on a relay node to communicate

with the full nodes in the blockchain. Compromization of such relay nodes may

result in a security breach and even a blockage of IoT sensors from the network.

Therefore, a censorship-resistant blockchain-based decentralized IoT management

system is proposed. Experimental results from proof-of-concept implementation and



deployment in a real distributed environment show the feasibility and effectiveness in

achieving censorship resistance.

The CSM application incorporates blockchain to provide robust storage of

historical cybersecurity data so that with a certain level of cyber intelligence, a

defender can determine if a network has been compromised and to what extent.

The CSM functions can be categorized into three classes: Network-centric (N-CSM),

Tools-centric (T-CSM) and Application-centric (A-CSM). The cyber intelligence

identifies new attackers, victims, or defense capabilities. Moreover, a decentralized

storage network (DSN) is integrated to reduce on-chain storage costs without

undermining its robustness. Experiments with the prototype implementation and

real-world cyber datasets show that the blockchain-based CSM solution is effective

and efficient.

The P2P CDN application explores and utilizes the functionality of reliable

computation that blockchain empowers. Particularly, P2P CDN is promising to

provide benefits including cost-saving and scalable peak-demand handling compared

with centralized CDNs. However, reliable P2P delivery requires proper enforcement

of delivery fairness. Unfortunately, most existing studies on delivery fairness are

based on non-cooperative game-theoretic assumptions that are arguably unrealistic

in the ad-hoc P2P setting. To address this issue, an expressive security requirement

for desired fair P2P content delivery is defined and two efficient approaches based on

blockchain for P2P downloading and P2P streaming are proposed. The proposed

system guarantees the fairness for each party even when all others collude to

arbitrarily misbehave and achieves asymptotically optimal on-chain costs and optimal

delivery communication.
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CHAPTER 1

INTRODUCTION

In 2008, Satoshi Nakamoto proposed Bitcoin [110] that aims at a cryptographic

currency for trustless online payment [111], whose backbone protocol was later

formally proven secure [50]. As the underpinning technology, blockchain (or

distributed ledger) has been reckoned as the next generation of value exchange network,

being a complementary component to the existing information exchange network,

namely, the Internet, and gained wide-spread attention among both industry and

academia in recent years. Despite the fact that cryptocurrencies have emerged as the

most popular application of blockchain technology, many enthusiasts from different

fields have sensed the huge potentials and proposed a range of applications across a

multitude of application domains [30]. According to different application scenarios,

the development of blockchain can be divided into three stages: In blockchain

stage 1.0, it is the era of virtual cryptocurrency represented by Bitcoin [110].

Stage 2.0 is represented by the public blockchain platform, Ethereum [148], which

provides Turing-complete programming language to run pre-determined execution

logic (dubbed smart contract) under certain conditions. This stage is especially for

financial applications. Blockchain 3.0 refers to various application scenarios besides

the financial field, which can satisfy more complex business demands. Indeed, as

individuals embrace Web 3.0 where data with semantic meanings are interconnected

in a decentralized manner, blockchain has been recognized as one of the most

fundamental technologies to revolutionize the landscape of the identified application

domains [45].
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1.1 Blockchain and Related Layers

Blockchain can be defined as an immutable ledger for recording transactions,

maintained in a distributed network amongst untrusting peer nodes. Figure 1.1

illustrates the suggested layers relevant to blockchain:

Crypto-
currency

Smart
City

Defi Metaverse …Application

Script 
Code

Smart 
Contract

Chain-
code

DSL …Contract

PoW (D)PoS PBFT Dumbo …Consensus

P2P 
Network

Gossip
Service 

Discovery
Comm. 
Model

…Network

Data
Block

Chain 
Structure

Merkle 
Tree

Time-
stamp

…Data

Layer 1

Layer 0

Hardware
Layer

Layer 2
ChannelsProtocols Commit-

Chains
Refereed-
Delegation

State 
Network …

Application
Layer

(Trusted) Hardwares

Figure 1.1 The layers related to blockchain.

The hardware layer provides the underlying hardwares. Regular hardwares

include physical servers, switches, or routers etc. Moreover, the Trusted Execution

Environment (TEE) (e.g., Intel SGX [29]) equipped with modern computers can

execute senstive or security-critical program code in a specified memory space, called

enclaves, which is tamper-proof from the operating system or other higher-privileged

softwares [57,77].

The layer-zero, or the network layer, is typically a peer-to-peer (P2P) network

on which blockchain nodes can exchange information asynchronously [112]. Such

a network layer not only contains the traditional network architecture, which

concentrates on Internet routing, but also ensures reliable communication among

participants in a blockchain.
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The layer-one refers to the core component of blockchain, which maintains an

immutable ledger for recording transactions. It further can be divided into three

sub-layers: (i) data layer, which defines the data structures and required data fields;

(ii) consensus layer contains various consensus mechanisms, e.g., Proof of Work

(PoW) [50], Proof of Stake (PoS) [82], Raft [115], PBFT [23], BFT-SMaRt [16],

HoneyBadger [107], Dumbo [58, 97] and others [149]. It is worth pointing out

that these consensus mechanisms can further be categorized due to applicable

blockchain types (permissioned vs. permissionless), trust models (crash fault tolerance

(CFT) vs. byzantine fault tolerance (BFT)) or network models (synchronous, partial

synchronous and asynchronous). Typically a consensus protocol is characterized by

three fundamental properties: termination, agreement and safety; (iii) contract layer

realizes smart contract, e.g., Bitcoin has limited support for smart contract, called

scripts. Ethereum [148] defines domain specific language (DSL), viz. solidity and the

storage or execution costs for all operations (in unit of gas) in the smart contract.

Hyperledger Fabric (HLF) [9] provides a separated sandbox running environment so

that the smart contract, called chaincode, can be developed in various advanced

programming language such as Golang, NodeJS, Java, deployed and executed in

Docker containers or Kubernetes [35].

The layer-two treats the layer-one blockchains as oracles, which provide the

desired properties of integrity (i.e., only valid transactions are appended to the ledger)

and eventual synchronicity with an upper time-bound (i.e., any valid transaction will

eventually be added to the ledger before a critical timeout) [57], with the key purpose

of considerably improving the scalability of layer-one blockchains. The existing layer-

two protocols can further be categorized as three research directions: (i) payment and

state channels, e.g., Sprites [105], Perun [38]; (ii) commit-chains, e.g., NOCUST [80]

and Plasma [121] and (iii) protocols for refereed delegation, e.g., TrueBit [140] and

Arbitrum [74].

3



The application layer envisions diversified application scenarios that can

be empoered by blockchain technology. Exemplary application domains include

cryptocurrencies [110, 148], (industrial) Internet of Things (IoT) [63], content

delivery [61], supply chain [123], healthcare [103], non-fungible tokens (NFTs) [142],

decentralized finance [6, 145], decentralized storage [14], decentralized identity [99],

metaverse [113] and etc.

In this dissertation, we mainly focus on the blockchain-enabled applications,

which closely related to the application layer. One the one hand, the practicalization

of blockchain in real-life application scenarios would significantly drive the devel-

opment of blockchain technology. On the other hand, it is worth stressing that the

realization of provably secure protocol in the application layer is essentially highly

pertinent to the design of other layers requiring comprehensive considerations.

1.2 Benefits of Blockchain-Based Applications

Blockchain-based application model exhibits promising aspects to solve many problems

that confronted by the existing centralized system (e.g., single point of failure) due to

its distributed architecture and all advantageous properties brought by the blockchain

technology [50]. Specifically, a set of benefits empowered by blockchain-based

decentralized applications can be highlighted as follows:

• Availability. The blockchain network is in a distributed architecture, which
enables the system available even though partial nodes are unreachable.

• Immutability. The transactions cannot be reverted once ending up in the
blockchain considering the number of simultaneously corrupted nodes are under
a threshold.

• Consistency. There is a consistent and global ledger state for anyone who views
the blockchain as blockchain stores transaction or state after reaching consensus.

• Accountability. Since the transactions are immutable on-chain, it is feasible to
realize accountability if any party performs malicious activities.
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• Provenance. Consider that the data submitted to blockchain is valid, then
according to the immutability property of transaction histories on-chain,
blockchain provides tamper-proof information about the origin of data records.

These properties inherent in the design of blockchain provide many possibilities

to enhance various existing application scenarios.

1.3 Potential Problems in General Blockchain-Based Applications

In essence, blockchain provides two core functionalities, i.e., storage and computation.

Unfortunately, blockchain itself is not panacea to fit all application settings. With

the general architecture of blockchain-enabled decentralized applications, as shown in

Figure 1.2, the following potential problems are worth of consideration.

External Network

Blockchain Network

Storage

Computation

Problem 2: Blockchain-Based 
Information Management

Problem 3: Blockchain-Enabled 
Computation

Problem 1: Censorship of Data 
Input to Blockchain Network

Problem 4: Result Retrieval 
from Blockchain Network

Chapter 3:
Cyber Security Management

Chapter 2:
(Industrial) Internet of Things

Chapter 4:
P2P Content Delivery

Chapter 2 & 3:
Cyber Security Management
(Industrial) Internet of Things

Authentic data collection

Figure 1.2 The potential problems in a general architecture of blockchain-enabled
decentralized applications and our contributions to these problems in the dissertation.

Problem 1. Censorship of data input for blockchain network. Blockchain

full nodes need to synchronize all the blocks and participate the consensus process.

However, mobile devices (e.g., IoT devices, smart phones, smart wearables) or browser

environments are unable to afford the cost of storing a huge volume of blocks or

executing computation-intensive consensus. Consequently, those light clients need to

hinge on a blockchain full node to relay transactions to all other full nodes [63]. The
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challenge arises where the connected full node or the routing to the full node may be

corrupted, leading to invalid data input to the blockchain network.

Problem 2. Blockchain-based robust information management. Blockchain,

especially permissioned, resembles the functionality of conventional distributed

database to provide robust storage [129]. This is because the system would reach

consensus before eventually writing the data to ledger, which provide an extra security

layer ensuring that even partial of the nodes are corrupted and arbitrarily misbehave,

the system still work normally. However, many issues need to be tackled when

leveraging blockchain as a platform providing robust storage. For example, efficiently

handling a large amount of submitted data.

Problem 3. Blockchain-enabled computation. Two key issues need to be

considered when utilizing blockchain as a computing platform: (i) privacy. Blockchain

inherently exhibits the property of transparency [84]. In a permissionless setting, the

entire chain is replicated to all peer nodes in a public network and the whole state

is accessible to all for verification. Some data (e.g., random bits) posted on-chain

may not impact privacy while some sensitive data may leak important information.

On the other hand, a permissioned blockchain provides a promising alternative to

mitigate this issue, which however, requires participants to authenticate themselves

and may not be suitable for some public uses cases where participants are unknown

to each others; (ii) limited computation power. The computation power provided by

blockchain (essentially the smart contract) is limited. In Proof-of-Work (PoW) or

Proof-of-Stake (PoS) based consensus protocols, such a limitation is derived from

the known verifier’s dilemma [98], e.g., there is a global gas limit in Ethereum that

specifies a maximum amount (i.e., 8,000,000) of gas that can be spent in a single

block. While for a permissioned setting, too complex on-chain execution may lead to

unacceptable latency and undesirable user experiences.
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Problem 4. Valid result retrieval from blockchain network. Smart contract

in blockchain can ensure the guaranteed execution of pre-determined logic. However,

a typical operation of retrieving data that stored in the ledger or the invocation of

smart contract still requires the connection with a full node in the blockchain network,

and if it is corrupted, the retrieval results would become invalid. A naive solution

connecting with many full nodes would cause considerable communication overhead.

Hence, it remains unclear of how to solve this problem.

Authenticity of submitted data to blockchain network. As an orthogonal and

hot research direction, ensuring the authenticity of submitted data to blockchain

network is of great importance. Specifically, the on-chain storage and execution

is trustable in the sense that: (i) the immutability property of blockchain ensures

the integrity of stored data on-chain; (ii) the smart contract can use the on-chain

stored data to execute pre-determined programs without manipulation. However, the

authenticity of submitted data is not guaranteed by blockchain itself. Such a problem

requires extra system design, i.e., oracle protocols [151,152].

These above problems appeared in blockchain-based decentralized applications

are general and solving these issues would not only improve the system security, but

also, from a broader perspective, accelerate the practicalization of applying blockchain

technology to real-life scenarios.

1.4 Main Contributions and Dissertation Structure

It this dissertation, we investigate the main usage of blockchain regarding storage

and computation in several application scenarios including cyber security, industrial

Internet of Things and peer-to-peer content delivery. Through the design of protocols

in these specific application settings, we essentially provide the general solutions to

solve all the problems mentioned earlier. Overall, the remaining of the dissertation is

organized as follows.
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Chapter 2 focuses on the protocol design of interactions between external

network and blockchain-based information management system (i.e., the solution to

the Problems 1 and 4 in Figure 1.2) by considering the (industrial) Internet of Things

(IoT) application scenario. The key observation is that the blockchain network itself

is robust to provide data management, as our later proposed design for the cyber

security management. However, when interacting with external networks, e.g., the

sensor network in the IoT setting, the data sending from sensor network to blockchain

network (inbound flow) or the data (e.g., a command) retrieved from the blockchain

network for the sensor network, e.g., actuators, (outbound flow) may be censored in

the sense of being maliciously mixed, tampered or dropped. To this end, to handle

the inbound flow, we proposed a gossip-based diffusion mechanism and augmented

consensus designs to realize to censorship resistance between IoT network and the

blockchain-based decentralized data management systems, while for the outbound

flow, we proposed a multi-party invocation mechanism to enable reliability and a

signature aggregation mechanism to provide efficiency for retrieving results.

Chapter 3 discusses the designs of blockchain-enabled information management

system (i.e., the solution mainly to Problems 2 and 4 in Figure 1.2) in the specific

cyber security setting, where blockchain is incorporated to provide robust and

automated cyber security management so that a defender can detect the potential

attacks based on robustly stored historical cyber data and newly given cyber

intelligence, and be aware of the degree that the managed network has been damaged.

The role of blockchain mainly lies in two aspects: the first is for robust storage of

collected cyber data, which is analogue to conventional distributed database while

being more secure and robust; the second is for automated and guaranteed execution

of cyber functionalities hinging on pre-determined smart contract and therefore less

manual inference is needed.
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Chapter 4 presents the designs regarding blockchain-empowered computation

(viz. the solution to the Problem 3 in Figure 1.2) in the specific P2P content

delivery setting. In particular, the key challenge of designing a P2P content

delivery protocol is to rigorously guarantee fairness. However, there exist several

challenges, e.g., conventional fairness definition is insufficient to the specific P2P

content delivery setting and it is well-known fairness cannot be completely guaranteed

without a trusted third party (TTP). We therefore defined more fine-grained fairness,

leveraged blockchain to play the role of a TTP and proposed both downloading-setting

and streaming-setting protocol designs. In addition, we elaborate many design

considerations to protect privacy against corrupted system participants and optimize

the on-chain storage and computational costs.

Chapter 5 concludes the dissertation, provides reflections, and points out several

future research directions.
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CHAPTER 2

CENSORSHIP RESISTANCE BETWEEN BLOCKCHAIN AND IIOT

This chapter presents the design of interactions between the external network and the

blockchain-based information management system in the specific industrial Internet

of Things setting [62,63].

2.1 Introduction

Spawned from machine-to-machine (M2M) technology, Internet-of-Things (IoT) is

becoming a dynamic global network infrastructure with self-configuring capabilities

where physical and virtual “things” with identities, physical attributes, and virtual

personalities are seamlessly integrated into the information network [85]. According

to Statista, the number of IoT devices worldwide will be over 75 billion by 2025 [136].

IoT is recognized as one of the most important areas of future technology and is

gaining vast attention from a wide range of industries [91].

As a subset and natural evolution of IoT, Industrial Internet of Things (IIoT)

shares common technologies (sensors, cloud platforms) with IoT but has higher

requirements on security, scalability and reliability. One example of the IIoT vision

is the Industrial Internet of Things Services and People (IoTSP) platform [93].

The rapid development of IIoT is facilitated by the capability of data generation,

collection, aggregation, and analysis over the Internet to maximize the efficiency of

machines and the throughput of operations. This brings about significant challenges

since data may flow across various boundaries at the risk of attacks or failures.

Specifically, existing IoT systems (including IIoT) mainly rely on centralized

service, where sensors collect and send data directly to a central server on the cloud

for analysis, as shown in Figure 2.1. This model has several drawbacks. For example,

the cloud server may present a single point of failure; clouds are typically vendor
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specific and may not be compatible with each other, thus adversely affecting data

sharing between them. Also, existing centralized IoT solutions are expensive due to a

high cost in infrastructure and maintenance. Among these shortcomings, security is

of primary concern. By 2022, half of the security budgets for IoT will be allocated to

fault remediation, recalls, and safety failures rather than protection [117]. Therefore,

a distributed trust technology ensuring security is regarded as a cornerstone for the

continual growth of such IoT solutions. The blockchain technology is under rapid

development and has proved to be an effective solution to realizing such goals due to

its intrinsic security [117].

Data Collection

· Data analysis

· Data mining

· Personalization

· Services

...

· Traffic

· Water

· Weather

· Devices

...

COMMS:3G, 4G, WiFi, Ethernet, Wired, WiMax, LTE, ...

Data Processing

Figure 2.1 A centralized IoT system architecture.

Blockchain is typically viewed as an immutable ledger for recording transactions,

maintained in a distributed network of mutually untrusting peers [9]. Any partici-

pating peer can submit data (sometimes also referred to as a transaction), which

is eventually broadcasted and replicated at all participating peers executing some

consensus protocols. As an abstract layer, blockchain technology provides a reliable

delivery of messages to ensure that all participating peers have a consistent copy of

the ledger. This is referred to as “transparency”, a property frequently mentioned
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about blockchain; on the other hand, once a message is written to the ledger and

replicated at all peers, each peer can only modify its local ledger and the data would

remain intact in other peers’ ledgers. This is referred to as “immutability”, another

important property of blockchain. A more unique function of blockchain is to support

“smart contract”1, which is a piece of program code that implements a pre-defined

application logic and deterministically runs on all participating peers.

The above properties of blockchain technology have facilitated its widespread

applications to the IoT domain. For example, the “immutability” property of

blockchain brings resistance to unauthorized modification. Since the entire history

of device configuration is stored in the blockchain, recovery from incidents is

straightforward. Depending on whether or not peers need to be authorized, blockchain

technology is divided into two main categories: permissioned and permissionless. In

this study, we focus on permissioned blockchain where participating nodes are all

certified and known to others. In a more visionary level, IBM laid out a blueprint

for “device democracy” [19], which employs blockchain to distributively manage

transaction processing and coordination among hundreds of billions of interacting

devices. Such an ambitious goal might take time to come to life, but on the other hand,

decentralizing local management systems via permissioned blockchain to improve

robustness and availability is much more viable [76].

Problems. Although blockchain technology offers a promising way to decentralize

IoT management systems, such decentralization cannot be realized completely based

on existing blockchain platforms such as the popular permissioned blockchain,

Hyperledger fabric (Fabric for short) [9]. Note that blockchain technology (in

particular, the consensus protocol) itself only concerns how to replicate data across

peers consistently. Many practical issues such as data input from external sources

and data output from the ledger are not considered by the consensus protocol. These

1The “scripts” in Bitcoin is a predecessor of smart contract, while in ethereum [148], it is a
collection of code (functions) and data (state) that reside at a specific address.
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Figure 2.2 Data flow in a hyperledger fabric-based IoT management system.

problems are currently subject to ad-hoc designs and could potentially become a

bottleneck in revealing the full power of a decentralized system.

Normally, multiple sensors are connected to one server (referred to as gateway

node, which is one of the non-validating nodes and whose goal is to settle with the

heterogeneity between different sensor networks and the cloud and effectively retrieve

data from sensor networks [153]), and the server is responsible for forwarding on behalf

of the sensors and participating in the consensus protocol to post the collected data to

the distributed ledger. Obviously, if this gateway node is corrupted, sensor messages

cannot be even transmitted to any of the blockchain’s full nodes, thus the sensor

simply loses the ability of “writing” to the ledger. In fact, such kind of architecture

is common in existing systems, for example, Figure 2.2 shows the data flow when

building IoT application on top of Hyperledger Fabric [67].

Problem 1. The gateway node, i.e., the non-validating peer (NVP) node in Fabric,

could be censored. Consider a (potentially decentralized) IoT management system for

environmental monitoring, where interested departments control the gateway node.

The notorious Flint water crisis is a practical example and lesson. Flint authorities

insisted for months that the city water was safe to drink, but finally it was reported

that the Michigan Department of Environment Quality and the city of Flint discarded

two of the collected samples containing a dangerous level of lead to avoid high cost

and lawsuit [146].
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Problem 2. The query result from the blockchain network could be censored.

As an IoT management system, besides writing data into the ledger, sometimes

actuators/devices may also need to read or receive instructions from the ledger.

Similarly, at present, such message passing out of the blockchain is still carried out

via an external non-validating node, which connects to one or several full nodes2

in the blockchain network. If this external node or its connected full nodes are

hacked/censored to be malicious, e.g., critical control commands are dropped, serious

consequences may occur.

Consider the application of decentralized energy IoT management, the sensors

continuously send real-time environmental measurements to the ledger, and the

management servers analyze these measurements and send instructions back to the

actuators. For example, if the temperature or pressure reaches a threshold, the servers

need to instruct the actuators to shut the valve or reduce the amount of oxygen

pumped into the combustion facility. If the forwarding node is compromised, such

instructions may be dropped or modified on purpose to create a disaster.

These problems motivate us to consider how to build a censorship resistant

decentralized IoT management system.

Contributions. We design a protocol that decentralizes the message passing module

for sending and receiving data from a distributed ledger, thus avoid the single point

of failure at the gateway node; moreover, this is done in a way that is compatible

with existing consensus protocols so that our method can be plugged into existing

platforms, as detailed below.

• First, we propose to replace the traditional gateway node in IoT scenarios with
several seed nodes, which perform the same function as gateway node but also
participate in blockchain network as full nodes. Then we introduce a message
“diffusion” mechanism to realize censorship resistance considering the single
entry point problem and propose an augmented consensus protocol to achieve
reliable data delivery.

2Full nodes execute, validate and commit transactions to the ledger in a blockchain network.
Each of them maintains a copy of the ledger state.
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• Furthermore, we propose the protocol to deal with the single exit point problem
and the case that data on at most 1

3
of all full nodes are maliciously modified.

• Last, we propose to leverage the cryptographic tool of public key aggregation
to reduce communication overhead and complexity of verification.

2.2 Related Work

Integration of IoT and blockchain. Billions of connected devices in future IoT

networks face significant technical challenges in security, privacy, and interoperability,

which are not taken into consideration during the design phase of IoT products [117].

The blockchain technology under rapid development emerges as a viable solution to

addressing these challenges in decentralizing IoT systems.

Many challenges confronted by current IoT architectures may be addressed by

blockchain. In [86], Kshetri presented a positive attitude towards strengthening IoT

with blockchain and provided insights into how blockchain enhances IoT security,

such as leveraging blockchain-based identity and access management systems or

improving the overall security in supply chain networks. Cha et al. investigated

data confidentiality and authentication based on blockchain [24]. Novo proposed to

utilize blockchain as the access control layer for better security and privacy [114].

Alfonso et al. conducted a survey of the integration of blockchain and IoT, where

different application domains are categorized, including smart home, smart city and

smart energy [117].

Gossip protocol. A gossip protocol [33] is a procedure where a data item is routed

to all members in a distributed network similar to epidemics spreading. Gossiping

has been traditionally used for reliable information dissemination, but its applicability

goes far beyond in distributed systems. Uber implemented a gossip protocol variation

called SWIM [95] to allow independent workers to discover each other. Cassandra [90]

used a gossip protocol for peer discovery and metadata propagation. Docker ’s

multi-host networking [34] employed a gossip protocol to exchange overlay network
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information. Hyperledger fabric [9] implemented a gossip data dissemination protocol

to ensure data integrity and consistency among different roles of nodes.

Kermarrec et al. [79] provided the general organization of a gossip protocol

and discussed one of its most successful applications for dissemination, which is

achieved by letting peers forward messages to each other. Eugster et al. [42]

elaborated the gossiping dissemination process with three parameters: i) the number

of messages stored in a node’s local cache, ii) the number of selected peers for message

forwarding, and iii) the upper bound of times that a message is forwarded. The Shuffle

protocol in [52] is designed to disseminate information among a collection of wireless

devices in a mesh network, but it only considers a synchronous model where the

transmission duration among peers is constant. Andrew et al. [8] improved this model

by taking into account the dynamics of a real network and employed exponential

distribution and hyperexponential to simulate various transmission durations among

peer nodes. In this study, we use gossip to realize robust message dissemination from

sensor networks to blockchain networks and conduct experiments in real distributed

environments.

Censorship resistance. Censorship resistance in IoT data communication is made

possible by the decentralization and immutability nature of blockchain network. The

study in [117] pointed out that the decentralization of IoT on top of blockchain is

censorship resistant because inside the blockchain network, there is no controller

and entities only trust the quality of the cryptographic algorithms that govern the

operations. Obviously, the censorship problem still exists in the components of the

blockchain network that communicate with external devices. Hence, we provide a

formal definition of “censorship resistance” in blockchain-based IoT and propose an

effective solution.
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Table 2.1 Key Notations Related to the Censorship Resistance Protocol

Notation Represent for

Lalive the list maintaining live nodes in blockchain network

sensorID the unique ID of a sensor

δtsensor the time period when a sensor sends data

δtseed the time period when seed nodes process data

δtdif the time period when data diffusion is completed in a

synchronous network

Z a physical zone including sensors and gateway nodes

ZID the unique ID of a zone Z
d the data collected by a sensor

l the number of sensors in a certain zone Z
k the number of selected neighbor nodes in gossip protocol

n the number of data items collected during δtsensor

n′ the number of data items during Bseed

s the number of seed nodes

c command/instruction sent to actuators from blockchain network

σ signature from the message sender

γ the local cache size for gossip protocol

N the number of full nodes in blockchain network

C the local cache on a peer node for gossiping

BUF the buffer that a full node uses to receive data from sensors

ts time stamp

SEED message from sensors to seed nodes

Bseed a constructed batch of SEEDs maintained on seed nodes

nodeID the unique ID of a full node in blockchain network

GM gossip message from seed nodes to all full nodes

2.3 Problem Formulation

In this section, we formulate the problem and describe security requirements. The

notations are provided in Table 2.1 for the convenience of reference.

17



Routing layerRouting layerSensorSensor

Gateway NodeGateway Node

Zone

Wireless access pointWireless access point

Server in cloudServer in cloud

Block in blockchainBlock in blockchain

Figure 2.3 Blockchain-based IoT management system model.

Figure 2.3 illustrates the current blockchain-based IoT management model.

Typically, in a blockchain-based IoT management system, multiple sensors are

deployed in a certain area (e.g., a power plant) for data collection (e.g., temperature

measurements). The collected data are sent to the nearest gateway node and

forwarded by routers through a wireless network to a server in the blockchain network,

which starts to execute the consensus protocol and replicate the data across all

participating servers (also known as “peers” or “replicas”). Such consistent data

items stored in blocks are appended to the blockchain as “transactions”.

To investigate the security issues in blockchain-based IoT, we first provide the

following definitions.

Definition 1 (Consensus). A consensus protocol has the following properties:

• Termination: Each participating peer outputs something locally within a limited
amount of time.

• Agreement: All honest peers in the network agree on the same value.

• Validity: If all honest peers receive the same value v, then the agreed result
should be equal to v.
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From this definition, we know that consensus only considers ledger replication,

while disregarding how inputs are received from and outcomes are delivered to

external clients. External clients are not full nodes of the distributed ledger, and

thus have to rely on some servers to relay. As such, existing architectures assume

“trusted” relay, which is vulnerable in practice as the relay server could either be

hacked or simply be malicious. To realize the properties of “reliable message delivery”

and “transparency” of a distributed ledger, we provide the following definition:

Definition 2 (Censorship Resistance). Consider a sequence of data items (d1, d2, ..., dn)

sent from an IoT network to a blockchain network. The system is censorship resistant

if it meets the following two conditions:

• The ledger records a permutation of the vector without any data loss.

• The corresponding actuator in the IoT network is guaranteed to eventually
receive the value of y = F(d1, . . . , dn), which is also stored in the ledger, where
F is a pre-defined processing function.

We now introduce the security issues in the current blockchain-based IoT model.

Security against entry point censorship. A malicious or hacked node3 relaying

messages from the sensor network to the blockchain network may act arbitrarily, e.g.,

drop messages, infinitely delay messages, or modify message contents. Meanwhile,

even correct data is disseminated to the blockchain network, it may get lost during

the process of reaching a consensus among all peers. We define the security in these

two cases as follows:

• An adversary A corrupts the gateway node g in a zone Z including sensor1, ...,
sensorl. The message sent from the sensor network to g is denoted as m =
(d1, ..., dn). We consider a bad event B1 as follows: (1) the number of data
that forwarding from g to blockchain network is less than n; (2) there is no
data forwarding from g to blockchain network since g blocks all the messages;
(3) some data items in message m are modified before sending to blockchain
network.

3Generally, a cluster with a master-slave architecture is constructed for the gateway node to
tolerate crash fault, but it still acts as a single node since only the master node is responsible
for providing services. Our proposed solution tolerates both crash fault and byzantine fault.
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• An adversary A corrupts f nodes in the blockchain network to execute a
consensus protocol. The message sent to the blockchain network from the sensor
network is denoted as m = (d1, ..., dn). We consider a bad event B2 as follows:
(1) not all nodes in the blockchain network update m to their ledgers; (2) all
nodes update m to their ledgers but on some nodes, the number of data items
in m is less than n, i.e., |m| < n; (3) all nodes update m to their ledgers and
on all nodes |m| = n, but the data items in m are out of order.

The security of our proposed protocol requires that for every polynomial time

adversary A, the probability Pr[B1] and Pr[B2] is negligibly small.

