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ABSTRACT

PERFORMANCE OPTIMIZATION OF BIG DATA COMPUTING
WORKFLOWS FOR BATCH AND STREAM DATA PROCESSING

IN MULTI-CLOUDS

by
Huiyan Cao

Workflow techniques have been widely used as a major computing solution in many

science domains. With the rapid deployment of cloud infrastructures around the

globe and the economic benefits of cloud-based computing and storage services, an

increasing number of scientific workflows have migrated or are in active transition to

clouds. As the scale of scientific applications continues to grow, it is now common

to deploy various data- and network-intensive computing workflows such as serial

computing workflows, MapReduce/Spark-based workflows, and Storm-based stream

data processing workflows in multi-cloud environments, where inter-cloud data

transfer oftentimes plays a significant role in both workflow performance and financial

cost. Rigorous mathematical models are constructed to analyze the intra- and

inter-cloud execution process of scientific workflows and a class of budget-constrained

workflow mapping problems are formulated to optimize the network performance of

big data workflows in multi-cloud environments. Research shows that these problems

are all NP-complete and a heuristic solution is designed for each that takes into

consideration module execution, data transfer, and I/O operations. The performance

superiority of the proposed solutions over existing methods are illustrated through

extensive simulations and further verified by real-life workflow experiments deployed

in public clouds.
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CHAPTER 1

INTRODUCTION

Next-generation scientific applications are producing colossal amounts of data,

now frequently termed as “big data”, on the order of terabytes nowadays and

petabytes in the predictable future, which must be processed and analyzed in

a timely manner for knowledge discovery and scientific innovation. In many of

these scientific applications, computation and computing tasks for data generation,

processing, and analysis are often assembled and constructed as workflows comprised

of interdependent computing modules1. To some degree, workflows have become

an indispensable enabling technology to meet various science missions in a wide

spectrum of domains. In [41], stochastic optimization algorithms were utilized and

Li et al. proposed a parameter tuning workflow which consists of two types of

repeated tests. One type is multiple independent tests for a single event and the

other involves tests of multiple events.

With the rapid deployment of cloud infrastructures around the globe and

the economic benefit of cloud-based computing and storage services, an increasing

number of scientific workflows have been shifted or are in active transition to

clouds. As we enter the “big data” era, several efforts have been made to develop

workflow engines for Hadoop ecosystem running on cloud platforms with virtual

resources [20, 21, 22, 23, 24]. Due to the rapidly expanding scale of scientific

workflows, it is now common to deploy data- and network-intensive computing

workflows in multiple cloud sites. Real-life examples include a workflow deployment

1We refer to the smallest computing entity in a scientific workflow as a computing module,
which represents either a serial computing task or a parallel processing job such as a typical
MapReduce program in Hadoop.
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across multiple Availability Zones within a certain Region in Amazon EC2, which are

geographically distributed but connected through low-latency links [18]. Typically,

within the same cloud, virtual machines (VMs) are organized into a virtual cluster

and intra-cloud data transfer is performed through a shared storage system or

network file system (NFS) without financial charge [1] [33]; while inter-cloud data

transfer may constitute a significant part of both the execution time and the financial

cost of a big data workflow due to the sheer volume of data being processed.

The current cloud services are categorized into: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS

clouds provide virtualized hardware resources for users to deploy their own systems

and applications, and therefore are most suitable for executing scientific workflows

developed on various programming platforms. For example, Amazon EC2 provides

VM instances with different CPU , memory, disk, and bandwidth capacities to meet

the varying resource demands of different applications [18]. Such VM instances

are usually priced according to their processing power and storage space but not

necessarily in a linear manner [43], and charged by the provisioned time units, such

as hours. Note that any partial hours are often rounded up in the cost evaluation of

workflow execution as in the case of EC2 [37], but such rounding may be negligible

in big data applications with a long workflow execution time. In many real-life

applications, budget constraint is a major factor that affects the deployment of

data-intensive workflows.

As we enter the big data era, several efforts have been made to develop workflow

engines for Hadoop ecosystem in clouds with virtual resources. We expand our work

to Hadoop environments.

Recently, there is an increasing need to process and analyze datasets as they are

generated and transferred in real time for various purposes such as stock prediction,
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malfunction detection, social network analysis, and log data processing. To meet such

demands, a wide range of computing engines have been developed and deployed for

streaming data processing, including Apache Storm [24], Apache Flink [2], Apache

Spark (Spark Streaming) [3], Apache Samza [4], Apache Apex [5], and Google Cloud

Dataflow [6]. For example, Yahoo adopted Apache Storm to replace the internally

developed S4 platform [46]; JStorm [7], now being merged into Apache Storm,

and Heron [8] are heavily used by Alibaba Inc. and Twitter Inc., respectively;

Spark Streaming and Flink are also gaining a widespread adoption in industry.

In fact, real-time streaming data processing systems have become an indispensable

building block in the entire big data ecosystem. As one of the most commonly used

systems for streaming data processing, Apache Storm provides a workflow-based

mechanism to execute directed acyclic graph (DAG)-structured topologies2. In recent

years, we have witnessed a rapid deployment of cloud infrastructures around the

globe and great economic benefits brought by cloud-based computing and storage

services. As a result, many such Storm workflows have been shifted or are in active

transition to cloud environments. As most public clouds adopt a pay-as-you-go

service model, one additional constraint on financial budget must be considered in

addition to traditional performance optimization goals. However, efforts in improving

the performance of streaming data processing in clouds are still very limited.

To summarize, in this work, we focus on improving performance of big

data computing workflows for batch and stream data processing in multi-cloud

environment. We have worked on (1) serial-computing workflows, (2) MapReduce

workflows and (3) Storm-based streaming processing workflows. The framework of

the dissertation research consisting of various technical components is illustrated in

Figure 1.1.

2The workflow structure in Storm is referred to as a topology, and hereafter, these two
terms are used interchangeably.
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For serial computing workflows, considering two scenarios: 1) mapping using

dedicated VM instances, and 2) mapping reusing VM instances. In Chapter 4,

we solved scenario 1) and analyzed both the time cost and the financial cost of

intra- and inter-cloud execution of big data scientific workflows and formulate a

Budget-Constrained workflow mapping problem for Minimum End-to-end Delay in

IaaS Multi-Cloud environments, referred to as BCMED-MC. We show BCMED-MC

to be NP-complete and design a heuristic solution that considers cloud service types

and wide-area data transfer cost in the provisioning of VM instances and the selection

of cloud sites. In Chaper 5, we tackle BCMED-MC problem for scenario 2). We

designed a new heuristic solution that considers VM reuse.

