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ABSTRACT 

A PRACTICAL APPROACH TO AUTOMATED 

SOFTWARE CORRECTNESS ENHANCEMENT 

by 

Aleksandr Zakharchenko 

 

To repair an incorrect program does not mean to make it correct; it only means to make it 

more-correct, in some sense, than it is. In the absence of a concept of relative correctness, 

i.e. the property of a program to be more-correct than another with respect to a 

specification, the discipline of program repair has resorted to various approximations of 

absolute (traditional) correctness, with varying degrees of success. This shortcoming is 

concealed by the fact that most program repair tools are tested on basic cases, whence 

making them absolutely correct is not clearly distinguishable from making them relatively 

more-correct. In this research a theory of relative correctness is used to implement an 

instance of a generic algorithm of program repair, whose core idea is to enhance relative 

correctness until absolute correctness is achieved. Analytical and empirical results 

pertaining to the approach and its high performance parallel implementation are presented 

in this work. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Developing a modern software product is a complex multistep process [1], which involves 

multiple parties. This process sequentially goes through the steps of collecting the 

requirements, coming up with the design ideas to create synergy between the business 

definition of the product and its desired technical characteristics in order to form the 

product specifications and using the latter as an input for the chain of steps involving 

breakdown into individual development requirements, prioritization, implementation of the 

requirements in code, quality assurance and testing and finally culminating in release of 

the end product followed by post-release monitoring and support (Figure 1.1). The product 

that is released, however, is subject to two types of maintenance - adaptive maintenance 

stemming from adjustments to user and business requirements as a part of normal business 

activities and corrective maintenance that results from imperfect implementation of 

original specifications and is manifested as a difference between the expected and actual 

software behavior. While both types of maintenance are a source of major expenses 

requiring highly skilled resources to change the software product, the corrective 

maintenance is an especially painful one, as unlike adaptive maintenance it is normally not 

capitalized and is not bringing any new business value per se, while still introducing a risk 

of business disruption with patch application going wrong and leading to a continued 

accrual of significant costs of ownership of the target product. 
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Any costly labor intensive business process ends up often being considered as a 

candidate for automation. The idea of automating the process of program repair is not an 

exception with mentions of it being encountered as early as 1973 [2, 3]. However, high 

computational cost of localizing and addressing faults, combined with insufficient 

computational capacity has ensured that for many decades little progress has been made in 

practical addressing of the problem at hand. As time passed by, the hardware and the 

software running on it have rapidly evolved both in complexity and in the performance that 

they offer, bringing in the renewed interest in the topic of automated program repair. 

According to a detailed research survey by Gazzola et al. [4], based on the increase in the 

number of papers being published every year on this topic, the interest in the field of 

automated program repair has been growing steadily since the middle of the first decade 

(from 2005), with certain specific aspects being the focus of the early applications. A large 

variety of tools has been presented to the market, supporting different programming 

languages [5-30] with a few of them like GenProg setting a high watermark in the industry. 

Nevertheless, up until now, the amount of computations required to approach the general 

case of a problem of correcting a piece of code that does not conform to its specifications 

has remained several orders of magnitude higher than what could be efficiently processed 

on an average user desktop, resulting in the proposed tools resorting to artificial limitations 

on the search space, reducing the scope of the core algorithm to specific narrow cases of 

software faults that could be addressed with an absolute correctness-driven hit-or-miss 

enhancement algorithm without having to do a search across the entire search space. 

This dissertation describes improvements to existing theoretical framework of 

relative correctness-driven correctness enhancement [31, 32] and dives into practical 
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considerations in implementations for automated adjustments to project structure changes 

and massively parallel execution. Additionally, tools for the automatic program repair in 

general case are introduced. Four important research areas are described:  

1. Programming-language specific code structure analysis.  

2. Parallelization and scalability of generate and validate approaches for automated 

program repair 

 

3. Relative correctness-based optimization in control of validation process. 

4. Software tools for automated program repair and correctness enhancement 

suggestions. 
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Figure 1.1  Demonstration of stages of a typical Agile software development process. 
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1.2 Dissertation Overview 

Chapter 2 provides a brief overview of historical background of the field of program repair. 

It also provides information on the state of the art in the industry of program repair and 

discussed the premises behind this research. Specifically, Section 2.1 does a brief overview 

of the field history. Next, Section 2.2 walks over the survey of the current practices in the 

industry. Section 2.3 highlights some of the research works in the field that did not fall 

under the survey. Section 2.4 explains the conceptual inefficiencies of existing methods. 

Section 2.5 discusses the premises behind the new approach capable of addressing these 

inefficiencies. Chapter 3 provides a foundational theoretical background necessary for 

explanation of the theoretical framework being introduced. Specifically, Section 3.1 

describes the need for a solid theoretical foundation. Section 3.2 explains the basics of 

relational mathematics. Section 3.3 explains the concepts of relative correctness and 

absolute correctness. Chapter 4 builds up on the concepts of chapter 3 to provide the 

explanation of the foundational elements specific to the new program repair framework. 

Section 4.1 provides the definition of fault and elementary fault. Section 4.2 explains the 

concepts of fault depth, fault density and fault multiplicity. Section 4.3 discusses the 

connection between fault repair and failure remediation and the differences between fault 

repair-driven and failure remediation-driven approaches. Chapter 5 connects the elements 

discussed in the previous chapter offering the generic algorithm of program repair. Section 

5.1 explains the general principles behind such algorithm. Section 5.2 introduces different 

types of oracles and explains the difference between them. Section 5.3 brings the concepts 

together to provide the layout of a generic algorithm of program repair using relative 

correctness framework. Section 5.4 provides a comparative analysis of precision and recall 
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of this new algorithm. Section 5.5 reworks the algorithm for optimal execution on parallel 

machines. Chapter 6 offers an overview of Correctness Enhancer – a new, massively-

parallel implementation of the described algorithm and explores the solutions to practical 

issues that arise with implementation. Section 6.1 dives into the design goals and 

specifications of the tool. Section 6.2 discusses the functional design of Correctness 

Enhancer. Section 6.3 focuses on the aspects of parallelism in the implementation and 

researches practical considerations of such implementation. Chapter 7 discusses the 

performance of the implementation against standard benchmarks and other tools. Section 

7.1 describes the experiment setup. Section 7.2 details the functional components of the 

hybrid approach that was applied to generate results. Section 7.3 provides the results of 

comparing the code execution against other tools. Chapter 8 looks into the lessons learned 

from the experiment and outlines pathways for further research. Section 8.1 assesses the 

impact of the new theoretical approaches. Section 8.2 focuses on the practical side of 

things, specifically on the impact of computing power that made some of the newly applied 

approaches feasible. Section 8.3 details possible pathways for further improvement. Lastly 

Chapter 9 provides the concluding remarks. Section 9.1 provides a summary of this 

dissertation work and its importance for the field. Section 9.2 assesses the threats to 

validity. Section 9.3 provides general suggestions for further expansion and applicability 

of the approach in the field. 

  



 

7 

 

CHAPTER 2 

THE STATE OF THE ART IN PROGRAM REPAIR 

 

2.1 A Brief History of Program Repair 

2.1.1 Hardware Limitations 

The ideas behind the field of automated program repair have been around for many decades 

[2, 3], however, active practical build-up of the field has only started gaining traction 

recently. The primary reason behind the perceived delay is due to the lack of hardware 

capabilities required to support even the most basic general purpose implementations. 

While over the course of the last five decades, the ongoing increase in hardware capabilities 

was roughly following Moore’s Law [33] even today, the amount of time required to 

execute the program repair algorithms remains one of the key considerations in assessing 

their efficiency and usability. 

The hardware evolution over the years didn’t follow a straight path. Over time it 

switched from focusing on maximizing the execution speed of a single thread, to focusing 

on heavily distributed parallelized execution [34], including processing beyond the CPU 

[35]. That shift in trends has led to changes in development paradigms in order to maximize 

the usage of hardware capabilities, however, mainly due to complexity and coordination 

overhead, application of these changes has lagged behind in many areas. A portion of this 

dissertation focuses on the key considerations behind application of massive parallelism in 

automated program repair and their practical implementation. 



 

8 

 

2.1.2 Evolution of Software Development Approaches 

The rapid growth of hardware capabilities over the years combined with popularization of 

personal computers and later smartphones and computerized wearables has cleared the 

pathway for an increase in overall software surface, becoming a catalyst for ongoing digital 

transformation and automation of mundane tasks, allowing computerization to penetrate 

every area of human lives. The resulting increase in the amount of code being written, as 

well as in the complexity of projects being created has led to an evolution in the software 

development process, encompassing program management, development, testing and post-

production activities. 

The program management approaches evolved over the years from pure Waterfall 

software development model with in-deep pre-planning of the development process that 

was first presented in early 50s to increasingly more fine-grained and controllable Spiral, 

Extreme and finally Agile practices [36-42]. 

The software development evolution led to a change in software development 

language preferences, eventually switching the mainstream preferences to higher-level 

languages like C#, Java and Java-based languages like Scala, which, through additional 

layers of optimization and compilation to intermediary language, make a tradeoff between 

slight decrease in efficiency of hardware resource utilization and ease of writing code in 

these languages, as compared to machine code-compilable languages like C, C++, Delphi 

or Fortran, which dominated the field of software development before them. In addition to 

programming language choice, the need for developing and maintaining large amounts of 

code led to a shift from in-house built tools and software solutions to open-source ones [43, 
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44], which, by leveraging shared model of support come with a better and cheaper 

maintenance, as well as make it easier to find talent, skilled in working with them. 

Evolution in the field of testing was multistage, from creation of a testing theory 

[45] to popularization of Test-Driven Development [46] and active introduction of 

continuous integration and continuous development approaches (further referred to as 

CI/CD) [47], making the specifications provided to code for machine-processable, 

followed by underlining the importance of creating them first before development begins 

and popularizing the practice of doing so and, finally, creating the systems to automatically 

control, whether new code being developed still matches the specifications that were 

provided initially and signaling in case the contract has been breached. Creation of test 

scripts and test cases, although rather simplistic, is a coding task on its own and as such, 

the evolution is currently going towards behavior-driven development (further referred to 

as BDD) [48], in order to make creation of machine-processable and machine-verifiable 

program specifications from original business specifications more automatic and requiring 

less development and QA resources to create. The latest trends in the field of software 

testing look to cover post-production testing as well, by designing synthetic monitoring 

systems [49], which, through means similar to regression testing provide real-time 

coverage of system behavior in production and allow to detect issues proactively, before 

real client traffic is impacted. 

A combination of all these factors allowed evolution of automated program repair 

approaches. 
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2.2 Automatic Software Repair - A Survey of Current Practice 

With hardware and software evolution in place the renewed interest to automated program 

repair was the logical next step to follow. A detailed industry survey by Gazzola et al. [4], 

by looking at the number of papers, published on the topic of automated program repair, 

identifies the breaking point being somewhere around 2005 and with the field being the 

focus of much recent research and the number of papers growing ever since (see Figure 

2.1) 

 

Figure 2.1  Number of papers published on automated program repair from 1996 to 2016. 