Security against exit point censorship. When querying from the blockchain

network, a corrupted node may perform malicious actions to actuators to cause a

disaster. We define the security in this case as follows: An adversary A corrupts

f nodes in the blockchain network. We consider a bad event B3 as follows: when

querying from the ledger, the instruction y is modified to y′ and sent to actuators.

Again, the security of our proposed protocol requires that for every polynomial time

adversary A, the probability Pr[B3] is negligibly small.

2.4 System Overview

To defend against potential threats of censorship, we augment the current blockchain

network architecture and the consensus protocol. Figure 2.4 illustrates the data flow

in the improved architecture.

2.4.1 Censorship Resistant Inbound Delivery

Our protocol carries out messages delivery as follows:

• The sensors disseminate data to f + 1 gateway nodes (referred to as “seed
nodes”), which are full nodes, not just forwarding messages from the sensor
network to the blockchain network.

• The seed nodes disseminate data to all other peer nodes in blockchain network
through gossip-based diffusion mechanism.

• A leader node starts the byzantine consensus protocol to replicate the data;
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Figure 2.4 Data flow in the improved architecture to resist censorship.

• Each replica performs filtering validation to check if there is any data loss after
consensus.

Specifically, to defend against censorship at the data entry point, we need

to make sure that each sensor is connected to multiple servers instead of just one

single gateway node. In the proposed scheme, the conventional single gateway node

is replaced with multiple full nodes in the blockchain network (i.e., seed nodes),

which perform not only the same function as the original gateway node but also

a set of blockchain operations such as reaching consensus and updating ledger, hence

eliminating the crash fault of the original gateway node. Furthermore, the number

of seed nodes is at least f + 1 to tolerate the byzantine fault as discussed later.

We propose to use a gossip-based protocol to achieve message diffusion among all

peers for better robustness. Moreover, we enhance the underlying consensus protocol

(e.g., BFT-SMaRt [16]) such that each honest participating peer further checks

whether the block being replicated has dropped some data before updating the local

ledger. If a sufficient number of peers observe data missing, the consensus process

is restarted (e.g., a view change type of sub-protocol is triggered). We would like to

point out that this enhancement is generic and could be applied to any BFT protocols.
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After this round, the data is appended to the local ledger of each full node. To

further enhance the protocol to support basic data analysis and instruction delivery,

we propose the following:

2.4.2 Censorship Resistant Outbound Delivery

Our protocol carries out data processing and instruction delivery as follows:

• For a pre-defined processing function F , another round of consensus is initiated
using the outcome of F(·) as the data to be replicated. Such agreement is
the same as the third step in the aforementioned message delivery round, the
consensus content is instruction instead of message.

• Once the value of F(·) is written in each local ledger, the leader forwards
the value of F(·) with the peer nodes’ signatures to the corresponding
actuators/devices.

• Actuators receive an instruction and send feedback containing an acknowl-
edgement to all full nodes.

• All replicas maintain a timer and wait for the acknowledgement for each sent
instruction; if the acknowledgement is not received within a pre-defined time
period, they all resend the instruction to actuators, Details are elaborated in
Section 2.5.

After the data is written to the ledger, the nodes run the analysis program F

that is pre-defined and deployed in a smart contract (an example about F is provided

in Section 2.5), and use the output y of F as input to run another consensus protocol.

At the end of this consensus protocol, there are a sufficient number of signatures on the

same y, and an honest leader node forwards the output y together with the signatures

to the actuator. The actuator simply broadcasts an acknowledgement to all servers if

it receives instructions from the leader server and successfully verifies their signatures.

The peer nodes wait for a pre-defined period of time, and if there is no feedback from

the corresponding actuator, they all send value y to the actuator. This feedback

mechanism achieves an opportunistic efficiency: when the leader is honest, only one

single message is sent to the actuator and this single message contains the signatures
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of most peers (specifically 2f + 1, where f is the largest number of malicious nodes)

in the blockchain network; only when the leader node drops the outgoing instruction,

the other peers jointly inform the actuator. Although we assume that the diffusion

from the sensor network to the blockchain network (and vice versa) be completed in

a fixed amount of time (i.e., as a synchronous network), the network that connects

the peers (i.e., the blockchain network itself) could be partially asynchronous and we

are still able to deploy such consensus protocols as PBFT [23].

2.5 Protocol Design

In this section, we provide a detailed description of protocol design to realize

censorship resistance on top of blockchain-based IoT. The main idea is to further

decentralized data entry and exit point. For simplicity, we denote the number of

all replicas (full nodes) as N , |N | = 3f + 14, where f is the maximum number of

faulty nodes. In addition, BFT-SMaRt, which implements a modular state machine

replication protocol atop a Byzantine consensus algorithm [134], is used as an example

for the underlying consensus protocol to explain our protocol process.

2.5.1 Handling Censorship of Single Entry

The data is sent from the sensor network to the blockchain network, which is referred

to as “inbound flow”. Figure 2.5 illustrates the normal operation on inbound flow in

our protocol, as detailed in the following three phases:

Phase I for message diffusion. The goal in this phase is to ensure that data from

each sensor be quickly diffused to every full node in a more robust way instead of

relying on the single gateway node, so that when the consensus protocol is invoked,

all full nodes have a copy of the sensor data in place.

4M. Castro, B. Liskov et al. [23] proved that a minimum of 3f +1 replicas/peers are needed
to tolerate at most f faulty/byzantine replicas/peers.
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Blockchain network is essentially a decentralized point-to-point network. To

broadcast data from each sensor to the blockchain network in an efficient and robust

way, we propose a gossip-based diffusion protocol as detailed below:

a) Initialization. Initially, all peers in the blockchain network execute the discovery
service and message exchange to maintain a dynamic list LnodeID

alive of live peers
they can connect to. Such a list contains IP address, port, and public key of
peer nodes.

b) Data multicasts to seed nodes. We call those nodes that participate in
blockchain network and also initially being connected by sensors to receive data
as seed nodes. Sensors periodically send collected data d

sensorj
1 , . . . , d

sensorj
n , j =

1, . . . , l to s seed nodes, the message is in the form of
SEED = ⟨ZID, sensorID, d, ts⟩σsensorID

.

c) Processing on seed nodes. Each seed node maintains a local buffer BUF for
received data from sensors and always check the signature validity before caching
sensor data to BUF . Every δtseed, each seed node accumulates SEEDs in BUF
as a batch Bseed, and counts the number of data items in Bseed as ñ, which is used
to check data loss later. SEEDi in this batch is sorted sequentially according to
ts. It is practical to ensure that δtseed < δtsensor. Therefore, the unpredictable
network impact is eliminated and all these s seed nodes have the same state of
Bseed ready.

d) Gossip diffusion. We consider a synchronous network where message diffusion
can be completed in δtdif . In order to reduce the complexity incurred by
message mixing and ensure the same number of data items on each seed node,
we set δtdif < δtseed. The seed nodes then disseminate the gossip message
GM = ⟨nodeID, Bseed, ñ, ts⟩σnodeID

to all peers in the blockchain network

through gossip-based diffusion algorithm, as shown in Algorithm 1. Note that
as the system tolerates up to f malicious nodes, the number of seed nodes
k ≥ f +1 ensures that malicious actions be detected and hence not updated to
the ledger.

The gossip-based diffusion algorithm in Algorithm 1 is divided into three steps:

a) Topology construction. Practically, each peer node in the blockchain network
maintains a list of its direct and indirect neighbor nodes whose information
is stored in LnodeID

alive . An overlay network is formed with virtual links from
each peer node to its neighbor nodes. It is worth mentioning that the gossip-
based algorithm can also be utilized to maintain the gossip network itself: peer
nodes periodically exchange and update LnodeID

alive with each other so the network
topology can be dynamically maintained when some nodes leave or join.
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Algorithm 1 Gossip-based Message Diffusion

Input: GM = ⟨nodeID, Bseed, ñ, ts⟩σnodeID

Output: true or false

1: Initialization: the number s of seed nodes; the number k of selected neighbor nodes;

the maximum number t of times a message can be forwarded; the information about

neighbor nodes stored in Lcurrent nodeID
alive ; the local cache CnodeID [γ] of size γ as a buffer

for received messages

2: m,σnodeID ← parse(GM), where m = ⟨nodeID, Bseed, ñ, ts⟩;
3: r ← verify(σnodeID , nodepk ← Lcurrent nodeID

alive ,m);

4: if r == true then

5: if CnodeID does not contain m then

6: forward m with ts and σcurrentnode
to k neighbor nodes selected from

L
currentnodeID
alive ;

7: add quadruple (key = m, counter = 1, f lag = false, integrity = false) to

CnodeID ;

8: while CnodeID .size ≥ γ do

9: remove those items whose counter ≥ t and integrity is true;

10: else

11: if (counter for m) < t then

12: forward m with ts and σcurrentnode
to k neighbor nodes selected from

L
currentnodeID
alive ;

13: counter ++ for the item whose key == m;

14: else

15: if flag for m == false then

16: update flag for m as true; return true;

17: else

18: return false;

b) Peer selection. Each peer node in the blockchain network is initialized with a
number of gossip parameters during the topology construction step, including:
a local cache CnodeID with size γ; the maximum number t of times a message
can be forwarded; and the number k of neighbor nodes a peer node selects to
forward messages each time. Among these parameters, k plays a critical role
in diffusion efficiency since the value of k and the selected nodes affect the
dissemination speed. Previous study shows that constructing a gossip-based
topology on top of a peer sampling service [71] can ensure a uniformly random
selection of peers.
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c) Data dissemination. Those k uniformly and randomly selected nodes are called
passive nodes and the node starting to send messages is an active node. Their
interaction is described as follows:

i) Each seed node acts as an active node, and uniformly and randomly selects
k nodes as passive nodes from its local cache CnodeID . A gossip message
GM is retrieved from BUF .

ii) Each active node sends message GM to all of its corresponding passive
nodes.

iii) All passive nodes act as active nodes to repeat this process by randomly
and uniformly choosing k nodes from their local cache and forwarding
message GM .

iv) Each node (including seed nodes) maintains a set of quadruples
(key, counter, f lag, integrity) in the local cache CnodeID , where the key is
the gossip message GM , and counter is to count how many times GM is
forwarded by the node. For efficiency, the hash value of GM is computed
to quickly determine if the current node has already forwarded such a
message. If the received message is already in its cache, we increase the
counter; otherwise, the new item is added to the cache. If counter ≥ t, we
stop forwarding this message and consider it as stable by setting flag to be
true. In a synchronous network, all nodes are able to reach a stable status
within a reasonable time period δtdif . The integrity is set to be false by
default, indicating whether or not this message is checked in the later data
loss phase. If the total number of messages exceeds the cache size γ on
the node, we remove those items whose counter ≥ t and integrity is true.

In a gossip network with N nodes, a message sent from a seed node is relayed by

a set of randomly selected k nodes in every round and is expected to reach all other

nodes after θ rounds, i.e.,
∑θ

i=0 k
i = N , and hence θ = ⌈logk(1−N (1− k)) − 1⌉.

Especially when k = 2, the process turns to be a binary tree and the complexity of

rounds becomes O(logN ).

Phase II for byzantine consensus. We augment the consensus protocol to support

censorship checking during the consensus process. Note that all full nodes have the

input data in place after the message diffusion phase.

The consensus’ leader node firstly sends a PROPOSE message containing Bseed

to other replicas. All other replicas receive the PROPOSE message and then check

the validity of the proposed batch and the sender’s leadership: if both are true,

then register Bseed and send a WRITE message containing a cryptographic hash of

the batch, denoted as H(Bseed), to all other replicas. If a replica receives ⌈ |R|+f+1
2
⌉
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Figure 2.5 Message pattern for dealing with the single entry.

WRITE messages with an identical hash, it sends an ACCEPT message containing

this hash to all other replicas.

Phase III for data loss check. If a replica receives ⌈ |R|+f+1
2
⌉ ACCEPT messages

for the same hash, it performs FILTERING VALIDATION (FV) to detect data loss

by comparing the number ñ of messages in PROPOSE with the number of messages

received from the sensors, i.e., n. If filtering validation passes, it appends the new

data Bseed to the ledger; otherwise, a view change5 may take place to elect a new

leader and all replicas are required to converge to the same consensus execution.

More details can be found in [134].

We would like to point out that it might be more efficient to perform FV right

after PROPOSE to avoid WRITE and ACCEPT if filtering was noticed. However,

this would require modifying the original consensus, e.g., the BFT-SMaRt protocol.

Our design only involves adding a few phases after the protocol finishes and hence

facilitates quick implementation and convenient deployment.

5If all nodes executing the consensus protocol have the same leader, they are in the same
view. Views are numbered consecutively, and the leader of a view is a replica p such that
p = v mod N , where v is the view number. Hence, when the leader is considered to fail, a
view change is carried out by setting the new leader to be p = (v + 1) mod N to continue
consensus execution.
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2.5.2 Handling Censorship of Single Exit

In many blockchain-based IoT scenarios, sensors collect and send data to the ledger

and meanwhile actuators receive instructions for further actions. These instructions

could be the outcomes of some data analysis procedures applied to the collected data.

Thus, we also need to ensure that i) the instruction from the blockchain network to the

sensor network (referred to as “outbound flow”) is “legitimate”, i.e., the instruction is

the consensus of the participants rather than a single node, and ii) the instruction is

successfully delivered to the intended actuator. Figure 2.6 shows the normal operation

on the outbound flow, as detailed in the following two phases:

Phase I for decision consensus. After the data batch is written to the ledger, each

honest node executes a data analysis program in the form of y = F(GM). Program

F is typically known a priori as it is application-specific and may vary in different

scenarios. Algorithm 2 gives a simple example of how function F works: the input

is the data batch that updated to ledger which contains sensor data from different

zones, by calculating the average value of sensors from the same zone and comparing

with the threshold T , corresponding instruction from a pre-defined set Y is returned,

otherwise no action is needed by returning ⊥. The decision consensus phase executes

the same steps as the aforementioned Byzantine consensus phase. The only difference

is the content to be agreed on, which is the output y instead of data batch Bseed. We

split it into two rounds for different consensus contents, because in some cases such
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Algorithm 2 An Example of Analysis Program F
Input: Bseed
Output: y/⊥

1: Initialization: the instruction set Y; a temperature threshold: T ∈ Z; the sum of

temperatures collected by all sensors in a specific zone: SZID
← 0; the counter that

keeps track of the number of times the sensor data is counted: tZID
← 0;

2: SEEDi, i ∈ [n]← parse(Bseed);
3: for SEEDi do

4: ⟨ZID, d⟩ ← parse(SEEDi);

5: if ZID exists then

6: SZID
← SZID

+ d;

7: tZID
++;

8: else

9: new(⟨ZID,SZID
, tZID

⟩);
10: SZID

← d;

11: tZID
← 1;

12: for all ZID do

13: ⟨ZID, AV GZID
⟩ ← ⟨ZID,

SZID
tZID

);

14: if AV GZID
> T then return y ← Y;

15: return ⊥;

as the data collection system, only the data needs to be recorded in the ledger, while

in other cases, it may need both. At the end of the decision consensus phase, the

output based on the sensor data is updated to the ledger as well. Then, the execution

of RESPONSE phase is triggered.

Phase II for response. The response phase includes prepare, confirmation, and

occasional re-confirmation. In RESPONSE PREPARE, the honest consensus’ leader

forwards command/instruction y to the actuator if it is the agreed outcome, which

means that it has collected sufficient6 signatures from peer nodes on the same y.

Once the actuator receives an instruction and verifies all signatures, it enters into

the RESPONSE CONFIRMATION phase, in which the actuator simply broadcasts

6For crash fault tolerance, sufficient refers to at least f + 1 peer nodes, while for byzantine
fault tolerance, sufficient refers to at least 2f + 1 peer nodes, proof can be found in [23].

29



the signed acknowledgement ackσ to all servers: this is done the same way as in the

DIFFUSION phase via gossip. Other non-leader replicas wait for ackσ after updating

y to the ledger. If they do not receive an acknowledgement within a predefined time

period, they all resend y to the actuator by themselves, also via gossip.

2.5.3 Security Analysis

Security against entry point censorship. We first analyze the security against

entry point censorship, i.e., data flow from the sensor network to the blockchain

network. Existing blockchain-based IoT management systems rely on a single gateway

node to relay messages. We propose to replace the single gateway server with

f + 1 full nodes (i.e., “seed nodes”) in the blockchain network, which not only

participate in the blockchain operations but also act as conventional gateway nodes

for message forwarding. As defined in our security model, the security against entry

point censorship requires that the probability of bad events B1 and B2 is negligibly

small. Specifically, B1 includes three cases where the malicious gateway node may

i) drop some messages, ii) infinitely delay messages without relaying to the blockchain

network, and iii) modify message contents and send modified messages to a subset of

peer nodes. B2 also includes three cases: i) some peer nodes cannot receive messages

from the sensor network, therefore failing to update the ledger; ii) all nodes update

messages to the ledger successfully, but the number of messages on some nodes is less

than what have been sent from the sensor network; iii) all nodes successfully update

a correct number of messages in their ledger, but in a different order.

We now discuss how our protocol prevents the above cases in a synchronous

network between sensors and full nodes. For consensus, we can still handle a partially

synchronous network among the full nodes. To tolerate byzantine fault, the total

number of peer nodes in the blockchain network is expected to be at least 3f + 1,

where f is the maximum number of faulty nodes. For Case i) in B1, having f + 1
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seed nodes instead of one single gateway node ensures that at least one honest node

be selected. With a more robust gossip-based diffusion mechanism, the honest node

relays a correct number of messages to all peer nodes in the blockchain network.

For Case ii) in B1, since at most f nodes can infinitely delay the messages, having

f + 1 seed nodes ensures that at least one honest node be selected and then gossip

messages to all other peer nodes. For Case iii) in B1, even though malicious nodes

may modify messages, the signature verification ensures that the modified data be

rejected and never updated to the ledger. For Cases i) and ii) in B2, we propose

an augmented consensus protocol, where a filtering validation phase, which is added

to the regular BFT consensus protocol, checks data loss before updating the ledger

by comparing the number of data messages after consensus with the number of data

items received in the gossip-based diffusion process. If equal, they are updated to the

ledger; otherwise, a view change is triggered to reach consensus again. After at most

f rounds, data is correctly updated to the ledger since an honest node is selected to

be the leader. Case iii) in B2 is addressed by the byzantine consensus with proved

security. In sum, our proposed protocol satisfies the security requirements on entry

point censorship resistance.

Security against exit point censorship. We now analyze the security against

exit point censorship, i.e., data flow from the blockchain network to the sensor

network. Unlike permissionless blockchain such as Ethereum, where all participants

maintain one public chain, in permissioned blockchain such as hyperledger fabric,

each peer node maintains a copy of the ledger, which can be modified locally. The

blockchain-based IoT management system not only stores data in the ledger, but also

is expected to make proper decisions and communicate with corresponding actuators.

Generally, only one “leader” node is responsible for sending instructions to actuators

for efficiency since actuators are typically equipped with limited computing power. If
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the “leader” node is compromised, it may: i) send modified instructions to actuators;

and ii) infinitely delay the instructions.

Our protocol solves the first ping the aggregated signatures from most (specif-

ically, at least 2f +1) of the peer nodes: if failed, no action is taken by the actuator;

otherwise, a correct instruction is executed. In the second problem, the actuator does

not receive any instruction from the malicious leader. In both of these cases, if the

actuator takes no action, no acknowledgement is sent back to the peer nodes, and

then an occasional re-confirmation is triggered, where all peer nodes jointly inform

the actuator.

An alternative solution is to initiate a view change to select a new leader. Since

there are at most f malicious nodes, eventually an honest node is selected to send

instructions to the actuator. However, this process may be repeated for f times in

the worst case and is not suitable for time-critical IoT scenarios. In our protocol, the

leader is honest in most cases, so re-confirmation is rare. Even if it happens, all nodes

just need to send once and the actuator is guaranteed to receive the instruction even

though it may need to communicate with more peer nodes instead of only the “leader”

as in the alternative solution. Hence, our protocol satisfies the security requirement

on exit point censorship resistance.

2.5.4 Reducing Verification Complexity

In blockchain-based IoT systems, some processes have similar properties, e.g., sensors

send collected data to the blockchain network, and peer nodes send instruction back to

actuators. More specifically, in the former, sensor1, ..., sensork possessing their public

keys pks1 , pks2 , . . . , pksk send messages m1,m2, . . . ,mk and corresponding signatures

σs1 , σs2 , . . . , σsk to nodes in the blockchain network and get verified. Similarly, in the

latter, all non-leader replicas r1, r2, . . . , rn who owns public keys pkr1 , pkr2 , . . . , pkrn

send instructions/commands c1, c2, . . . , cn together with signatures σr1 , σr2 , . . . , σrn to
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the leader for forwarding. In these cases, it is important to exploit a more efficient

and secure way to verify signatures. By leveraging the work in [18], we propose to

leverage the modified BLS multi-signature aggregation scheme (referred to as public

key aggregation) to reduce the communication and verification complexity, based on

the following considerations:

• Multiple sensors of the same type are typically deployed in a region for improved
fault tolerance and sensing accuracy, and some of them may very likely collect
identical measurements. Using a signature aggregation mechanism is efficient
but may suffer from rouge public-key attack [18].

• Prepending the sensor’s public key to the collected data before signing defends
against the above attack, but would not be able to make full use of the
advantages brought by aggregating identical messages.

The adoption of public-key aggregation defends against rouge public-key attack

while achieving efficiency. We take the second scenario as an example to explain the

application of this scheme, which contains the following components:

• A bilinear pairing e : G0×G1 → GT . The pairing is efficiently computable, and
non-degenerated. All three groups have prime order q. Let g0 and g1 be the
generator of G0 and G1, respectively.

• Two hash functions H0 : M → G0;H1 : Gn
1 → Rn where R := 1, 2, ..., 2128

and 1 ≤ n ≤ Ñ , These two hash functions are treated as random oracle in the
security analysis.

With these components, the scheme works as follows:

• KenGen(): choose a random α
R←− Zq and set h← gα1 ∈ G1, output pk := (h)

and sk := (α).

• Sign(sk, ci): sign command ci and output σi ← H0(ci)
α ∈ G0, where i =

{1, 2, ..., n} denotes different replicas in the blockchain network.

• Aggregate((pkr1 , σ1), ..., (pkrn , σn)):

– compute : (t1, ..., tn)← H1(pkr1 , ..., pkrn) ∈ Rn.

– output : σ ← σt1
1 · · · σtn

n ∈ G0.

• V erify(pkr1 , ..., pkrn , ci, σi): to verify the multi-signature σi on ci, we do
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– compute : (t1, ..., tn)← H1(pkr1 , ..., pkrn) ∈ Rn.

– compute : apk ← pkt1
1 · · · pktn

n ∈ G1.

– if e(g1, σi) = e(apk,H0(ci)), output “accept”; otherwise, output “reject”.

The above scheme is for verifying multiple signatures on one message. If

messages keep flowing, it is more efficient to verify as a batch. Specifically, consider a

triple (mi, σi, apki) for i = 1, 2, ..., b, where b is the number of messages in one batch.

If mi are all distinct, then:

• compute : σ̃ ← σ1 · · · σb ∈ G1.

• Accept all b tuples as valid iff e(g1, σ̃) = e(apk1, H0(m1)) · · · e(apkb, H0(mb)).

If there are identical messages in mi, then:

• obtain : ρ1, ..., ρb
R←− 1, 2, ..., 264.

• compute : σ̃ ← σρ1
1 · · · σ

ρb
b ∈ G1.

• Accept all b tuples as valid iff e(g1, σ̃) = e(apkρ1
1 , H0(m1)) · · · e(apkρb

b , H0(mb)).

Thus, verifying b messages requires only b+ 1 instead of 2b pairings if verifying

one at a time. Hence, such a batch-based mechanism can further improve verification

efficiency.

2.6 Implementation and Evaluation

To shed some light on the behavior of how the gossip-based diffusion mechanism resist

the censorship of the single entry point (for the single exit problem, it also relies on

gossip-based message dissemination to send instructions to actuators/devices, we do

not repeat the redundant evaluation of such process), we implement the gossip-based

message dissemination process7 with following settings:

7The implementation source code of the gossip-based message dissemination can be found
at https://github.com/Blockchain-World/gossip-based-diffusion.git
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• We create a gossip network testbed using 21 Google Cloud virtual machine
(VM) instances8, each of which is equipped with 3.75 GB memory and 1 vCPU
and has JRE 1.8.0 181 installed on Ubuntu 16.04.

• The bandwidth between nodes in the same zone is 1.96 Gbps, while across
different zones, it is at least 700 Mbps. Since the message size is relatively
small, these bandwidths make the data transfer time negligible compared with
the protocol execution time.

• We gossip 10 data items from one client to the other 20 peer nodes. Each data
item is a short string of about six bytes, and each peer node has a local cache
large enough to buffer 10 data items.

Figure 2.7(a)-2.7(f) plots the number of received data items on each peer node

during a certain period of time, where a red line represents the maximum number

of tolerated malicious nodes while a blue line represents the behavior of honest

nodes. These results illustrate censorship resistance where the gossip-based diffusion

mechanism guarantees that all data items sent from the client be delivered to all

honest peer nodes in the blockchain network.

We calculate the average time cost and standard deviation for gossiping one

data item from the “sensor network” (client node) to all other peer nodes in the

blockchain network, as shown in Figure 2.8 and Table 2.2. We have the following

observations and explanations:

• The variation in the average time cost with different selected neighbor nodes in
each gossip round is caused by the non-uniformity when randomly selecting
neighbor nodes. In our implementation, we use Java Math.random() with
pseudo-randomness to generate k random numbers as the selected indices of
neighbor nodes. In some rounds, it is possible that the same target nodes are
selected by different peer nodes and some nodes are not covered until after a
few rounds and eventually receive messages. This process could be optimized
using peer sampling service as mentioned in Section 2.5, but we do not focus on
gossip optimization in this study.

• The standard deviation is relatively large. The measured time cost includes
message transmission, neighbor selection, and consecutive writing I/O operations

8In our gossip testbed, one VM acts as a client, while the other 20 VMs act as peer nodes.
These VMs are located in different zones: node1 to node8 reside in the same zone (us-east1-
b), node9 to node15 reside in u-east4-c, and node16 to node20 reside in us-central1-c.
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Figure 2.7 The gossiping diffusion time for various selected neighbor nodes.

for recording timestamp. The network condition and the randomness in peer
selection affect the time cost of message delivery, i.e., some nodes may receive
messages sooner than others.

• There exists a slowly increasing trend in the average time cost, as more selected
neighbor nodes result in more traffic in the network. In some rounds, the
randomly selected neighbor nodes may have already been selected in previous
rounds, also contributing to the increase in the average time cost.
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Figure 2.8 The average time cost and standard deviation for gossiping protocol.

Table 2.2 The Average Time Costs for the Gossiping Protocol

k (k=f+1) The Average Time Cost (ms) Standard Deviation

k=2 (f=1) 11.43 10.86

k=3 (f=2) 18.21 29.33

k=4 (f=3) 33.32 44.79

k=5 (f=4) 44.16 51.24

k=6 (f=5) 53.13 51.54

k=7 (f=6) 76.73 67.58

2.7 Summary

In this chapter, we present the design to defend against the censorship problem

between blockchain-based decentralized information management system and external

network, i.e., IoT sensor network as a concrete application scenario. For data flows

from a sensor network to a blockchain network, we overcome potential censorship on

a gateway node by employing gossip-based diffusion protocol to achieve guaranteed

message delivery. Moreover, we improve the consensus protocol by checking data

loss before writing to the ledger and replicating process outcome to facilitate

opportunistic outcome delivery. Finally, we leverage the cryptographic tool of public
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key aggregation to reduce communication and verification complexity, and analyze the

security of our protocol. We implement the proposed gossip-based diffusion algorithm

and illustrate message delivery with censorship resistance in the presence of faulty

nodes. The results show that the protocol is efficient. It is worth pointing out that the

proposed design can be used in any general application (besides IoT setting) scenario

when blockchain-based management systems interact with external networks.
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CHAPTER 3

BLOCKCHAIN-BASED CYBER SECURITY MANAGEMENT

This chapter presents the design of blockchain-based information management system

in the specific cyber security management setting [60].

3.1 Introduction

The importance of enterprise-level cyber security management cannot be overstated.

For example, when Bob who defends an enterprise network becomes aware of a new

Advanced Persistent Threat (APT) attack that has been active in the wild for a

while, he needs to investigate whether or not his network has been a victim of the

APT and if so, what the damages are. Indeed, the standard defined in ISO/IEC 27035

includes a five-phase incident management process: prepare, identify, assess, respond

and learn [69]. In order to be effective, such standardization must be supported

by tools [7]. However, existing tools mainly focus on vulnerability management,

incident management, or security information and event management [56,73]. Despite

these tools, many routine cyber defense activities are still a manual process [7],

meaning that defenders cannot respond to cyber events rapidly. Moreover, the

manual process is often conducted in isolation because enterprises rarely share

cyber intelligence with each other. This is true despite the extensive body of work

highlighting the importance of sharing cyber threat intelligence [2,7,20,32,126,127].

For example, learning the attacks that have successfully penetrated into enterprise A

would undoubtedly help enterprise B defend its network against the same and similar

attacks. This observation demonstrates that the problem of effective cyber security

management (CSM) remains largely open.

One main challenge encountered when designing an effective CSM system is how

to ensure its robustness. Specifically, a centralized CSM is vulnerable to single-point-
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of-failure, which often outweighs its advantage in terms of performance especially

because CSM itself is clearly an important target of the attackers. In addition to

the vulnerability to attacks, a centralized CSM is not available when there is system

crash. This robustness against cyber attacks and crashes naturally motivates the

use of distributed or decentralized CSM. However, leveraging the classical distributed

database that tolerates crashes for CSM purposes is still problematic because this

technique requires to trusting all participants (i.e., crash fault tolerant (CFT) [1,129])

but not resilient under attacks (i.e., Byzantine faults). This highlights the importance

of incorporating Byzantine Fault-Tolerance (BFT) into a decentralized CSM. Another

important matter is to automate CSM itself because traditionally CSM has been

done in a manual fashion [7], which incurs delays and is tedious and error-prone. In

addition, a CSM system should offer other properties such as accountability, meaning

that both providers and consumers of cyber intelligence should be held accountable

for their activities. Overall, we make a significant step towards formalizing CSM

by defining three kinds of CSM functions in relation to cyber intelligence sharing,

whereby the participating defenders share and leverage cyber intelligence for their

CSM purposes.

