
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1994

Automatic feature extraction from conventional CAD model to Automatic feature extraction from conventional CAD model to

support feature-based design approach for the sheet metal support feature-based design approach for the sheet metal

stamping industries stamping industries

Dipak P. Thakar
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Manufacturing Commons

Recommended Citation Recommended Citation
Thakar, Dipak P., "Automatic feature extraction from conventional CAD model to support feature-based
design approach for the sheet metal stamping industries" (1994). Theses. 1677.
https://digitalcommons.njit.edu/theses/1677

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=digitalcommons.njit.edu%2Ftheses%2F1677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1677?utm_source=digitalcommons.njit.edu%2Ftheses%2F1677&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

AUTOMATIC FEATURE EXTRACTION FROM CONVENTIONAL CAD

MODEL TO SUPPORT FEATURE-BASED DESIGN APPROACH FOR

THE SHEET METAL STAMPING INDUSTRIES

by

Dipak P. Thakar

Despite the continuing improvement in computer aided design (CAD)

systems and improvements in computer aided manufacturing (CAM), the process

planning activity has still not been completely integrated into the CAD/CAM cycle.

Particularly in sheet metal stamping industries human interpretation of CAD data is

required to extract the geometry and technological information of a component. As

a result most CAD systems are used as advanced drafting and drawing management

tools by designers. Thus the responsibility for interpreting the design data required

for extracting the manufacturing part features still resides with the process planner.

Which has increase possibilities of entering errors with design data. A need,

therefore, exists to develop expert system for automatic features extraction from a

CAD database. An application software was developed for automatic feature

extraction from conventional CAD model database to impliment feature-based

design approach for the sheet metal stamping industries.

Key word: CAD, CAM, Feature, Feature-based design, Feature-based process
planning.

AUTOMATIC FEATURE EXTRACTION FROM CONVENTIONAL CAD

MODEL TO SUPPORT FEATURE-BASED DESIGN APPROACH FOR

THE SHEET METAL STAMPING INDUSTRIES

by

Dipak P. Thakar

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Manufacturing Systems Engineering

Manufacturing Engineering Division

May 1994

APPROVAL PAGE

AUTOMATIC FEATURE EXTRACTION FROM CONVENTIONAL CAD

MODEL TO SUPPORT FEATURE-BASED DESIGN APPROACH FOR

THE SHEET METAL STAMPING INDUSTRIES

Dipak P. Thakar

Dr. Nouri Levy, Thesis Advisor 	 Date
Associate Professor of Mechanical Engineering, NJIT

Dr. Raj Sodhi, Committee Member 	 Date
Director of Manufacturing Engineering Programs
and Associate Professor of Mechanical Engineering, NJIT

Dr. Meng-Chu Zhou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	Dipak P. Thakar

Degree: 	Master of Science in Manufacturing Systems Engineering

Date: 	May 1994

Undergraduate and Graduate Education:

• Master of Science in Manufacturing Systems Engineering
New Jersey Institute of Technology
Newark, New Jersey, 1994

• Master of Science in Mechanical Engineering
The M. S. University of Baroda
Baroda, India, 1988

• Bachelor of Science in Mechanical Engineering
The M. S. University of Baroda
Baroda, India, 1984

Major: 	Manufacturing Engineering

iv

This thesis is dedicated to
my parents, wife and other family members.

v

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Dr. Nouri

Levy, for his guidance, constant encouragement, and moral support throughout the

coerce of the thesis.

Special thanks to Dr. Raj Sodhi and Dr. Meng-Chu Zhou for serving as

members of the committee.

The author is grateful to professor R. Reddy, for his expert assistance at

various stages of software development.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 .1

2 FEATURE FUNDAMENTALS 	 3

2.1 Definition of a feature 	 3

2.2 Feature Type 	 5

2.3 Feature Properties 	 9

3 METHODOLOGY FOR CREATING FEATURE MODELS 	 13

3.1 Interactive Feature Definition 	 13

3.2 Automatic Feature Recognition 	 ..15

3.2.1 Boundary-Based Matching 	 17

3.2.2 Volume-Based Decomposition. 	 19

3.3 Design by Feature 	 22

3.3.1 Destruction by Machining Features 	 23

3.3.2 Synthesis by Design Features 	 23

3.4 Feature Representation 	 24

3.5 Feature Validation 	 25

3.6 Feature Standardization 	 26

3.7 Feature-Based Application 	 27

4 FEATURE-BASED DESIGN APPROACH FOR THE SHEET
METAL STAMPING INDUSTRIES 	 29

5 FEATURE RECOGNITION SOFTWARE 	 33

5.1 Software Usage 	 40

6 SUMMARY 	 41

6.1 Conclusion 	 41

6.2 Future Work 	 ..41

vii

TABLE OF CONTENTS

(Continued)

Chapter 	 Page

APPENDIX A 	 43

APPENDIX B 	 100

APPENDIX C 	 102

APPENDIX D 	 105

REFERENCES 	 109

viii

LIST OF TABLES

Table 	 Page

5.1 Input data file format (genereted by IGES processor - '.dat' file) 	35

5.2 Output feature format (generated by feature extraction software '.ext' file) 	37

ix

LIST OF FIGURES

Figure 	 Page

2.1 Example of external and internal features for machining
component 	 6

2.2 Example of external and internal features for sheet metal
stamping component 	 7

2.3 Generalized system for features classification for mechanical
assembly 	 10

2.4 Features classification for sheet metal fabrication 	 11

3.1 Interactive feature definition system 	 14

3.2 Automatic feature recognition system 	 16

3.3 Kyprianou's edge classification criteria 	 18

3.4 Example part volume decomposed into its delta volumes for
machining part 	 20

3.5 Example part volume decomposed into its delta volumes for
sheet metal stamping part 	 21

3.6 Desing by feature system 	 22

4.1 Generalized feature-based modular structure for the sheet metal
stamping industries 	 31

5.1 Automatic feature extraction software 	 34

5.2 Examle #1 with some shapes as a combinations of one or more basic
features 	 38

5.3 Examle #2 with some open loop stepped shapes opening 	 39

x

CHAPTER 1

INTRODUCTION

Features have become a popular way of modeling the geometry of engineering

components because they allow engineering significance and engineering data to be

associated with geometry. Feature-based CAD/CAM systems have demonstrated

some potential in creating attractive design environments and in automating

geometric reasoning related to design function, performance evaluation,

manufacturing and inspection process planning, NC programming, and other

engineering tasks. Feature-based design is regarded as a key factor towards CAD/

CAM integration from process planning point of view. From a design point of view,

feature-based design offers possibilities for supporting the design process better than

current CAD systems do. Feature technology, therefore, is expected to be able to

provide for a better approach to integrate design and applications following design

such as engineering analysis, process planning, and inspection.

There have been several different approaches to associating the engineering

significant with a geometric model. Usually, the engineering information are

attached to the faces of a boundary representation (B-rep) model or to the primitives

of a constructive solid geometry (CSG) model. Several groups of researchers in the

fields of information modeling and artificial intelligence have suggested better

methods for representing different aspects of the design information in CAD

systems. A result of this effort has been the development of intelligent CAD systems

that can reason about designs. The intelligence of a CAD system can be measured

by the system's ability to understand higher-level concepts and to execute tasks

defined in term of these concepts. However, purely geometric representation using

the available solid modeling programs are unable to provide the information

1

2

necessary for reasoning about the nongeometric aspects of design. Research in the

area of feature has resulted in many promising techniques for combining

engineering data and knowledge with geometric information. Good reviews on

research in feature-based design are found in Reference 4.

Almost all the research on feature has been in the domain of mechanical

design for machining components, largely because the primary goal of the

mechanical CAD systems has been to provide concise, accurate representations of

mechanical components along with their corresponding machining process.

Furthermore, the need for integrated design environment and automated information

processing techniques for complex mechanical designs has prompted extensive

research for better representation of geometry and topology of both completed and

in-process designed components. During past few years a growing number of

researchers has investigated integration and automation issues for mechanical

component design problems. However, most of the current research has

concentrated on various machining processes such as turning operations, and

milling operations without much emphasis on press working techniques, which are

mainly used in the sheet metal industries (References 1, 6, 9, and 13).

In this thesis we propose a feature-based design approach for the sheet metal

stamping industries, and developed program for automatic feature extraction from

conventional CAD model to integrate CAD/CAM. This requires reading and

interpreting conventional CAD design database information and generating output

file in terms of feature list.

Such system can be considered as a step forward in the direction of

implementing feature-based design approach into the sheet metal stamping

industries and achieving CAD/CAM integration. This software was developed in C

programming language running under UNIXTM-1 based computer system.

1. UNIX is a registered trademark of AT & T Bell Labs.

CHAPTER 2

FEATURE FUNDAMENTALS

2.1 Definition of a feature

During the past several years many researchers have proposed using features as a

natural form of communication among designers, analysts, and manufacturers about

the topology and geometry of designed artifacts. Definitions proposed by many

researchers tend to be either very general or very specific (References 2, 3, 4, 5, and

8). Examples of these more general definitions of features are:

• A prominent part or characteristic of an entity of interest.

• Any entity used in reasoning of design, engineering, and

manufacturing.

• Recurring patterns of information related to a part description.

• A stigmatic grouping used to describe a part and its assembly. It

groups in a relevant manner functional, design and manufacturing

information.

• A geometric form or entity whose presence or dimensions are

required to perform at least one Computer Integrated

Manufacturing (CIM) function and whose availability as a

primitive permits the design process occurs.

• A carrier of product information between other engineering and

manufacturing.

• A region of interest.

• Any named entity with attributes of both form and function.

• A set of faces grouped together to perform a functional purpose.

3

4

• A physical constituent of a component, be mappable to a generic

shape, have engineering significance, and predictable properties.

The more specific definitions usually deal with interaction between boundary

faces and apply to limited domains, such as machining. Features were first

introduced for combining machining information with solid models of mechanical

components. The most commonly known type of features used for this purpose are

form feature. Examples of some specific definitions of process planning related

form features are:

• A specific geometric configuration formed on the surface, edge or

corner of a workpiece intended to modify or to aid in achieving a

given function.

• A distinctive or characteristic part of a workpiece, defining a

geometrical shape, which is either specific for a machining process

or can be used for fixturing and/or measuring purposes.

• A stereotypical portion of a shape or a portion of a shape that fits a

pattern or stereotype.

• Any geometric form or entity uniquely defined by its boundaries, or

any uniquely defined geometric attribute of a part that is

meaningful to any life cycle issue.

Thus, there is no universally accepted definition and representation for object

features. However, it is generally agreed that features are generic shape with the

engineering significance. Features also have attributes that deal with the function

they serve in the component. In general, feature representation and classification are

domain-specific. As the general definitions implies, different users of a model will

5

see different aspects of the object as the features of that objects. For material

removal processes the cavities being removed from the raw stock. For

manufacturability analysis of extrusions the features can be represented simply as

the walls and intersections of the extruded shape. Thus, a feature-based model is not

unique. The same component can be described with different sets of features

depending on the designers' and clients' purposes and point of view. Figure 2.1

shows an example component in terms of its shape features for machining

component and Figure 2.2 shows an example of its shape features for sheet metal

stamping component. The shape of feature may be expressed in terms of dimension

parameters, enumeration of geomentric/topological entities and geometric/

topological relations between composing entities, or in terms of a geometry

construction procedure. The engineering meaning may involve the formalization of

the function the feature serves, or how it can be produced, or what actions must be

taken in the presence of this feature if one is performing some kind of evaluation, or

how the feature behaves in various situations, and so on.

2.2 Feature Types

Since features are application-dependent, the types of features must bedependent on

the domain of application. A lot of different types of features have been proposed.

Some feature types are:

• Form feature 	Portions of nominal geometry; recurring

shapes

• Precision features 	Deviations from nominal form/size/

location(tolerances, finish)

6

Figure 2.1

Example of external and internal features for machining components

7

Figure 2.2

Example of inner and outer features for sheet metal stamping comonents

8

• Technological features Nongeometric parameters related to

function, performance, and so on

• Material features 	Material 	composition, 	treatment,

condition, and so on

• Assembly features

	

	Part relative orientations, interaction

surfaces, fits, kinematic relations

The number of features in not finite but it may be possible to categorize

features into group or classes. Several schemes have been proposed for

classification based entirely on shape, rather than the application.

A scheme was developed by Pratt and Wilson for CAM-I and adopted for the

form features information model of Product Data Exchange Specifications (PDES).

PDES classified features as follows:

• Passages

	

	Subtracted volumes that intersect the preexisting

shape at both ends

• Depressions

	

	Subtracted volumes that intersect the preexisting

shape at one end

• Protrusions

	

	Added volumes that intersect the preexisting

shape at one end

• Transitions

	

	Regions involved in smoothing of intersection

regions

• Area features

	

	Dimensionality two elements defined on faces of

preexisting shape

• Deformations

	

	Shape changing operations such as bending and

stretching

9

Other schemes were developed by Kang and Nnaji (Reference 5) for

Mechanical assembly and Sheet metal fabrication based on a face-oriented feature.

A generalized feature classification systems are presented by Shah, J. J (Reference

7) for mechanical assembly and sheet metal fabrication applications are as shown in

Figure 2.3 and Figure 2.4 respectively.

2.3 Feature Properties

There are growing consensus about some of the properties that features should have.

A good feature implementation should support multiple functional views and allow

features to aid in the design and engineering process. From a survey of features used

in various applications, the following list of feature properties has been compiled:

• Generic shape

• Dimension parameters

• Location method

• Location parameters

• Orientation method

• Orientation parameters

• Tolerances

• Construction procedure for geometric model

• Recognition algorithm, if applicable

• Validation rules

• Parameters inherited from other features

• Inherited rules and procedures

• Nongeometric attributes

10

Figure 2.3
Generalized system for features classification for mechanical assembly

11

Figure 2.4
Feature classification for sheet metal fabrication

12

Feature modelers usually provide a library of generic features, which have

been formalized in terms of some of the properties listed above. In creating model

a user needs only instance a feature from the library and it will automatically take

on all the generic properties of it class. The user needs to complete the definition by

specifying values for dimensions, location, and so on. Although it is recognized that

a feature-based CAD system should meet these requirements, no system has

achieved them.

CHAPTER 3

METHODOLOGIES FOR CREATING FEATURE MODELS

There are many alternatives for creating feature models in geometric modeling

context. If there were a universal set of features that satisfied all needs, clearly it

would be better to design with those features and put them into the model at its

creation. But because different domains and analyses view different regions of the

geometry as significant, it is necessary either to extract the features from a generic

feature format or to translate between different feature models. It is not yet clear

which method is the best approach to the problem. In order to provide a framework

for comparison, many researchers have proposed to classify these methods into three

broad groups (References 4, 7, and 8):

• Interactive Feature Definition

• Automatic Feature Recognition

• Design by Feature

3.1 Interactive Feature Definition

A geometric model is created first, then features are defined by human users by

picking entities on an image of the part. The block diagram of this process is as

shown in Figure 3.1.

