
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2019

A comparative study of russian trolls using several machine A comparative study of russian trolls using several machine

learning models on twitter data learning models on twitter data

Kannan Neten Dharan Kannan Neten Dharan
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kannan Neten Dharan, Kannan Neten Dharan, "A comparative study of russian trolls using several
machine learning models on twitter data" (2019). Theses. 1663.
https://digitalcommons.njit.edu/theses/1663

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1663?utm_source=digitalcommons.njit.edu%2Ftheses%2F1663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A COMPARATIVE STUDY OF RUSSIAN TROLLS USING SEVERAL
MACHINE LEARNING MODELS ON TWITTER DATA

by

Kannan Neten Dharan Kannan Neten Dharan

Ever since Russian trolls have been brought into light, their interference in the 2016 US

Presidential elections has been monitored and studied thoroughly. These Russian trolls

have fake accounts registered on several major social media sites to influence public

opinions. Our work involves trying to discover patterns in these tweets and classifying

them by using different machine learning approaches such as Support Vector Machines,

Word2vec and neural network models, and then creating a benchmark to compare all the

different models. Two machine learning models are developed for this purpose. The first

one is used to classify any given specific tweet as either troll or non-troll tweet. The second

model classifies specific tweets as coming from left trolls or right trolls, based on apparent

extreme political orientation. Several kinds of statistical analysis on these tweets are

performed based on the tweets and their classifications. Further, an analysis of the machine

learning algorithms, using several performance criteria, is presented.

A COMPARATIVE STUDY OF RUSSIAN TROLLS USING SEVERAL
MACHINE LEARNING MODELS ON TWITTER DATA

by
Kannan Neten Dharan Kannan Neten Dharan

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

August 2019

Copyright © 2019 by Kannan Neten Dharan

ALL RIGHTS RESERVED
.

APPROVAL PAGE

A COMPARATIVE STUDY OF RUSSIAN TROLLS USING SEVERAL
MACHINE LEARNING MODELS ON TWITTER DATA

Kannan Neten Dharan Kannan Neten Dharan

Dr. James Geller, Thesis Advisor Date
Professor of Computer Science, NJIT

Dr. Soon Ae Chun, Co-Advisor Date
Professor and Director of Information
Systems and Informatics Program,
College of Staten Island, NY

Dr. Senjuti Basu Roy, Assistant Professor Date
Department of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Kannan Neten Dharan Kannan Neten Dharan

Degree: 	 Master of Science

Date: 	 August 2019

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2019

• Dual Degree- Bachelor of Technology in Naval Architecture and Ocean
Engineering with Master of Technology in Applied Mechanics,
Indian Institute of Technology Madras, Chennai, India, 2016

Major: 	 Computer Science

iv

v

DEDICATION

I dedicate this thesis to my parents, Malathi Kannan and Kannan Manickam, and my

brother, Tharani Dharan who have always supported me, no matter what decision I take.

Their love, care and teaching over many years laid the foundations for the discipline and

application necessary to complete this work.

vi

ACKNOWLEDGMENT

I would like to express my gratitude to my thesis advisor, Professor James Geller and my

co-advisor Professor Soon Ae Chun, who have always been there to guide me throughout

the process of writing this thesis. They have always been supportive and encouraging.

 I would also like to thank Ruoyu Wang, PhD Student at NJIT who has helped me

with this project and also Prof. Richard Holowczak at CUNY Baruch College for sharing

large datasets of tweets for analysis.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……............................………………..…………………………. 1

2 DATASETS USED FOR BUILDING THE MODELS ……………………………. 3

 2.1 News Feed Dataset……………………….…………………………………….. 3

 2.2 Twitter Data from Baruch College………..……………………………………. 4

3 DATA PREPROCESSING ………………………………………………………… 4

4 CLASSIFICATION MODELS…….……………………………………………….. 5

 4.1 Support Vector Machine Classifier ………………..…………………………... 6

 4.1.1 Hyperplanes and Support Vectors………………………………………. 8

 4.1.2 Data Preprocessing……………...………………………………………. 9

 4.1.3 TF-IDF Vectorizer….…………...………………………………………. 10

 4.1.4 Building the SVM Classifier……………………………………………. 11

 4.2 Neural Network Classifier with One Hot Encoding ………………..…………. 12

 4.2.1 One-Hot Encoding………………………………………………………. 12

 4.2.2 Data Preprocessing……………...………………………………………. 13

 4.2.3 Building the Neural Network classifier with One Hot Encoding ………. 14

viii

TABLE OF CONTENTS
(continued)

Chapter Page

 4.3 CNN Neural Network Classifier with Word2vec Representation …………….. 17

 4.3.1 Convolutional Neural Network (CNN)…………………………………. 18

 4.3.2 Word2vec Models.……………...………………………………………. 18

 4.3.3 Data Preprocessing……………………………………………...………. 18

 4.3.4 Building the CNN Classifier using Existing Word2vec Model………… 19

 4.4 CNN Neural Network Classifier with State-of-the-art NLP Model BERT …… 21

 4.4.1 Data Preprocessing……………………………………………………… 21

 4.4.2 Building the CNN Model using BERT……………...………………….. 22

5 RESULTS………………………….……………………………………………….. 24

 5.1 Geospatial Analysis and Temporal Analysis on Baruch Dataset………………. 25

 5.2 Sentiment Analysis on Baruch Dataset with five million tweets………………. 29

6 CONCLUSIONS AND FUTURE WORKS...……………………………………… 33

APPENDIX 1....………………………………………………………………………... 34

 CODE A1 Troll Detector using SVM……………………………………………… 34

 CODE A2 Troll Detector using Neural Network with One-hot encoding…………. 38

 CODE A3 Troll Detector using CNN with Word2vec Representation……………. 41

 CODE A4 Troll Detector using CNN with State-of-the-art NLP BERT ……….…. 44

REFERENCES ………………………………………………………………………... 45

ix

LIST OF TABLES

Table Page

2.1 Relevant Columns Extracted from the News Feed Dataset………..…………….. 4

4.1 Examples of the News Feed Dataset with Sentiment Score Used for Building Our
Model

8

4.2 One Hot Matrices Model Classifier Results..………………………………….… 16

5.1 Comparing the Accuracy, Precision and Recall of All Our Machine Learning

Models……………………………………………………………………...……..

