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ABSTRACT 

BLIND SOURCE SEPARATION USING  
DICTIONARY LEARNING OVER  

TIME-VARYING CHANNELS 
 

by 
Anushreya Ghosh 

 

Distributed sensors observe radio frequency (RF) sources over flat-fading channels. The 

activity pattern is sparse and intermittent in the sense that while the number of latent 

sources may be larger than the number of sensors, only a few of them may be active at 

any particular time instant. It is further assumed that the source activity is modeled by a 

Hidden Markov Model. In previous work, the Blind Source Separation (BSS) problem 

solved for stationary channels using Dictionary Learning (DL). This thesis studies the 

effect of time-varying channels on the performance of DL algorithms. The performance 

metric is the probability of detection, where a correct detection is the event that the 

estimated value of a source exceeds a threshold at a time instant when the true source is 

active. Using the probability of detection when the channels are stationary as a baseline, 

it is shown that there is significant degradation for time-varying channels and observation 

intervals much longer than the time coherence. Detection performance improves when 

the observation time is approximately equal to the time coherence. Performance is again 

degraded when the observation is shorter and there is not sufficient information for the 

DL algorithms to learn from.  
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CHAPTER 1 

INTRODUCTION 

 

A communication system consists of certain components that can be broken into few 

general categories, mainly comprising of a source sending a message through the 

transmitter which travels through a channel where it undergoes changes due to the presence 

of noise and interference before reaching the receiver where the information is decoded to 

obtain the original message. Such a general communication is shown in figure 1.1 where 

the sent message is denoted by x(t), the channel by h(t), noise in the channel by z(t), 

received information as y(t) and the demodulated message as x̃(t). 

  

 

Figure 1.1 Basic Communication System with x(t) being transmitted from source through 
channel h(t) in the presence of noise z(t). y(t) is received and x̃(t) is the estimated signal at 
receiver end. 
 

 

In a communication system, a received signal can be represented as:  

Here, s(t) is the signal comprising information sent from the source (x(t)) mixed 

with the channel (h(t)).  

y(t) = s(t) + z(t) (1.1) 

s(t) = h(t)x(t)  (1.2) 
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The addition of z(t) is used to denote the presence of Additive White Gaussian 

Noise (AWGN) with zero mean and variance σ2. 

In the presence of multiple sources and multiple receivers (a Multi-Input Multi-

Output (MIMO) system), we can denote equations (1.1) and (1.2) in their matrix forms as: 

Therefore,   

 

In this thesis, we address a modified version of this communication system which 

is depicted in figure 1.2. There are N sources which transmit the signal matrix X over an 

unknown channel of matrix H. This is then received or observed via M sensors in the fusion 

center. The fusion center observes multiple radio sources via noisy sensor measurements 

over unknown time-varying channels. 

 

Figure 1.2 N sources transmit signal X over unknown channel H, received by the fusion 
center for measurements via a total of M sensors. 
 

Source separation refers to recovering original signals from their mixtures and was 

first formulated around 1982[1]. In real-life communication systems, there is no prior 

Y = S + Z (1.3) 

S = HX (1.4) 

Y = HX + Z (1.5) 
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information present at the receiver about the source signals or the channels between the 

transmitter and receiver. These systems are referred to as blind and source separation for 

such systems is known as Blind Source Separation (BSS), which was formulated in 1984 

[1]. BSS exploits only the information carried by the received signals. 

Our system closely resembles a model of the Internet-of-Things (IoT) system 

similar to LoRa, Sigfox, or Narrow Band-IoT (NB-IoT) [2, 3]. Keeping this in mind and in 

an attempt to capture key aspects of IoT systems, our model too has more number of latent 

sources than the number of sensors. The purpose of these sensors is to separate information 

from these different sources without any prior knowledge of how they work using different 

BSS techniques. 

For systems which have fewer sources than mixtures, Independent Component 

Analysis (ICA) [4] is most popularly used as the results have fewer ambiguities. However, 

in most practical systems, the number of sources is much larger than the number of mixed 

signals, which leads to underdetermined BSS. In a situation of underdetermined mixing, 

ICA has a much poorer performance [5]. Other approaches to solve the BSS problem 

include the Principal Component Analysis (PCA) [6] and Singular Value Decomposition 

(SVD) [7]. 

BSS is a heavily applied approach to solve problems in a multitude of fields. In 

acoustics, it has been used to identify signals from multiple superimposing waves [8] and 

to provide faithful estimates of the source signals and reduce acoustic noise [9]. The 

Degenerate Unmixing Estimation Technique (DUET) [10] algorithm in BSS can blindly 

separate multiple sources given, anechoic mixtures with non-overlapping time-frequency 

representations, which is true in case of speech [11]. In the field of medical signal 
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processing, BSS is used for detecting biomedical markers in tests like EKG, ECG and EMG 

[12]. Research in image processing and analysis has also delved into using BSS for 

identification from mixtures of images [13] and improving security for speech and image 

encryption [14]. BSS is also used in speech recognition [15, 16], image extraction [17, 18], 

and surveillance [19, 20]. 

Different metrics are used to evaluate the performance of BSS methods depending 

on the applications. Signal-to-Interference Ratio (SIR) is used for speech recognition [15]. 

Performance index as mentioned in [17] is used for image feature extraction. The choice 

of index and approach to BSS problems go hand in hand.  

In wireless network, the need for BSS arises in non-collaborative applications in 

which the signals and channels through which they are received at the sensors are both 

unknown. ICA has been used in the past to solve BSS problems in wireless networks [21-

24] since it provides a good decomposition with only scaling and permutation ambiguities 

[25]. However, certain assumptions made in the implementation of ICA are that the 

underlying mixing process has the same number of inputs and outputs, and that all sources 

are active throughout the observation interval. These assumptions are limiting and not 

suitable for practical systems similar to IoT systems. 

The model depicted in this work has a larger number of sources than sensors (M<N), 

but their activity is sparse and sporadic. The number of active sources at any given time 

instant is much smaller than the total number of sources [26]. The duration of activity for 

any source is a small fraction of the overall observation time. Also, a source tends to remain 

in its current state of activeness for a continuous duration of time. To portray these 

conditions, a Hidden Markov Model (HMM) [27] [28] is used to determine source activity.  
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A system is said to be modeled on a Hidden Markov Model when its output is based 

on a Markov Model with unobserved states [27]. Our model has a HMM dictating the 

activity of sources: the transmission of information from a source is controlled by the on-

off states. These are directed by the transition probabilities as configured in the simulation. 

It is designed such that an active source tends to remain active for a continuous duration, 

and overall is active only for a very small fraction of the entire observation period [26], to 

introduce sparsity in the system. 

Signals thus generated are transmitted to the fusion center for measurement via 

communication paths known as channels. In [30] Shannon describes a channel as merely 

the medium used to transmit the signal from transmitter to receiver. It may be a pair of 

wires, a coaxial cable, a band of radio frequencies, a beam of light, etc. A channel model 

is a mathematical way to describe the behavior of the channel. In an ideal case, all 

information transmitted will reach the center without any modification or attenuation. 

However, the presence of obstacles in the environment surrounding the transmitters and 

receivers creates multiple paths that the signals can traverse. The receiver sees multiple 

incoming signals with variable attenuation, delays and phase shift giving rise to multipath 

fading. Fading in highly crowded urban regions where more obstacles scatter the 

transmitted signal can best be described using the Rayleigh distribution – the sum of two 

Gaussian random variables. Rayleigh Fading is applied when there is no direct line of sight 

between the transmitter and receiver.  Experiments in densely populated Manhattan have 

shown Rayleigh fading [31]. 

In mobile communication, the relative motion between sender and receiver causes 

changes in frequency or wavelength in the signal known as Doppler Shift or Doppler 
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Effect. When the motion between transmitter and receiver is towards each other, there is 

an increase in frequency of the signal giving rise to a blueshift. When motion is in opposite 

directions, the frequency at which the signal arrives reduces, causing a redshift. 

Wireless communication systems face loss in signal strength primarily because of 

Doppler shift in mobile environments and scattering due to reflections from obstacles in 

the surroundings. R. H. Clarke modeled the mobile communication channel with Rayleigh 

Fading [32]. In [33], M. J. Gans introduced a power spectral analysis for Clarke’s model 

to include Doppler. J. I. Smith adapted the Clarke and Gans model for fading for effective 

computer simulation [34], which is applied in our system model.  

Our problem boils down to solving X from equation (1.5), which is the general 

equation depicting linear systems. Underdetermined linear systems of equations of the 

form Ax = b have infinitely many solutions, when the matrix A is full rank. The columns 

of the matrix A serve as a basis for expressing the observations b. The set of basis signals 

that form the matrix A is called a dictionary. Elements of a dictionary are known as atoms. 

When the dictionary is overcomplete, A is not unique. This is where the sparsity comes 

into play because we want to find a sparse vector which has a small number of significant 

coefficients (i.e., most of constituents are reduced to zero) and reduce the number of atoms 

to be estimated [35]. Dictionary learning, a mix of machine learning and signal processing, 

comprises of iterative algorithms aimed to find the dictionary in which some training data 

admits sparse representations. 

Sparse representation problems for which the dictionary A is unknown require 

Dictionary Learning in addition to signal recovery [35]. The benefit of using Dictionary 

learning is that it is capable of learning a dictionary adaptively from a set of observations 
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using an iterative approach. In [36-39], the DL algorithms solve BSS problems for systems 

that have more sources than sensors and the algorithms are blind to time variability of 

sources with memories. 