This methodology involves predefinition of the geometric model. Therefore

the data structure of the geometric model is a major factor in the design of the

definition procedure. A 2D/3D wireframe or B-rep solid model is created using a

conventional CAD package. The database created is then read by a program that

13

14

render an image of the component on a CRT to allow the user to interactively pick

topological entities (i.e. edges, faces) needed to define a feature. This information

can be augmented with attributes such as tolerances, surface finish, or high level

Figure 3.1
Interactive feature definition system

parameters (i.e. hole diameter, hole location etc.). This approach has been used

largely for inputting data to programs for process planning and NC tool path

generation.

The human assisted definition is easy to implement and it can work off Initial

Graphic Exchange Specifications (IGES) or modeler specific database of

contemporary systems. Only features needed for an application (i.e. process

15

planning) need be identified. For models containing a large number of feature, this

method can be time consuming. In many current implementations the burden of

picking valid entities lies on the user. The job can be made easier with some

changes; for example, if the user indicates to identify a flat-bottom hole, then the

system prompts that user must pick a cylinder face and a plane face; when entities

are picked the system will check if they are of the appropriate type. Procedures must

exit for automatically deriving the diameter and depth of the hole from the geometric

model. The number of topological entities is arbitrary and often depends on

intersections performed in construction of the model.

3.2 Automatic Feature Recognition

A geometric model is created first, then a computer program process the database to

automatically extract features. The block diagram of this process is as shown in

Figure 3.2.

The most important principle in recognizing a feature is avoiding ambiguity.

Feature recognition is inherently a domain dependent process. A geometric model

is searched for the particular features of interest for a given process, such as process

planning, NC programming, and Group Technology coding. Various techniques

have been developed in order to obtain the particular features of interest for a given

process, directly from a geometric modeling database. This is popularly referred to

as feature recognition. Most feature recognition has been directed at the machining

domain so that the majority of research involves searching for cavities in the

component model. Although the output of some techniques is not in the form of

features but rather as machining volumes, some examples of these techniques are

Sectioning techniques, Convex hull algorithm, Cell decomposition, and Artificial

intelligence (AI)/Geometric reasoning. They differ from Feature Recognition, and

16

known as Machining Region Recognition. These methods typically assume that all

machining will be done by one machining process (such as Milling) so it is not

necessary to know the specific feature other than its boundaries corresponding to

final machined surfaces. For example, it does not matter if a machining volume is

a rectangular pocket or an L-shaped slot because tool path can be generated without

Figure 3.2
Automatic feature recognition system

this distinction. Thus feature recognition differs from machining region recognition.

In feature recognition portions of the geometric model are compared to predefined

generic features in order to identify instances that match the predefined ones.

Specific tasks in feature recognition may include the following:

17

• Searching the database to match topologic/geometric patterns

• Extracting recognized feature from the database (remove a portion

of the model associated with the recognized feature)

• Determining feature parameters (i.e. hole diameter, pocket depth)

• Completing the feature geometric model (i.e. edge/face growing,

closure)

• Combing simple features to get higher level features

There are many feature recognition methods have been developed. It is

difficult to classify recognition methods into clear taxonomy because there is

considerable overlap between the various techniques. These methods can be

classify into two broad groups, they are:

• Boundary-based matching methods

• Volume-based decomposition methods.

3.2.1 Boundary-Based Matching

Generic features are first formalizes in terms of their geometric and/or topologic

characteristics. Then search algorithms are devised to determine which of these

characteristics are present in the geometric model. There are two techniques more

in use, they are graph matching, and syntactic pattern recognition.

Since solid model data structures are usually graph structures, graph

matching has been a popular method for feature recognition. Pure graph matching

done on unargumented solid models amounts to topological matching. The

characteristics are based on the number of entities, topological type, connectivity,

and adjacency. If matching is done in this way, features of very different semantics

18

would be classified as being same. Therefore some subclassification using

geometric relationships is necessary. An entity classification method, developed by

Kyprianou, has been used widely (Reference 6). It is based on the magnitude of the

angle of intersection. For example in this method, edges are classified either as

convex, concave, smooth convex, and smooth concave as shown in Figure 3.3.

Figure 3.3
Kyprianou's edge classification criteria

19

Second technique syntactic pattern recognition adopted from vision systems.

In these systems geometric patterns are described by a series of typically straight,

circular, or other curved line segments. Simple patterns can be link together to give

compound patterns. Languages have been developed for describing these sequences

algebraically and manipulating them with operators that form a grammar. Feature

can be recognized by parsing the feature against the object's description in the

grammar. Graph grammars and shape grammars have been developed for matching

feature shapes. The most common method is based on rules. Features are

formalized by templates that consisted of pattern rules. Templates are defined for

both general features (i.e. holes) and specific features (i.e. flat bottomed hole).

Rules are expressed as a set of both geometric and topologic conditions, each of

which had to be tested separately. In order for the rule to be satisfied, all conditions

have to be satisfied.

3.2.2 Volume-Based Decomposition

The purpose of volume decomposition is to identify material to be removed from a

base stock and break down this volume into units corresponding to distinct

machining processes. First, the total material to be removed by machining is found

by a Boolean difference between the stock and the finished part. This volume must

then be decomposed into units that corresponded to practical machining processes

that match machining features as shown in Figure 3.4 and Figure 3.5 for an example

components made by machining processes and sheet metal stamping process

respectively. A well-known work on volume decomposition is done by General

Dynamics for CAM-I. The purpose of the project was to achieve a high degree of

automation for generating NC program for components defined by noncomplex

surfaces (planner, quadric, and cylindrical). An algorithm was developed for

20

operating on B-rep model of the total volume to be removed, augmented with tool

accessibility codes for each face. A library of generic delta volumes existed in the

system.

Figure 3.4

Example part volume decomposed into its delta volumes
for machining part

21

Figure 3.5
Example part volume decomposed into its delta volumes for sheet

metal stamping part

22

Considerable progress in feature recognition has been made. Principal

among the advantages of feature recognition is the use of current geometric modeler

database or even IGES. Another advantage is that recognition can be made

application specific, allowing each application program to have its own recognition

program.

3.3 Design by Feature

The component geometry is defined directly in terms of features by the CAD

modeler, thus geometric models are created from the features. The block diagram

of this process is as shown in Figure 3.6.

Figure 3.6
Design by feature system

In this approach, features are incorporated in the part model from the

beginning. Generic feature definitions are placed in a library from which features

are instanced by specifying dimension and location parameters and various

attributes. There are two common methodologies in use, they are as follows:

23

• Destruction by Machining Features

• Synthesis by Design Features

3.3.1 Destruction by Machining Features

Destruction by Machining Features method also known as destructive solid

geometry, and deforming solid geometry. In this approach a component model is

created by boolean subtracting features from a base stock model. The designs and

manufacturing plans are concurrently developed by transforming a base stock model

into the final part model through the application of operations that correspond to

stock removal. Prototype systems using this approach have been demonstrated at

Standford and Purdue. The commercial system Pro-Engineer also supports this

approach. All these systems use a set of predefined features that are subtracted from

the base solid. Features are defined by attribute slots encompassing dimensions,

tolerances, tool finish and starting face. In the Purdue and Stanford systems, process

plans are generated and tested with each design change. In the Stanford system

various expert systems work concurrently to generate, simulate, and verify plans.

These expert systems are feature machining experts, fixturing experts, tooling

experts, and collision checkers. Thus, when design is complete, it means the process

plans, tool designs, and NC programs are also complete.

3.3.2 Synthesis by Design Features

In this approach a component model is created by adding or subtracting features

without a starting base stock, unlike in the Destruction by Machining Features

approach. Many researches and commercial systems belongs to this category.

Generic features are predefined in term of rules and procedures. Procedures may

include methods for instancing, modifying, coping, deleting features, generating

24

solid models, deriving certain parameters, and validating feature operations.

Design by features has the advantage that it allows to transfer to the database

much of the information available at the design stage. This richer and higher level

database is available for use by downstream applications. It is even possible to

implement real-time manufacturabilityy evaluation and concurrent design and

process planing. However, the set of features used in design is not finite. One needs

to determine how many features should be contained in the feature library and at

what level of abstraction. Also, since features are application specific, the need for

feature recognition by application does not go away when one design by features.

Finally interactions between features can result in nongeneric shapes that do not

exist in the database or they could make some generic dimension values obsolete.

3.4 Feature Representation

Feature may be represented at various levels. For example, one could represent

them by the process by which they may be created or by the resultant geometric

model. Feature may be defined more abstractly as a neutral description without any

specification of how the feature is to become part of the geometric model. Explicit

representations have commonly been used in interactive and automatic feature

recognition and explicit representations in design by features. Some of the

structures used for geometric representations of features are:

• Augmented graphs

• Algebraic, syntactic

• Delta volumes

• Constraint-based B-rep

25

Augmented graphs are usually based on face adjacency. The arcs of the

graph are attributed with information on edge classification and geometric

relationships. Syntactic languages have also been devised that encapsulate

adjacency, connectivity, geometric orientation, and convexity/concavity of feature

entities, though their use has been limited to 2D. Delta volumes are complete B-rep

models of closed spaces associated with tool accessibility codes for faces and

connectivity codes for the delta volumes are indicated by solid and dashed arrows,

respectively. Pratt, M. J. shown that features are best modelled in B-rep structure

(Reference 10).

3.5 Feature Validation

There are no universally applicable methods for checking the validity of features. It

is up to the users defining a feature to specify what is valid or invalid for a given

feature. This should not be confused with geometric or topological validity, which

is based on rigorous mathematics. Features are invalid if any of the conditions

declared in the generic definitions are violated. Such conditions could be based on

size limits, shape, location, and so on. Therefore it is possible that some operations

may result in valid (physically realizable) solids but may product invalid features.

Typical checks that need to be done are inadvertent interference with other features.

There are situations in which the resulting features may be invalid. Intersection

between feature volumes could:

• Make a feature nonfunctional

• Create nongeneric feature(s) from two or more generic ones

• Render feature parameters obsolete

• Give nonstandard topology

26

• Delete a feature by subtraction of larger feature

• Delete a feature by addition of larger feature

• Close an open feature

At present time most feature modelers do not perform automatic feature

validation. It is user's responsibility to do so. However, research systems have

demonstrated the feasibility of automatic validation. Apart from checks on parent

entities, parameter range, and position constraints, they can:

• Detect intersections between feature entities using geometric

modeler functionality

• Classify the type of interaction, when detected (i.e. the classes given

above)

• Consult the rules/procedures specified by user or application to

determine what action to take, which may include (i) disallow

interaction, (ii) send message to other features to alter affected

parameters, (iii) take no action, and (iv) change feature type to

match its current state.

3.6 Feature Standardization

Feature standardization research has been initiated by CAM-I and US Air Force.

CAM-I has been working on the classification of form features for process planning.

The US Air Force has been involved in PDDI project, which has been concerned

with the representation of form features. Also, the US Department of Energy reports

on a Product Definition Initiative (PDI) project in which a Form Features Centered

Architecture (FFCA) is proposed. Later, a Form Feature Integration Model (FFIM)

27

developed within PDES/STEP and a Neutral File Format developed within ESPRIT

(CAD-I). FFIM is meant for defining the two lowest data levels of the STEP model

representation. They are the physical level, and the logical level. At the logical

level, the Express language has been developed to define features and constraints.

As the feature technology is a fast developing field, the development and

acceptance of standards for features could adversely affect research. For that reason,

many researchers voted that standardization should not restrict research in features.

3.7 Feature-Based Application

Feature-based applications must transform feature models from a design viewpoint

into a manufacturing or analysis view. This transformation may include feature

extraction, decomposition into lower level entities, reconstruction by geometric

reasoning, and augmentation with new data or entities. Many research work have

concentrated on developing application packages using feature-based design

approach for the various areas, such as, Process planning for Machining

componenets, Structeral design, Tolerancing model, and Tool cost estimation etc.

(References 1, 3, 11, 12, and 14).

A basic requirement is access to the feature-geometry database. Sample

queries for NC are (i) list all features associated with face 2, and (ii) list the stock

size, and (iii) list all pockets.

Applications should be able to create one to augment the feature model with

data private to them to create one or more secondary models. This includes

attaching attributes to features or faces, for example, surface finish to a face or tool

approach for a slot. For finite element analysis, the augmented model may include

loads and restraints. Several applications may use the same data.

To support the database queries, a static interface to the feature modeler and

28

solid modeler is required. A dynamic interface is also needed for applications. For

example, verification of NC programs includes tests gouging of a part and

machining a fixture, both of which require a solid modeler command interface for

the boolean operations.

As the transformation occurs from the decision model to the feature-based

application secondary model, a number of interdependencies arise. Design changes

must propagate to the application, flagging situation that need human resolution. If

an application changes the geometry of a component, these alterations will not

propagate up. Such situations should be noted as an attribute of the application

feature model. Example of the need to alter component geometry include building

an idealized model for finite element analysis or changes needed for work holding.

CHAPTER 4

FEATURE-BASED DESIGN APPROACH FOR THE SHEET METAL

STAMPING INDUSTRIES

The feature-based design approach is a new approach to integrate CAD with the

following application such as process planning, cost estimating, and analysis etc.,

for the sheet metal stamping industries. During past few years, use of CAD systems

have been tremendously increased in every industry also in sheet metal stamping

industries. At present, most of the CAD systems in use are not based on feature-

based design approach. A need, therefore, exists either to modify existing CAD

system or change to new feature-based CAD system to implement feature-based

design approach. Second option is not acceptable by most of industries for various

reasons. Some of them are as follows:

• Higher cost of the new feature-based CAD system.

• It may be rework to transfer existing conventional CAD model to

the new feature-based CAD system.

• Operator training required for the new feature-based CAD system.

Thus, either way, it is required to convert existing conventional CAD model

to feature-based CAD model. A need, therefore, exists to develop automatic feature

extraction software to implement feature-based design approach in sheet metal

stamping industries without major changes in existing industrial set-up. This will

also, increase flexibility to transfer data between the companies, those having and

not having feature-based design approach in practice.

Figure 4.1 shows the generalized feature-based modular structure for the

29

30

sheet metal stamping industries. The conventional CAD module provides design

information to the feature recognition module through the IGES processor, as the

format used by the various CAD systems differ from each other. Though, most of

the commercially available CAD software systems allow writing design database

information to an ascii file in the IGES format. Once the component is designed in

the CAD system, such as ascii file in the IGES format can be prepared by selecting

appropriate options. The IGES processor is designed to read IGES formatted file.

Conversion algorithms were designed and coded to map the IGES file entities into

the software database. After conversion, the processor will generate '.dat' file with

groups of entities, their corresponding coordinates' values, and other particular

information. A sample of the IGES file generated by the Pro-engineer CAD

software system and the converted '.dat' files are shown in Appendix.