24

5.2 SVM Model Classifier Results on One Million Dataset…………………………. 25

5.3 CNN One Hot Matrices Model Classifier Results on Five Million Dataset…….. 25

5.4 Count of Tweets Containing Geo Location Data from Five Million Tweets
Dataset

27

x

LIST OF FIGURES

Figure Page

1.1 Flow diagram for troll Detector model and Left Right troll Classifier
Model………..…………………………………………………………………....

1

4.1 Optimal Seperating Hyperplane of Support Vector Machines in 2D…………….

9

4.2 Examples of Stemming of words using Porter Stemmer……………..………...... 10

4.3 Example of the process of sentence conversion into one hot matrices…………...

13

4.4 Activation functions for Neural networks with their equations and derivations… 15

5.1 Temporal Analysis on Baruch dataset based on left and right troll tweets………. 16

5.1 Temporal Analysis on Baruch dataset based on left and right troll tweets………. 26

5.2 Geospatial distribution of Left/Right troll tweets………………………………... 28

5.3 Geospatial distribution of Left troll tweets……..………………………………... 28

5.4 Geospatial distribution of Right troll tweets……………………………………... 29

5.5 Count of tweets for sentiment analysis on right troll tweets……………………... 30

5.6 Sentiment analysis bar chart for right troll tweets……..……………………….... 30

5.7 Count of tweets for sentiment analysis on left troll tweets…..…………………... 31

5.8 Sentiment analysis Bar Chart for Right Troll tweets …….…………………….... 31

5.9 Sentiment Analysis on Left and Right Troll tweets…………………….………... 32

xi

LIST OF DEFINITIONS

Russian trolls Russian trolls are state-sponsored anonymous Internet
political commentators and trolls linked to the Russian
government

Geospatial analysis Geospatial analysis is the collection of data with location
information, which can be used for gaining further insights

Temporal analysis Temporal analysis is collection of data which can be
analyzed to look for patterns based on time.

Neural Networks Neural Networks are computing systems vaguely inspired by
the biological neural networks that constitute animal brains.
These networks can be used to replicate some of the learning
behavior of the brain.

 1

CHAPTER 1

INTRODUCTION

Twitter data has been widely used in many of text mining projects. Unlike other social

media platforms, tweets are public and easy to retrieve from Twitter. Twitter has very good

APIs (Application Programming Interfaces) that help users to retrieve data in a

methodological way, which helps us to fetch data according to specific geographic region,

tweets in a specific timeframe, etc. We can fetch data from a targeted set of users as well.

That makes Twitter an excellent platform to work with.

Ever since Russian trolls have been brought into light during the 2016 US

Presidential elections, the influence of trolls has been studied in Computer Science.

However, there is no clear definition of what a troll is. Most authors assume that it is

obvious and their meaning of the word troll can only be inferred from their treatment of

the subject.

(Mojica, 2016) use of the word “troll” focuses on determining the intentions of the

user, whether the user is attempting to keep their intention hidden, how the posts were

interpreted by other users, and what the reactions are to specific posts.

Kumar et al. (2014) [6] use the term "trolling" when a user posts and spreads in-

formation that is deceptive, inaccurate, or outright rude. Trolling can be performed not only

on social media networks but also on any editable and viewable content on the web, such

as Wikipedia or YouTube. The authors develop an algorithm called TIA, Troll

Identification Algorithm, in order to classify such users as malicious or benign. This study

is more focused on the integrity of the network that the trolls are working on. Thus, anyone

who posts information that is incorrect may be a troll, unlike in (Mojica, 2016), where the

2

intentions of a user are the focus, so that any user who had malicious intentions is a troll.

In addition, if non-troll users make negative comments or posts, they are also considered

trolls. The requirement for being classified as a troll is not only based on the users' own

posts, but also on the responses.

In our work we want to leverage the data from Twitter and use it to identify Russian

troll tweets. More specifically, we will be using Russian troll tweets to build a classification

model that can classify any specific tweet as either being from a Russian troll or not.

 Figure 1.1 Flow diagram for troll Detector model and Left Right Troll Classifier
Model.

An initial review indicated that not all Russian trolls are of the same kind. Specifically, it

turned out that some of the rolls indicate a “left” political orientation, while other trolls

appear to be politically at the right end of the spectrum. Therefore, after building a machine

learning model that distinguishes between troll and non-troll tweets we built another model

Twitter Feed

Troll Classifier

Troll

Left/Right Troll
Classifier

Non-Troll

Non-troll
Tweets

Left Troll
Tweets

Right Troll
Tweets

3

that separates Left trolls from Right trolls. Figure 1.1 shows an overall process flow. The

box marked as Troll Classifier is the result of running a machine learning model on data

that was already classified by humans. Finding this model was a part of my research. This

kind of machine learning algorithm is called “supervised learning.” Similarly, the box

marked as Left/Right Troll Classifier incorporates a machine learning model to recognize

the political orientation of a troll tweet. This model was also created in this research by

using supervised machine learning.

4

CHAPTER 2

DATASETS USED FOR BUILDING THE MODELS

We have used four different datasets in this project. We will now discuss these datasets in

detail.

2.1 News Feed Dataset

For building our troll model, we used a dataset obtained from an online news portal by the

name of FiveThirtyEight (https://fivethirtyeight.com/). We obtained around 3 million

tweets from this web portal. Those tweets in turn were collected from accounts associated

with the “Internet Research Agency.” The Internet Research Agency (IRA) is a front

organization for a company paid by the Russian government to sow disinformation

(https://en.wikipedia.org/wiki/Internet_Research_Agency). The data is completely open

source licensed and it includes 2,973,371 tweets from 2,848 Twitter handles. It includes

every tweet’s author, text and date; the author’s follower count and the number of accounts

the author followed; and an indication of whether the tweet was a retweet. Authors are in

practice not real names but fabricated personas. For future reference, we will call this

dataset the FiveThirtyEight Dataset

Table 2.1 Relevant Columns Extracted from the News Feed Dataset
author content publish_date harvested_date account_type

 The ‘author’ column contains the twitter id of the user. The ‘content’ column

contains the tweet posted by the author. The ‘publish_date’ is the date on which the tweet

was published, whereas the ‘harvested_date’ is the date on which the tweets were retrieved.

The column ‘account_type’ tells us the kind of tweet it is, that is if it’s a left, right and

5

several other classifications. There are a lot of tweets that are in Russian as well. These

tweets are filtered using the ‘account_type’ column. For all the tweets, which are in

Russian, they have an ‘account_type’ as Russian.

2.2 Twitter Data from Baruch College

Three more Twitter datasets were derived, collected and maintained at Baruch

College(Holowczak) (http://optionsdata.baruch.cuny.edu/data1/delivery/twitter/). The

three datasets differ in size, the smallest containing 1 million tweets, the largest 20 million

tweets and an intermediate dataset comprising 5 million tweets. There is no evidence that

every one of those tweets is indeed a troll tweet. However, these tweets were retrieved from

users (Twitter handles, really) that have been known to generate troll messages. For future

reference, we will call this dataset the Baruch Dataset.

http://optionsdata.baruch.cuny.edu/data1/delivery/twitter/

6

CHAPTER 3

DATA PREPROCESSING

When working on text classification, it is the first step to preprocess the data, and the

preprocessing part is varied for every dataset. For this, we substitute URLs in tweets with

the word URL, and also make it into one of the stop words, so that it does not interfere with

our classification model or affect its performance.

We removed Twitter handles that appear to be irrelevant to the classification, and

we remove the Non-ASCII characters from the tweets. For removing Non-ASCII

characters, the ‘Pandas’ package of python was used (https://pandas.pydata.org).

