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ABSTRACT

TOWARDS PRACTICALIZATION OF BLOCKCHAIN-BASED
DECENTRALIZED APPLICATIONS

by
Songlin He

Blockchain can be defined as an immutable ledger for recording transactions,

maintained in a distributed network of mutually untrusting peers. Blockchain

technology has been widely applied to various fields beyond its initial usage of

cryptocurrency. However, blockchain itself is insufficient to meet all the desired

security or efficiency requirements for diversified application scenarios. This disser-

tation focuses on two core functionalities that blockchain provides, i.e., robust storage

and reliable computation. Three concrete application scenarios including Internet of

Things (IoT), cybersecurity management (CSM), and peer-to-peer (P2P) content

delivery network (CDN) are utilized to elaborate the general design principles for

these two main functionalities. Among them, the IoT and CSM applications involve

the design of blockchain-based robust storage and management while the P2P CDN

requires reliable computation. Such general design principles derived from disparate

application scenarios have the potential to realize practicalization of many other

blockchain-enabled decentralized applications.

In the IoT application, blockchain-based decentralized data management is

capable of handling faulty nodes, as designed in the cybersecurity application.

But an important issue lies in the interaction between external network and

blockchain network, i.e., external clients must rely on a relay node to communicate

with the full nodes in the blockchain. Compromization of such relay nodes may

result in a security breach and even a blockage of IoT sensors from the network.

Therefore, a censorship-resistant blockchain-based decentralized IoT management

system is proposed. Experimental results from proof-of-concept implementation and



deployment in a real distributed environment show the feasibility and effectiveness in

achieving censorship resistance.

The CSM application incorporates blockchain to provide robust storage of

historical cybersecurity data so that with a certain level of cyber intelligence, a

defender can determine if a network has been compromised and to what extent.

The CSM functions can be categorized into three classes: Network-centric (N-CSM),

Tools-centric (T-CSM) and Application-centric (A-CSM). The cyber intelligence

identifies new attackers, victims, or defense capabilities. Moreover, a decentralized

storage network (DSN) is integrated to reduce on-chain storage costs without

undermining its robustness. Experiments with the prototype implementation and

real-world cyber datasets show that the blockchain-based CSM solution is effective

and efficient.

The P2P CDN application explores and utilizes the functionality of reliable

computation that blockchain empowers. Particularly, P2P CDN is promising to

provide benefits including cost-saving and scalable peak-demand handling compared

with centralized CDNs. However, reliable P2P delivery requires proper enforcement

of delivery fairness. Unfortunately, most existing studies on delivery fairness are

based on non-cooperative game-theoretic assumptions that are arguably unrealistic

in the ad-hoc P2P setting. To address this issue, an expressive security requirement

for desired fair P2P content delivery is defined and two efficient approaches based on

blockchain for P2P downloading and P2P streaming are proposed. The proposed

system guarantees the fairness for each party even when all others collude to

arbitrarily misbehave and achieves asymptotically optimal on-chain costs and optimal

delivery communication.
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CHAPTER 1

INTRODUCTION

In 2008, Satoshi Nakamoto proposed Bitcoin [110] that aims at a cryptographic

currency for trustless online payment [111], whose backbone protocol was later

formally proven secure [50]. As the underpinning technology, blockchain (or

distributed ledger) has been reckoned as the next generation of value exchange network,

being a complementary component to the existing information exchange network,

namely, the Internet, and gained wide-spread attention among both industry and

academia in recent years. Despite the fact that cryptocurrencies have emerged as the

most popular application of blockchain technology, many enthusiasts from different

fields have sensed the huge potentials and proposed a range of applications across a

multitude of application domains [30]. According to different application scenarios,

the development of blockchain can be divided into three stages: In blockchain

stage 1.0, it is the era of virtual cryptocurrency represented by Bitcoin [110].

Stage 2.0 is represented by the public blockchain platform, Ethereum [148], which

provides Turing-complete programming language to run pre-determined execution

logic (dubbed smart contract) under certain conditions. This stage is especially for

financial applications. Blockchain 3.0 refers to various application scenarios besides

the financial field, which can satisfy more complex business demands. Indeed, as

individuals embrace Web 3.0 where data with semantic meanings are interconnected

in a decentralized manner, blockchain has been recognized as one of the most

fundamental technologies to revolutionize the landscape of the identified application

domains [45].
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1.1 Blockchain and Related Layers

Blockchain can be defined as an immutable ledger for recording transactions,

maintained in a distributed network amongst untrusting peer nodes. Figure 1.1

illustrates the suggested layers relevant to blockchain:

Crypto-
currency

Smart
City

Defi Metaverse …Application

Script 
Code

Smart 
Contract

Chain-
code

DSL …Contract

PoW (D)PoS PBFT Dumbo …Consensus

P2P 
Network

Gossip
Service 

Discovery
Comm. 
Model

…Network

Data
Block

Chain 
Structure

Merkle 
Tree

Time-
stamp

…Data

Layer 1

Layer 0

Hardware
Layer

Layer 2
ChannelsProtocols Commit-

Chains
Refereed-
Delegation

State 
Network …

Application
Layer

(Trusted) Hardwares

Figure 1.1 The layers related to blockchain.

The hardware layer provides the underlying hardwares. Regular hardwares

include physical servers, switches, or routers etc. Moreover, the Trusted Execution

Environment (TEE) (e.g., Intel SGX [29]) equipped with modern computers can

execute senstive or security-critical program code in a specified memory space, called

enclaves, which is tamper-proof from the operating system or other higher-privileged

softwares [57,77].