3.2 Related Work

Our CSM functions take certain threat intelligence as input. Prior studies in threat

intelligence sharing can be divided in to four categories: (i) characterizing the oppor-

tunities and challenges [64,126]; (ii) understanding the legal and regulatory matters [4,

133]; (iii) exploring standardization and principles [32, 49]; and (iv) developing

tools [20, 32, 124]. Our study is closely related to the preceding (iv), but ours is

unique since we formulate the problem of robust and automated CSM and present

a blockchain-based design and implementation. It is worth mentioning that CSM

is different from cyber forensics [100]. This is because forensics is oriented toward
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certain details, such as attack attribution and criminal investigation, which are not

critical in all cases of cyber attacks, and can inhibit the efficient response to active

attacks. In contrast, CSM prioritizes efficiency, which is closer to the aim of incident

response.

3.3 CSM Model, Data Structures and Functions

3.3.1 Terminology

A cyber defender, Bob, manages a set of entities, which are broadly defined to

accommodate computers and other objects of cybersecurity significance. As shown in

Figure 3.1, we make the distinction between external entities (i.e., those not managed

by Bob but which may be managed by another defender, Cindy) and internal entities

(i.e., those managed by Bob); this external vs. internal distinction is from a specific

defender’s point of view: in this case, Bob’s. An entity can be in one of three states:

normal, victim or attacker. A victim entity is one that has been compromised by an

external or internal attacker entity; an attacker entity is one that exhibits malicious

behavior; and a normal entity is one that is neither a victim nor an attacker entity.

A normal entity can become a victim entity when it is attacked by an external or

internal attacker entity, and a victim entity can elevate to an attacker entity.

External attacker

External victim

Internal victim

Internal attacker
attack

attack

Entities managed by Bob Entities managed by Cindy

elevateelevate

Figure 3.1 External vs. internal attacker and external vs. internal victim.
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3.3.2 CSM Model

In the CSMmodel, a defender Bob, or more precisely his CSM App (CSMA), leverages

some input cyber intelligence to identify victim and attacker entities, where the input

intelligence may be (i) shared by other defenders or (ii) discovered by some cyber

defense tools used by the defender Bob. In what follows, we describe five kinds

of cyber intelligence, three classes of CSM functions, and a general data structure

designed to facilitate those CSM functions.

Input cyber intelligence. As illustrated in Figure 3.2, we consider five kinds of

input cyber intelligence, which are prefixed by ‘I-’.

(I-1A) Intelligence that points to some external attackers, possibly accompanied by
the time window during which an external attacker is active.

(I-1B) Intelligence that points to some internal attackers, which may have attacked
some external victims and been detected by another defender, or some internal
victims and been detected by some cyber defense tools used by Bob.

(I-2A) Intelligence that points to some external victims, which have been attacked
by some internal or external attackers.

(I-2B) Intelligence that points to some internal victims, which have been attacked
by some internal or external attackers. The intelligence may be collected, for
example, by the leakage of data specific to the victim (e.g., social security
numbers or passwords) or by a cyber defense tool (e.g., intrusion detection
system or anti-malware tool).

(I-3) Intelligence that points to some new defense capabilities, such as methods for
detecting previously undetected attacks (e.g., 0-day attacks).

An overview of three classes of CSM functions. As depicted in Figure 3.2,

Bob’s CSMA takes as input some cyber intelligence and the relevant cyber data,

uses the CSM functions (specified below) to identify other internal or external

attackers/victims, and outputs the resulting intelligence. Bob may choose to

share this output with another defender, say Cindy, about his internal or external

attackers/victims (i.e., input cyber intelligence I-1A, I-1B, I-2A, I-2B from Cindy’s

point of view). To be specific, we define three classes of CSM functions, as shown
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N.1

N.2
…

N-CSM

T-CSM

A-CSM

T.1

T.2
…

A.1

A.2
…

Bob’s own use

N.1

N.2
…

N-CSM

T-CSM

A-CSM

T.1

T.2
…

A.1

A.2
…

Cindy’s own use

I-1A

I-1B

I-2A

I-2B

I-3

Bob’s CSMA Cindy’s CSMA
I-1A

I-1B

I-2A

I-2B

I-3

I-1A

I-1B

I-2A

I-2B

I-3

Figure 3.2 CSM model with input cyber intelligence and CSM functions.

in Figure 3.2: (i) Network-centric CSM (N-CSM), which leverages network-related

data and cyber intelligence for CSM purposes; (ii) Tools-centric CSM (T-CSM),

which leverages data collected from cyber defense tools and cyber intelligence

for CSM purposes; and (iii) Application-centric CSM (A-CSM), which leverages

application-specific data and cyber intelligence for CSM purposes. Each class contains

multiple CSM functions, and the core ideas of these functions are described below.

N-CSM functions are centered at examining the input cyber intelligence against

network traffic data, which may be collected at a gateway between the external

network (e.g., the Internet) and the internal network (e.g., an enterprise network).

Network traffic data can be represented by IP packets and TCP/UDP flows, which

incur different costs on storage. We define the following three N-CSM functions.

(N.1) This function is designed to identify internal victims of some external attackers,
which are given as the input cyber intelligence (i.e., input I-1A). Specifically,
at time t′, Bob is given cyber intelligence that an external attacker, identifiable
by its IP address, attacker IP, was active at some point in time interval [t1, t2]
where t′ ≥ t2. Bob needs to identify his internal systems that may have been
compromised by the external attacker in time interval [t1, t2].

(N.2) This function aims to identify external attackers that may have caused the
compromise of some internal victims (i.e., input I-2B). At time t′, Bob is given
cyber intelligence that an internal victim, identifiable by victim IP, was attacked
at some point in time interval [t1, t2] where t′ ≥ t2. Bob needs to identify the
external IP addresses that contacted victim IP in time interval [t1, t2].
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(N.3) This function is designed to identify potential secondary victims that may
have been attacked before, during or after the known compromise of some other
internal victim (i.e., input I-2B and/or I-1B). Specifically, at time t′, Bob is
given cyber intelligence that an internal victim IP address, identifiable by its
IP address, victim IP, was attacked at some point in time interval [t1, t2] where
t′ ≥ t2. Then, Bob needs to identify the other victims that were contacted by
the potential attackers that may have compromised the given victim IP during
time interval [t1, t2].

T-CSM functions are centered at cyber defense tools, such as Network-based

Intrusion Detection Systems (NIDSs), Host-based Intrusion Detection Systems

(HIDSs), and anti-malware systems. These tools often output alerts as indicators

of malicious or suspicious activities. We define the following three T-CSM functions.

(T.1) This function identifies the attack path(s) via which a known internal victim
was compromised (i.e., input I-2B). Specifically, at time t′, Bob is given cyber
intelligence that an internal victim, say victim IP, was compromised at some
point during the time interval [t1, t2] where t

′ ≥ t2. Then, Bob needs to identify
the attack path(s) that may have been leveraged to compromise victim IP.

(T.2) This function identifies victims of zero-day attacks by leveraging a new defense
capability (i.e., input I-3). Specifically, at time t′, Bob is given cyber intelligence
on a new detection method (e.g., signature) for detecting a previously unknown
zero-day attack. Then, Bob needs to identify the internal victims that were
attacked according to the new detection method during a past time interval
[t1, t2], t

′ ≥ t2.

(T.3) This function is designed to identify the cascading damage caused by a given
attacker (i.e., input I-1A or I-1B). Specifically, at time t′, Bob is given cyber
intelligence that a malicious external or internal entity was active at some point
in time interval [t1, t2] where t′ ≥ t2. Then, Bob needs to identify the entities
that were directly or recursively accessed by the malicious entity during time
interval [t1, t2].

A-CSM functions are centered at specific applications that are often exploited

to wage attacks, such as drive-by downloads via web browsers and spear-phishing via

email. As examples, we consider the following three A-CSM functions.

(A.1) This function identifies secondary internal victims (e.g., browsers or email
clients) that have been targeted by the same attack that succeeded against
a known compromised entity (i.e., input I-2B). Specifically, at time t′, Bob is
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given cyber intelligence that an internal entity (i.e., browser or email user) was
compromised at some point in time interval [t1, t2] where t′ ≥ t2. Then, Bob
needs to identify the other internal victim entities (i.e., browsers or email users)
that communicated with any of the external attacker (i.e., URLs or email users)
that compromised the internal victim during time interval [t1, t2].

(A.2) This function identifies internal victims (e.g., browsers or email users) of an
external attacker (namely input I-1A). Specifically, at time t′, Bob is given an
external attacker (i.e., URL or email address) that was active at some point in
time interval [t1, t2] where t

′ ≥ t2. Then, Bob needs to identify the other internal
victims (i.e., browsers or email users) that may be compromised because they
communicated with the external attacker during time interval [t1, t2].

(A.3) This function identifies internal victims that may be impacted by known attacks
against an external victim (e.g., spoofed URL or email address, namely input I-
2A). At time t′, Bob is given cyber intelligence that an external victim (i.e., URL
or email address) was spoofed to wage attacks at some point in time interval
[t1, t2] where t′ ≥ t2. Then, Bob needs to identify the external attackers (i.e.,
URLs or email addresses) that spoofed the given external victim during time
interval [t1, t2] and the internal victims (i.e., browsers or email addresses) that
communicated with the external attacker during time interval [t1, t2].

A general CSM data structure. In order to realize the CSM functions, appropriate

data representations are needed. We propose a general data structure, known as an

Annotated Graph Time Series Representation (AGTSR), by dividing the time horizon

into T + 1 time windows at some resolution (e.g., hour or day). In order to reduce

the number of notations, we make the following convention: the default use of t, t1, t2

refers to specific points in time; we also use the term time window t, t1, t2 to refer to

the t-th, t1-th, and t2-th time window, where 0 ≤ t, t1, t2 ≤ T .

For time window t, we use G(t) = (V (t), E(t), A(t)) to represent the relevant

cyber activities for CSM purposes, where V (t) is the vertex set with each vertex

representing an entity (e.g., IP address, computer or device), E(t) is the arc set

with each arc representing some communication activity, and A(t) is the annotation

set such that A(t) = {Auv(t) : (u, v) ∈ V (t) × V (t)} with Auv(t) being a set of

annotations associated to (u, v) ∈ V (t)× V (t) and Auv(t).count denotes the number

of IP packets or TCP/UDP flows along an arc (u, v) in time window t. That is,
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Auv(t).count = 0 means (u, v) /∈ E(t) and Auv(t).count > 0 means (u, v) ∈ E(t),

and count is the number of IP packets or TCP/UDP flows from entity (e.g., IP

address) u to entity v in time window t. The meanings of annotations in Auv(t) are

specific to the class of CSM functions, and will be elaborated below. In principle,

G(t) may be stored as an adjacency matrix or list; for simplicity, we will focus on

the adjacency matrix representation and Auv(t) can be seen as an extension of the

standard adjacency matrix. Our model can support division of a network into subnets

with both intra- and inter-subnet communications. We can achieve this by extending

G(t) = (V (t), E(t), A(t)) of time window t to Gm(t) = (V m(t), Em(t), Am(t)), where

V m(t) ⊆ V (t) are the nodes belong to a subnet and formulate a partition of V (t),

(u, v) ∈ Em(t) means u, v ∈ V m(t), and Am
uv means u, v ∈ V m(t). There are also arcs

Em,m′
(t) = {(u, v) : u ∈ V m(t), v ∈ V m′

(t)}. The cybersecurity meanings of these

notations are specific to the CSM functions in question and thus elaborated later.

Besides, we use maxt∈[t1,t2] |V (t)| to denote the maximum number of entities

(e.g., computers, IP addresses, or browsers) during a time window in between time

window t1 and time window t2, namely maxt∈[t1,t2] |V (t)| = max{|V (t1)|, |V (t1 +

1)|, . . . , |V (t2)|} with 0 ≤ t1 ≤ t2 ≤ T . Similarly, we define that maxt∈[t1,t2] |V m(t)| =

max{|V m(t1)|, |V m(t1 + 1)|, . . . , |V m(t2)|}.

3.3.3 CSM Data Structures

For N-CSM, AGTSR can accommodate network communications such that a node u ∈

V (t) represents a computer, and an arc (u, v) ∈ E(t) represents the communications

between nodes u and v initiated by u. In N-CSM, we are often concerned with

border communications, meaning the communications between the internal entities

and the external entities. In this case, V (t) is partitioned into V external and V internal,

where V external is the set of external entities (e.g., IP addresses) and V internal is the

set of internal entities. For time window t, there is a G(t) = (V (t), E(t), A(t)) as
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Figure 3.3 Data structure for N-CSM.

defined above. Figure 3.3 illustrates G(1), G(2), . . .; for example, we have u2, u3, u4 ∈

V external(1) and v1, v2, v3, v4 ∈ V internal(1) where count is only illustrated for (u2, v1) ∈

E(1) for a better visual effect.

21 …Time interval:

G(1) G(2)

Internet Internet

DMZ

Proxy

𝐺𝐷−𝐿(1)
LAN

𝐺𝐼−𝐷(1) 𝐺𝐿−𝐼(1)

DMZ LAN

Proxy

𝐺𝐿−𝐼(2)𝐺𝐼−𝐷(2)

𝐺𝐷−𝐿(2)

Figure 3.4 Data structure for T-CSM.

For T-CSM, Figure 3.4 shows an example network to clearly convey the ideas.

The network has three disjoint subnets: the Internet (i.e., the external subnet), the

demilitarized zone for external-facing servers (DMZ), and the local area network

(LAN). This suggests that Bob can use (i) an AGTSR to represent the interactions

between the Internet and the DMZ, or GI−D(t) for short; (ii) an AGTSR to represent

the interactions between the LAN and the Internet, or GL−I(t) for short; and (iii) an

AGTSR to represent the interactions within the DMZ itself, within the LAN itself
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and between the border of the DMZ and the LAN, or GD−L(t) for short. Note that

V (t) = V I−D(t) ∪ V L−I(t) ∪ V D−L(t). In T-CSM, the annotation of an arc is a list of

alerts (i.e., Auv(t) = {alerts}). These alerts are triggered by the traffic across each

arc, which often corresponds to a routing path rather than a physical link.

𝑉𝑈𝑅𝐿(2)𝑉𝑎𝑝𝑝(2)𝑉𝑎𝑝𝑝(1) 𝑉𝑈𝑅𝐿(1)
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𝑣4

𝑣5

timestamp

Figure 3.5 Data structure for A-CSM.

For A-CSM, we use the example of web applications, but the discussion can be

adapted to accommodate other applications, e.g., email systems. In this example,

browsers (or their IP addresses) are internal entities and URLs are external entities.

As illustrated in Figure 3.5, we have G(t) = (V (t), E(t), A(t)), where V (t) = V app(t)∪

V URL(t), E(t) is the arc set such that arc (u, v) ∈ E(t) means browser u ∈ V app(t)

visited URL v ∈ V URL(t) in time window t, each arc (u, v) ∈ E(t) is annotated with a

timestamp ∈ Auv(t), where a value of −1 means (u, v) /∈ E(t).

3.3.4 CSM Functions

Here we introduce the CSM functions. Note that all these functions are implemented

and deployed in the smart contract (i.e., chaincode) to facilitate CSM.

Algorithm 3 realizes N-CSM function N.1 by identifying victims given an

attacker. The algorithm considers each time window within a given time interval

[t1, t2], checking each arc originating from the attacker to identify the entities that were

accessed by the attacker. The query returns a list of all such entities. The algorithm
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Algorithm 3 N-CSM Function N.1 (Identifying Victims)

Input: attacker, T , G(t) = (V (t) = V internal(t) ∪ V external(t), E(t), A(t)) for t ∈ [t1, t2] with

0 ≤ t1 ≤ t2 ≤ T

Output: ⟨t, victims(t)⟩ for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do

2: if attacker ∈ V external(t) then

3: victims(t)← ∅;
4: for v ∈ V internal(t) do ▷ Check victims

5: if Aattacker,v(t).count > 0 then

6: victims(t)← victims(t) ∪ {v};

7: return victims(t) for t ∈ [t1, t2];

Algorithm 4 N-CSM Function N.2 (Identifying Potential Attackers)

Input: victim IP, T , G(t) = (V (t) = V internal(t)∪ V external(t), E(t), A(t)) for t ∈ [t1, t2] with

0 ≤ t1 ≤ t2 ≤ T

Output: ⟨t, attackers(t)⟩ for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do

2: if victim IP ∈ V internal(t) then

3: attackers(t)← ∅;
4: for a ∈ V external(t) do ▷ Check attackers

5: if (a, victim IP) ∈ E(t) then

6: attackers(t)← attackers(t) ∪ {a};

7: return attackers(t) for t ∈ [t1, t2];

has a time complexity O((t2 − t1 + 1) · maxt∈[t1,t2] |V internal(t)|), where (t2 − t1 + 1)

indicates the number of time windows that are considered.

Algorithm 4 realizes N-CSM function N.2 by identifying potential attackers

based on their communications to a given victim. The algorithm considers each

time window within the time interval [t1, t2], checking which attacker entities tried to

access the given victim entity. The algorithm has a time complexity O((t2 − t1 + 1) ·

maxt∈[t1,t2] |V external(t)|).

Algorithm 5 realizes N-CSM function N.3 by identifying secondary victims of

the attacker that compromised the input victim. The algorithm uses Algorithm 4
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Algorithm 5 N-CSM Function N.3 (Identifying Extended Victims)

Input: victim IP, T , G(t) = (V (t) = V internal(t)∪ V external(t), E(t), A(t)) for t ∈ [t1, t2] with

0 ≤ t1 ≤ t2 ≤ T

Output: ⟨t, potential victims(t)⟩ for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do

2: potential victims(t)← ∅;
3: if victim IP ∈ V internal(t) then

4: tmp attackers← ∅;
5: for u ∈ V external(t) do

6: if Au,victim IP(t).count > 0 then

7: tmp attackers(t)← tmp attackers(t) ∪ {u}; ▷ u accessed victim IP

8: for u ∈ tmp attackers(t) do

9: for v ∈ V internal(t) do

10: if Au,v(t).count > 0 then

11: potential victims(t)← potential victims(t) ∪ {v}; ▷ u accessed v and

may have compromised it

12: return potential victims(t) for t ∈ [t1, t2];

to compute the potential external attackers, which are then used to identify the

other internal entities that may have been compromised by the potential attackers.

The algorithm has a time complexity O((t2 − t1 + 1) · maxt∈[t1,t2] |V internal(t)| ·

maxt∈[t1,t2] |V external(t)|).

Algorithm 6 realizes T-CSM function T.1 by inferring the attack paths to the

compromised internal entity (e.g., computer or IP address, namely input I-2B) in

time interval [t1, t2]. The algorithm creates a tree of potential attackers from the

given compromised internal entity. The tree grows according to the relevant network

activities, and add new nodes when new attackers are identified. The resulting tree

structure contains the target as the root, compromised internal entities as internal

nodes, and all possible attackers as the leaves. Since the given compromised entity

belongs to the internal LAN, the algorithm’s search space originates in GD−L(t′)

and branches out within the network until all entities have been considered. Once

50



the relevant GD−L(·)’s have been exhausted, the algorithm checks both GI−D(·) and

GL−I(·) to identify potential external attackers. The algorithm has a time complexity

O((t2− t1+1) · ((maxt∈[t1,t2] |V D−L(t)|)2+maxt∈[t1,t2] |V I−D(t)| + maxt∈[t1,t2] |V L−I(t)|) ·

maxt∈[t1,t2] |V (t)|).

Algorithm 7 realizes T-CSM function T.2 by retrospectively detecting victims

of a zero-day attack during the past time windows prior to discovery of the zero-day

attack (i.e. input I-3). The cyber intelligence may come in the form of an alert

sequence from either an IDS’ output or a previously unexplained anomaly. In either

case, the defender needs to look at all previous IDS alerts to find matches. For this

purpose, the algorithm traces back over the past time windows in between t1 and

t2, by looking at each IDS alert in the set of arc annotations. The algorithm has

a time complexity O((t2 − t1 + 1) · ((maxt∈[t1,t2] |V D−L(t)|)2 + maxt∈[t1,t2] |V I−D(t)| +

maxt∈[t1,t2] |V L−I(t)|) ·maxt∈[t1,t2] |V |(t)).

Algorithm 8 realizes T-CSM function T.3 by identifying the cascading damage

of a given attacker (i.e., input I-1A or I-1B). The algorithm determines which entities

were targeted by the given attacker, either directly or recursively. The algorithm has

a time complexity O(t2 − t1 + 1 ·maxt∈[t1,t2] |V (t)|2).

Algorithm 9 realizes A-CSM function A.1 by identifying suspicious internal

applications (i.e., potentially compromised browsers). The input to the algorithm

is a browser as an internal victim (i.e., input I-2B). The output is a set of

compromised browsers (internal victims) that have accessed any URLs visited by

the given compromised browser during time interval [t1, t2]. The time complexity

O((t2 − t1 + 1) ·maxt |V app(t)| ·maxt |V URL(t)|).

Algorithm 10 realizes A-CSM function A.2 by identifying victim browsers. The

input to the algorithm is a known malicious URL (i.e., input I-1A). The output is

the set of browsers (internal victims) that accessed the malicious URL during time

interval [t1, t2]. The algorithm has a time complexity O((t2− t1 +1) ·maxt |V app(t)|),
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Algorithm 6 T-CSM Function T.1 (Inferring Attack Paths)

Input: Victim IP, T , G(t) = (GI−D(t), GD−L(t), GL−I(t)) for t ∈ [t1, t2] with 0 ≤ t1 ≤ t2 ≤ T

Output: Attack Paths = (V AP , EAP , AAP )

1: V AP ← {Victim IP}; EAP ← ∅; AAP ← ∅;
2: for t = t2 downto t1 do

3: Node Queue← New FIFO;

4: while Node Queue is not empty do ▷ Conduct BFT

5: for Vertex v ∈ V AP do

6: Node Queue.enqueue(v);

7: Searched Nodes← ∅; Current Node← Node Queue.dequeue();

8: if Current Node ∈ V D−L(t) then

9: for Vertex v ∈ V D−L(t) do

10: if AD−L
v,Current Node(t).alerts ̸= ∅ then

11: if v ̸∈ V AP then

12: V AP ← V AP ∪ {v};
13: for Vertex v′ ∈ V AP do

14: AAP
v,v′ .alerts← ∅; AAP

v′,v.alerts← ∅;

15: AAP
v,Current Node.alerts← AAP

v,Current Node.alerts ∪AD−L
v,Current Node(t).alerts;

16: if v ̸∈ Searched Nodes ∪ Node Queue then

17: Node Queue.enqueue(v);

18: Searched Nodes← Searched Nodes ∪ Current Node;

19: for sub ∈ {I− D, L− I} do
20: for Vertex v ∈ V AP do

21: if v ∈ V sub(t) then

22: for Vertex v′ ∈ V sub(t) do

23: if Asub
v′,v(t).alerts ̸= ∅ then

24: if v′ ̸∈ V AP then

25: V AP ← V AP ∪ {v′};
26: for Vertex v̂ ∈ V AP do

27: AAP
v̂,v′ .alerts← ∅; AAP

v′,v̂.alerts← ∅;

28: AAP
v′,v.alerts← AAP

v′,v.alerts ∪Asub
v′,v(t).alerts;

29: return Attack Paths = (V AP , EAP , AAP );

where maxt |V app(t)| is the maximum number of browsers that accessed some URLs

during a time window.
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Algorithm 7 T-CSM Function T.2 (Identifying Victims of Zero-Day Attacks)

Input: Attack Signature, T , G(t) = {GI−D(t), GD−L(t), GL−I(t)} for t ∈ [t1, t2] with 0 ≤
t1 ≤ t2 ≤ T

Output: ⟨t,Matches(t)⟩ where t ∈ [t1, t2]

1: Matches← New linked list of empty lists

2: for t ∈ [t1, t2] do

3: for sub ∈ {I− D(t), D− L(t), L− I(t)} do
4: for Vertex v ∈ V sub(t) do

5: for Vertex v′ ∈ V sub(t) do

6: if Attack Signature ⊆ Asub
v,v′(t).alerts then

7: Matches(t)← Matches(t) ∪ {(v, v′)};

8: return Matches(t) for t ∈ [t1, t2];

Algorithm 3.3.4 realizes A-CSM function A.3 by identifying victim browsers of

spoofed (e.g., typo-squatted) URLs. The input to the algorithm is an abused URL

url id (i.e., input I-2A), The output includes the set of possibly spoofed URLs, denoted

by spoofed urls(t), and the set of potential victim browsers, denoted by victim apps(t),

for t ∈ [t1, t2]. Lines 3-7 of Algorithm 3.3.4 find each of the spoofed URLs v ∈ V URL(t)

that has an edit distance smaller than a given threshold τ distance, where edit

distance is computed using Algorithm 12 (which is a variant of the Levenshtein

distance algorithm). Lines 1-2 of Algorithm 12 extracts the domain names from

url 1 and url 2. Lines 3-4 create the array of components (i.e., the components

separated by the ‘.’ character) for each of domain names. Lines 5-6 determine

the maximum and minimum lengths of the component arrays respectively. Lines

8-16 compute the edit distance for each components of component1 and component2

starting from the last component (usually top-level domain names such as ‘.com’ or

‘.net’ are the last components) and sum the edit distances of individual components

to get the total distance between domain2 and domain2. For example, consider url1 =

“mail.google.com/contact.php” and url2 = “mali.g00gle.com/home.php.” We

define their edit distance as the edit distance between domain1 = mail.google.com
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Algorithm 8 T-CSM Function T.3 (Identifying Cascading Damage)

Input: Attacker IP, T , G(t) = (GI−D(t), GD−L(t), GL−I(t)) for t ∈ [t1, t2] with 0 ≤ t1 ≤
t2 ≤ T

Output: Damage Graph = (V DG, EDG)

1: V DG ← {Attacker IP}; EDG ← ∅; ADG ← ∅;
2: for t ∈ [t1, t2] do

3: for sub ∈ {I− D, L− I} do ▷ Check arcs which come from the Internet

4: if Attacker IP ∈ V sub(t) then

5: for Vertex v ∈ V sub(t) do

6: if Asub
Attacker IP,v(t).alerts ̸= ∅ then

7: if v ̸∈ VDG then

8: V DG ← V DG ∪ {v};
9: for Vertex v′ ∈ V DG do ▷ Initialize empty arcs to existing nodes

10: ADG
v,v′ .alerts← ∅; ADG

v′,v.alerts← ∅;

11: ADG
Attacker IP,v.alerts← ADG

Attacker IP,v.alerts ∪Asub
Attacker IP,v(t).alerts;

12: for Vertex v ∈ V DG do

13: Node Queue.enqueue(v);

14: Searched Nodes← ∅;
15: while Node Queue is not empty do ▷ Conduct BFT

16: Current Node← Node Queue.dequeue();

17: if Current Node ∈ V D−L(t) then

18: for Vertex v ∈ V D−L(t) do

19: if AD−L
Current Node,v(t).alerts ̸= ∅ then

20: if v ̸∈ VDG then

21: V DG ← V DG ∪ {v}
22: for Vertex v′ ∈ V DG do

23: ADG
v,v′ .alerts← ∅;

24: ADG
v′,v.alerts← ∅;

25: ADG
Current Node,v.alerts← ADG

Current Node,v.alerts ∪AD−L
Current Node,v(t).alerts;

26: if v ̸∈ Searched Nodes ∪ Node Queue then

27: Node Queue.enqueue(v);

28: Searched Nodes← Searched Nodes ∪ Current Node;

29: return Damage Graph = (V DG, EDG, ADG);
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Algorithm 9 A-CSM Function A.1 (Identifying Compromised Browsers)

Input: app id, T , G(t) for t ∈ [t1, t2] and 0 ≤ t1 ≤ t2 ≤ T

Output: ⟨t, suspicious app(t)⟩ for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do

2: suspicious app(t)← ∅;
3: temp URL set← ∅;
4: for v ∈ V URL(t) do

5: if (app id, v) ∈ E(t) then

6: temp URL set(t)← temp URL set(t) ∪ {v}; ▷ v was accessed by app id

7: for v ∈ temp URL set(t) do

8: for u ∈ V app(t) do

9: if (u, v) ∈ E(t) then

10: suspicious app(t)← suspicious app(t) ∪ {v}; ▷ app u accessed URL v and

is therefore suspicious

11: return ⟨t, suspicious app(t)⟩ for t ∈ [t1, t2];

Algorithm 10 A-CSM Function A.2 (Identifying Victims of A Malicious URL)

Input: url id, T , G(t) for t ∈ [t1, t2] and 0 ≤ t1 ≤ t2 ≤ T

Output: ⟨t, victim apps(t)⟩ for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do

2: victim apps(t)← ∅;
3: for u ∈ V app(t) do

4: if E(t)[u, url id] ̸= −1 then

5: victim apps(t)← victim apps(t) ∪ {u}; ▷ Application u accessed url id

6: return ⟨t, victim apps(t)⟩ for t ∈ [t1, t2];

and domain2 = mali.g00gle.com. More specifically, it is the sum of the edit distance

between components mail and mali, the edit distance between components google

and g00gle, and the edit distance between components com and com respectively.