The code for removing Non-ASCII characters is as follows:

def preprocessTweets(tweet):

tweet = re.sub("[^a-zA-Z]", str(tweet))

tweet_processed = stem(preprocessTweets(tweet))

 It is imperative that we deal with the stop words and make sure they are removed

from tweets. Stop words are words like “the, a, of, her, he, she, etc.” that might be of no

significance to the classification. Stop words usually slow down the process of

classification. The data preprocessing is explained in more detail in Chapter 4.

https://pandas.pydata.org/

7

CHAPTER 4

CLASSIFICATION MODELS

The implementation of the troll vs. non-troll and right troll vs. left troll classifiers was done

using different models to compare the performance. For a machine learning algorithm, to

derive a classifier, positive and negative instances are necessary. We have positive

instances in our FiveThirtyEight data set. However, we needed to generate a negative data

set of the same size. For this we fetched 3 million random tweets which are used as the

negative tweets for our model. These 3 million tweets were retrieved from several Twitter

feed sites (https://www.researchgate.net,

http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/) and

also using the Tweepy API (https://github.com/tweepy/tweepy) to fetch real time tweets.

For future reference, we will call this dataset as ‘random tweets dataset.’ Our Troll

Detection model was then built using the 6 million troll tweets from the FiveThirtyEight

and the random tweets dataset.

While the dataset contains 19 columns, only those in Table 2.1 were used in this

research. For building the classification model, only the content column was used. We

filtered out all the irrelevant columns that were found in our dataset. We created a new

column assigning a score to each tweet. If it is a Russian troll tweet, the score is ‘1.’ For

the random tweet, the value is ‘0.’. There only need to be two specific columns for our

classification. One is the tweet content and the other is the score of the tweet. Table 4.1

shows an example taken from the dataset with the specific columns that we used for

classification.

https://www.researchgate.net/
http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/

8

Table 4.1 Examples of the News Feed Dataset with Sentiment Score Used for Building
Our Model

Score content
0 I'm at Apple Store, Pheasant Lane in Nashua, NH

https://t.co/E5FCrUFEpL
1 Demand paper #VoteTrump #MAGA https://t.co/YywhqRJ6DR

#TrumpForPresident
1 The superior man acts before he speaks, and afterwards speaks

according to his action.
1 Is Eva Braun opening for Hillary Clinton? https://t.co/Asmktt8imd
0 Super excited to continue to play basketball at KCC next year with‚Ä¶

https://t.co/QNWtA1bz08

4.1 Support Vector Machine Classifier

SVM (Support Vector Machines) is a supervised learning classification technique.

Word2vec converts words and phrases into a vector representation. The Support Vector

Machine conceptually implements the following idea: input vectors are non-linearly

mapped to a very high-dimension feature space [Vapnik, 1995]. SVM has been proven

effective on many text categorization tasks.

4.1.1 Hyperplanes and Support Vectors

In SVMs, we try to find a hyperplane in an N-dimensional space that can be used to classify

the data points distinctly. Support Vectors are the data points that affect the position of the

hyperplane. They are the data points nearest to the hyperplane.

9

Figure 4.1 Optimal Separating Hyperplane of Support Vector Machines in 2D.

Source: Optimal Hyperplane, Introduction to Support Vector Machines
https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

Usually, there are several possible hyperplanes that can be used to classify a dataset

into two different classes. The main objective of the SVM algorithm is to find a hyperplane

with the maximum margin between the data points as shown in Figure 4.1. Finding a

hyperplane with the maximum margin ensures that when this model is used to classify new

data points, it will be able to classify them accurately. In Figure 4.1, the filled diamonds

and the filled circles represent the Support Vectors.

4.1.2 Data Preprocessing

We apply several preprocessing steps to make tweets suitable for the SVM algorithm. We

initially remove all non-letter and Non-ASCII characters and replace them by blank spaces

(see Chapter 3). We also remove all URLs and twitter handles that might affect the model.

We delete emoticons from our dataset, since we are not taking them into consideration for

our model.

10

 As the next step, we do stemming on the dataset. Stemming usually works by

removal of either the end or the beginning of a word, by using a set of prefixes and suffixes

that could be found in a word. We make use of the most common stemmer in English, the

Porter Stemmer (http://snowball.tartarus.org/algorithms/porter/stemmer.html).

Figure 4.2 Examples of stemming of words using Porter Stemmer.

Source: Generate and Verify Stemmed Words
https://www.wolfram.com/language/11/text-and-language-processing/generate-and-verify-
stemmedwords.html?product=language

4.1.3 TF-IDF Vectorizer

To construct the model we use a tf-idf (Term Frequency — Inverse Document Frequency)

vectorizer to convert the raw text data to matrix features. Term frequency (tf) gives us the

frequency of a word in each document of our entire corpus. It is given by the ratio of

number of times the word appears to the total number of words in one document. Inverse

Document Frequency (idf) tells us how much information is provided by a word, based on

whether its common or rare across all documents.

https://www.wolfram.com/language/11/text-and-language-processing/generate-and-verify-stemmedwords.html?product=language
https://www.wolfram.com/language/11/text-and-language-processing/generate-and-verify-stemmedwords.html?product=language

11

By combining tf and idf, we come up with a tf-idf score, which is computed for

each word in a document in the corpus. This is used to compute the significance of words,

which helps us in classifying tweets.

4.1.4 Building the SVM classifier

We build the SVM model using the FiveThirtyEight dataset, which is then stored using a

Python Library by the name of ‘pickle’ (https://docs.python.org/3/library/pickle.html). The

stored model can be called again later for classification of new data.

 After the FiveThirtyEight dataset has been preprocessed, we build our model. Our

model uses an SVM implementation using scikit-learn named SVC (Support vector

classification). It is an implementation based on libsvm [Chih-Chung Chang, 2001].

 The dataset is divided into training and testing samples for cross validation. The

training set will help the algorithm learn about the dataset whereas the test set will be used

for the evaluation. We use 20% of the dataset as the test data. The following code is used

for splitting our data into training and testing:

from sklearn.cross_validation import train_test_split

def getTrainingAndTestData():

.....

X_train, X_test, y_train, y_test = sklearn.cross_validation.

train_test_split(X,y,test_size=0.20, random_state=42)

Since we are dealing with a text categorization problem, we make use of a linear

SVM classifier. Here, we set the regularization Parameter, C = 0.1. The regularization

12

parameter is used to control the trade-off between misclassifications. The higher the value,

the fewer misclassifications are allowed. In our case, since our regularization parameter is

very small, misclassifications are allowed, but training is relatively faster. As this dataset

is very large, it is necessary to speed up training.

We use an rbf kernel for our SVM model (Radial basis function kernel)

(https://chrisalbon.com/machine_learning/support_vector_machines/svc_parameters_usin

g_rbf_kernel/).

4.2 Neural Network Classifier with One Hot Encoding

In machine learning, we have two ways of representing language: vector embeddings or

one-hot matrices.

4.2.1 One-Hot Encoding

One-hot matrices contain no linguistic information. They indicate what words they contain

but suggest nothing about them, or their relationships to each other.

The creation of one hot matrices begins with tokenizing the sentence, that is, breaking it

into words. Then we create a lookup dictionary of all the unique words, which need not

have a count or an order. Figure 4.3 shows us how categorical sentences are converted into

one hot encoded data.

https://chrisalbon.com/machine_learning/support_vector_machines/svc_parameters_using_rbf_kernel/
https://chrisalbon.com/machine_learning/support_vector_machines/svc_parameters_using_rbf_kernel/

13

Step 1: Retrieve all sentences from the
dataset:

Complex is better than complicated.
Flat is better than nested.