As we enter the big data era, several efforts have been made to develop workflow

engines for Hadoop ecosystem in clouds with virtual resources. We expanded our

work to Hadoop environments in Chapter 6, we dived into the execution dynamics of

MapReduce-based scientific workflows and formulated a budget-constrained workflow

mapping problem for minimum makespan in IaaS multi-cloud environments, referred

to as MinMRW-MC. We show MinMRW-MC to be NP-complete and design a

heuristic solution.

Also, streaming data processing has become increasingly important due to its

impacts on a wide range of use cases, such as real-time trading analytics, malfunction

detection, campaign, social network, log processing and metrics analytics. To

meet the demands of streaming data processing, many new computing engines

have emerged, including Apache Storm and Apache Spark (Spark Streaming).

In Chapter 7, we analyze both the time and financial cost of Storm-based

workflow execution and formulate a Storm Topology Mapping problem for maximum

throughput in clouds under Budget Constraint, referred to as STM-BC. We show
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Figure 1.1 The framework of the dissertation research.

STM-BC to be NP-complete and design a heuristic solution that takes into

consideration the parallelism of each task (spout/bolt) in the topology.

The performance superiority of all proposed solutions over existing methods

are illustrated through extensive simulations and further verified by real-life workflow

experiments deployed in public clouds.

Our workflow mapping solutions offer IaaS providers an economical resource

allocation scheme to meet the budget constraint specified by the user, and meanwhile

also serve as a cloud resource provisioning reference for scientific users to make

proactive and informative resource requests. When try to locate the cooresponding

chapter in this dissertation for the suitable workflow optimization solution of different

types, please refer to the roadmap shown in Figure 1.2.
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Figure 1.2 The roadmap of the dissertation research.
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CHAPTER 2

RELATED WORK

In recent years, an increasing number of efforts have been made on resource

provisioning and workflow mapping in clouds where both financial cost and

workflow performance must be taken into consideration. Zeng et al. proposed a

budget-conscious scheduler to minimize many-task workflow execution time within

a certain budget [58]. Their scheduling strategy starts with tasks labeled with an

average execution time on several VMs, and then sorts the tasks such that those

on the initial critical path will be rescheduled first based on an objective function

defined as Comparative Advantage (CA). In [15], Abrishami et al. designed a

QoS-based workflow scheduling algorithm based on Partial Critical Paths (PCP)

in SaaS clouds to minimize the cost of workflow execution within a user-defined

deadline. As many existing critical-path heuristics, they schedule modules on the

critical path first to minimize the cost without exceeding their deadline. PCP are

then formed ending at those scheduled modules, and each PCP takes the start

time of the scheduled critical module as its deadline. This scheduling process

continues recursively until all modules are scheduled. In [44, 43], Mao et al.

investigated the automatic scaling of clouds with budget and deadline constraints

and proposed Scaling-Consolidation-Scheduling (SCS) with VMs as basic computing

elements. In [32], Hacker proposed a combination of four scheduling policies based

on an on-line estimation of physical resource usage. Rodriguez et al. proposed

a combined resource provisioning and scheduling strategy for executing scientific

workflows on IaaS clouds to minimize the overall execution cost while meeting

a user-defined deadline [47]. They designed a Particle Swam Optimization-based

approach that incorporates basic IaaS cloud principles such as a pay-as-you-go model,
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without considering the data transfer cost between data centers. And in [60], Wang

et al. proposed a dynamic group learning distributed particle swarm optimization

(DGLDPSO) for large-scale optimization and extends it for the large-scale cloud

workflow scheduling. In [57], a novel directional and non-local-convergent particle

swarm optimization (DNCPSO) was proposed and it employs non-linear inertia

weight with selection and mutation operations by directional search process, which

can reduce the makespan and cost dramatically and obtain a compromising result.

Jiang et al. addressed two main challenges in executing large-scale workflow

ensembles in public clouds, i.e., execution coordination and resource provisioning [36].

They developed DEWE v2, a pulling-based workflow management system with a

profiling-based resource provisioning strategy, and demonstrated the effectiveness of

their provisioning method in terms of both cost and deadline compliance. Also,

while centralized datacenter schedulers can make high-quality placement decisions

when scheduling tasks in a cluster, several efforts have been made to address the

response time for interactive tasks and cluster utilization challenges. In [34], Gog

et al. proposed Firmament, a centralized scheduler that scales to over ten thousand

machines at sub-second placement latency even though it continuously reschedules

all tasks via a min-cost max-flow (MCMF) optimization.

Most of the existing efforts are focused on workflow execution in a single cloud

site. As scientific workflows are increasingly deployed across multiple clouds or data

centers with network infrastructures to support inter-cloud data transfers, there is

a need to revisit the workflow mapping problems in multi-cloud environments. For

VM placement in such environments, cloud service providers must optimize the use

of physical resources by a careful allocation of VMs to hosts, continuously balancing

between the conflicting requirements on performance and operational costs. In

recent years, several algorithms have been proposed for this important problem [42].
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(a) The gap time when Ti < Ti+1.

(b) The gap time when Ti > Ti+1.

Figure 7.5 Execution dynamics in Case 2.
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corresponding worker has a delay of Ti+1. Since Ti < Ti+1, the gap time is

different from that of Bolti. However, there is a one-to-one mapping between

the finish time of Bolti and Bolti+1, as well as the gap time of Bolti and

Bolti+1. Therefore, Bolti+1’s gap time sequence can be mapped to Bolti’s gap

time sequence, and Bolti+1 should have the same cyclic pattern as Bolti.