The layer-zero, or the network layer, is typically a peer-to-peer (P2P) network

on which blockchain nodes can exchange information asynchronously [112]. Such

a network layer not only contains the traditional network architecture, which

concentrates on Internet routing, but also ensures reliable communication among

participants in a blockchain.
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The layer-one refers to the core component of blockchain, which maintains an

immutable ledger for recording transactions. It further can be divided into three

sub-layers: (i) data layer, which defines the data structures and required data fields;

(ii) consensus layer contains various consensus mechanisms, e.g., Proof of Work

(PoW) [50], Proof of Stake (PoS) [82], Raft [115], PBFT [23], BFT-SMaRt [16],

HoneyBadger [107], Dumbo [58, 97] and others [149]. It is worth pointing out

that these consensus mechanisms can further be categorized due to applicable

blockchain types (permissioned vs. permissionless), trust models (crash fault tolerance

(CFT) vs. byzantine fault tolerance (BFT)) or network models (synchronous, partial

synchronous and asynchronous). Typically a consensus protocol is characterized by

three fundamental properties: termination, agreement and safety; (iii) contract layer

realizes smart contract, e.g., Bitcoin has limited support for smart contract, called

scripts. Ethereum [148] defines domain specific language (DSL), viz. solidity and the

storage or execution costs for all operations (in unit of gas) in the smart contract.

Hyperledger Fabric (HLF) [9] provides a separated sandbox running environment so

that the smart contract, called chaincode, can be developed in various advanced

programming language such as Golang, NodeJS, Java, deployed and executed in

Docker containers or Kubernetes [35].

The layer-two treats the layer-one blockchains as oracles, which provide the

desired properties of integrity (i.e., only valid transactions are appended to the ledger)

and eventual synchronicity with an upper time-bound (i.e., any valid transaction will

eventually be added to the ledger before a critical timeout) [57], with the key purpose

of considerably improving the scalability of layer-one blockchains. The existing layer-

two protocols can further be categorized as three research directions: (i) payment and

state channels, e.g., Sprites [105], Perun [38]; (ii) commit-chains, e.g., NOCUST [80]

and Plasma [121] and (iii) protocols for refereed delegation, e.g., TrueBit [140] and

Arbitrum [74].
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The application layer envisions diversified application scenarios that can

be empoered by blockchain technology. Exemplary application domains include

cryptocurrencies [110, 148], (industrial) Internet of Things (IoT) [63], content

delivery [61], supply chain [123], healthcare [103], non-fungible tokens (NFTs) [142],

decentralized finance [6, 145], decentralized storage [14], decentralized identity [99],

metaverse [113] and etc.

In this dissertation, we mainly focus on the blockchain-enabled applications,

which closely related to the application layer. One the one hand, the practicalization

of blockchain in real-life application scenarios would significantly drive the devel-

opment of blockchain technology. On the other hand, it is worth stressing that the

realization of provably secure protocol in the application layer is essentially highly

pertinent to the design of other layers requiring comprehensive considerations.

1.2 Benefits of Blockchain-Based Applications

Blockchain-based application model exhibits promising aspects to solve many problems

that confronted by the existing centralized system (e.g., single point of failure) due to

its distributed architecture and all advantageous properties brought by the blockchain

technology [50]. Specifically, a set of benefits empowered by blockchain-based

decentralized applications can be highlighted as follows:

• Availability. The blockchain network is in a distributed architecture, which
enables the system available even though partial nodes are unreachable.

• Immutability. The transactions cannot be reverted once ending up in the
blockchain considering the number of simultaneously corrupted nodes are under
a threshold.

• Consistency. There is a consistent and global ledger state for anyone who views
the blockchain as blockchain stores transaction or state after reaching consensus.

• Accountability. Since the transactions are immutable on-chain, it is feasible to
realize accountability if any party performs malicious activities.

4



• Provenance. Consider that the data submitted to blockchain is valid, then
according to the immutability property of transaction histories on-chain,
blockchain provides tamper-proof information about the origin of data records.

These properties inherent in the design of blockchain provide many possibilities

to enhance various existing application scenarios.

1.3 Potential Problems in General Blockchain-Based Applications

In essence, blockchain provides two core functionalities, i.e., storage and computation.

Unfortunately, blockchain itself is not panacea to fit all application settings. With

the general architecture of blockchain-enabled decentralized applications, as shown in

Figure 1.2, the following potential problems are worth of consideration.

External Network

Blockchain Network

Storage

Computation

Problem 2: Blockchain-Based 
Information Management

Problem 3: Blockchain-Enabled 
Computation

Problem 1: Censorship of Data 
Input to Blockchain Network

Problem 4: Result Retrieval 
from Blockchain Network

Chapter 3:
Cyber Security Management

Chapter 2:
(Industrial) Internet of Things

Chapter 4:
P2P Content Delivery

Chapter 2 & 3:
Cyber Security Management
(Industrial) Internet of Things

Authentic data collection

Figure 1.2 The potential problems in a general architecture of blockchain-enabled
decentralized applications and our contributions to these problems in the dissertation.

Problem 1. Censorship of data input for blockchain network. Blockchain

full nodes need to synchronize all the blocks and participate the consensus process.

However, mobile devices (e.g., IoT devices, smart phones, smart wearables) or browser

environments are unable to afford the cost of storing a huge volume of blocks or

executing computation-intensive consensus. Consequently, those light clients need to

hinge on a blockchain full node to relay transactions to all other full nodes [63]. The
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challenge arises where the connected full node or the routing to the full node may be

corrupted, leading to invalid data input to the blockchain network.

Problem 2. Blockchain-based robust information management. Blockchain,

especially permissioned, resembles the functionality of conventional distributed

database to provide robust storage [129]. This is because the system would reach

consensus before eventually writing the data to ledger, which provide an extra security

layer ensuring that even partial of the nodes are corrupted and arbitrarily misbehave,

the system still work normally. However, many issues need to be tackled when

leveraging blockchain as a platform providing robust storage. For example, efficiently

handling a large amount of submitted data.

Problem 3. Blockchain-enabled computation. Two key issues need to be

considered when utilizing blockchain as a computing platform: (i) privacy. Blockchain

inherently exhibits the property of transparency [84]. In a permissionless setting, the

entire chain is replicated to all peer nodes in a public network and the whole state

is accessible to all for verification. Some data (e.g., random bits) posted on-chain

may not impact privacy while some sensitive data may leak important information.