©2019 IEEE. 

Source: [4]. 

As a part of that survey [4], the authors subdivide the entire field of software repair 

solutions into two broad categories - software healing and software repair, based on 

whether the proposed solution detects and mitigates the effects of the failure at runtime on 

the deployed application, without correcting the fault itself or whether it detects the fault 
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and applies the fix to it at source code level, thus fixing the fault. Software repair 

approaches are further subdivided into categories based on the following criteria: 

1. Localization approach. 

a. Fault localization. Approaches falling under this category are 

looking for ways to locate the part of the program that needs fixing 

and use these localization results to drive fix generation. [20, 50-52] 

b. Fix locus localization. Unlike fault localization, this technique is 

locating all areas of the program, where a fix can be applied (also 

known as fix loci, hence the name of the category) regardless of 

where the actual fault is located. It is further subdivided into: 

i. Model-based fix locus localization, which analyzes runtime 

usage of the program to draw its conclusions about the model 

of object utilization being applied in the original code and 

possible incorrect usage of objects and their attributes. [53-

55] 

ii. Angelic fix localization, which attempts to identify and fix 

faulty or missing decision points (such as if/else blocks) by 

changing execution flow through existing decision points 

(forcing the execution to follow a different decision branch) 

or by evaluating code execution, if several instructions are 

skipped (in order to identify the missing decision point and 

propose the fix which would effectively gate the skipped 

instructions.) [14] 

2. Fix generation approaches.  

 Based on the scope of repair technique utilized, the approaches are 

categorized into:  

a. Fault-specific, targeting a specific narrow class of faults by 

exploiting certain generation techniques that are specific for 

that fault class or type. [56] 

b.General, without focus on a specific fault class, potentially 

being applicable to fix any fault encountered in the code. [57, 

58] 

 Based on the way the repaired program Prepair is defined and 

addressed the approaches are categorized into:  

a. Generate and validate (see Figure 2.2). Generate and validate 

approaches are further broken down into: 
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1. Approaches performing an atomic change in one of 

the instructions in the code. [5, 23, 59, 60] 

2. Approaches applying pre-defined templates that 

consist of a set of atomic changes applied together in 

response to specific faults. [55, 61] 

3. Example-based approaches, which use existing fixes 

as source of possible change templates. [56-58] 

b.Semantics-driven, also known as correct-by-construction (see 

Figure 2.3.) Due to their nature these approaches are 

subdivided based on the class of issues that they attempt to 

address either being generic or specific to a certain type of 

faults, with the latter prevailing in the field due to exploiting 

a certain class of faults being a simpler task as compared to 

general program repair task formalization [6-8] 

3. Fix recommendation approaches. A subset of program repair approaches 

that follow one of the patterns described above, but are geared toward 

integration with development environments to provide assistance and hints 

to developers at design time, as compared to being a standalone product 

applied during testing and post-production stages [62]. 
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Figure 2.2  An example of Generate and Validate process. 

The survey further notes the overall immaturity of the field of software repair with 

only 46 percent of the approaches surveyed having any corresponding tool built and the 

majority (62%) of the tools available tending to focus on the same benchmarks, indicating 

a risk of overfitting a specific benchmark. 
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Figure 2.3  An example of Semantic-driven repair process. 

 

2.3 A Focus on Faults 

As highlighted by Khaireddine et al. [63], despite focusing on a formal analysis of faults 

and fault repair, some recent approaches to program repair [64-68] do not fall neatly into 

the characterization of Gazzola et al. [4]. Here are some notable examples: 

Rothenberg and Grumberg [64] introduce the concept of Must Location Set, which 

is a set of program locations that includes at least one program location from each repair 

for an observed failure. A fault localization technique is said to be a Must Algorithm if it 
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returns a must location set for each observed program failure. Rothenberg and Grumberg 

develop a fault localization algorithm and use it in a program repair algorithm to help 

reduce the search space without loss of recall. The concept of must location is reminiscent 

of the concept of definite fault introduced by Mili et al. [69]: a definite fault in an incorrect 

program is a program part that must necessarily be modified if the program is to be 

corrected. 

Lou et al. [70] critique the separation between two lines of research, namely fault 

localization and fault repair, and the fact that traditionally fault localization has been 

viewed as a means to achieve fault repair ends. They argue for a unified debugging 

approach, where fault repair is used to refine fault localization. They implement their 

approach in a tool, called ProFL, and highlight its performance on test benchmarks and on 

real software products. 

Christakis et al. [71] present a static technique that analyzes an error trace in a 

program and identifies a small set of statements within the trace that may be modified to 

satisfy correctness conditions. Suspicious statements are ordered according to their 

likelihood of being the source of the observed failure. 

The research by Li et al. [21], is a machine learning-based approach, which uses 

information about prior bug fixes to train ML models and use these models for automated 

code repair. This approach is implemented in a tool called DLFix. Although this tool is not 

covered by survey [4], it would likely fall under the same category of general brute-force 

techniques as the other machine learning-based approach R2Fix [58], which is included 

into the survey. The novelty of DLFix is that by using a two layer tree-based RNN and 

separating the tasks of learning the code context from learning the transformation the 
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authors are able to mitigate the impact of the noise in the code, significantly improving the 

results. 

Zhu et al. [72] also use a deep learning-based automated program repair approach, 

achieving improvements in the benchmark results by combining a new approach to the 

architecture of the encoder/decoder pair to better support small edits in the target code with 

introduction of placeholder generation to be able to properly support project-specific 

identifiers as a part of the patch being applied. 

Shariffdeen et al. [73] look into the related problem of patch transplantation, 

automatically identifying fixed version of a common component in a different product and 

performing a context-aware adjustment of the applied patch, achieving better integration 

of the applied patch into the application being fixed. 

Noda et al. [74] leverage a novel program dependence graphs-based approach to 

mine and learn systematic edit patterns (SEPs) from information about code changes 

between different code versions, detect locations, where such SEPs can be appliend in the 

target code, and apply the same changes that were captured in SEPs to the detected 

locations, using information about abstract syntax trees to guide the transplantation. 

 

2.4 Bane of Program Repair: Too Much Generation, Too Little Validation 

Khaireddine et al. [11] make an argument that repairing a program does not necessarily 

mean to make it (absolutely) correct, it only means to make it more-correct (in some sense) 

than it is. It is further claimed that the approximations of absolute correctness that the 

program repair methods rely on in absence of a clear definition of relative correctness (the 
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property of a program to be more-correct than another with respect to a specification), 

result in too much generation and too little validation. 

The reason for too much generation stems from the need to generate larger search 

spaces when relying on absolute correctness. Indeed, since relative correctness is expected 

to culminate in absolute correctness regardless of definition any pool of candidate repairs 

is more likely to have more candidates that are relatively correct than the ones that are 

absolutely correct. Conversely, this means that if absolute correctness is the chosen 

validation criterion, the probability of hitting a match on analyzing each candidate is lower, 

resulting in a larger search space. This problem is illustrated on Figure 2.4, where the star 

symbol represents the original (faulty) program, blue dots represent candidate repairs that 

are relatively correct but not absolutely correct, and red dots represent candidate repairs 

that are absolutely correct. 

Figure 2.5 shows potential flows of step-wise validation for more correct programs 

under the same conditions. 

 

Figure 2.4  Absolute Correctness mandates larger spaces. 

Source: [11]. 
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Figure 2.5  Relative Correctness enables step-wise validation. 

Source: [11]. 

The reason for too little validation stems from program repair methods and tools 

not relying on a sound foundational definition of relative correctness in their validation 

approaches. In absence of such definition, the combination of criteria for patch validation 

that gets utilized instead exposes the program repairs methods and tools to a risk of poor 

efficiency, loss of precision, and loss of recall. Focusing on each of these risks separately: 

 Obstacles to Efficient Validation. Defining the concept of a fault requires a 

concept of relative correctness; in the absence of the latter, it is impossible 

to define the former. As a result, program repair methods and tools have 

made failure remediation the focus of program repair, rather than  fault 

repair; in other words, rather than focusing on repairing one fault at a time, 

they focus on remedying  one failure at a time. The trouble with focusing 

on failure remediation is that the same failure can be the result of several 

faults, which must all be repaired simultaneously before the failure is 

addressed. 

 Risk of Poor Recall. Several practices in the current methods and tools of 

program repair are prone to loss of recall. Here are three of them: 

o Testing for Absolute Correctness. In the absence of a concept of 

relative correctness, traditional methods and tools of program repair 

validate candidate repairs on the basis of absolute correctness. 

Absolute correctness is a sufficient but unncessary condition of 

relative correctness, hence the use of absolute correctness leads to 

loss of recall. 
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o Search Space Pruning. In the face of vast search spaces, many 

methods and tools resort to a common device in such cases, namely 

search space pruning; though some program repair techniques take 

great care to only exclude from consideration candidates that are 

known to be invalid [64], not all methods are so deliberate. Pruning 

search spaces carries the risk of loss of recall, as we may be 

removing from consideration valid repair candidates. 

o The Use of Regression Testing. Most program repair methods and 

tools perform validation using two sets of test data, both of which 

have the form of sets of (input, output) pairs: a positive test suite 𝑇+, 

which reflects correct behavior exhibited by the original program 𝑃, 

which we want candidate programs to preserve; a  negative test suite 

𝑇−, which reflects behavior that the original program does not 

exehibit, and we want candidate programs to provide. The condition 

that a candidate program 𝑃’ provide the behavior represented by 𝑇− 

while preserving the behavior represented by 𝑇+ is a sufficient 

condition of relative correctness of 𝑃’ over 𝑃, but is not a necessary 

condition (since correct behavior is not unique). As such, this 

condition leads to a loss of recall. 

 Risk of Poor Precision. Not only are some of the common validation 

methods prone to miss valid repairs, as we discuss above, some are prone 

to retrieve invalid repairs, as we discuss herein. 

o Fitness Functions. Several methods and tools rely on the use of a 

fitness function, which is supposed to reflect the validity of each 

candidate by virtue of some combination of the number of 

successful tests and unsuccessful tests of the candidate amongst the 

test suite(𝑇+ ∪ 𝑇−). Regardless of how this function is defined, it 

creates an artificial total ordering between candidate repairs to 

represent what is essentially a very partial ordering; because it 

defines a total ordering, the fitness function ranks any pair of 

candidate repairs, even when they have no relative correctness 

relationship. Hence the use of fitness functions is prone to loss of 

precision. 

o Small Test Suites. The size of search spaces creates a strong 

incentive to reduce the size of test suites, so as to inspect the largest 

possible number of candidate repairs per unit of time. Using small 

test suites causes a loss of precision, since it increases the likelihood 

that a repair candidate passes the tests without being a valid repair. 
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2.5 Premises of the Relative Correctness-based Approach 

The relative correctness approach is based on the following premises:   

 To repair a program does not mean to make it absolutely correct; it only 

means to make it more correct than it is. 

 

 Any definition of relative correctness ought to satisfy some litmus 

properties that are introduced and justified in the next chapters. 