Lines 9-15 of Algorithm 3.3.4 identify all the victim browsers that visited any of

the spoofed URLs in set spoofed urls(t). Algorithm 3.3.4 has a time complexity

O((t2 − t1 + 1) ·maxt |V app(t)| ·maxt |V URL(t)|).
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Algorithm 11 A-CSM Function A.3 (Identifying Victim URLs and Victim
Applications of Spoofed URLs)

Input: url id, T , τdistance, G(t) for t ∈ [t1, t2] with 0 ≤ t1 ≤ t2 ≤ T

Output: ⟨t, spoofed urls(t), victim apps(t)⟩ for t ∈ [t1, t2]

1: for t ∈ [t1, t2] do

2: spoofed urls(t)← ∅; victim apps(t)← ∅;
3: for v ∈ V URL(t) do

4: if 0 <EDIT DISTANCE(v, url id) ≤ τdistance then

5: spoofed urls(t)← spoofed urls(t) ∪ {v};

6: for v ∈ spoofed urls(t) do

7: for u ∈ V app(t) do

8: if (u, v) ∈ E(t) then

9: victim apps(t)← victim apps(t) ∪ {u};

10: return ⟨t, spoofed urls(t), victim apps(t)⟩, t ∈ [t1, t2];

Algorithm 12 Edit Distance (url1, url2) [108,147]

Input: url1, url2

Output: total distance (edit distance between url1 and url2)

1: domain1 ← Extracting domain(url1);

2: domain2 ← Extracting domain(url2); ▷ extracting components; e.g., ‘google’ and

‘com’ for google.com

3: compo1 ← Extracting compo(domain1);

4: compo2 ← Extracting compo(domain2);

5: MAX← max(|compo1|, |compo2|);
6: MIN← min(|compo1|, |compo2|);
7: total distance← 0;

8: for i← 0 to MIN− 1 do

9: if |compo1| > |compo2| then
10: distance← Levenshtein(compo1[MAX− i], compo2[MIN− i]);

11: else

12: distance← Levenshtein(compo2[MAX− i], compo1[MIN− i]);

13: total distance← total distance+ distance;

14: return total distance;

3.4 B2CSM System and Evaluation

A straightforward realization of the CSM model depicted in Figure 3.2 would let

each defender build a centralized cyber security management system (mainly for the
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sake of efficiency) to maintain their own cyber data and perform CSM invocation

due to some received threat intelligence. However, such a design is insufficient

due to the considerations that: (i) centralized architecture typically poses the risk

of single-point-of-failure, and therefore a decentralized system would be preferable

to tolerate crash faults; (ii) when considering a decentralized system, even in the

network of the same enterprise that the defender manages, it is still possible that

part of the servers get corrupted, hence not only crash fault tolerance (CFT)

but also byzantine fault tolerance (BFT) are needed to construct a robust CSM

system; (iii) besides the robust storage of cyber data, the invocation records (e.g.,

which party invoked a CSM function in a certain time point) are also potentially

valuable to realize accountability, and these records should be tamper-proof against

malicious actions; (vi) The decentralized system is expected to correctly execute

some pre-defined operations, i.e., the CSM functions, in an automated manner

instead of the involvement of manual procedure. To overcome these challenges,

we propose leveraging blockchain to build a decentralized, automated and robust

blockchain-based CSM system, leading to B2CSM. In what follows, we present the

key designs of B2CSM; instantiate it atop the blockchain platform; analyze its security

properties and evaluate its performance based on real cyber data.

3.4.1 B2CSM Model and Architecture

Figure 3.6 highlights the B2CSM model, which extends the CSM model by storing

defenders’ cyber data, G(t)’s, in the B2CSM blockchain network and incorporating

B2CSM Apps and B2CSM Agents. B2CSM Apps are the interface for defenders to

run CSM functions, by (i) taking as input some cyber intelligence and identifiers (e.g.,

a time frame) of the relevant cyber data and (ii) presenting the output of the CSM

functions to the defender. B2CSM Agents collect cyber data and write the data to

the B2CSM blockchain network.
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Figure 3.6 The B2CSM model extending from the CSM model.

The B2CSM model described in Figure 3.6 lends itself to the B2CSM archi-

tecture depicted in Figure 3.7, which is presented from the defenders’ perspective. In

this architecture, a defender uses a set of B2CSM agents to collect cyber data from the

enterprise network. These agents write the collected data into the defender’s B2CSM

blockchain network. The defender interacts with their B2CSM App to execute CSM

functions with some input cyber intelligence. The CSM functions run in the form

of smart contract at full nodes in the B2CSM blockchain network. The B2CSM

middleware acts as an intermediary between the B2CSM App and the blockchain

network. To provide permissioned access control, the defenders are identified via a

Certificate Authority (CA). These components interact with each other to form the

B2CSM system.

3.4.2 B2CSM System Design and Security Analysis

Instantiating architecture into system. The B2CSM architecture in Figure 3.7

can be instantiated into B2CSM systems in different ways. We now propose a concrete

instance by providing needed design choices:
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Figure 3.7 Illustration of B2CSM architecture.

Decision on blockchain type. We propose using the permissioned blockchain [9] to

realize B2CSM due to the following reasons: (i) CSM needs to authenticate its

participants and users because cyber security management copes with sensitive data;

(ii) only parties who are interested in CSM (e.g., honest defenders share a common

goal of protecting their systems from malicious attacks) need to participate in, and

therefore it is unnecessary to be public to all; (iii) the participating entities may not

fully trust each other, highlighting the importance of achieving accountability. Note

that permissioned blockchains can be further divided into private blockchains, where

the full nodes in the blockchain network belong to one enterprise, and consortium

blockchains, where the full nodes are managed by multiple enterprises.

Decision on the number of chains and their types. Since there are three classes of

CSM functions, we propose using one chain per class. The Fabric channel mechanism

offers this service and creates a separated “subnet” containing its joined members, its

ordering service nodes, a shared ledger, and the application chaincodes. One-chain-

per-class provides a modular structure for the B2CSM network and allows for flexible

extension of more potential CSM functions. In B2CSM, we propose two kinds of

chains or channels:
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• Private chain/channel for storage: A defender of each enterprise can create
a private channel to store its own cyber data and perform different CSM
functions, leading to a (permissioned) private B2CSM blockchain.

• Consortium chain/channel for sharing: Defenders can jointly create a
channel to store cyber data (secret shares [128] or encrypted) and share their
cyber intelligence, leading to a (permissioned) consortium B2CSM blockchain.

In both cases, each channel maintains a unique ledger, which consists of a

blockchain for on-chain data storage (as transactions) and state database for off-chain

data storage (as key-value pairs), and can serve specific CSM class, namely N-CSM,

T-CSM or A-CSM.

Figure 3.8 depicts the channel architecture of B2CSM. The defender of an

enterprise can create a private channel by only allowing the server nodes managed by

the defender to join. Intuitively, the cyber data of an enterprise is maintained and

accessed on by its own servers, which jointly maintain a distributed ledger. Moreover,

defenders of different enterprises can create a consortium channel for sharing their

cyber intelligence data such as the outputs of CSM function invocations. Following a

general BFT consensus security model [23], the number of full nodes N in any channel

satisfies N ≥ 3f + 1, where f is the number of faulty nodes that can be tolerated.

Decision on the consensus protocol. As our threat model considers compromised

blockchain network nodes, we need to make B2CSM achieve Byzantine Fault

Tolerance (BFT). Note that the Ordering Service Nodes (OSNs) in Fabric are external

nodes (i.e., rather than the blockchain’s full nodes) and that the ordering service only

supports Crash Fault-Tolerance (CFT) consensus mechanisms such as Zookeeper with

Kafka or Raft [65]. To achieve BFT, we propose integrating the work in [135], known

as BFT-SMaRt. Moreover, we propose running the ordering service at the full nodes

of the B2CSM blockchain, instead of delegating this service to extra nodes.

Decision on the state database to use. Fabric supports leveldb and couchdb as state

databases. Although both support key-value storage, couchdb offers rich queries (e.g.,

the value can be JSON format whereas leveldb only supports string-based queries).
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Figure 3.8 The channel architecture in B2CSM blockchain network.

In light of this, we adopt couchdb as the B2CSM state database and the concrete

data format is elaborated in Section 3.4.2.

Decision on the locality of the B2CSM middleware. We propose running the middleware

at every B2CSM blockchain full node. The middleware has multiple sub-functions,

such as formatting a defender’s invocation of CSM functions, interacting with the

B2CSM blockchain network and decentralized storage network, and polishing the

output of CSM functions before returning it to the B2CSM App. These services are

important because (i) different kinds of CSM functions may require different kinds

of data pre-processing, and (ii) the middleware serves as an intermediate level of

abstraction to support extensive functionalities that may emerge in the future.
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B2CSM system design. In light of the design choices above, we now present the

B2CSM system design, which contains two main phases: cyber data replication and

CSM function invocation.

Phase I: cyber data replication. This phase allows a defender, e.g., Bob, to

robustly store the cyber data via private channels in the B2CSM blockchain network.

Upon system is setup, defenders can continuously write collected cyber data to the

channel via B2CSM agents, i.e., the local servers managed by Bob. The key challenge

is how to deal with a large volume of cyber data in terms of efficient writing and

reading, and robust storage. We propose two methods to solve this challenge and

analyze their advantages and disadvantages. Specifically,

Method 1 M1: splitting into chunks with fine-grained ledger structure.

In order to handle a large volume of cyber data G(t), we need to attain efficient

uploading and retrieval. In order to replicate a large volume of cyber data to the

blockchain network, we propose dividing G(t) into small data units and uploading

them in parallel. On the other hand, the efficiency of data retrieval largely depends

on how the data units are stored in the B2CSM network. While it is tempting

to store all of the cyber data on the blockchain in the form of transactions and use

smart contracts to point to which blocks contain the relevant data units for what time

window, this design will incur large latency when multiple blocks need to be traversed.

Besides, a block may contain data units belonging to different time windows as the

block size is fixed when initializing a channel, leading to possible retrieval of irrelevant

cyber data. This prompts us to propose a proper ledger structure by extending the

Fabric state database: the blockchain full nodes not only reach consensus on data

units and package them into consecutive blocks, but also proactively update the state

database for later efficient retrieval purposes.

Figure 3.9 depicts the structure of the B2CSM ledger, where the blockchain

stores two kinds of transactions: (i) the transactions containing the history of cyber
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Figure 3.9 Illustration of the B2CSM ledger structure with a blockchain and a
state database. The state database stores the cyber data units.

data replication (i.e., who submits which cyber data to the B2CSM blockchain

network); (ii) the transactions containing the history of CSM function invocations

for auditing purposes. The state database stores real cyber data G(t) as shown

in Figure 3.9, where a large G(t) is divided into multiple data units. For

example, time window1 consists of two data units that are respectively keyed by

time window1-0 and time window1-1. When defenders make CSM queries, the

B2CSM middleware can invoke the CSM functionalities in the smart contracts, which

take as input the relevant cyber data that is retrieved from the state database.

This fine-grained ledger structure leverages the advantages of both blockchain and

database structures [129] to facilitate blockchain-based applications as they process

large volumes of data.

Method 2 M2: integrating with decentralized storage network. An

alternative way of handling a large volume of cyber data is to incorporate with

decentralized storage network, instantiated by IPFS. The key idea lies in storing

the real cyber data in the IPFS while recording a reference, i.e., the returned content
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Figure 3.10 Illustration of the B2CSM ledger structure with a blockchain and a
state database. The state database stores content id returned by IPFS.

id cid of the cyber data on blockchain. We leverage the (private) IPFS cluster [89]

that can be deployed by the defender on its own servers instead of the public version

to store the cyber data since in that case, the data uploaded to IPFS typically needs

to be encrypted, leading to extra cost for data decryption during retrieval.

One potential issue that may appear in the Fabric-IPFS enabled hybrid

architecture is that a corrupted full node in the B2CSM blockchain network may

maliciously modify or drop the cid, leading to subsequent inaccessibility. To tackle

this issue, we leverage a gossip-based1 diffusion method and propose an augmented

consensus mechanism. At a high-level, the replication procedureM2 works as: (i) a

B2CSM agent signs the collected cyber data G(t) along with the time window t and

submitted to f + 1 full nodes in the defender created private B2CSM blockchain

channel; (ii) these f + 1 full nodes execute the gossip procedure so that all full

nodes can cache the cyber data temporarily; (iii) the leader node in the consensus

1A gossip protocol is a procedure where the cyber data G(t) can be routed to all full nodes
by letting each peer node randomly and uniformly select θ neighbor nodes and forward the
data.
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mechanism submits the cyber data to IPFS and receives the cid, then starts the BFT

consensus, e.g., via BFT-SMaRt [16] consensus mechanism, with other full nodes,

eventually all full nodes receive the cid; (iv) each full node retrieves the data in IPFS

via the cid and verifies the attached signature generated by defender, if valid, updates

the state database with the key of time window t and the value of cid, as depicted in

Figure 3.10, and then clears the locally cached cyber data. Otherwise, if the signature

is invalid, a view change (VC) is triggered to elect a new leader node and restart from

the prior step (iii).

Comparison of the two methodsM1 andM2. The methodM1 stores the cyber

data in the state database, which brings the advantage that the chaincode/smart

contract of CSM functions can conveniently and efficiently retrieve cyber data for

function execution. But for this method, it essentially stores the copy of the cyber

data on each full node, leading to relatively higher storage cost (compared withM2).

For the method M2, the advantage lies in less on-chain storage cost, e.g., consider

there are N full nodes in the channel and the cyber data size is 1Gb, then the on-chain

storage cost forM2 is N × 46 bytes (i.e., the length of a cid) along with the 1Gb cyber

data that stored in IPFS, while N × 1Gb for method M1. However, the drawback

ofM2 becomes clear during data retrieval. Specifically, the CSM function needs to

execute by taking as input the cyber data and threat intelligence, in that case, it is

not common to let smart contract directly retrieve from IPFS (since it is external

source, which may cause non-determinism in Fabric chaincode). Hence, either new

retrieval mechanism needs to be developed or query/invocation latency would become

considerably large (for large cyber data) if the defender downloads from IPFS and

feeds to the chaincode. How to get the best of both of these two methods will be one

very interesting question for future work.

Phase II: CSM functionality invocation. After the cyber data G(t) is replicated

to the Fabric channel (i.e., via methodM1) or the Fabric-IPFS enabled architecture
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(i.e., via method M2), the defender Bob can invoke CSM functions to identify

potential risks with respect to a given piece of threat intelligence. We describe the

high-level idea here: (i) the defender submits the time window t, the CSM type such

as N-CSM, and the intelligence via B2CSM App, which forwards to multiple full nodes

in the private channel; (ii) these full nodes (i.e., the B2CSM middleware on them)

execute the CSM functions and sign the result; (iii) the B2CSM App aggregates the

results from these full nodes and present to the defender.

Cyber threat intelligence sharing. Besides the two main phases above in B2CSM

system, a potential phase is cyber threat intelligence sharing. Practically sharing

cyber intelligence is at the defender’s discretion. In B2CSM, if the defender Bob

would like to share cyber intelligence with other defenders, the following operations

can be conducted: (i) the shared cyber intelligence can be encrypted using public key

encryption (PKE) so that the sensitive information contained in the intelligence data

can be protected against others; (ii) additionally, the cyber intelligence data can be

shared in a consortium channel, where only the defenders who would like to share

with each other are involved and can access. Such a consortium channel-based sharing

mechanism brings an added advantage of accountability due to the immutability

property of blockchain.

Also, in both cases, the defender who shares the (encrypted) cyber intelligence

can sign the shared intelligence, and the resulting signature acts as the proof

of authenticity of the intelligence data. As mentioned earlier, guaranteeing the

authenticity of the threat intelligence per se is an orthogonal research problem and the

extensive study of cyber intelligence sharing [2, 7, 20, 32, 126, 127] in B2CSM system

naturally forms one future work.

A specific CSM functionality invocation demonstrating data flow. Now we

utilize a specific CSM function N.1 and the method M1 to demonstrate a concrete

data flow. As a pre-execute phase, the cyber data for N.1 is collected and stored as
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an adjacency matrix where each row represents an external IP address, each column

is an internal IP address, and the value (either 1 or 0) in the i-th row and the j-th

column indicates whether such an external IP has visited the internal IP during a time

period or not. The adjacency matrix is parsed as JSON format and then submitted

to the private channel that created by the defender in B2CSM blcockchain network

following the steps in phase I. Listing 1 illustrates an example of stored cyber data

(units) in state database.

Listing 1 N-CSM Cyber Data G(t) Example (in State Database)
1 {

2 "timeWindow": "20211101", // It means "20211101-20211102" if replication frequency is one day

3 "allDataUnits": [{

4 "dataUnit": "20211101-0",

5 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81"],

6 "internalIPs": ["192.168.1.115", "192.168.1.116", "192.168.1.67"],

7 "visitRecords": [["0","1","1"],["1", "1","0"],["0", "0","0"]]

8 },

9 {

10 "dataUnit": "20211101-1",

11 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81"],

12 "internalIPs": ["192.168.1.121", "192.168.1.124", "192.168.1.7"],

13 "visitRecords": [["0","0","1"],["0", "1","1"],["1", "0","0"]]

14 },

15 ...

16 ],

17 ...

18 }

Consider the example of function N.1, which identifies potential victims of an

attacker with attackerIP during time interval [t1, t2]. In this case, the following steps

occur: (i) the defender invokes the B2CSM App with the threat intelligence shown

in Listing 2 and specifies that the channel is N-CSM; (ii) the App sends a request to

multiple full nodes, and on each node the B2CSMmiddleware invokes the N.1 function

that deployed as chaincode in the N-CSM channel; (iii) the chaincode retrieves the

cyber data from state database and executes the pre-defined processing functions and

outputs the potential victim IP addresses that have been attacked by attckerIP during

time interval [2021/11/01, 2021/11/02]; (iv) the B2CSM middleware signs the output

on behalf of the full node and returns this to the App; (v) the server running the
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Listing 2 N-CSM Cyber Intelligence Example
1 {

2 "attackerIP": "192.168.10.74", // An external IP address

3 "timeInterval": "20211101-20211102"

4 }

Listing 3 N-CSM Cyber Data G(t) Example (in IPFS)
1 {

2 // It means "20211101-20211102" if replication frequency is one day

3 "timeWindow": "20211101",

4 "cyberData": {

5 "externalIPs": ["192.168.10.74", "192.168.10.75", "192.168.10.81",...],

6 "internalIPs": ["192.168.1.115", "192.168.1.116", "192.168.1.67",...],

7 "visitRecords": [["0","1","1",...],["1", "1","0",...],["0", "0","0",...],

8 ...]

9 },

10 "oracle_proof": {

11 "value": "..."

12 },

13 "defender_signature": {

14 "value": "..."

15 },

16 "meta_data": {

17 "timestamp": "...",

18 ...

19 }

20 }

B2CSM App verifies the signatures for the results received from the full nodes and

shows the defender a set of victims’ IP addresses. Listing 3 further shows an example

of the cyber data that stored in IPFS. Note that such a potentially large JSON file

in Listing 3 is split into chunks of 256 kb and stored on different IPFS peer nodes.

If some full nodes in the N-CSM channel crash, a defender is notified that

those servers are unreachable. Furthermore, if the signature verifications of some full

nodes fail, the defender will also be notified that those servers are suspicious of being

attacked. Consequently, corresponding actions, e.g., replace the suspicious full node

and join new servers to the N-CSM channel, can be taken by the defender. Note that

the preceding discussion similarly applies to other CSM functions.

Security objectives. We define five security objectives for B2CSM.

Correctness. The correctness of the outputs of the CSM functions is assured, with

respect to the input cyber intelligence and the cyber data G(t).
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Integrity. The integrity of data, namely the cyber data written by the B2CSM agents

to the B2CSM blockchain network (and DSN in method M2), and the invocation

history of the CSM functions stored in blockchain, is assured. This means the data

cannot be manipulated without detection, as long as the fraction of compromised

nodes in the underlying blockchain is bounded by a certain upper threshold.

Availability. The availability of the data stored in B2CSM is assured. Specifically,

the cyber data written by the B2CSM agents to the B2CSM blockchain network (and

DSN in methodM2), and the invocation history of the CSM functions stored in the

blockchain must remain available as long as the fraction of compromised nodes in the

underlying blockchain network is bounded from above by a certain upper threshold.

Consistency. The consistency of the data, namely cyber data written by the B2CSM

agents to the B2CSM blockchain network (and DSN in method M2), and the

invocation history of the CSM functions stored in blockchain, is assured. This means

all of the honest nodes in a B2CSM channel have the same global view about the

data’s state, as long as the fraction of compromised nodes in the underlying blockchain

platform is bounded by a certain upper threshold.

Accountability. The B2CSM agents cannot write data into the blockchain network

without record of the writing. Similarly, the B2CSM Apps cannot run CSM functions

without record of the activity.

Threat model. We consider an attacker with the following capabilities: (i) The

attacker can compromise B2CSM blockchain full nodes, by penetrating into some

bounded fraction of them. The attacker has total control over these compromised

nodes and can coordinate their activities in an arbitrary (i.e., Byzantine) fashion.

(ii) The attacker can interfere with message deliveries. The attacker can control the

order of message deliveries in the blockchain network. The attacker can arbitrarily

delay message deliveries to each computer (but not forever, see Assumption 2 below)

69



by waging Denial-of-Service (DoS) or other similar attacks. We consider the attacker

with following standard abilities.

Assumption 1. Cryptographic assurance. We make standard assumptions to assure

the security of cryptographic schemes (e.g., digital signatures). Informally speaking,

these assumptions say that as long as cryptographic keys (if applicable) are not

compromised, cryptographic schemes are secure. That is, in order for the attacker to

compromise a cryptographic assurance, the attacker has to penetrate into a system in

question to compromise the cryptographic keys or cryptographic service (for attaining

“oracle” access to a cryptographic function) [150].

Assumption 2. Communication model. For the B2CSM blockchain network, we

assume the communications between the full nodes are partially synchronous, meaning

that each message is delivered to the honest nodes within some unknown delay [36].

While in other steps in the B2CSM system, the communication is considered

synchronous in the sense that the message can only be delayed up to a-priori known

time period ∆.

Assumption 3. Corruption threshold. For the full nodes in any channel (since

each (private or consortium) channel represents a separated ledger) of the B2CSM

blockchain network, we assume that no more than one-third of them are compromised

simultaneously, which is inherent to the adopted Byzantine Fault-Tolerance (BFT)

protocol [135].

Security analysis. Consider the attacker cannot compromise a defender Bob or

the computers running the B2CSM App; otherwise, the attacker can manipulate the

output arbitrarily. The security analysis of B2CSM systems instantiated from the

B2CSM architecture is analyzed as follows, which is based on methodM1.

• Correctness. The correctness states that the outputs of the CSM functions are
reliable. To generate the authentic outputs, we can analyze each-step execution
during the whole data flow: (i) the authenticity of the input cyber intelligence
is considered correct by validating the digital signature attached with the
intelligence data, which is generated by the sharer; (ii) the integrity of G(t)
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stored in B2CSM blockchain network can be ensured due to the immutability
property of blockchain; (iii) with the authentic input cyber intelligence and
integrated cyber data, the CSM functions can be correctly executed unless the
attacker can manipulate the execution of smart contract in blockchain, which is
of negligible probability; and (iv) no more than one-third of the full nodes can be
compromised simultaneously, namely assumption 3, which ensures the defender
to receive the correct outputs by picking majority (i.e., f+1 same results or the
majority of 2f + 1 returned results, where f is the malicious nodes that can be
tolerated in the blockchain network with N full nodes [23,63]) of the invocation
results from the full nodes.

• The integrity, availability and consistency objectives are assured by the inherent
properties of blockchain [9], including: (i) security of cryptographic primitives
such as hash functions and asymmetric signatures, namely assumption 1;
(ii) the distributed architecture of the blockchain system; (iii) the execution
of the consensus mechanism in the partial synchronous network model, i.e.,
assumption 2. Meanwhile, the accountability objective is ensured because
(i) the data including B2CSM agents’ public key and timestamp is stored as
transactions when writing cyber data to the blockchain network; (ii) when a
defender invokes CSM functions, the smart contract is automatically triggered
to record such an activity. With the assurance of aforementioned integrity of
blockchain data, all the activities cal be tracked, leading to accountability.

• Accountability. The accountability objective is ensured because (i) the data
including the defender’s public key and timestamp is stored as transactions
when writing cyber data to the blockchain network; (ii) when a defender invokes
CSM functions, the smart contract is automatically triggered to record such an
activity. With the assurance of aforementioned integrity of blockchain data, all
the activities cal be tracked, leading to accountability.

Overall, the CSM invocation can be automatically (due to the reliable execution

of CSM functions in the pre-determined and deployed smart contract) performed

without any manual inference given the authentic cyber intelligence, and the returned

result is guaranteed to be correct in the sense of all the aforementioned properties.

3.4.3 B2CSM System Performance and Analysis

Performance metrics. We propose two CSM-specific performance metrics: (i) Data

Replication Throughput (DRT). The DRT metric measures the performance in writing

data to the B2CSM blockchain. Since G(t) is often large in volume and would be

splitted into multiple chunks as in method M1, each with m rows and n columns,
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e.g., m = 3 and n = 3 in Listing 1. We call each chunk a data unit, whose size is

limited by the transaction size in blockchain network. Let |Φ| be the size of G(t) and

Treplication be the the total time cost for replicating G(t) to the blockchain. Then we

define DRT = |Φ|/Treplication; (ii) Application Query Latency (AQL). The AQL metric

measures the time interval between when a defender invokes a CSM function and when

the defender receives the response, namely Tinvocation = Treqf +Tcp+Tresf , where Treqf

is the request formatting time (i.e., the time interval between the B2CSM middleware

receiving a request from a B2CSM App and the B2CSM middleware submitting the

transaction to the blockchain network), Tcp is the chaincode processing time (i.e.,

the time interval between the channel starting to execute the CSM function and the

middleware receiving the query result from the blockchain network), and Tresf is the

response formatting time (i.e., the time interval between the middleware receiving

the result from the blockchain network and the middleware sending the result to the

B2CSM App).

The above performance metrics are affected by the following block-cutting

parameters that are involved when encapsulating transactions into blocks: batch size

(by default, 10 transactions per block); batch timeout (by default, 2 seconds); and

block size (by default, 512 KBytes). When the batch size or block size are met, or

the batch timeout is reached, the OSNs encapsulate transactions into a new block.

This means that one G(t) might be stored into multiple blocks. Inspired by [141],

we use the following block-cutting parameters in our experiments (unless explicitly

specified otherwise): block timeout = 2 seconds; block size = 512KB; batch size =

30 transactions per block.

A B2CSM prototype system. We implement a prototype system of B2CSM

to analyze the performance. The preceding design choices influence the prototype

system, and a four-node architecture is depicted in Figure 3.11. The B2CSM

prototype system is built on top of a browser-server architecture. The B2CSM App
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Figure 3.11 Illustration of the B2CSM prototype system with 4 blockchain peer
nodes, on which a private channel is created for one enterprise.

has two modules: one displays blockchain-related information, including a dashboard

with various kinds of information (e.g., B2CSM blockchain’s peer nodes’ IP addresses,

the numbers of blocks and transactions for each channel). This presents a defender

with the B2CSM blockchain’s status in real-time. The other module offers a defender

with a web-based interface to run the desired CSM functions with input cyber

intelligence and receive the response from the CSM functions.

The Fabric software development kit provides the interfaces for interacting with

the blockchain network (e.g., register users, install chaincode, instantiate chaincode,

invoke transactions, and query ledgers). A Fabric client is instantiated when the

defender initiates communication with the B2CSM blockchain network. This client

only needs to be instantiated once, and subsequent sessions with the blockchain

network can reuse it.

Experiments design and performance evaluation. We conduct experiments

with the prototype system involving (as an example) one defender or enterprise,

denoted by ent1. The defender has a range of CSMAs responsible for writing cyber

data to the B2CSM blockchain network. The blockchain consists of four peer nodes,
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denoted by 0.peer.ent1, 1.peer.ent1, and so on. These peer nodes are the full nodes

for the B2CSM blockchain. There are four couchdb databases: Couchdb Peer0 Ent1,

Couchdb Peer1 Ent1, etc. Each couchdb state database is connected with one peer

node for recording its current world state.

There are four ordering nodes: 0.orderer, 1.orderer, 2.orderer, and 3.orderer.

These four nodes act as the replicas for BFT SMaRt-based ordering service, which

assures that as long as the fraction of malicious nodes does not exceed 1/3 (i.e., 1 when

there are 4 full nodes), the ordering service is secure. We also conduct the experiment

on 7 (tolerating 2 faulty nodes) and 10 (tolerating 3 faulty nodes) ordering nodes that

reside on peer nodes.

There are three frontends, named 1000.frontends (for N-CSM), 2000.frontends

(for T-CSM), and 3000.frontends (for A-CSM). These frontend nodes are responsible

for (i) relaying the transactions that are issued by the B2CSM clients to the consensus

protocol and (ii) forwarding the blocks that are generated by the ordering nodes to

peer nodes.

It is worth pointing out that the above architecture can be readily tuned

to build a consortium blockchain network by re-running the network setup with

changed configuration file such that, e.g., the peer nodes’ names would change

from 0.peer.ent1, 1.peer.ent1, 2.peer.ent1, 3.peer.ent1 to 0.peer.ent1, 0.peer.ent2,

0.peer.ent3, 0.peer.ent4 respectively and so do other service components such as

ordering nodes, and then letting these components join in the same channel that

a defender creates.

The hardware for conducting our experiments is a small-scale cluster of four

Virtual Machines (VMs) residing on two heterogeneous servers, representing four

nodes to formulate a private B2CSM blockchain. One server is a Dell PowerEdge

R740, which is equipped with 2 Intel(R) Xeon(R) CPU Silver 4114 processors (with

13.75 MB L3 cache and 20 cores of 2.2 GHz for each processor), 256 GB (16 slots ×
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16 GB/slot) 2400MHz DDR4 RDIMM memory, and an 8 TB (8 slots × 1TB/slot)

2.5 inch SATA hard drive. The other server is a Dell Precision Rack 7910, which

is equipped with 2 Intel(R) Xeon(R) CPU E5-2630 v3 processors (with 15MB cache

and 6 cores of 2.4GHz for each processor), 16GB 2133MHz DDR4 RDIMM ECC

memory, and a 256GB 2.5 inch SATA solid state drive. The four VMs have the

same configuration of 8 vCPUs, 24 GB memory and 800 GB hard drive and are

connected via a Local Area Network (LAN). The operating system in each VM is

Ubuntu 16.04 (64-bit) with kernel version 4.15. The Fabric version is 1.2, the Java

version is 1.8.0 211, and the golang version is 1.11.10.