The feature recognition module read '.dat' files generated by the IGES

processor and provide model data in terms of feature list. This module is discussed

in detail in the following chapter. Features are considered as a subroutines to create

solid model using feature list and some other usage of the feature list are as discussed

in the following modules.

The sequencing module is interactive graphic package, which reads feature

list and interactively prepare various alternative sequences of features and display

their die-layouts graphically on the screen. Which helps users to choose one or more

finalist from the various sequenced feature lists for further analysis such as a process

planning, cost estimating, and so on.

The process planning module matches machine capabilities with the

requirement for specific sequenced feature list. The machine database,

withmachine process capability data like permissible minimum and maximum

workpiece sizes, maximum power capacity etc., was created for this purpose.

31

Figure 4.1
Generalized feature-based modular structure for the sheet metal

stamping industries

32

The strategy of this module should be, such that, it selects the efficient

machines, which will give minimum cost of production with the capability

requirement of the job. In the case of operations which can be done on more than

one machine the cost data such as machine-hr-rate, machiniest-hr-rate, and setting

time of the machine can use to make selections of the machine. The cost calculation

and time calculation modules provide estimated cost and esimated time respectively

for various sequenced feature lists.

CHAPTER 5

AUTOMATIC FEATURE EXTRACTION SOFTWARE

The primary purpose of the automatic feature extraction software to provide feature

list by extracting features from the conventional CAD database of the sheetmetal

stamping product. This software was developed in C programming language

running under UNIX based computer system. The software is designed with

modular approach and its flow is controlled by the answers responded by the users

for the questions asked by the program.

The block diagram of the software is as shown in Figure 5.1. In put data file

to the software is generated by the IGES processor, by converting the IGES

formatted conventional CAD file into the software data file ('.dat' file). The format

of the '.dat' file is as shown in the Table 5.1.

In the question module few questions to be responded by users. The first

question is to enter input data file name without extension, which will be the name

of the file generated by the IGES processor. The second question is related to the

CAD model data type (what type of CAD model data is?). The user has to choose

one of the option out of three. The three options are as follows:

(1) 2D unfolded data: This option selected, if the input data file is

generated from the 2D unfolded component

layout CAD model. If this option selected,

then the 2D unfolded layout data module will

read the data file.

(2) 3D unfolded data: This second option selected, if the input data

33

34

Figure 5.1

Automatic feature extraction software

35

Table 5.1
Input data file format (generated by IGES processor - '.dat' file)

FORMAT DESCRIPTION

MAIN, XMAX, YMIN,
YMAX, ZMIN, ZMAX

Minimum and maximmum coordinates values.
(i. e., 1.00, 5.00, 1.000,9.00, 0.00, .25)

N Total number of the point data. (i.e., 1)

X, Y, Z Following N number of lines will give X, Y, and Z
coordinates values of the all N number of points.
(i.e., 3.50, 8.00, 4.00)

M Total number of the line data. (i.e., 1)

X, Y, Z, X1, Yl, Z1 Following M number of lines will give end points
coordinates values for the all M number of lines.
(i.e., 2.875, 1, 4.00, 5.0, 1.0, 4.0)

C Total number of the circle data. (i.e., 1)

X, Y, Z, D, P Following C number of lines will give center point
coordinates values, diameter and plane code data for
the all C number of circles. (i.e., 3.5, 8.0, 4.0, 0.5, 1)

A Total number of the arc data. (i.e., 1)

X,Y, Z, Xl, Y1, Z1, X2,
Y2, Z2
CX, CY, CZ, D, P

Following 2 times A number of lines will give data
for all A number of arcs. For each arc data will be in
two lines, first line will give two end points, and mid-
dle point coordinates values, and second line will
give the center point, diameter and plane code data.
(i.e., 3.5, 8.0, 4.0, 0.5, 1)

BX Total number of the bending @ x-axis. (i.e., 1)

X, Y, Z, Xl, Yl, Z1, R Following BX number of lines will gives both end
points coordinates values, and rotation in deg..
(i.e., 2.875, 2.5, 4.0, 5.0, 2.5, 4.0, 90)

BY Total number of the bending @ y-axis. (i.e., 1)

X, Y, Z, Xl, Y1, Z1, R This data will be in same format as the data of the
bending @ x-axis (i.e.,1.5, 5.05, 4.0, 1.5, 9.0, 4.0, 90)

36

file is generated from the 3D unfolded

component CAD model. If this option

selected, then the 3D unfolded data will

interpret in terms of the 2D unfolded data by

3D unfolded module.

(3) 3D folded data: 	This third option is selected, when the input

data file is generated from the 3D folded

component CAD model. As scope of the

present work is limited up to first two

options, this option is not available.

So, the software is handling first two options and will provide feature list for

those selections. The next question program will asked, is related to the thickness

of the component. User has to input thickness of the component.

Feature extraction is processed in two parts. In the first part the outer feature

extraction module extracts all features located on the boundary of the component.

Then, in second part all features located inside the boundary of the component are

extracted by inner feature extraction module. The basic features, we are considering

in this work are listed in Table 5.2. Here, various shapes of opening in components

are considered using two basic types of features, they are Hole and Square. Here,

Square feature is not mean real life square shape. All real life square and rectangular

shapes are consider as a Square features. Using these all basic features the software

is recognizing component's shapes as one or combinations of the basic features. If

component's inner shape is combinatoin of basic features, then the software will

recognize it and list those features under one station in the feature list. Table 5.2 also

shows the format of the features listed in feature list file.

37

Table 5.2
Output feature format (generated by feature extraction software - '.ext' file)

FEATURE FORMAT DESCRIPTION

BASE BASE H L T X Y Z This feature gives dimensions of the blank
(i.e., height, length, thickness, and values
of the center point coordinates).

HOLE HOLE D X Y Z This feature gives dimensions of the circu- 1
lar or arc shape opening.
(i.e., hole diameter, and the coordinates
values of the center point)

SQUARE SQUARE H L X Y Z This feature gives dimensions of the rect-
angular or square shape opening.
(i.e., height, length, and the coordinates
values of the center point)

BENDX BENDX Y A This feature gives dimensions of the bend-
ing about the axis parallel with the x-axis.
(i.e., y distance, and bending angle in deg.)

BENDY BENDY X A This feature gives dimensions of the bend-
ing about the axis parallel with the y-axis.
(i.e., x distance, and bending angle in deg.)

For example consider some shapes as a combination of one or more basic

features as shown in Figure 5.2 and Figure 5.3. For the example #1 (as shown

in Figure 5.2) the 'L' shape of opening will be recognize as combination of two

Square features and the shape of the internal opening will be recognize as a

combination of three basic features (i.e., two Hole features and one Square features).

For the example #2 (as shown in Figure 5.3) the open loop shape 1 and shape 2 will

be recognize as combination of the Square feature as explained by Figure 5.3 (b) and

Figure 5.3 (c). This example shows the software's capability to extract features from

the stepped shapes.

38

Figure 5.2
Example #1 with some shapes as a combination of one or more

basic features

39

Figure 5.3
Example #2 with some open loop stepped shapes opening

40

The format of the feature list file is as follows. In the feature list file the first

line will always provide dimensions of the component's blank size using the BASE

feature and it's format as shown in Table 5.2. Then, all extracted features for the

shapes located on the border of the component (in other word open loop shapes) are

grouped under the title outer feature. After that, all extracted features for the shapes

located inside the component's boundary (in other word the closed loop shapes) are

grouped under the title inner features. Furthermore, for each inner shape, its

extracted feature/s is/are listed under the subgroup title station. In appendix, two

components with various shapes are shown with their CAD model figure and

respectively with their input data file, and output feature list files.

5.1 Software Usage

Before invoking the software, write the design database information in an ascii file

in the IGES format. The IGES file should be written for the wireframe model only

as the software cannot interpret surface model information. The software can be

invoked by typing 'feature' at the command line. After initializing the environment,

the software will asked few questions to be responded by users, as discussed in the

above section. Then, the software will give output feature list file with same as input

file name except the extension. The extension of the output file name will be '.ext'.

Here, we are presenting one of the application of the feature list is to create a solid

model in the SDRC-IDEAS CAD system. For this, first the output file required to

process through the script program, which will generate part program file with

extension '.prg' for the SDRC-IDEAS application. Then using SDRC-IDEAS CAD

system, solid model can be created using the part program file.

CHAPTER 6

SUMMARY

6.1 Conclusion

As technologies advance and new developments occur, it is always the situation

wherein a revolutionary marriage of the new technology with old technology has to

be established, to implement the new technology. During the course of this thesis,

an effort is made to develop an automatic feature extraction software to implement

the new feature-based design approach for the sheet metal industries.

This software can be consider as a step forward, in implementing the new

feature-based design approach for the sheet metal industries having conventional

CAD systems. It can provide an important link in integrating CAD with the other

applications (such as Computer Aided Process Planning, Cost estimation etc.) by

utilizing feature-based design approach. The software was tested for various

components. The software provided a quick and efficient way to generate consistent

feature list from the conventional CAD database, which can be utilized by the other

applications. Thus, the feature list is complete specifications of the design

component in term of the geometrical information as well as information required

by the other applications (i.e. manufacturing, cost estimation, and time estimation

etc.). The features are more natural and concise way to represent the design, and it

reduces the required level of expertise to interpret the CAD data for the applications

uses the CAD database.

6.2 Future Work

The work from this thesis gives a start for implementing the new feature-based

41

42

design approach for the sheet metal industries using the conventional CAD systems.

More basic features can be added to the tool to make it more attractive, versatile, and

complete (Such as features to recognize angular opening, and angular edge). The

software has been designed and developed using modular approach. The modularity

of the software makes possible to add new modules where necessary in future. Some

of the area in which future improvement can be considered are as follows:

• Develop a module to expand the capability of this program to

process three dimentinal folded data (i.e. develop 3rd option).

• Develop a graphic interactive package to arrange features in

required sequence, and generate various process sequences for

comparison.

• Develop cost estimation module and time estimation module to

generate cost and time estimates for comparison.

APPENDIX A

AUTOMATIC FEATURE EXTRACTION PROGRAM

#include <stdio.h>
#include <string.h>
#include <math.h>

int j, k, n, jl, ji, st1[50], junk, c, sk[50];
int lcount, b, bl, flage, ul[50], uc[50], ua[50], ansr;
float t, sum, XMIN, XMAX, YMIN, YMAX, YLOW, CONX,

CONY, Dsh, D[50];
float XLOW, ZLOW, th;
struct ppath
float x;
float y;
float z;
};
struct ppath points[500];
struct 1path
float x;
float y;
float z;
float xl;
float yl;
float zl;

struct crlpath {
float x;
float y;
float z;
float d;
int p;

};

struct bpath
char st1 [5];
float x;
float y;
float th;

43

float xl;
float yl;
};
struct blpath{
float x;
float y; };

struct spath {
char st2[7];
float 1;
float h;
float x;
float y;
};
struct arcpath {
float x;
float y;
float z;
float xl;
float yl;
float z1;
float x2;
float y2;
float z2;
float cx;
float cy;
float cz;
float d;
int p;
};
struct cylpath(
char st1 [7];
float d;
float x;
float y;

};
struct bnpath{
float x;
float y;
float z;
float xl;
float y1;

44

45

float z1;
int a;
};
struct bnpath bendx[50];
struct bnpath bendy[50];
struct cylpath cyl;
struct arcpath arc[500];
struct spath square[500];
struct crlpath circle[500];
struct lpath line[500];
struct lpath In[1000];
struct ppath oript;

char buffer[80]; 	/* character buffer */
char file_buffer[80]; /* buffer holding full path of data file name */
int i, maxpts, totlns, maxlns, maxarc, maxcrl, maxbnx, maxbny;

varaiable */
char indata[10], *dat=".dat", outdata[10], *ext=".ext", quit[4];

FILE *fpl, *fpw, *fpr, *blw, *blr, *jfw;

main()

{

run_again:
question();

fpl = fopen(indata, "r");
fpw = fopen("temp", "w");
fpr = fopen("temp", "r");
blw = fopen(outdata, "w");
blr = fopen(outdata, "r");
jfw = fopen("junk", "w");

/* index

getdata();
n = strlines();
fprintf (jfw, "n = %d\n", n);
if (n > 1)

{

 getlowx(n);
getzlow(n); }

fprintf (jfw, "ZLOW %f\n", ZLOW);
c = lowxlns(n);

fprintf (jfw, "c = %d, skl-%d, sk2-%d xlow %f\n", c, sk[1], sk[2], XLOW);

if (ansr == 3)
{ fprintf (jfw, "This part of the program is underdevelopment\n");
fldata(); }

else { if (c == 3)
{ maxlns = skin(); tdstrinum(); }

else { maxlns = totlns; Indata();
strInum();}

base();
xmaxfeature();
ymaxfeature();
xminfeature();
yminfeature();
fprintf (jfw, "End of the data. %d\n", Icount);
fprintf (jfw, "Icount %d\n", Icount);
inblock();
incyl();
bend();
}

reconfirm:
confirm();
if (quit[0] == 'Y' II quit[0] == 'y')
{ goto run_again; }
else if (quit[0] == 'N' II quit[0] == 'n')
{ bye(); }
else { goto reconfirm; }

/************* End of main*********/

)
/**************End of main *********/

/*************User input************/

question()
{

system("clear");
printf("\n\n\nFeature Extraction> Give input file name wihout extention\n");
printf("Feature Extraction> ");

scanf("%s",indata);
getchar();

46

47

for(i = 0;i<10;i++) outdata[i] = indata[i];
strcat(indata,dat);
strcat(outdata,ext);
printf("Feature Extraction> %s is your in put file\n",indata);

get_selection:
printf ("Feature Extraction> Select the option\n");
printf ("\n\n\n");
printf (" 1 Model is 2D unfolded model\n");
printf (" 2 Model is 3D unfolded model\n");
printf (" 3 Model is 3D folded model\n");
printf ("\n\n\nFeature Extraction> ");
scanf("%d", &ansr);
getchar();

if (ansr != 1 && ansr != 2 && ansr != 3)
{ system("clear"); goto get_selection; }

printf("\n\n\nFeature Extraction> What is the
thichness(XX.XX)?\nFeature Extraction> ");

scanf("%f', &th);
getchar();

}

/***************confirm to quit the program *********/
confirm()
{

system("clear");
printf("\n\n\nFeature Extraction> Do you want to extract featurs from

another file\n");
printf(" 	(Yes or No):\n\n\n");
printf("Feature Extraction> ");

scanf("%s",quit);
getchar();

I
/***************quit the program*****/
bye()
{
system("clear");
printf ("\n\n\n\n\n\n\n\nFeature Extraction> Thank you for using Feature Extraction
program\n");