 

 Program repair methods ought to be validated by showing that they 

enhance relative correctness. 

 

 Any program repair method ought to proceed by a variation on the general 

theme:  enhance relative correctness until absolute correctness is achieved. 

 

 For the sake of precision, patch validation ought to use large test suites, 

including large negative test suites (i.e. data sets where the original program 

fails). 
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CHAPTER 3 

BACKGROUND FOR A THEORETICAL APPROACH 

 

3.1 A Critique: The Need for the Theory of Relative Correctness 

In [4], Gazzola et al. conclude that “it is important to improve the maturity of the field and 

obtain a better understanding of useful strategies and heuristics”. In line with this 

conclusion, in [63] Khaireddine et al. the argument is made that one of the most 

fundamental steps that would help with pushing the industry towards maturity is through 

development of theoretical foundations, based upon the concept of relative correctness, i.e. 

"the property of a program to be more-correct or strictly more correct than another with 

respect to some specification". While the traditional approach is Boolean, defining a 

program as either correct or incorrect (absolute correctness) the relative correctness 

introduces a partial ordering among candidate programs with absolutely correct programs 

being the maximal elements of such ordering, thus allowing to redefine the process of 

program repair as an iterative process going over a sequence of increasingly more correct 

states eventually achieving absolute correctness. 

In the world of computer science it is sometimes the case that the practical 

approaches are being created and utilized long before the theory explaining them and 

structurizing the approaches offered by them is being drawn. For example, the 

programming approaches utilizing high level programming languages have emerged in the 

mid to late nineteen fifties with the emergence of such languages as Fortran, Cobol, and 

Algol (with the first two seeing heavy usage up to this day) [75, 76]; yet, the first theories 

of program correctness providing theoretical foundation for the programming approaches 
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utilized have only emerged in the late nineteen sixties [77, 78] and it took a decade for such 

theories to reach maturity and be turned into methodologies for deriving correct-by-design 

programs [79-81]. The current state of the field of programming repair with successful 

research producing sophisticated engineering solutions without a formal theory suggests a 

similar situation and highlights the need to have relative correctness providing a theoretical 

basis of programming repair in the same way as the traditional (absolute) correctness 

provides the theoretical basis of program derivation from a specification (programming); 

the presence of such theory may enhance the state of the art/ practice in the field of program 

repair, with the theoretical implication being the usage of relative correctness for patch 

validation and eventually for patch generation. 

Performing an abstraction on the methods described in Gazzola et al. [4] the 

following arguments on the need of the relative correctness theory apply: 

1. In absence of a definition of relative correctness, the absolute correctness, 

by which program repair methods perform patch validation requires 

transformation to be done in one shot and is therefore useful only within 

striking distance of absolute correctness. Relative correctness allows to 

approach the task of transforming a program gradually over several steps of 

still faulty, but more correct programs, giving an efficient approach to 

addressing faults at arbitrary depth, repairing a program P to obtain a 

program P’, where P’ is more-correct than P without being absolutely 

correct. 

2. Same logic applies to the paradigm shift from remedying a failure to 

removing a fault. Most program repair methods rely on negative test data to 

drive program modification to remedy the failure represented by the 

negative test data. If the observed failure is not due to a single-site fault, but 

rather stems from the combination of several faults, that approach means 

that in order to make a switch from the program being absolutely incorrect, 

to program being absolutely correct all the faults responsible for the failure 

have to be correctly located and remedied, leading to unbounded 

combinatorial explosion due to imperfect fault generation and fault 

localization of the tools being utilized. Introducing relative correctness 

allows to define the concept of elementary fault, which, in turn enables to 

define program repair as a step-wise repair of elementary faults, rather than 



 

23 

 

the brute force transformation of an incorrect program into an absolutely 

correct one. The benefit of such definition change is two-fold: 

 The criterion of patch validation can be changed from “Is the 

program’s failure corrected?” to “Is the new program (relatively) 

more correct?” making it possible to achieve positive result even if 

some of the transformations needed to remedy the observed failure 

are not known to the tool being utilized. An imperfect tool driven by 

the concepts of relative correctness can still eliminate the faults that 

it knows, reducing the amount of work that is needed to be done on 

the remaining ones. 

 Enhancing the correctness repeatedly will over a sufficient number 

of iterations remove enough faults to remedy the observed failure. 

Combined with running fault localization after each elementary fault 

removal, it would allow addressing faults as they appear instead of 

trying to guess the right combination of fixes from the beginning 

bringing higher level of granularity and precision in targeting the 

next fault removal. 

3. When traversing the field of candidate repairs, the two commonly used 

approaches are repair methods checking that candidates preserve the correct 

behavior of the original program (represented by positive test data) or 

maximizing some user-defined (or system-defined, by default) fitness 

function. Both approaches have major deficiencies:  

 Preserving correct behavior is unusable in driving patch generation, 

being unable to generate oracles on the next step and being used only 

for passive validation. Even for passive validation, with correctness 

preservation being a sufficient condition of relative correctness, but 

not a necessary one, it excludes the candidates that preserve 

correctness without preserving the correct behavior leading to a loss 

of recall. 

 The fitness function-based approaches that do not account for 

relative correctness carry the risk of loss of precision as they 

generate oracles focused on candidates that are more reliable, but 

not necessarily more correct than the original program. These 

candidates can be more reliable, not because they are more-correct, 

but because they succeed for inputs that are more likely to occur. 

Relative correctness provides foundation for a more efficient candidate 

repair space traversal, with the program being both more reliable being a 

necessary condition and preserving the correctness as a sufficient condition, 

thus, essentially, being the next step in evolution of program repair 

approaches. 
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3.2 Mathematics for Program Repair 

3.2.1. Relational Mathematics 

In order to explain the mathematical foundation of the relative correctness theory, the 

following concepts are briefly introduced, as described in [31]: 

Given a program p that operates on some variables x and y, let the space of p be 

the set S of all the values that the aggregate of variables <x, y> may take; elements of S are 

called states of the program, and are usually denoted by lower cases. A relation on set S is 

a subset of S×S; constant relations on a set S include the empty relation (∅ ), the identity 

relation (denoted as I and defined as I={(s,s)|s ∈ S}, meaning that each element is related 

to itself only) and the universal relation (denoted as L, defined as L=S×S and meaning that 

each element of set is related to every element of set); operations on relations include the 

set theoretic operations of union, intersection, difference and complement; other operations 

include the product of two relations (denoted by R◦R’, or RR’ for short), the converse of a 

relation (denoted as R̂ and defined as R̂ = {(s,s’)|(s’,s) ∈ R}) and the domain of a relation 

(denoted as dom(R) and defined as dom(R) = {s|∃s’ : (s,s’) ∈ R}). The pre-restriction of 

relation R to set T is denoted by T\R and defined as T\R = {(s,s’)|s ∈ T ∧ (s,s’) ∈ R}. A 

relation R is said to be reflexive iff I⊆R, symmetric iff R⊆R̂, antisymmetric iff R∩R̂⊆I, 

and transitive iff RR⊆R. A relation R is said to be deterministic iff R̂R⊆I. A relation R is 

said to be deterministic (or: a function) iff RR̂ ⊆ I, and total iff RL = L. A relation R is said 

to be a vector iff RL = R; vectors have the form R = A × S for some subset A of S and are 

used here as relational representations of sets. In particular, it should be noted that RL, 

which is used as a relational representation of the domain of R, can be written as dom(R) 

× S. For the sake of convenience, symbols representing a set (say T) and the vector (T × S) 
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that represents the same set, in relational form are used interchangeably. Hence, for 

example, the restriction of relation R to set T can be written as T ∩ R, where T is interpreted 

as a vector. Being a well-known property of functions it is admitted without proof that if F 

and G are functions then F = G iff F ⊆ G and GL ⊆ FL. 

3.2.2 Program Semantics and Correctness 

Adopting the definitions by Khaireddine et al. [31, 63], whereby given two relations R and 

R’, R’ refines R (R’⊒R) if and only if RL∩R’L∩(R∪R’)=R and given a program p on 

space S written in a C-like notation, defining the function of p (denoted by P) as the set of 

pairs(s, s’) such that if program p starts execution in state s it terminates in state s’, the 

program and its function can be referred to by the same name, P, when no ambiguity arises, 

the following definitions can be given: 

Definition 1: Given a specification R on space S, a program p is said to be correct 

on the space S with respect to specification R if and only if its function P refines R. 

This definition is equivalent to traditional definitions [79, 83, 84] of total 

correctness with respect to prespecification φ(s) and postspecification ψ(s) for some s0: 

φ(s) ≡ s ∈ dom(R) ∧ s = s0. 

ψ(s) ≡ (s0,s) ∈ R 

∀s : φ(s) ⇒ s ∈ dom(P) ∧ ψ(P(s)) 

The following proposition can be made due to Mills et al. [85] and is offered here 

without proof: 

Proposition 1: Program P is correct with respect to specification R on the space S 

if and only if (R∩P)L=RL. 
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Definition 2: The set (R∩P) is called the competence domain of P with respect to 

R and is the set of initial states on which P behaves according to R. 

Proposition 2: Given a specification R and a program P on space S, program P is 

correct with respect to R if and only if the following condition holds: 

∀s : φ(s) ⇒ s ∈ dom(P) ∧ ψ(P(s)), 

where φ(s) ≡ s ∈ dom(R) ∧ s = s0 and ψ(s) ≡ (s0,s) ∈ R for some s0. 

Proof:  

Proof of Sufficiency. Replacing φ() and ψ() by their expressions, the condition of 

the proposition can be simplified into: 

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ (s,P(s)) ∈ R. 

Since (s,P(s)) is by definition an element of P, this can be written as: 

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ (s,P(s)) ∈ (R ∩ P). 

By definition of domains it is inferred that: 

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ s ∈ dom(R ∩ P). 

Since dom(R ∩ P) ⊆ dom(P) it is inferred that: 

∀s : s ∈ dom(R) ⇒ s ∈ dom(R ∩ P). 

By set theory, we infer: RL ⊆ (R ∩ P)L; since the inverse inclusion is a tautology, 

we infer (R ∩ P)L = RL. 

Proof of Necessity. Since (R ∩ P)L ⊆ RL is a tautology, the condition of this 

proposition is equivalent to RL ⊆ (R ∩ P)L, which is interpreted as follows: 

∀s : s ∈ dom(R) ⇒ s ∈ dom(R ∩ P) 

 {Interpreting the definition of domain} 

∀s : s ∈ dom(R) ⇒ ∃s’ : (s, s’) ∈ (R ∩ P) 
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 {P is deterministic} 

∀s : s ∈ dom(R) ⇒ ∃s’ : s’ = P(s) ∧ (s, s’) ∈ R 

 {substitution} 

∀s : s ∈ dom(R) ⇒ ∃s’ : s’ = P(s) ∧ (s, P(s)) ∈ R 

 {Interpreting the definition of domain} 

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ (s, P(s)) ∈ R 

 {substituting φ() and ψ()} 

∀s : φ(s) ⇒ s ∈ dom(P) ∧ ψ(s) ∈ R. 