Step 2: Tokenizing the utterance:

['complex', 'is', 'better', 'than', 'complicated',
'flat', 'is', 'better', 'than', 'nested']

Step 3: Create lookup dictionary of all the
unique words:

{
 'complex': 0,
 'is': 1,
 'better': 2,
 'than': 3,
 'complicated': 4,
 'flat': 5,
 'nested': 6,
}

Step 4: Convert individual sentences to one
hot matrices

[1, 0, 0, 0, 0, 0, 0], #complex
[0, 1, 0, 0, 0, 0, 0], #is
[0, 0, 1, 0, 0, 0, 0], #better
[0, 0, 0, 1, 0, 0, 0], #than
[0, 0, 0, 0, 1, 0, 0], #complicated

[0, 0, 0, 0, 0, 1, 0], #flat
[0, 1, 0, 0, 0, 0, 0], #is
[0, 0, 1, 0, 0, 0, 0], #better
[0, 0, 0, 1, 0, 0, 0], #than
[0, 0, 0, 0, 0, 0, 0], #nested

Figure 4.3 Example of the process of sentence conversion into one hot matrices.

The maximum length of a sentence is set to be equal to 3000. We converted each

of the tokens from a string into an array. Each array is of the length of the dictionary (3000

words), and each value in the dictionary that is not the value of the current token is

represented by a 0. The value of the token is represented with a 1.

4.2.2 Data Preprocessing

For building our model, we only use two columns which are the text (content column) and

the predefined classification (score column) (Table 4.1).

 We initially create and save a dictionary of all the words. For this, we feed all our

sentences to a tokenizer. A tokenizer breaks sentences into words, called tokens, and at the

14

same time removes all punctuations. These tokenized words are then saved into a

dictionary. Then, we convert each sentence into an indexed array.

4.2.3 Building the Neural Network classifier with One Hot Encoding

Next, we build a sequential classifier, which is a simple neural network model, which

consists of a stack of hidden layers that are executed in a specific order. We have one dense

layer and two dropout layers.

 Dense neural network layers are linear neural network layers that are fully

connected. In general, in a dense layer, every input is connected to every output by a

weight. A dense layer is usually followed by a non-linear activation function.

 Dropouts are randomly used to remove data, which prevents overfitting. This helps

in our case, since if we keep training the model with the same data, the accuracy will not

increase, but will stay constant or it might even decrease.

 Activation functions of a node are usually defined as the outputs of that node, when

given any specific input or set of inputs. The output of the activation function is then used

as the input for the next node. Figure 4.4 illustrates some of the most common activation

functions.

15

Figure 4.4 Activation functions for Neural networks with their equations and
derivations.

Source: Activation Function Cheatsheet, Activation Functions in Neural Networks
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

 In our first input layer, we make use of the Rectified Linear Unit (ReLu) activation

function and 512 outputs come out of that layer. Our second layer, which is a hidden layer,

consists of a sigmoid activation function and has 256 outputs. Our final layer, which is the

output layer consists of SoftMax activation functions. The code below shows how the

layers have been created in our model:

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

16

model = Sequential()

model.add(Dense(512, input_shape=(max_words,), activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(256, activation='sigmoid'))

model.add(Dropout(0.5))

model.add(Dense(2, activation='softmax'))

 We make use of a categorical crossentropy loss function. This loss function is also

called Softmax loss function. It measures the performance of classification model whose

output is a probability value between 0 and 1. We also compute several other metrics, while

building our model whose output is shown in Table 4.1 for both the models.

Table 4.1 One Hot Matrices Model Classifier Results
 Accuracy Loss Precision Recall
Neural Network Troll
Detector 74% 41% 76% 76%
Left or Right Troll
Detector 84% 32% 88% 90%

We use smaller batch sizes of 32 sentences to train our data so that we check our

model’s accuracy and we are able to modify the node weights. Smaller batches make it

faster and easier to train the dataset. We run 5 epochs while training, where epochs are the

number of times our model goes through the entire dataset for training. We also observed

that 6 epochs lead to overfitting, hence we used 5 epochs. We run our model using keras

(https://keras.io) with Tensorflow (https://www.tensorflow.org/install) backend .

https://keras.io/

17

The code below shows how our model has been compiled and fit for training. The

term “fit” is used for executing the training process by feeding the training data to the

machine learning algorithm.

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=32, epochs=5,

verbose=1,validation_split=0.1,shuffle=True)

Once our model is constructed, it is saved in two different parts. One part contains

the model’s structure, and the other part consists of the model’s weights. After this, the

model can be used for predicting categories of tweets on a new dataset and the results will

be discussed in Chapter 5.

The code below shows how the model is saved:

model_json = model.to_json()

with open('model.json', 'w') as json_file:

 json_file.write(model_json)

model.save_weights('model.h5')

4.3 CNN Neural Network Classifier with Word2vec Representation

Vector embeddings are spatial mappings of words or phrases. Relative locations of words

indicate similarity and suggest semantic relationships — for instance, vector embeddings

can be used to generate analogies.

4.3.1 Convolutional Neural Network (CNN)

18

Convolutional Neural Networks [LeCun, 1995] are a supervised machine learning

algorithm which is mainly used for classification and regression. CNNs usually require

very little preprocessing as compared to any other neural networks. Though CNNs are

meant to be used for analyzing visual imagery, they have been shown to be effective even

in Natural Language Processing (https://www.aclweb.org/anthology/D14-1181).

 A CNN consists of input, output and multiple hidden layers. The inner layers which

are the hidden layers generally comprise convolution layers.

4.3.2 Word2vec Models

Word2vec models are two-layered neural network models that are trained to reconstruct

the linguistic contexts of the word. Word2vec takes a large amount of text and produces a

vector space, consisting of several dimensions.

 Word2vec models can be trained and constructed to create word embeddings for

entire documents. Word2vec can group vectors of similar words together into a vector

space. With enough data, Word2vec models can constrain the meaning of a word using

past appearances. The output of a Word2vec neural network model is a vocabulary where

each item has a vector attached to it, which can be used to query for relationships between

words.

19

4.3.3 Data Preprocessing

For building our model, we only use two columns exactly as in our previous neural network

model, which are the text (content column) and the predefined classification (score column)

(Table 4.1).

 The preprocessing steps are very similar to those of the neural network model. We

initially create and save a dictionary of all the words. For this, we feed all our sentences to

a tokenizer. A tokenizer breaks sentences into words, called tokens and at the same time

removes all punctuations. These tokenized words are then saved into a dictionary. Our

tokenizer also filters out all the irrelevant Non-ASCII characters.

The code below shows how the tokenization of the text is done using the keras text

preprocessing function:

from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
…

tokenizer = Tokenizer(num_words=NUM_WORDS, filters='!"#$%&()*+,-./:;
<=>?@[\\]^_`{|}~\t\n\'',
 lower=True)
tokenizer.fit_on_texts(texts)
sequences_train = tokenizer.texts_to_sequences(texts)
sequences_valid=tokenizer.texts_to_sequences(val_data.text)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

4.3.4 Building the CNN classifier using existing Word2vec model

For building our classifiers, we use an existing Word2vec model, by the name of

‘GoogleWord2Vec.’ It is a huge model created by Google, which comprises a vocabulary

of about 3 million words and phrases, which was trained on a Google news dataset of

roughly 100 billion words. The length of the vectors is set to 300 features.