• Case 2 when Ni > Ni+1. Figure 7.5(a) shows the case when Ti < Ti+1. We

assign the k-th worker of Bolti+1 to process the next tuple emitted from the

j-th worker of Bolti. There is a one-to-one mapping from the finish time of

each tuple processed by Bolti to the finish time of the same tuple processed by

Bolti+1. Since the gap time of Bolti has a cyclic pattern, so does the gap time

of Bolti+1. Figure 7.5(b) shows the case when Ti > Ti+1, where the situation is

similar to Figure 7.5(a). The only difference is that there may exist a certain

waiting time between the first tuple’s start time in the next cycle and the last

tuple’s finish time of each worker of Bolti+1. Since the tuple mapping and the

corresponding delay time remain the same in each cycle, so the cyclic pattern

carries on in Bolti+1. When Ti = Ti+1, it is obvious that Bolti+1 exhibits a

cyclic pattern.

• Case 3 when Ni < Ni+1. The execution dynamics analysis is similar to Case 2

and hence is omitted.

Note that Bolti may have multiple upstream bolts. Assume that there are n

upstream bolts Boltk, where k = i − n, ..., i − 2, i − 1. Since the number of workers

for each bolt may be different, we consider the lowest common multiple LCMi of all

Nk as the number of workers for each bolt. These n upstream bolts can be treated as

a single virtual bolt with LCMi workers. The j-th worker, j = 1, 2, ..., LCMi, emits

a tuple at the latest time when Boltk emits the j-th tuple. After the transformation,

based on the above case, we can prove that the gap time of any bolt has a cyclic
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Figure 7.6 Illustration of gap time for throughput calculation.

pattern.

Proof ends.

This cyclic pattern is critical to modeling the throughput of any module vtp,

which denotes either a spout or a bolt Bolt in the Storm topology. According to

Theorem 1, we plot the relationship between tuple index and processing time for

each tuple on module vtp in Figure 7.6, which shows two cycles for illustration.

To calculate throughput, we consider a period of time and the number of tuples

processed during this period. Since the gap time of Bolti has a cyclic pattern, we

calculate the throughput by counting the number of tuples processed per cycle. The

first cycle is from time 0 to n and the second one is from time n + 1 to 2n, where n

is the end time of the first cycle in ms (time unit). Hence, the cycle time CTvtp = n.
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In each cycle, vtp processes m tuples, defined as tuple count per cycle TCPCvtp . We

define the throughput T (M , vtp) of module vtp under the mapping scheme of M as

the inverse of the average processing time for each tuple during each cycle:

T (M , vtp) =
1

CTvtp

TCPCvtp

=
TCPCvtp

CTvtp

. (7.2)

A bottleneck is a process in a chain of processes whose computing power limits

the computing capacity of the whole execution chain, and may result in stalls in

execution. A global bottleneck module is the one with the smallest T (M , vtp), and

the throughput of the entire topology is determined by the bottleneck module’s

throughput, defined as:

GT (M ) = min
vtp∈Vtp

T (M , vtp). (7.3)

Based on the above mathematical models, we formulate a Storm Topology

Mapping problem for maximum throughput in clouds under Budget Constraint,

referred to as STM-BC, as follows.

Definition 4. Given a DAG-structured Storm topology Gtp(Vtp, Etp), a set V T of

available VM types, and a fixed financial budget b per time unit, we wish to find a

topology mapping scheme M to achieve the Maximum Throughput (MT):

MT = max
all possible M

MT (M ), (7.4)

while satisfying the following budget constraint:

C ≤ b, (7.5)
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where C is the total financial cost of VMs used for the Storm topology execution per

time unit, calculated as

C =
∑

V Ms(vt) used in M

p(vt), (7.6)

where vtp is mapped to V M(vt), for each vtp ∈ Vtp.

The problem formulated above is a generalized version of the MFR-ANR

problem in [28], which only considers a pipeline structured workflow without parallel

computing for each module. Specifically, in MFR-ANR, the authors consider a linear

computing pipeline consisting of a number of sequential modules and a computer

network represented as a directed arbitrary graph. They aim to find a one-on-one

mapping scheme between a module and a computing node to achieve maximum frame

rate. Note that a pipeline is a special case of workflow, and one-on-one mapping

does not allow parallel computing as one module must be processed exclusively by

one computing node. In our work, we formulate STM-BC, which supports parallel

computing since one module (either a spout or a bolt in Storm) can be processed by

multiple workers. Since MFR-ANR, which is a special case of STM-BC, has been

proved to be NP-complete and non-approximable, so is STM-BC. Hence, we focus

on the design of heuristic solutions to our problem.

We would like to point out that our cost models can be adapted to other stream

data processing platforms, such as Spark Streaming [3] workflows where each module

in the workflow is a Spark Streaming job. Such adapted cost models can be used

to find the mapping of Spark jobs in the workflow to a set of physical or virtual

computing nodes.

7.2 Algorithm Design

We design a bottleneck-oriented topology mapping (BOTM) algorithm in Storm to

solve STM-BC. BOTM determines not only the VT selection but also the degree of
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parallelism (DoP) for each module in the topology. The key idea is to iteratively

identify the global bottleneck module and strategically compute an appropriate

adjustment for this module’s VT selection and degree of parallelism to achieve

the maximum increase of the global workflow throughput. Note that the default

scheduler in Storm assigns executors in a round-robin manner without considering

the global bottleneck.

7.2.1 Bottleneck-Oriented Topology Mapping

The pseudocode of BOTM is provided in Algorithm.12, which consists of the

following key steps.

Step 1) Sort the available VM types V T according to the total CPU frequency of all

virtual cores, which determines the aggregate computing power in unit of MIPS

(million instructions per second), memory space, and I/O speed. Initially,

every module in the workflow is assigned to the worst vt in the cloud. If this

mapping scheme exceeds the budget, there is no feasible solution; otherwise,

continue.

Step 2) Calculate the throughput for each module in the workflow based on the

initial mapping scheme from Step 1. The module with the smallest throughput

determines the global bottleneck.

Step 3) Call Function SelectV T () in Algorithm.13, check if it is possible to adjust

the degree of parallelism and upgrade the type of VMs in order to achieve

a higher global throughput within the budget. There are multiple options

to determine the degree of parallelism and the vt for the global bottleneck

module: add one more VM of the current vt within Nvt, which denotes the

number of VM instances of the current vt; try to upgrade vt one level up at a

time until reaching the best vt, and for each vt, gradually decrease the degree

of parallelism from the degree of the current vt selection to 1. Every time
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we try to make an adjustment, we first eliminate the options that exceed the

budget, and then compare the new global throughput after the adjustment.

The option that results in the maximum increase in the global throughput is

selected. Note that after each adjustment, the global bottleneck module may

change.