B2CSM performance based on experiments with real-world datasets. We

now evaluate CSM-specific performance in DRT and AQL using real data. In N-CSM

experiments, we utilize a dataset collected from a honeypot during 7 days, and the

time resolution is days (i.e., each day is a time interval). In T-CSM experiments, we

use a dataset collected by the USMA team from the 2017 CDX Competition [118],

as if it were collected at a production enterprise network, which indeed instantiates

the model highlighted in Figure 3.4. As this dataset does not have ground truth tags,

for our experimental purposes, we replay the traffic using a popular open-sourced

intrusion detection system, Suricata [138], with a popular, free ruleset referred to

as Emerging Threats [68]. We store Suricata’s alerts in an AGTSR G(t) for time

window t, where nodes represent the source and destination IP addresses of each

attack. In A-CSM experiments, we consider the example of a defender recording how

an enterprise’s browsers have accessed the external URLs. In the simplest case, the

cyber data is stored in the form (browser, URL, timestamp), meaning that browser

accessed the URL at the time given by timestamp. Our experiments employ the

Georgia Tech data received from [139] over the period of 2/1/2019-2/6/2019. The

data contains mappings between malware instances, which are treated as browser
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applications for our purpose, and the external URLs. The data is pre-processed into

a bipartite AGTSR over the time horizon of T = 6 days.

Figure 3.12(a), 3.12(b), and 3.12(c) plots B2CSM’s cyber data replication

throughput (denoted by DRTCSM) using the real-world datasets mentioned above.

We observe that the throughput varies with CSM scenarios. The throughput of

T-CSM is significantly different from those of N-CSM and A-CSM. This is caused

by the fact that the T-CSM data is quite different from the N-CSM and A-CSM

data as follows. The T-CSM data volume is large and the volumes of data units

vary substantially because some data units contain more empty elements than others

(recalling that T-CSM data is generated from network traffic); in contrast, N-CSM

data and A-CSM data are uniformly distributed (i.e., data units are about the same

size). This explains why T-CSM has a lower throughput. From the throughput, we

observe that after the transaction arrival rate exceeds 4, the throughput stays stable,

especially for N-CSM and A-CSM; this may be caused by the limited computing

resources on the full nodes in our experiments. In T-CSM, we observe an “abnormal”

throughput at transaction arrival rate 4 and data unit of 4× 4 (i.e., 102 KBytes per

unit); this may be caused by the limited computing resources at the full nodes and

the cumulative effect of non-uniform distribution in the units’ data volumes.

(a) N-CSM DRTCSM (b) T-CSM DRTCSM (c) A-CSM DRTCSM

Figure 3.12 B2CSM’s DRTCSM in different CSM experiments.
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Figure 3.13(a), 3.13(b), and 3.13(c) plots B2CSM’s AQL using the real-world

datasets mentioned above. We observe the following: (i) For the request formatting

time, it takes about 1.4 seconds for the first invocation of a CSM function, but much

smaller time for subsequent invocations. This is because the former requires us to

initialize a (one-time) Hyperledger Fabric client object on behalf of the B2CSM App

before connecting to the blockchain network; whereas, the latter can simply reuse the

object created by the former. (ii) For the chaincode processing time, the time cost

varies for different invocations of CSM functions. (iii) The response time is relatively

stable (i.e., varies only slightly).

(a) N-CSM AQL (b) T-CSM AQL (c) A-CSM AQL

Figure 3.13 B2CSM’s AQL in different CSM cases.

Table 3.1 further presents the break-down of the latency time, where T 1
reqf is

the request formatting time when a CSM function is invoked for the first time by

a B2CSM App and T 2
reqf is the request formatting time after the initial invocation

of a CSM function. We highlight that the former time costs T 1
reqf is only one-time

though it is relatively longer. Besides, the chaincode processing time depends on

the smart contract complexity (i.e., the complexity of a CSM function). Finally, the

response formatting time Tresf is bigger than the request formatting time T 2
reqf when

disregarding object-creating time during the first invocation of a CSM function; this

is because each full node needs to sign the query results before sending back to the

B2CSM App. In summary, we have the following conclusion: The response delay is

77



Table 3.1 B2CSM’s Application Query Latency (unit: ms)

CSM Classes CSM functions T 1
reqf T 2

reqf Tcp Tresf

N-CSM

N.1 1321 0.17 69.18 23.47

N.2 1265 0.18 57.6 23.49

N.3 1329 0.17 75.86 18.37

T-CSM

T.1 1420 0.19 504.27 52.81

T.2 1317 0.16 120.13 46.92

T.3 1327 0.17 279.63 72.66

A-CSM

A.1 1336 0.21 28.92 28.14

A.2 1287 0.19 27.51 24.23

A.3 1324 0.17 30.33 30.62

mainly due to: (i) the creation of a Hyperledger Fabric client object corresponding to

a CSM function invoked from a B2CSM App for the first time; and (ii) the specific

chaincode execution of CSM functions. Reducing these time costs can relatively

improve the response time.

Scalability with varied number of nodes. Figure 3.14(a), 3.14(b), and 3.14(c)

plots the throughput (denoted by DRTbc) of replicating some general data (in the

form of strings) such as (a batch of) content ids (cids) 2 to the blockchain network

with 4 orderers (tolerating 1 faulty node), 7 orderers (tolerating 2 faulty nodes)

and 10 orderers (tolerating 3 faulty nodes). Note that the ordering service is

deployed on the peer nodes without delegating to extra nodes. Each transaction

submitted to blockchain network contains various number of content ids as payload,

2We use cids here for all experiments since we are now examining the influence on the number
of nodes, not data type; also, as we also consider that the cyber data to be replicated to
IPFS, and only the returned content ids are stored in B2CSM blockchain network, the
cyber data type (i.e., N-CSM, T-CSM or A-CSM) would not impact writing throughput to
blockchain.

78



which yields different transaction size and would be updated to state database via

smart contract. The transaction arrival rate shows how many transactions are

simultaneously submitted via multi-threads. Note that if we examine one specific

CSM class, e.g., N-CSM, which possesses the same cyber data format, then the

throughput DRTCSM follows the same pattern with DRTbc with respect to various

number of orderer (or peer) nodes.

(a) DRTbc, 4 orderers/peers
(tolerating 1 faulty node)

(b) DRTbc, 7 orderers/peers
(tolerating 2 faulty nodes)

(c) DRTbc, 10 orderers/peers
(tolerating 3 faulty nodes)

Figure 3.14 B2CSM’s DRTbc with different number of orderers/peers.

From the throughput DRTbc, we have the following observations: (i) Increasing

the transaction size, namely incorporating more cids in a transaction, can significantly

improve the throughput. However, the transaction in blockchain network has size

limit for the sake of communication efficiency, e.g., once the payload size of the

cids exceeds about 105 KBytes in our testing, the replication usually fails. (ii) With

increased number of orderer nodes that can tolerate more faulty nodes, the throughput

is slightly decreased. This is reasonable since more orderer nodes reaching consensus

would cause more communication latency. (iii) The throughput can reach around 700

Kbytes/s (or higher with more engineering optimizations) for replicating content ids to

blockchain network. Though such a throughput is relatively slower than a distributed

database-enabled system, e.g., the throughput for HBase is about 5Mbytes/s [11], yet

the advantage lies in the robustness assurance, as characterized by the aforementioned

security properties.
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3.5 Summary

In this chapter, we initiated the study of robust and automated cyber security

management (CSM). This includes the formulation of three classes of CSM functions

in relation to cyber threat intelligence sharing and a detailed description of the

design of blockchain-based robust and automated CSM (B2CSM). We presented

the implementation of a prototype B2CSM system. Real-world cyber data based

experimental results show that our system is useful in practice. Noticeably, our

designs can be extended to any information management system where blockchain

empowers the robust decentralized storage.
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CHAPTER 4

FAIR P2P CONTENT DELIVERY VIA BLOCKCHAIN

This chapter presents the design of blockchain-empowered computation in the specific

peer-to-peer (P2P) content delivery setting [61].

4.1 Introduction

The peer-to-peer (P2P) content delivery systems are permissionless decentralized

services to seamlessly replicate contents to the end consumers. Typically these

systems [28,87] encompass a large ad-hoc network of deliverers such as normal Internet

users or small organizations, thus overcoming the bandwidth bottleneck of the original

content providers. In contrast to giant pre-planned content delivery networks (i.e.,

CDNs such as Akamai [3] and CloudFlare [27]), P2P content delivery can crowdsource

unused bandwidth resources of tremendous Internet peers, thus having a wide array

of benefits including robust service availability, bandwidth cost savings, and scalable

peak-demand handling [5, 10].

Recently, renewed attentions to P2P content delivery are gathered [5, 55, 143]

due to the fast popularization of decentralized storage networks (DSNs) [14,41,47,106,

137]. Indeed, DSNs feature decentralized and robust content storage, but lack well-

designed content delivery mechanisms catering for a prosperous content consumption

market in the P2P setting, where the content shall not only be reliably stored but also

must be always quickly retrievable despite potentially malicious participants [48,144].

The primary challenge of designing a proper delivery mechanism for comple-

menting DSNs is to realize the strict guarantee of “fairness” against adversarial

peers. In particular, a fair P2P content delivery system has to promise well-deserved

items (e.g., retrieval of valid contents, well-paid rewards to spent bandwidth) to all

participants [43]. Otherwise, free-riding parties can abuse the system [44,94,119] and
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cause rational ones to escape, eventually resulting in possible system collapse [59]. We

reason as follows to distinguish two types of quintessential fairness, namely delivery

fairness and exchange fairness, in the P2P content delivery setting where three

parties, i.e., content provider, content deliverer and content consumer, are involved.

Exchange fairness is not delivery fairness. Exchange fairness [12, 17, 31, 37,

88, 101], specifically for digital goods (such as signatures and videos), refers to

ensuring one party’s input keep confidential until it does learn the other party’s

input. Unfortunately, in the P2P content delivery setting, it is insufficient to merely

consider exchange fairness because a content deliverer would expect to receive rewards

proportional to the bandwidth resources it spends. Noticeably, exchange fairness fails

to capture such new desiderata related to bandwidth cost, as it does not rule out that

a deliverer may receive no reward after transferring a huge amount of encrypted data

to the other party, which clearly breaks the deliverer’s expectation on being well-paid

but does not violate exchange fairness at all.

Consider FairSwap [37] as a concrete example: the deliverer first sends the

encrypted content and semantically secure digest to the consumer, then waits for

a confirmation message from the consumer (through the blockchain) to confirm her

receiving of these ciphertext, so the deliverer can reveal his encryption key to the

content consumer via the blockchain; but, in case the consumer aborts, all bandwidth

used to send ciphertext is wasted, causing no reward for the deliverer. A seemingly

enticing way to mitigate the above attack on delivery fairness in FairSwap could

be splitting the content into n smaller chunks and run FairSwap protocols for each

chunk, but the on-chain cost would grow linear in n, resulting in prohibitive on-chain

cost for large contents such as movies. Adapting other fair exchange protocols for

delivery fairness would encounter similar issues like FairSwap. Hence, the efficient

construction satisfying delivery fairness remains unclear.
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To capture the “special” exchanged item for deliverers, we formulate delivery

fairness, stating that deliverers can receive rewards (nearly) proportional to the

contributed bandwidth for delivering data to the consumers.

Insufficiencies of existing “delivery fairness”. A range of existing literature [75,

92, 130–132] involve delivery fairness for P2P delivery. However, to our knowledge,

no one assures delivery fairness in the cryptographic sense, as we seek to do.

Specifically, they [75, 92, 130–132] are presented in non-cooperative game-theoretic

settings where independent attackers free ride spontaneously without communication

of their strategies, and the attackers are rational with the intentions to maximize

their own benefits. Therefore, these works boldly ignore that the adversary intends

to break the system. Unfortunately, such rational assumptions are particularly elusive

to stand in ad-hoc open systems accessible by all malicious evils. The occurrences of

tremendous real-world attacks in ad-hoc open systems [40,102] hint us how vulnerable

the prior studies’ heavy assumptions can be and further weaken the confidence of using

them in real-world P2P content delivery.

Lifting for “exchange fairness” between provider and consumer. Besides the

natural delivery fairness, it is equally vital to ensure exchange fairness for providers

and consumers in a basic context of P2P content delivery, especially with the end goal

to complement DSNs and enable some content providers to sell contents to consumers

with delegating costly delivery/storage to a P2P network. In particular, the content

provider should be guaranteed to receive payments proportional to the amount of

correct data learned by the consumer; vice versa, the consumer only has to pay if

indeed receiving qualified content.

Näıve attempts of tuning a fair exchange protocol [12, 13, 37, 39, 88, 101] into

P2P content delivery can guarantee neither delivery fairness (as analyzed earlier) nor

exchange fairness: simply running fair exchange protocols twice between the deliverers

and the content providers and between the deliverers and the consumers, respectively,
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would leak valuable contents, raising the threat of massive content leakage. Even

worse, this idea disincentivizes the deliverers as they have to pay for the whole content

before making a life by delivering the content to consumers.

Our contributions. Overall, it remains an open problem to realize such strong

fairness guarantees in P2P content delivery to protect all providers, deliverers, and

consumers. We for the first time formalize such security intuitions into a well-defined

cryptographic problem on fairness, and present a couple of efficient blockchain-based

protocols to solve it. In sum, our contributions are:

1. Formalizing P2P content delivery with delivery fairness. We formulate the P2P
content delivery problem with desired security goals, where fairness ensures that
every party is fairly treated even others arbitrarily collude or are corrupted.

2. Verifiable fair delivery. We put forth a novel delivery fairness notion between
a sender and a receiver dubbed verifiable fair delivery (VFD): a non-interactive
honest verifier can check if a sender indeed sends a sequence of valid data chunks
to a receiver as long as not both the sender and the receiver are corrupted.

This primitive is powerful in the sense that: (i) the verifier only has to be
non-interactive and honest, so it can be easily instantiated via the blockchain;
(ii) qualified data can be flexibly specified through a global predicate known by
the sender, the receiver and the verifier, so the predicate validation can be tuned
to augment VFD in a certain way for the full-fledged P2P delivery scenario.

3. Lifting VFD for full-fledged P2P content delivery. We specify VFD to validate
that each data chunk is signed by the original content provider, and wrap up the
concrete instantiation to design an efficient blockchain-enabled fair P2P content
delivery protocol FairDownload, which allows: (i) the consumer can retrieve
content via downloading, i.e., view-after-delivery; (ii) minimal involvement of
the content provider in the sense that only two messages are needed from
the provider during the whole course of the protocol execution; (iii) one-time
contract deployment and preparation while repeatable delivery of the same
content to different consumers.

Thanks to the carefully instantiated VFD, the provider’s content cannot be
modified by the deliverer, so we essentially can view the fairness of consumer
and provider as a fair exchange problem for digital goods between two
parties. To facilitate the “two-party” exchange fairness, we leverage the
proof-of-misbehavior method (instead of using heavy cryptographic proofs for
honesty [101]), thus launching a simple mechanism to allow the consumer to
dispute and prove that the provider indeed sells wrong content inconsistent
to a certain digest; along the way, we dedicatedly tune this component for
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better efficiency: (i) universal composability security [37] is explicitly given up
to employ one-way security in the stand-alone setting; (ii) the generality of
supporting any form of dispute on illegitimate contents [37] is weaken to those
inconsistent to digest in form of Merkle tree root.

4. Less latency for streaming delivery. Though the protocol FairDownload is
efficient as well as minimize the provider’s activities, it also incurs considerable
latency since the consumer can get the content only after all data chunks
are delivered. To accommodate the streaming scenario where the consumer
can view-while-delivery, we propose another simple while efficient protocol
FairStream, where each data chunk can be retrieved in O(1) communication
rounds. Though the design requires more involvement of the provider, whose
overall communication workload, however, is much smaller than the content
itself. FairStream realizes the same security goals as the FairDownload protocol.

5. Optimal on-chain and delivery complexities. Both the downloading and
streaming protocols achieve asymptotically optimal Õ(η + λ) on-chain compu-
tational costs even when dispute occurs. The on-chain costs only relates to the
small chunk size parameter η and the even smaller security parameter λ. This
becomes critical to preserve low-cost of blockchain-based p2p content delivery.
Moreover, in both protocols, the deliverer only sends O(η+λ) bits amortized for
each chunk. Considering the fact that λ is much less than η, this corresponds
to asymptotically optimal deliverer communication, and is the key to keep P2P
downloading and P2P streaming highly efficient.

6. Optimized implementations. We implement1 and optimize FairDownload and
FairStream. Various non-trivial optimizations are performed to improve the
on-chain performance including efficient on-chain implementation of ElGamal
verifiable decryption over bn-128 curve. Extensive experiments are also
conducted atop Ethereum Ropsten network, showing real-world applicability.

4.2 Preliminaries

Notations and abbreviations. The notations and abbreviations used throughout

the dissertation are as follows:

• Security parameter. All cryptographic algorithms are parameterized by a
security parameter λ ∈ N given (sometimes implicitly) to the algorithms.

• Integer set. By [n] it denotes the set of integers {1, . . . , n}, and by [a, b] it
denotes the set of integers {a, . . . , b}.

• String concatenation. By x||y it means a string concatenating strings x and y.

1Code availability: https://github.com/Blockchain-World/FairThunder.git
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• Uniform random sampling. By ←$ it denotes uniformly random sampling.

• Probabilistic and deterministic algorithms. We use y ← A(x) to denote that the
output y is generated by probabilistic algorithm A using internal randomness
r; In addition, we use y := A(x) to denote that the output y is produced by the
deterministic algorithm A. With explicit randomness r, it would be denoted
with y := A(r, x).

• Prefix relationship. By ⪯ it denotes the prefix relationship.

• Abbreviations. P.P.T refers to probabilistic algorithms with a polynomial
running time; ITM is short for interactive Turing machine. See details in [22].

Symmetric encryption. A semantically secure (fixed-length) symmetric encryption

scheme SE is made of (KeyGen,Enc,Dec), where the key generation algorithm

k ←$ KeyGen(λ) takes as input the security parameter λ and generates a key k;

the probabilistic encryption algorithm c ← Enc(m, k) takes as input the key k and

the message m and outputs the ciphertext c; the deterministic decryption algorithm

m := Dec(c, k) takes as input the ciphertext c and the key k and outputs the recovered

the message m.

Public key encryption. A public key encryption scheme PKE consists of three

algorithms (KeyGen,Enc,Dec) where the key generation algorithm (pk, sk) ←$

KeyGen(λ) takes as input the security parameter λ and outputs a pair of secret key

sk and public key pk; the probabilistic encryption algorithm c ← Enc(pk,m) takes

as input the public key pk and the message m and outputs the ciphertext c; the

deterministic decryption algorithm m := Dec(c, sk) takes as input the ciphertext c

and the secret key sk and recovers the message m. The PKE scheme satisfies the

standard correctness and semantic security properties [53].

Digital signature. An existential unforgeability under chosen message attack

(EU-CMA) secure digital signature scheme [54] SIG contains algorithms (KeyGen, Sign,

Vrfy): SIG.KeyGen(λ) → (pk, sk). The key generation algorithm takes as input

the security parameter λ and outputs a pair of public key pk and secret key sk;

SIG.Sign(sk,m) → σ. The signing algorithm takes as input the secret key sk and
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the message m and produces the signature σ; SIG.Verify(pk,m, σ) → {0, 1}. This

deterministic verification algorithm takes as input the public key pk, the message m

and the signature σ and outputs a boolean 1 or 0 indicating whether σ is valid on m

relative to pk or not.

Merkle tree. This consists of a tuple of algorithms (BuildMT,GenMTP,VerifyMTP).

BuildMT accepts as input a sequence of elements m = (m1,m2, · · · ,mn) and outputs

the Merkle tree MT with root that commits m. Note that we let root(MT) to denote

the Merkle tree MT’s root. GenMTP takes as input the Merkle tree MT (built for m)

and the i-th element mi in m, and outputs a proof πi to attest the inclusion of mi at

the position i of m. VerifyMTP takes as input the root of Merkle tree MT, the index i,

the Merkle proof πi, and mi, and outputs either 1 (accept) or 0 (reject). The security

of Merkle tree scheme ensures that: for any P.P.T. adversary A, any sequence m and

any index i, conditioned on MT is a Merkle tree built for m, A cannot produce a fake

Merkle tree proof fooling VerifyMTP to accept m′
i ̸= mi ∈ m except with negligible

probability given m, MT and security parameters.

Verifiable decryption. We consider a specific verifiable public key encryption

(VPKE) scheme consisting of (VPKE.KGen,VEnc,VDec,ProvePKE,VerifyPKE) and

allowing the decryptor to produce the plaintext along with a proof attesting the

correct decryption [21]. Specifically, KGen outputs a public-private key pair, i.e.,

(h, k)← VPKE.KGen(1λ) where λ is a security parameter. The public key encryption

satisfies semantic security. Furthermore, for any (h, k) ← VPKE.KGen(1λ), the

ProvePKEk algorithm takes as input the private key k and the cipher c, and outputs

a message m with a proof π; while the VerifyPKEh algorithm takes as input the

public key h and (m, c, π), and outputs 1/0 to accept/reject the statement that

m = VDeck(c). Besides the semantic security, the verifiable decryption scheme need

satisfy the following extra properties:
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Table 4.1 Comparison of Different Related Representative Approaches

Schemes
Exchange

(Incentive)

Delivery

Fairness
Confidentiality

Exchange

Fairness

On-chain

Costs

BitTorrent [28]
Files ↔ Files

(Tit-for-Tat)

× × Not fully n/a

Dandelion [132]
Files ↔ Credits

(Reputation)

× × Not fully n/a

T-Chain [131]
Files ↔ Files

(Tit-for-Tat)

×
√

Not fully n/a

Gringotts [55]
Bandwidth ↔ Coins

(Monetary)

multiple

chunks

× × O(n)

CacheCash [5]
Bandwidth ↔ Coins

(Monetary)
all chunks × × [o(1), O(n)]

Our Protocols
Bandwidth/Files ↔ Coins

(Monetary)

one

chunk

√ √
Õ(1)

• Completeness. Pr[VerifyPKEh(m, c, π) = 1|(m,π)← ProvePKEk(c)] = 1, for ∀ c
and (h, k)← KGen(1λ);

• Soundness. For any (h, k) ← KGen(1λ) and c, no probabilistic poly-time
(P.P.T.) adversary A can produce a proof π fooling VerifyPKEh to accept that
c is decrypted to m′ if m′ ̸= VDeck(c) except with negligible probability;

• Zero-Knowledge. The proof π can be simulated by a P.P.T. simulator SVPKE
taking as input only public knowledge m,h, c, hence nothing more than the
truthness of the statement (m, c) ∈ {(m, c)|m = VDeck(c)} is leaked.

4.3 Related Work

Here we review the pertinent technologies and discuss their insufficiencies in the

specific context of P2P content delivery. Table 4.1 summarizes the advantages

provided by our protocol when compared with other representative related works.

P2P information exchange schemes. Many works [28, 75, 92, 119, 130–132]

focused on the basic challenge to incentivize users in the P2P network to voluntarily
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exchange information. However, these schemes have not been notably successful

in combating free-riding problem and strictly ensuring the fairness. Specifically,

the schemes in BitTorrent [28], BitTyrant [119], FairTorrent [130], PropShare [92]

support direct reciprocity (i.e., the willingness for participants to continue exchange

basically depends on their past direct interactions, e.g., the Tit-for-Tat mechanism

in BitTorrent) for participants, which cannot accommodate the asymmetric interests

(i.e., participants have distinct types of resources such as bandwidth and cryptocur-

rencies to trade between each others) in the P2P content delivery setting. For

indirect reciprocity (e.g., reputation, currency, credit-based) mechanisms including

Eigentrust [75], Dandelion [132], they suffer from Sybil attacks, e.g., a malicious

peer could trivially generate a sybil peer and “deliver to himself” and then rip off

the credits. We refer readers to [131] for more discussions about potential attacks

to existing P2P information exchange schemes. For T-chain [131], it still considers

rational attackers and cannot strictly ensure the delivery fairness as an adversary can

waste a lot of bandwidth of deliverers though the received content is encrypted.

More importantly, all existing schemes, to our knowledge, are presented in

the non-cooperative game-theoretic setting, which means that they only consider

independent attackers free ride spontaneously without communication of their

strategies, and the attackers are rational with the intentions to maximize their

own benefits. However, such rational assumptions are elusive to guarantee the

fairness for parties in the ad-hoc systems accessible by all malicious entities. Our

protocol, on the contrary, assures the delivery fairness in the cryptographic sense.

Overall, our protocol can rigorously guarantee fairness for all participating parties,

i.e., deliverers with delivery fairness, providers and consumers with exchange fairness.

Also, the fairness in the P2P information exchange setting is typically measured due

to the discrepancy between the number of pieces uploaded and received over a long

period [72] for a participant. If we examine each concrete delivery session, there is
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no guarantee of fairness. This further justifies that the P2P information exchange

schemes are not directly suitable for the specific P2P content delivery setting.

Fair exchange and fair MPC. There are also intensive works on fair exchange

protocols in cryptography. It is well-known that a fair exchange protocol cannot

be designed to provide complete exchange fairness without a trusted third party

(TTP) [116], which is a specific impossible result of the general impossibility of fair

multi-party computation (MPC) without honest majority [26]. Some traditional ways

hinge on a TTP [12, 13, 88, 104] to solve this problem, which has been reckon hard

to find such a TTP in practice. To avoid the available TTP requirement, some

other studies [17, 31, 51, 120] rely on the “gradual release” approach, in which the

parties act in turns to release their private values bit by bit, such that even if one

malicious party aborts, the honest party can recover the desired output by investing

computational resources (in form of CPU time) comparable to that of the adversary

uses. Recently, the blockchain offers an attractive way to instantiate a non-private

TTP, and a few results [15, 25, 37, 39, 81, 101] leverage this innovative decentralized

infrastructure to facilitate fair exchange and fair MPC despite the absence of honest

majority. Unfortunately, all above fair exchange and fair MPC protocols fail to

guarantee delivery fairness in the specific P2P content delivery setting, as they cannot

capture the fairness property for the special exchanged item (i.e., bandwidth).

State channels. A state channel establishes a private P2P medium, managed

by pre-set rules, allowing the involved parties to update state unanimously by

exchanging authenticated state transitions off-chain [57]. Though our protocols

can be reckon as the application of payment channel networks (PCNs) (or more

general state channels [105]) yet there are two key differences: i) fairness in state

channels indicates that an honest party (with valid state transition proof) can always

withdraw the agreed balance from the channel [57], while our protocols, dwelling

on the delivery fairness in the specific context of P2P content delivery, ensure the
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bandwidth contribution can be quantified and verified to generate such a valid state

transition proof; ii) state channels essentially allow any two parties to interact, while

our protocols target the interaction among any three parties with a totally different

payment paradigm [5] for P2P content delivery.

Decentralized content delivery. There exist some systems that have utilized the

idea of exchanging bandwidth for rewards to incentivize users’ availability or honesty

such as Dandelion [132], Floodgate [109]. However, different drawbacks impede their

practical adoption, as discussed in [5]. Here we elaborate the comparison with two

protocols, i.e., Gringotts [55], CacheCash [5], that target the similar P2P content

delivery scenario.

Application Scenario. Typically, the P2P content delivery setting involves

asymmetric exchange interests of participants, i.e., the consumers expect to receive

a specific content identified by a certain digest in time, while the providers and

the deliverers would share their content (valid due to the digest) and bandwidth in

exchange of well-deserved payments/credits, respectively. Unfortunately, Gringotts

and CacheCash fail to capture this usual scenario, and cannot support the content

providers to sell content over the P2P network, due to the lack of content confi-

dentiality and exchange fairness. In greater detail, both Gringotts and CacheCash

delegate a copy of raw content to the deliverers, which results in a straightforward

violation of exchange fairness, i.e., a malicious consumer can pretend to be or collude

with a deliverer to obtain the plaintext content without paying for the provider.

Delivery Fairness. Gringotts typically requires the deliverer to receive a

receipt (for acknowledging the resource contribution) only after multiple chunks are

delivered, which poses the risk of losing bandwidth for delivering multiple chunks.

For CacheCash, a set of deliverers are selected to distribute the chunks in parallel,

which may cause the loss of bandwidth for all chunks in the worst case. Our protocols

ensures that the unfairness of delivery is bounded to one chunk of size η.
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On-chain Costs. Gringotts stores all chunk delivery records on the blockchain,

and therefore the on-chain costs is in O(n). While for CacheCash, the deliverers can

obtain lottery tickets (i.e., similar to “receipts”) from the consumer after each “valid”

chunk delivery. The on-chain costs is highly pertinent to the winning probability p of

tickets. For example, p = 1
n
means that on average the deliverer owns a winning ticket

after n chunks are delivered, or p = 1 indicates that the deliverer receives a winning

ticket after each chunk delivery, leading to at most O(n) on-chain costs of handling

redeem transactions. In our protocols, the on-chain costs is bounded to Õ(1).

4.4 Warm-Up: Verifiable Fair Delivery

We first warm up and set forth a building block termed verifiable fair delivery (VFD),

which enables an honest verifier to verify that a sender indeed transfers some amount

of data to a receiver. It later acts as a key module in the fair P2P content delivery

protocol. The high level idea of VFD lies in: the receiver needs to send back a

signed “receipt” in order to acknowledge the sender’s bandwidth contribution and

continuously receives the next data chunk. Consider that the data chunks of same

size η are transferred sequentially starting from the first chunk, the sender can always

use the latest receipt containing the chunk index to prove to the verifier about the

total contribution. Intuitively the sender at most wastes bandwidth of transferring

one chunk.