On the other hand, a permissioned blockchain provides a promising alternative to

mitigate this issue, which however, requires participants to authenticate themselves

and may not be suitable for some public uses cases where participants are unknown

to each others; (ii) limited computation power. The computation power provided by

blockchain (essentially the smart contract) is limited. In Proof-of-Work (PoW) or

Proof-of-Stake (PoS) based consensus protocols, such a limitation is derived from

the known verifier’s dilemma [98], e.g., there is a global gas limit in Ethereum that

specifies a maximum amount (i.e., 8,000,000) of gas that can be spent in a single

block. While for a permissioned setting, too complex on-chain execution may lead to

unacceptable latency and undesirable user experiences.
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Problem 4. Valid result retrieval from blockchain network. Smart contract

in blockchain can ensure the guaranteed execution of pre-determined logic. However,

a typical operation of retrieving data that stored in the ledger or the invocation of

smart contract still requires the connection with a full node in the blockchain network,

and if it is corrupted, the retrieval results would become invalid. A naive solution

connecting with many full nodes would cause considerable communication overhead.

Hence, it remains unclear of how to solve this problem.

Authenticity of submitted data to blockchain network. As an orthogonal and

hot research direction, ensuring the authenticity of submitted data to blockchain

network is of great importance. Specifically, the on-chain storage and execution

is trustable in the sense that: (i) the immutability property of blockchain ensures

the integrity of stored data on-chain; (ii) the smart contract can use the on-chain

stored data to execute pre-determined programs without manipulation. However, the

authenticity of submitted data is not guaranteed by blockchain itself. Such a problem

requires extra system design, i.e., oracle protocols [151,152].

These above problems appeared in blockchain-based decentralized applications

are general and solving these issues would not only improve the system security, but

also, from a broader perspective, accelerate the practicalization of applying blockchain

technology to real-life scenarios.

1.4 Main Contributions and Dissertation Structure

It this dissertation, we investigate the main usage of blockchain regarding storage

and computation in several application scenarios including cyber security, industrial

Internet of Things and peer-to-peer content delivery. Through the design of protocols

in these specific application settings, we essentially provide the general solutions to

solve all the problems mentioned earlier. Overall, the remaining of the dissertation is

organized as follows.
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Chapter 2 focuses on the protocol design of interactions between external

network and blockchain-based information management system (i.e., the solution to

the Problems 1 and 4 in Figure 1.2) by considering the (industrial) Internet of Things

(IoT) application scenario. The key observation is that the blockchain network itself

is robust to provide data management, as our later proposed design for the cyber

security management. However, when interacting with external networks, e.g., the

sensor network in the IoT setting, the data sending from sensor network to blockchain

network (inbound flow) or the data (e.g., a command) retrieved from the blockchain

network for the sensor network, e.g., actuators, (outbound flow) may be censored in

the sense of being maliciously mixed, tampered or dropped. To this end, to handle

the inbound flow, we proposed a gossip-based diffusion mechanism and augmented

consensus designs to realize to censorship resistance between IoT network and the

blockchain-based decentralized data management systems, while for the outbound

flow, we proposed a multi-party invocation mechanism to enable reliability and a

signature aggregation mechanism to provide efficiency for retrieving results.

Chapter 3 discusses the designs of blockchain-enabled information management

system (i.e., the solution mainly to Problems 2 and 4 in Figure 1.2) in the specific

cyber security setting, where blockchain is incorporated to provide robust and

automated cyber security management so that a defender can detect the potential

attacks based on robustly stored historical cyber data and newly given cyber

intelligence, and be aware of the degree that the managed network has been damaged.

The role of blockchain mainly lies in two aspects: the first is for robust storage of

collected cyber data, which is analogue to conventional distributed database while

being more secure and robust; the second is for automated and guaranteed execution

of cyber functionalities hinging on pre-determined smart contract and therefore less

manual inference is needed.
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Chapter 4 presents the designs regarding blockchain-empowered computation

(viz. the solution to the Problem 3 in Figure 1.2) in the specific P2P content

delivery setting. In particular, the key challenge of designing a P2P content

delivery protocol is to rigorously guarantee fairness. However, there exist several

challenges, e.g., conventional fairness definition is insufficient to the specific P2P

content delivery setting and it is well-known fairness cannot be completely guaranteed

without a trusted third party (TTP). We therefore defined more fine-grained fairness,

leveraged blockchain to play the role of a TTP and proposed both downloading-setting

and streaming-setting protocol designs. In addition, we elaborate many design

considerations to protect privacy against corrupted system participants and optimize

the on-chain storage and computational costs.

Chapter 5 concludes the dissertation, provides reflections, and points out several

future research directions.
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CHAPTER 2

CENSORSHIP RESISTANCE BETWEEN BLOCKCHAIN AND IIOT

This chapter presents the design of interactions between the external network and the

blockchain-based information management system in the specific industrial Internet

of Things setting [62,63].

2.1 Introduction

Spawned from machine-to-machine (M2M) technology, Internet-of-Things (IoT) is

becoming a dynamic global network infrastructure with self-configuring capabilities

where physical and virtual “things” with identities, physical attributes, and virtual

personalities are seamlessly integrated into the information network [85]. According

to Statista, the number of IoT devices worldwide will be over 75 billion by 2025 [136].

IoT is recognized as one of the most important areas of future technology and is

gaining vast attention from a wide range of industries [91].

As a subset and natural evolution of IoT, Industrial Internet of Things (IIoT)

shares common technologies (sensors, cloud platforms) with IoT but has higher

requirements on security, scalability and reliability. One example of the IIoT vision

is the Industrial Internet of Things Services and People (IoTSP) platform [93].

The rapid development of IIoT is facilitated by the capability of data generation,

collection, aggregation, and analysis over the Internet to maximize the efficiency of

machines and the throughput of operations. This brings about significant challenges

since data may flow across various boundaries at the risk of attacks or failures.