Step 4) If any upgrade adjustment within the budget does not lead to a better

global throughput, the algorithm terminates. Otherwise, update the degree of

parallelism and the vt for the current bottleneck module, as well as the current

global throughput.

Step 5) Go back to Step 2, and repeat the above process until no feasible upgrade

adjustment option is available.

After identifying the global bottleneck module in Step 2, we try to increase

the throughput of the current global bottleneck module by making an adjustment

to the VT selection and the degree of parallelism of this module within the budget

in Step 3. We consider several adjustment options and select one that leads to the

maximum increase of the global workflow throughput. We would like to point out

that the global bottleneck may shift to a different module after the adjustment, and

therefore, it does not always yield the best performance if we only maximize the

throughput increase of the current bottleneck module.

To increase the throughput of the current bottleneck module, there are two

ways to make adjustments: i) increase the number of VM instances of the current vt

by one; ii) choose a more powerful vt and vary the module’s DoP from its current

DoP to one. Any option that exceeds the budget constraint is ruled out. Among the

feasible options within the budget constraint, we select the option that maximizes

the throughput increase of the entire workflow. Note that in some cases adding
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Algorithm 12: BOTM

Input: a DAG-structured topology Gtp(Vtp, Etp), a set V T of VM types, the

number Nvt of available VM instances of each vt, and a fixed financial budget b.

Output: the max throughput MT of the topology.
1: curTH = 0;

2: MT = 0;

3: sort the VM type V T in an increasing order of system resources;

4: Assign every module vtp ∈ Vtp to a VM instance of the worst vt for the topology;

5: if the cost > b then

6: throw ERROR(“budget insufficient.”);

7: Calculate curTH and assign MT with curTH

8: while true do

9: tIndex = the index of the bottleneck module with the smallest throughput curTH;

10: {tType, tNum} = selectV T (tIndex, V T, Nvt, b, curTH);

11: if (tType == −1) then

12: break;

13: update tType and tNum for this bottleneck module;

14: MT = curTH;

15: return MT .
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Algorithm 13: SelectVT

Input: the index of the bottleneck module tIndex, the VM type V T with the

available number Nvt of VM instances of each vt, a fixed financial budget b, and

the current topology throughput curTH .

Output: the VT type tType and the degree tNum of parallelism for the

bottleneck module.
1: tType = −1;

2: tNum = −1;

3: curType = VT type of tIndex;

4: curNum = the degree of parallelism for the bottleneck module of tIndex;

5: for all vt ∈ V T do

6: if vt is the same as curType and one more VM instance of vt is available then

7: assign one more VM instance of vt to module of tIndex;

8: calculate the topology throughput TH after the adjustment;

9: if cost ≤ b and TH > curTH then

10: tType = vt;

11: curTH = TH;

12: tNum = curNum + 1;

13: else if vt is better than curType then

14: tmpNum = curNum;

15: while tmpNum > 0 do

16: assign tmpNum VM instances of vt to module of tIndex;

17: calculate the topology throughput TH after the adjustment;

18: if cost ≤ b and TH > curTH then

19: tType = vt;

20: curTH = TH;

21: tNum = tmpNum;

22: tmpNum −−;

23: return {tType, tNum}.
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Figure 7.7 Performance measurements for simulations under different budget levels.
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resources may result in reduced cost. Hence, we calculate the financial cost every

time when we make a change to the selection of virtual machines.

In Storm, users are allowed to change the DoP for each module of the topology,

but it is generally difficult for them to decide the most suitable DoP for each module.

In many cases, users may specify an arbitrary DoP based on their empirical study.

Our work not only selects the suitable vt but also determines the suitable degree of

parallelism for each module of the workflow.

The time complexity of BOTM is O(|Vtp| ∙max(Nvt) ∙ |V T |), where |V T | is the

number of VM types, max(Nvt) denotes the largest number of VM instances for all

vt ∈ V T . is intra- or inter-cloud

7.3 Simulation-based Performance Evaluation

7.3.1 Simulation Settings

We implement the proposed BOTM algorithm in C++ and evaluate its performance

in comparison with the default Storm configuration, denoted as STORM DEFAULT,

and a heuristic algorithm VM-GREEDY. By comparing with Storm’s default

scheduler, which is used by many real-life applications, we are able to examine

the benefits of BOTM to both service providers and end users when executing

budget-constrained workflows. VM-GREEDY is a commonly used benchmark

method that takes a greedy strategy for VM optimization to assign as many

high-end VM instances as possible within the budget. The source code of BOTM

implementation is available for download in GitHub Repository [13].

The problem size (reflected by the problem index) is defined as a 2-tuple

(|Vtp|, |Etp|), where |Vtp| is the number of Storm topology tasks, and |Etp| is the

number of topology links. We generate topology instances of different scales in a

random manner as follows [52]: i) lay out all |Vtp| modules sequentially along a

pipeline, each of which is assigned a workload randomly generated within the range
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[5, 500], which represents the total number of million instructions; ii) for each module,

add an input edge from a randomly selected preceding module and add an output

edge to a randomly selected succeeding module (the first spout module only needs

output and the last bolt module only needs input); iii) randomly select two modules

from the pipeline and add a directed edge between them (from left to right) until

reaching the given number of edges.

We compare BOTM with the other two algorithms in comparison in terms of

workflow throughput under the same budget constraint.

Comparison with Optimal Solutions We compare BOTM with optimal solutions

in three small-scale problems of (3, 3, 2), (4, 4, 3), and (4, 5, 4), each in the form of

(number of modules, number of edges, number of VTs). For each problem size, we

randomly generate 10 problem instances with different module workloads and DAG

topologies. In each problem instance, we specify five different budget levels. We run

all three algorithms on these instances and compare the throughput measurements

with the optimal ones computed by an exhaustive search-based approach. Figure

7.8 shows the number of optimal results among 50 instances (10 workflow instances

× 5 budget levels) achieved by BOTM, VM-GREEDY, and STORM DEFAULT,

respectively, under different problem sizes. In (3, 3, 2), STORM DEFAULT does not

produce any optimal solution and thus is not visible in the chart. We observe that

BOTM is more likely to achieve the optimality than the others in a statistical sense,

which indicates the efficacy of BOTM. However, since these are small-scale problem

instances, the absolute values of the differences from the optimal results are not

significant.