Syntax of VFD. The VFD protocol is among an interactive poly-time Turing-machine

(ITM) sender denoted by S, an ITM receiver denoted by R, and a non-interactive

Turing-machine verifier denoted by V , and follows the syntax:

• Sender. The sender S can be activated by calling an interface S.send() with
inputting a sequence of n data chunks and their corresponding validation strings
denoted by ((c1, σc1), . . . , (cn, σcn)), and there exists an efficient and global
predicate Ψ(i, ci, σci) → {0, 1} to check whether ci is the i-th valid chunk due
to σci ; once activated, the sender S interacts with the receiver R, and opens an
interface S.prove() that can be invoked to return a proof string π indicating the
number of sent chunks;
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• Receiver. The receiver R can be activated by calling an interface R.recv()
with taking as input the description of the global predicate Ψ(·) to interact
with S, and outputs a sequence of ((c1, σc1), . . . , (cn′ , σcn′ )), where n′ ∈ [n] and
every (ci, σci) is valid due to Ψ(·);

• Verifier. The verifier V inputs the proof π generated by S.prove(), and outputs
an integer ctr ∈ {0, · · · , n}.

Security of VFD. The VFD protocol must satisfy the following security properties:

• Termination. If at least one of S andR is honest, the VFD protocol terminates
within at most 2n rounds, where n is the number of content chunks;

• Completeness. If S and R are both honest and activated, after 2n rounds,
S is able to generate a proof π which V can take as input and output ctr ≡ n,
while R can output ((c1, σc1), . . . , (cn, σcn)), which is same to S’s input;

• Verifiable η delivery fairness. When one of S and R maliciously aborts,
VFD shall satisfy the following delivery fairness requirements:

– Verifiable delivery fairness against S∗. For any corrupted P.P.T. sender
S∗ controlled by A, it is guarantee that: the honest receiver R will always
receive the valid sequence (c1, σc1), . . . , (cctr, σcctr) ifA can produce the proof
π that enables V to output ctr.

– Verifiable delivery fairness against R∗. For any corrupted P.P.T. receiver
R∗ controlled by A, it is ensured that: the honest sender S can always
generate a proof π, which enables V to output at least (ctr−1) if A receives
the valid sequence (c1, σc1), . . . , (cctr, σcctr). At most S wastes bandwidth
for delivering one content chunk of size η.

VFD Protocol ΠVFD. We consider the authenticated setting that the sender S and

the receiver R have generated public-private key pairs (pkS , skS) and (pkR, skR) for

digital signature, respectively; and they have announced the public keys to bind

to themselves. Then, VFD with the global predicate Ψ(·) can be realized by the

protocol ΠVFD hereunder among S, R and V against P.P.T. and static adversary in

the stand-alone setting2 with the synchronous network assumption:

2We omit the session id (denoted as sid) in the stand-alone context for brevity. To defend
against replay attack in concurrent sessions, it is trivial to let the authenticated messages
include an sid field, which, for example, can be instantiated by the hash of the transferred
data identifier rootm, the involved parties’ addresses and an increasing-only nonce, namely
sid := H(rootm||V address||pkS ||pkR||nonce).
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• Construction of sender. The sender S, after activated via S.send() with
the input ((c1, σc1), . . . , (cn, σcn)), pkS and pkR, starts a timer TS lasting two
synchronous rounds, initializes a variable πS := null, and executes as follows:

– For each i ∈ [n]: the sender sends (deliver, i, ci, σci) to R, and waits
for the response message (receipt, i, σi

R) from R. If TS expires before
receiving the response, breaks the iteration; otherwise S verifies whether
Verify(receipt||i||pkR||pkS , σi

R, pkR) ≡ 1 or not, if true, resets TS , outputs
πS := (i, σi

R), and continues to run the next iteration (i.e., increasing i by
one); if false, breaks the iteration;

– Upon S.prove() is invoked, it returns πS as the VFD proof and halts.

• Construction of receiver. The receiver R, after activated via R.recv() with
the input pkS and (pkR, skR), starts a timer TR lasting two synchronous rounds
and operates as: for each j ∈ [n]: R waits for (deliver, j, cj, σcj) from S and
halts if TR expires before receiving the deliver message; otherwise R verifies
whether Ψ(j, cj, σcj) ≡ 1 or not; if true, resets TR, outputs (cj, σcj), and sends
(receipt, i, σi

R) to S where σi
R ← Sign(receipt||i||pkR||pkS , skR), halts if false.

Note that the global predicate Ψ(·) is efficient as essentially it just performs a
signature verification.

• Construction of verifier. Upon the input πS , the verifier V parses it into
(ctr, σctr

R ), and checks whether Verify(receipt||ctr||pkR||pkS , σctr
R , pkR) ≡ 1 or not;

if true, it outputs ctr, or else outputs 0. Recall that Verify is to verify signatures.

Lemma 1. In the synchronous authenticated network and stand-alone setting, the

protocol ΠVFD satisfies termination, completeness and the verifiable η delivery fairness

against non-adaptive P.P.T. adversary corrupting one of the sender and the receiver.

Proof. If both the sender and the receiver are honest, there would be 2n

communication rounds since for every delivered chunk, the sender obtains a “receipt”

from the receiver for acknowledging bandwidth contribution. If one malicious party

aborts, the other honest one would also terminate after its maintained timer expires,

resulting in less than 2n communication rounds. Therefore, the termination property

is guaranteed.

In addition, when both the sender S and the receiver R are honest, the

completeness of VFD is immediate to see: in each round, S would start to

deliver the next chunk after receiving the receipt from R within 2 rounds, i.e., a
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round-trip time. After 2n synchronous rounds, R receives the chunk-validation pairs

((c1, σc1), · · · , (cn, σcn)) and S outputs the last receipt as a proof π, which is taken as

input by the verifier V to output n demonstrating S’s delivery contribution.

For the η delivery fairness of VFD, on one hand, the malicious S∗ corrupted

by A may abort after receiving the ctr-th (1 ≤ ctr ≤ n) receipt. In that case, R

is also guaranteed to receive a valid sequence of ((c1, · · · , σc1), · · · , (cctr, σcctr)) with

overwhelming probability, unless A can forge R’s signature. However, it requires A

to break the underlying EU-CMA signature scheme, which is of negligible probability.

On the other hand, for the malicious R∗ corrupted by A, if V takes the honest S’s

proof and can output ctr, then S at most has sent (ctr + 1) chunk-validation pairs,

i.e., (ci, σci), to A. Overall, S at most wastes bandwidth of delivering one chunk of

size η. Hence, the η delivery fairness of VFD is rigorously guaranteed.

4.5 Formalizing P2P Content Delivery

4.5.1 System Model

Participating parties. We consider the following explicit entities (i.e., interactive

Turing machines by cryptographic convention) in the context of P2P content delivery:

• Content Provider is an entity (denoted by P) that owns the original content
m composed of n data chunks,3 satisfying a public known predicate ϕ(·),4 and
P is willing to sell to the users of interest. Meanwhile, the provider would like
to delegate the delivery of its content to a third-party (viz. a deliverer) with
promise to pay BP for each successfully delivered chunk.

• Content Deliverer (denoted by D) contributes its idle bandwidth resources to
deliver the content on behalf of the content provider P and would receive the
payment proportional to the amount of delivered data. In the P2P delivery
scenario, deliverers can be some small organizations or individuals, e.g., the
RetrievalProvider in Filecoin [48].

3Remark that the content m is dividable in the sense that each chunk is independent to
other chunks, e.g., each chunk is a small 10-second video.
4Throughout the study, we consider that the predicate ϕ is in the form of ϕ(m) =
[root(BuildMT(m)) ≡ rootm], where root is the Merkle tree root of the content m. In
practice, it can be aquired from a semi-trusted third party, such as BitTorrent forum
sites [88] or VirusTotal [70].
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• Content Consumer is an entity (denoted by C) that would pay BC for each chunk
in the content m by interacting with P and D.

Adversary. Following modern cryptographic practices [78], we consider the

adversary A with following standard abilities:

• Static corruptions. The adversary A can corrupt some parties only before the
course of protocol executions;

• Computationally bounded. The adversary A is restricted to P.P.T. algorithms;

• Synchronous authenticated channel. We adopt the synchronous network model
of authenticated point-to-point channels to describe the ability of A on
controlling communications, namely, for any messages sent between honest
parties, A is consulted to delay them up to a-priori known ∆ but cannot drop,
reroute or modify them. W.l.o.g., we consider a global clock in the system, and
A can delay the messages up to a clock round [81,84].

Arbiter Smart Contract G. The system is in a hybrid model with oracle access to

an arbiter smart contract G. The contract G is a stateful ideal functionality that leaks

all its internal states to the adversary A and all parties, while allowing to pre-specify

some immutable conditions (that can be triggered through interacting with P , D, and

C) to transact “coins” over the cryptocurrency ledger, thus “mimicking” the contracts

in real life transparently. In practice, the contract can be instantiated through many

real-world blockchains such as Ethereum [148]. Throughout this study, the details of

the arbiter contracts G follow the conventional pseudo-code notations in the seminal

work due to Kosba et al. [84].

4.5.2 Design Goals

Now we formulate the problem of fair content delivery with an emphasis on the

delivery fairness, which to our knowledge is the first formal definition to abstract the

necessary security/utility requirements of delegated P2P content delivery.

Syntax. A fair P2P content delivery protocol Π = (P ,D, C) is a tuple of three P.P.T.

interactive Turing machines (ITMs) consisting of two explicit phases:
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• Preparation phase. The provider P takes as input public parameters and the
content m = (m1, . . . ,mn) ∈ {0, 1}η×n that satisfies ϕ(m) ≡ 1, where η is chunk
size in bit and n is the number of chunks and it outputs some auxiliary data,
e.g., encryption keys; the deliverer D takes as input public parameters and
outputs some auxiliary data, e.g., encrypted content; the consumer C does not
involve in this phase. Note P deposits a budget of n ·BP in ledger to incentivize
D so it can minimize bandwidth usage in the next phase.

• Delivery phase. The provider P and the deliverer D take as input their auxiliary
data obtained in the preparation phase, respectively, and they would receive the
deserved payment; the consumer C takes as input public parameters and outputs
the content m with ϕ(m) ≡ 1. Note C has a budget of n ·BC in ledger to “buy”
the content m satisfying ϕ(m) ≡ 1, where BC > BP .

Furthermore, the fair P2P content delivery protocol Π shall meet the following

security requirements.

Completeness. For any content predicate ϕ(·) with ϕ(m) = [root(BuildMT(m)) ≡

rootm], conditioned on P ,D and C are all honest, the protocol Π attains:

• The consumer C would obtain the qualified content m satisfying ϕ(m) ≡ 1, and
its balance in the global ledger[C] would decrease by n ·BC, where BC represents
the amount paid by C for each content chunk.

• The deliverer D would receive the payment n ·BP over the global ledger, where
BP represents the amount paid by P to D for delivering a content chunk to the
consumer.

• The provider P would receive its well-deserved payments over the ledger,
namely, ledger[P ] would increase by n · (BC − BP) as it receives n · BC from
the consumer while it pays out n · BP to the deliverer.

Fairness. The protocol Π shall satisfy the following fairness requirements:

• Consumer Fairness. For ∀ corrupted P.P.T. D∗ and P∗ (fully controlled by
A), it is guaranteed to the honest consumer C with overwhelming probability
that: the ledger[C] decreases by ℓ · BC only if C receives a sequence of chunks
(m1, . . . ,mℓ) ⪯ m where ϕ(m) ≡ 1, Intuitively, this property states that C pays
proportional to valid chunks it de facto receives.

• Delivery η-Fairness. For ∀ malicious P.P.T. C∗ and P∗ corrupted by A, it is
assured to the honest deliverer D that: if D sent overall O(ℓ · η+1) bits during
the protocol, D should at least obtain the payment of (ℓ − 1) · BP . In other
words, the unpaid delivery is bounded by O(η) bits.
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• Provider η-Fairness. For ∀ corrupted P.P.T. C∗ and D∗ controlled by A, it is
ensured to the honest provider P that: if A can output η · ℓ bits consisted in the
content m, the provider P shall receive at least (ℓ− 1) · (BC −BP) net income,
namely, ledger[P ] increases by (ℓ − 1) · (BC − BP), with all except negligible
probability. i.e., P is ensured that at most O(η)-bit content are revealed without
being well paid.

Confidentiality against deliverer. This is needed to protect copyrighted data

against probably corrupted deliverers, otherwise a malicious consumer can pretend to

be or collude with a deliverer to obtain the plaintext content without paying for the

provider, which violates the exchange fairness for P . Informally, we require that the

corrupted D∗ on receiving protocol scripts (e.g., the delegated content chunks from

the provider) cannot produce the provider’s input content with all but negligible

probability in a delivery session.

We remark that confidentiality is not captured by fairness, as it is trivial to see

a protocol satisfying fairness might not have confidentiality: upon all payments are

cleared and the consumers receives the whole content, the protocol lets the consumer

send the content to the deliverer.

Timeliness. When at least one of the parties P , D and C is honest (i.e., others

can be corrupted by A), the honest ones are guaranteed to halt in O(n) synchronous

rounds where n is the number of content chunks. At the completion or abortion of

the protocol, the aforementioned fairness and confidentiality are always guaranteed.

Non-trivial efficiency. We require the necessary non-trivial efficiency to rule out

possible trivial solutions:

• The messages sent to G from honest parties are uniformly bounded by Õ(1)
bits, which excludes a trivial way of using the smart contract to directly deliver
the content.

• In the delivery phase, the messages sent by honest P are uniformly bounded
by n · λ bits, where λ is a small cryptographic parameter, thus ensuring n · λ
much smaller than the size of content |m|. This indicates that P can save its
bandwidth upon the completion of preparation phase and excludes the idea of
delivering by itself.
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Remarks. We make the following discussions about the above definitions: (i) ϕ(·) is

a public parameter known to all parties before the protocol execution; (ii) our fairness

requirements have already implied the case where the adversary corrupts one party of

P , D and C instead of two, since whenever the adversary corrupts two parties, it can

let one of these corrupted two follow the original protocol; (iii) like all cryptographic

protocols, it does not make sense to consider all parties are corrupted, so do we not;

(iv) the deliverer and the provider might lose well-deserved payment, but at most

lose that for one chunk, i.e., the level of unfairness is strictly bounded; (v) though

we focus on the case of one single content deliverer, our formalism and design can be

extended to capture multiple deliverers, for example, when the whole content is cut

to multiple pieces and each piece is delegated to a distinct deliverer. The extension

with strong fairness guarantee forms an interesting future work.

In addition, one might wonder that a probably corrupted content provider fails

in the middle of a transmission, causing that the consumer does not get the entire

content but has to pay a lot. Nevertheless, this actually is not a serious worry in the

peer-to-peer content delivery setting that aims to complement decentralized content

storage networks because there essentially would be a large number of deliverers, and

at least some of them can be honest. As such, if a consumer encounters failures in

the middle of retrieving the content, it can iteratively ask another deliverer to start a

new delivery session to fetch the remaining undelivered chunks. Moreover, our actual

constructions in Sections 4.6 and 4.7 essentially allow the consumers to fetch the

content from any specific chunk instead of beginning with the first one.

4.6 Fair P2P Downloading Protocol Design

This section presents the fair P2P downloading protocol allowing the consumers to

view the content after getting (partial or all) the chunks, termed as view-after-delivery.
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4.6.1 Protocol Overview

At a high level, our protocol ΠFD can be constructed around the module of verifiable

fair delivery (VFD) and proceeds in Prepare, Deliver and Reveal phases as illustrated

in Figure 4.1. The core ideas of ΠFD can be over-simplified as follows:

• The provider P encrypts each chunk, signs the encrypted chunks, and delegates
to the deliverer D; as such, the deliverer (as the sender S) and the consumer
C (as the receiver R) can run a specific instance of VFD, in which the global
predicate Ψ(·) is instantiated to verify that each chunk must be correctly signed
by P ; additionally, the non-interactive honest verifier V in VFD is instantiated
via a smart contract, hence upon the contract receives a VFD proof from D
claiming the in-time delivery of ctr chunks, it can assert that C indeed received
ctr encrypted chunks signed by the provider, who can then present to reveal the
decryption keys of these ctr chunks (via the smart contract).

• Nevertheless, trivial disclosure of decryption keys via the contract would cause
significant on-chain cost up to linear in the number of chunks; we propose
a structured key generation scheme composed of Algorithms 13, 14, 16 that
allows the honest provider to reveal all ctr decryption keys via a short Õ(λ)-bit
message; furthermore, to ensure confidentiality against the deliverer, the script
to reveal decryption keys is encrypted by the consumer’s public key; in case
the revealed keys cannot decrypt the cipher chunk signed by P itself to obtain
the correct data chunk, the consumer can complain to the contract via a short
Õ(η + λ)-bit message to prove the error of decrypted chunk and get refund.

The protocol design of ΠFD can ensure the fairness for each participating party

even others are all corrupted by non-adaptive P.P.T. adversary. The on-chain cost

keeps constant regardless of the content size |m| in the optimistic mode where no

dispute occurs. While in the pessimistic case, the protocol also realizes asymptotically

optimal on-chain cost, which is related to the chunk size η. Moreover, the deliverer

D can achieve asymptotically optimal communication in the sense that D only sends

O(η + λ) bits amortized for each chunk, where η is the chunk size and λ is a small

security parameter with λ ≪ η. These properties contribute significantly to the

efficiency and practicability of applying ΠFD to the P2P content delivery setting.
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Figure 4.1 The overview of FairDownload protocol ΠFD.

4.6.2 Arbiter Contract for Downloading

The arbiter contract G ledgerd (abbr. Gd) shown in Figures 4.2 and 4.3 are the stateful

ideal functionality having accesses to ledger to assist the fair content delivery via

downloading. We make the following remarks about the contract functionality:

• Feasibility. To demonstrate the feasibility of Gd, we describe it by following
the conventional pseudocode notation of smart contracts [84]. The description
captures the essence of real-world smart contracts, since it: (i) reflects that
the Turing-complete smart contract can be seen as a stateful program to
transparently handle pre-specified functionalities; (ii) captures that a smart
contract can access the cryptocurrency ledger to faithfully deal with conditional
payments upon its own internal states.

• VFD.V subroutine. Gd can invoke the VFD verifier V as a subroutine. VFD’s
predicate Ψ(·) is instantiated to verify that each chunk is signed by the provider.

• ValidateRKeys and ValidatePoM subroutines. The subroutines allow the consumer
to prove to the contract if the content provider P behaves maliciously. We defer
the details to the next subsection.
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The Arbiter Contract Functionality G ledgerd for P2P Downloading
The arbiter contract Gd has access to the ledger, and it interacts with the provider P,
the deliverer D, the consumer C and the adversary A. It locally stores the times of
repeatable delivery θ, the number of content chunks n, the content digest rootm, the
price BP , BC and Bpf , the number of delivered chunks ctr (initialized as 0), addresses

pkP , pkD, pkC , vpkC , revealed keys’ hash erkhash, state Σ and three timers Tround
(implicitly), Tdeliver, and Tdispute.

Phase 1: Prepare

• On receive (start, pkP , rootm, θ, n,BP ,BC ,Bpf) from P:
- assert ledger[P] ≥ (θ · (n · BP +Bpf)) ∧ Σ ≡ ∅
- store pkP , rootm, θ, n,BP ,BC ,Bpf

- let ledger[P] := ledger[P]− θ · (n · BP +Bpf) and Σ := started
- send (started, pkP , rootm, θ, n,BP , BC ,Bpf) to all entities

• On receive (join, pkD) from D:
- assert Σ ≡ started
- store pkD and let Σ := joined
- send (joined, pkD) to all entities

• On receive (prepared) from D:
- assert Σ ≡ joined, and let Σ := ready
- send (ready) to all entities

Phase 2: Deliver

• On receive (consume, pkC , vpkC) from C:
- assert θ > 0
- assert ledger[C] ≥ n · BC ∧ Σ ≡ ready
- store pkC , vpkC and let ledger[C] := ledger[C]− n · BC
- start a timer Tdeliver and let Σ := initiated
- send (initiated, pkC , vpkC) to all entities

• On receive (delivered) from C or Tdeliver times out:

- assert Σ ≡ initiated
- send (getVFDProof) to D, and wait for two rounds to receive (receipt, i, σi

C),
then execute verifyVFDProof() to let ctr := i, and then assert 0 ≤ ctr ≤ n

- let ledger[D] := ledger[D] + ctr · BP
- let ledger[P] := ledger[P] + (n− ctr) · BP
- store ctr, let Σ := revealing, and send (revealing, ctr) to all entities

Figure 4.2 The downloading-setting arbiter functionality G ledgerd .
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The Arbiter Contract Functionality G ledgerd for P2P Downloading (Cont.)

Phase 3: Reveal

• On receive (revealKeys, erk) from P:
- assert Σ ≡ revealing
- store erk (essentially erk’s hash) and start a timer Tdispute
- let Σ := revealed
- send (revealed, erk) to all entities

• Upon Tdispute times out:

– assert Σ ≡ revealed and current time T ≥ Tdispute
– ledger[P] := ledger[P] + ctr · BC +Bpf

– ledger[C] := ledger[C] + (n− ctr) · BC
– let Σ := sold and send (sold) to all entities

• On receive (wrongRK) from C before Tdispute times out:

– assert Σ ≡ revealed and current time T < Tdispute
– if (ValidateRKeys(n, ctr, erk) ≡ false):

* let ledger[C] := ledger[C] + n · BC +Bpf

* let Σ := not sold and send (not sold) to all entities

• On receive (PoM, i, j, ci, σci ,H(mi), π
i
MT, rk, erk, πVD) from C before Tdispute

times out:

– assert Σ ≡ revealed and current time T < Tdispute
– invoke the ValidatePoM(i, j, ci, σci ,
H(mi), π

i
MT, rk, erk, πVD) subroutine, if true is returned:

* let ledger[C] := ledger[C] + n · BC +Bpf

* let Σ := not sold and send (not sold) to all entities

▷ Reset to the ready state for repeatable delivery
• On receive (reset) from P:

– assert Σ ≡ sold or Σ ≡ not sold
– set ctr, Tdeliver, Tdispute as 0
– nullify pkC and vpkC
– let θ := θ − 1, and Σ := ready
– send (ready) to all entities

Figure 4.3 The continuation of downloading-setting arbiter functionality G ledgerd .

4.6.3 Protocol Details

Now we present the details of fair P2P downloading protocol ΠFD. In particular, the

protocol aims to deliver a content m made of n chunks5 with a-priori known digest in

5W.l.o.g., we assume n = 2k for k ∈ Z for presentation simplicity.
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the form of Merkle tree root, i.e., rootm. We omit the session id sid and the content

digest rootm during the protocol description since they remain the same within a

delivery session.

Phase I for Prepare. The provider P and the deliverer D interact with the contract

functionality Gd in this phase as:

• The provider P deploys contracts and starts 6 ΠFD by taking as input the
security parameter λ, the incentive parameters BP ,BC,Bpf ∈ N, where Bpf

is the penalty fee7 in a delivery session to discourage the misbehavior from
the provider P , the number of times θ of repeatable delivery allowed for
the contract, the n-chunk content m = (m1, . . . ,mn) ∈ {0, 1}η×n satisfying
root(BuildMT(m)) ≡ rootm where rootm is the content digest in the form
of Merkle tree root, and executes (pkP , skP) ← SIG.KGen(1λ), and sends
(start, pkP , rootm, θ, n,BP ,BC,Bpf) to Gd.

• Upon Σ ≡ joined, the provider P would execute:

– Randomly samples a master key mk ←$ {0, 1}λ, and runs Algorithm 13,
namely KT← GenSubKeys(n,mk); stores mk and KT locally;

– Uses the leaf nodes, namely KT[n − 1 : 2n − 2] (i.e., exemplified by
Figure 4.4a) as the encryption keys to encrypt (m1, . . . ,mn), namely
c = (c1, . . . , cn)← (SEncKT[n−1](m1), . . . , SEncKT[2n−2](mn));

– Signs the encrypted chunks to obtain the sequence ((c1, σc1), · · · , (cn, σcn))
where the signature σci ← Sign(i||ci, skP), i ∈ [n]; meanwhile, computes
MT ← BuildMT(m) and signs the Merkle tree MT to obtain σMT

P ←
Sign(MT, skP), then locally stores (MT, σMT

P ) and sends (sell, ((c1, σc1),
· · · , (cn, σcn))) to D;

– Waits for (ready) from Gd to enter the next phase.

• The deliverer D executes as follows during this phase:

– Upon receiving (started, pkP , rootm, θ, n,BP ,BC,Bpf) from Gd, executes
(pkD, skD)← SIG.KGen(1λ), and sends (join, pkD) to Gd;

– Waits for (sell, ((c1, σc1), · · · , (cn, σcn))) from P and then: for every (ci, σci)
in the sell message, asserts that Verify(i||ci, σci , pkP) ≡ 1; if hold, sends
(prepared) to Gd, and stores ((c1, σc1), · · · , (cn, σcn)) locally;

– Waits for (ready) from Gd to enter the next phase.

Till now, P owns a master key mk, the key tree KT, and the Merkle tree MT

while D receives the encrypted content chunks and is ready to deliver.

6P can retrieve the deposits of BP and Bpf back if there is no deliverer responds timely.
7Bpf can be set proportional to (n× BC) in case P deliberately lowers it.
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Algorithm 13 GenSubKeys Algorithm

Input: n,mk

Output: a (2n− 1)-array KT

1: let KT be an array, |KT| = 2n− 1;

2: KT[0] = H(mk);

3: if n ≡ 1 then

4: return KT;

5: if n > 1 then

6: for i in [0, n− 2] do

7: KT[2i+ 1] = H(KT[i]||0);
8: KT[2i+ 2] = H(KT[i]||1);

9: return KT;

Phase II for Deliver. The consumer C, the provider P , and the deliverer D interact

with the contract Gd in this phase as:

• The consumer C would execute as follows:

– Asserts Σ ≡ ready, runs (pkC, skC) ← SIG.KGen(1λ) and (vpkC, vskC) ←
VPKE.KGen(1λ), and sends (consume, pkC, vpkC) to Gd;

– Upon receiving (mtree,MT, σMT
P ) from P where Verify(MT, σMT

P , pkP) ≡ 1
and root(MT) ≡ rootm, stores the Merkle tree MT and then activates the
receiver R in the VFD subroutine by invoking R.recv() and instantiating
the external validation function Ψ(i, ci, σci) as Verify(i||ci, σci , pkP), and
then waits for the execution of VFD to return the delivered chunks
((c1, σc1), (c2, σc2), · · · ) and stores them; upon receiving the whole n-size
sequence after executing the VFD module, sends (delivered) to Gd;

– Waits for (revealing, ctr) from Gd to enter the next phase.

• The provider P executes in this phase as: upon receiving (initiated, pkC, vpkC)
from Gd, asserts Σ ≡ initiated, and sends (mtree,MT, σMT

P ) to C, and then enters
the next phase.

• The deliverer D executes as follows during this phase:

– Upon receiving (initiated, pkC, vpkC) from Gd: asserts Σ ≡ initiated, and
then activates the sender S in the VFD module by invoking S.send() and
instantiating the validation function Ψ(i, ci, σci) as Verify(i||ci, σci , pkP),
and feeds VFD module with input ((c1, σc1), . . . , (cn, σcn));

– Upon receiving (getVFDProof) from Gd, sends the latest receipt, namely
(receipt, i, σi

C) to Gd;
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Figure 4.4 An example of the structured key derivation scheme in ΠFD.

– Waits for (revealing, ctr) from Gd to halt.

At the end of this phase, C receives the sequence of encrypted chunks (c1, c2, . . . ),

and D receives the payment for the bandwidth contribution of delivering chunks, and

the contract records the number of delivered chunks ctr.

Phase III for Reveal. This phase is completed by P and C in the assistance of the

arbiter contract Gd, which proceeds as:

• The provider P proceeds as follows during this phase:

– Asserts Σ ≡ revealing, runs Algorithm 14, i.e., rk ← RevealKeys(n, ctr,mk)
to generate the revealed elements rk, and encrypt rk by running erk ←
VEncvpkC(rk), as exemplified by Figure 4.4b, and sends (revealKeys, erk) to
Gd; waits for (sold) from Gd to halt.