20

 Our models pre-processing is exactly the same as for the previous model. In this

model, instead of one hot encoding, we make use of Word2vec embeddings. Since

Word2vec has around 3 million words and phrases, we cut it down to around 20,000 words,

by looking for words common in both our dataset and the Word2vec model. Our

embedding dimension is equivalent to the length of the vectors which is 300.

The code for the different layers of our model looks as follows:

inputs = Input(shape=(sequence_length,))
embedding = embedding_layer(inputs)
reshape = Reshape((sequence_length,EMBEDDING_DIM,1))(embedding)

conv_0 = Conv2D(num_filters, (filter_sizes[0], EMBEDDING_DIM),activa
tion='relu',kernel_regularizer=regularizers.l2(0.01))(reshape)
conv_1 = Conv2D(num_filters, (filter_sizes[1], EMBEDDING_DIM),activa
tion='relu',kernel_regularizer=regularizers.l2(0.01))(reshape)
conv_2 = Conv2D(num_filters, (filter_sizes[2], EMBEDDING_DIM),activa
tion='relu',kernel_regularizer=regularizers.l2(0.01))(reshape)

maxpool_0 = MaxPooling2D((sequence_length - filter_sizes[0] + 1, 1),
strides=(1,1))(conv_0)
maxpool_1 = MaxPooling2D((sequence_length - filter_sizes[1] + 1, 1),
strides=(1,1))(conv_1)
maxpool_2 = MaxPooling2D((sequence_length - filter_sizes[2] + 1, 1),
strides=(1,1))(conv_2)

 We have a total of three convolutional layers other than the input and the output

layers, and we use ReLu as the activation function for all of them. The three sequences

have the same number of filters, which is equivalent to the total number of data points in

the training data. The filter sizes for the three convolutional layers are 3, 4 and 5

respectively. The activation function in the final output dense layer is SoftMax, and the

number of word embeddings we are using is around 20,000.

 We run this model over 10 epochs, and we have a training to validation data split

of 80:20. We run our model using keras with Tensorflow backend, which has its own loss

21

function and optimization function for computing the accuracy and loss. The code for our

model to train the model and compute accuracy is as follows:

adam = Adam(lr=1e-3)

model.compile(loss='categorical_crossentropy',optimizer=adam,
 metrics=['acc'])
callbacks = [EarlyStopping(monitor='val_loss')]
model.fit(X_train, y_train, batch_size=1000, epochs=10, verbose=1, v
alidation_data=(X_val, y_val),
 callbacks=callbacks) # starts training

4.4 CNN Neural Network Classifier with State-of-the-art NLP Model BERT

BERT (Bidirectional Encoding Representations from Transformers) applies bidirectional

training of “transformers” to language modelling. Transformer is used for converting a

sequence using encoder and decoder to another sequence. BERT is the first deeply

bidirectional model and has a language representation that is unsupervised. It has been pre-

trained using only a plain Wikipedia text corpus.

 In a normal context free model, the system generates a single word embedding

representation for each word in the vocabulary, whereas contextual models usually

generate a representation of each word that is based on other words in the sentence.

However, it does it only in one direction. BERT uses a bidirectional contextual

representation that is, it uses both the previous and next context in a sentence before or

after a word respectively.

4.4.1 Data Pre-processing

The pre-processing for the BERT model is very similar to that of the CNN model we used

in our previous sections.

4.4.2 Building the CNN model using BERT

22

We make use of the BERT-base, Multilingual Cased model which has 12 layers; 768 is the

size of the hidden encoder and pooling layers and in all there are 110 Million parameters.

A Cased model preserves the true case (cased words) and the accent markers.

 We train our model for three epochs with batch size of 32 and sequence length of

512. The learning rate is 2e-5. The code below explains how the BERT model was

configured to run using keras with Tensorflow backend:

class BertConfig(object):

 """Configuration for `BertModel`."""

...

def __init__(self, vocab_size,hidden_size=768,num_hidden_layers=12,

num_attention_heads=12,intermediate_size=3072,

hidden_act="gelu",hidden_dropout_prob=0.1,

attention_probs_dropout_prob=0.1,

max_position_embeddings=512,type_vocab_size=16,

initializer_range=0.02):

 In the code above, the max_position embedding is set to 512, which is the

maximum sequence length, which means that a specific tweet can have a maximum length

of 512 characters. Everything larger than 512 characters is ignored. The

num_attention_heads is set to 12, which is the 12-head attention mechanism. In this

mechanism, since our vector dimension is 512, the vector is split into 12 chunks, each

having a dimension of 512/12 = 42 (42.666…) and it applies this for each attention layer

in the Transformer encoder. We make use of an Adam optimizer which is the default

optimizer for BERT. Adam is an alternative to Stochastic Gradient Descent (SGD), which

is used to update network weights iteratively when training with data. A learning rate is

23

maintained for each network weight (parameter) and separately adapted as learning

unfolds.

 The model is saved with all the checkpoints for future use for classification and is

also evaluated. The evaluation results of the BERT models are shown in Table 5.1 in

Section 5.

CHAPTER 5

RESULTS

Table 5.1 illustrates the different metrics of the different machine learning models that we

created.

Table 5.1 Comparing the Accuracy, Precision and Recall of All Our Machine Learning
Models
Model Type Classifier Type Accuracy Precision Recall
SVM Model Troll Detector 84% 85% 86%

24

Left or Right Troll
Detector 86% 88% 91%

CNN with One
Hot Encoding

Troll Detector 74% 78% 81%
Left or Right Troll
Detector 84% 85% 86%

CNN with
Word2vec
Representation

Troll Detector 56% - -
Left or Right Troll
Detector 85% - -

CNN with BERT
model

Troll Detector 99% 98% 99%
Left or Right Troll
Detector 89% 89% 90%

In Table 5.1, we see that the CNN BERT model outperforms both the CNN models for

distinguishing between left trolls and right trolls and also the SVM model, with an accuracy

of 89.4%. Similarly, for the troll vs. non-troll detector, the CNN BERT model has an

accuracy of 99%.

SVM models usually work better than most of the other models on smaller datasets,

whereas neural network models work better on larger datasets, because these models

usually try to capture the semantic relationships of words. In two of our experiments (Table

1), we used one hot encoding, which does not make use of linguistic information.

Another drawback of one-hot encoding is that it increases the dimensionality by a

large amount. In our case, we used only the 3000 most commonly occurring words in the

training corpus, and hence each one hot encoding representation becomes an array of 3000

words, which is very large.

From Table 5.1 it can be seen that the performance of CNN with one-hot matrix is

not as good as the SVM Troll Detector model. The BERT model completely outperforms

any other model in both the tasks.

The SVM models that we built were used on the Baruch 1 million tweet dataset and

the following results were obtained (Table 5.2).