7.3.2 Comparison with Other Methods

In the simulation, we consider 16 virtual machine types with their respective

system specifications and in-cloud financial costs randomly selected from a range
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Figure 7.8 The number of optimal results among 50 instances (10 workflow instances

× 5 budget levels) produced by BOTM, VM-GREEDY and STORM

DEFAULT, respectively, under different problem sizes.

corresponding to commonly used virtual machines provisioned by Amazon Web

Services (AWS) [18]. We consider 20 problem sizes from small to large scales, indexed

from 1 to 20. For each problem size, we randomly generate 20 problem instances, in

each of which, we choose 6 budget levels with an equal interval of Δb = (bmax−bmin)/6

within a certain budget range [bmin, bmax], where Bmin is 10% more than the minimum

budget to run the entire workflow on the worst cluster, and Bmax is 10% more than

the maximum budget to run the entire workflow on the best cluster. For each of the

6 budget levels from low to high levels, indexed from 1 to 6, we run the scheduling

simulation by iterating through 20 problem sizes from small to large scales. We

measure the average throughput with a standard deviation achieved by BOTM,

VM-GREEDY, and STORM DEFAULT, respectively. These measurements show

the performance superiority of BOTM at each of the six budget levels. The results

at levels 1, 3 and 5 are plotted in Figure 7.7 for a visual comparison.
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These performance results show that BOTM achieves performance improvement

over VM-GREEDY and STORM DEFAULT. Such performance improvements are

considered significant for stream data processing in large-scale scientific applications.

On average, the simulation results show that BOTM achieves a throughput that is 2.3

times of VM-GREEDY and 50% higher than STORM DEFAULT. This is considered

to be a significant improvement when dealing with large-scale stream data.

7.3.3 Convergence of BOTM

To investigate the convergence property of BOTM, we run this algorithm on the

problem instance of Index 5 under three different budget levels, i.e., low, medium,

and high. The low budget level is 10% more than the budget that is sufficient for

the workflow to be executed using the worst virtual machines; the high budget level

is 10% less than the budget that is sufficient for the workflow to be executed using

the best virtual machines; the medium budget level is 50% of the budget that is

sufficient for the workflow to be executed using the best virtual machines. We plot

the optimization process of BOTM in these three scenarios in Figure 7.9, which

shows that BOTM converges to the maximum throughput after 30 iterations within

less than one second. For problem index 10 and above, we observe that BOTM

converges after at most 50 iterations.

7.4 Experiment-based Performance Evaluation

In this section, we conduct two sets of experiments on two real-life datasets. Different

data volumes (12GB and less than 1GB data) are tested for scalability evaluation.

7.4.1 Experiment 1 with Flight Data

Storm Topology We conduct Storm experiments for streaming data processing

to compute various statistics on 22 years of global flight datasets of about 12GB

from 1987 to 2008 at Statistical Computing [14]. The topology structure is shown
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Figure 7.9 The optimization process of BOTM running the problem instance of

Index 5 in the simulations under three different budget levels.

Figure 7.10 The structure of the Storm topology for flight data processing.

in Figure 7.10, where every module is a task (spout/bolt): w0 emits streaming data

instances every 1 ms; w1 filters out the headline in each data file; w2 and w5 calculate

the average taxi in/out time at each airport, where w2’s key is the airport name and

value is the taxi time, w5’s key is the airport name and value is the average taxi time;
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Table 7.1 System Specifications of Different VM Types in the Experiment

VM InstanceAvailability CPU RAM Num of Price

Type Name Zone (GHz) (GB) Instances ($/min)

vt1 t2.small US West

(Oregon)

2.5×1 2 9 0.0230

vt2 t2.mediumUS West

(Oregon)

2.5×2 4 4 0.0464

vt3 t2.xlarge US West

(Oregon)

2.4×4 16 4 0.1856

vt4 t2.2xlarge US West

(Oregon)

2.4×8 32 4 0.3712

w3 and w6 calculate the average delay frequency of each flight, where w3’s key is the

flight number and value is the delay frequency, w6’s key is the flight number and value

is the average delay frequency; w4 and w7 calculate the frequency of each “Flight

Cancellation Reason” over all of the years, where w4’s key is the cancellation code

and w4’s value is 1, w7’s key is the cancellation code and w7’s value is the cancellation

frequency. w8 collects all the results in each category, where key is the ranking type

(cancellation code, airport name, and flight number), and value is the result (the

average taxi time, the average delay frequency, the cancellation frequency).

Experimental Settings We consider four VM types in Amazon Web Services

(AWS) [18] and construct three different heterogeneous clusters. Table 7.1 tabulates

the system specification and pricing model (in unit of US Dollar per minute) of each

VM type, and the number of available VM instances of each VM type. In each

112



Table 7.2 Execution Time Matrix Te in ms

w0 w1 w2 w3 w4 w5 w6 w7 w8

vt1 1.85 46.21 53.44 105.83 97.19 12.56 17.39 55.70 11.23

vt2 1.47 26.79 6.57 12.04 39.98 1.09 4.18 3.52 2.05

vt3 1.38 14.58 5.63 11.06 26.18 1.08 4.09 3.47 1.54

vt4 1.21 13.33 3.13 6.42 24.77 1.07 3.37 2.62 1.41

Table 7.3 The VM Instances of the Storm Cluster Provisioned under Different

Mapping schemes in AWS

Cluster vt1 vt2 vt3 vt4 Total number of

Inst. Inst. Inst. Inst. VM instances

C1: under BOTM 4 2 0 4 10

C2: under VM-GREEDY 6 1 1 4 12

C3: randomly generated 4 4 3 2 13

Table 7.4 Mapping Schemes Obtained by BOTM and VM-G (VM-GREEDY) in

Experiment 1, Where Each Cell Stores (vt,DoP ) for the Corresponding Module

w0 w1 w2 w3 w4 w5 w6 w7 w8

BOTM (1, 1) (2, 1) (2, 1) (4, 2) (4, 1) (1, 1) (4, 1) (1, 1) (1, 1)

VM-G (1, 1) (2, 1) (4, 4) (1, 1) (1, 1) (3, 1) (1, 1) (1, 1) (1, 1)
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Table 7.5 Throughput Measurements in Tuples/min of BOTM, VM-G (VM-