• The consumer C in this phase would first assert Σ ≡ revealing and wait for
(revealed, erk) from Gd to execute the following:

– Runs Algorithm 15, namely ValidateRKeys(n, ctr, erk) to preliminarily
check whether the revealed elements erk can recover the correct number
(i.e, ctr) of keys. If false is returned, sends (wrongRK) to Gd and halts;

– If ValidateRKeys(n, ctr, erk) ≡ true, decrypts erk to obtain rk ←
VDecvskC(erk), and then runs Algorithm 16, i.e., ks = (k1, · · · , kctr) ←
RecoverKeys(n, ctr, rk), as exemplified by Figure 4.4c, to recover the chunk
keys. Then C uses these keys to decrypt (c1, · · · , cctr) to get (m′

1, · · · ,m′
ctr),

where m′
i = SDecki(ci), i ∈ [ctr], and checks whether for every m′

i ∈
(m′

1, · · · ,m′
ctr), H(m′

i) is the i-th leaf node in Merkle tree MT received
from P in the Deliver phase. If all are consistent, meaning that C receives
all the desired chunks and there is no dispute, C outputs (m′

1, · · · ,m′
ctr),

and then waits for (sold) from Gd to halt. Otherwise, C can raise complaint
by: choosing one inconsistent position (e.g., the i-th chunk), and computes
(rk, πVD)← ProvePKEvskC(erk) and πi

M ← GenMTP(MT,H(mi)), and then
sends (PoM, i, j, ci, σci ,H(mi), π

i
MT, rk, erk, πVD) to the contract Gd, where
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Algorithm 14 RevealKeys Algorithm

Input: n, ctr, and mk

Output: rk, an array containing the minimum number of elements in KT that suffices to

recover the ctr keys from KT[n− 1] to KT[n+ ctr − 2]

1: let rk and ind be empty arrays;

2: KT← GenSubKeys(n,mk);

3: if ctr ≡ 1 then

4: rk appends (n− 1,KT[n− 1]);

5: return rk;

6: for i in [0, ctr − 1] do

7: ind[i] = n− 1 + i;

8: while true do

9: let t be an empty array;

10: for j in [0, ⌊|ind|/2⌋ − 1] do

11: pl = (ind[2j]− 1)/2;

12: pr = (ind[2j + 1]− 2)/2; ▷ merge elements with the same parent node in KT

13: if pl ≡ pr then

14: t appends pl;

15: else

16: t appends ind[2j];

17: t appends ind[2j + 1];

18: if |ind| is odd then

19: t appends ind[|ind| − 1];

20: if |ind| ≡ |t| then
21: break;

22: ind = t;

23: for x in [0, |ind| − 1] do

24: rk appends (ind[x],KT[ind[x]]);

25: return rk;

i is the index of the incorrect chunk to be proved; j is the index of the
element in erk that can induce the key ki for the position i; ci and σci are
the i-th encrypted chunk and its signature received in the Deliver phase;
H(mi) is the value of the i-th leaf node in MT; πi

MT is the Merkle proof
for H(mi); rk is decryption result from erk; erk is the encrypted revealed
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Algorithm 15 ValidateRKeys Algorithm

Input: n, ctr and erk

Output: true or false indicating that whether the correct number (i.e., ctr) of decryption

keys can be recovered

1: if n ≡ ctr and |erk| ≡ 1 and the position of erk[0] ≡ 0 then

2: return true; ▷ root of KT

3: Initialize chunks index as a set of numbers {n− 1, . . . , n+ ctr − 2};
4: for each (i, ) in erk do

5: di = log(n)− ⌊log(i+ 1)⌋;
6: li = i, ri = i;

7: if di ≡ 0 then

8: chunks index removes i;

9: else

10: while (di--) > 0 do

11: li = 2li + 1;

12: ri = 2ri + 2;

13: chunks index removes the elements from li to ri;

14: if chunks index ≡ ∅ then
15: return true;

16: return false;

Algorithm 16 RecoverKeys Algorithm

Input: n, ctr, and rk

Output: a ctr-sized array ks

1: let ks be an empty array;

2: for each (i,KT[i]) in rk do

3: ni = 2(logn−⌊log(i+1)⌋);

4: vi = GenSubKeys(ni, KT[i]);

5: ks appends vi[ni − 1 : 2ni − 2];

6: return ks;

key; πVD is the verifiable decryption proof attesting to the correctness of
decrypting erk to rk.

Dispute resolution. For the sake of completeness, the details of ValidatePoM

subroutine is presented in Algorithm 17, which allows the consumer to prove that
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Algorithm 17 ValidatePoM Algorithm

Input: (i, j, ci, σci ,H(mi), π
i
MT, rk, erk, πVD)

(rootm, n, erkhash, pkP , vpkC) are stored in the contract and hence accessible

Output: true or false

1: assert j ∈ [0, |erk| − 1];

2: assert H(erk) ≡ erkhash;

3: assert VerifyPKEvpkC(erk, rk, πVD) ≡ 1;

4: assert Verify(i||ci, σci , pkP) ≡ 1;

5: assert VerifyMTP(rootm, i, πi
MT,H(mi)) ≡ 1;

6: ki = RecoverChunkKey(i, j, n, rk);

7: assert ki ̸= ⊥;
8: m′

i = SDec(ci, ki);

9: assert H(m′
i) ̸= H(mi);

10: return false in case of any assertion error or true otherwise;

Algorithm 18 RecoverChunkKey Algorithm

Input: (i, j, n, rk)

Output: ki or ⊥

1: (x, y)← rk[j]; ▷ parse the j-th element in rk to get the key x and the value y

2: let k path be an empty stack;

3: ind = n+ i− 2; ▷ index in KT

4: if ind < x then

5: return ⊥;

6: if ind ≡ x then

7: return y; ▷ ki = y

8: while ind > x do

9: k path pushes 0 if ind is odd;

10: k path pushes 1 if ind is even;

11: ind = ⌊(ind− 1)/2⌋;

12: let b = |k path|;
13: while (b--) > 0 do

14: pop k path to get the value t;

15: ki = H(y||t);

16: return ki;
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it decrypts a chunk inconsistent to the digest rootm. The time complexity is O(log n),

which is critical to achieve the efficiency requirement. Additionally, we consider a

natural case where an honest consumer C would not complain to the contract if

receiving valid content.

Design highlights. We would like to highlight some design details in ΠFD: (i) the

rk is an array containing several revealed elements, which are in the form of

(position, value). The erk shares the similar structure where the position is same

and value is encrypted from the corresponding rk.value. The position is the index

in KT; (ii) to reduce the on-chain cost, the contract only stores the 256-bit hash of

the erk.value while emits the actual erk as event logs. During the dispute resolution,

C submits the j-th erk element, and the contract would check the consistency of the

submitted erk with its on-chain hash; (iii) Algorithm 15 allows the judge contract to

perform preliminary check on whether the revealed elements can recover the desired

number (i.e., ctr) of decryption keys, without directly executing the relatively complex

contract part of ValidatePoM (i.e., Algorithm 17).

Repeatable delivery. The protocol ΠFD supports repeatable delivery, meaning that

once a delivery session completes, the provider P can invoke the contract (by sending

(reset) to Gd) to reset to ready state, so that new consumers can join in and start a

new protocol instance. Such a θ-time repeatable delivery mechanism can amortize the

costs of contracts deployment and preparation (i.e., delegating encrypted chunks to

a deliverer). Once θ decreases to 0, the provider P can either deploy a new contract

(thus residing at a new contract address) or utilize the same contract address while

re-run the Prepare phase. P may not need to delegate the encrypted chunks if a

previously participating deliverer joins in.

4.6.4 Protocol Analysis

Now we provide the detailed proofs that the protocol ΠFD satisfies the design goals.
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Lemma 2. Conditioned that all parties P, D and C are honest, ΠFD satisfies the

completeness property in the synchronous authenticated network and stand-alone

model.

Proof. The completeness of ΠFD is immediate to see: when all three participating

parties honestly follow the protocol, the provider P gets a net income of n ·(BC−BP);

the deliverer D obtains the well-deserved payment of n ·BP ; the consumer C receives

the valid content m, i.e., ϕ(m) ≡ 1.

Lemma 3. In the synchronous authenticated model and stand-alone setting, condi-

tioned that the underlying cryptographic primitives are secure, ΠFD satisfies the

fairness requirement even when at most two parties of P, D and C are corrupted

by non-adaptive P.P.T. adversary A.

Proof. The fairness for each party in ΠFD can be reduced to the underlying

cryptographic building blocks, which can be analyzed as follows:

• Consumer fairness. Consumer fairness means that the honest C only needs to
pay proportional to what it de facto obtains even though malicious P∗ and
D∗ may collude with each other. This case can be modeled as an adversary
A corrupts both P and D to provide and deliver the content to the honest
C. During the Deliver phase, the VFD subroutine ensures that C receives the
sequence (c1, σc1), . . . , (cℓ, σcℓ), ℓ ∈ [n] though A may maliciously abort. Later
A can only claim payment from the contract of ℓ · BP , which is paid by the A
itself due to the collusion. During the Reveal phase, if A reveals correct elements
in KT to recover the ℓ decryption keys, then C can decrypt to obtain the valid ℓ
chunks. Otherwise, C can raise complaint by sending the (wrongRK) and further
(PoM) to the contract and gets refund. It is obvious to see that C either pays for
the ℓ valid chunks or pays nothing. The fairness for the consumer is guaranteed
unless A can: (i) break VFD to forge C’s signature; (ii) find Merkle tree collision,
namely find another chunk m′

i ̸= mi in position i of m to bind to the same
rootm so that A can fool the contract to reject C’s complaint (by returning
false of ValidatePoM) while indeed sent wrong chunks; (iii) manipulate the
execution of smart contract in blockchain. However, according to the security
guarantee of the underlying signature scheme, the second-preimage resistance
of hash function in Merkle tree, and that the smart contract is modeled as an
ideal functionality, the probability to break C’s fairness is negligible. Therefore,
the consumer fairness being secure against the collusion of malicious P∗ and D∗

is guaranteed.
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• Deliverer fairness. Deliverer fairness states that the honest D receives the
payment proportional to the expended bandwidth even though the malicious P∗

and C∗ may collude with each other. This amounts to the case that A corrupts
both P and C and try to reap D’s bandwidth contribution without paying. In
the VFD subroutine, consideringD delivers ℓ chunks, then it can correspondingly
obtain either ℓ (ℓ ∈ [n]) or ℓ− 1 (i.e., A stops sending the ℓ-th receipt) receipts
acknowledging the bandwidth contribution. Later D can use the latest receipt
containing C’s signature to claim payment ℓ·BP or (ℓ−1)·BP from the contract.
At mostD may waste bandwidth for delivering one chunk-validation pair ofO(η)
bits. To break the security, A has to violate the contract functionality (i.e.,
control the execution of smart contract in blockchain), which is of negligible
probability. Therefore, the deliverer fairness being secure against the collusion
of malicious P∗ and C∗ is ensured.

• Provider fairness. Provider fairness indicates that the honest P receives the
payment proportional to the number of valid content chunks that C receives.
The malicious D∗ can collude with the malicious C∗ or simply create multiple
fake C∗ (i.e., Sybil attack), and then cheat P without real delivery. These
cases can be modeled as an adversary A corrupts both D and C. A can break
the fairness of the honest P from two aspects by: (i) letting P pay for the
delivery without truly delivering any content; (ii) obtaining the content without
paying for P . For case (i), A can claim that ℓ (ℓ ∈ [n]) chunks have been
delivered and would receive the payment ℓ · BP from the contract. Yet this
procedure would also update ctr := ℓ in the contract, which later allows P to
receive the payment ℓ · BC after Tdispute expires unless A can manipulate the
execution of smart contract, which is of negligible probability. Hence, P can
still obtain the well-deserved payment ℓ · (BC −BP). For case (ii), A can either
try to decrypt the delivered chunks by itself without utilizing the revealing
keys from P , or try to fool the contract to accept the PoM and therefore
repudiate the payment for P though P honestly reveals chunk keys. The former
situation can be reduced to the need of violating the semantic security of the
underlying encryption scheme and the pre-image resistance of cryptographic
hash functions, and the latter requires A to forge P ’s signature, or break the
soundness of the verifiable decryption scheme, or control the execution of the
smart contract. Obviously, the occurrence of aforementioned situations are in
negligible probability. Overall, the provider fairness being secure against the
collusion of malicious D∗ and C∗ is assured.

In sum, ΠFD strictly guarantees the fairness for P and C, and the unpaid delivery

for D is bounded to O(η) bits. The fairness requirement of ΠFD is satisfied.
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Lemma 4. In the synchronous authenticated network and stand-alone model, ΠFD

satisfies the confidentiality property against malicious deliverer corrupted by non-

adaptive P.P.T. adversary A.

Proof. This property states that on input all protocol scripts and the corrupted

deliverer’s private input and all internal states, it is still computationally infeasible

for the adversary to output the provider’s input content. In ΠFD, each chunk delegated

to D is encrypted using symmetric encryption scheme before delivery by encryption

key derived from Algorithm 13. The distribution of encryption keys and uniform

distribution cannot be distinguished by the P.P.T. adversary. Furthermore, the

revealed on-chain elements erk for recovering some chunks’ encryption keys are also

encrypted utilizing the consumer C’s pubic key, which can not be distinguished from

uniform distribution by the adversary. Additionally, C receives the Merkle tree MT

of the content m before the verifiable fair delivery (VFD) procedure starts. Thus to

break the confidentiality property, the adversary A has to violate any of the following

conditions: (i) the pre-image resistance of Merkle tree, which can be further reduce

to the pre-image resistance of cryptographic hash function; and (ii) the security of

the public key encryption scheme, essentially requiring at least to solve decisional

Diffie-Hellman problem. The probability of violating the aforementioned security

properties is negligible, and therefore, ΠFD satisfies the confidentiality property

against malicious deliverer corrupted by A.

Lemma 5. If at least one of the three parties P, D, C is honest and others are

corrupted by non-adaptive P.P.T. adversary A, ΠFD satisfies the timeliness property

in the synchronous authenticated network and stand-alone model.

Proof. Timeliness states that the honest parties in the protocol ΠFD terminates in

O(n) synchronous rounds, where n is the number of content chunks, and when the

protocol completes or aborts, the fairness and confidentiality are always preserved. As
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the guarantee of confidentiality can be straightforwardly derived due to the lemma 4

even if malicious parties abort, we only focus on the assurance of fairness. Now

we elaborate the following termination cases for the protocol ΠFD with the arbiter

contract Gd and at least one honest party:

No abort. If all parties of P , D and C are honest, the protocol ΠFD terminates in

the Reveal phase, after Tdispute expires. The Prepare phase and the Reveal phase need

O(1) synchronous rounds, and the Deliver phase requires O(n) rounds where n is

the number of content chunks, yielding totally O(n) rounds for the protocol ΠFD to

terminate and the fairness is guaranteed at completion since each party obtains the

well-deserved items.

Aborts in the Prepare phase. This phase involves the interaction between the provider

P , the deliverer D, and the arbiter contract Gd. It is obvious this phase can terminate

in O(1) rounds if any party maliciously aborts or the honest party does not receive

response after Tround expires. Besides, after each step in this phase, the fairness for

both P and D is preserved no matter which one of them aborts, meaning that P does

not lose any coins in the ledger or leak any content chunks, while D does not waste

any bandwidth resource.

Aborts in the Deliver phase. This phase involves the provider P , the deliverer D, the

consumer C, and the arbiter contract Gd. It can terminate in O(n) rounds. After C

sends (consume) message to the contract, and then other parties aborts, C would get

its deposit back once Tround times out. The VFD procedure in this phase only involves

D and C, and the fairness is guaranteed whenever one of the two parties aborts, as

analyzed in lemma 1. The timer Tdeliver in contract indicates that the whole n-chunk

delivery should be completed within such a time period, or else Gd would continue

with the protocol by informing D to claim payment and update ctr after Tdeliver times

out. D is motivated not to maliciously abort until receiving the payment from the

contract. At the end of this phase, D completes its task in the delivery session, while
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for P and C, they are motivated to enter the next phase and the fairness for them at

this point is guaranteed, i.e., P decreases coins by ctr ·BP in ledger, but the contract

has also updated ctr, which allows P to receive ctr · BC from the ledger if keys are

revealed honestly, and C obtains the encrypted chunks while does not lose any coins

in ledger.

Aborts in the Reveal phase. This phase involves the provider P , the consumer C,

and the arbiter contract Gd. It can terminate in O(1) rounds after the contract sets

the state as sold or not sold. If C aborts after P reveals the chunk keys on-chain,

P can wait until Tdispute times out and attain the deserved payment ctr · BC. If

P reveals incorrect keys and then aborts, C can raise complaint within Tdispute by

sending message (wrongRK) and further (PoM) to get refund. Hence, the fairness for

either P and C is guaranteed no matter when and which one aborts maliciously in

this phase.

Lemma 6. In the synchronous authenticated network and stand-alone model, for

any non-adaptive P.P.T. adversary A, ΠFD meets the efficiency requirement that: the

communication complexity is bounded to O(n); the on-chain cost is bounded to Õ(1);

the messages sent by the provider P after preparation are bounded to n ·λ bits, where

n is the number of chunks and λ is a small cryptographic parameter, and n ·λ is much

less than the content size |m|.

Proof. The analysis regarding the non-trivial efficiency property can be conducted in

the following three aspects:

• Communication complexity. In the Prepare phase, P delegates the signed
encrypted chunks to D, where the communication complexity is O(n). Typically
this phase is only executed once for the same content. In the Deliver phase, P
sends the content Merkle tree MT to C, and D activates the VFD subroutine to
deliver the content chunks to C. The communication complexity in this phase is
also O(n). In the Reveal phase, the revealed elements for recovering ctr keys is
at most O(log n). Finally, if dispute happens, the communication complexity of
sending PoM (mostly due to the merkle proof πi

MT) to the contract is O(log n).
Therefore, the communication complexity of the protocol ΠFD is O(n).
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• On-chain costs. In the optimistic case where no dispute occurs, the on-chain
costs of ΠFD include: (i) the functions (i.e., start, join and prepared) in the
Prepare phase are all O(1); (ii) in the Deliver phase, the consume and delivered
functions are O(1). Note that in the delivered function, the cost of signature
verification is O(1) since D only needs to submit the latest receipt containing one
signature of C; (iii) the storage cost for revealed elements (i.e., erk) is at most
O(log n), where n is the number of chunks. Hence, the overall on-chain cost is

at most O(log n), namely Õ(1). In the pessimistic case where dispute happens,
the on-chain cost is only related to the delivered chunk size η no matter how
large the content size |m| is (the relationship between the chunk size and costs
in different modes is depicted in Section 4.8).

• Message Volume for P . Considering that the contract is deployed and the
deliverer is ready to deliver. Every time when a new consumer joins in, a
new delivery session starts. The provider P shows up twice for: (i) sending the
Merkle tree MT, which is in complexity of O(log n), to C in the Deliver phase,
and (ii) revealing erk, which is in complexity of at most O(log n), to C in the
Reveal phase. The total resulting message volume O(log n) can be represented
as n · λ bits, where λ is a small cryptographic parameter, and n · λ is obviously
much less than the content size of |m|.

Theorem 1. Conditioned on that the underlying cryptographic primitives are secure,

the protocol FairDownload satisfies the completeness, fairness, confidentiality against

deliverer, timeliness and non-trivial efficiency properties in the synchronous authen-

ticated network, G ledgerd -hybrid and stand-alone model.

Proof. Lemmas 2, 3, 4, 5, and 6 complete the proof.

4.7 Fair P2P Streaming Protocol Design

In this section, we present the P2P fair delivery protocol ΠFS, allowing view-while-

delivery in the streaming setting.

4.7.1 Protocol Overview

As depicted in Figure 4.5, our protocol ΠFS works as three phases, i.e., Prepare,

Stream, and Payout, at a high level. The core ideas for ΠFS are:
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• Same as the Prepare phase in ΠFD, initially the content provider P would deploy
the smart contract, encrypt content chunks, sign the encrypted chunks and
delegate to the deliverer D.

• The streaming process consists of O(n) communication rounds, where n is
the number of chunks. In each round, the consumer C would receive an
encrypted chunk from D and a decryption key from P ; any party may abort in
a certain round due to, e.g., untimely response or invalid message; especially,
in case erroneous chunk is detected during streaming, C can complain and get
compensated with a valid and short (i.e., O(η + λ) bits) proof.

• Eventually all parties enter the Payout phase, where D and P can claim the
deserved payment by submitting the latest receipt signed by the consumer before
a timer maintained in contract expires; the contract determines the final internal
state ctr, namely the number of delivered chunks or revealed keys, as the larger
one of the indexes in P and D’s receipts. If no receipt is received from P or D
before the timer expires, the contract would treat the submitted index for that
party as 0. Such a design is critical to ensure fairness.
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Figure 4.5 The overview of FairStream protocol ΠFS.

Figure 4.6 illustrates the concrete message flow of one round chunk delivery

during the Stream phase. We highlight that a black-box call of the VFD module

is not applicable to the streaming setting since VFD only allows the consumer C

to obtain the encrypted chunks, which brings the advantage that the provider P
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merely needs to show up once to reveal a minimum number of elements and get

all chunk keys to be recovered. However, the streaming procedure demands much

less latency of retrieving each content chunk, leading to the intuitive design to let

C receive both an encrypted chunk and a corresponding chunk decryption key in

one same round. P is therefore expected to keep online and reveal each chunk key

to C. Overall, the protocol design in ΠFS requires relatively more involvement of

the provider P compared with the downloading setting, but the advantage is that

instead of downloading all chunks in O(n) rounds before viewing, the consumer C

now can retrieve each chunk with O(1) latency. All other properties including each

party’s fairness, the on-chain computational cost, and the deliverer’s communication

complexity remain the same as those in the downloading setting.

(1) (deliver, )

(2) (keyReq, )

(3) (reveal, )

4. Validate chunk and decide 
whether raising complaint

(5.a) (receipt, ) (5.b) (receipt, )

Start the next round

chunkReceipt

keyResponse

keyReceipt

ConsumerDeliverer Provider

Figure 4.6 The message flow of one round chunk delivery in the Stream phase.

4.7.2 Arbiter Contract for Streaming

The arbiter contract G ledgers (abbr. Gs) illustrated in Figure 4.7 is a stateful ideal

functionality that can access to ledger functionality to facilitate the fair content

delivery via streaming. The timer Treceive ensures that when any party maliciously

aborts or the consumer C receives invalid chunk during the streaming process, the

protocol ΠFS can smoothly continue and enter the next phase. The dispute resolution

in contract is relatively simpler than the downloading setting since no verifiable

decryption is needed. The timer Tfinish indicates that both D and P are supposed
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to send the request of claiming their payment before Tfinish times out, and therefore it

is natural to set Tfinish > Treceive. Once Tfinish expires, the contract determines the final

ctr by choosing the maximum index in P and D’s receipts, namely ctrP and ctrD,

respectively, and then distributes the well-deserved payment for each party. Once the

delivery session completes, the provider P can invoke the contract by sending (reset)

to Gs to reset to the ready state and continue to receive new requests from consumers.

4.7.3 Protocol Details

Phase I for Prepare. This phase executes the same as the Prepare phase in the

ΠFD protocol.

Phase II for Stream. The consumer C, the deliverer D and the provider P interact

with the contract Gs in this phase as:

• The consumer C interested in the content with digest rootm would initialize a
variable x := 1 and then:

– Asserts Σ ≡ ready, runs (pkC, skC)← SIG.KGen(1λ), and sends (consume, pkC)
to Gs;

– Upon receiving (mtree,MT, σMT
P ) from P , asserts Verify(MT, σMT

P , pkP) ≡
1 ∧ root(MT) ≡ rootm, and stores the Merkle tree MT, or else halts;

– Upon receiving the message (deliver, i, ci, σci) from D, checks whether i ≡
x∧Verify(i||ci, σci , pkP) ≡ 1, if hold, starts (for i ≡ 1) a timer TkeyResponse or
resets (for 1 < i ≤ n) it, sends (keyReq, i, σi

C) where σi
C ← Sign(i||pkC, skC)

to P (i.e., the step (2) in Figure 4.6). If failing to check or TkeyResponse times
out, halts;

– Upon receiving the message (reveal, i, ki, σki) from P before TkeyResponse
times out, checks whether i ≡ x ∧ Verify(i||ki, σki , pkP) ≡ 1, if failed,
halts. Otherwise, starts to validate the content chunk based on received
ci and ki: decrypts ci to obtain m′

i, where m′
i = SDecki(ci), and

then checks whether H(m′
i) is consistent with the i-th leaf node in the

Merkle tree MT, if inconsistent, sends (PoM, i, ci, σci , ki, σki ,H(mi), π
i
MT)

to Gs. If it is consistent, sends the receipts (receipt, i, σi
CD) to D and

(receipt, i, σi
CP) to P , where σi

CD ← Sign(receipt||i||pkC||pkD, skC) and
σi
CP ← Sign(receipt||i||pkC||pkP , skC), and sets x := x + 1, and then waits

for the next (deliver) message from D. Upon x is set to be n + 1, sends
(received) to Gs;

– Waits for the messages (received) from Gs to halt.
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The Arbiter Contract Functionality G ledgers for p2p Streaming

The contract Gs can access to ledger, and it interacts with P, D, C and the adversary
A. It locally stores θ, n, rootm, BP , BC , Bpf , ctrD, ctrP , ctr (all ctrD, ctrP , ctr are

initialized as 0), pkP , pkD, pkC , the penalty flag plt (initialized by false), the state Σ
and three timers Tround (implicitly), Treceive, Tfinish.

Phase 1: Prepare

• This phase is the same as the Prepare phase in Gd.

Phase 2: Stream

• On receive (consume, pkC) from C:
– assert θ > 0
- assert ledger[C] ≥ n · BC ∧ Σ ≡ ready
- store pkC and let ledger[C] := ledger[C]− n · BC
- start two timers Treceive, and Tfinish
– let Σ := initiated and send (initiated, pkC) to all entities

• On receive (received) from C before Treceive times out:

- assert current time T < Treceive and Σ ≡ initiated
- let Σ := received and send (received) to all entities

• Upon Treceive times out:

- assert current time T ≥ Treceive and Σ ≡ initiated
- let Σ := received and send (received) to all entities

▷ Below is to resolve dispute during streaming in ΠFS

• On receive (PoM, i, ci, σci , ki, σki ,H(mi), π
i
MT) from C before Treceive expires:

– assert current time T < Treceive and Σ ≡ initiated
– assert Verify(i||ci, σci , pkP) ≡ 1
– assert Verify(i||ki, σki , pkP) ≡ 1
– assert VerifyMTP(rootm, i, πi

MT,H(mi)) ≡ 1
– m′

i = SDec(ci, ki)
– assert H(m′

i) ̸= H(mi)
– let plt := true
– let Σ := received and send (received) to all entities

Figure 4.7 The streaming-setting arbiter functionality G ledgers .

• The deliverer D initializes a variable y := 1 and executes as follows:

– Upon receiving (initiated, pkC) from Gs, sends (deliver, i, ci, σci), i = 1 to C
and starts a timer TchunkReceipt;

– Upon receiving the message (receipt, i, σi
CD) from C before TchunkReceipt times

out, checks whether Verify(receipt||i||pkC||pkD, σi
CD, pkC) ≡ 1 ∧ i ≡ y or

not, if succeed, continues with the next iteration: sets y := y + 1, sends

120



The Arbiter Contract Functionality G ledgers for p2p Streaming (Cont.)

Phase 3: Payout

• On receive (claimDelivery, i, σi
CD) from D:

- assert current time T < Tfinish
- assert i ≡ n or Σ ≡ received or Σ ≡ payingRevealing
- assert ctr ≡ 0 and 0 < i ≤ n
- assert Verify(receipt||i||pkC ||pkD, σi

CD, pkC) ≡ 1
- let ctrD := i, Σ := payingDelivery, and then send (payingDelivery) to all
entities

• On receive (claimRevealing, i, σi
CP) from P:

- assert current time T < Tfinish
- assert i ≡ n or Σ ≡ received or Σ ≡ payingDelivery
- assert ctr ≡ 0 and 0 < i ≤ n
- assert Verify(receipt||i||pkC ||pkP , σi

CP , pkC) ≡ 1
- let ctrP := i, Σ := payingRevealing, and then send (payingRevealing) to all
entities

• Upon Tfinish times out:

- assert current time T ≥ Tfinish
- let ctr := max{ctrD, ctrP}
- let ledger[D] := ledger[D] + ctr · BP
- if plt:

let ledger[P] := ledger[P] + (n− ctr) · BP + ctr · BC
let ledger[C] := ledger[C] + (n− ctr) · BC +Bpf

- else:
let ledger[P] := ledger[P] + (n− ctr) · BP + ctr · BC +Bpf

let ledger[C] := ledger[C] + (n− ctr) · BC
- if ctr > 0:

let Σ := sold and send (sold) to all entities
- else let Σ := not sold and send (not sold) to all entities

▷ Reset to the ready state for repeatable delivery
• On receive (reset) from P:

– assert Σ ≡ sold or Σ ≡ not sold
– set ctr, ctrD, ctrP , Treceive, Tfinish as 0
– nullify pkC
– let θ := θ − 1 and Σ := ready
– send (ready) to all entities

Figure 4.8 The continuation of streaming-setting arbiter functionality G ledgers .

(deliver, i, ci, σci), i = y to C, and resets TchunkReceipt (i.e., the step (1) in
Figure 4.6); otherwise TchunkReceipt times out, enters the next phase.
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• The provider P initializes a variable z := 1 and executes as follows in this phase:

– Upon receiving (initiated, pkC) from Gs: asserts Σ ≡ initiated, and sends
(mtree,MT, σMT

P ) to C;
– Upon receiving the message (keyReq, i, σi

C) from C, checks whether i ≡
z ∧ Verify(i||pkC, σi

C, pkC) ≡ 1, if succeed, sends (reveal, i, ki, σki), where
σki ← Sign(i||ki, skP), to C and starts (for i ≡ 1) a timer TkeyReceipt or
resets (for 1 < i ≤ n) it (i.e., the step (3) in Figure 4.6), otherwise enters
the next phase;

– On input (receipt, i, σi
CP) from C before TkeyReceipt expires, checks whether

Verify(receipt||i||pkC||pkP , σi
CP , pkC) ≡ 1 ∧ i ≡ z or not, if succeed, sets

z = z + 1. Otherwise TkeyReceipt times out, enters the next phase.

Phase III for Payout. The provider P and the deliverer D interact with the

contract Gs in this phase as:

• The provider P executes as follows in this phase:

– Upon receiving (received) or (delivered) from Gs, or receiving the n-th receipt
from C (i.e., z is set to be n+ 1), sends (claimRevealing, i, σi

CP) to Gs;
– Waits for (revealed) from Gs to halt.

• The deliverer D executes as follows during this phase:

– Upon receiving (received) or (revealed) from Gs, or receiving the n-th receipt
from C (i.e., y is set to be n+ 1), sends (claimDelivery, i, σi

CD) to Gs;
– Waits for (delivered) from Gs to halt.

4.7.4 Protocol Analysis

Lemma 7. Conditioned that all parties P, D and C are honest, ΠFS satisfies the

completeness property in the synchronous authenticated network model and stand-

alone setting.

Proof. If all parties P , D and C are honest to follow the protocol, the completeness

is obvious to see: the provider P receives a net income of n · (BC −BP); the deliverer

D obtains the payment of n ·BP ; the consumer C pays for n ·BC and attains the valid

content m with ϕ(m) ≡ 1.
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Lemma 8. In the synchronous authenticated network model and stand-alone setting,

conditioned that the underlying cryptographic primitives are secure, ΠFS meets the

fairness requirement even when at most two parties of P, D and C are corrupted by

non-adaptive P.P.T. adversary A.