25

Table 5.2 SVM Model Classifier Results on Baruch One Million Dataset

 Tweet Type Count

Total tweets 1000000

Total Troll Tweets 730215

Left Troll Tweets 183785

Right Troll Tweets 546430

When we used the CNN neural network with One Hot Matrices representation,

the results that were obtained are as shown in Table 5.3.

Table 5.3 CNN One Hot Matrices Model Classifier Results on Five Million Dataset

 Tweet Type Count

Total tweets 5000000

Total Troll Tweets 3586213

Left Troll Tweets 1032422

Right Troll Tweets 2553791

5.1 Geospatial Analysis and Temporal Analysis on Baruch Dataset

We make use of the 5 million tweets Baruch dataset in this Section. We use our troll/non-

troll detector to classify the tweets into troll or non-troll. Then we use the left/right troll

detector to classify them further.

 After classifying the tweets, we performed a temporal analysis on this dataset to

understand how the ratio of troll to non-troll tweets has changed over time. Figure 5.1

shows the temporal analysis that was performed on the tweets and how the tweet activity

has changed from the year 2014 to 2018.

26

Figure 5.1 Temporal Analysis on Baruch dataset based on left and right troll tweets.

 In the Baruch Dataset with 5 million tweets, only 133,801 tweets had geolocation

data attached. We performed a geospatial analysis on this data to locate the left troll and

right troll tweets. Table 5.4 shows the quantity of left and right troll tweets based on the

geolocation data.

Table 5.4 Count of Tweets Containing Geo Location Data from 5 Million Tweets Dataset

Tweet type (from 5 Million) Count

Total tweets with geolocation 133801

Total Troll Tweets with geolocation 83232

Right Trolls with geolocation 50154

Left Troll with geolocation 33078

Figures 5.2-5.4 show the geospatial distribution of the Left and Right troll tweets. The total

ratio of right to left troll tweets is 60:40. In Japan, South Korea and Thailand, where the

27

right troll tweets are more prominent. In the UK, the left troll tweets are significantly higher

as compared to the right troll tweets. In the United States, the amount of left/right troll

tweets is at a ratio of 60:40. We also observe that the right troll tweets and left troll tweets

are evenly distributed in most of the countries. Because Figure 5.2 contains overlap of

tweet locations, the following Figures 5.3 and 5.4 show left and right tweets separately.

Figure 5.2 Geospatial distribution of Left/Right troll tweets (with overlaps).

28

Figure 5.3 Geospatial distribution of Left troll tweets.

Figure 5.4 Geospatial distribution of Right troll tweets.

29

5.2 Sentiment analysis on Baruch Dataset with five Million Tweets

Sentiment analysis was done on Left and Right troll tweets to understand the emotional

tone of the trolls. Since trolls are using social media, we try to understand what kind of

tone trolls are using to influence people’s minds. The sentiment analysis model was built

using the Sentiment140 dataset (https://www.kaggle.com/kazanova/sentiment140).

Figure 5.5 illustrates the sentiments, which have been classified into five different

classes, namely neutral, positive, extremely positive, negative and extremely negative,

based on the data.

We are trying to understand the sentiment based on left and right troll data by counting of

tweets that are positive, negative or neutral. The count of left and right trolls is the same to

see the pattern.

Sentiment Analysis was done on the right troll tweets which we had classified

above on the news dataset to classify it into different sentiments as shown in Figure 5.6.

Figure 5.5 Count of tweets for sentiment analysis on right troll tweets.

30

Figure 5.6 Sentiment analysis bar chart for right troll tweets.

Sentiment Analysis was done on the left troll tweets which we had classified above

on the news dataset to classify it into different sentiments as shown in Figure 5.7

Figure 5.7 Count of tweets for sentiment analysis on left troll tweets.

31

Figure 5.8 Sentiment analysis Bar Chart for Right Troll tweets.

Figure 5.9 Sentiment Analysis on Left and Right Troll tweets.

20997

77355

266128

48630
1403123188

87889

260832

46632
8600

EXTREMELY
POSITIVE

POSITIVE NEUTRAL NEGATIVE EXTREMELY
NEGATIVE

Sentiment Analysis on Left and Right Troll Tweets

Right Left

32

Observation that we made when performing the sentiment analysis are as follows:

(i) The ratio of positive, negative and neutral tweets does not vary much in either
left or right troll tweets.

(ii) The number of negative tweets is slightly higher in right troll tweets by a count
of around 7,000 tweets.

(iii) The number of positive tweets is slightly lower in right troll tweets by a count
of 13,000 tweets.

33

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this thesis, we build several machine learning models to study the Russian trolls and

their interference in the US Presidential elections 2016. BERT had an accuracy of 89.4%

for Left/Right Troll Detector and 99% for Troll/Non-troll Detector which is higher than

SVM, CNN with Word2vec and Neural Network with One-hot encoding. In all of the

Baruch Datasets, the Right Troll tweets are slightly more as compared to the left troll

tweets. Sentiment analysis on the Baruch tweets shows us that the positive Right troll

tweets are slightly less as compared to the left troll tweets.

 The main focus of our thesis was on building and comparing the models and using

it for studying the geospatial, temporal and sentiment analysis. Many different analysis

and experiments have been left for the future due to lack of time (creating models takes a

lot of time, it can take several days to a couple of weeks).

In the future, real-time analysis of tweets can be done, that is an engine can be

built to analyze tweets real-time. We need to make use of several frameworks since we

needed a database to fetch the tweets real-time and then stored into a database. Then,

model data will be fed to the model to process the data and classify on the data. And then

the data along with the classification is sent to the database. And this database is used to

show the data on a website real-time.

34

APPENDIX 1

CODE A1 TROLL DETECTOR USING SVM

/* training.py */

import csv
import os
import re
import nltk
import scipy
import sklearn.metrics
import predict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import svm
from sklearn.externals import joblib
from sklearn.pipeline import Pipeline
from sklearn.cross_validation import train_test_split

#Generating the Training and testing vectors
def getTrainingAndTestData():
 X = []
 y = []

 f=open('merged_3mtweets.csv','r', encoding='ISO-8859-1')
 reader = csv.reader(f)

 for row in reader:
 X.append(row[2])
 y.append(1 if (row[1]=='1') else 0)

 X_train, X_test, y_train, y_test =
sklearn.cross_validation.train_test_split(X,y,test_size=0.20,
random_state=42)
 return X_train, X_test, y_train, y_test

#Process Tweets (Stemming+Pre-processing)

def processTweets(X_train, X_test):
 X_train = [sentiment.stem(sentiment.preprocessTweets(tweet)) for
tweet in X_train]
 X_test = [sentiment.stem(sentiment.preprocessTweets(tweet)) for
tweet in X_test]
 return X_train,X_test

SVM classifier

def classifier(X_train,y_train):
 vec = TfidfVectorizer(min_df=5, max_df=0.95, sublinear_tf =
True,use_idf = True,ngram_range=(1, 2))
 svm_clf =svm.LinearSVC(C=0.1)
 vec_clf = Pipeline([('vectorizer', vec), ('pac', svm_clf)])

35

 vec_clf.fit(X_train,y_train)
 joblib.dump(vec_clf, 'svmClassifier.pkl', compress=3)
 return vec_clf