Assuming only information about the sparseness of x(t) at each time t, a standard 

approach is to utilize the channel matrix H as a dictionary to be learned to recover X. DL 

techniques approximate the solution of the data-fitting problem where χ is the set of 

matrices with columns containing a limited number of non-zero entries: 

The Dictionary Learning algorithms used here are Least Absolute Shrinkage and 

Selection Operator (LASSO) [40] for signal estimation and Multiple Dictionary Update 

(MDU) [41] for channel estimation. The LASSO is used to minimize the sum of squares 

subject to sum of absolute value of coefficients being less than a fixed constant [40].  

The MDU [41] approach is used to primarily estimate the channel matrix H for a 

signal X as estimated by the LASSO algorithm in an iterative approach. The MDU 

algorithm minimizes the least square expression subject to the number of limited non-zero 

components of the dictionary. These two algorithms are used iteratively where an initial 

dictionary is picked at random [42], fed into the LASSO algorithm. The output from the 

first stage is then used for the MDU algorithm to estimate the channel. This estimated 

channel is used by the LASSO again, so on and so forth. 

In this thesis, we address the BSS problem in wireless networks depicted in  

figure 1.2, in which a fusion center observes multiple sources via noisy sensors over time-

varying channels. A HMM is used to generate source activity to introduce necessary 

sparsity in the system. The Clarke and Gans fading model is used to simulate the time-

2

,
min

H X
Y HX

χ∈
−

 
(1.6) 
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varying channel with different amounts of Doppler. When the signal arrives at the receiver, 

LASSO and MDU algorithms are used in tandem to estimate the information.  

The performance of the system is charted as a Receiver Operating Characteristic 

(ROC) Curve which plots the probability of correct detection versus the probability of false 

alarm. The probability of detection is the ratio of the number of correctly detected active 

sources and the total number of active sources over T time samples; and the probability of 

false alarm is the ratio of the number of incorrectly detected active sources and the total 

number of inactive sources over the same T time samples. 

The performance of these algorithms are measured for different scenarios. We test 

the learning approaches in settings of varying Signal-to-Noise Ratios (SNR) to figure put 

the practical applicability of the same. As Doppler Effect introduces a change in the values 

of the channel matrix H, the variation in the data received at the sensors is also high. With 

higher Doppler frequency values, this variance is higher than it is for lower Doppler 

frequencies. We also test the algorithms by changing the number of time samples which 

are observed to figure out if we can control the rate of change of the channel for which the 

algorithms provide the best trade-off between too many and too few observations. Time 

coherence is calculated as a function of maximum Doppler frequency to estimate the ideal 

number of observations for different amounts of Doppler in the system. 

The rest of this thesis is arranges as follows: 

Chapter 2 talks about the system model in detail. It describes what mathematical 

models have been used to set up a realistic system, with a set of sources transmitting signals 

with sparsity in activity and a channel with multipath fading, modeled by the use of 
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Rayleigh fading, and Doppler Effect. It describes the HMM model used for signal 

generation and the Clarke and Gans Model for simulating fading channels. 

Chapter 3 comprises of the math behind the system design and the algorithms used 

to decipher the information from the received noisy signals. It includes equations needed 

to explain how the DL algorithms and how they have been applied to solve our current 

problem. We discuss LASSO and MDU in detail and the theory behind other algorithms 

which have been used to formulate the ones we use. We also discuss the changes we 

suggest to these existing algorithms to improve their performance when subjected to a time-

varying system. 

Chapter 4 contains the results from the simulation in the form of ROC curves which 

shows how the performance of the DL algorithms change with varying Doppler, when 

compared to the performance of a system with time-invariant channel. We also discuss 

how time coherence can be used to formulate the ideal number of observations to provide 

the basis of suggested segmentation and subsequently the optimum trade-off between too 

much and too little variation in the system for the learning algorithms to estimate the 

transmitted signal. 
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CHAPTER 2 

SYSTEM MODEL 

Consider a model that includes M receivers or sensors and N sources. The number of 

sources N is usually larger than the number of sensors M (M<N). All of these M sensors 

make up a fusion center which has access to the N receiver antennae via communication 

channels.  Similar models with fusion centers reflect the architecture of IoT networks  

[2, 3]. In our model, each model transmits information intermittently and is therefore active 

only for a small subset of the T symbol periods over which the sensors collect data. 

Assuming all nodes are time-synchronous, the discrete time signals received by the 

M sensors over T symbol periods is given in matrix form as: 

where: 

Y = [y(1), y(2), … , y(T)] is an M x T matrix in which the columns represent the  

M x 1 received signals y(t) across all  T symbols t = 1, 2, … , T.  

X = [x(1), x(2), … , x(T)] is an N x T matrix that collects all N x 1 signals x(t) 

transmitted from all N sources over T time samples. 

Z = [z(1), z(2), … , z(T)] consists of independent zero-mean Gaussian noise entries 

with variance σ2. 

H is an M x N x T matrix denoting the channel information between every pair of 

source and sensor across all T symbol periods. The channel is time-varying and changes 

according with respect to the maximum Doppler frequency of the setup. 

Given the intermittent nature of the activity of the sources, the t-th column vector 

x(t) that collects the M symbols transmitted by the other sources at time t, is generally 

Y HX Z= +  (2.1) 
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sparse. To put it in other words, only a small subset of these x(t) entries are non-zero, which 

makes the vector and by extension the matrix X sparse. 

In cases of wireless communication, there is motion between the sources and the 

sensors. With the introduction of this motion in our model arises a relative velocity between 

source and sensor. This created a Doppler Shift in the carrier frequency creating channels 

that change with time. The maximum Doppler frequency is a function of the carrier 

wavelength and velocity of motion. H is represented as a three-dimensional matrix, which 

has T pages each containing the channel conditions between each pair of source and sensor 

at that time instance. 

The signals y(t) for t = 1, 2, … , T, are collected at the fusion center. Based on Y, 

the goal of the fusion center is to detect when a source is active and recover the signals x(t) 

for t = 1, 2, … , T, or the signal matrix X, in the absence of data about the channel matrix 

H. 

 

2.1 Signal Generation 

For each source n, the activation pattern is noted as a binary sequence 𝑠𝑠𝑛𝑛(t), where the 

binary state 𝑠𝑠𝑛𝑛(t) indicates whether a particular source was active or inactive. When 𝑠𝑠𝑛𝑛 is 

zero, the source is considered to be switched off and nothing is transmitted. When 𝑠𝑠𝑛𝑛 is 

one, source is active and transmits information.  

The signal is generated by using an intermittent and smooth deterministic model. 

Each source is active only for a small fraction of the entire time duration. The activity 

pattern tend to be smooth, i.e., a source once switched off tend to stay that way and not 
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change its state. This causes the sequence 𝑠𝑠𝑛𝑛(t) to be smooth as the number of transitions 

from on state to off state and vice versa is small. 

For designing source activity that captures the properties of an IoT system, we use 

a probabilistic Hidden Markov Model. A binary sequence such as 𝑠𝑠𝑛𝑛(t) can be depicted by 

a Markov Model with two states (on denoted by 1 and off by 0). Figure 2.1 shows the state 

transition diagram of a Markov Model with two states 1 and 2 with transition probabilities 

α and β. 

 

 

Figure 2.1 State Transition Diagram for a 2-state Markov Model. 
Source: K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, Massachusetts: MIT 
Press, 2012, pp. - 590. 
 
    

A stationary finite-state Markov Model is equivalent to a stochastic automaton [28]. 

It is common to visualize this by drawing a directed graph where nodes represent states 

and arrows represent legal transitions. The probability of going from state i to state j is: 

1Pr( )ij t tA X j X i−= = =  (2.2) 

The transition probabilities between different states can be shown much clearly in 

the form of a transition matrix. All rows of this matrix sums to be 1. 
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1
1

A
α α
β β
− 

=  − 
 

(2.3) 

The transition probabilities of the two-state Markov chain used in our model are 

defined as: 

A Hidden Markov Model (HMM) consists of a discrete-time discrete-state Markov 

chain, with hidden states, and an observation model. By controlling the transition 

probabilities in the Markov Model (transition from OFF to ON is 𝑝𝑝𝑛𝑛 and from ON to OFF 

is 𝑞𝑞𝑛𝑛), the duration of transmission can be changed; sparsity can be introduced in the system 

and controlled with specific calculations. 

  

Figure 2.2 Hidden Markov Model for any source n. 

 

1Pr( ( ) 1 ( ) 0)n n np s t s t−= = =  (2.4) 

1Pr( ( ) 0 ( ) 1)n n nq s t s t−= = =  (2.5) 
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Each transition between the binary outputs (𝑠𝑠𝑛𝑛) of the Markov Model is determined 

by the Markov chain whose two states are on and off. The binary output (𝑠𝑠𝑛𝑛) is used to 

generate the signal (𝑥𝑥𝑛𝑛) transmitted by the source. 