Specifically, existing IoT systems (including IIoT) mainly rely on centralized

service, where sensors collect and send data directly to a central server on the cloud

for analysis, as shown in Figure 2.1. This model has several drawbacks. For example,

the cloud server may present a single point of failure; clouds are typically vendor
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specific and may not be compatible with each other, thus adversely affecting data

sharing between them. Also, existing centralized IoT solutions are expensive due to a

high cost in infrastructure and maintenance. Among these shortcomings, security is

of primary concern. By 2022, half of the security budgets for IoT will be allocated to

fault remediation, recalls, and safety failures rather than protection [117]. Therefore,

a distributed trust technology ensuring security is regarded as a cornerstone for the

continual growth of such IoT solutions. The blockchain technology is under rapid

development and has proved to be an effective solution to realizing such goals due to

its intrinsic security [117].

Data Collection

· Data analysis

· Data mining

· Personalization

· Services

...

· Traffic

· Water

· Weather

· Devices

...

COMMS:3G, 4G, WiFi, Ethernet, Wired, WiMax, LTE, ...

Data Processing

Figure 2.1 A centralized IoT system architecture.

Blockchain is typically viewed as an immutable ledger for recording transactions,

maintained in a distributed network of mutually untrusting peers [9]. Any partici-

pating peer can submit data (sometimes also referred to as a transaction), which

is eventually broadcasted and replicated at all participating peers executing some

consensus protocols. As an abstract layer, blockchain technology provides a reliable

delivery of messages to ensure that all participating peers have a consistent copy of

the ledger. This is referred to as “transparency”, a property frequently mentioned
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about blockchain; on the other hand, once a message is written to the ledger and

replicated at all peers, each peer can only modify its local ledger and the data would

remain intact in other peers’ ledgers. This is referred to as “immutability”, another

important property of blockchain. A more unique function of blockchain is to support

“smart contract”1, which is a piece of program code that implements a pre-defined

application logic and deterministically runs on all participating peers.

The above properties of blockchain technology have facilitated its widespread

applications to the IoT domain. For example, the “immutability” property of

blockchain brings resistance to unauthorized modification. Since the entire history

of device configuration is stored in the blockchain, recovery from incidents is

straightforward. Depending on whether or not peers need to be authorized, blockchain

technology is divided into two main categories: permissioned and permissionless. In

this study, we focus on permissioned blockchain where participating nodes are all

certified and known to others. In a more visionary level, IBM laid out a blueprint

for “device democracy” [19], which employs blockchain to distributively manage

transaction processing and coordination among hundreds of billions of interacting

devices. Such an ambitious goal might take time to come to life, but on the other hand,

decentralizing local management systems via permissioned blockchain to improve

robustness and availability is much more viable [76].

Problems. Although blockchain technology offers a promising way to decentralize

IoT management systems, such decentralization cannot be realized completely based

on existing blockchain platforms such as the popular permissioned blockchain,

Hyperledger fabric (Fabric for short) [9]. Note that blockchain technology (in

particular, the consensus protocol) itself only concerns how to replicate data across

peers consistently. Many practical issues such as data input from external sources

and data output from the ledger are not considered by the consensus protocol. These

1The “scripts” in Bitcoin is a predecessor of smart contract, while in ethereum [148], it is a
collection of code (functions) and data (state) that reside at a specific address.
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Figure 2.2 Data flow in a hyperledger fabric-based IoT management system.

problems are currently subject to ad-hoc designs and could potentially become a

bottleneck in revealing the full power of a decentralized system.

Normally, multiple sensors are connected to one server (referred to as gateway

node, which is one of the non-validating nodes and whose goal is to settle with the

heterogeneity between different sensor networks and the cloud and effectively retrieve

data from sensor networks [153]), and the server is responsible for forwarding on behalf

of the sensors and participating in the consensus protocol to post the collected data to

the distributed ledger. Obviously, if this gateway node is corrupted, sensor messages

cannot be even transmitted to any of the blockchain’s full nodes, thus the sensor

simply loses the ability of “writing” to the ledger. In fact, such kind of architecture

is common in existing systems, for example, Figure 2.2 shows the data flow when

building IoT application on top of Hyperledger Fabric [67].

Problem 1. The gateway node, i.e., the non-validating peer (NVP) node in Fabric,

could be censored. Consider a (potentially decentralized) IoT management system for

environmental monitoring, where interested departments control the gateway node.

The notorious Flint water crisis is a practical example and lesson. Flint authorities

insisted for months that the city water was safe to drink, but finally it was reported

that the Michigan Department of Environment Quality and the city of Flint discarded

two of the collected samples containing a dangerous level of lead to avoid high cost

and lawsuit [146].
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Problem 2. The query result from the blockchain network could be censored.

As an IoT management system, besides writing data into the ledger, sometimes

actuators/devices may also need to read or receive instructions from the ledger.

Similarly, at present, such message passing out of the blockchain is still carried out

via an external non-validating node, which connects to one or several full nodes2

in the blockchain network. If this external node or its connected full nodes are

hacked/censored to be malicious, e.g., critical control commands are dropped, serious

consequences may occur.

Consider the application of decentralized energy IoT management, the sensors

continuously send real-time environmental measurements to the ledger, and the

management servers analyze these measurements and send instructions back to the

actuators. For example, if the temperature or pressure reaches a threshold, the servers

need to instruct the actuators to shut the valve or reduce the amount of oxygen

pumped into the combustion facility. If the forwarding node is compromised, such

instructions may be dropped or modified on purpose to create a disaster.

These problems motivate us to consider how to build a censorship resistant

decentralized IoT management system.

Contributions. We design a protocol that decentralizes the message passing module

for sending and receiving data from a distributed ledger, thus avoid the single point

of failure at the gateway node; moreover, this is done in a way that is compatible

with existing consensus protocols so that our method can be plugged into existing

platforms, as detailed below.

• First, we propose to replace the traditional gateway node in IoT scenarios with
several seed nodes, which perform the same function as gateway node but also
participate in blockchain network as full nodes. Then we introduce a message
“diffusion” mechanism to realize censorship resistance considering the single
entry point problem and propose an augmented consensus protocol to achieve
reliable data delivery.