Main function

def main():
 X_train, X_test, y_train, y_test = getTrainingAndTestData()
 X_train, X_test = processTweets(X_train, X_test)
 vec_clf = classifier(X_train,y_train)
 y_pred = vec_clf.predict(X_test)
 print(sklearn.metrics.classification_report(y_test, y_pred))

if __name__ == "__main__":
 main()

/* predict.py */

import sys
import time
import re
import nltk
import pandas as pd
from sklearn.externals import joblib

#Processing Tweets
df2 = pd.read_csv("5million_text_wID_str.csv")
print(df2['text'].head(5))
def preprocessTweets(tweet):

 #Convert www.* or https?://* to URL
 tweet = re.sub("[^a-zA-Z]", # Search for all non-letters
 " ", # Replace all non-letters with
spaces
 str(tweet))
 tweet = re.sub('((www\.[^\s]+)|(https?://[^\s]+))','URL',tweet)

 #Convert @username to __HANDLE
 tweet = re.sub('@[^\s]+','__HANDLE',tweet)

 #Replace #word with word
 tweet = re.sub(r'#([^\s]+)', r'\1', tweet)

 #trim
 tweet = tweet.strip('\'"')

 # Repeating words like happyyyyyyyy
 rpt_regex = re.compile(r"(.)\1{1,}", re.IGNORECASE)
 tweet = rpt_regex.sub(r"\1\1", tweet)

 #Emoticons
 emoticons = \
 [
 ('__positive__',[':-)', ':)', '(:', '(-:', \

36

 ':-D', ':D', 'X-D', 'XD', 'xD', \
 '<3', ':*', ';-)', ';)', ';-D', ';D', '(;', '(-
;',]),\
 ('__negative__', [':-(', ':(', '(:', '(-:', ':,(',\
 ':\'(', ':"(', ':((',]),\
]

 def replace_parenth(arr):
 return [text.replace(')', '[)}\]]').replace('(', '[({\[]') for
text in arr]

 def regex_join(arr):
 return '(' + '|'.join(arr) + ')'

 emoticons_regex = [(repl,
re.compile(regex_join(replace_parenth(regx)))) \
 for (repl, regx) in emoticons]

 for (repl, regx) in emoticons_regex :
 tweet = re.sub(regx, ' '+repl+' ', tweet)

 #Convert to lower case
 tweet = tweet.lower()

 return tweet

#Stemming of Tweets

def stem(tweet):
 stemmer = nltk.stem.PorterStemmer()
 tweet_stem = ''
 words = [word if(word[0:2]=='__') else word.lower() \
 for word in tweet.split() \
 if len(word) >= 3]
 words = [stemmer.stem(w) for w in words]
 tweet_stem = ' '.join(words)
 return tweet_stem

#Predict the sentiment

def predict(tweet,classifier):

 tweet_processed = stem(preprocessTweets(tweet))

 if (('__positive__') in (tweet_processed)):
 sentiment = 1
 return sentiment

 elif (('__negative__') in (tweet_processed)):
 sentiment = 0
 return sentiment
 else:

 X = [tweet_processed]
 sentiment = classifier.predict(X)
 return (sentiment[0])

37

print('Loading the Classifier, please wait....')
classifier = joblib.load('svmClassifier.pkl')

Main function
def fx(x):
 a = predict(x, classifier)
 return a
def main():
 # print('Loading the Classifier, please wait....')
 print('Running the classifier')
 df2['prediction'] = df2['text'].apply(fx)
 df2.to_csv("prediction_5m_wID.csv")
 # print(df)
 # for tweet in sys.stdin:
 # print(predict(tweet, classifier))

if __name__ == "__main__":
 main()

CODE A2 Troll Detector using Neural Network with one-hot encoding

/* training.py */

import numpy as np
import json
import keras
import keras.preprocessing.text as kpt
from keras.preprocessing.text import Tokenizer
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation

extract data from a csv
notice the cool options to skip lines at the beginning
and to only take data from certain columns
training = np.genfromtxt('merged3.csv', delimiter=',', skip_header=1,

usecols=(1, 2), dtype=None, invalid_raise = False, encoding=
'utf8')

create our training data from the tweets
train_x = [x[1] for x in training]
index all the sentiment labels
train_y = ([x[0] for x in training])
only work with the 3000 most popular words found in our dataset
max_words = 3000
create a new Tokenizer
tokenizer = Tokenizer(num_words=max_words)
feed our tweets to the Tokenizer

38

tokenizer.fit_on_texts(train_x)

Tokenizers come with a convenient list of words and IDs
dictionary = tokenizer.word_index
Let's save this out so we can use it later
with open('dictionary.json', 'w') as dictionary_file:
 json.dump(dictionary, dictionary_file)

def convert_text_to_index_array(text):
 # one really important thing that `text_to_word_sequence` does
 # is make all texts the same length -- in this case, the length
 # of the longest text in the set.
 return [dictionary[word] for word in

kpt.text_to_word_sequence(text)]

allWordIndices = []
for each tweet, change each token to its ID in the Tokenizer's

word_index
for text in train_x:
 wordIndices = convert_text_to_index_array(text)
 allWordIndices.append(wordIndices)

now we have a list of all tweets converted to index arrays.
cast as an array for future usage.
allWordIndices = np.asarray(allWordIndices)

create one-hot matrices out of the indexed tweets
train_x = tokenizer.sequences_to_matrix(allWordIndices, mode='binary')
treat the labels as categories
train_y = keras.utils.to_categorical(train_y, 2)

model = Sequential()
model.add(Dense(512, input_shape=(max_words,), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(256, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))

model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

model.fit(train_x, train_y,
 batch_size=32,
 epochs=5,
 verbose=1,
 validation_split=0.1,
 shuffle=True)

model_json = model.to_json()
with open('model.json', 'w') as json_file:
 json_file.write(model_json)

model.save_weights('model.h5')

39

/* predict.py */

import json
import numpy as np
import keras
import keras.preprocessing.text as kpt
from keras.preprocessing.text import Tokenizer
from keras.models import model_from_json

we're still going to use a Tokenizer here, but we don't need to fit

it
tokenizer = Tokenizer(num_words=3000)
for human-friendly printing
labels = ['Lefttroll', 'Righttroll']

read in our saved dictionary
with open('dictionary.json', 'r') as dictionary_file:
 dictionary = json.load(dictionary_file)

this utility makes sure that all the words in your input
are registered in the dictionary
before trying to turn them into a matrix.
def convert_text_to_index_array(text):
 words = kpt.text_to_word_sequence(text)
 wordIndices = []
 for word in words:
 if word in dictionary:
 wordIndices.append(dictionary[word])
 else:
 print("'%s' not in training corpus; ignoring." %(word))
 return wordIndices

read in your saved model structure
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
and create a model from that
model = model_from_json(loaded_model_json)
and weight your nodes with your saved values
model.load_weights('model.h5')

input_data = np.genfromtxt('prediction_5m_troll.csv', delimiter=',',

skip_header=1, usecols=(2, 3), dtype=None, invalid_raise = False)

text = [x[0] for x in input_data]