( ) ~ ( )n nx t f t  when 𝑠𝑠𝑛𝑛(t) = 1 (2.6) 

( ) 0nx t =  when 𝑠𝑠𝑛𝑛(t) = 0 (2.7) 

Here, 𝑓𝑓𝑛𝑛 denotes a distribution on which all independent 𝑥𝑥𝑛𝑛samples are modelled. When 

𝑠𝑠𝑛𝑛 is zero, the source is considered to be switched off and nothing is transmitted. For our 

system, 𝑓𝑓𝑛𝑛 is Gaussian with zero mean and unit variance. 

 The signals incoming from the sources at different time instances in real-life appear 

random to the receiving sensors which have no control over when a source starts 

transmitting or stops. To design a seemingly random signal, a Hidden Markov Model 

(HMM) [27] is used. 

 

2.2 Channel Generation 

A communication channel is the medium used to transmit information from one point to 

the other. Though wired channels are fast and far more secure than their wireless 

counterparts, they are usually limited to short distances. In cellular communication, the 

receivers are often mobile devices and wired communication channels are not possible to 

connect the sources and sensors. In mobile communication, the relative motion between 

sender and receiver causes changes in frequency or wavelength in the signal known as 

Doppler Shift or Doppler Effect. All mobile communications must contend with Doppler 

frequency shift [49]. 
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 Cellular wireless systems experience loss of signal strength due to Doppler shift in 

mobile environments, and scattering due to reflections from natural and manmade 

obstructions. Ideally, modeling a channel is calculating all the physical processing effecting 

a signal from the transmitter to the receiver. For a wireless channel, the envelope of the 

channel response is modeled to have a Rayleigh distribution. Rayleigh Fading is a 

reasonable model when there are many objects in the environment that scatter the radio 

signal before it reaches the receiver. Experiments in densely populated Manhattan have 

shown Rayleigh fading [31]. 

By controlling the carrier frequency (𝑓𝑓𝑐𝑐), and subsequently the wavelength (λ) and 

relative velocity (v) we can influence the amount of Doppler Effect in the channel. The 

instantaneous frequency of received component arriving at an angle α is: 

 

The angle of arrival is assumed to be uniformly distributed over the interval (0, 2π) 

and Doppler components arriving at exactly 0° and 180° have an infinite power spectral 

density. This is not a problem since angle of arrival is continuously distributed and 

probability of components arriving at exactly these angles is negligible [47]. 

R. H. Clarke modeled the mobile channel as a Rayleigh fading channel [32]. Later, 

M. J. Gans deduced a spectral model from Clarke’s original analysis [33]. In Clarke’s 

model, a vertical quarter wavelength antenna with azimuthal gain pattern of the mobile 

( ) cos( )m cf f fα α= +  (2.8) 

m
vf
λ

=   
(2.9) 
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antenna as function of angle of arrival, G(α) = 1.5 and a uniform distribution of 1/2π over 

0 to 2π, the output spectrum is given by:  

2

1.5( )
1 ( )

zE
c

m
m

S f
f ff

f
π

=
−

−
 

(2.10) 

The Doppler power spectrum we obtain from plotting equation (2.10) with respect 

to instantaneous frequency generates the following curve. 

 

Figure 2.3 Doppler Power Spectrum for an unmodulated continuous wave carrier. 

Source: M. J. Gans, "A power-spectral theory of propagation in the mobile-radio environment," in IEEE 
Transactions on Vehicular Technology, vol. 21, no. 1, pp. 27-38, Feb. 1972. 

  

The spectrum is centered on the carrier frequency and is zero outside the limits of 

𝑓𝑓𝑐𝑐±𝑓𝑓𝑚𝑚 where 𝑓𝑓𝑚𝑚 is the maximum Doppler frequency. Each of the arriving components have 

their own carrier frequency which is slightly offset from the center frequency (as shifts in 

direction manifest in terms of phase shifts).  
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The channels connecting every pair of source and sensor in a wireless network may 

change with time. The possible movement of any or both of the source and sensor 

introduces Doppler shift in the frequency. John I. Smith simulated the Clarke and Gans 

model on a computer using the algorithm described below [34] which is applied in our 

system model to implement said time-varying channels. The following figure demonstrates 

how to implement in a computer simulation. 

 

Figure 2.4 Frequency domain implementation of a Rayleigh fading simulator. 
 
Source: T. S. Rappaport, Wireless Communications Principles and Practice, 2nd ed., Prentice Hall, 2002,  
pp.-215. 
 

This method uses a complex Gaussian random number generator (noise source) to 

produce a line spectrum with complex weights in the positive frequency band. The 

maximum frequency components of this line spectrum is 𝑓𝑓𝑚𝑚. The negative frequency 

components were constructed by conjugating the positive frequency components. The 

random valued line spectrum is then multiplied with a discrete frequency representation of 
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( )
zES f having the same number of points as the noise source. This is followed by 

performing IFFT on the sequences thus generated to get two time series. The squares of 

each signal point in time is added to form one sequence, the square root of which is r(t).  

r(t) denotes the channel between any given pair of source and senor for our model, 

where every value at different time instance t represents the channel information at that 

time. We generate multiple such sequences for all possible source and sensor combination. 

Then arrange it in a three dimensional matrix with every page denoting channel state at any 

given time, with element (i,j) corresponding to i-th sensor and j-th source. There are T 

pages, each containing M rows and N columns. 
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CHAPTER 3 

DICTIONARY LEARNING ALGORTIHMS 

 

Dictionary learning is a mix of machine learning and signal processing and comprises of 

iterative algorithms aimed to find the dictionary in which some training data admits sparse 

representations. Our problem boils down to solving for the signal matrix X which is in the 

form of any general equation depicting linear systems.  

Underdetermined linear systems of equations of the form Ax = b have infinitely 

many solutions, when the matrix A is full rank. The columns of the matrix A serve as a 

basis for expressing the observations b. The set of basis signals that form the matrix A is 

called a dictionary. Elements of a dictionary are known as atoms. A dictionary can be seen 

as an over-complete basis such that every vector in the same space can be approximately 

expressed as linear combinations of elements in this dictionary. When the dictionary is 

overcomplete, A is not unique.  

Dictionary Learning is the process to find a good over-complete basis in terms of 

minimum approximation error and sparsest solution given a set of vector. This is where the 

sparsity comes into play because we want to find a sparse vector which has a small number 

of significant coefficients and reduce the number of atoms to be estimated [35]. 

 Dictionary learning algorithms use a set of signal examples to identify that will best 

sparsify them, thereby leading to more effective modeling [41]. Dictionary Learning 

techniques used here are used to approximate the solution of the data-fitting problem where 

χ is the set of matrices with columns containing a limited number of non-zero entries:  

2

,
min

D X
Y DX

χ∈
−   (3.1) 
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 This problem is not convex with respect to the pair (D, X). Dictionary learning 

algorithms use an iterative approach where the original information X χ∈ and the 

dictionary D are optimized alternately [45]. We attack this problem by iteratively 

performing a two-stage procedure as described in [42] where the index of iteration is k. 

First, the sparse representation is handled in the following form: 

 
2( 1) ( )arg mink k

X
X Y D X+ = −  (3.2) 

Next we perform the dictionary update stage using: 

2( 1) ( 1)arg mink k

D
D Y DX+ += −  (3.3) 

In this section, we review Dictionary Learning techniques which do not need prior 

information about the memory of the sources. These methods use the fact that the signals 

x(t) is sparse at any time t. Sparse and redundant representation modeling of signals is a 

very effective way to describe the inner-structure of signal sources [41]. Assuming 

information only about the sparseness of x(t) at each time t, a standard approach is to utilize 

the channel matrix H as a dictionary, as described above, to be learned to recover signal 

matrix X.  

In the algorithms we use, we first handle the optimization over the signal X for a 

given channel matrix H and then over the channel H for a given signal matrix. If the fusion 

center acts like a master clock synchronizing all other nodes, the problem changes slightly 

to look like: 

2

,
min

H X
Y HX

χ∈
−  (3.4) 

 We initiate a random dictionary H to estimate the signal matrix X  

column-by-column using the LASSO algorithm [40]. With this estimated matrix, the MDU 
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algorithm [41] learns the dictionary H. Feeding the estimated matrices of these algorithms 

iteratively into the other helps reach convergence. The functional block diagram of how 

the learning proceeds is depicted in figure 3.1. 

 

Figure 3.1 Functional Block Diagram of proposed algorithm. 

When the solution to the data fitting problem is reached, we compare the estimated 

signal matrix with the original sent matrix to plot the probabilities of false alarm and 

detection which we use as a metric to measure performance of the learning algorithms.  

DL methods are subject to inherent permutation and sign ambiguities [46]. The scaling 

ambiguity can be resolved by normalizing the columns of the channel matrix [41-44]. 

 

3.1 Signal Estimation: LASSO Algorithm 

Standard sparse optimization estimators such as orthogonal matching pursuit (OMP) [50] 

can be used to address the solution of equation (3.1). Similarly, regression analysis can also 

be used. At its core all regression analysis approaches examine the influence of one or more 

independent variables on a dependent variable. The Least Absolute Shrinkage and 
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Selection Operator or the LASSO algorithm [40] is a regression analysis approach that 

performs both variable selection and regularization to improve interpretability of produced 

model and also prediction accuracy. LASSO was originally designed to tackle least squares 

problems and has multiple similarities to ridge regression and subset selection. 

 Ridge Regression approaches the problem in equation (3.1) by treating it like an 

ordinary least squares problem and adding a  2 penalty term. The OLS loss function is 

augmented in such a way that not only the sum of squared residuals is minimized but also 

penalize the size of parameter estimates, in order to shrink them towards zero.  