}

48

/***************get data from the input file*********/
getdata()

memset(buffer, '\0', 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%f,%f,%f,%f', 	&XMAX, &YMIN, &YMAX);
fprintf (jfw, "Xmin and Xmax Values are %f, %f, %f\n", XMIN, XMAX, th);

memset(buffer, SO', 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%d", &maxpts);
fprintf (jfw, "Maximum number of points are %d\n", maxpts);

for (i = 0; i < maxpts; i++)

memset(buffer, NJ', 80);
fgets (buffer, 80, fpl);
sscanf(buffer, "%f,%f,%f", &points[i].x, &points[i].y, &points[i].x); }

memset(buffer, 	80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%d", &totlns);
fprintf (jfw, "Total numbers of lines are %d\n", totlns);

for (j = 0; j < totlns; j++)

memset(buffer, V, 80);
fgets (buffer, 80, fpl);
/** sscanf(buffer, "%f,%f,%f,%f,%f,%f", &line[j].x, &line[j].y, &line[j].z,

&line[j].xl, 	 &line[j].z1); ***/

	

sscanf(buffer, "%f,%f,%f,%f,%f,%f', 	&ln[j].y, &ln[j].z, &ln[j].x1,
&ln[j].yl, &ln[j].z1);

memset(buffer, V', 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%d", &maxcrl);
fprintf (jfw, "Maximum numbers of circles are %d\n", maxcrl);

for (j = 0; j < maxcrl; j++)

memset(buffer, NJ', 80);
fgets (buffer, 80, fpl);
sscanf(buffer, "%f,%f,%f,%f,%d", &circle[j].x, &circle[j].y, &circle[j].z,

&circle[j].d, &circle[j].p);

49

memset(buffer, , 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%d", &maxarc);
fprintf (jfw, "Maximum numbers of arcs are %d\n", maxarc);

for (j = 0; j < maxarc; j++)

memset(buffer, "0', 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%f,%f,%f,%f,%f,%f,%f,%f,%f", &arc[j].x, &arc[j].y, &arc[j].z,
&arc[j].x1, 	&arc[j].z1, &arc[j].x2, &arc[j].y2, &arc[j].z2);

memset(buffer, '\0', 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%f,%f,%f,%f,%d", &arc[j].cx, &arc[j].cy, &arc[j].cz, &arc[j].d,
&arc[j].p);

}

memset(buffer, '\0', 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%d", &maxbnx);
fprintf (jfw, "Maximum numbers of xbend are %d\n", maxbnx);

for (j = 0; j < maxbnx; j++)

memset(buffer, V', 80);
fgets (buffer, 80, fpl);
sscanf(buffer, "%f,%f,%f,%f,%f,%f,%d", &bendx[j].x, &bendx[j].y,

&bendx[j].z, &bendx[j].x1, &bendx[j].y1, &bendx[j].z1, &bendx[j].a);

memset(buffer, ND', 80);
fgets (buffer, 80, fpl);

sscanf(buffer, "%d", &maxbny);
fprintf (jfw, "Maximum numbers of ybend are %d\n", maxbny);

for (j = 0; j < maxbny; j++)

memset(buffer, V', 80);
fgets (buffer, 80, fpl);
sscanf(buffer, "%f,%f,%f,%f,%f,%f,%d", &bendy[j].x, &bendy[j].y,

&bendy[j].z, &bendy[j].xl, &bendy[j].yl, &bendy[j].z1, &bendy[j].a);
}

/**************line data ***********/

lndata()

for (j = 0; j < maxlns; j++)
{ line[j].x = ln[j].x;
line[j].y = ln[j].y; line[j].z = ln[j].z;
line[j].xl = ln[j].xl; line[j].y1 = ln[j].y1;
line[j].z1 = ln[j].zl;
}

}
/**************bending information *********/
bend()

struct bendpath{
char st[7];
float 1;
int a;
};

struct bendpath bend[50];
for (j = 0; j < maxbnx; j++)

bend[j].1 = bendx[j].y;
strcpy (bend[j].st, "BENDX");
bend[j].a = bendx[j].a;
fprintf (blw, "%s %f %d\n", bend[j].st, bend[j].1, bend[j].a);

j = 0;
fprintf (jfw, "maxbny %d\n", maxbny);

for (j = 0; j < maxbny; j++)

bend[j].1 = bendy[j].x;
strcpy (bend[j].st, "BENDY");
bend[j].a = bendy[j].a;
fprintf (blw, "%s %f %d\n", bend[j].st, bend[j].1, bend[j].a);

}
/**************inner cylinder data*********/
incyl()
{

50

char sst{9];
for (j =0; j < maxcrl; j++)

strcpy (sst, "SLOT");
fprintf (blw, "%s\n", sst);

strcpy (cyl.stl, "HOLE");
cyl.d = circle[j].d;
cyl.x = circle{j].x;
cyl.y = circle[j].y;

fprintf (jfw, "%s %f %f %f\n", cyl.stl, cyl.d, cyl.x, cyl.y);
fprintf (blw, "%s %f %f %f\n", cyl.stl, cyl.d, cyl.x, cyl.y);

}

/**************inner block data*********************/

inblock()

int j, jj;
char sst[9];

j = 0;
while(j < maxlns)

jj = 0;
while(jj < lcount)
{ if (ul[jj] == j)

{flage = 1; break;}
else { ++jj; flage = 0;}

if (flage == 0 && jj >= 1count)

11 =1;
ul[lcount] = jl;
++1count;

strcpy (sst, "SLOT");
fprintf (blw, "%s\n", sst);

if (line[jl].x == line(j1].x1)

if (line[jl].y < line[jl].yl)
CONX = line[j1].xl;

CONY = line[jl].y1;}
else CONX = line[j1].x; CONY = line[jl].y;}

else

51

52

{
if (line[jl].x < line[jl].xl)

CONX = line[jl].x1; CONY = line[jl].y1;}
else CONX = line[jl].x; CONY = line[jl].y; }

}
block();

fprintf (jfw, "%s %f %f %f %f\n", square[b].st2,
square[b].1, square[b].h, square[b].x, square[b].y);

fprintf (blw, "%s %f %f %f %f\n", square[b].st2,
square[b].1, square[b].h, square[b].x, square[b].y);

++b; ++j;
else ++j;

/*******************I

block()

struct blpath inblock[5];
int bj;
bj = 1;
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

blockconect();
++1count;
while (bj < 4)

inblock[bj].x = CONX;
inblock[bj].y = CONY;
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

if (bj == 3 && (inblock[1].x == CONX II inblock[1].y == CONY))
break; }

getblock();
++bj;

if (CONX == line[jl].x && CONY == line[jl].y)
CONX = line[jl].x1; CONY = line[jl].y1;}

else CONX = line[jl].x; CONY = line[jl].y;
inblock[bj].x = CONX;

inblock[bj].y = CONY;

strcpy (square[b].st2, "SQUARE");
fprintf(jfw, "inblockx1 %f, inblocky1 %f, inblockx2 %f, inblocky2

%f\n", inblock[1].x, inblock[1].y, inblock[2].x, inblock[2].y);

53

fprintf(jfw, "inblockx3 %f, inblocky3 %f, inblockx4 %f, inblocky4
%f\n", inblock[3].x, inblock[3].y, inblock[4].x, inblock[4].y);

for (j = 0; j <= lcount; j++)
fprintf (jfw, "j %d, ul %d\n", j, ul[j]);}

if (inblock[1].x == inblock[2].x)

{ if ((inblock[1].x - inblock[3].x) > 0)
square[b].1 = (inblock[1].x - inblock[3].x);
else square[b].1 = (inblock[3].x - inblock[1].x);

if ((inblock[1].y - inblock[2].y) > 0)
square[b].h = (inblock[1].y - inblock[2].y);
else square[b].h = (inblock[2].y - inblock[1].y);

if (inblock[1].x < inblock[4].x)
square[b].x = inblock[1].x + (square[b].1 / 2.0);
else
square[b].x = inblock[1].x - (square{b].1 / 2.0);

if (inblock[1].y < inblock[2].y)
square[b].y = inblock[1].y + (square[b].h / 2.0);
else
square[b].y = inblock[1].y - (square[b].h / 2.0);

else { if ((inblock[1].x - inblock[2].x) > 0)
square[b].1 (inblock[1].x - inblock{2].x);
else square[b].1 = (inblock{2].x - inblock[1].x);

if ((inblock[1].y - inblock[3].y) > 0)
square[b].h = (inblock[1].y - inblock[3].y);
else square[b].h = (inblock[3].y - inblock[1].y);

if (inblock [I].x < inblock{2].x)
square[b].x = inblock[1].x + (square[b].1 / 2.0);

else
square[b].x = inblock[1].x - (square[b].1 / 2.0);

54

if (inblock[1].y < inblock[4].y)
square[b].y = inblock[1].y + (square[b].h / 2.0);
else
square[b].y = inblock[1].y - (square[b].h / 2.0);
1

return(b);
}

/
**

Find the line length and shortest line #
**
*******1

shortl()
{

int ln;
float L, M, N;
double d, pow();

if (maxlns >0)
for (j = 0; j < maxlns; j++)
{
L = (line[j].x - line[j].xl)*(line[j].x - line[j].xl);
M = (line[j].y - lineW.y1)*(line[j].y - line[j].y1);
N = (line[j].z - line[j].z1)*(line[j].z - line[j].z1);

d=(L +M +N);

D[j] = pow (d, .5);
fprintf (fpw, "%f\n", D[j]);
)
fprintf (jfw, "Shortest length is at line #");
Dsh = D{0];

for (j = 0; j < maxlns; j++)

{

 memset(buffer, NO', 80);
fgets (buffer, 80, fpr);

sscanf(buffer, "%f", &D{j]);
if (Dsh > D[j])

{Dsh = D[j];
ln = j + 1;
fprintf (jfw, "%d,", 1n); }
}

fprintf (jfw, " Shortest length is %f\n", Dsh);
return(Dsh);

/****************

Find the feature around the border of the part
*****************/

strlines()

n = 0;
for (j = 0; j < totIns; j++)
{
if (ln[j].y == YMIN II ln[j].y1 == YMIN)

{ fprintf (jfw, "%d\n", j);
n = n +1;
stl[n] = j;

fprintf (jfw, "n = %d\n", n);
return(n);

/***********get lowx*********/

getlowx(n)
int n;
{

n = 1;
j = stl[n];
if (ln[j].x < ln[j].x1)

XLOW = ln[j].x;
else XLOW = ln[j].x1;

for (n = 2; stl[n] != NULL; n++)
= stl[n];

if (ln[j].x <= ln[j].x1)
{if (XLOW > ln[j].x)
XLOW = ln[j].x;

else (if (XLOW > ln[j].x1)
XLOW = In[j].x1;

55

1
fprintf (jfw, "lowx is %f \n", XLOW);
return(n);

/***********get lowz*********/

getzlow(n)
int n;
{

n = 1;
j = stilt*
if (ln[j].z < ln[j].z1)

ZLOW = ln[j].z;
else ZLOW = ln[j].z1;

for (n = 2; stl[n] != NULL; n++)
j = stl[n];

if (ln[j].z <= ln[j].z1)
(if (ZLOW > ln[j].z)
ZLOW = ln[j].z;
)

else {if (ZLOW > ln[j].z1)
ZLOW = ln[j].z1;
}

fprintf (jfw, "lowz is %f fin", ZLOW);
return(n);

/****************lowx line numbers **************/
lowxlns(n)
int n;
{

int jj;
fprintf (jfw, "n = %d\n", n);
c = 0;
for (jj = 1; jj <= n; jj++)

j = stl[jj];
if (ln[j].z == ZLOW II ln[j].z1 == ZLOW)

56

57

fprintf (jfw, "ln[j].x %f, x1 %An", ln[j].x, ln[j].x1);
if (ln[j].x = XLOW II In[j].x1 == XLOW)

{

 if ln[j].y = YMIN II ln[j].y1 == YMIN)
c=c+1;

sk[c] = j; I

fprintf (jfw, "c = %d\n", c);
return (c);

}

/******* starting line number**************/

strinum()

for (n = 1; n 	c; n++)

j = sk[n];
fprintf (jfw, "j.x %f, j.x1 %f sk1 %d, sk2 %d\n",

line[j].x, line[j].x1, sk[1], sk[2]);
if (line[j].x != line[j].x1 && line[j].z == line[j].z1 &&

line[j].z == ZLOW)
jl = j; return(jl); }

/************starting line number for 3D part data*******/
tdstrinum()

int jj;
c = 0;

n = 0;
for (j = 0; j < maxlns; j++)
{ if (line[j].y = YMIN II line[j].y1 == YMIN)

{ fprintf (jfw, "%d\n", j);
n = n +1;
stl[n] = j; }

fprintf (jfw, "n = %d\n", n);
for (jj = 1; jj <= n; jj++) { j
 = stl[jj];

fprintf (jfw, "line[j].x %f, x1 %f\n", line[j].x, line[j].x1);

58

if (line[j].x == XLOW II line[j].x1 == XLOW)
{ if (line[j].y == YMIN II line[j].y1 == YMIN)

{ c=c+1;
sk[c] = j;)

}
strinum();

}
/*******************base data *************/

base()
{

struct bpath base;
strcpy (base.stl, "BASE");

base.x = (XMAX - XMIN);
base.y = (YMAX - YMIN);
base.th = th;

base.x1 = (XMIN + (base.x/2.0));
base.y1 = (YMIN + (base.y/2.0));

fprintf (blw, "%s %f %f %f %f %An", base.stl, base.x, base.y, base.th, base.x 1,
base.y1);
}

/***************

Get started to find all featurs around border
***************************/

xmaxfeature()

if (jl != NULL)
fprintf(jfw, "jl %d\n", jl);
ji = jl;

if (line[jl].x < line[jl].x1)
{ CONX = line[jl].x1; CONY = 	.y 1 ; }
else { CONX = line[jl].x; CONY = line[jl].y; }

lcount = 0;
b= 1;
ul[lcount] = jl;
fprintf(jfw, "ul %d, lcount %d jl %d\n", ul[lcount], 1count, jl);
++1count;

conect 0;
++1count;

59

fprintf (jfw, "you have return value of jl is %d, ji is %d\n", ji, ji);
fprintf (jfw, "line[jl].x %f, 	%f\ n", line(jl].x, line[jl].x1);
if (CONX == XMAX)
return(jl);

/**********starting to find block on line from xmin to xmax*****/

while ((lcount < maxins) && (XMAX 1= CONX))
{
fprintf (jfw, "you have return value of jl is %d, ji is %d\n", jl, ji);

bl = 0;
if al 	ji)
{
comparx 0;
fprintf (jfw, "value of junk %d\n", junk);
if (junk == 1)

getconxy();

else if (junk == 2)
cadblockxmax 0;

fprintf (blw, "%s %f 	%f %f\n", square[b].st2, square[b].1,
square[b].h, square[b].x, square[b].y);