2Full nodes execute, validate and commit transactions to the ledger in a blockchain network.
Each of them maintains a copy of the ledger state.
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• Furthermore, we propose the protocol to deal with the single exit point problem
and the case that data on at most 1

3
of all full nodes are maliciously modified.

• Last, we propose to leverage the cryptographic tool of public key aggregation
to reduce communication overhead and complexity of verification.

2.2 Related Work

Integration of IoT and blockchain. Billions of connected devices in future IoT

networks face significant technical challenges in security, privacy, and interoperability,

which are not taken into consideration during the design phase of IoT products [117].

The blockchain technology under rapid development emerges as a viable solution to

addressing these challenges in decentralizing IoT systems.

Many challenges confronted by current IoT architectures may be addressed by

blockchain. In [86], Kshetri presented a positive attitude towards strengthening IoT

with blockchain and provided insights into how blockchain enhances IoT security,

such as leveraging blockchain-based identity and access management systems or

improving the overall security in supply chain networks. Cha et al. investigated

data confidentiality and authentication based on blockchain [24]. Novo proposed to

utilize blockchain as the access control layer for better security and privacy [114].

Alfonso et al. conducted a survey of the integration of blockchain and IoT, where

different application domains are categorized, including smart home, smart city and

smart energy [117].

Gossip protocol. A gossip protocol [33] is a procedure where a data item is routed

to all members in a distributed network similar to epidemics spreading. Gossiping

has been traditionally used for reliable information dissemination, but its applicability

goes far beyond in distributed systems. Uber implemented a gossip protocol variation

called SWIM [95] to allow independent workers to discover each other. Cassandra [90]

used a gossip protocol for peer discovery and metadata propagation. Docker ’s

multi-host networking [34] employed a gossip protocol to exchange overlay network
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information. Hyperledger fabric [9] implemented a gossip data dissemination protocol

to ensure data integrity and consistency among different roles of nodes.

Kermarrec et al. [79] provided the general organization of a gossip protocol

and discussed one of its most successful applications for dissemination, which is

achieved by letting peers forward messages to each other. Eugster et al. [42]

elaborated the gossiping dissemination process with three parameters: i) the number

of messages stored in a node’s local cache, ii) the number of selected peers for message

forwarding, and iii) the upper bound of times that a message is forwarded. The Shuffle

protocol in [52] is designed to disseminate information among a collection of wireless

devices in a mesh network, but it only considers a synchronous model where the

transmission duration among peers is constant. Andrew et al. [8] improved this model

by taking into account the dynamics of a real network and employed exponential

distribution and hyperexponential to simulate various transmission durations among

peer nodes. In this study, we use gossip to realize robust message dissemination from

sensor networks to blockchain networks and conduct experiments in real distributed

environments.

Censorship resistance. Censorship resistance in IoT data communication is made

possible by the decentralization and immutability nature of blockchain network. The

study in [117] pointed out that the decentralization of IoT on top of blockchain is

censorship resistant because inside the blockchain network, there is no controller

and entities only trust the quality of the cryptographic algorithms that govern the

operations. Obviously, the censorship problem still exists in the components of the

blockchain network that communicate with external devices. Hence, we provide a

formal definition of “censorship resistance” in blockchain-based IoT and propose an

effective solution.
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Table 2.1 Key Notations Related to the Censorship Resistance Protocol

Notation Represent for

Lalive the list maintaining live nodes in blockchain network

sensorID the unique ID of a sensor

δtsensor the time period when a sensor sends data

δtseed the time period when seed nodes process data

δtdif the time period when data diffusion is completed in a

synchronous network

Z a physical zone including sensors and gateway nodes

ZID the unique ID of a zone Z
d the data collected by a sensor

l the number of sensors in a certain zone Z
k the number of selected neighbor nodes in gossip protocol

n the number of data items collected during δtsensor

n′ the number of data items during Bseed

s the number of seed nodes

c command/instruction sent to actuators from blockchain network

σ signature from the message sender

γ the local cache size for gossip protocol

N the number of full nodes in blockchain network

C the local cache on a peer node for gossiping

BUF the buffer that a full node uses to receive data from sensors

ts time stamp

SEED message from sensors to seed nodes

Bseed a constructed batch of SEEDs maintained on seed nodes

nodeID the unique ID of a full node in blockchain network

GM gossip message from seed nodes to all full nodes

2.3 Problem Formulation

In this section, we formulate the problem and describe security requirements. The

notations are provided in Table 2.1 for the convenience of reference.

17



Routing layerRouting layerSensorSensor

Gateway NodeGateway Node

Zone

Wireless access pointWireless access point

Server in cloudServer in cloud

Block in blockchainBlock in blockchain

Figure 2.3 Blockchain-based IoT management system model.

Figure 2.3 illustrates the current blockchain-based IoT management model.

Typically, in a blockchain-based IoT management system, multiple sensors are

deployed in a certain area (e.g., a power plant) for data collection (e.g., temperature

measurements). The collected data are sent to the nearest gateway node and

forwarded by routers through a wireless network to a server in the blockchain network,

which starts to execute the consensus protocol and replicate the data across all

participating servers (also known as “peers” or “replicas”). Such consistent data

items stored in blocks are appended to the blockchain as “transactions”.

To investigate the security issues in blockchain-based IoT, we first provide the

following definitions.

Definition 1 (Consensus). A consensus protocol has the following properties:

• Termination: Each participating peer outputs something locally within a limited
amount of time.

• Agreement: All honest peers in the network agree on the same value.

• Validity: If all honest peers receive the same value v, then the agreed result
should be equal to v.
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From this definition, we know that consensus only considers ledger replication,

while disregarding how inputs are received from and outcomes are delivered to

external clients. External clients are not full nodes of the distributed ledger, and

thus have to rely on some servers to relay. As such, existing architectures assume

“trusted” relay, which is vulnerable in practice as the relay server could either be

hacked or simply be malicious. To realize the properties of “reliable message delivery”

and “transparency” of a distributed ledger, we provide the following definition:

Definition 2 (Censorship Resistance). Consider a sequence of data items (d1, d2, ..., dn)

sent from an IoT network to a blockchain network. The system is censorship resistant

if it meets the following two conditions:

• The ledger records a permutation of the vector without any data loss.