 
2 2

2 2
arg minridge

X
x y Dx xµ= − +

 
(3.5) 

 Ridge regression solves the problem column wise using a weight μ associated with 

the  2 penalty term. It could have a better prediction error when compared to linear 

regression in a variety of scenarios, depending on the choice of the weight μ. However, it 

works best only when a subset of the true coefficients are small or zero. But coefficients 

are never set to zero exactly, and cannot perform variable selection in the linear model. 

While this didn’t seem to hurt its prediction ability, it is not desirable, especially in cases 

with a large number of variables.  

 Controlling the weight, we can change how the algorithm behaves. Setting μ to 0 is 

the same as using the OLS, while the larger its value, the stronger is the coefficients' size 

penalized. When 0µ → , the ridge regression estimate is the same as the solution of an 

ordinary least squares solution. When µ →∞ , the ridge regression estimate approaches 

zero, i.e., 0ridgex → . 

LASSO -Least Absolute Shrinkage and Selection Operator- was first formulated by 

Robert Tibshirani in 1996 [40]. It is a powerful method that performs two main tasks: 
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regularization and feature selection. LASSO is quite similar to ridge regression 

conceptually. It also adds a penalty for non-zero coefficients, but unlike ridge regression 

which penalizes sum of squared coefficients in the form of a  2 penalty with a weight μ, 

LASSO penalizes the sum of their absolute values or the  1 penalty term with a weight λ. 

As a result, for high values of λ, many coefficients are exactly zeroed under LASSO, which 

is never the case in ridge regression. The LASSO estimate is defined as: 

 
2

2 1
arg minlasso

X
x y Dx xλ= − +

 
(3.6) 

 The only difference between the LASSO problem and ridge regression is that the 

latter uses a  2 penalty, while the former uses a  1 penalty. The tuning parameter or the 

weight λ controls the strength of the penalty: 

For λ in between these two extremes, we are balancing two ideas: fitting a linear 

model of y on X, and also shrinking the coefficients. But even though these problems look 

similar, their solutions behave very differently. The nature of the  1 penalty causes some 

coefficients to be shrunken to exactly zero. This is what makes the LASSO significantly 

different from the ridge regression approach. It is able to perform variable selection in the 

linear model which the ridge regression cannot.  

As λ increases, more coefficients are set to zero, or in other words, fewer variables 

are selected, and the non-zero coefficients undergo stricter shrinkage. Reducing 

coefficients to exactly zero is extremely important when we recall that our model is based 

on an IoT structure which has intermittent sources and relies heavily on sparsity for its 

lasso OLSx x→  when 0λ →  (3.7) 

0lassox →  when λ →∞  (3.8) 
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assembly and that the dictionary learning section of the algorithms provides improved 

performances for a sparse case.  

 When the learning proceeds in multiple iterations as shown in figure 3.1, for any 

fixed iterate 𝐻𝐻(𝑘𝑘) at the k-th iteration, estimating the signal X becomes: 

2( 1) ( )

2
arg mink k

X
X Y H X

χ

+

∈
= −  (3.9) 

Alternatively, we use the LASSO algorithm to solve the following  

convex problem separately for each t, where the weight λ is a parameter which is 

determined as a function of the sparsity of the vector x(t): 

2( )
12( )

min ( ) ( ) ( )k

x t
y t H x t x tλ− +  (3.10) 

Here, the vectors x(t) make up X which is the signal matrix containing the 

transmitted information and the channel matrix H is used as the dictionary in the learning 

algorithms. LASSO’s  1 penalties have powerful statistical and computational advantages. 

According to the “Bet on Sparsity Principle” as described in [51]: Assume that the 

underlying truth is sparse and use a  1 penalty to try to recover it. If you’re right, you will 

do well. If you’re wrong— the underlying truth is not sparse—, then no method can do 

well.  1 penalties encourage sparsity and simplicity in the solution.  1 penalties are 

convex and the assumed sparsity can lead to significant computational advantages. 

The LASSO is a shrinkage and selection method for linear regression. It minimizes 

the usual sum of squared errors, with a bound on the sum of the absolute values of the 

coefficients. It has connections to soft-thresholding of wavelet coefficients, forward  

stage-wise regression, and boosting methods [28].  
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The tuning parameter λ, which can be any value between [0, )∞ , controls the 

strength of the  1 penalty. The LASSO estimates are generally biased, but have good mean 

squared error when compared to ridge regression. Additionally, the fact that it sets 

coefficients to zero is a big advantage for the sake of interpretation, especially for systems 

such as ours. 

 

3.2 Channel Estimation: MDU Algorithm 

The previous stage detailed in equation (3.2) is simply an ordinary sparse coding problem 

in which the sparse representations of all the signals are computed using the current 

dictionary. The dictionary in equation (3.3) is updated to reduce the representation error of 

the previous stage. 

   One of the simplest dictionary learning algorithms is the Method of Optimal 

Directions (MOD) [43] which primarily finds the unconstrained minimum of equation (3.1) 

and then projects on the set that contains the dictionary D. Any standard sparse 

optimization estimators can be used to approximate the solution of equation (3.1). The 

MOD dictionary update is performed by the following closed form expression: 

 This is followed by normalizing the columns of the dictionary which is crucial in 

eliminating errors such as the scaling ambiguity in the channel matrix. If the change in 

minimization corresponding to each iteration is within a preset threshold, the algorithm 

stops; otherwise another iteration is applied. 

( ) ( ) 1arg min ( )k k T T

D
D Y DX YX XX −= − =  (3.11) 
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A MOD-like algorithm developed in [41] fixes the support of X and updating its 

non-zero entries in their associated row vectors at a time. The support ( )XS  denotes the 

positions of entries of the matrix X which are non-zero. This is of special significance when 

dealing with sparse problems. The problem in equation (3.1) is modified by adding 

constraints on the support by subjecting it to the support as found in the previous iteration: 

2

2,
min
X D

Y DX−   

subject to ( 1)( ) ( )kX X +=S S  

 

(3.12) 

To solve this problem, [41] proposed the usage of alternating minimization of the 

dictionary D and the information matrix X: minimizing equation (3.12) over D with a fixed 

X from equation (3.11) and minimizing equation (3.12) over X with a fixed D decouples 

for each column of X and results in the following [42]: 

2

2
: arg mini i

x
i x y Dx∀ = −  subject to ( 1)( ) ( )k

ix x +=S S   (3.13) 

 

By defining { : ( ) 0}i ij x jω = ≠  equation (3.13) undergoes the following changes: 

1: ( ) ( ) )T T
i i i i i ii x D D D yω −∀ ←  (3.14) 

 

where, 𝐷𝐷𝑖𝑖are the columns of D which have been used in the representation of 𝑦𝑦𝑖𝑖. 

Performing multiple alternations, as few as just three, between equations (3.11) and (3.14) 

gives improved learning performances which have been shown in [41]. As the dictionary 

undergoes multiple updates based on the support of X, this algorithm is known as the 

Multiple Dictionary Update (MDU) [41]. 
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A change to the conventional MDU has been suggested in [42] which obtains a new 

dictionary learning problem by defining a first-order series expansion for the matrix-valued 

function F(D,X) = DX about a point (𝐷𝐷0, 𝑋𝑋0). D and X can be then rewritten as: 

D = 𝐷𝐷0+(D-𝐷𝐷0) and X = 𝑋𝑋0+(X-𝑋𝑋0) (3.14) 

Here, (D-𝐷𝐷0) and (X-𝑋𝑋0) are small in the sense of the second norm. The primary 

minimization problem boils down to: 

2( 1) ( 1) ( ) ( ) ( ) ( )

2,
{ , } arg mink k k k k k

D X
D X Y D X DX D X+ + = + − −  (3.16) 

Substituting ( )kD D=  [42] reduces sparse representation to the general dictionary 

learning problem. Thus the proposed changes does not affect the sparse representation 

stage and any sparse coding algorithm used for the same. Substituting ( 1)kX X +←  and 

introducing ( ) ( ) ( ) ( 1)k k k kZ Y D X D X += + −   reduces the problem to: 

2( 1) ( )

2
arg mink kD Z DX+ = −  (3.17) 

Approaching this way, sparse representation stays the same as equation (3.14) and 

dictionary update stage changes as ( 1) 1( )k T TD ZX XX+ −=  which is followed by the 

normalizing the columns of the dictionary [42]. 

The MDU approach estimates the channel matrix H for a given 𝑋𝑋(𝑘𝑘+1) by following 

an iterative method. We denote ( )XS  as the set of indices of the non-zero elements in the 

vector x(t). Also, index (j,k) denotes the j-th iteration of the MDU algorithm within the  

k-th step of the overall DL alternate optimization scheme. At the (j, k) iteration, the MDU 

calculates: 
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( , ) ( , ) ( , ) ( , ) 1( )j k j k T j k j k TH YX X X −=  (3.18) 

( 1, ) ( ) ( , ) ( , ) 1 ( , )( ) ( ) ( )j k k j k T j k j k Tx t A H H H y t+ −=   (3.19) 

where for all t, A(𝑘𝑘) is a diagonal matrix with elements having indices in 

( 1)( ( ))kX t+S equal to one and zero otherwise. The iteration is initialized with 

(1, ) ( 1)k kX X += . So, for a constant sparsity pattern ( 1)( ( ))kX t+S , MDU approximates channel 

and signal alternatively. 