If s ∈ dom(R) is interpreted as s satisfies the precondition, s ∈ dom(P) as 

execution of P on s terminates normally, and (s, P(s)) ∈ R as the final state (P(S)) 

satisfies the postcondition, then this formula can be interpreted as: for any initial state 

that satisfies the precondition, program P terminates normally and returns a final state 

that satisfies the postcondition: this is the exact definition of total correctness, as given in 

traditional sources. QED 

With the provided definitions and propositions, the following definition of relative 

correctness can be introduced: 

Definition 3: For deterministic programs P and P’ a program P’ is said to be more 

correct than P with respect to specification R if and only if (R ∩ P’)L ⊇ (R ∩ P)L (and, 

correspondently strictly more correct, iff (R ∩ P’)L ⊃ (R ∩ P)L). 

It should be noted that more correct is in fact more-correct-than-or-as-correct-

as, however, for the sake of convenience, a shorter version is utilized, with the stricter 

clause without the as-correct-as portion labeled as strictly more correct. Khaireddine et al. 

[63] provide the following proof of this definition: 
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Assuming the same notation, this definition can be expanded further for non-

deterministic programs, as follows [32, 86]:  

Definition 4: For non-deterministic programs P and P’, P’ is more-correct than P 

with respect to R (P’ ⊒ RP) if and only if (R ∩ P)L ⊆ (R ∩ P’)L ∧ (R ∩ P)L ∩ R̄ ∩ P’ ⊆ 

P, which can be interpreted as: P’ is more-correct than P with respect to R if and only if it 

has a larger (or equal) competence domain, and for the elements in the competence domain 

of P program P’ has fewer (or the same number of) states that violate R than P does. In 

other words, a program P’ is more-correct than a program P with respect to R if and only 

if the set of states on which P’ violates R is a subset of the set of states on which P violates 

R.  

 

3.3 Absolute Correctness and Relative Correctness 

Validation of the adopted definition of relative correctness requires verification of several 

relational properties that such definition must satisfy, which, based on Diallo et al. [86] 

are: 

 Relative correctness is transitive, reflexive, but not antisymmetric. 

Indeed, transitivity and reflexivity stem directly from the (R ∩ P’)L ⊇ (R ∩ 

P)L portion of the definition of relative correctness (where relative 

correctness is indeed reflexive and transitive due to reflexivity and 

transitivity of set inclusion [63]), however, the non-antisymmetricity of 

relative correctness stems from the fact that (R ∩ P)L = (R ∩ P’)L does not 

necessarily imply P = P’. It can be observed from the following scenario: 

two functions P and P’ may satisfy (R∩P)L=(R∩P’)L while P and P’ are 

distinct. A combination of R={(0,1),(0,2)}, P={(0,1)} and P’={(0,2)} can 

be considered an example of such scenario. These properties can be 

expressed [63] as ⊒R◦⊒R⊆⊒R, I⊆⊒R, ⊒R∩⊑R⊄I. 

 Relative correctness culminates in absolute correctness. Relative 

correctness culminates in absolute correctness, as, by definition of absolute 

correctness, an absolutely correct program P satisfies the condition (R ∩ 

P)L = RL, hence its competence domain is maximal (hence a superset of the 
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competence domain of any candidate program). The necessity proof looks 

as follows: given a specification R and a program p’ on space S, p’ is 

absolutely correct with respect to R, iff p’ is more-correct with respect to R 

than any candidate program p on S - an absolutely correct program p’ refines 

the entire specification R and any other program p" on space S built in 

regards to specification R would either refine it in its entirety or refine only 

a subset of it, thus allowing program p’ to meet the definition of being more 

correct than any other program p". The sufficiency proof also holds - if 

program p’ is more correct than any other program on space S in regards to 

specification R, it should refine the entire specification R, otherwise, there 

would exist a program p" refining a larger portion of specification R than 

p’, which, by definition would mean that p" would be more correct than p’, 

which contradicts the claim of p’ being more correct than any other p". This 

property can be recorded [63] as P⊒R ⇔ (∀P : P’⊒RP). 

 For any specification, refinement is equivalent to relative correctness. 
Indeed, program p’ refining p means that p’ can do everything that p does 

and, for the case of strict relative correctness, can do it better (or that p’ 

matches every specification r ∈ R that p matches and in addition there exists 

specification r’ ∈ R’, r’ ∉ R that p does not meet). In a formal way it can be 

proven as follows [63]:  

o Proof of Necessity. If P’ ⊒ P then (because P and P’ are both 

functions) P’ ⊇ P, whence (by monotonicity of intersection and 

domain) (R ∩ P’)L ⊇ (R ∩ P)L. 

o Proof of Sufficiency. From (∀R : (R∩P’)L ⊇ (R∩P)L), by letting R 

= P, (P∩P’)L ⊇ PL is inferred. This, in conjunction with the set 

theoretic identity (P∩P’ ⊆ P), yields (because (P ∩P’) and P are both 

functions), P’∩P = P; from which, by set theory P’ ⊇ P is inferred; 

given that P’ and P are both function, this yields P’ ⊒ P. QED 

 Relative correctness is a sufficient condition of higher reliability, but 

not a necessary one. Higher reliability is a stochastic property, and Relative 

Correctness is a logical/functional one. A program P’ has a higher reliability 

than program P iff P’ has a higher probability of performing as per 

specification R than program P does. The fact that P’ meets more of the 

specification R than P indeed makes it more reliable, but the opposite is not 

always true, as a more reliable program P’ can fail to meet some of the 

specifications that P does. This property can be written [63] as: P’⊒RP ⇒ (

∀θ() : ρR
θ()(P’) ≥ ρR

θ()(P)) and can be given a formal proof looks as follows: 

Given a specification R and discrete probability distribution θ() on dom(R), 

s is a random element of dom(R) selected according to probability 

distribution θ(). Execution of a program P on s is successful iff s is in the 

competence domain of P with respect to R. Hence the reliability of P with 

respect to R and θ() can be written as: ρR
θ()(P)=∑s∈dom(R∩P)θ(s). Clearly, 
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larger competence domains yield greater values for ∑s∈dom(R∩P)θ(s), 

regardless of how θ() is defined. Therefore: P’⊒RP ⇒ (∀θ() : ρR
θ()(P’) ≥ 

ρR
θ()(P))  
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CHAPTER 4 

INGREDIENTS OF A THEORY BASED PROGRAM REPAIR ALGORITHM 

 

4.1. Faults and Elementary Faults 

In the work by Avizienis et al. [87] and Laprie [88-90] the fault is defined as adjudged or 

hypothesized cause of an error. This definition relies on an insufficiently defined concept 

of error and highly subjective concepts of adjudging and hypothesizing. A more detailed 

definition, however, should be related to the level of granularity, at which the faults are 

being isolated. Following Gazzola et al. [4], the following two definitions that determine 

the scale of faults are adopted:  

 A syntactic atom in program P is a fragment of source code of P at the selected 

level of granularity. 

 An atomic change in program P is a pair of source code fragments (a, a’) such that 

a is a syntactic atom in P and a’ is a code fragment that can be substituted for a 

without violating the syntactic integrity of P. 

Expanding upon the concepts of relative correctness and competence domain, 

Khaireddine et al. [11, 91-93] introduce the following definitions: 

Definition 1: Given a program P and a specification R on the space S, a software 

failure of program P with respect to specification R is an event that occurs if and only if 

execution of P on some initial state s violates the premise that P is correct with respect to 

R. 

Execution of P on state s violates the assumption that P is correct with respect to R 

if and only if P either fails to terminate on s, or it does terminates but the final state s’ fails 

to satisfy the condition (s,s’) ∈ R. 
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Definition 2: A feature of program P with respect to give level of granularity is any 

part of the source code, including non-contiguous part that is appropriate to cover all code 

related to software failure. 

Definition 3: Given a specification R and a program P, a fault in program P is any 

feature f that admits a substitute f’ such that the program P’ obtained from P by replacing 

f with f’ is strictly more correct than P. 

Definition 4: A fault removal or fault repair in P is a pair of features (f, f’) such 

that f is a feature in P and program P’ obtained from P by replacing f with f’ is strictly more 

correct than P. 

This definition can be also expanded as follows: Let p be a program on space S and 

R be a specification on S, let f be a fault in p, and let f’ be a substitute for f. The pair(f, f’) 

is a (monotonic) fault removal iff the program p’ obtained from p by substituting f by f’ is 

strictly more-correct than p. 

Definition 5: An elementary or unitary fault f in program P with respect to 

specification R is a fault such that no part of it is a fault, in other words, an elementary fault 

cannot be subdivided into independent faults. 

This definition means that all single-site faults (containing just a single atom) are 

elementary, but in case of multi-site faults they are considered elementary iff no subset of 

their elements is a fault. The number of atoms in a unitary fault is called the multiplicity of 

the fault. The concepts of unitary fault and multiplicity can be illustrated with the following 

example: 

Given space S, specification R on space S and program P defined as: 

S = {float x; float a[N+1]} 
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R = {(s, s’)|x’ = ∑N
i=1 a[i]} 

P = {int i=0; x=0; while (i<N) {x=x+a[i];i=i+1;}} 

Substituting the feature f = (0, <) with the feature f’ = (1, ≤) yields a strictly more 

correct program P’: 

P’ = {int i=1; x=0; while (i<=N) {x=x+a[i]; i=i+1;}} 

Hence f is a fault. In order to determine whether f is a unitary fault with multiplicity 

of 2 or a set of two unitary faults with multiplicity of 1 the competence domains of P1’ and 

P2’ programs that result from individual application of the constituent atomic faults have 

to be verified. The programs P1’ and P2’ are therefore  

P1’= {int i=1; x=0; while (i<N) {x=x+a[i]; i=i+1;}} 

P2’= {int i=0; x=0; while (i<=N) {x=x+a[i]; i=i+1;}} 

Their competence domains are 

CD = {s|a[0] = a[N]}. 

CD1’ = {s|a[N] = 0}. 

CD2’ = {s|a[0] = 0}. 

As no inclusion relation can be established between CD and CD1’ P1’ is not more 

correct than P. In a similar way, since there is no inclusion relation between CD and CD2’ 

P2’ is not more correct than P and, therefore, f is the case of a single unitary fault of 

multiplicity 2 (Figure 4.1). 



 

34 

 

 

Figure 4.1  An elementary fault of multiplicity 2. Although P1’ and P2’ are both 

modifications of P, there are no arrows as neither P1’ nor P2’ are more correct than P. 

Source: [63]. 

 

4.2. Fault Density, Depth and Multiplicity 

Definition 6: Given a program P and a specification R on space S, the number of unitary 

faults in P is the fault density of P with respect to R and the minimal number of unitary 

fault repairs that separate P from a correct program is the fault depth of P with respect to 

R. 

A program having N unitary faults does not necessarily need N unitary fault repairs; 

these two metrics are distinct and whereas with each unitary fault repair the fault depth is 

decreasing, fault density can vary arbitrarily. 