• The corresponding actuator in the IoT network is guaranteed to eventually
receive the value of y = F(d1, . . . , dn), which is also stored in the ledger, where
F is a pre-defined processing function.

We now introduce the security issues in the current blockchain-based IoT model.

Security against entry point censorship. A malicious or hacked node3 relaying

messages from the sensor network to the blockchain network may act arbitrarily, e.g.,

drop messages, infinitely delay messages, or modify message contents. Meanwhile,

even correct data is disseminated to the blockchain network, it may get lost during

the process of reaching a consensus among all peers. We define the security in these

two cases as follows:

• An adversary A corrupts the gateway node g in a zone Z including sensor1, ...,
sensorl. The message sent from the sensor network to g is denoted as m =
(d1, ..., dn). We consider a bad event B1 as follows: (1) the number of data
that forwarding from g to blockchain network is less than n; (2) there is no
data forwarding from g to blockchain network since g blocks all the messages;
(3) some data items in message m are modified before sending to blockchain
network.

3Generally, a cluster with a master-slave architecture is constructed for the gateway node to
tolerate crash fault, but it still acts as a single node since only the master node is responsible
for providing services. Our proposed solution tolerates both crash fault and byzantine fault.
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• An adversary A corrupts f nodes in the blockchain network to execute a
consensus protocol. The message sent to the blockchain network from the sensor
network is denoted as m = (d1, ..., dn). We consider a bad event B2 as follows:
(1) not all nodes in the blockchain network update m to their ledgers; (2) all
nodes update m to their ledgers but on some nodes, the number of data items
in m is less than n, i.e., |m| < n; (3) all nodes update m to their ledgers and
on all nodes |m| = n, but the data items in m are out of order.

The security of our proposed protocol requires that for every polynomial time

adversary A, the probability Pr[B1] and Pr[B2] is negligibly small.

Security against exit point censorship. When querying from the blockchain

network, a corrupted node may perform malicious actions to actuators to cause a

disaster. We define the security in this case as follows: An adversary A corrupts

f nodes in the blockchain network. We consider a bad event B3 as follows: when

querying from the ledger, the instruction y is modified to y′ and sent to actuators.

Again, the security of our proposed protocol requires that for every polynomial time

adversary A, the probability Pr[B3] is negligibly small.

2.4 System Overview

To defend against potential threats of censorship, we augment the current blockchain

network architecture and the consensus protocol. Figure 2.4 illustrates the data flow

in the improved architecture.

2.4.1 Censorship Resistant Inbound Delivery

Our protocol carries out messages delivery as follows:

• The sensors disseminate data to f + 1 gateway nodes (referred to as “seed
nodes”), which are full nodes, not just forwarding messages from the sensor
network to the blockchain network.

• The seed nodes disseminate data to all other peer nodes in blockchain network
through gossip-based diffusion mechanism.

• A leader node starts the byzantine consensus protocol to replicate the data;
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Figure 2.4 Data flow in the improved architecture to resist censorship.

• Each replica performs filtering validation to check if there is any data loss after
consensus.

Specifically, to defend against censorship at the data entry point, we need

to make sure that each sensor is connected to multiple servers instead of just one

single gateway node. In the proposed scheme, the conventional single gateway node

is replaced with multiple full nodes in the blockchain network (i.e., seed nodes),

which perform not only the same function as the original gateway node but also

a set of blockchain operations such as reaching consensus and updating ledger, hence

eliminating the crash fault of the original gateway node. Furthermore, the number

of seed nodes is at least f + 1 to tolerate the byzantine fault as discussed later.

We propose to use a gossip-based protocol to achieve message diffusion among all

peers for better robustness. Moreover, we enhance the underlying consensus protocol

(e.g., BFT-SMaRt [16]) such that each honest participating peer further checks

whether the block being replicated has dropped some data before updating the local

ledger. If a sufficient number of peers observe data missing, the consensus process

is restarted (e.g., a view change type of sub-protocol is triggered). We would like to

point out that this enhancement is generic and could be applied to any BFT protocols.
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After this round, the data is appended to the local ledger of each full node. To

further enhance the protocol to support basic data analysis and instruction delivery,

we propose the following:

2.4.2 Censorship Resistant Outbound Delivery

Our protocol carries out data processing and instruction delivery as follows:

• For a pre-defined processing function F , another round of consensus is initiated
using the outcome of F(·) as the data to be replicated. Such agreement is
the same as the third step in the aforementioned message delivery round, the
consensus content is instruction instead of message.

• Once the value of F(·) is written in each local ledger, the leader forwards
the value of F(·) with the peer nodes’ signatures to the corresponding
actuators/devices.

• Actuators receive an instruction and send feedback containing an acknowl-
edgement to all full nodes.

• All replicas maintain a timer and wait for the acknowledgement for each sent
instruction; if the acknowledgement is not received within a pre-defined time
period, they all resend the instruction to actuators, Details are elaborated in
Section 2.5.

After the data is written to the ledger, the nodes run the analysis program F

that is pre-defined and deployed in a smart contract (an example about F is provided

in Section 2.5), and use the output y of F as input to run another consensus protocol.

At the end of this consensus protocol, there are a sufficient number of signatures on the

same y, and an honest leader node forwards the output y together with the signatures

to the actuator. The actuator simply broadcasts an acknowledgement to all servers if

it receives instructions from the leader server and successfully verifies their signatures.

The peer nodes wait for a pre-defined period of time, and if there is no feedback from

the corresponding actuator, they all send value y to the actuator. This feedback

mechanism achieves an opportunistic efficiency: when the leader is honest, only one

single message is sent to the actuator and this single message contains the signatures
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of most peers (specifically 2f + 1, where f is the largest number of malicious nodes)

in the blockchain network; only when the leader node drops the outgoing instruction,

the other peers jointly inform the actuator. Although we assume that the diffusion

from the sensor network to the blockchain network (and vice versa) be completed in

a fixed amount of time (i.e., as a synchronous network), the network that connects

the peers (i.e., the blockchain network itself) could be partially asynchronous and we

are still able to deploy such consensus protocols as PBFT [23].