The enhancement proposed in the conventional MDU in [42] substituted at iteration 

index k, the received matrix Y changes as ( ) ( ) ( ) ( ) ( 1)k k k k kY Y H X H X += + −  and the learning 

proceeds as in equation (3.17) with subsequent modifications. 

 

3.3 Modification for Time-Varying Channels 

Dictionary Learning-based blind source separation (BSS) problems have been previously 

applied for systems where the unknown channels are flat-fading and time-invariant. 

However, in practical scenarios, communication channels do not remain fixed and 

unchanging with time. In our work, we applied the algorithms to a system with non-direct 

line of path between transmitter and receiver, undergoing reflection and scattering, and 

considered the Doppler Effect on the wave propagation due to the motion of the mobile 

unit. With these additions, the performance of the same algorithms change. 

 The spectral broadening caused by the time rate of change of the mobile radio 

channel causes the correlation in the system to decrease. The performance of the algorithms 

change with the time rate of change in the channel. This degradation does not occur in a 

fixed manner. The deterioration of the learning is affected by the amount of change the 
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channel undergoes in the observation period. When the maximum Doppler frequency for a 

channel is lowered, and the spectrum appropriately adjusted, the performance improves. 

 For a fixed Doppler spread, the amount of change we expose our system to can be 

controlled by changing the duration of observation. By inputting fewer samples spread over 

a shorter duration of time, the learning improves even with the same Doppler spread. But 

when the number of samples being observed are lowered beyond a certain limit, there 

ceases to be sufficient information to perform the learning. When the duration of 

observation is reduced, a part of the transmitted information is lost, which is highly 

undesirable. 

 A method to decide on how many samples are observed such that the learning is 

not affected by the change in the channel while having sufficient information to learn from 

has been devised in our work. In time domain, time coherence is used to denote time 

interval over which channel impulse responses are highly correlated. It is the time domain 

dual of Doppler spread and is used to characterize the time-varying nature of the frequency 

dispersiveness of the channel in the time domain. Over a duration of time coherence, the 

channel appears fixed to the learning algorithms. Time coherence is inversely proportional 

to the maximum Doppler frequency. 

 

 From [48], we further get: 

 

1
c

m

T
f

∝  
(3.20) 

 9
16c

m

T
fπ

=  
(3.21) 
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 The received signal is broken into segments in the time-domain. The duration of 

each of these segments is smaller than the time coherence. The segments are fed in parts to 

the algorithm iteratively. The segmentation enforces that the entire signal be used, thus 

garnering no loss of information.  

 We change the algorithm to break the received information matrix Y into desired 

number of segments in the time domain. In the LASSO step of the entire DL process, we 

use a number of segments each containing the number of time samples whose time duration 

is shorter than the time coherence value found using equation (3.21) to estimate signal 

matrix X, let’s call these segments 𝑋𝑋1, 𝑋𝑋2…𝑋𝑋𝑛𝑛. Before the process starts again, to estimate 

these two parameters in tandem as it reaches convergence, we append these segments 

together and start afresh for the next iteration. Doing this forces the algorithms to learn the 

information in seemingly fixed channels, thus giving better performance.  
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CHAPTER 4 

PERFORMANCE ANALYSIS 

 

As seen in Chapter 2, our system consists of more sources than sensors (M < N). The 

sensors take measurements of incoming signals at every time instant (t), to which learning 

algorithms are applied for estimation of original sent information (X). As mentioned in 

Chapter 3, we use the LASSO [40] algorithm for signal estimation and the MDU [41] 

algorithm for channel estimation. 

 The signals incoming from the sources at different time instances appear random 

to the sensors, having no control over when a source starts transmitting or stops. To design 

a seemingly random signal, a Hidden Markov Model (HMM) [27] is used. We have: 

where 𝑠𝑠𝑛𝑛(t) is the binary state which dictates whether a source is switched on or off 

at time t. By controlling the transition probabilities in the Markov Model (transition from 

OFF to ON is 𝑝𝑝𝑛𝑛 and from ON to OFF is 𝑞𝑞𝑛𝑛), the duration of transmission can be changed; 

sparsity can be introduced in the system and controlled with specific calculations. 

The binary output (𝑠𝑠𝑛𝑛) of the Markov Model is used to generate the signal (𝑥𝑥𝑛𝑛) 

transmitted by the source. 

( ) ~ ( )n nx t f t  when 𝑠𝑠𝑛𝑛(t) = 1 (4.3) 

( ) 0nx t =  when 𝑠𝑠𝑛𝑛(t) = 0 (4.4) 

1Pr( ( ) 1 ( ) 0)n n np s t s t−= = =  (4.1) 

1Pr( ( ) 0 ( ) 1)n n nq s t s t−= = =  (4.2) 
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Here, 𝑓𝑓𝑛𝑛 denotes a distribution on which all independent 𝑥𝑥𝑛𝑛samples are modelled. When 

𝑠𝑠𝑛𝑛 is zero, the source is considered to be switched off and nothing is transmitted. For our 

system, 𝑓𝑓𝑛𝑛 is Gaussian with zero mean and unit variance. 

 The channels connecting every pair of source and sensor in a wireless network may 

change with time. The possible movement of any or both of the source and sensor 

introduces Doppler shift in the frequency. The adapted Clarke and Gans model for fading 

[32] in the effective computer simulation as shown in [34] is applied in our system model 

to implement said time-varying channels.  By controlling the carrier frequency (𝑓𝑓𝑐𝑐), and 

subsequently the wavelength (λ), and relative velocity (v) we can influence the amount of 

Doppler Effect in the channel. The instantaneous frequency of received component arriving 

at an angle α is: 

( ) cos( )m cf f fα α= +  (4.5) 

m
vf
λ

=   
(4.6) 

 

The angle of arrival is assumed to be uniformly distributed over the interval (0, 2π) 

and Doppler components arriving at exactly 0° and 180° have an infinite power spectral 

density. This is not a problem since angle of arrival is continuously distributed and 

probability of components arriving at exactly these angles is negligible. 

The spectrum is centered on the carrier frequency and is zero outside the limits of 

𝑓𝑓𝑐𝑐±𝑓𝑓𝑚𝑚 where 𝑓𝑓𝑚𝑚 is the maximum Doppler frequency. Each of the arriving components have 

their own carrier frequency which is slightly offset from the center frequency (as shifts in 

direction manifest in terms of phase shifts). For the case of a vertical λ/4 antenna with 
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azimuthal gain pattern of the mobile antenna as function of angle of arrival, G(α) = 1.5 and 

a uniform distribution of 1/2π over 0 to 2π, the output spectrum is given by:  

2

1.5( )
1 ( )c

m
m

S f
f ff

f
π

=
−

−
 

(4.7) 

 Assuming only information about the sparseness of x(t) at each time t, a standard 

approach is to utilize the channel matrix H to recover X. DL techniques approximate the 

solution of the data fitting problem where χ is the set of matrices with columns containing 

a limited number of non-zero entries:  

 

 This problem is not convex with respect to the pair (H, X). Dictionary learning 

algorithms use an iterative approach where the original information X χ∈ and the channel 

H are optimized alternately [45]. In the algorithms we use, we first handle the optimization 

over the signal X for a given channel matrix H and then over the channel H for a given 

signal matrix. DL methods are subject to inherent permutation and sign ambiguities [46]. 

The scaling ambiguity can be resolved by normalizing the columns of the channel matrix 

[41-44]. 

 

For any fixed iterate 𝐻𝐻(𝑘𝑘) at the k-th iteration, estimating the signal X becomes: 
2( 1) ( )arg mink k

X
X Y H X

χ

+

∈
= −  (4.9) 

  

2

,
min

H X
Y HX

χ∈
−

 
(4.8) 
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The LASSO [40] algorithm is used to solve the convex problem of signal 

estimation, separately for each time sample (t). The weight (λ) is a parameter which is 

determined as a function of the sparsity of the vector x(t) which can be influenced by 

choosing appropriate transition probabilities in the HMM. The weight could possible take 

any non-negative real number.  

LASSO solves the signal estimation problem by solving the following convex 

problem: 

( )
12

min ( ) ( ) ( )k

X
y t H x t x t

χ
λ

∈
− +  for t=1,…,T (4.10) 

As λ increases, the number of non-zero components in the training set increases as 

well. The selection of the correct λ thus plays an important role in fitting the least squares 

regression coefficients in estimating the signal matrix column-by-column (or time sample-

by-time sample). 

 The MDU [41] approach is used to primarily estimate the channel matrix H for a 

signal X as estimated by the LASSO algorithm in an iterative approach. At the k-th 

iteration, for a fixed 𝑋𝑋(𝑘𝑘+1), the channel estimation step uses the MDU which alternatively 

estimates the channel and signal in an inner loop of index j of the MDU algorithm within 

the 𝑘𝑘𝑡𝑡ℎstep of the Dictionary Learning optimization.  