++b; }

else fprintf (jfw, "There is error in the data file\n");

}
fprintf (jfw, "conx %f and cony %f j1 %d\n", CONX, CONY, jl);
fprintf (jfw, "end of block on line from xmin to xmax\n");

}
/*********** other end ********/
getconxy()

if (CONX == line[jl].x && CONY == line[jl].y)
{CONX = 	.x 1 ; CONY = line[jI].y 1; }

else {CONX = line[jl].x; CONY = line[jl].y;
conect();
++Icount;

}

/*********** other end for inner block line********/
getblock()
{ 	if (CONX == line[jl].x && CONY == line[jl].y)

{CONX = line[jl].x1; CONY = 	.y1; }

60

else {CONX = line[j1].x; CONY = line[j1].y; }
blockconect();
++1count;

}
/*** Get connected line para for inner block********/
blockconect()
{

int jk, con;
con = 0; fprintf(jfw, "j1 %d\n", j1);

for (j = 0; j < maxim; j++)
{

if (j == jl)
j=j+1;
else j = j;

if ((line[j].x == CONX && line[j].y == CONY) II (line[j].x1 == CONX &&
line[j].y1 == CONY))

{ jl = j; con = 1;
break;}

}
if (con == 0)
{ blarconect(jl);

jk = ul[lcount - 1];
if (line[jk].x != line[jk].x1)

{ if (line[jl].x != line[j1].x1)
{ ul[lcount] = jl;

++lcount; getblock();
return (jl); }

else { ul[lcount] = jl; return(jl); }
}

else { if (line[jl].x == line[j1].x1)
{ ul[lcount] = jl; ++Icount;

getblock(); return al); }
else { ul[lcount] = jl; return(jl); }

)
}

else if (con == 1)
ul[lcount] = jl;

fprintf (jfw, "lcount %d ul %d j1 %d\n", lcount, ul[lcount], jl);
return OD;

}

/***/

61

blarconect(jl)
{

struct ppath midp;

for (j =0; j < maxarc; j++)

if (arc[j].x == CONX && arc[j].y == CONY 11 arc[j].x1 == CONX &&

arc[j].y1 == CONY II arc[j].x2 == CONX && arc[j].y2 == CONY)
break;

fprintf (jfw, "j1 %d, j %d\n", jl, j);

if (line[jl].x == line[j1].xl)

if (arc[j].x == arc[j].x1)
= arc[j].x2; midp.y = arc[j].y2;midp.z = arc[j].z2;}

else if (arc[j].x == arc[j].x2)
{ midp.x = arc[j].xl; midp.y = arc[j].yl;midp.z = arc[j].z1; }
else

midp.x = arc[j].x;
midp.y = arc[j].y; midp.z = arc[j].z; }

if ((line[jl].y == CONY && line[jl].y < line[jl].y1) II (line[j1].y1

== CONY && line[jl].y1 <
{ if(midp.x > CONX)

strcpy (cyl.stl, "CYL");
else strcpy (cyl.stl, "HOLE");

}

else { if(midp.x < CONX)
strcpy (cyl.stl, "CYL");

else strcpy (cyl.stl, "HOLE");
if (CONY != arc[j].y && midp.y != arc[j].y)

{ CONX = arc[j].x;
CONY = arc[j].y;

else if (CONY != arc[j].y 1 && midp.y != arc[j].y 1)
{ CONX = arc[j].x1;

CONY = arc[j].y1;)
else CONX = arc[j].x2;

CONY == arc[j].y2; }

else {
if (arc[j].y == arc[j].y1)
{ midp.x = arc[j].x2; midp.y = arc[j].y2;midp.z = arc[j).z2;}

else if (arc[j].y == arc[j].y2)
midp.x = arc[j].xl; midp.y = arc[j].y1;midp.z = arc[j].z1;}

else if (arc[j].y1 == arc[j].y2)
midp.x = arc[j].x; midp.y = arc[j].y; midp.z = arc[j].z;}

if ((line[j1].x == CONX && line[jl].x < line[jl].x1) II (line[jl].x1

CONX && line[jl].x1 < line[jl].x))
{ if(midp.y < CONY)

strcpy (cyl.stl, "CYL");
else strcpy (cyl.stl, "HOLE");

else { if(midp.y > CONY)
strcpy (cyl.stl, "CYL");

else strcpy (cyl.st1, "HOLE");

if (CONX != arc[j].x && midp.x != arc[j].x)
CONX = arc[j].x;
CONY = arc[j].y;

else if (CONY != arc[j].x1 && midp.x != arc[j].x1)
{ CONX = arc[j].x1;

CONY = arc [j].y1 }
else { CONX = arc[j].x2;

CONY = arc[j].y2; }

fprintf(jfw, "conx = %f, cony = %f\n", CONX, CONY);
cyl.d = arc[j].d;
cyl.x = arc[j].cx;
cyl.y = arc[j].cy;

fprintf (jfw, "%s 	%f %f\n", cyl.st1, cyl.d, cyl.x, cyl.y);
fprintf (blw, "%s %f 	%f\n", cyl.stl, cyl.d, cyl.x, cyl.y);
blockconect();

return(jl);

62

I*********************

starting to find block on line start at xmax end at ymax
**********************/

ymaxfeature()
{

getconxy();
while ((lcount < maxlns) && (CONY != YMAX))
{
fprintf (jfw, "you have return value of jl is %d, ji is %d\n", jl, ji);
bl = 0;

if (jl != ji)
{
compary 0;
fprintf (jfw, "value of junk %d\n", junk);
if (junk == 1)
{
getconxy();

}
else if (junk == 2)
{ cadblockymax 0;

fprintf (blw, "%s %f %f %f %f\n", square[b].st2, square[b].1,
square[b].h, square[b].x, square[b].y);

++b; }
else fprintf (jfw, "There is error in the data file\n");
}
)

fprintf (jfw, "end of block on line from xmax to ymax\n");
}

/****************

starting to find block on line start at ymax end at xmin
****************1

xminfeature()
{

getconxy();
while ((lcount < maxlns) && (XMIN != CONX))
{
fprintf (jfw, "you have return value of j1 is %d, ji is %d\n", jl, ji);

bl= 0;

63

if (jl 	!= ji)

comparx 0;
fprintf (jfw, "value of junk %d\n", junk);
if (junk == 1)

getconxy();

else if (junk == 2)
cadblockxmin 0;

fprintf (blw, "%s %f %f %f %f\n", square[b].st2, square[b].1,
square[b].h, square[b].x, square[b].y);

++b; }

else fprintf (jfw, "There is error in the data file\n");
}

fprintf (jfw, "end of block on line from ymax to xmin\n");
}

/****************

starting to find block on line start at xmin end at ymin
****************/

yminfeature()

int j;
getconxy();
while ((lcount <= maxlns) && (CONY != YMIN))

fprintf (jfw, "you have return value of jl is %d, ji is %d\n", jl, ji);
bl = 0;

if al != ji)

compary ();
fprintf (jfw, "value of junk %d\n", junk);
if (junk == 1)

getconxy();

else if (junk == 2)
cadblockymin 0;

fprintf (blw, "%s %f %f %f %f\n", square[b].st2, square[b].1,
square[b].h, square[b].x, square[N.y);

64

65

++b;

else fprintf (jfw, "There is error in the data file\n");

if (CONY = YMIN)
lcount = lcount - 1;

else lcount = lcount;
fprintf (jfw, "end of block on line from xmin to ymin\n");

fprintf (jfw, "lcount %d, ul %d, jl %d\n", lcount, ul[lcount], jl);
for (j = 0; j <= lcount; j++)

fprintf (jfw, "j %d, ul %d\n", j, ul[j]);}

/**********************************/

**
**

Find the origin pt

**
****/

originpt()

{
if (maxlns > 0)

for (j = 0; j < maxlns; j++)

1****

fprintf (jfw,
"%f,%f,%f,%f,%f,%f\n",line[j].x,line[j].y,line[j].z,line[j].x1,line[j].y1 ,line[j] .z1);
**************1

if (line[j].x == 0.0000 && line[j].y == 0.0000 && line[j].z == 0.0000

{ oript.x = line[j].x;
oript.y = line[j].y;
oript.z = line[j].z;
fprintf (jfw, "Origin is at %f, %f, %f \n", oript.x, oript.y, oript.z);

66

flage = 1;)
else if (line[j].x1 == 0.0000 && line[j].y1 == 0.0000 && line[j].z1

== 0.0000)
{ oript.x = line[j].x1;

oript.y = line[j].y1;
oript.z = line[j].z1;

fprintf (jfw, "Origin is at %f, %f, %f \n", oript.x, oript.y, oript.z);
flage = 1;}

}
return(flage);

}

/*** Get connected line para ********/
conect()
{

int con;
con = 0; fprintf(jfw, "jl %d\n", jl);

for (j = 0; j < maxlns; j++)
{

if (j == jl)
j = j +1;
else j = j;

if ((line[j].x == CONX && line[j].y == CONY) II (line[j].x1 ==
CONX && line[j].y1 == CONY))

{j1=j;
con = 1;
break; }

}
if (con == 0)
{ arconect(j1); }

ul[lcount] = jl;
fprintf (jfw, "lcount %d ul %d jl %d\n", lcount, ul[lcount], jl);

return OD;
}

/***/

arconect(j1)
{

struct ppath midp;

67

for (j =0; j < maxarc; j++)

if (arc[j].x == CONX && arc[j].y == CONY II arc[j].x1
== CONX && arc[j].y1 == CONY II arc[j].x2 == CONX && arc[j].y2 == CONY)

break;

fprintf (jfw, "j1 %d, j %ft", jl, j);

if (line[jl].x == line[jl].xl)
11
if (arc[j].x == arc[j].x1)

midp.x = arc[j].x2; midp.y = arc[j].y2;midp.z = arc[j].z2; }
else if (arc[j].x == arcjj].x2)

midp.x = arc[j].xl; midp.y = arc[j].yl;midp.z = arc[j].z1;}
else

midp.x = arc[j].x;
midp.y = arc[j].y; midp.z = arc[j].z;)

if ((line[jl].y == CONY && line[jl].y < line[jl].y 1) II (line[jl].y1
CONY && 	< line[jl].y))

{ if(midp.x > CONX)
strcpy (cyl.stl, "HOLE");

else strcpy (cyl.stl, "CYL");
}

else { if(midp.x < CONX)
strcpy (cyl.stl, "HOLE");

else strcpy (cyl.st1, "CYL"); }
if (CONY != arc[j].y && midp.y != arc[j].y)

CONX = arc[j].x;
CONY = arc[j].y;

else if (CONY != arc[j].y1 && midp.y != arc[j].yl)
CONX = are[j].xl;

CONY = arc[j].y1;
else { CONX = arc[j].x2;

CONY = arc[j].y2;
}

else {
if (arc[j].y == arc[j].y1)

{midp.x = arc[j].x2; midp.y = arc[j].y2;midp.z = arc[j].z2;}
else if (arc[j].y == arc[j].y2)

midp.x = arc[j].x1; midp.y = are[j].y1;midp.z = arcW.z1;}

68

else if (arc[j].y1 == arc[j].y2)
{ midp.x = arc[j].x; midp.y = arc[j].y; midp.z = arc[j].z;}

if ((line[jl].x == CONX && line[jl].x < line[jl].x1) H (line[jl].x1 ==
CONX && line[jl].x1 < line[jl].x))

{ if(midp.y < CONY)
strcpy (cyl.stl, "HOLE");

else strcpy (cyl.stl, "CYL");
}

else { if(midp.y > CONY)
strcpy (cyl.stl, "HOLE");

else strcpy (cyl.stl, "CYL"); }

if (CONX != arc[j].x && midp.x != arc[j].x)
{ CONX = arc[j].x;
CONY = arc[j].y;

}
else if (CONY != arc[j].x1 && midp.x != arc[j].x1)

{ CONX = arc[j].x1;
CONY = arc[j].y1; }

else { CONX = arc[j].x2;
CONY = arc[j].y2; }

}
fprintf(jfw, "conx = %f, cony = %f\n", CONX, CONY);
cyl.d = arc[j].d;
cyl.x = arc[j].cx;
cyl.y = arc[j].cy;

fprintf (jfw, "%s %f %f %f\n", cyl.stl, cyl.d, cyl.x, cyl.y);
fprintf (blw, "%s %f %f %f\n", cyl.st1, cyl.d, cyl.x, cyl.y);

conect();
return(jl);

}

/****** comperision of connected & new pars ****************/
comparx()

{
if (line[jl].y == line[jl].y1)

{ junk = 1;
}

else if (line[jl].y != line[jl].y1)

junk = 2;
}

else junk = 0;
return (junk);

/*********************************

***********************************1

cadblockxmax 0

struct blpath blpoint[50][4];

++bl;
fprintf(jfw, "you reached up to cadblock %d\n", b);
fprintf (jfw, "Block # %d is started\n", b);
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

while (bl < 4)

blpoint[b][bl].x = CONX;
blpoint[b][bl].y = CONY;

fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);
getconxy();
++b1;
fprintf (jfw, "value of b1 %d, lcount %d, blpt3 %f\n", bl, lcount,

blpoint[b][3].x);

if (CONX == XMAX)
break;

if (line[j1].x < CONX II line[jl].x1 < CONX)
cadsubxmax (b, bl, 0);

fprintf (jfw, "conx = %f, cony %f, bl %d, blp2%f\n", CONX, CONY, b1
blpoint[b][2].x);

if (flage == 3)
blpoint[b][b1].x = blpoint[b][bl-1].x;

blpoint[b][bl].y = CONY;
++bl; flage = NULL;}

69

70

flage = NULL; }
if (bl != 4 && (line[jl].y > CONY II line[jl].y1 > CONY))

{ cadsubxmax (b, bl, 0);
fprintf (jfw, "conx = %f, cony %f, bl %d, blp2%f\n", CONX, CONY,

bl, blpoint[b][2].x);
if (flage == 3)
{ blpoint[b][bl].x = CONX;

blpoint[b][bl].y = blpoint[b][b1-1].y;
++b1; flage = NULL; }

flage = NULL;
}

}

if (CONX == XMAX)
{
if (blpoint[b][1].x != 0.0 && blpoint[b][2].x != 0.0 && bl == 3)

{
blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].x = blpoint[b][3].x;
blpoint[b][4].y = blpoint[b][1].y;
}

else if (b1== 2)
{
blpoint[b][2].x = blpoint[b] [1].x;
blpoint[b][2].y = CONY;
blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].x = CONX;
blpoint[b][4].y = blpoint[b] [1].y;
}