2.5 Protocol Design

In this section, we provide a detailed description of protocol design to realize

censorship resistance on top of blockchain-based IoT. The main idea is to further

decentralized data entry and exit point. For simplicity, we denote the number of

all replicas (full nodes) as N , |N | = 3f + 14, where f is the maximum number of

faulty nodes. In addition, BFT-SMaRt, which implements a modular state machine

replication protocol atop a Byzantine consensus algorithm [134], is used as an example

for the underlying consensus protocol to explain our protocol process.

2.5.1 Handling Censorship of Single Entry

The data is sent from the sensor network to the blockchain network, which is referred

to as “inbound flow”. Figure 2.5 illustrates the normal operation on inbound flow in

our protocol, as detailed in the following three phases:

Phase I for message diffusion. The goal in this phase is to ensure that data from

each sensor be quickly diffused to every full node in a more robust way instead of

relying on the single gateway node, so that when the consensus protocol is invoked,

all full nodes have a copy of the sensor data in place.

4M. Castro, B. Liskov et al. [23] proved that a minimum of 3f +1 replicas/peers are needed
to tolerate at most f faulty/byzantine replicas/peers.
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Blockchain network is essentially a decentralized point-to-point network. To

broadcast data from each sensor to the blockchain network in an efficient and robust

way, we propose a gossip-based diffusion protocol as detailed below:

a) Initialization. Initially, all peers in the blockchain network execute the discovery
service and message exchange to maintain a dynamic list LnodeID

alive of live peers
they can connect to. Such a list contains IP address, port, and public key of
peer nodes.

b) Data multicasts to seed nodes. We call those nodes that participate in
blockchain network and also initially being connected by sensors to receive data
as seed nodes. Sensors periodically send collected data d

sensorj
1 , . . . , d

sensorj
n , j =

1, . . . , l to s seed nodes, the message is in the form of
SEED = ⟨ZID, sensorID, d, ts⟩σsensorID

.

c) Processing on seed nodes. Each seed node maintains a local buffer BUF for
received data from sensors and always check the signature validity before caching
sensor data to BUF . Every δtseed, each seed node accumulates SEEDs in BUF
as a batch Bseed, and counts the number of data items in Bseed as ñ, which is used
to check data loss later. SEEDi in this batch is sorted sequentially according to
ts. It is practical to ensure that δtseed < δtsensor. Therefore, the unpredictable
network impact is eliminated and all these s seed nodes have the same state of
Bseed ready.

d) Gossip diffusion. We consider a synchronous network where message diffusion
can be completed in δtdif . In order to reduce the complexity incurred by
message mixing and ensure the same number of data items on each seed node,
we set δtdif < δtseed. The seed nodes then disseminate the gossip message
GM = ⟨nodeID, Bseed, ñ, ts⟩σnodeID

to all peers in the blockchain network

through gossip-based diffusion algorithm, as shown in Algorithm 1. Note that
as the system tolerates up to f malicious nodes, the number of seed nodes
k ≥ f +1 ensures that malicious actions be detected and hence not updated to
the ledger.

The gossip-based diffusion algorithm in Algorithm 1 is divided into three steps:

a) Topology construction. Practically, each peer node in the blockchain network
maintains a list of its direct and indirect neighbor nodes whose information
is stored in LnodeID

alive . An overlay network is formed with virtual links from
each peer node to its neighbor nodes. It is worth mentioning that the gossip-
based algorithm can also be utilized to maintain the gossip network itself: peer
nodes periodically exchange and update LnodeID

alive with each other so the network
topology can be dynamically maintained when some nodes leave or join.
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Algorithm 1 Gossip-based Message Diffusion

Input: GM = ⟨nodeID, Bseed, ñ, ts⟩σnodeID

Output: true or false

1: Initialization: the number s of seed nodes; the number k of selected neighbor nodes;

the maximum number t of times a message can be forwarded; the information about

neighbor nodes stored in Lcurrent nodeID
alive ; the local cache CnodeID [γ] of size γ as a buffer

for received messages

2: m,σnodeID ← parse(GM), where m = ⟨nodeID, Bseed, ñ, ts⟩;
3: r ← verify(σnodeID , nodepk ← Lcurrent nodeID

alive ,m);

4: if r == true then

5: if CnodeID does not contain m then

6: forward m with ts and σcurrentnode
to k neighbor nodes selected from

L
currentnodeID
alive ;

7: add quadruple (key = m, counter = 1, f lag = false, integrity = false) to

CnodeID ;

8: while CnodeID .size ≥ γ do

9: remove those items whose counter ≥ t and integrity is true;

10: else

11: if (counter for m) < t then

12: forward m with ts and σcurrentnode
to k neighbor nodes selected from

L
currentnodeID
alive ;

13: counter ++ for the item whose key == m;

14: else

15: if flag for m == false then

16: update flag for m as true; return true;

17: else

18: return false;

b) Peer selection. Each peer node in the blockchain network is initialized with a
number of gossip parameters during the topology construction step, including:
a local cache CnodeID with size γ; the maximum number t of times a message
can be forwarded; and the number k of neighbor nodes a peer node selects to
forward messages each time. Among these parameters, k plays a critical role
in diffusion efficiency since the value of k and the selected nodes affect the
dissemination speed. Previous study shows that constructing a gossip-based
topology on top of a peer sampling service [71] can ensure a uniformly random
selection of peers.
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c) Data dissemination. Those k uniformly and randomly selected nodes are called
passive nodes and the node starting to send messages is an active node. Their
interaction is described as follows:

i) Each seed node acts as an active node, and uniformly and randomly selects
k nodes as passive nodes from its local cache CnodeID . A gossip message
GM is retrieved from BUF .

ii) Each active node sends message GM to all of its corresponding passive
nodes.

iii) All passive nodes act as active nodes to repeat this process by randomly
and uniformly choosing k nodes from their local cache and forwarding
message GM .

iv) Each node (including seed nodes) maintains a set of quadruples
(key, counter, f lag, integrity) in the local cache CnodeID , where the key is
the gossip message GM , and counter is to count how many times GM is
forwarded by the node. For efficiency, the hash value of GM is computed
to quickly determine if the current node has already forwarded such a
message. If the received message is already in its cache, we increase the
counter; otherwise, the new item is added to the cache. If counter ≥ t, we
stop forwarding this message and consider it as stable by setting flag to be
true. In a synchronous network, all nodes are able to reach a stable status
within a reasonable time period δtdif . The integrity is set to be false by
default, indicating whether or not this message is checked in the later data
loss phase. If the total number of messages exceeds the cache size γ on
the node, we remove those items whose counter ≥ t and integrity is true.