 

At (j, k) iteration, MDU computes: 

( , ) ( , ) ( , ) ( , ) 1( )j k j k T j k j k TH YX X X −=  (4.11) 

( 1, ) ( ) ( , ) ( , ) 1 ( , )( ) ( ) ( )j k k j k T j k j k Tx t D H H H y t+ −=  (4.12) 
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 where for all t, 𝐷𝐷(𝑘𝑘) is a diagonal matrix with elements having indices in 

𝑆𝑆(𝑥𝑥(𝑘𝑘+1)(𝑡𝑡)) equal to 1 and otherwise 0. S(x) is the set of non-zero elements in the vector 

x. The iteration is initialized with 𝑋𝑋(1,𝑘𝑘) = 𝑋𝑋(𝑘𝑘+1). For a fixed sparsity pattern 𝑆𝑆(𝑥𝑥(𝑘𝑘+1)(𝑡𝑡)), 

MDU alternatively estimates channel and signals. 

We present the analysis to obtain insights into the performance of these DL-based 

estimation algorithms in the presence of time-varying channels. As performance criteria, 

the probability of false alarm and probability of detection are selected. The probability of 

detection is the ratio of the number of correctly detected active sources and the total number 

of active sources over T time samples; and the probability of false alarm is the ratio of the 

number of incorrectly detected active sources and the total number of inactive sources over 

the same T time samples. 

Unless otherwise mentioned, the number of sources N=30, the number of sensors 

M=20. We assume an HMM for the state 𝑠𝑠𝑛𝑛(t), the transition probabilities are 𝑝𝑝𝑛𝑛= 0.0022 

and 𝑞𝑞𝑛𝑛= 0.02 for all N sources, such that an average 𝑁𝑁 𝑝𝑝𝑛𝑛 / (𝑝𝑝𝑛𝑛 + 𝑞𝑞𝑛𝑛) = 3 sources are active 

in each time sample t and the average duration of transmission is 1 / 𝑞𝑞𝑛𝑛 = 50 time samples.  

Figure 4.1 depicts the source activity of said system over a 1000 time samples with 

parameters as defined here. There are 30 sources whose activity is traced over a duration 

of 1000 time samples. We observe that once switched on, a source tends to remain active 

for a continuous stretch of time. Also, for most of the observation period, most of the 

sources are inactive, which is a result of basing the model on a sparse matrix. 
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Figure 4.1 Source Activity Diagram of N=30 sources over T=1000 time samples. Average 
of 3 sources are active in each time sample. Average duration of transmission = 50 time 
samples. 
  

In the next part, we discuss the Dictionary Learning algorithms’ sensitivity to 

number of samples being tested for a channel that changes with time. With this change, 

Doppler is introduced and the performance is compared with respect to a channel which 

remains fixed over all 1000 time samples. We will also elaborate on the sensitivity to 

Doppler Effect where we subject the system to different Doppler Shifts and study its effect 

on the learning algorithms. 
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4.1 Sensitivity to Number of Observations 

We subject the system to a channel of carrier frequency 𝑓𝑓𝑐𝑐 = 1 GHz and maximum Doppler 

frequency 𝑓𝑓𝑚𝑚 = 1 kHz. The frequency band of all arriving components increases to 𝑓𝑓𝑐𝑐±𝑓𝑓𝑚𝑚. 

Figure 4.2 depicts the power spectral density of the resulting signal due to Doppler fading 

with above conditions. 

 

Figure 4.2 Power Spectral Density for carrier frequency 𝑓𝑓𝑐𝑐 = 1 GHz and maximum Doppler 
frequency 𝑓𝑓𝑚𝑚 = 1 kHz. 

 

We plot the probability of detection for a fixed probability of false alarm with 

respect to varying Signal-to-Noise Ratio (SNR) in a fixed channel that does not change 

with time as control with 1000 time samples. We observe the performance of the algorithms 

at 0, 5, 10, 20 and 30 dB, and the probability of detection (𝑃𝑃𝑑𝑑) corresponding to probability 
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of false alarm 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2. At different SNR values, for 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2, the results are documented 

in Table 4.1. 

 

Figure 4.3 Probability of detection for varying SNR (dB) when probability of false alarm 
is 0.2 for 1000 observations of a fixed channel. 
 

Table 4.1 Probability of detection when  𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 with changing SNR when number of 
observations = 1000 in a fixed channel 

SNR (dB) 𝑃𝑃𝑑𝑑 

0 0.175 

5 0.3 

10 0.68 

20 0.78 

30 0.85 
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When there is relative motion between the sources and the sensors, the channels 

between them change with time. The amount of change in the channels can be calculated 

as a function of the velocity of motion, the wavelength and the angle of arrival. The angle 

of arrival is uniformly distributed over an interval 0 to 2π. The azimuthal gain pattern for 

given angle or arrival distribution is assumed to be 1.5 and the antenna is a quarter 

wavelength antenna.  

Thus implemented time-varying channel is used to transmit the signal generated 

using the HMM and 1000 observations are used in the learning algorithm, the probability 

of detection for SNR = 0, 5, 10, 20, 30dB are plotted at fixed probability of false alarm of 

0.2 are tabulated in Table 4.2.  

 

Figure 4.4 Probability of detection for varying SNR (dB) when probability of false alarm 
is 0.2 for 1000 observations in a time-varying channel. 
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Table 4.2 Probability of detection when  𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 with changing SNR when number of 
observations = 1000 in a time-varying channel 

SNR (dB) 𝑃𝑃𝑑𝑑 

0 0.07 

5 0.09 

10 0.26 

20 0.39 

30 0.40 

 

Figure 4.5 plots the same parameters when 670 observations of a time-varying 

channel are fed in to the algorithms. Table 4.3 documents these values for different SNRs. 

 

Figure 4.5 Probability of detection for varying SNR (dB) when probability of false alarm 
is 0.2 for 670 observations in a time-varying channel. 
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Table 4.3 Probability of detection when  𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 with changing SNR when number of 
observations = 670 in a time-varying channel 

SNR (dB) 𝑃𝑃𝑑𝑑 

0 0.1 

5 0.15 

10 0.53 

20 0.57 

30 0.62 

 

Figure 4.6 plots the same parameters when 330 observations of a time-varying 

channel are fed in to the algorithms. Table 4.4 documents these values for different SNRs. 

 

Figure 4.6 Probability of detection for varying SNR (dB) when probability of false alarm 
is 0.2 for 330 observations in a time-varying channel. 
 
 



42 
 

Table 4.4 Probability of detection when  𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 with changing SNR when number of 
observations = 330 of a time-varying channel 

SNR (dB) 𝑃𝑃𝑑𝑑 

0 0.09 

5 0.13 

10 0.44 

20 0.48 

30 0.58 

  

We observe certain changes in the performance of the learning algorithms when we 

change the number of observations over which the channel is sampled. With the change in 

number of observations, the performance of the algorithms also changes. For a fixed level 

of Doppler Effect in a channel, the variation in the channel with every passing sample of 

time increases. The amount of change in the channel increases with increasing number of 

time instances over which the channel is observed.  

 When the time-varying channel is observed via a total of 1000 observations, the 

variation in the channel values is too high and performance degrades very drastically and 

𝑃𝑃𝑑𝑑 is merely 0.4 for 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 even for a SNR as high as 30dB. Reducing the number of 

observations to 2/3rd the value, i.e. 670 values, we see improvement in the performance 

and 𝑃𝑃𝑑𝑑 goes up to 0.62 for the same conditions. However, following the same process and 

decreasing the number of observations to 1/3rd or 330 values doesn’t follow the same 

pattern and 𝑃𝑃𝑑𝑑 degrades to 0.58 because there are not enough samples for the algorithm to 

work on. 
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The channel matrix H for a channel which is spread over too long a time duration 

or too many time samples has too high a variance between the elements of the matrix for 

the Dictionary Learning algorithms to correctly work on the received data to estimate the 

transmitted information or the signal matrix X. However, when observed for too little time 

and very few time samples, there ceases to be enough information for the algorithms to use 

to estimate the signal matrix X and the channel matrix H.  The channel matrix is fed back 

into the iterative DL algorithms which is used to estimate the sent signal or the matrix X.  

We work in the later sections of this chapter to figure out the appropriate number 

of time samples to observe to reach a trade-off between too many and too few observations 

and optimal performance. We calculate coherence time for different Doppler frequency 

values and compare the performances of the algorithms. 

Also, for varying SNR values, we notice that performance for different number of 

observations does not degrade linearly. When SNR = 0dB the performance of the system 

for any given number of observations is very poor. When SNR is increased to 5dB, 

performance improves slightly but is still not enough to justify the use of these algorithms 

to estimate the transmitted signal as probability of detection is comparable to the 

probability of false alarm, that is to say that any element of the signal matrix can be 

correctly or incorrectly estimated with the same probability and is highly undesired. The 

performance is comparatively much poorer for lower values of SNR up to 5dB.  

After 5dB, there is a rapid increase from 10dB to 20dB and 30dB. The algorithms 

provide probability of detection much higher than the probability of false alarm and is 

similar to any system that can be used in real life scenarios. From SNR = 10dB and higher, 
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they do not yield as extreme a change in performance as it does for the jump from 5dB to 

10dB. The performance for these SNR values are close to each other and improves linearly.  

For the next section, we compare the algorithms for the higher SNR values of 10dB, 

20dB and 30dB for different Doppler frequencies and discuss how the nature of the curves 

change on changing these two parameters. 

 

4.2 Sensitivity to Doppler Effect 

The transmitted signal travels through a channel with carrier frequency 𝑓𝑓𝑐𝑐 = 1 GHz. 