}
else {

blpoint[b][4].x = CONX;
blpoint[b][4].y = CONY;
}

fprintf (jfw, "b11.x %f, b12.x %f, b13.x %f, b14.x %t\n",
blpoint[b][1].x, blpoint[b][2].x, blpoint[b][3].x, blpoint[b][4].x);

fprintf (jfw, "end of the block # %d\n", b);

strcpy (square[b].sa, "SQUARE");

if ((blpoint[b][1].x - blpoint[b][4].x) > 0)

square[b].1 = (blpoint[b][1].x - blpoint[b][4].x);
else square[b].1 = (blpoint[b][4].x - blpoint[b][1].x);

if ((blpoint[b][1].y - blpoint[b][2].y) > 0)
square[b].h = (blpoint[b][1].y - blpoint[b][2].y);
else square[b].h = (blpoint[b][2].y - blpoint[b][1].y);

if (blpoint[b][1].x < blpoint[b][4].x)
square[b].x = blpoint[b][1].x + (square[b].1 / 2.0);
else
square[b].x = blpoint[b][1].x - (square[b].1 / 2.0);

if (blpoint[b][1].y < blpoint[b][2].y)
square[b].y = blpoint[b][1].y + (square[b].h / 2.0);
else
square[b].y = blpoint[b][1].y - (square[b].h / 2.0);
return (jl);

}

/********************cadsubxmax**************/

cadsubxmax (sb, bl, sbl)

int sb, bl, sbl;

{
struct blpath blpt[50][100][4];

if (sbl == 0)
sbl = 1;

fprintf(jfw, "you reached up to subcadblock %d\n", sb);
fprintf (jfw, "Block # %d - %dis started\n", b, sb);
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

while (sbl < 4)
{
blpt[b][sb][sbl].x = CONX;
blpt[b][sb][sbl].y = CONY;

getconxy();
++sbl;

fprintf (jfw, "value of sbl %d, lcount %d, blpt3 %An", sbl, icount,

71

blpt[b][sb][3].x);

if (CONX == XMAX)
break;

if (CONX == XMAX && sbl == 4)

blpt[b][sb][4].x = blpt[b][sb][1].x;
blpt[b][sb][4].y = blpt[b][sb][3].y;

flage = 1; }

else if (CONX == XMAX && sbl ==3)

blpt[b][sb][3].x = CONX;
blpt[b][sb][3].y = CONY;
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = blpt[b][sb][1].y;

flage = 1;
fprintf (jfw, "bl %d, flage %d\n", bl, flage);

else if (CONX != XMAX && sbl == 4)

if (blpt[b][sb][1].y == blpt[b][sb][2].y)

if (blpt[b][sb][1].x > CONX)

blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;

blpt[b][sb][0].x = blpt[b][sb][1].x;
blpt[b][sb][1].x = CONX;

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][1].x - blpt[b][sb][2].x) > 0)
square[sb].1 = (blpt[b]{sb][1].x - blpt[b]{sb][2].x);
else square[sb].1 = (blpt[b]{sb][2].x - blpt[b][sb][1].x);

72

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1,
square[sb].h, square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1][0].x;

blpt[b][sb][1].y = blpt[b][sb-1][1].y;
blpt[b][sb][2].x = blpt[b][sb-1][1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;
sbl = 3;
getconxy();
cadsubxmax(sbl);
return(bl);
}

else if (CONX == blpt[b][sb][1].x && CONY == blpt[b][sb][3].y)
{
blpt[b][sb][4].x = CONX;

blpt[b][sb][4].y = CONY;
getconxy();
}

else { blpt[b][sb][4].x = blpt[b][sb][1].x;
blpt[b][sb][4].y = blpt[b][sb][3].y;

flage = 3;
}
}

else (

73

if (blpt[b][sb][1].y < CONY)
1
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
blpt[b][sb][0].y = blpt[b][sb][1].y;
blpt[b][sb][1].y = CONY;

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][4].x - blpt[b][sb][1].x) > 0)
square[sb].1 = (blpt[b][sb][4].x - blpt[b][sb][1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);

if ((blpt[b][sb][1].y - blpt[b][sb][2].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);
else square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].l / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);
fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1][1].x;
blpt[b][sb][1].y = blpt[b][sb-1][0].y;
blpt[b][sb][2].x = blpt[b][sb-1][1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;
sbl = 3;

getconxy();
cadsubxmax(sb1);

74

75

return(bl);
}

else if (CONX == blpt[b][sb][3].x && CONY == blpt[b][sb][1].y)

blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
getconxy();

else
blpt[b][sb][4].x = blpt[b][sb][3].x;

blpt[b][sb][4].y = blpt[b][sb][1].y;
flage =3; }

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if (blpt[b][sb][1].y == blpt[b][sb][4].y)
{ if ((blpt[b][sb][4].x - blpt[b][sb][1].x) > 0)

square[sb].1 = (blpt[b][sb][4].x - blpt[b][sb][1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);

if ((blpt[b][sb][2].y - blpt[b][sb][1].y) > 0)
square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);
else square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

else if ((blpt[b][sb][1].x - blpt[b][sb][2].x) > 0)

square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][2].x);
else square[sb].1 = (blpt[b][sb][2].x - blpt[b][sb][1].x);

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b]{sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sh].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

return(b1);

/****** comperision of connected & new para ****************/
compary()

{
if aine[jl].x == line[jl].x1)

junk = 1;

else if (line[jl].x != line[jl].x1)
{ junk = 2;

else junk = 0;
return (junk);

76

77

I*************************************/

cadblockymax 0
{

struct blpath blpoint[50][4];

++bl;
fprintf(jfw, "you reached up to cadblock %d\n", b);
fprintf (jfw, "Block # %d is started\n", b);
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

while (bl < 4)
{
blpoint[b][bl].x = CONX;
blpoint[b][bI].y = CONY;

fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

getconxy();
++b1;

fprintf (jfw, "value of bl %d, lcount %d, blpt3 %f\n", bl, lcount, blpoint[b][3].y);

if (CONY == YMAX)
break;

if (line[jl].y < CONY II line[jl].y1 < CONY)
{ cadsubymax (b, bl, 0);

fprintf (jfw, "conx = %f, cony %f, b1 %d, blp2%f\n", CONX, CONY, bl,
blpoint[b][2].x);

if (flage == 3)
{ blpoint[b][bl].y = blpoint[b][bl-1].x;
blpoint[b]jbl].x = CONX;
++b1; flage = NULL; }
flage = NULL; }

if (b1 != 4 && (line[jl].x < CONX H line[jl].x1 < CONX))
{ cadsubymax (b, bl, 0);

fprintf (jfw, "conx = %f, cony %f, bl %d, blp2%t\n", CONX, CONY, bl,
blpoint[b][2].x);

if (flage == 3)
{ blpoint[b][bI].y = CONX;

blpoint[b][bl].x = blpoint[b][bl-1].x;

++bl; flage = NULL;
flage = NULL;

if (CONY == YMAX)

if (blpoint[b][1].y != 0.0 && blpoint[b][2].y != 0.0 && bl == 3)

blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].x = blpoint[b][1].x;
blpoint[b][4].y = blpoint[b][3].y;

else if (b1== 2)

blpoint[b][2].y = blpoint[b][1].y;
blpoint[b][2].x = CONX;
blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].y = CONY;
blpoint[b][4].x = blpoint[b][1].x;

else
blpoint[b][4].x = CONX;
blpoint[b][4].y = CONY;

fprintf (jfw, "b11.x %f, b12.x %f, b13.x %f, b14.x %f n", blpoint[b][1].x,
blpoint[b][2].x, blpoint[b][3].x, blpoint[b][4].x);

fprintf (jfw, "end of the block # %d\n", b);

strcpy (square[b].st2, "SQUARE");

if ((blpoint[b][1].x - blpoint[b][2].x) > 0)
square[b].1 = (blpoint[b][1].x - blpoint[b][2].x);
else square[b].1 = (blpoint[b][2].x - blpoint[b][1].x);

if ((blpoint[b][1].y - blpoint[b][4].y) > 0)
square[b].h = (blpoint[b][1].y - blpoint[b][4].y);
else square[b].h = (blpoint[b]{4].y - blpoint[b][1].y);

78

if (blpoint[b][1].x > blpoint[b][2].x)
square[b].x = blpoint[b][1].x - (square[b].1 / 2.0);
else
square[b].x = blpoint[b][1].x + (square[b].1 / 2.0);

if (blpoint[b][1].y < blpoint[b][4].y)
square[b].y = blpoint[b][1].y + (square[b].h / 2.0);
else
square[b].y = blpoint[b][1].y - (square[b].h / 2.0);
return (b);

}

/************************/

cadblockxmin ()

extern b;
struct blpath blpoint[50][4];

++bl;
fprintf(jfw, "you reached up to cadblock %d\n", b);
fprintf (jfw, "Block # %d is started\n", b);
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

while (bl < 4)
{
blpoint[b][bl].x = CONX;
blpoint[b] [bl].)/ = CONY;

getconxy();
++bl;

fprintf (jfw, "value of bl %d, Icount %d, blpt3 %f\n", bl, lcount, blpoint[b][3].x

if (CONX == XMIN)
break;

if (line[jl].x > CONX II line[jl].x1 > CONX)
cadsubxmin (b, bl, 0);

fprintf (jfw, "conx = %f, cony %f, bl %d, blp2%f\n", CONX, CONY, bl,
blpoint[b][2].x);

if (flage == 3)
blpoint[b][bl].x = blpoint[b][b1-1].x;

blpoint[b][bl].y = CONY;
++b1; flage = NULL; }

79

flage = NULL; }
if (bl != 4 && (line[jl].y < CONY II line[jl].y1 < CONY))

cadsubxmin (b, bl, 0);
fprintf (jfw, "conx = %f, cony %f, bl %d, blp2%f\n", CONX, CONY, bl,

blpoint[b][2].x);
if (flage == 3)
{ blpoint[b][bl].x = CONX;
blpoint[b][b1].y = blpoint[b][b1-1].y;
++bl; flage = NULL;}

flage = NULL;

if (CONX == XMIN)

if (blpoint[b][1].x != 0.0 && blpoint[b][2].x != 0.0 && bl == 3)

blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].x = blpoint[b][3].x;
blpoint[b][4].y = blpoint[b][1].y;
}

else if (bl == 2)

blpoint[b][2].x = blpoint[b][1].x;
blpoint[b][2].y = CONY;
blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].x = CONX;
blpoint[b] [4] .y = blpoint[b] [1].y;

else
blpoint[b][4].x = CONX;
blpoint[b][4].y = CONY;

fprintf (jfw, "b11.x %f, b12.x %f, b13.x %f, b14.x %f\n", blpoint[b][1].x,
blpoint[b][2].x, blpoint[b][3].x, blpoint[b][4].x);

fprintf (jfw, "end of the block # %d\n", b);

strcpy (square[b].st2, "SQUARE");

80

81

if ((blpoint[b][1].x - blpoint[b][4].x) > 0)
square[b].1 = (blpoint[b][1].x - blpoint[b][4].x);
else square[b].1 = (blpoint[b][4].x - blpoint[b][1].x);

if ((blpoint[b][1].y - blpoint[b][2].y) > 0)
square[b].h = (blpoint[b][1].y - blpoint[b][2].y);
else square[b].h = (blpoint[b][2].y - blpoint[b][1].y);

if (blpoint[b][1].x < blpoint[b][4].x)
square[b].x = blpoint[b][1].x + (square[b].1 / 2.0);
else
square[b].x = blpoint[b][1].x - (square[b].1 / 2.0);

if (blpoint[b][1].y < blpoint[b][2].y)
square[b].y = blpoint[b][1].y + (square[b].h / 2.0);
else
square[b].y = blpoint[b][1].y - (square[b].h / 2.0);
return (b);

/************************/

cadblockymin 0
{

struct blpath blpoint[50][4];

++bl;
fprintf(jfw, "you reached up to cadblock %d\n", b);
fprintf (jfw, "Block # %d is started\n", b);
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

while (bl < 4)

blpoint[b][bl].x = CONX;
blpoint[b][bl].y = CONY;

fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

getconxy();
++b1;

fprintf (jfw, "value of bl %d, lcount %d, blpt3 %f\n", bl, lcount, blpoint[b][3].y);

if (CONY == YMIN)
break;

if (line[jl].y > CONY II line[jl].y1 > CONY)
cadsubymin (b, bl, 0);

fprintf (jfw, "conx = %f, cony %f, bl %d, blp2%f\n", CONX, CONY, bl,
blpoint[b][2].x);

if (flage == 3)
{ blpoint[b][bl].y = blpoint[b][bl-1].y;
blpoint[b][b1].x = CONX;
++bl; flage = NULL;}
flage = NULL; }

if (bl != 4 && (line[j1].x > CONX II line[jl].x1 > CONX))
cadsubymin (b, bl, 0);

fprintf (jfw, "conx = %f, cony %f, bl %d, blp2%t\n", CONX, CONY, bl,
blpoint[b][2].x);

if (flage == 3)
blpoint[b][bl].y = CONY;
blpoint[b][bl].x = blpoint[b][b1-1].x;
++bl; flage = NULL; }

flage = NULL;

if (CONY == YMIN)

if (blpoint[b][1].y != 0.0 && blpoint[b][2].y != 0.0 && bl =3)
{

blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].x = blpoint[b][1].x;
blpoint[b][4].y = blpoint[b][3].y;
}

else if (bl== 2)

blpoint[b][2].y = blpoint[b][1].y;
blpoint[b][2].x = CONX;
blpoint[b][3].x = CONX;
blpoint[b][3].y = CONY;
blpoint[b][4].y = CONY;
blpoint[b][4].x = blpoint[b] [1].x;

82

I
else {

blpoint[b][4].x = CONX;
blpoint[b][4].y = CONY;
}

fprintf (jfw, "bl1.x %f, bl2.x %f, bl3.x %f, b14.x %f\n", blpoint[b][1].x,
blpoint[b][2].x, blpoint[b][3].x, blpoint[b][4].x);

fprintf (jfw, "end of the block # %d\n", b);

strcpy (square[b].st2, "SQUARE");

if ((blpoint[b][1].x - blpoint[b][2].x) > 0)
square[b].1 = (blpoint[b][1].x - blpoint[b][2].x);
else square[b].1 = (blpoint[b][2].x - blpoint[b][1].x);

if ((blpoint[b][1].y - blpoint[b][4].y) > 0)
square[b].h = (blpoint[b][1].y - blpoint[b][4].y);
else square{b].h = (blpoint[b][4].y - blpoint[b][1].y);

if (blpoint[b][1].x > blpoint[b][2].x)
square[b].x = blpoint[b][1].x - (square[b].1 / 2.0);
else
square[b].x = blpoint[b][1].x + (square[b].1 / 2.0);

if (blpoint[b][1].y < blpoint[b][4].y)
square[b].y = blpoint[b][1].y + (square[b].h / 2.0);
else
square[b].y = blpoint[b][1].y - (square[b].h / 2.0);

return (b);
}
/********************cad subblock for ymax*********/
cadsubymax (sb, bl, sbl)

int sb, bl, sbl;