GREEDY), and STORM (STORM DEFAULT) in Experiment 1 on Flight Data,

Where Each Run Lasts for 10 Hours

Algorithm. Idx w0 w1 w2 w3 w4 w5 w6 w7 w8 Thruput Average

(average number of tuples processed by each module within a 10-min window) Thruput

BOTM 1 25180 24800 24760 24940 24060 49040 24700 23980 97660 2398

C1 2 24640 24420 24360 24580 23640 48280 24300 23560 95900 2356 2389

3 25620 24880 24820 25240 24240 49200 25000 24140 97880 2414

VM-G 1 19340 19340 19360 19300 18860 38360 19100 18860 76160 1886

C2 2 22660 22660 22620 22600 21920 44720 22360 21920 89020 2192 1682

3 11460 11460 11440 11440 9680 22620 11320 9680 43580 968

STORM 1 15940 15920 15900 15880 15100 31460 15720 15120 62300 1510

C1 2 16700 16700 16660 16680 15900 32980 16500 15900 65380 1590 1573

DoP=1 3 16680 16660 16660 16660 16180 32980 16480 16180 65520 1618

STORM 1 20200 18640 18600 18600 17700 36780 18400 17700 72880 1770

C1 2 18140 18140 18140 18120 16860 35860 17940 16860 70640 1686 1765

DoP=2 3 20300 20200 20160 20160 18380 39940 19960 18340 78260 1838

STORM 1 2140 1440 1420 1440 720 2860 1440 720 5000 72

C2 2 3480 1600 1540 1540 660 3020 1500 680 5220 66 68

DoP=1 3 2740 1580 1560 1580 660 3120 1560 680 5320 66

STORM 1 7160 2180 1480 1500 820 2880 1500 840 5200 82

C2 2 7380 1660 1260 1280 640 2440 1240 640 4300 64 74

DoP=2 3 7540 1480 1460 1460 760 2880 1440 740 5020 76

STORM 1 9640 2080 1360 1480 760 2720 1440 800 4860 76

C2 2 7980 2400 1380 1420 680 2660 1360 640 4700 64 74

DoP=3 3 9760 2180 1380 1320 820 2700 1300 840 4760 82

STORM 1 10280 2120 1340 1360 780 2640 1280 780 4720 78

C2 2 11700 1880 1360 1340 740 2620 1360 720 4660 72 82

DoP=4 3 10960 2200 1360 1300 960 2600 2600 2600 2600 96

STORM 1 20440 19560 19500 19500 18920 38620 19320 18920 76860 1892

C3 2 16700 16720 16660 16660 15860 33040 16520 15860 65420 1586 1673

DoP=1 3 16680 16120 16080 16080 15400 31840 15920 15420 63180 1540

STORM 1 22260 21040 21000 21000 19900 41580 20800 19880 82280 1988

C3 2 19220 17160 17140 17140 16220 33940 16960 16200 67140 1620 1320

DoP=2 3 7060 4440 4440 4440 3520 8800 4420 3540 16720 352

STORM 1 5380 5140 5160 5160 2300 10260 5100 2300 17700 230

C3 2 5540 4860 4860 4860 2380 9580 4800 2420 16760 238 236

DoP=3 3 5520 4880 4840 4840 2420 9600 4780 2400 16800 240

STORM 1 6520 4160 4100 4120 2180 8200 4100 2160 14420 216

C3 2 7120 4960 4960 4960 2320 9800 4920 2340 17040 232 228

DoP=4 3 6660 4360 4320 4320 2360 9560 4280 2380 15260 236
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Table 7.6 Execution Time Matrix Te in ms for WRF

w0 w1 w2 w3 w4 w5 w6 w7

vt1 100.17 6889.82 3434.38 8854.28 17591.02 55361.93 65107.75 1007.06

vt2 100.21 3592.12 1813.37 4069.33 7821.38 29563.50 28720.50 586.00

vt3 100.28 1868.93 1710.83 2145.80 4163.83 15309.33 11885.50 491.67

vt4 100.26 1119.35 554.91 1358.38 2595.86 3960.33 11646.00 141.50

cluster, we install STORM 1.0.0 on the VM instances, and install Zookeeper 3.4.8 on

the VM instance where Nimbus is installed. As shown in Table. 7.9 and Table. 7.5),

since the processing time of each tuple by any module of the workflow is on the order

of seconds, their performance is not affected by the degradation of the virtual CPU

performance, as experienced by some users running long-time jobs in AWS.

Performance Comparison We first execute the entire topology on one VM

instance for each of four VT types in stand-alone mode to obtain the execution

time matrix for one tuple on the module, as shown in Table 7.2. For w1 to w4, the

time complexity of each task is O(n), where n is the size of the record. For w5 to

w8, the time complexity of each task is O(1).

In the experiment, the time interval for emitting two contiguous tuples is set to

be a random value within a range of [0.5ms, 1.5ms], and the budget is set to be five

times p(vt4). We run BOTM and VM-GREEDY to obtain two mapping schemes,

as tabulated in Table 7.4, where each cell stores (vt,DoP ) for the corresponding

module. For example, (4, 2) for module w3 in the mapping scheme produced by

BOTM means that 2 VM instances of VM type vt4 are used to run 2 instances of

w3.

Based on the mapping schemes produced by BOTM and VM-GREEDY, we

set up two corresponding clusters C1 and C2. The C1 cluster produced by BOTM

contains 10 VM instances, while the C2 cluster produced by VM-GREEDY contains
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12 VM instances. We also set up a randomly generated cluster C3 that contains

13 VM instances satisfying the budget constraint. The configurations of these three

clusters are provided in Table 7.3.

We run the Storm topology for flight data processing in C1 and C2 produced by

BOTM and VM-GREEDY, respectively, for three times. Also, we run the topology

in the default Storm system in clusters C1, and set the DoP for each module from 1

to the highest DoP in the mapping scheme achieved by BOTM, which is 2. Similarly,

we run the topology in the default Storm system in clusters C2, and set the DoP

for each module from 1 to the highest DoP in the mapping scheme achieved by VM-

GREEDY, which is 4. In the randomly generated cluster C3, we set the DoP for each

module from 1 to 4. Note that for each DoP , we run the experiment for three times.