This channel undergoes movements with two different velocities in such a way that there 

is Doppler Effect arising from it. The channel is subjected to two different maximum 

Doppler frequencies 𝑓𝑓𝑚𝑚1 = 0.3 kHz and 𝑓𝑓𝑚𝑚2 = 1 kHz. Due to the different Doppler 

frequencies, certain characteristics of the channel changes inherently. The performance 

corresponding to these frequencies with changing number of observations as noted in the 

previous section are used to compare the sensitivity of the learning algorithms to Doppler 

Effect. Figure 4.7 depicts the power spectral density of the resulting signal due to Doppler 

fading with above conditions.  

Here too, the same assumptions, of an average of 3 sources are active during any 

time instance and average duration of transmission of a source is 50 time samples, are used. 

In this section, we plot the probabilities of detection and false alarm of the algorithms for 

different channels for higher SNRs of 10dB, 20dB and 30dB, each with changing number 

of observations. This is done to better come up with an estimate of how many samples 

would give the best trade-off. We will see in a later section that it can be calculated using 

the maximum Doppler frequency. 
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Figure 4.7 Power Spectral Density for carrier frequency 𝑓𝑓𝑐𝑐 = 1 GHz and maximum Doppler 
frequencies 𝑓𝑓𝑚𝑚1 = 0.3 kHz and 𝑓𝑓𝑚𝑚2 = 1 kHz. 
 

The curves correspond to systems with fixed channel not changing with time 

(which is used as a measure of best-case performance), and different number of 

observations taken for a time-varying channel which introduces the Doppler Effect in the 

system for SNRs of 10dB, 20dB and 30dB. These numbers are changed from a 1000 

observations to two-thirds or 670 samples and down to one-third or 330 samples over 

which the system is observed. 

When SNR = 10dB, the performance is traced in figure 4.8 with Doppler frequency 

𝑓𝑓𝑚𝑚1 = 0.3 kHz, and figure 4.9 does the same with Doppler frequency 𝑓𝑓𝑚𝑚2 = 1 kHz.  

Figures 4.10 and 4.11 show the performance when SNR = 20dB for 𝑓𝑓𝑚𝑚1 = 0.3 kHz 

and 𝑓𝑓𝑚𝑚2 = 1 kHz respectively.  

Figures 4.12 and 4.13 plot the performance of the system for 𝑓𝑓𝑚𝑚1 = 0.3 kHz and 

𝑓𝑓𝑚𝑚2 = 1 kHz respectively when SNR = 30dB. 
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Figure 4.8 Performance for SNR = 10dB when 𝑓𝑓𝑚𝑚1 = 0.3 kHz. 

 

Figure 4.9 Performance for SNR = 10dB when 𝑓𝑓𝑚𝑚2 = 1 kHz. 
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Figure 4.10 Performance for SNR = 20dB when 𝑓𝑓𝑚𝑚1 = 0.3 kHz.  

 

 

Figure 4.11 Performance for SNR = 20dB when 𝑓𝑓𝑚𝑚2 = 1 kHz. 



48 
 

 

Figure 4.12 Performance for SNR = 30dB when 𝑓𝑓𝑚𝑚1 = 0.3 kHz. 

 

 

Figure 4.13 Performance for SNR = 30dB when 𝑓𝑓𝑚𝑚2 = 1 kHz. 
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Table 4.5 Probability of detection when  𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 for different Doppler frequencies  
𝑓𝑓𝑚𝑚1 = 0.3 kHz and 𝑓𝑓𝑚𝑚2 = 1 kHz (SNR = 10 dB) 

Number of Observations 𝑓𝑓𝑚𝑚1 = 0.3 kHz 𝑓𝑓𝑚𝑚2 = 1 kHz 

670  0.59 0.53 

330  0.49 0.44 

1000 0.32 0.26 

 

Table 4.6 Probability of detection when  𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 for different Doppler frequencies 
𝑓𝑓𝑚𝑚1 = 0.3 kHz and 𝑓𝑓𝑚𝑚2 = 1 kHz (SNR = 20 dB) 

Number of Observations 𝑓𝑓𝑚𝑚1 = 0.3 kHz 𝑓𝑓𝑚𝑚2 = 1 kHz 

670  0.61 0.57 

330  0.57 0.48 

1000 0.42 0.39 

 

Table 4.7 Probability of detection when  𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 for different Doppler frequencies  
𝑓𝑓𝑚𝑚1 = 0.3 kHz and 𝑓𝑓𝑚𝑚2 = 1 kHz (SNR = 30 dB) 

Number of Observations 𝑓𝑓𝑚𝑚1 = 0.3 kHz 𝑓𝑓𝑚𝑚2 = 1 kHz 

670  0.67 0.62 

330  0.61 0.58 

1000 0.43 0.40 

 

We test the system after subjecting it to two different Doppler shifts (𝑓𝑓𝑚𝑚1 = 0.3 kHz 

and 𝑓𝑓𝑚𝑚2 = 1 kHz). It is easily observed that it follows the same trend as seen in section 4.1. 

The case where we observe the channel through a 1000 samples provides the worst curve 

in any SNR value. Reducing the number reduces the amount of variation in the channel 

and improves performance, as is seen when number of observations is decreased to 670. 
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However, when we keep on reducing the number of observations, we limit the amount of 

information given to the learning algorithms. These algorithms use the amount of data fed 

into them to estimate the signal values. When it is reduced beyond a certain limit, in our 

case 330 samples, performance degrades due to the lack of sufficient information.  

The tables 4.5-4.7 show the probabilities of detection for different number of 

observations in two time-varying channels each with Doppler frequencies 𝑓𝑓𝑚𝑚1 = 0.3 kHz 

and 𝑓𝑓𝑚𝑚2 = 1 kHz when probability of false alarm is 0.2 for different SNR values. 

With change in number of observations, we notice that performance does not 

change linearly. A 1000 samples over a fixed channel is used as best case scenario whereas 

over a time varying channel (with both Doppler frequencies, 𝑓𝑓𝑚𝑚1 and 𝑓𝑓𝑚𝑚2), the same 

number of observations introduces too high a variation in channel parameters to be 

estimated correctly. When the number of observations is dropped to 670, performance 

improves but further reducing it to 330 renders the amount of information too little for the 

learning algorithms to work. On increasing the amount of Doppler in the system, the 

performance degrades linearly and continues to do so even for values higher than is 

mentioned in this section. 

When Doppler frequency is 𝑓𝑓𝑚𝑚2 = 1 kHz, the channel changes too fast and 

performance deteriorates as seen in section 4.1. For SNR = 10dB and 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 the 

probability of detection changes from 0.26 for 1000 samples to 0.53 for 670 samples; for 

330 samples we have 𝑃𝑃𝑑𝑑 = 0.44. For SNR = 20dB and 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2, probability of detection 

increases from 0.39 to 0.57 for 1000 and 670 samples respectively. Lastly, for SNR = 30dB 

and 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2, detection improves from 0.4 to 0.62. 
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When Doppler frequency is reduced to 𝑓𝑓𝑚𝑚1 = 0.3 kHz, the performance is worse 

than that of a fixed channel but considerably better than that of 𝑓𝑓𝑚𝑚2 = 1 kHz. We see an 

improvement from 𝑃𝑃𝑑𝑑 = 0.26 to 0.32 for SNR = 10dB and 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 when 1000 samples 

are observed. For 670 samples, probability of detection goes up from 0.53 to 0.59. When 

SNR = 20dB, for 670 samples, probability of detection goes up from 0.57 to 0.61 and for 

30dB, from 0.62 to 0.67. 

From the results in sections 4.1 and 4.2, with respect to Doppler Effect the 

performance degrades linearly but the same cannot be said for the effect that changing the 

number of observations has on the system. So we need to come up with a method to predict 

how many observations should be taken into consideration for different Doppler 

frequencies. In the next section, we will see how to use the Doppler frequency to calculate 

how many observations should be sampled for optimal performance. We use the parameter 

known as time coherence to determine this. The relation between the maximum Doppler 

frequency and time coherence has been elaborated in the next section. 

 

4.3 Time Coherence and Number of Sampled Observations 

Time coherence is a window in time over which the unmodulated carrier envelope remains 

unchanged [47], or to put it more mathematically, it is the time interval over which channel 

impulse responses are highly correlated. Because of this high correlation, to the receiver 

the channel seems to be fixed or unchanged over this time duration. Coherence time is a 

statistical measure of time duration over which the channel impulse response is essentially 

invariant and quantifies the similarity of the channel response at different times.  
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 Doppler frequency is a parameter that introduces change with respect to time in a 

channel. Higher the Doppler Effect, more there is variation in a channel from one time 

instance to the other, spread over sufficient time instances, the channel completely changes 

and learning algorithms fail to use information from on iteration to estimate the next.  

Doppler spread is a measure of the spectral broadening caused by the time rate of 

change of the mobile radio channel and is defined as the range of frequencies over which 

the received Doppler spectrum is non-zero. Coherence time is the time domain dual of 

Doppler spread and is used to characterize the time-varying nature of the frequency 

dispersiveness of the channel in the time domain [47]. Time coherence is inversely 

proportional to the maximum Doppler frequency: one describing over which the channel 

is unchanged and the other introducing change in said channel.  