Reusing the same space S, specification R and starting program P from the example 

that was considered in Definition 5 it can be observed that in addition to the fault f1 = (0, 

<) with multiplicity 2 that gets repaired through substitution f’1 = (1, ≤) generating program 

P1’: 
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P1’ = {int i=1; x=0; while (i<=N) {x=x+a[i]; i=i+1;}} 

There is also another fault f2=(i) with multiplicity 1 that gets repaired through 

substitution with f’2=(i+1) yielding a different program P2’: 

P2’ = {int i=0; x=0; while (i<N) {x=x+a[i+1]; i=i+1;}} 

That is also absolutely correct to the original specification R. Since there are two 

faults, the fault density is 2 (Figure 4.2 - two possible ways to get the program corrected), 

whereas the fault depth is 1, as only one unitary fault correction is needed. 

 

Figure 4.2  Fault Density (=2) vs. Fault Depth (=1). 

Source: [63]. 

 

4.3. Fault Repair vs. Failure Remediation 

As noted before, unlike most of the modern research that uses failure remediation for 

program repair, this research focuses on fault repair. In order to illustrate the difference, 

the following definition needs to be introduced. 

Definition 7: A unitary increment of correctness is a step or a set of steps removing 

a single fault [94]. 
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This concept is illustrated on Figure 4.3, where going from P0 to P4 requires two 

steps, but leads to a single unitary increment of correctness, since the intermediary state 

P2, while required for the next step does not enhance correctness, hence does not qualify 

as a fault removal. A real life example of the scenario shown on Figure 4.1 would be fixing 

a program P with two faults with one of them being a simple serialization fault in an object, 

where one of the attributes A prevents serialization due to being improperly configured and 

the other being wrong relational operator used somewhere in the code. In such scenario P1 

might remove the attribute, P3 attempt to fix the relational operator, while P2, P4 chain 

would attempt to actually address the root cause of the issue with serialization. As long as 

the test suite T doesn’t specifically check for the attribute A to be present in object - each 

path would be considered as a valid solution. 
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An example of Correctness Enhancement
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Figure 4.3  A generic example of correctness enhancement.  

 

With incremental enhancement of correctness defined the contrast between failure 

remediation and program repair can be highlighted as follows: Given program P that fails 

on input x, a traditional failure remediation approach would simply try to make it correct 

at x, whereas the incremental correctness enhancing approach would mark P as incorrect 

and go through a chain of strictly-more-correct programs fixing faults as they appear until 

the competence domain of program Pn covers x (as shown on Figure 4.4.) 
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Figure 4.4  Failure Remediation vs. Fault Repair. 

Source: [11]. 
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CHAPTER 5 

A GENERIC ALGORITHM FOR PROGRAM REPAIR 

 

5.1 General Principle 

The process offered to address program repair summarizes what was described in Chapters 

3 and 4 so far. It is generic in the sense that it outlines a general process for selecting repair 

candidates, but does not specify how repair candidates are generated; hence it can be 

instantiated for any given patch generation method. The algorithm can be succinctly 

defined as enhance relative correctness until either the absolute correctness is 

achieved, the user-set limit is reached or the algorithm determines that it can no 

longer enhance relative correctness (due to inadequate patch generation). 

 

5.2. An Infrastructure of Oracles 

Given a program P’ on space S, with its initial state being s and final state being s’, the 

oracle is a binary predicate in(s, s’), which can take several forms depending on the 

property being tested about P’. It can be subdivided into following cases: 

1) Oracle of absolute correctness with respect to R. 

2) Oracle of relative correctness over a program P with respect to a specification R 

3) Oracle of strict relative correctness over a program P with respect to a 

specification R. 

5.2.1. Absolute Correctness With Respect to a Specification R. 

Definition: Given a specification R on space S, the oracle for absolute correctness 

with respect to R is denoted as Ω(s, s’) and defined by: 

Ω(s, s’)≡(s∈dom(R)⇒(s, s’)∈R). 
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Proposition: If a program P satisfies the condition Ω(s, P(s)) for all s in S then it 

is absolutely correct with respect to R. 

In practice, since it is nearly impossible to check Ω(s, P(s)) for all s in S, as even 

for simplest programs such full testing would take an unacceptable amount of time [45], it 

is checked for a bounded size test data T. Hence the predicate ΩT(P’) is defined as: 

ΩT(P’)≡(∀s∈T: Ω(s, P’(s))) 

The program P’ is absolutely correct with respect to T\R if and only if it satisfies 

this predicate [63].  

5.2.2. Relative Correctness Over a Program P With Respect to a Specification R. 

Definition: Given a specification R on space S and a program P on S, the oracle 

for relative correctness over program P with respect to R is denoted by ω(s, s’)and defined 

by: 

ω(s, s’)≡(Ω(s, P(s))⇒Ω(s, s’)). 

Proposition: A program P’ is more-correct than program P with respect to R if and 

only if ω(s, P’(s)) holds for all s in S. 

This formula stems readily from the definition of relative correctness. Again, in 

practice, only a bounded size data set T is checked since checking ω(s, P’(s)) for all s in S 

cannot be done. Therefore, the predicate ωT(P’) is defined as: 

ωT(P’)≡(∀s∈T:ω(s, P’(s))) 

The program P’ is said to be more correct than P with respect to T\R if and only if 

the execution of P’ on every element of T satisfies oracle ω(s,s’) [63]. 
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5.2.3. Strict Relative Correctness Over a Program P With Respect to a Specification 

R. 

Definition: Given a specification R on space S and a program P on S, the oracle of 

strict relative correctness over program P with respect to R is denoted by σ(s, s’) and 

defined as: 

σ(s, s’)≡ (∀s ∈ S : ω(s, P’(s))) ∧ (∃s ∈ S : ¬Ω(s, P(s)) ∧ Ω(s, P’(s))) 

Proposition: A program P’ is strictly more-correct than a program P with respect 

to R if and only if P’ is more-correct than P, and there exists at least one element s in S 

such that the condition Ω(s, P’(s)) ∧ ¬Ω(s, P(s)) is satisfied. 

Similar to absolute correctness case, Ω(s, P’(s))∧¬Ω(s, P(s)) is checked only for a 

bounded size dataset T, the predicate σT(P’) is defined as: 

σT(P’)≡(ωT(P’)∧(∃s∈T: Ω(s, P’(s))∧ ¬Ω(s, P(s)))) 

The program P’ is strictly more correct than P with respect to T\R if and only if for 

the program P’ the oracle σT(P’) returns true [63].  

 

5.3 A Generic Algorithm 

Due to its generic nature, the algorithm applies to programs of arbitrary fault depth, because 

it does not test for absolute correctness, but rather tests for relative correctness over the 

base program. It is based on an elementary routine that performs a unitary increment of 

correctness enhancement; removing one elementary fault at a time. Because elementary 

faults may be multi-site, it attempts to enhance correctness by single-site features, then 

double-site features, etc., until it succeeds or reaches a user-imposed threshold of fault 

multiplicity. The inputs to this algorithm are: 
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1. The specification R with respect to which correctness is judged in the form 

of a correctness oracle - a Boolean function between initial states and final 

states. 

2. The faulty program, P. 

3. The test data T that would be used to test for absolute correctness and 

relative correctness. 

4. The threshold of multiplicity (M) to be considered for multi-site elementary 

faults. When restricted to single-site faults, M should be set to 1. 

The candidate patches are assumed to be organized as a set of patch streams of 

increasing multiplicities, which we name, respectively, PS(1), PS(2), ..., PS(M). Each patch 

stream PS(m) is an ordered sequence, supporting application of sequence operators head() 

and tail(), referring respectively to the first element, and the remainder of the sequence.  It 

is assumed that patch generator is providing the following functions: 

o MorePatches(P,m), a Boolean function that returns true if and only if there 

remains more patches of P of multiplicity m. 

o NextPatch(P,m), which returns the next element of PS(m), for 1 ≤ m ≤M. 

As shown by Khaireddine et al. [11, 63, 94], the algorithm would look as follows: 

void ProgramRepair(program P, specification R, testdata 

T, int M) { 

 bool incremented=true; 

 while (incremented && not abscor(P)) 

 { 

  P = UnitIncCor(P, R, M) 

 } 

} 

 
programtype UnitIncCor (programtype P, specification R, 

int M) { 

 int mult=1; 

 incremented = false; 

 while (not incremented && mult <= M) 

 { 

  programtype Pp=P; 

  initPatches(mult); 

  while (not somecndtn (Pp, P) && MorePatches(P, 

mult)) 
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  { 

   Pp = NextPatch(P, mult); 

  } 

  if somecndtn (Pp, P) 

  { 

   incremented = true; 

   return Pp; 

  } 

  else 

  { 

   mult = mult+1; 

  } 

 } 

} 

 

 

5.4 Assessment of Precision and Recall 

Since the generic algorithm is merely an iterative application of UnitIncCor(), the focus of 

propositions will be on UnitIncCor(). According to Khaireddine et al. [63] the following 

propositions are offered here with proof provided separately in Appendix A: 

Proposition 5.4.1: Function UnitIncCor() has perfect recall, in the sense that if the 

patch stream has a program that is strictly more-correct than P, then UnitIncCor() will 

return in Pp a program that is strictly more-correct than P. 

It should be noted that UnitIncCor(), as proposed does not retrieve all the patches 

that are strictly more-correct than P; it only retrieves the first patch that it encounters. 

Hence, the only guarantee that can be provided is that if there exists a patch Q in the patch 

stream that is strictly more-correct than P, then UnitIncCor() will necessarily return in Pp 

a program that is strictly more-correct than P (this could be Q or it could be another patch 

that it encounters before Q). 

Proposition 5.4.2: Function UnitIncCor() has perfect precision, in the sense that if 

incremented is set to true then Pp is strictly more-correct than P. 
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The perfect precision and perfect recall that the relative correctness algorithm has 

based on the propositions above make it a better approach to patch validation than the 

approaches prone to loss of precision, loss of recall or both that are traditionally utilized by 

most existing program repair tools. 

 

5.5 Introducing Parallelism 

The UnitIncCor() and ProgramRepair() functions that were discussed above are aimed at 

sequential execution. Optimization of the algorithm for parallel machines requires changes 

to the algorithm to look as follows: 

void ParallelProgramRepair(programtype P, specification 

R, testdata T, int M, bool stopOnAbsolute) { 

 std::list<wrapperprogramtype> controllist; 

 controllist.push_back(new 

wrapperprogramtype(P,1)); 

 std::list<wrapperprogramtype>::iterator it; 

 it=controllist.begin();  

 while (it!=controllist.end()) 

 { 

  int m=*it.getmultiplicitylevel(); 

  P=*it.getprogram(); 

  patchLocalization=localize(P,R,T);//fault 

localization 

  //If fix loci localization is used, 

patchLocalization=localize(P) is good enough 

  programtype[] Pp = 

parInitPatches(m,patchLocalization);//Apply all patches in 

parallel 

  int jobNum = 0; 

  int arrLen = 

sizeof(Pp)==0?0:sizeof(Pp)/sizeof(Pp[0]); 

  std::future<resulttype> resultarr[arrLen]; 

  while (jobNum<arrLen) 

  { 

   //The call to UnitIncCor asynchronous and 

non-blocking (future-like datatype). 