The performance measurements in all of these experiments are tabulated in Table 7.5,

where the underlined throughput performance measured within a 10-minute window

corresponds to the global bottleneck module. We provide such microscopic behaviors

in every experiment to study the stability of each algorithm. These measurements

show that the proposed BOTM algorithm achieves consistent performance in three

runs while the other algorithms in comparison lack such stability.

We calculate the average throughput with standard deviation across different

DoP based on these performance measurements, and plot them in Figures. 7.11 and

7.12 for a visual comparison. We observe that BOTM consistently outperforms the

other algorithms in comparison.

Both BOTM and VM-GREEDY decide the VT selection and the DoP for each

module of the workflow. In default Storm, we vary the DoP for every module from 1

to the highest DoP among all modules in the mapping scheme produced by BOTM

and VM-GREEDY. These results show that a higher DoP does not always yield a
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Figure 7.11 The average throughput with standard deviation of the Storm topology

across different degrees of parallelism (DoP) in clusters C1 and C2 produced by

BOTM and VM-GREEDY, respectively, and a randomly generated C3 under a given

budget.
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Figure 7.12 The average throughput (per core) with standard deviation of the

Storm topology across different degrees of parallelism (DoP) in clusters C1 and C2

produced by BOTM and VM-GREEDY, respectively, and a randomly generated C3

under a given budget.

Figure 7.13 A general structure of the executable WRF workflow.
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Table 7.7 Storm Cluster VM Instances Provisioned Under Different Mapping

Schemes in AWS

Cluster vt1 vt2 vt3 vt4 Total number of

Inst. Inst. Inst. Inst. VM instances

C4: under BOTM 4 2 0 2 8

C5: under VM-GREEDY 4 2 1 3 10

C6: randomly generated 0 2 3 3 8

Table 7.8 Mapping Schemes Obtained by BOTM and VM-G (VM-GREEDY) in

Experiment 2, Where Each Cell Stores (vt,DoP ) for the Corresponding Module

w0 w1 w2 w3 w4 w5 w6 w7

BOTM (1, 1) (1, 1) (1, 1) (1, 1) (2, 1) (4, 1) (4, 1) (2, 1)

VM-G (1, 1) (2, 1) (4, 3) (1, 1) (1, 1) (3, 2) (2, 1) (1, 1)

better workflow throughput performance as the default scheduler in Storm does not

consider the global bottleneck.

7.4.2 Experiment 2 with Climate Data

WRF Workflow To evaluate the performance of our algorithm in real computing

environments, we conduct Storm experiments based on the Weather Research and

Forecasting (WRF) model [50], which has been widely adopted for regional to

continental scale weather forecast. The WRF model [9] generates two large classes

of simulations either with an ideal initialization or utilizing real data. In our

experiments, the simulations are generated from real data, which usually requires

preprocessing from the WPS package [10] to provide each atmospheric and static

field with fidelity appropriate to the chosen grid resolution for the model.

The structure of a general WRF workflow is illustrated in Figure 7.13,

where the WPS consists of three independent programs: geogrid.exe, ungrib.exe,
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and metgrid.exe [54]. The geogrid program defines the simulation domains and

interpolates various terrestrial datasets to the model grids. The user can specify

information in the namelist file of WPS to define simulation domains.that typically

contain more fields than needed to initialize WRF. The ungrib program “degrib”

the data and stores the results in a simple intermediate format. The metgrid

program horizontally interpolates the intermediate-format meteorological data that

are extracted by the ungrib program into the simulation domains defined by the

geogrid program. The interpolated metgrid output can then be ingested by the WRF

package, which the data by WPS, we will run the programs in WRF model.contains

an initialization program real.exe for real data and a numerical integration program

wrf.exe. The postprocessing model consists of ARWpost and GrADs. ARWpost

reads-in WRF-ARW model data and creates output files for display by GrADS.

We duplicate three WRF pipelines each from ungrib.exe to ARWpost.exe, and

group these programs into different aggregate modules to simulate real-life workflow

clustering and provide various module parallelism, as shown in Figures. 7.14 and 7.15.

Figure 7.15 is a high-level view of grouped workflow in Figure 7.14, where w0 and

w7 are the start and end modules [54].

We execute the WRF topology in the same computing environment as the

experiments for flight data processing.

Performance Comparison We first execute the entire topology on one VM

instance of each of four VT types in the stand-alone mode to obtain the execution

time matrix for one tuple on the module, as shown in Table 7.6.

Similarly, in this set of experiments, the time interval for emitting two

contiguous tuples is set to be a random value within a range of [0 .5ms, 1.5ms]. The

budget is set to be five times p(vt4). We run BOTM and VM-GREEDY to obtain

two mapping schemes as tabulated in Table 7.8. Similar to Table 7.4, each cell stores
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Figure 7.14 The WRF Storm workflow of three pipelines in the experiments.

Figure 7.15 The WRF Storm workflow after grouping.

(vt,DoP ) for each corresponding module. Based on the mapping schemes produced

by BOTM and VM-GREEDY, we set up two corresponding clusters C4 and C5.

The C4 cluster produced by BOTM contains 8 VM instances, while the C5 cluster

produced by VM-GREEDY contains 10 VM instances. We also set up a randomly

generated cluster C6 that contains 8 VM instances satisfying the budget constraint.

The configurations of these three clusters are provided in Table 7.7.

We run the Storm topology for WRF workflow in C4 and C5 produced by

BOTM and VM-GREEDY, respectively, for three times. Also, we run the topology

in the default Storm system in clusters C4, and set the DoP for each module to be

1, which is the highest DoP in the mapping scheme achieved by BOTM. Similarly,
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Table 7.9 Throughput Measurements in tuples/hour of BOTM, VM-G (VM-

GREEDY), and STORM (STORM DEFAULT) in Experiment 2 on WRF Workflow,

Where Each Run Lasts for 10 Hours

Algorithm Idx w0 w1 w2 w3 w4 w5 w6 w7 Thruhput Average

(average number of tuples processed by each module Thruput

within a 10-min window)