1
c

m

T
f

∝  
(4.13) 

 From [48], we further get: 

 Using these relations, we find out the coherence times for the two different Doppler 

frequencies we have used in section 4.2. Over these time durations, the channel appear to 

be fixed to the algorithms and better detection probabilities is displayed. Using equation 

(4.14), we calculate how many time instances would correspond for both 𝑓𝑓𝑚𝑚1 = 0.3 kHz 

and 𝑓𝑓𝑚𝑚2 = 1 kHz. Assuming each time sample in our channel has a duration of 1μs, we can 

formulate how many samples should be fed into the learning algorithms. As long as the 

number of observations being sampled are less than the coherence time, the algorithms 

perform similar to the case of a fixed case.  

 9
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=  
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We change the algorithm to break the received information matrix Y into desired 

number of segments, in a manner as described above. In the LASSO step of the entire DL 

process, we use a number of segments each containing the number of time samples as 

mentioned in equation (4.14) to estimate signal matrix X, let’s call these segments 

𝑋𝑋1, 𝑋𝑋2…𝑋𝑋𝑛𝑛. Before the process starts again, to estimate these two parameters in tandem as 

it reaches convergence, we append these segments together and start afresh for the next 

iteration. Doing this forces the algorithms to learn the information in seemingly fixed 

channels, thus giving better performance.  

We see in section 4.1 that with changing number of observations, the performance 

of the algorithms also changes. In time-varying channels, a 1000 samples introduces too 

much variation whereas reducing it to 670 improves the performance but further reducing 

it to 330 deteriorates it again. Similar patterns also hold for the changes implemented in 

the algorithms in section 4.3. However, these number hold for the smaller runs during 

which the channel appear fixed, which are dictated by the maximum Doppler frequency.  

For intents and purposes of demonstrating these results, the same Doppler 

frequencies are used as in section 4.2 and corresponding coherence times are calculated. 

We choose the viable number of time samples depending on how to break all time instances 

of the signal without losing any data or adding in any redundancy. Table 4.8 shows the 

coherence times and the number of samples chosen for both 𝑓𝑓𝑚𝑚1 = 0.3 kHz and  

𝑓𝑓𝑚𝑚2 = 1 kHz. 
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Table 4.8 Number of Observations in each individual segment based on maximum Doppler 
frequency 

Maximum Doppler 

Frequency (kHz) 

Coherence 

Time (μs) 

Number of Observations 

in 1 segment 

𝑓𝑓𝑚𝑚1 = 0.3 kHz 600 μs 500 

𝑓𝑓𝑚𝑚2 = 1 kHz 180 μs 100 

 

When Doppler frequency is 𝑓𝑓𝑚𝑚1 = 0.3 kHz, the coherence time using equation 

(4.14) equals to 600 μs. The newer method dictates that the total duration be broken into a 

time smaller than the coherence time, so as make the channel appear fixed. Also, we want 

these segments to totally encompass all available information, not leaving anything out of 

consideration and not adding any redundancy either. Therefore, there are two segments 

over which the entire duration of activity is broken. We are sampling a total of 1000 time 

samples constituting a duration of 1000 μs. When broken into segments of 500 μs, there 

are two segments over which the inner loops are run for the learning algorithms.  

When the case for 𝑓𝑓𝑚𝑚2 = 1 kHz is considered, the coherence time drops to 100 μs. 

Following the same logic of taking a time smaller than this and breaking the entire duration 

into a number that evenly breaks it into segments, for this particular Doppler frequency, 

we choose to break it into ten segments and number of observations in a segment drops to 

100. This is much smaller than the 330 samples we have used to estimate the signals and 

previous results would suggest degradation of performance. However, by introducing the 

segmented version of the DL algorithms, we see that performance improves from the case 
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of observing 670 samples, which is significantly better than the performance of observing 

330 samples.  

In the figures below, the performances of the new algorithm are attached. Figure 

4.14 plots the probability of detection versus the probability of false alarm for 𝑓𝑓𝑚𝑚1 = 0.3 

kHz broken into two segments (each of 500 samples) for the implementation of the new 

algorithm.  

Figure 4.15 plots the same parameters (𝑃𝑃𝑑𝑑 versus 𝑃𝑃𝑓𝑓𝑓𝑓)  when 𝑓𝑓𝑚𝑚2 = 1 kHz is used 

and the total duration is divided into ten segments each consisting of 100 time samples. 

SNR for both is considered to be 30dB. 

 

Figure 4.14 Performance for SNR = 30dB and 𝑓𝑓𝑚𝑚1 = 0.3 kHz when  
number of segments = 500. 
 

From figure 4.14 it is notable that for probability of false alarm 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2, we have 

probability of correct detection 𝑃𝑃𝑑𝑑 = 0.76 when there are two segments each of 500 μs. It 
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improves from the best case estimate (𝑃𝑃𝑑𝑑 = 0.67) for same Doppler frequency with the 

previous implementation of the dictionary learning algorithms. Breaking the algorithm to 

use 𝑋𝑋1, and 𝑋𝑋2 (each consisting of 500 time samples) in each step of learning and then 

appending before repeating the process till the learning reaches convergence shows a 

substantial improvement in the learning process. The performance is better than using 670 

samples of a time-varying channel, which showed the best performance in section 4.2 for 

all values of SNRs. We have also shown earlier that reducing number of observed samples 

from 670 led to deterioration of performance. However, with this new implementation, 

performance improves drastically and is similar to a scenario when the channel is fixed and 

not affected by Doppler (for 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2 and SNR = 30dB, we had 𝑃𝑃𝑑𝑑 = 0.85). 

 

Figure 4.15 Performance for SNR = 30dB and 𝑓𝑓𝑚𝑚2 = 1 kHz when  
number of segments = 100. 
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From figure 4.15 we see that for probability of false alarm 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.2, we have 

probability of correct detection 𝑃𝑃𝑑𝑑 = 0.68 when there are ten segments each of 100 μs. It 

improves from the best detection probability for the same probability of false alarm 

 (𝑃𝑃𝑑𝑑 = 0.62) for same Doppler frequency with the previous implementation of the 

dictionary learning algorithms. Breaking the algorithm to use 𝑋𝑋1, 𝑋𝑋2 and so on, onto 𝑋𝑋10 

(each consisting of 100 time samples) in each step of learning and then appending before 

repeating the process till the learning reaches convergence shows a substantial 

improvement in the learning process. The performance is better than using 670 samples of 

a time-varying channel, which showed the best performance in section 4.2 for all values of 

SNRs. We have also shown earlier that reducing number of observed samples from 670 to 

330 led to deterioration of performance. Following these results, a 100 time samples would 

provide performances much worse than desired for a practical system. However, with this 

new implementation, performance improves drastically and is even better to a scenario 

when the channel is estimated over 670 samples, which in section 4.2 was seen to provide 

best results. 

From both these cases, we see that the new algorithm performs much better for 

time-varying channels than simply using the prototypical LASSO and MDU algorithms in 

tandem over the whole time duration during which the system exists. For both maximum 

Doppler frequencies 𝑓𝑓𝑚𝑚1 = 0.3 kHz and 𝑓𝑓𝑚𝑚2 = 1 kHz, detection improves by approximately 

7% over the traditional way of implementing the learning algorithm.  

When number of samples being observed are controlled, there can be a situation 

where information is too highly uncorrelated to be estimated correctly due to the presence 

of Doppler Effect. By constraining the number of samples in each inner iteration by 
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limiting it to a duration smaller than the coherence time, we make the channel appear non 

time-invariant to the estimation algorithms. Over each individual segment, performance 

improves and when combined, it is closer to that of a fixed channel when a Doppler 

frequency of 𝑓𝑓𝑚𝑚1 = 0.3 kHz is introduced. When the channel has a maximum Doppler 

frequency of 𝑓𝑓𝑚𝑚2 = 1 kHz, the performance improves from the original method of using 

the entire matrix for the learning process.  

While simply using the LASSO and MDU over the whole duration of signal 

existence provides results worth applying in practical cases, when the channel is time-

varying this method is not feasible due to the much lower detection probabilities for 

significant probabilities of false alarm. Breaking the total duration in segments controlled 

by the coherence time and adding an extra estimation step within said algorithms prove 

much more practically applicable with probabilities of detection improving drastically over 

constant probabilities of false alarms.  
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CONCLUSION 

 

A two-stage Dictionary Learning (DL)-based algorithm has been used to solve the Blind 

Source Separation (BSS) problem in the presence of radio sources with memory observed 

over time-varying channels. The sources feature intermittent activity and the number of 

latent sources may be larger than the total number of sensors. 

 The communication channels between the sources and the sensors are time-varying. 

The Doppler Effect due to mobility in wireless communication problems gives rise to 

deterioration of performance of the proposed learning approach. Controlling the time 

window over which the system is observed introduces change (for better or worse) in the 

performance. Using the probability of detection when the channels are stationary as a 

baseline, it is shown that there is significant degradation for time-varying channels. Over 

longer time, change in channel increases leading to poorer performance. Over shorter time 

duration, the information provided to the algorithm is too little to be learned from, which 

again leads to deterioration in detection.  

 The number of time samples to observe for optimum performance by the algorithm 

can be found using the coherence time of the channel. When the channel is learned during 

time windows shorter than coherence time, the algorithm finds the channels to be fixed and 

learning is greatly improved. However, when the maximum Doppler frequency is too high, 

the time coherence is too low, and the algorithms work with too few samples and 

performance deteriorates. However, the deterioration is improved over the total duration 

being observed without segmentation.  
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