   //Next cycle will be triggered before 

UnitIncCor returns. 
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   resultarr[jobNum] = 

std::async(std::launch::async, []{ validate(Pp[jobNum], P, 

R, T); }); 

   jobNum = jobNum+1; 

  } 

  jobNum=0; 

  while (jobNum<arrLen) 

  { 

   //Here the call becomes blocking 

   resultarr[jobNum].wait(); 

   resulttype 

localresult=resultarr[jobNum].get(); 

   recordresult(Pp,localresult); 

   if(stopOnAbsolute && 

abscor(localresult)) 

   { 

    //result is absolutely correct, 

abort execution 

    return; 

   } 

   //Use the returned future value to 

identify whether the program is strictly more correct 

   //If it is, set multiplicitylevel to 1. 

else, it is the current multiplicity level+1 

   //If max multiplicity limit has not been 

breached, find place in the list between it  

   //and controllist.end() using binary 

search in order to insert the new candidate for repairs 

   int 

multiplicitylevel=localresult.issmc()?1:m+1; 

   if (multiplicitylevel<=M) 

   { 

   

 controllist.insert(bsearchInsert(localresult), new 

wrapperprogramtype(Pp[jobNum],multiplicitylevel)); 

   } 

   jobNum = jobNum+1; 

  } 

  it=controllist.erase(it); 

 } 

} 

 

resulttype validate (programtype Pp, programtype P, 

specification R, testdata T) { 

 //Check whether the candidate is in relative 

correctness relation 
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 //calculate fitness function (whether more tests 

passed), control test count 

 return new 

resulttype(mc(Pp,P,R,T),ff(Pp,P,R,T),tc(Pp,P,R,T); 

} 

 

This solution does away with separation of UnitIncCor from ProgramRepair and 

slices the process of program repair in a different way sharing localization information for 

a given level of multiplicity between independent parallel executing nodes and grouping 

similar complexity operations together to achieve higher level of synchronicity in result 

generation and minimize the wait that happens on the result aggregation lines: 

//Here the call becomes blocking 

resultarr[jobNum].wait(); 

Implementations of this algorithm should also consider passing the results of 

original test validation down to the parallel nodes in addition to localization information, 

to minimize redundant calculations. 

An example of the high-level algorithm implementation for a loosely-coupled 

parallel environment like an HPC grid looks as follows: 

1) Pre-processing and information extraction 

 a) Retrieve information about all potential points of mutation application 

and subdivide it into work buckets. 

 b) Assign a number to each bucket and store the mapping in a location 

accessible to cluster control 

2) Generate phase /**Parallel**/ on each process: 

 a) Get the work order number from cluster control. 

 b) Retrieve work bucket with that number. 

 c) /**Parallel**/ on each thread:  

  i) Take next mutation 

  ii) Apply it to the code based on information in the work bucket 



 

47 

 

  iii) Store mutant candidate P’. 

3) Validate phase /**Parallel**/ on each process: 

 a) Get the work order number from cluster control. 

 b) Retrieve candidate with that number. 

 c) Check the shared database for the serialized version of the original 

execution run with the assigned tests. If missing - perform the run and cache serialized 

version in the database for other threads to use. 

 d) /**Parallel**/ on each thread:  

  i) Take next test 

  ii) Perform test run execution on the candidate 

  iii) Compare test execution for P’ to P. Check whether the number 

of tests passed have increased; whether the tests passing for P’ are a subset of tests passing 

for P. 

The applied approach is illustrated on Figure 5.1 and Figure 5.2. 

Generate Mutant 1

Generate Mutant 2

Generate Mutant n

Analyze code 
structure

...

Validate Test Suite 
1.1

Validate Test Suite 
1.2

...

Validate Test Suite 
1.m
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Result 1.m
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D
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Figure 5.1  Schematic drawing of a possible parallel implementation. 

Source: [95]. 
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Figure 5.2  Expanded view of validate stage flow for a single execution path, when 

launched on HPC Grid. 

Source: [95]. 
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CHAPTER 6 

AN INSTANCE OF THE GENERIC ALGORITHM: CORRECTNESS 

ENHANCER 

 

6.1 Specification of Correctness Enhancer 

6.1.1 Design Goals 

As described in Zakharchenko et al. [95] efficiently addressing the problem of correctness 

enhancement without artificial limitations requires the tool to follow a set of design goals: 

 Reliance on the concepts of relative correctness allowing to gradually approach a 

solution through a set of relatively more correct solutions, as compared to the all-

or-nothing approach that is based on absolute correctness. The need to get an 

absolutely correct result is understandable from a usage perspective, however, is 

not really usable for driving the process as it does not provide any feedback to the 

code on whether the applied change was making the results any better, leading to 

an essentially stateless trial-and-error, whereas with relative correctness, such 

feedback is provided. 

 Compatibility with existing mainstream commercial software development 

practices and reliance on commonly available sources of program specifications 

and ability to integrate into existing systems and pipelines. Keeping the tool 

compatible with existing mainstream sources of information allows real-life 

applicability beyond the limits of a single synthetic dataset. 

 Modular design and open source nature of the tool. There should be no locking into 

any black-box or vendor components and individual components of the tools have 

to be easily replaceable with their analogues, if such change is considered 

beneficial. This way the risk of dependencies having poor support is mitigated and 

the functionality of the tool is easy to expand, as needed. 

 High level of optimization for massively parallel execution. The task at hand 

requires significant computing resources, which only a major cluster, HPC grid or 

cloud can provide and therefore the tool should be optimized to be able to achieve 

maximum efficiency on the distributed architecture having hundreds and 

potentially thousands of independent computing nodes with various levels of 

coupling between them. 
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6.1.2 Specifications in Practice 

In practical software development, the business and technical specifications of a software 

product are the source of both specification R and space description S in which the program 

operates. Given through some projection, usually through a set of user stories or JIRA 

tickets, such specifications are not easy for correct machine-comprehension in their initial 

form. However, as a part of the normal development process done based on this source of 

information by human developers the specifications get transcribed into standard unit, 

integration and regression tests. Such tests, intended mainly for automated verification of 

key specifications of the software over time, provide an easily usable source of 

specifications R for the program P. Integrated with automated CI/CD pipelines, synthetic 

monitoring tools or generally available to the developer for manual execution, these tests 

are capable of automatically detecting a fault in the system, when it occurs and allow for 

correctness enhancement procedures to take place as a part of corrective maintenance of 

program, where a fault is introduced at a later stage through subsequent development of 

additional features. 

The corrective maintenance based on specifications provided through tests is not 

limited to late-stage development activities, as the continuous rise of popularity of test-

driven and behavior-driven development has resulted in machine-readable specifications 

often being created prior to the program itself thus expanding the potential applicability of 

correctness-enhancing techniques and allowing for their application as a part of the early 

stages of the development process, in theory starting with the program P0 being nothing 

more than just abort(). 
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As a result, language-specific unit-tests are the chosen source of specifications for 

Correctness Enhancer. 

 

6.2 Design of Correctness Enhancer 

6.2.1 A Practical Implementation Analysis - Approaching the Issue 

Building up on the theoretical foundation and creating a practical implementation requires 

answering the following questions: 

1. Choice of programming language. 

2. Target of application 

3. Program repair approach 

6.2.2 Programming Language Choice 

The question of programming language choice is not critical, when discussing the details 

of a generic algorithm. It is, however, one of the first questions to come up, when the 

problem switches from theoretical applications to practical implementation, both in the 

context of the language choice of the practical implementation as well as in the context of 

the language choice of the target benchmarks and programs. 

Although the algorithm implementation does not necessarily need to be done in the 

same programming language that is being targeted for repairs, doing so can simplify the 

deployment and maintenance in production environments, by avoiding dependencies that 

would not be present otherwise. Even if the implementation language is different from 

target language, in order to maximize the usability and applicability of any practical 

framework implementations, they have to be done using one of the mainstream 

programming languages. 
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Considering that the choice of the target languages is also tied to usefulness of the 

resulting implementation it is driven mainly by how mainstream the language is and the 

availability of high-quality benchmarks in that language. The survey of the current 

languages [75, 76] highlights C, C++, C#, Java, Python and JavaScript as the potential 

candidate languages to focus on. In Appendix Gazzola et al. [4] report data on 25 different 

tools. Out of them, 13 are focused on C-based languages, 9 are focused on Java (with 1 

supporting Habanero in addition to Java), 1 on Python, 1 on PHP and 1 on Eiffel. Such 

breakdown suggests that from the perspective of comparability, any practical research 

should be focused on C-family or Java, as the remaining languages do not show a sufficient 

representation in the R&D field of program repair. Upon further analysis, Java is 

determined to be a better candidate, as, while being a universal language, commonly 

encountered in all layers of programming from backend to web and being one of the most 

widely used programming languages for commercial software development, Java also has 

a significant benefit shared with the scripting languages of being compiled to an 

intermediate language (bytecode) instead of machine code, this way leaving the technical 

possibility to perform automated analysis and mutation even if the source code is absent. 

In addition, its property of relying on garbage collectors for automated memory 

management makes its structure less complex to analyze and mutate, as compared to C and 

C++ thus reducing potential issues with mutant generation and increasing the efficiency of 

the approaches applied. There are however, no technical obstacles, preventing eventual 

creation of universal program repair tools targeting multiple languages at once. 

With Java being selected as the target language, Junit becomes the selected source 

of specifications. 
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6.2.3 Program Repair Approach 

As discussed in Chapter 2, the program repair approaches currently utilized in program 

repair industry are subdivided into being generate and validate or semantic driven 

approaches. Considering that semantic-driven approaches are better geared towards 

targeting specific patterns in the source code, generate and validate approaches are a much 

better foundation to test the benefits of practical application of program repair theory. 

Generate-and-validate approaches are quite popular in the industry, however, the bane of 

their existing implementations is that, as shown by Khaireddine et al. [11], without 

applying the concept of relative correctness, program repairs methods and tools expose 

themselves to a risk of poor efficiency, loss of precision, and loss of recall and using an 

existing mutator tool as the source of patch generation [10, 59] and rebuilding it based off 

new theoretical and software architecture approaches, while leveraging its collection of 

mutators to keep the results comparable is a feasible approach. MuJava 

(https://cs.gmu.edu/~offutt/mujava/ Retrieved on November 20, 2021) [96] is a potential 

good candidate of such tool. 

6.2.4. MuJava 

The intent and purpose of muJava is the opposite of what was being pursued in this 

research: instead of trying to fix the code that is not operational, muJava is designed to 

introduce faults into the operational code in order to test the ability of existing test suites 

to detect changes that could have been accidentally done by the developer. In order to 

perform this work, out of the box the tool is coming with two modes of operation: a strictly 

single-threaded mode allowing to apply the entire code base of mutants one by one and a 

test running mode allowing to take any single test case and execute it against all mutants 

https://cs.gmu.edu/~offutt/mujava/
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that have been generated. With most programs in practice having more than one test and a 

large mutation surface, neither of the two modes are particularly applicable for the task of 

correctness enhancement, however the set of mutant generators that come with the tool is 

fully salvageable and easily expandable, determining the next steps of the research being 

conducted. 