BOTM 1 960 440 900 400 200 60 40 100 240

C4 2 940 460 920 400 200 40 40 100 240 240

3 940 440 900 380 220 40 60 100 240

VM-G 1 875 482 71 393 196 54 36 120 216

C5 2 893 429 321 339 339 36 36 89 216 210

3 810 479 397 380 380 33 50 99 198

STORM 1 480 21 42 10 10 10 10 10 60

66C4 2 920 60 140 60 60 20 20 40 120

DoP=1 3 137 9 24 9 23 3 3 3 18

STORM 1 531 11 23 34 34 11 11 22 66

36C5 2 133 9 17 9 9 3 3 3 18

DoP=1 3 164 7 14 7 7 4 4 4 24

STORM 1 261 20 38 14 6 3 6 6 18

22C5 2 209 5 9 5 9 2 5 5 12

DoP=2 3 564 58 122 58 38 13 6 13 36

STORM 1 485 4 11 4 20 4 4 8 24

24C5 2 631 28 42 19 14 14 14 5 30

DoP=3 3 380 20 12 12 3 3 6 3 18

STORM 1 375 17 25 8 17 8 8 8 48

28C6 2 143 3 3 3 6 3 3 6 18

DoP=1 3 120 5 8 3 10 3 3 3 18

STORM 1 297 13 30 13 13 3 7 7 18

18C6 2 281 24 46 17 12 4 3 6 18

DoP=2 3 245 3 11 5 11 3 5 5 18

STORM 1 812 18 36 18 61 18 24 48 108

48C6 2 137 2 4 1 5 3 3 7 6

DoP=3 3 345 8 16 10 23 8 5 13 30
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we run the topology in the default Storm system in clusters C5, and set the DoP

for each module from 1 to the highest DoP in the mapping scheme achieved by

VM-GREEDY, which is 3. In the randomly generated cluster C6, we set the DoP

for each module from 1 to 3. For each DoP , we run the experiment for three times.

All performance measurements are tabulated in Table 7.9, where the underlined

throughput performance measured within a 10-min window corresponds to the global

bottleneck module.

We calculate the average throughput with standard deviation across different

degrees of parallelism based on these performance measurements, and plot them in

Figures. 7.16 and 7.17 for a visual comparison. Again, we observe that BOTM

consistently outperforms the other algorithms in comparison. In Figure 7.18, we

also illustrate the resource consumption (number of cores × memory size × time

unit) for WRF data processing across different degrees of parallelism (DoP) in

clusters C4, C5, and randomly generated cluster C6 by BOTM, VM-GREEDY and

STORM DEFAULT, respectively, under a given budget.

In this experiment, we observe that the DoP for each module in the mapping

scheme produced by BOTM is only 1. However, we still run Storm in its default

setting in the cluster provided by BOTM and increase the DoP from 1 to the highest

degree decided by VM-GREEDY. These results show that even without parallel

processing, BOTM still outperforms the other algorithms with parallel processing.

7.4.3 Summary

The performance superiority of BOTM is brought by a careful design that follows

two important guidelines: i) it is bottleneck-oriented as the global bottleneck

module determines the overall throughput of the entire workflow, and ii) it is

bottleneck-adaptive as the global bottleneck may shift to a different module after

each adjustment and the most suitable adjustment is adopted to maximize the global
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Figure 7.16 The average throughput with standard deviation of the Storm topology

for WRF data processing across different degrees of parallelism (DoP) in clusters

C4 and C5 produced by BOTM and VM-GREEDY, respectively, and randomly

generated cluster C6 under a given budget.

throughput of the workflow instead of the local throughput of any component module.

Storm’s default scheduler (STORM DEFAULT) neither considers the bottleneck

module nor performs selective resource allocation; VM-GREEDY also neglects the

bottleneck and only allocates resources to modules in a topologically sorted order.
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Figure 7.17 The average throughput (per core) with standard deviation of the

Storm topology for WRF data processing across different degrees of parallelism (DoP)

in clusters C4 and C5 produced by BOTM and VM-GREEDY, respectively, and

randomly generated cluster C6 under a given budget.
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Figure 7.18 The resource consumption for WRF data processing across different

degrees of parallelism (DoP) in clusters C4, C5, and randomly generated cluster

C6 by BOTM, VM-GREEDY and STORM DEFAULT, respectively, under a given

budget.
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CHAPTER 8

CONCLUSION

In this work, we focus on improving performance of big data computing workflows

for batch and stream data processing in multi-clouds. We have worked on serial-

computing workflows, MapReduce workflows and Storm-based streaming processing

workflows.

For serial computing workflows, we constructed rigorous mathematical models

to analyze the intra- and inter-cloud execution process of scientific workflows

and we formulated a budget-constrained workflow mapping problem to minimize

the makespan of scientific serial-computing workflows in multi-cloud environments,

referred to as BCMED-MC, which was shown to be NP-complete. For each of the

two senarios: mapping using dedicated VM, and mapping reusing VM, we designed

a heuristic algorithm that incorporates the cost of inter-cloud data movement into

workflow scheduling.

As we enter the big data era, several efforts have been made to develop workflow

engines for Hadoop ecosystem in clouds with virtual resources. We expanded

our work to Hadoop environments and formulated a budget-constrained workflow

mapping problem to minimize the makespan of MapReduce workflows in multi-cloud

environments, referred to as MinMRW-MC, which was shown to be NP-complete. We

designed a heuristic algorithm for MinMRW-MC that adapts the execution dynamics

of MapReduce programs..

Streaming data processing has become increasingly important due to its

impacts on a wide range of use cases, such as real-time trading analytics, malfunction

detection, campaign, social network, log processing and metrics analytics. To

meet the demands of streaming data processing, many new computing engines
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have emerged, including Apache Storm and Apache Spark (Spark Streaming). We

formulated a budget-constrained Storm topology mapping problem to maximize the

throughput in cloud environments, referred to as STM-BC, which was shown to be

NP-complete. We designed a heuristic algorithm BOTM for STM-BC.

The performance superiority of all solutions over other methods are demon-

strated through extensive simulations and real-life experiments in public clouds.

It would be of our future interest to refine and generalize the mathematical

models to achieve a higher level of accuracy for workflow execution time measurement

in real-world cloud environments. For example, the actual execution time of different

programs on different types of VMs is dependent on many factors such as program

structures and machine configurations. Particularly, when provisioning multiple VMs

on the same physical server, the performances of those VMs are correlated and

constrained by the physical machine. Moreover, in real networks, physical servers

may fail under a certain probability and the actual workload of workflow modules

may be subject to dynamic changes.
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