Proof. The fairness for each party can be reduced to the underlying cryptographic

building blocks. Specifically,

• Consumer fairness. The consumer fairness means that the honest C needs to
pay proportional to what it de facto receives even though malicious P∗ and D∗

may collude with each other. This case can be modeled as a non-adaptive P.P.T.
adversary A corrupts P and D to provide and deliver the content to C. During
the Stream phase, C can stop sending back the receipts any time when an invalid
chunk is received and then raise complaint to the contract to get compensation.
Considering that C receives a sequence of (c1, σc1), · · · , (cℓ, σcℓ), ℓ ∈ [n] though
A may abort maliciously. Then it is ensured that A can at most get ℓ receipts
and claim payment of ℓ · BP and ℓ · BC, where the former is paid by A itself
due to collusion. Overall, C either pays ℓ · BC and obtains ℓ valid chunks or
pays nothing. To violate the fairness for C, A has to break the security of
signature scheme, i.e., forge C’s signature. The probability is negligible due
to the EU-CMA property of the underlying signature scheme. Therefore, the
consumer fairness being against the collusion of malicious P∗ and D∗ is ensured.
Note that breaking the security of the Merkle tree (i.e., finding another chunk
m′

i ̸= mi in position i of m to bind to the same rootm so as to fool the contract
to reject C’s PoM) or controlling the execution of smart contract in blockchain,
which are of negligible probability due to the second-preimage resistance of
hash function in Merkle tree and the fact that contract is modeled as an ideal
functionality, can only repudiate the penalty fee Bpf and would not impact C’s
fairness in the streaming setting.

• Deliverer fairness. The deliverer fairness states that the honest D receives the
payment proportional to the contributed bandwidth even though the malicious
P∗ and C∗ may collude with each other. This case can be modeled as the
non-adaptive P.P.T. adversary A corrupts both P and C to reap D’s bandwidth
resource without paying. In the Stream phase, if the honest D delivers ℓ chunks,
then it is guaranteed to obtain ℓ or ℓ − 1 (i.e., A does not respond with the
ℓ-th receipt) receipts. In the Payout phase, A cannot lower the payment for the
honest D since D can send the ℓ-th or (ℓ− 1)-th receipt to the contract, which
would update the internal state ctrD as ℓ or ℓ− 1. Once Tfinish times out, D can
receive the well-deserved payment of ℓ · BP or (ℓ − 1) · BP from the contract,
and at most waste bandwidth for delivering one chunk of size η. To violate the
fairness for D, A has to control the execution of smart contract to refuse D’s
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request of claiming payment though the request is valid. The probability to
control the contract functionality in blockchain is negligible, and therefore the
deliverer fairness being secure against the collusion of malicious P∗ and C∗ is
assured.

• Provider fairness. The provider fairness indicates that the honest P receives
the payment proportional to the number of valid chunks that C receives. The
malicious D∗ and C∗ may collude with each other or D∗ can costlessly create
multiple fake C∗ (i.e., Sybil attack), and then cheat P without truly delivering
the content. These cases can be modeled as a non-adaptive P.P.T. adversary
A corrupts both D and C. There are two situations P ’s fairness would be
violated: (i) A claims payment (paid by P) without real delivery; (ii) A obtains
content chunks without paying for P . For case (i), A would try to maximize the
payment paid by P by increasing the ctrD via the (claimDelivery) message sent to
the contract. However, the Gs would update the counter ctr as max{ctrD, ctrP}
in contract after Tfinish times out, and the intention that A tries to maximize
ctrD would correspondingly maximize ctr. Considering that A wants to claim
the payment of ℓ · BP , ℓ ∈ [n] by letting the (claimDelivery) message contain
the index of ℓ while no content is actually delivered, essentially the honest P
can correspondingly receive the payment of ℓ ·BC, and therefore a well-deserved
net income of ℓ · (BC − BP), unless A can manipulate the execution of smart
contract. For case (ii), on one hand, each content chunk is encrypted before
receiving the corresponding chunk key from P . Hence, A has to violate the
semantic security of the underlying symmetric encryption scheme to break the
provider fairness, which is of negligible probability. On the other hand, during
the streaming procedure, P can always stop revealing the chunk key to A if no
valid receipt for the previous chunk key is responded in time. At most P would
lose one content chunk of size η and receive well-deserved payment using the
latest receipt. To violate the fairness, A again has to control the execution of
smart contract, which is of negligible probability, to deny the payment for P
though the submitted receipt is valid. Therefore, the provider fairness against
the collusion of malicious D∗ and C∗ is guaranteed.

In sum, the fairness for C is strictly ensured in ΠFS, while for P and D, the

unpaid revealed content for P and the unpaid bandwidth resource of delivery are

bounded to O(η) bits. i.e., ΠFS satisfies the defined fairness property.

Lemma 9. In the synchronous authenticated network and stand-alone model, ΠFS

satisfies the confidentiality property against malicious deliverer corrupted by non-

adaptive P.P.T. adversary A.

124



Proof. The confidentiality indicates that the deliverer D cannot learn any useful

information about the content m besides a-priori known knowledge within a delivery

session. It can be modeled as a non-adaptive P.P.T. adversary corrupts D. In ΠFS,

the possible scripts of leaking information of m include: (i) the encrypted content

chunks delegated to D; and (ii) the Merkle tree MT of the content m. To break the

confidentiality property, A has to violate the pre-image resistance of cryptographic

hash functions (for the encryption scheme and MT), which is of negligible probability.

Hence, the confidentiality property against the malicious deliverer can be ensured.

Lemma 10. If at least one of the three parties P, D and C is honest and others are

corrupted by non-adaptive P.P.T. adversary A, ΠFS meets the timeliness property in

the synchronous authenticated network and stand-alone model.

Proof. The timeliness means that the honest parties in ΠFS can terminate in O(n)

synchronous rounds, where n is the number of content chunks, and when the protocol

completes or aborts, the fairness and confidentiality are always preserved. Similarly,

we focus on the analysis of fairness since the guarantee of confidentiality can be

straightforwardly derived in light of the lemma 9 even if malicious parties abort. We

distinguish the following termination cases for ΠFS with the arbiter contract Gs and

at least one honest party:

No abort. If all of P , D and C are honest, the protocol ΠFS terminates in the Payout

phase, after Tfinish times out. Both the Prepare and Payout phases can be completed

in O(1) rounds, while the Stream phase needs O(n) rounds, where n is the number

of content chunks, resulting in O(n) rounds for the protocol ΠFS to terminate and

the fairness for all parties at completion are ensured as they obtain the well-deserved

items.

Aborts in the Prepare phase. The analysis for this phase is the same as the ΠFD

protocol in lemma 5.

125



Aborts in the Stream phase. This phase involves the provider P , the deliverer D, the

consumer C and the arbiter contract Gs, and it would terminate in O(n) rounds due

to the following cases: (i) C receives all the chunks and sends the (received) message

to contract; (ii) any party aborts during the streaming, and then the timer Treceive

times out in contract; (iii) C successfully raises complaint of P ’s misbehavior. During

streaming, if D aborts, for example, after receiving the ℓ-th receipt for chunk delivery,

then C is guaranteed to have received ℓ encrypted chunks at that time point. If P

aborts, for example, after receiving the ℓ-th receipt for key revealing, then C is assured

to have received ℓ keys for decryption at that time point. If C aborts, in the worst case,

after receiving the ℓ-th encrypted chunk from D and the ℓ-th key from P , at that time

point, D is ensured to have obtained ℓ − 1 receipts for the bandwidth contribution,

while P is guaranteed to have received ℓ− 1 receipts for key revealing, which means

the fairness for D and P is still preserved according to the fairness definition, i.e.,

the unpaid delivery resource for D and the unpaid content for P are bounded to one

chunk of O(η) bits.

Aborts in the Payout phase. This phase involves the provider P , the deliverer D and

the arbiter contract Gs, and it can terminate in O(1) rounds. The fairness for the

honest one is not impacted no matter when the other party aborts since P and D are

independently claim the payment from contract. After Tfinish times out, the contract

would automatically distribute the payment to all parties according to the internal

state ctr.

Lemma 11. In the synchronous authenticated network model and stand-alone setting,

for any non-adaptive P.P.T. adversary A, ΠFS satisfies the efficiency requirement: the

communication complexity is bounded to O(n); the on-chain cost is bounded to Õ(1);

the messages transferred by the provider P after the setup phase are bounded to n · λ

bits, where n is the number of chunks and λ is a cryptographic parameter, and n · λ

is much less than the content size |m|.

126



Proof. The analysis of efficiency guarantee in ΠFS can be conducted in the following

three perspectives:

• Communication complexity. The Prepare phase is the same as the downloading
setting, and therefore the time complexity is O(n). In the Stream phase, P
sends the Merkle tree MT of m and meanwhile D starts to deliver the delegated
n chunks to C. If dispute happens during streaming, the complexity of sending
PoM is O(log n). Overall the communication complexity of this phase is O(n).
In the Payout phase, the (claimDelivery) and (claimRevealing) messages sent by
P and D to contract is in O(1). Hence, the total communication complexity of
ΠFS is O(n).

• On-chain costs. The Prepare phase yields on-chain costs of O(1), which is same
as the downloading setting. In the Stream phase, the on-chain cost of the
consume function is O(1) and the multiple rounds of content delivery (i.e.,
the streaming process) are executed off-chain. When dispute occurs during
streaming, the on-chain cost is O(log n) (for verifying the Merkle proof), leading
to a total on-chain costs of O(log n). In the Payout phase, the on-chain costs
is O(1) since P and D only need to submit the latest receipt consisting of one

signature. Overall, the on-chain cost of ΠFS is O(log n), namely Õ(1).

• Message volume for P . Considering that the contract is deployed and the
deliverer is ready to deliver. Every time when a new consumer joins in, a
new delivery session starts. The messages that P needs to send include: (i)
the Merkle tree MT of m in the Stream phase is O(log n); (ii) the n chunk keys
revealed to C is O(n). Note that the message volume decrease from n chunks
to n keys (e.g., 32 KB for a chunk v.s. 256 bits for a chunk key); (iii) the
(claimRevealing) message for claiming payment, which is O(1) since only the
latest receipt containing one signature needs to be submitted to Gs. Overall,
the resulting message volume can be represented as n · λ, where λ is a small
cryptographic parameter, which is much smaller than the content size |m|.

Theorem 2. Conditioned that the underlying cryptographic primitives are secure,

the protocol FairStream satisfies the completeness, fairness, confidentiality against

deliverer, timeliness, and non-trivial efficiency properties in the synchronous authen-

ticated network, G ledgers -hybrid and stand-alone model.

Proof. Lemmas 7, 8, 9, 10, and 11 complete the proof.

Besides, we have the following corollary to characterize the latency relationship

between FairDownload and FairStream.
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Corollary 1. In the synchronous authenticated setting without corruptions, the

honest consumer C in ΠFS can: (i) retrieve the first chunk in O(1) communication

rounds once activating the Stream phase; (ii) retrieve every (i+ 1)-th content chunk

in O(1) communication rounds once the i-th content chunk has delivered. This yields

less retrieval latency compared to that all chunks retrieved by the consumer in ΠFD

delivers in O(n) rounds after the Deliver phase is activated.

Proof. In ΠFD, the honest consumer C is able to obtain the keys only after

the completion of the verifiable fair delivery module to decrypt the received

chunks, meaning that the latency of retrieving the raw content chunks is in O(n)

communication rounds. While for ΠFS, in each round of streaming, the honest C can

obtain one encrypted chunk from the deliverer D as well as one decryption key from

the provider P , and consequently the retrieval latency, though entailing relatively

more involvement of P , is only in O(1) communication rounds.

Extension for delivering from any specific chunk. The protocol

FairStream (as well as FairDownload) can be easily tuned to transfer the content from

the middle instead of the beginning. Specifically, for the downloading setting, one can

simply let the content provider reveal the elements that are able to recover a sub-tree

of the key derivation tree KT for decrypting the transferred chunks. The complaint

of incorrect decryption key follows the same procedure in §4.6. For the streaming

setting, it is more straightforward as each chunk ciphertext and its decryption key

are uniquely identified by the index and can be obtained in O(1) rounds by the

consumer, who can immediately complain to contract in the presence of an incorrect

decryption result.

4.8 Implementation and Evaluations

To shed some light on the feasibility of FairDownload and FairStream, we implement,

deploy and evaluate them in the Ethereum Ropsten network. The arbiter contract
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is implemented in Solidity and split into Optimistic and Pessimistic modules, where

the former is executed when no dispute occurs while the later is additionally called if

dispute happens. Note that the contracts are only deployed once and may be used for

multiple times to facilitate many deliveries, which amortizes the cost of deployment.

Cryptographic instantiations. The hash function is keccak256 and the digital

signature is via ECDSA over secp256k1 curve. The encryption of each chunk mi

with key ki is instantiated as: parse mi into t 32-byte blocks (mi,1, . . . ,mi,t) and

output ci = (mi,1 ⊕ H(ki||1), . . . ,mi,t ⊕ H(ki||t)). The decryption is same to the

encryption. We construct public key encryption scheme based on ElGamal: Let

G = ⟨g⟩ to be G1 group over alt-bn128 curve [122] of prime order q, where g is

group generator; The private key k
R←− Zq, the public key h = gk, the encryption

VEnch(m) = (c1, c2) = (gr,m · gkr) where r
R←− Zq and m is encoded into G with

Koblitz’s method [83], and the decryption VDeck((c1, c2)) = c2/c
k
1. To augment

ElGamal for verifiable decryption, we adopt Schnorr protocol [125] for Diffie-Hellman

tuples with using Fiat-Shamir transform [46] in the random oracle model. Specifically,

ProvePKEk((c1, c2)) is as: run VDeck((c1, c2)) to obtainm. Let x
R←− Zq, and compute

A = gx, B = cx1 , C = H(g||A||B||h||c1||c2||m), Z = x + kC, π = (A,B,Z), and

output (m,π); VerifyPKEh((c1, c2),m, π) is as: parse π to obtain (A,B,Z), compute

C ′ = H(g||A||B||h||c1||c2||m), and verify (gZ ≡ A · hC′
) ∧ (mC′ · cZ1 ≡ B · cC′

2 ), and

output 1/0 indicating the verification succeeds or fails.

4.8.1 Evaluating Downloading Protocol

Table 4.2 presents the on-chain costs for all functions in ΠFD. For the recent violent

fluctuation of Ether price, we adopt a gas price at 10 Gwei to ensure over half

of the mining power in Ethereum would mine this transaction8, and an exchange

rate of 259.4 USD per Ether, which is the average market price of Ether between

8https://ethgasstation.info/. Retrieved on March 6th, 2022.
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Table 4.2 The On-Chain Costs of All Functions in FairDownload

Phase Function Caller Gas Costs USD Costs

Deploy (Optimistic) P 2 936 458 7.617

Deploy (Pessimistic) P 2 910 652 7.550

Prepare

start P 110 751 0.287

join D 69 031 0.179

prepared D 34 867 0.090

Deliver

consume C 117 357 0.304

delivered C 57 935 0.150

verifyVFDProof D 56 225 0.146

Reveal
revealKeys P 113 041 0.293

payout Gd 53 822 0.139

Dispute Resolution
wrongRK C 23 441 0.061

PoM C 389 050 1.009

Jan./1st/2020 and Nov./3rd/2020 from coindesk9. We stress that utilizing other

cryptocurrencies such as Ethereum classic10 can much further decrease the price for

execution. The price also applies to the streaming setting.

Optimistic costs. Without complaint the protocol ΠFD only executes the functions

in Deliver and Reveal phases when a new consumer joins in, yielding the total cost of

1.032 USD for all involved parties except the one-time cost for deployment and the

Prepare phase. Typically, such an on-chain cost is constant no matter how large the

content size or the chunk size are, as illustrated in Figure 4.9(a). In a worse case, up to

log n elements in Merkle tree need to be revealed. In that case, Figure 4.9(b) depicts

the relationship between the number of revealed elements and the corresponding costs.

9https://www.coindesk.com/price/ethereum/. Retrieved on March 6th, 2022.
10https://ethereumclassic.org/. Retrieved on March 6th, 2022.
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(a) Costs for various chunk size (b) Costs for erk revealing cost

Figure 4.9 The experiment results for the FairDownload protocol.

4.8.2 Evaluating Streaming Protocol

Table 4.3 illustrates the on-chain costs of all functions in FairStream. As the

deployment of contract and the Prepare phase can be executed only once, we discuss

the costs in both optimistic and pessimistic modes after a new consumer participates

in, i.e., starting from the Stream phase. Specifically,

Optimistic costs. When no dispute occurs, the ΠFS protocol executes the functions

in Stream and Payout phases except the PoM function for verifying proof of

misbehavior, yielding a total cost of 0.933 USD for all involved parties. Note that only

one of the (received) and (receiveTimeout) functions would be invoked. Meanwhile,

the (claimDelivery) and (claimRevealing) functions may be called in different orders.

The costs in the optimistic mode is constant regardless of the content and chunk size.

Pessimistic costs. When complaint arises, the total on-chain cost is 1.167 USD

for all involved parties during a delivery session. The cost of the PoM function:

(i) increases slightly in number of chunks n, since it computes O(log n) hashes to

verify the Merkle tree proof; (ii) increase linearly in the the content chunk size η due

to the chunk decryption in contract, which follows a similar trend to Figure 4.9(a)

pessimistic costs but with lower costs since no verification of verifiable decryption

proof is needed.
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Table 4.3 The On-Chain Costs of All Functions in FairStream

Phase Function Caller Gas Costs USD Costs

Deploy (Optimistic) P 1 808 281 4.691

Deploy (Pessimistic) P 1 023 414 2.655

Prepare

start P 131 061 0.340

join D 54 131 0.140

prepared D 34 935 0.091

Stream

consume C 95 779 0.248

received C 39 857 0.103

receiveTimeout Gs 39 839 0.103

PoM C 90 018 0.234

Payout

claimDelivery D 67 910 0.176

claimRevealing P 67 909 0.176

finishTimeout Gs 88 599 0.230

Streaming efficiency. To demonstrate feasibility of using ΠFS for p2p streaming,

we evaluate the efficiency for streaming 512 content chunks with various chunk size.

Figure 4.10(c) shows the experimental bandwidth among parties in LAN (i.e., three

VM instances on three servers residing on the same rack connected with different

switches, where servers are all Dell PowerEdge R740 and each is equipped with

2 Intel(R) Xeon(R) CPU Silver 4114 processors, 256 GB (16 slots×16 GB/slot)

2400MHz DDR4 RDIMM memory and 8 TB (8 slots×1TB/slot) 2.5 inch SATA hard

drive. Each VM on the servers has the same configuration of 8 vCPUs, 24 GB

memory and 800 GB hard drive) and WAN (i.e., three Google cloud VM instances

are initialized in us-east4-c, us-east1-b and europe-north1-a, respectively. Each VM is

configured with 2 vCPUs, 4 GB memory and 10 GB hard drive). Considering that P
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(a) Time costs of streaming 512
content chunks in LAN

(b) Time costs of streaming 512
content chunks in WAN
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Figure 4.10 The performance of FairStream protocol in the LAN and WAN.

owns information to choose the proper deliverer D to ensure better delivery quality

(e.g., less delay from D to C), the link between D and C is therefore evaluated in a

higher bandwidth environment. Figure 4.10(a) and 4.10(b) illustrates the experiment

results of consecutively streaming 512 content chunks in both LAN and WAN and

the corresponding time costs. We can derive the following observations: (i) obviously

the time costs increase due to the growth of chunk size; (ii) the delivery process

remains stable with only slight fluctuation, as reflected by the slope for each chunk

size in Figure 4.10(a) and 4.10(b). Furthermore, Figure 4.10(d) depicts the average

time costs for each chunk (over the 512 chunks) and the corresponding bitrate. The

results show that the bitrate can reach 10 Mpbs even in the public network, which

is potentially sufficient to support high-quality content streaming. For instance,
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the video bitrate for HD 720 and HD 1080 are at most 4 Mbps and 8 Mbps,

respectively [66].

4.9 Summary

In this chapter, we target the fairness problem in the P2P content delivery setting

where we leverage blockchain to play the role of a trusted third party by conducting

computation and verification in the presence of malicious behaviours. Specifically, we

present the first two fair P2P content delivery protocols atop blockchains to support

fair P2P downloading and fair P2P streaming, respectively. They enjoy strong fairness

guarantees to protect any of the content provider, the content consumer, and the

content deliverer from being ripped off by other colluding parties. Detailed complexity

analysis and extensive experiments of prototype implementations are performed

on top of real public blockchain platform (i.e., Ethereum). The measurements

demonstrate that the proposed protocols are highly efficient.
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CHAPTER 5

SUMMARY OF THE DISSERTATION

5.1 Conclusion

Blockchain is a disruptive technology that provides the promising infrastructure for

the construction of future value transfer network, which advances the information

transfer network embodied by Internet. By combining several computer science

principles such as distributed system, cryptography, data structures, consensus

algorithms, etc., it essentially offers many highly desirable properties (provenance,

immutability, finality, transparency, availability, consistency, accountability etc.) that

cannot be realized simultaneously in conventional protocol designs for different appli-

cations. In this dissertation, we first give a general architecture for blockchain-based

decentralized applications and highlight two main functionalities that provided by

blockchain, namely storage and computation. The key observation lies in the fact

that blockchain is powerful to augment conventional centralized application designs,

however, the transferring to blockchain-based decentralized architecture is non-trivial,

which may suffer from many security and efficiency issues if not carefully treated. To

this end, we employ three concrete application scenarios (i.e., IoT, cyber security, and

P2P content delivery) to elaborate the solutions to the potential issues that emerged

in the general blockchain-based decentralized application architecture.

Firstly, we observed and solved the censorship problem between external

network and blockchain network. This is interesting since most works mainly highlight

the advantages that blockchain itself can provide while the security of interactions

with external world has been ignored. We proposed the design to achieve censorship

resistance in the specific (industrial) IoT setting where data may either flow from

the sensor network to the blockchain network (called inbound flow) or maybe the
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other way around (called outbound flow, e.g., sending command from blockchain

network to actuators). For the inbound flow, we leveraged a gossip-based diffusion

mechanism and proposed an augmented consensus design while for the outbound flow,

we proposed the mechanism to query from multiple parties and signature aggregation

scheme is introduced to reduce the verification and communication complexity.

Secondly, we utilized the permissioned blockchain (i.e., Hyperledger Fabric) to

provide the functionality of robust storage in the concrete cyber security management

setting. Blockchain offers the similar functionality with conventional distributed

database but with security guarantee, i.e., the full nodes in the blockchain network

would reach consensus about the data before writing into ledger and the data retrieval

can only be performed by specified operators whose privileges can be defined as

access control policies maintaining in the smart contract. In the blockchain-enabled

decentralized cyber security management system, a set of challenges require proper

handling, e.g., to handle a large volume of cyber data, we proposed two methods where

the first one splits the cyber data into chunks and then performs concurrent writing;

the second one incorporates DSN by storing real cyber data into DSN while recording

its reference on-chain. Several limitations and future extensions regarding this topic

have been listed to inspire more investigations for this important topic. Noticeably,

in effect, these designs can also be applied to any information management system

that empowered by blockchain.

Thirdly, we focus on the computation functionality that blockchain provides

and consider the specific P2P content delivery application scenario. We observed that

traditional fairness definition is insufficient in the context of P2P content delivery. We

thus proposed a more fine-grained fairness definition. We then leverage blockchain

to play the role of traditionally assumed trusted third party, which has been

proved necessary to ensure complete fairness. Blockchain can perform verification

whenever the system participants misbehave, and also monetarily incentivize ones to
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proactively join in due to the fact that it supports transparent coin transfer upon a

certain conditions are satisfied. Our designs also considered many non-trivial system

optimizations, e.g., minimized on-chain storage and computational costs, optimized

delivery communication and necessary privacy guarantee.

Overall, surrounding the two main functionalities that blockchain provide,

i.e., storage and computation, we employ three concrete application scenarios

to elaborate the design of tackling all potential problems residing in a general

blockchain-empowered decentralized application architecture, with the ultimate goal

of making blockchain-based systems practical in real-life usage.

5.2 Reflection

Our proposed design in this dissertation can essentially be applied to more general

scenarios. With these designs, the following reflections are highlighted:

Blockchain is powerful but not panacea. Blockchain itself can provide many

aforementioned desirable properties. However, it is not panacea and for specific

application scenario it may require concrete design. For example, blockchain is

transparent to record state and handle execution logic, which leads to privacy concern.

Thus for sensitive information posted on-chain or the privacy-preserved computation,

the confidentiality or privacy properties need to be considered. Another shortcoming

lies in its limited computation power, especially for public chain, thus minimizing

on-chain computational costs is required for any practical protocol design.

Concrete instantiation and extension. Though blockchain enables robust storage

and reliable computation, it still requires concrete instantiation. For example, proper

blockchain type: a permissioned private blockchain is suitable for one organization to

robustly manage data, a permissioned consortium blockchain is usually for multiple

organizations to jointly conducting activities, e.g., information sharing. A public

chain used in a permissionless environment allows anyone to join in or leave and is
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Figure 5.1 The trade-off between decentralization and performance.

usually for computation; consensus type: crash fault tolerant consensus mechanisms

(compared with byzantine fault tolerant ones) are typically more efficient in terms

of higher throughput or less latency yet require all participants to honestly behave;

extension with external components: blockchain can be combined with other dedicated

components to exhibit better capabilities, e.g., the combination with DSNs can reduce

the on-chain storage costs, the combination with machine learning frameworks can

offload learning tasks thus reducing on-chain computational costs; the combination

with big data frameworks, e.g., Hadoop or Spark, can delegate the distributed

computation to off-chain platforms thus also for reducing on-chain costs. However,

the integration with these components requires deliberate design thinking.

Decentralization vs. efficiency. Blockchain-enabled decentralized applications

gain the benefits of being more secure and robust, which, however, is traded by the

performance sacrifice [96]. As shown in Figure 5.1, traditional data centers under-
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pinned by single centralized server center or CFT algorithms possess relatively better

performance (high throughput and low latency). The public blockchain platforms

have the worst performance but with strongest security and robustness guarantee.

The layer II protocols aim to improve the scalability of the original blockchain

platforms (either permissioned or permissionless) thus exhibit better performance.

Permissioned blockchain platforms typically have better performance than the public

ones due to the underlying consensus mechanism (e.g., PBFT for the former vs.

PoW for the latter). An ideal ultimate goal would be realizing decentralization

while retaining the performance [129]. In practical blockchain-based decentralized

applications, finding the balance between decentralization and performance is vital

and needs comprehensive consideration of the system design goals.

Provably secure protocol design. Following the paradigm of modern cryptography,

it is important to formally argue about the security of proposed blockchain-based

cryptography-related designs or protocols. This is done via applying rigorous logical

argumentation in the form of mathematical proofs. There are three fundamental

principles that need to be specified for provably secure protocols: (i) formal

definitions. A formal definition of the proposed protocol’s required properties by

defining the threat model, i.e., the capabilities that an adversary has. The goal

of the adversary is formulated either in a game or in a simulation-based manner;

(ii) precise assumptions. The assumptions are usually hard problems in the theory

of computational complexity that seem far from answered today, e.g., factorization

of large numbers. The security guarantee of the proposed protocols can be reduced

to resolve these well-studied hard problems; (iii) proofs of security. Based on the

definitions and assumptions, the proposed protocols need to be proven secure. In

the game based security, we say a protocol is secure if the adversary’s advantage is

at most negligible in the security parameter, while in the simulation based security

definition, the protocol is secure if the adversary cannot computationally distinguish
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between the real-world protocol execution and its simulated version of the security

experiment in polynomial time. Besides the basic principles, another perspective of

rigorous security proofs usually distinguishes between the standalone model and the

Universally Composable (UC) model. In the former, the security of the proposed

protocol is analyzed in an isolated single execution manner, while for the latter,

it captures the security of concurrent (parallel and sequential) protocol executions

between many parties and even in composition with other protocols.

5.3 Future Vision

This dissertation presents the secure designs to tackle the potential problems that

appear in a general blockchain-based decentralized application architecture including

data flow between external networks with blockchain network, blockchain-based

information management system, and blockchain-empowered reliable computation.

Yet there still exist many unexplored and related problems, which naturally form

interesting future extensions.

For the specific application scenarios presented in this dissertation, more studies

can be conducted. For instance, in the cyber security management case, more

CSM functions can be identified, more reliable identifiers for the cyber devices can

be integrated, and desirable cyber intelligence sharing mechanism can be further

investigated. In the P2P content delivery case, it is feasible to incorporate the digital

right management schemes to preserve digital rights for sold contents, and a deliverer

selection mechanism can be developed to ensure better delivery performance.

Besides the scenarios investigated in this dissertation, future studies would

explore more blockchain-based decentralized application settings. One highlighted

direction is decentralized identity, also referred to as self-sovereign identity (SSI),

which is anticipated to be the next-generation online identity model. Since SSI

stresses the ownership and management of identity information by users themselves
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(instead of relying on any third party), blockchain naturally can be employed to play

such a role of a trusted third party. Decentralized identity can advance many existing

applications in a more efficient and secure way. For example, in the (industrial) IoT

setting, equipping each device with a unique decentralized identity is significant to

construct desired security mechanisms including authentication, authorization and

secure communication; in the cyber security management setting, the unique and

sybil-resistant decentralized identifier for each cyber device can be used to replace

the IP address, thus realizing identification and accountability etc.; in the context

of multi-party agreement signing, the verifiable credentials in decentralized identity

can be utilized to accelerate the agreement filling procedure, and the privacy of

signers’ identity information can also be preserved, e.g., a signer can use a credential

containing her age information to fill in an agreement with a statement and a

zero-knowledge proof about her age instead of filling in the real birth of date. Other

general application settings include, e.g., big data (usually existing storage in big data

ecosystem is only crash fault tolerant, e.g., HDFS in Hadoop ecosystem), machine

learning (e.g., federated learning which leverages blockchain to provide a decentralized

aggregator for trained sub-data sets) and so forth.

With these specific application scenarios, another interesting study lies in

building a general framework for converting centralized applications to blockchain-

based decentralized ones. Such a framework requires the formal model of blockchain,

e.g., [84], the generalized abstraction of centralized application architecture, the

blockchain-empowered decentralized application abstraction, and the critical thinking

(e.g., determinism requirement in smart contract-based computation) of gap filling-in

between the two abstractions.
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