6.2.5. The New Patch Validation 

When assessing, whether a program is operating in line with its specifications, the concept 

of absolute correctness is usually applied: either all tests pass and the program meets 

corresponding specifications or some of the tests fail and the program is considered faulty 

until all of its issues are resolved. While such definition is good enough for a common, 

business definition of software meeting or not meeting expectations, the change, necessary 

to go from the state "the program is faulty" to the state "the program is operational again" 

is multi-step and often requires days and weeks of qualified work by software development 

teams in order to make the transition. As a result, the level of granularity that is provided 

by absolute correctness is insufficient and therefore, in this work the program’s correctness 

is evaluated through the prism of getting a program to a "strictly more correct" state, once 

mutation is applied. In practice it translates to evaluating a program P’ against three 

separate criteria: whether mutated program P’ is more correct with respect to P (meaning 

that all tests that pass for P pass for P’), a fitness function like approach, which, in its basics, 

is looking at the percentage of tests that have passed successfully in the test run on program 

P, comparing it to the percentage of tests that were successful for the mutated program P’ 

and verifying that there has been no drop in the number of testcases executed between the 

two program states.  
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The tool, while being capable of fixing both single-site and multi-site faults, might require 

traversing the entire search space for a multi-site fault, if the intermediary results required 

to fix it do not make the program relatively more correct, however, in such scenarios it can 

often give suggestions on disabling part of the functionality, which can serve as an indicator 

of potential problematic areas for manual debugging. 

6.2.6 Adjusting to Changes in Project Structures With Levenshtein Distance-based 

Criterion 

In practical software development a project structure is typically not standardized and can 

wary greatly depending on the project itself and the mixture of programming languages, 

technologies and tools being utilized. For the majority of automated program repair tools, 

the target software project structure is normally specified through a set of configurations. 

These configurations, however, in addition to being unique for each project due to lack of 

uniformity, also require continuous redundant maintenance and adjustment for any kind of 

continuous deployment alongside the project, as they need to reflect any and all ongoing 

changes to the project structure, which routinely happens as a part of refactoring, clean-

ups, technical debt remediations and changes in the underlying technologies, which reflect 

in the project structure. Manual maintenance of such configuration-based automation is 

cumbersome and prone to mistakes. Although automatic rescanning of the project structure 

can get the adjustments factored in, it can be inconvenient if configuration is used to limit 

the patch generation with subsequent validation to a selected group of files only. 

Researching the problem of merging and automatically auditing hierarchical data 

structures in medical domain, Zakharchenko et al. [97, 98] have come up with a design of 

an automated-comparison framework implemented in the form of a software tool, which, 

through reliance on a combination of partial-string matching and application of 
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Levenshtein distance-based criterion was successful in detecting similarities and giving 

suggestions in merging large complex hierarchical data structures. Realizing that the task 

of automatically adjusting to changes in project structure is dealing with a related problem, 

this framework has been expanded upon in the Correctness Enhancer tool. 

Using the combination of unqualified class name and information about the 

expected hierarchical placement in the project structure, in case a precise match is not 

found, Correctness Enhancer is looking for a class that is similarly-named, but has the 

smallest deviance in the hierarchical path (measured through the smallest Levenshtein 

distance) from the original described in the configuration. This enhancement allows it to 

operate from an imprecise or outdated configuration, automatically dealing with package 

renaming and regrouping of files within projects without a need to rescan the project and 

rebuild the configurations, dealing with the most common change scenarios. Introducing 

new files, however, would still require adjusting the configurations or performing a new 

scan to include them in the scope of the tool. 

 

6.3 Implementation of Correctness Enhancer: Introducing Parallelism 

6.3.1. Reasons for Parallelism 

In its general generate and validate form, the task of program repair is traversing the entire 

field of possible candidate repair programs first generating and then validating each of 

them. Assuming that the program is prone to generate an average of m mutations that can 

be applied over n points in code, with the code (and each mutant) covered by t tests, the 

task of executing a generate and validate program repair becomes O(m*n) for generate and 

O(m*n*t) for validate portion of task. While m remains relatively constant and is mutation-
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system defined, for large commercial projects the number t runs in thousands and the 

number n grows at least proportional to the number of lines of code being written, preparing 

the ground for combinatorial explosion. While the optimal approach would be reducing the 

complexity of the algorithm, such optimization is not always possible. A more common 

practical approach to dealing with similar tasks is transformation of the code architecture 

and the underlying algorithm to reduce dependencies between different parts of the 

algorithm and allow their simultaneous parallel execution on a highly parallelized 

environment, such as GPU or cluster, essentially dividing the total number of sequential 

steps being needed to compute the problem by the number of threads being utilized, with 

that number easily reaching thousands on the modern hardware. While the GPU-based 

approaches are especially common, due to wider hardware availability, the major limitation 

of such approaches is that they are suitable for tasks with high computational and low data 

demands as transfer of the data between main memory and GPU memory is extremely 

slow. The task of generate and validate program repair though is both computation and 

data-intensive and as a result is a bad candidate for GPU-driven techniques. However, it 

still remains a perfect candidate for cluster and HPC-based computing [99] as well as APU 

units, which use regular computer memory for graphic computations, thus making it 

possible to achieve a significant boost in performance and ability to scale horizontally, if 

the program repair tool’s architecture is properly designed to support not just 

multithreaded, but also distributed usage, potentially with elements of service oriented 

architecture. 

In generate and validate process, both the generate part and the validate part of the 

approach can be built to efficiently handle parallel execution. For generate part parallelism 
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can be injected by either approaching each generate task as an independent and isolated 

task or by sharing initial code analysis to make the process of generation more efficient. 

For the validate part, the naive approach of just testing each mutant separately in an isolated 

environment is often not cost effective and provides insufficient performance, however, as 

long as isolation is achieved between different runs and utilization of shared resources is 

limited, each individual run can be further subdivided into runnable sub-tasks that can be 

executed concurrently. 

6.3.2. Implementation of Parallelism 

In order to apply that approach in practice, a fork of the original muJava repository has 

been created with the new tool named "Correctness Enhancer" in order to reflect its 

intended usage. As per classification from Gazzola et al. [4], this tool is a general purpose 

tool that utilizes fix locus localization, however, by design, since it relies on static code 

analysis to identify fix loci it can be used both as a standalone solution and as a source of 

recommendations deployed alongside the development environment. 

The spin-off version was redone to support the parallelism described above both 

via GUI (Figure 6.1, Figure 6.2) and as a command-line tool. This allowed patch generation 

and validation to be performed for simplistic faults, however, as the tool was going through 

the entire search space which offered thousands of mutants running thousands of tests and 

the space being a Cartesian product between them, generation of all possible mutants for 

defects4j test suite was taking days and validation of them weeks even on relatively modern 

personal machines. As a result, the code was further enhanced to support HPC-driven 

execution, breaking the validate process into subtasks going beyond test suites to the 

individual test level thus providing a significant increase of horizontal scalability, bringing 
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an almost linear boost in performance directly correlated with the increase in the number 

of cores allocated for the task. 

 

 

Figure 6.1  Correctness Enhancer has retained MuJava’s mutation mode screen in order to 

allow triggering mutant generation from UI locally, in addition to being able to do it 

through the console. Similar to MuJava’s interface, File column on the left side lists the 

files of the project where mutation is possible and Method-level and Class-level mutants 

on the right show available method and class mutations. 

Source: [95] 

 

The switch of the tool to massively parallel grid-based execution, deployed on an 

HPC grid (using NJIT’s Kong HPC cluster, which has now been replaced by Lochness 

[99]) has highlighted two issues: 

1. Overloading of the control node feeding work to sub-nodes. By splitting the 

task into small sub-tasks the issue of control queue overflow has been 

encountered, where the grid was not able to efficiently operate with millions 

of subtasks that were assigned to it. This problem has been resolved by 

adjusting the design of the program for the control node of the grid to pull 

the work from task-arrays instead of the code pushing it to the node, having 

a minor penalty on performance, but achieving stable grid operation. 
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2. The common issue of massively parallel execution is dealing with a 

bottleneck of combining the results from all processors into a single place. 

For Correctness Enhancer, the standard approach of distributed applications 

has been leveraged, overcoming this limitation by using an Apache Derby 

database (https://db.apache.org/derby Retrieved on November 20, 2021) as 

a shared collection endpoint. 

 

 

Figure 6.2  Correctness Enhancer has mostly retained the original UI interface of muJava 

for local execution on a machine, adding option to control parallelism on validation (up to 

256 threads as shown on the screenshot) and using "Live Mutants" to list results that are 

strictly more correct than the original or absolutely correct, however, main mode of 

operation is through console. 

Source: [95] 

https://db.apache.org/derby
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The code below shows a bash shell launcher for the SGE-based cluster that 

illustrates both solutions: 

001 #!/bin/bash 

002 for i in "$@" 

003 do 

004 case $i in 

005     -tf1=*|--testfilter1=*) 

006     testFilterFile1="${i#*=}" 

007     shift # past argument=value 

008     ;; 

009     -tf2=*|--testfilter2=*) 

010     testFilterFile2="${i#*=}" 

011     shift # past argument=value 

012     ;; 

013  

014     -rs=*|--rangestart=*) 

015     rangestart="${i#*=}" 

016     shift # past argument=value 

017     ;; 

018     -re=*|--rangeend=*) 

019     rangeend="${i#*=}" 

020     shift # past argument=value 

021     ;; 

022  

023     -db2=*|--dbconfig2=*) 

024     dbconfig2="${i#*=}" 

025     shift # past argument=value 

026     ;; 

027     -db1=*|--dbconfig1=*) 

028     dbconfig1="${i#*=}" 

029     shift # past argument=value 

030     ;; 

031  

032     -mf1=*|--mutationfilter1=*) 

033     mutantFilterFile1="${i#*=}" 

034     shift # past argument=value 

035     ;; 

036     -mf2=*|--mutationfilter2=*) 

037     mutantFilterFile2="${i#*=}" 

038     shift # past argument=value 

039     ;; 

040  

041     -db=*|--dbcontrol=*) 

042     dbcontrol="${i#*=}" 

043     shift # past argument=value 
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044     ;; 

045  

046     -l=*|--launcher=*) 

047     launcher="${i#*=}" 

048     shift # past argument=value 

049     ;; 

050  

051     -p=*|--program=*) 

052     program="${i#*=}" 

053     shift # past argument=value 

054     ;; 

055     -m=*|--mode=*) 

056     mode="${i#*=}" 

057     shift # past argument=value 

058     ;; 

059  

060     -c1=*|--config1=*) 

061     config1="${i#*=}" 

062     shift # past argument=value 

063     ;; 

064     -c2=*|--config2=*) 

065     config2="${i#*=}" 

066     shift # past argument=value 

067     ;; 

068  

069     -o=*|--output=*) 

070     output="${i#*=}" 

071     shift # past argument=value 

072     ;; 