In a gossip network with N nodes, a message sent from a seed node is relayed by

a set of randomly selected k nodes in every round and is expected to reach all other

nodes after θ rounds, i.e.,
∑θ

i=0 k
i = N , and hence θ = ⌈logk(1−N (1− k)) − 1⌉.

Especially when k = 2, the process turns to be a binary tree and the complexity of

rounds becomes O(logN ).

Phase II for byzantine consensus. We augment the consensus protocol to support

censorship checking during the consensus process. Note that all full nodes have the

input data in place after the message diffusion phase.

The consensus’ leader node firstly sends a PROPOSE message containing Bseed

to other replicas. All other replicas receive the PROPOSE message and then check

the validity of the proposed batch and the sender’s leadership: if both are true,

then register Bseed and send a WRITE message containing a cryptographic hash of

the batch, denoted as H(Bseed), to all other replicas. If a replica receives ⌈ |R|+f+1
2
⌉
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Figure 2.5 Message pattern for dealing with the single entry.

WRITE messages with an identical hash, it sends an ACCEPT message containing

this hash to all other replicas.

Phase III for data loss check. If a replica receives ⌈ |R|+f+1
2
⌉ ACCEPT messages

for the same hash, it performs FILTERING VALIDATION (FV) to detect data loss

by comparing the number ñ of messages in PROPOSE with the number of messages

received from the sensors, i.e., n. If filtering validation passes, it appends the new

data Bseed to the ledger; otherwise, a view change5 may take place to elect a new

leader and all replicas are required to converge to the same consensus execution.

More details can be found in [134].

We would like to point out that it might be more efficient to perform FV right

after PROPOSE to avoid WRITE and ACCEPT if filtering was noticed. However,

this would require modifying the original consensus, e.g., the BFT-SMaRt protocol.

Our design only involves adding a few phases after the protocol finishes and hence

facilitates quick implementation and convenient deployment.

5If all nodes executing the consensus protocol have the same leader, they are in the same
view. Views are numbered consecutively, and the leader of a view is a replica p such that
p = v mod N , where v is the view number. Hence, when the leader is considered to fail, a
view change is carried out by setting the new leader to be p = (v + 1) mod N to continue
consensus execution.
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2.5.2 Handling Censorship of Single Exit

In many blockchain-based IoT scenarios, sensors collect and send data to the ledger

and meanwhile actuators receive instructions for further actions. These instructions

could be the outcomes of some data analysis procedures applied to the collected data.

Thus, we also need to ensure that i) the instruction from the blockchain network to the

sensor network (referred to as “outbound flow”) is “legitimate”, i.e., the instruction is

the consensus of the participants rather than a single node, and ii) the instruction is

successfully delivered to the intended actuator. Figure 2.6 shows the normal operation

on the outbound flow, as detailed in the following two phases:

Phase I for decision consensus. After the data batch is written to the ledger, each

honest node executes a data analysis program in the form of y = F(GM). Program

F is typically known a priori as it is application-specific and may vary in different

scenarios. Algorithm 2 gives a simple example of how function F works: the input

is the data batch that updated to ledger which contains sensor data from different

zones, by calculating the average value of sensors from the same zone and comparing

with the threshold T , corresponding instruction from a pre-defined set Y is returned,

otherwise no action is needed by returning ⊥. The decision consensus phase executes

the same steps as the aforementioned Byzantine consensus phase. The only difference

is the content to be agreed on, which is the output y instead of data batch Bseed. We

split it into two rounds for different consensus contents, because in some cases such
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Algorithm 2 An Example of Analysis Program F
Input: Bseed
Output: y/⊥

1: Initialization: the instruction set Y; a temperature threshold: T ∈ Z; the sum of

temperatures collected by all sensors in a specific zone: SZID
← 0; the counter that

keeps track of the number of times the sensor data is counted: tZID
← 0;

2: SEEDi, i ∈ [n]← parse(Bseed);
3: for SEEDi do

4: ⟨ZID, d⟩ ← parse(SEEDi);

5: if ZID exists then

6: SZID
← SZID

+ d;

7: tZID
++;

8: else

9: new(⟨ZID,SZID
, tZID

⟩);
10: SZID

← d;

11: tZID
← 1;

12: for all ZID do

13: ⟨ZID, AV GZID
⟩ ← ⟨ZID,

SZID
tZID

);

14: if AV GZID
> T then return y ← Y;

15: return ⊥;

as the data collection system, only the data needs to be recorded in the ledger, while

in other cases, it may need both. At the end of the decision consensus phase, the

output based on the sensor data is updated to the ledger as well. Then, the execution

of RESPONSE phase is triggered.

Phase II for response. The response phase includes prepare, confirmation, and

occasional re-confirmation. In RESPONSE PREPARE, the honest consensus’ leader

forwards command/instruction y to the actuator if it is the agreed outcome, which

means that it has collected sufficient6 signatures from peer nodes on the same y.

Once the actuator receives an instruction and verifies all signatures, it enters into

the RESPONSE CONFIRMATION phase, in which the actuator simply broadcasts

6For crash fault tolerance, sufficient refers to at least f + 1 peer nodes, while for byzantine
fault tolerance, sufficient refers to at least 2f + 1 peer nodes, proof can be found in [23].
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