{
struct blpath blpt[50][100][4];

if (sbl == 0)
sbl = 1;
fprintf(jfw, "you reached up to subcadblock %d\n", sb);

83

84

fprintf (jfw, "Block # %d - %dis started\n", b, sb);
fprintf (jfw, "coax = %f, cony %f\n", CONX, CONY);

while (sbl < 4)

blpt[b][sb][sbl].x = CONX;
blpt[b][sb][sbl].y = CONY;
getconxy();
++sbl;

fprintf (jfw, "value of sbl %d, lcount %d, blpt3 %t\n", sbl, lcount,
blpt[b][sb][3].x);

if (CONY == YMAX)
break;

if (CONY == YMAX && sbl == 4)

blpt[b][sb][4].x = blpt[b][sb][3].x;
blpt[b][sb][4].y = blpt[b][sb][1].y;
flage = 1;}

else if (CONY == YMAX && sbl ==3)

blpt[b][sb][3].x = CONX;
blpt[b][sb][3].y = CONY;
blpt[b][sb][4].y = CONY;
blpt[b][sb][4].x = blpt[b] [sb] [1].x;
flage = 1;

fprintf (jfw, "bl %d, flage %d\n", bl, flage);
}

else if (CONY != YMAX && sbl == 4)

if (blpt[b][sb][1].x == blpt[b][sb] [2].x)

if (blpt[b][sb][1].y > CONY)

blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
blpt[b][sb][0].y = blpt[b][sb][1].y;
blpt[b][sb][1].y = CONY;

85

fprintf (jfw, "sb11.x %f, sbl2.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][1].x - blpt[b][sb][4].x) > 0)
square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);
else square[sb].1 = (blpt[b][sb][4].x - blpt[b][sb][1].x);

if ((blpt[b][sb][1].y - blpt[b][sb][2].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);
else square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1] [1].x;
blpt[b][sb][1].y = blpt[b][sb-1][0].y;
blpt[b][sb][2].x = blpt[b][sb-1] [1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;
sbl = 3;
getconxy();
cadsubymax(sbl);
return(bl);
}

else if (CONX == blpt[b][sb][3].x && CONY == blpt[b][sb][1].y)
{
blpt[b][sb][4].x = CONX;

blpt[b][sb][4].y = CONY;
getconxy();

else { blpt[b][sb][4].x = blpt[b][sb][3].x;
blpt[b][sb][4].y = blpt[b][sb][1].y;
flage = 3;

else {
if (blpt[b][sb][1].x > CONX)

blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
blpt[b][sb][0].x = blpt[b][sb][1].x;
blpt[b][sb][1].x = CONX;

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][2].x - blpt[b][sb][1].x) > 0)
square[sb].1 = (blpt[b][sb][2].x - blpt[b][sb][1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][2].x);

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

86

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1][0].x;
blpt[b][sb][1].y = blpt[b][sb-1][1].y;
blpt[b][sb][2].x = blpt[b][sb-1][1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;
sbl = 3;
getconxy();
cadsubymax(sbl);

return(bl);
}

else if (CONX == blpt[b][sb][1].x && CONY == blpt[b][sb][3].y)
{
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
getconxy();
}

else {
blpt[b][sb][4].x = blpt[b][sb][1].x;
blpt[b][sb][4].y = blpt[b][sb][3].y;
flage =3; }

}
}
fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,

blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);
fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if (blpt[b][sb][1].y == blpt[b][sb][4].y)
{ if ((blpt[b][sb][4].x - blpt[b][sb][1].x) > 0)
square[sb] .1 = (blpt[b][sb][4].x - blpt[b] [sb] [1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);

if ((blpt[b][sb][2].y - blpt[b][sb][1].y) > 0)
square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);
else square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else

87

square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

else { if ((blpt[b][sb][1].x - blpt[b][sb][2].x) > 0)
square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][2].x);
else square[sb].1 = (blpt[b][sb][2].x - blpt[b][sb][1].x);

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].l, square[sb].h,
square[sb].x, square[sb].y);

return(bl);

/*******************cad sub block xmin*************/
cadsubxmin (sb, bl, sbl)

int sb, bl, sbl;

struct blpath blpt[50][100][4];

88

if (sbl == 0)
sbl = 1;
fprintf(jfw, "you reached up to subcadblock %d\n", sb);
fprintf (jfw, "Block # %d - %dis started\n", b, sb);
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

while (sbl < 4)

blpt[b][sb][sbl].x = CONX;
blpt[b][sb][sbl].y = CONY;
getconxy();
++sbl;

fprintf (jfw, "value of sbl %d, Icount %d, blpt3 %f\n", sbl, Icount,
blpt[b][sb][3].x);

if (CONX == XMIN)
break;

if (CONX == XMIN && sbl == 4)

blpt[b][sb][4].x = blpt[b][sb][1].x;
blpt[b][sb][4].y = blpt[b][sb][3].y;
flage = 1; }

else if (CONX == XMIN && sbl ==3)
{

blpt[b][sb][3].x = CONX;
blpt[b][sb][3].y = CONY;
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = blpt[b][sb][1].y;
flage = 1;

fprintf (jfw, "bl %d, flage %d\n", bl, flage);

else if (CONX != XMIN && sbl == 4)

if (blpt[b][sb][1].y == blpt[b][sb][2].y)

if (blpt[b][sb][1].x < CONX)

89

90

blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
blpt[b][sb][0].x = blpt[b][sb] [1].x;
blpt[b][sb][1].x = CONX;

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][1].x - blpt[b][sb][2].x) > 0)
square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][2].x);
else square[sb].1 = (blpt[b][sb][2].x - blpt[b][sb][1].x);

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 /2.0);

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1][0].x;
blpt[b][sb][1].y = blpt[b][sb-1][1].y;
blpt[b][sb][2].x = blpt[b][sb-1][1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;
sbl = 3;
getconxy();
cadsubxmin(sbl);
return(bl);

else if (CONX == blpt[b][sb][1].x && CONY == blpt[b][sb][3].y)

blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
getconxy();
}

else { blpt[b][sb][4].x = blpt[b][sb][1].x;
blpt[b][sb][4].y = blpt[b][sb][3].y;
flage = 3;

else {
if (blpt[b][sb][1].y < CONY)

{
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
blpt[b][sb][0].y = blpt[b][sb][1].y;
blpt[b][sb][1].y = CONY;

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][4].x - blpt[b][sb][1].x) > 0)
square[sb].1 = (blpt[b][sb][4].x - blpt[b][sb][1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);

if ((blpt[b][sb][1].y - blpt[b][sb][2].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);
else square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else

91

92

square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);
fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1][1].x;
blpt[b][sb][1].y = blpt[b][sb-1][0].y;
blpt[b][sb][2].x = blpt[b][sb-1][1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;
sbl = 3;
getconxy();
cadsubxmin(sbl);
return(bl);
}

else if (CONX == blpt[b][sb][3].x && CONY == blpt[b][sb][1].y)
{
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;

getconxy();

else {
blpt[b][sb][4].x = blpt[b][sb][3].x;
blpt[b][sb][4].y = blpt[b][sb][1].y;
flage =3;)

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1]].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if (blpt[b][sb][1].y == blpt[b][sb][4].y)
{ if ((blpt[b][sb][4].x - blpt[b][sb][1].x) > 0)
square[sb].1 = (blpt[b][sb][4].x - blpt[b][sb][1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);

if ((blpt[b][sb][2].y - blpt[b][sb][1].y) > 0)
square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);
else square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);
}

else { if ((blpt[b][sb][1].x - blpt[b][sb][21.x) > 0)
square[sb].1 = (blpt[b][sb] [1].x - blpt[b] [sb] [2] .x);
else square[sb].1 = (blpt[b][sb][2].x - blpt[b][sb][1].x);

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);
}

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

return(bl);
}
/*******************cad sub block ymin *************/
cadsubymin (sb, bl, sbl)

93

int sb, bl, sbl;

{
struct blpath blpt[50][100][4];

if (sbl == 0)
sbl = 1;
fprintf(jfw, "you reached up to subcadblock %d\n", sb);
fprintf (jfw, "Block # %d - %dis started\n", b, sb);
fprintf (jfw, "conx = %f, cony %f\n", CONX, CONY);

while (sbl < 4)
{
blpt[b][sb][sbl].x = CONX;
blpt[b][sb][sbl].y = CONY;
getconxy();
++sbl;

fprintf (jfw, "value of sbl %d, lcount %d, blpt3 %f\n", sbl, Icount,
blpt[b][sb][3].x);

if (CONY == YMIN)
break;
}

if (CONY == YMIN && sbl == 4)
{
blpt[b][sb][4].x = blpt[b][sb][3].x;
blpt[b][sb][4].y = blpt[b][sb][1].y;
flage = 1; }

else if (CONY == YMIN && sbl ==3)
{

blpt[b][sb][3].x = CONX;
blpt[b][sb][3].y = CONY;
blpt[b][sb][4].y = CONY;
blpt[b][sb][4].x = blpt[b][sb][1].x;
flage = 1;

fprintf (jfw, "bl %d, flage %d\n", bl, flage);
}

else if (CONY != YMIN && sbl == 4)
{

94

95

if (blpt[b][sb][1].x = blpt[b][sb][2].x)
{
if (blpt[b][sb][1].y < CONY)

{
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
blpt[b][sb][0].y = blpt[b][sb][1].y;
blpt[b][sb][1].y = CONY;

fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][1].x - blpt[b][sb][4].x) > 0)
square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);
else square[sb].1 = (blpt[b][sb][4].x - blpt[b][sb][1].x);

if ((blpt[b][sb][1].y - blpt[b][sb][2].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);
else square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1][1].x;
blpt[b][sb][1].y = blpt[b][sb-1][0].y;
blpt[b][sb][2].x = blpt[b][sb-1][1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;

sbl = 3;
getconxy();
cadsubymax(sbl);
return(bl);
}

else if (CONX == blpt[b][sb][3].x && CONY == blpt[b][sb][1].y)
{
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
getconxy();
}

else { blpt[b][sb][4].x = blpt[b][sb][3].x;
blpt[b][sb][4].y = blpt[b][sb][1].y;
flage = 3;
}
}

else {
if (blpt[b][sb][1].x < CONX)

{
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
blpt[b][sb][0].x = blpt[b][sb][1].x;
blpt[b][sb][1].x = CONX;

fprintf (jfw, "sb11.x %f, sb12.x %f, sb11.x %f, sb14.x %f\n", blpt[b][sb][1].x,
blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);

fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if ((blpt[b][sb][2].x - blpt[b][sb][1].x) > 0)
square[sb].1 = (blpt[b] [sb][2].x - blpt[b][sb][1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][2].x);

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

96

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);
fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

++sb;
blpt[b][sb][1].x = blpt[b][sb-1][0].x;
blpt[b][sb][1].y = blpt[b][sb-1][1].y;
blpt[b][sb][2].x = blpt[b][sb-1][1].x;
blpt[b][sb][2].y = blpt[b][sb-1][1].y;
sbl = 3;
getconxy();
cadsubymax(sbl);

return(bl);
}

else if (CONX == blpt[b][sb][1].x && CONY == blpt[b][sb][3].y)
{
blpt[b][sb][4].x = CONX;
blpt[b][sb][4].y = CONY;
getconxy();
}

else {
blpt[b][sb][4].x = blpt[b][sb][1].x;
blpt[b][sb][4].y = blpt[b][sb][3].y;
flage =3; }

1
}
fprintf (jfw, "sb11.x %f, sb12.x %f, sb13.x %f, sb14.x %f\n", blpt[b][sb][1].x,

blpt[b][sb][2].x, blpt[b][sb][3].x, blpt[b][sb][4].x);
fprintf (jfw, "end of the subblock # %d - %d\n", b, sb);

strcpy (square[sb].st2, "SQUARE");

if (blpt[b][sb][1].y == blpt[b][sb][4].y)
{ if ((blpt[b][sb][4].x - blpt[b][sb][1].x) > 0)
square[sb].1 = (blpt[b] [sb] [4].x - blpt[b] [sb] [1].x);
else square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][4].x);

97

if ((blpt[b][sb][2].y - blpt[b][sb][1].y) > 0)
square[sb].h = (blpt[b][sb][2].y - blpt[b][sb][1].y);
else square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][2].y);

if (blpt[b][sb][1].x < blpt[b][sb][4].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][2].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);
}

else { if ((blpt[b][sb][1].x - blpt[b][sb][2].x) > 0)
square[sb].1 = (blpt[b][sb][1].x - blpt[b][sb][2].x);
else square[sb].1 = (blpt[b][sb][21.x - blpt[b][sb][1].x);

if ((blpt[b][sb][1].y - blpt[b][sb][4].y) > 0)
square[sb].h = (blpt[b][sb][1].y - blpt[b][sb][4].y);
else square[sb].h = (blpt[b][sb][4].y - blpt[b][sb][1].y);

if (blpt[b][sb][1].x < blpt[b][sb][2].x)
square[sb].x = blpt[b][sb][1].x + (square[sb].1 / 2.0);
else
square[sb].x = blpt[b][sb][1].x - (square[sb].1 / 2.0);

if (blpt[b][sb][1].y < blpt[b][sb][4].y)
square[sb].y = blpt[b][sb][1].y + (square[sb].h / 2.0);
else
square[sb].y = blpt[b][sb][1].y - (square[sb].h / 2.0);
}

fprintf (jfw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

fprintf (blw, "%s %f %f %f %f\n", square[sb].st2, square[sb].1, square[sb].h,
square[sb].x, square[sb].y);

return(bl);

98

99

}

/*******unfolded 3D data input***********/
skin()

int k;
k = 0;

for (j = 0; j < totlns; j++)
if (ln[j].z == ln[j].z1 && ln[j].z == ZLOW)

{ line[k].x = ln[j].x;
line[k].y = ln[j].y; line[k].z = ln[j].z;

= ln[j].xl; 	= ln[j].y1;
line[k].z1 = ln[j].z1;

k=k+1;}

fprintf (jfw, "k = %d, maxlines = %d\n", k, maxlns);
fprintf (jfw, " Starting line is at l # %d\n", jl);
return(k);

}
/*****folded 3D data input******/
fldata()

int n, j, k;
for (n = 1; n <= c; n++)

j = sk[n];
fprintf (jfw, "j.x %f, j.x1 %f sk1 %d, sk2 %d\n", line[j].x, line[j].xl, sk[1],

sk[2]);
if (ln[j].x != ln[j].x1 && ln[j].z == ln[j].z1 && 	== ZLOW)