40

my_data = [None] * len(text)
my_data[0] = 'new_rating'
print(len(text))
for i in range(0,len(text)):
 testArr = convert_text_to_index_array(text[i])
 input = tokenizer.sequences_to_matrix([testArr], mode='binary')
 pred = model.predict(input)
 if(labels[np.argmax(pred)]=='Righttroll'):
 my_data[i] = 1
 elif (labels[np.argmax(pred)]=='Lefttroll'):
 my_data[i] = 0

print(type(my_data))

df3 = pd.read_csv('prediction_5m_troll.csv')

df4['predict_troll_leftorright'] = my_data

print(df3.head())
df3.to_csv('leftorright.csv', sep=',')

CODE A3 Troll Detector using CNN with Word2Vec Representation

import numpy as np
import pandas as pd

from keras.layers import Dense, Input, GlobalMaxPooling1D
from keras.layers import Conv1D, MaxPooling1D, Embedding
from keras.models import Model
from keras.layers import Input, Dense, Embedding, Conv2D, MaxPooling2D,
Dropout,concatenate
from keras.layers.core import Reshape, Flatten
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
from keras.models import Model
from keras import regularizers
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical

train_data=pd.read_csv('/home/k/kk534/troll_detector_word2vec/train.csv
')
test_data=pd.read_csv('/home/k/kk534/troll_detector_word2vec/test.csv')
authors=train_data.author.unique()
dic={}
for i,author in enumerate(authors):
 dic[author]=i
labels=train_data.author.apply(lambda x:dic[x])

41

val_data=train_data.sample(frac=0.2,random_state=200)
train_data=train_data.drop(val_data.index)

texts=train_data.text

NUM_WORDS=20000
tokenizer = Tokenizer(num_words=NUM_WORDS,filters='!"#$%&()*+,-./:;<=>?
@[\\]^_`{|}~\t\n\'',
 lower=True)
tokenizer.fit_on_texts(texts)
sequences_train = tokenizer.texts_to_sequences(texts)
sequences_valid=tokenizer.texts_to_sequences(val_data.text)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

X_train = pad_sequences(sequences_train)
X_val = pad_sequences(sequences_valid,maxlen=X_train.shape[1])
y_train = to_categorical(np.asarray(labels[train_data.index]))
y_val = to_categorical(np.asarray(labels[val_data.index]))
print('Shape of X train and X validation tensor:', X_train.shape,X_val.
shape)
print('Shape of label train and validation tensor:', y_train.shape,y_va
l.shape)

import gensim
from gensim.models import Word2Vec
from gensim.utils import simple_preprocess

from gensim.models.keyedvectors import KeyedVectors

word_vectors = KeyedVectors.load_word2vec_format('../GoogleNews-vectors
-negative300.bin', binary=True)

EMBEDDING_DIM=300
vocabulary_size=min(len(word_index)+1,NUM_WORDS)
embedding_matrix = np.zeros((vocabulary_size, EMBEDDING_DIM))
for word, i in word_index.items():
 if i>=NUM_WORDS:
 continue
 try:
 embedding_vector = word_vectors[word]
 embedding_matrix[i] = embedding_vector
 except KeyError:
 embedding_matrix[i]=np.random.normal(0,np.sqrt(0.25),EMBEDDING_
DIM)

del(word_vectors)

from keras.layers import Embedding
embedding_layer = Embedding(vocabulary_size,
 EMBEDDING_DIM,
 weights=[embedding_matrix],
 trainable=True)

42

sequence_length = X_train.shape[1]
filter_sizes = [3,4,5]
num_filters = 100
drop = 0.5

inputs = Input(shape=(sequence_length,))
embedding = embedding_layer(inputs)
reshape = Reshape((sequence_length,EMBEDDING_DIM,1))(embedding)

conv_0 = Conv2D(num_filters, (filter_sizes[0], EMBEDDING_DIM),activatio
n='relu',kernel_regularizer=regularizers.l2(0.01))(reshape)
conv_1 = Conv2D(num_filters, (filter_sizes[1], EMBEDDING_DIM),activatio
n='relu',kernel_regularizer=regularizers.l2(0.01))(reshape)
conv_2 = Conv2D(num_filters, (filter_sizes[2], EMBEDDING_DIM),activatio
n='relu',kernel_regularizer=regularizers.l2(0.01))(reshape)

maxpool_0 = MaxPooling2D((sequence_length - filter_sizes[0] + 1, 1), st
rides=(1,1))(conv_0)
maxpool_1 = MaxPooling2D((sequence_length - filter_sizes[1] + 1, 1), st
rides=(1,1))(conv_1)
maxpool_2 = MaxPooling2D((sequence_length - filter_sizes[2] + 1, 1), st
rides=(1,1))(conv_2)

merged_tensor = concatenate([maxpool_0, maxpool_1, maxpool_2], axis=1)
flatten = Flatten()(merged_tensor)
reshape = Reshape((3*num_filters,))(flatten)
dropout = Dropout(drop)(flatten)
output = Dense(units=3, activation='softmax',kernel_regularizer=regular
izers.l2(0.01))(dropout)

this creates a model that includes
model = Model(inputs, output)

adam = Adam(lr=1e-3)

model.compile(loss='categorical_crossentropy',
 optimizer=adam,
 metrics=['acc'])
callbacks = [EarlyStopping(monitor='val_loss')]
model.fit(X_train, y_train, batch_size=1000, epochs=10, verbose=1, vali
dation_data=(X_val, y_val),
 callbacks=callbacks) # starts training

sequences_test=tokenizer.texts_to_sequences(test_data.text)
X_test = pad_sequences(sequences_test,maxlen=X_train.shape[1])
y_pred=model.predict(X_test)

43

CODE A4 Troll Detector using CNN with State-of-the-art NLP BERT

/* The BERT Code is extremely huge. Only snippets of the code
are shared here*/

class BertConfig(object):
 """Configuration for `BertModel`."""
...
def __init__(self, vocab_size,hidden_size=768,num_hidden_layers=12,

num_attention_heads=12,intermediate_size=3072,
hidden_act="gelu",hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,type_vocab_size=16,
initializer_range=0.02):

REFERENCES

Luis Gerardo Mojica (2017). A Trolling Hierarchy in Social Media and a
Conditional Random Field for Trolling Detection, arXiv:1704.02385v1 [cs.CL]
accessed on 7 Apr 2017

Vladimir Vapnik (1995). Support-Vector Networks, Machine Learning, 20, 273-297,
accessed on (1995)

Yoon Kim (2014). Convolutional Neural Networks for Sentence Classification,
arXiv:1408.5882v2 [cs.CL], accessed on 3 Sep 2014

Yann LeCun (1995). Convolutional Neural Networks for Images, Speech, and Time
Series, arXiv:1408.5882v2 [cs.CL], accessed on 3 Sep 2014

Chih-Chung Chang and Chih-Jen Lin (2001). LIBSVM: A Library for Support Vector
Machines, DOI:10.1145/1961189.1961199, accessed on 3 Mar 2001

	A comparative study of russian trolls using several machine learning models on twitter data
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknwoledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Datasets Used for Building the Models
	Chapter 3: Data Preprocessing
	Chapter 4: Classification Models
	Chapter 6: Conclusions and Future Works
	Appendix 1: Code A1 Troll Detector Using SVM
	References

	List of Tables
	List of Figures
	List of Definitions