{ break;
}

if (ln[j].x < ln[j].x1)
CONX = ln[j].x1 CONY = ln[j].y1; }

else CONX = ln[j].x; CONY = In[j].y; }
k = 0;
while (k < totlns)
{
line[k].x = ln[j].x;

line[k].y = ln[j].y; line[k].z = ln[j].z;
line[k].x1 = ln[j].x1; 	= ln[j].y1;
line[k].z1 = ln[j].z1;

k=k+1;}

}
/***********/

APPENDIX B

AUTOMATIC FEATURE EXTRACTION PROGRAM EXHIBITS

DIPAK>>feature

Feature Extraction> Give input file name wihout extention
Feature Extraction> part1
Feature Extraction> part1 .dat is your in put file
Feature Extraction> Select the option

1 Model is 2D unfolded model
2 Model is 3D unfolded model
3 Model is 3D folded model

Feature Extraction> 2

Feature Extraction> What is the thichness(XX.XX)?
Feature Extraction> .2

Feature Extraction> Do you want to extract featurs from another file
(Yes or No):

Feature Extraction> y

100

Feature Extraction> Give input file name wihout extention
Feature Extraction> part2
Feature Extraction> part2.dat is your in put file
Feature Extraction> Select the option

1 Model is 2D unfolded model
2 Model is 3D unfolded model
3 Model is 3D folded model

Feature Extraction> 2

Feature Extraction> What is the thichness(XX.XX)?
Feature Extraction> .2

Feature Extraction> Do you want to extract featurs from another file
(Yes or No):

Feature Extraction> n

Feature Extraction> Thank you for using Feature Extraction program
DIPAK>>

101

APPENDIX C

SAMPLE PART#1

C.1 Part#1 model created on Pro-Engineer CAD system

102

C.2 Input data file of the part#1 (generated by IGES processor) for the
automatic feature extraction program

1.00, 5.00, 1.00,9.00,4.00,4.20
0
17
2.875,1.000,4.000,5.000,1.000,4.000

2.875,1.000,4.000,2.875,1.000,4.200

5.00,1.000,4.000,5.000,9. 	,4.000 5.000,9.000,4.000,1.000,9.000,4.000

1.000,9.1 ,4.000,1.000,8.500,4.000
1.000,8.500,4.000,2.875,8.500,4.000
2.875,8.500,4.000,2.875,7.500,4.000
2.875,7.500,4.000,1.000,7.500,4.000
1.000,7.500,4.000,1.000,5.050,4.000
1.000,5.050,4.000,2.875,5.050,4.000
2.875,5.050,4.000,2.875,1.000,4.000
3.875,5.500,4.000,3.875,4.500,4.000
3.875,4.500,4.000,3.125,4.500,4.000
3.125,4.500,4.000,3.1250,5.50,4.000
3.125,5.500,4.000,3.875,5.500,4.000
3.000,7.100,4.000,4.000,7.100,4.000 4.000,7.100,4.000,4.000,5.900,4.000

4.000,5.900,4.000,3.000,5.900,4.000
3.000,5.900,4.000,3.000,7.100,4.000

2.875,1.000,4.200,5.000,1.000,4.200 5.000,1.000,4.200,5.000,9.000,4.200

5.111,9.000,4.200,1.00,9.000,4.20
1.000,9.000,4.200,1.000,8.500,4.200
1. 	,8.500,4.200,2.875,8.500,4.200
2.875,8.500,4.200,2.875,7.500,4.200 2.875,7.500,4.200,1.000,7.500,4.200

1.000,7.500,4.200,1.000,5.050,4.200
1.000,5.050,4.200,2.875,5.050,4.200
2.875,5.050,4.200,2.875,1.000,4.200
3.875,5.500,4.200,3.875,4.500,4.200
3.875,4.500,4.200,3.125,4.500,4.200
3.125,4.500,4.200,3.125,5.500,4.200
3.125,5.500,4.200,3.875,5.500,4.200
3.000,7.100,4.200,4.000,7.100,4.200
4.000,7.100,4.200,4.000,5.900,4.200
4.000,5.900,4.200,3.000,5.900,4.200
3.000,5.900,4.200,3.000,7.100,4.200

103

104

1
3.500,8.000,4.000,0.500,1.000
0
1
2.875,2.500,4.000,5.000,2.500,4.000,90
1
1.500,5.050,4.000,1.500,9.000,4.000,90

C.3 Output data (feature list) file of the part#1 generated by the automatic

feature extraction program

BASE 4.000000 8.000000 0.200000 3.000000 5.000000 4.000000
OUTER FEATURES
SQUARE 1.875000 1.000000 1.937500 8.000000 4.000000
SQUARE 1.875000 4.050000 1.937500 3.025000 4.000000
INNER FEATURES
STATION
SQUARE 0.750000 1.000000 3.500000 5.000000 4.000000
STATION
SQUARE 1.000000 1.200000 3.500000 6.500000 4.000000
STATION
HOLE 0.500000 3.500000 8.000000 4.000000
STATION
BENDX 2.500000 90
STATION
BENDY 1.500000 90

APPENDIX D

SAMPLE PART#2

D.1 Part#2 model created on Pro-Engineer CAD system

105

D.2 Input data file of the part#2 (generated by IGES processor) for the

automatic feature extraction program

1.000, 15.000, 1.000,6.000,4.000,4.200
0
81
1.000,1.000,4.000,2.000,1.000,4.000
1.1 3. 1,4. 1,1. 1 ,l. 	,4.200
3. 11,1.1 	,4.1 	,4. 	, 1 . 11,4.000
4. , 1 . 	,4.000 	,2.000,4.000
4.11 ,2.000 ,4.1 ,3.111,2.111,4.000
3.111,2.1 ,4.000,3. 1 ,3.000,4.000
1. 11,3. 11,4. 11,5.000,3.000,4.000
5.000,3.11T1,4.000,5.000,1.1 1,4.000
5.000,1.000,4.000,8.000,1.000,4.000
8.000,1.000,4.000,8.000,3.000,4.000
8.000,3.000,4.000,10.000,3.000,4.000
10.000,3.000,4.000,10.000,4.000,4.000
10.000,4.000,4.000,12.000,4.000,4.000
12.000,4.000,4.000,12.000,3.000,4.000
12.000,3.000,4.000,13.000,3.000,4.000
13.141,3.000,4.000,13.000,1.000,4.000
11.111,1.000,4.000,14.000,1.000,4.000
14.111,1.000,4.000,14.000,3.000,4.000
14.000,3.000,4.000,15.000,3.000,4.000
15.000,3.000,4.000,15.000,4.000,4.000
15.000,4.000,4.000,14.000,4.000,4.000
14.000,4.000,4.000,14.000,5.000,4.000
14.000,5.000,4.000,15.000,5.000,4.000
15.000,5.000,4.000,15.000,6.000,4.000
15.000,6.000,4.000,10.000,6.000,4.000
5.000,6.000,4.000,4.000,6.000,4.000
4.000,6.000,4.000,4.000,4.000,4.000
4.000,4.000,4.000,2.500,4.000,4.000
2.500,4.000,4.000,2.500,6.000,4.000
2.500,6.000,4.000,1.000,6.000,4.000
1.000,6.000,4.000,1.000,5.000,4.000
1.000,5.000,4.000,2.000,5.000,4.000
2.000,5.000,4.000,2.000,2.000,4.000
2.000,2.000,4.000,1.000,2.000,4.000
1.000,2.000,4.000,1.000,1.000,4.000
5.500,4.000,4.000,6.500,4.000,4.000
6.500,4.000,4.000,6.500,4.250,4.000

106

6.500,5.250,4.000,6.500,5.500,4.000
6.500,5.500,4. I1,5.500,5.500,4.000
5.500,5.500,4.000,5.500,5.250,4.000
5.500,4.250,4.000,5.500,4. 	,4.000 1.000,1.111,4.200,2.111,1.000,4.200

3.11 ,l. 11,4.200,4.111,1.°11,4.200
4.000,1.1 1,4.200,4. 1 ,2. 1,4.200
4.000,2.000 ,4.200,3.111,2.1 1,4.200
3.1 ,2.11 ,4.200,3. 11,3. 1,4.200
3.111,3. 1,4.200,5.1 ,3. 1,4.200
5.000,3.000,4.200,5. 1,1. 11,4.200
5.000,1.000,4.200,8.000,1. 1 ,4.200
8.000,1.000,4.200,8.000,3.000,4.200
8.000,3.000,4.200,10.000,3.000,4.200
10.000,3.000,4.200,10.000,4.000,4.200
10.000,4.000,4.200,12.000,4.000,4.200
12.000,4.000,4.200,12.000,3.000,4.200
12.000,3.000,4.200,13.000,3.000,4.200
13.000,3.000,4.200,13.000,1.000,4.200
13.000,1.000,4.200,14.000,1.000,4.200
14.000,1.000,4.200,14.000,3.000,4.200
14.000,3.000,4.200,15.000,3.000,4.200
15.000,3.000,4.200,15.000,4.000,4.200
15.000,4.000,4.200,14.000,4.000,4.200
14.000,4.1,4.200,14.000,5.000,4.200
14.000,5.000,4.200,15.000,5.000,4.200
15.000,5.000,4.200,15.000,6.000,4.200
15.000,6.000,4.200,10.000,6.000,4.200
5.000,6.000,4.200,4.000,6.000,4.200
4.11 ,6.000,4.200,4.000,4.000,4.200
4.000,4.000,4.200,2.500,4.000,4.200
2.500,4.000,4.200,2.500,6.000,4.200
2.500,6.000,4.200,1.000,6.000,4.200
1.000,6.000,4.200,1.000,5.000,4.200
1.000,5.000,4.200,2.000,5.000,4.200
2.000,5.000,4.200,2.000,2.000,4.200
2.000,2.000,4.200,1.000,2.000,4.200
1.000,2.000,4.200,1.000,1.000,4.200
5.500,4.000,4.200,6.500,4.000,4.200
6.500,4.000,4.200,6.500,4.250,4.200
6.500,5.250,4.200,6.500,5.500,4.200
6.500,5.500,4.200,5.500,5,500,4.200
5.500,5.500,4.200,5.500,5.250,4.200

107

5.500,4.250,4.200,5.500,4.000,4.200
0
4
2.000,1.000,4.000,3.000,1.000,4.000,2.500,1.500,4.000
2.500,1. 1,4.111 ,1.000 ,1.000
10. 	,6.11 ,4.000,5.000,6.000,4.000,7.500,3.500,4.000
7.500,6. 11,4.1 1,1.111,1.000
5.500,5.250,4. II I,5.500,4.250,4.000,5.000,4.75,4.000
5.500,4.750,4.111,1. 1.000, 1.000
6.500,5.250,4.111,6.500,4.250,4.000,7.000,4.750,4.000
6.500,4.750,4.000,1.000,1.000

D.3 Output data (feature list) file of the part#2 generated by the automatic

feature extraction program

BASE 14.000000 5.000000 0.200000 8.000000 3.500000 4.000000
OUTER FEATURES
HOLE 1.000000 2.500000 1.000000 4.000000
SQUARE 1.000000 1.000000 3.500000 2.500000 4.000000
SQUARE 1.000000 2.000000 4.500000 2.000000 4.000000
SQUARE 2.000000 1.000000 11.000000 3.500000 4.000000
SQUARE 5.000000 2.000000 10.500000 2.000000 4.000000
SQUARE 1.111111 2.000000 14.500000 2.111111 4.000000
SQUARE 1.000000 1.000000 14.500000 4.500000 4.000000
HOLE 1.000000 7.500000 6.000000 4.000000
SQUARE 1.500000 2.000000 3.250000 5.000000 4.000000
SQUARE 1.000000 3.000000 1.500000 3.500000 4.000000
INNER FEATURES
STATION
HOLE 1.000000 6.500000 4.750000 4.000000
HOLE 1.000000 5.500000 4.750000 4.000000
SQUARE 1.000000 1.500000 6.000000 4.750000 4.000000

108

REFERENCE

1. Pande, S. S. and Walvekar, M. G., "A Computer Assisted Process Planning
System for Prismatic Components (PC-CAPP)", Computer-Aided
Engineering Journal, August 1989, pp. 133-137.

2. Luby, S. C. et al., "Creating and Using Feature Database", Computers in
Mechanical Engineering, November 1986, pp. 25-33.

3. Zamanian, M. K. et al., "A Feature-Based Approach to Structural Design",
Engineering with Computers, Vol. 7, 1991, pp. 1-9.

4. Salomons, 0. W. et al., "Review of Research in Feature-Based Design",
Journal of Manufacturing Systems, Vol. 12, No. 2, 1993, pp. 113-132.

5. Kang, Tzong-Shyan and Nnaji, B. 0., "Feature Representation and
Classification for Automatic Process Planning Systems", Journal of
Manufacturing Systems, Vol. 12, No. 2, 1993, pp. 133-145.

6. Pande, S. S. and Prabhu, B. S., "An Expert System for Automatic Extraction
of Machining Features and Tooling Selection for Automats", Computer-
Aided Engineering Journal, August 1990, pp. 99-103.

7. Shah, J. J., "Features in Design and Manufacturing", Intelligent Design and
Manufacturing, Edited by A. Kusiak, John Wiley & Sons, 1992, pp. 39-71.

8. Unruh, Vance and Anderson, D. C., "Feature-Based Modeling for
Automatic Mesh Generation", Engineering with Computers, Vol. 8, 1992,
pp. 1-12.

9. Shah, Jami et al., "Survey of CAD/feature-based process planning and NC
programming techniques", Computer-Aided Engineering Journal, Vol. 8,
February 1991, pp. 25-33.

10. Pratt, M. J., "Synthesis of An Optimal Approach to Form Feature
Modeling", Vol. 1, 1988, pp. 263-274.

109

110

11. Karinthi, R. R. and Nau, D. S., "Geometric Reasoning As A Guide To
Process Planning", Vol. 1, 1989, pp. 609-610.

12. Winbourne, J. P. and Toolsie, C. M., "Computer-Aided Tool Cost
Estimating (CATE)", Vol. 1, 1989, pp. 617-621.

13. Shah, J. J. and Rogers, T. M., "Feature Based Modeling Shell: Design and
Implimentation", Vol. 1, 1988, pp. 255-261.

14. Ranyak, P. S. and Fridshal, R., "Feature For Tolerancing A Solid Model",
Vol. 1, 1988, pp. 275-280.

	Automatic feature extraction from conventional CAD model to support feature-based design approach for the sheet metal stamping industries
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Feature Fundamentals
	Chapter 3: Methodologies for Creating Feature Models
	Chapter 4: Feature-Based Design Approach for the Sheet Metal Stamping Industries
	Chapter 5: Automatic Feature Extraction Software
	Chapter 6: Summary
	Appendix A: Automatic Feature Extraction Program
	Appendix B: Automatic Feature Extraction Program Exhibits
	Appendix C: Sample Part #1
	Appendix D: Sample Part #2
	References

	List of Tables
	List of Figures