073     -e=*|--error=*) 

074     error="${i#*=}" 

075     shift # past argument=value 

076     ;; 

077  

078  

079     *) 

080           # unknown option 

081     ;; 

082 esac 

083 done 

084  

085 queues=(‘short’ ‘medium’ ‘long’ ‘short’ ‘medium’) 

086 queuelen=${#queues[@]} 

087  

088 if [[ $mode == *"list"* ]] 

089 then 

090     for ((i=$rangestart; i<=$rangeend; i++)) 
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091     do 

092         temp="${program} mode=\"${mode}\" 

configurationmode=\"file\" 

configurationpath=\"${config1}${i}${config2}\""; 

093         echo "qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]} ${temp}" 

094         qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]}<<MARKER 

095 ${temp} 

096 MARKER 

097 done 

098 exit 

099 elif [[ $mode == *"test"* ]] 

100 then 

101     if [ "${dbcontrol}" ] 

102     then 

103         for ((i=$rangestart; i<=$rangeend; i++)) 

104         do 

105             #echo "Getting ready to cat 

${dbconfig1}${i}${dbconfig2}" 

106             cat ${dbconfig1}${i}${dbconfig2} | while 

read line 

107             do 

108                 temp="${launcher} \"${program}\" 

mode=\"${mode}\" configurationmode=\"file\" 

configurationpath=\"${config1}${i}${config2}\""; 

109                 echo "qsub -t 1-${line} -l 

mem_free=1.0G -q ${queues[i%$queuelen]} ${temp}" 

110                  

111                 qsub -t 1-${line} -o "~/logs" -e 

"~/logs" -l mem_free=1.0G -q ${queues[i%$queuelen]}<<MARKER 

112 ${temp} 

113 MARKER 

114                  

115             done 

116         done 

117     elif [ -z "${mutantFilterFile1}" ] 

118     then 

119         for ((i=$rangestart; i<=$rangeend; i++)) 

120         do 

121             numoflines=wc -l 

${testFilterFile1}${i}${testFilterFile2} | awk ‘{print $1;}’ 

122             echo ${numoflines} 

123              

124             cat 

${testFilterFile1}${i}${testFilterFile2} | while read line 

125             do 
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126                 temp="${program} mode=\"${mode}\" 

configurationmode=\"file\" 

configurationpath=\"${config1}${i}${config2}\" 

testfilter=\"${line}\""; 

127                 echo "qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]} ${temp}" 

128                  

129                 qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]}<<MARKER 

130 ${temp} 

131 MARKER 

132  

133             done 

134         done 

135     else 

136         for ((i=$rangestart; i<=$rangeend; i++)) 

137         do 

138             numoflines=$(wc -l 

${testFilterFile1}${i}${testFilterFile2} | awk ‘{print 

$1;}’) 

139             echo ${numoflines} 

140             numoflines2=$(wc -l 

${mutantFilterFile1}${i}${mutantFilterFile2} | awk ‘{print 

$1;}’) 

141             echo ${numoflines2} 

142             echo $((${numoflines}*${numoflines2})) 

143              

144             cat 

${testFilterFile1}${i}${testFilterFile2} | while read line 

145             do 

146                 cat 

${mutantFilterFile1}${i}${mutantFilterFile2} | while read 

line2 

147                 do 

148                     temp="-t 1-

$((${numoflines}*${numoflines2}))" 

149                     if  [ -n "${output}" ] 

150                     then 

151                         temp+=" -o ${output}" 

152                     fi 

153  

154                     if [ -n "${error}" ] 

155                     then 

156                         temp+=" -e ${error}" 

157                     fi 

158                     temp+=" ${program} mode=\"${mode}\" 

configurationmode=\"file\" 
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configurationpath=\"${config1}${i}${config2}\" 

testfilter=\"${line}\" mutationfilter=\"${line2}\""; 

159                     echo "qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]} ${temp}" 

160                      

161                     qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]} <<MARKER 

162 ${temp} 

163 MARKER 

164                 done 

165             done 

166         done 

167  

168     fi 

169 elif [[ $mode == *"mutate"* ]]  

170 then 

171     if [ "${dbcontrol}" ] 

172     then 

173         for ((i=$rangestart; i<=$rangeend; i++)) 

174         do 

175             #echo "Getting ready to cat 

${dbconfig1}${i}${dbconfig2}" 

176             cat ${dbconfig1}${i}${dbconfig2} | while 

read line 

177             do 

178                 temp="${launcher} \"${program}\" 

mode=\"${mode}\" configurationmode=\"file\" 

configurationpath=\"${config1}${i}${config2}\""; 

179                 echo "qsub -t 1-${line} -l 

mem_free=1.0G -q ${queues[i%$queuelen]} ${temp}" 

180  

181                 qsub -t 1-${line} -o "~/logs" -e 

"~/logs" -l mem_free=1.0G -q ${queues[i%$queuelen]}<<MARKER 

182 ${temp} 

183 MARKER 

184  

185             done 

186         done 

187     else 

188         for ((i=$rangestart; i<=$rangeend; i++)) 

189         do 

190             cat 

${mutantFilterFile1}${i}${mutantFilterFile2} | while read 

line 

191             do 

192                 temp="${program} mode=\"${mode}\" 

configurationmode=\"file\" 
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configurationpath=\"${config1}${i}${config2}\" 

mutationfilter=\"${line}\""; 

193                 echo "qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]} ${temp}" 

194              

195                 qsub -l mem_free=1.0G -q 

${queues[i%$queuelen]}<<MARKER 

196 ${temp} 

197 MARKER 

198  

199             done 

200         done 

201     fi 

202 else 

203     echo "Mode not recognized" 

204 fi 

205 

 

The list of queues on line 85 lists the queues on which the jobs can be executed. 

Since the cluster being utilized had an uneven distribution of resources between queues, 

the queues that had more resources available were included more than once with a basic 

round-robin running against this list on all execution lines (94, 111, 129, 161, 181 and 195) 

giving a roughly similar computation end time. The execution through this launcher had 

the modes list, mutate and test with list doing the initial environment preparation, mutate 

running the patch generation and test running the test validation. Control of what gets 

submitted for execution is possible either from files generated by list option or by 

instructing the grid to assign a unique sequence number to each job and correlating it with 

the database instructions (the portions of code that get triggered if dbcontrol is not null.) 

While this launcher records logs from each execution for further analysis (the -o and -e 

options), most of the launchers that were used were setting the target directory as /dev/null, 

as for heavy runs, due to the number of jobs being executed logs could hit the limit on the 

maximum number of files in the same directory, destabilizing the process. The launcher 
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above also reflects both modes of operation: the one with task array utilization (seen on 

lines 111, 181) and the one with direct job triggering (seen on lines 94, 129, 161, 195.) 

Inside the code, the Cartesian product used to control all possible tasks is capable 

of working with arbitrary number of dimensions, allowing further splitting into subtasks, 

as necessary and it gets computed using Google guava’s cartesianProduct method: 

01 MutationControl.Inputs[] valuesArray = 

MutationControl.Inputs.values(); 

02 List<Set<String>> cartesianInput=new ArrayList<>(); 

03 for(MutationControl.Inputs s:valuesArray) 

04 { 

05     if(!modeTypes.containsKey(s.getLabel())) 

06     { 

07         HashSet<String> fillerList=new 

HashSet<String>(); 

08         fillerList.add(""); 

09         modeTypes.put(s.getLabel(),fillerList); 

10         cartesianInput.add(fillerList); 

11     } 

12     else 

13     { 

14         

cartesianInput.add(modeTypes.get(s.getLabel())); 

15     } 

16  

17 } 

18 Set<List<String>> 

product=Sets.cartesianProduct(cartesianInput); 

19  

20 for (List<String> entry : product) { 

21     HashMap<String, String> property=new HashMap<>(); 

22     for(int i=0;i<entry.size();i++) { 

23         

property.put(valuesArray[i].getLabel(),entry.get(i)); 

24     } 

25     localList.add(new ConfigurationItem(property)); 

26 } 

27 if (!localList.isEmpty()) { 

28     DatabaseCalls.insertConfiguration(localList); 

29 } 
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The description of the tool’s companion files and configurations, as well as a link 

to the repository containing full source code are provided in Appendices B and C. 
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CHAPTER 7 

EMPIRICAL ASSESSMENT 

 

7.1 Performance on Standard Benchmarks 

In order to validate the tool, it is executed in a clustered environment against the Chart 

program set of Defects4j faults database, which represents the JFreeChart 

(https://www.jfree.org/jfreechart/ Retrieved on November 20, 2021) library. The faulty set 

is used automatically, while the repaired set is only relied upon for manual evaluation of 

the quality of suggestions provided by Correctness Enhancer. Throughout the experiment, 

the NJIT’s Kong HPC cluster has been utilized with resource availability varying from 450 

cores to almost 2000 cores at a time in parallel processing. A shared storage with several 

TBs of free space available has been used to store the intermediate results as well as to host 

an Apache Derby database, which was running on one of the cluster nodes and was used 

for job coordination between nodes and the result storage. 

 

7.2 Comparison: Fitness Function vs. Relative Correctness 

The quality of the results is controlled by three basic criteria: 

1) Whether the tests that pass on a mutant are a superset of the original set of tests 

(the criteria of relative correctness.) 

2) Whether the percentage of tests that have passed on a mutant is greater than on 

the original program P (a fitness function ensuring the strictness of enhancements.) 

3) Whether the mutant has the same or larger amount of tests executed as compared 

to the original. This control is used to handle behavior of more complex tests suites, which 

skip execution of some of the tests if the mutant behavior is identified as a major failure. 

The first two are primary driving criteria, whereas the last criterion is an auxiliary 

one helping remove abnormal edge cases from the result pool. It is worth highlighting that 

https://www.jfree.org/jfreechart/
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the correctness criterion utilized here is not a strict one on its own, however, it becomes a 

strict one, when combined with the implemented fitness function, as long as auxiliary test 

count control does not indicate major issue with the result. The fitness function 

implementation is also allowing to establish ordering between relatively correct candidates, 

allowing them to be pursued not in the order they were detected, but in the order better 

aligned with the impact they make on the results. Figure 7.1 shows an example of such 

verification applied to Chart group of programs from Defects4j testset. 

Considering that an elementary fault with high multiplicity will be ranked low until 

its multiplicity layer is reached as atomic changes will not be producing more correct 

results, Correctness Enhancer provides an alternative way to drive the process of mutant 

validation using simulated annealing on top of the validation criteria described above. 

When activated, the code will step back from ordering and check random candidates with 

a given probability, improving the average case of converging on elementary faults of 

multiplicity m, while reducing the recall for the normal operation. 

The input for simulated annealing to walk through the space of Pn is the result of 

the validation runs for the space of Pn-1, in which the degree to which the latest application 

of mutation has refined the program and the combination of its stop-gap factors (the 

strictness of refinement and the absence of test suit degradation) is quantified to produce a 

single number as defined below, with simulated annealing used to find the global 

maximum. 

Higher bits  Lower bits 

Relative correctness percentage 

on mutant application 

Strictness of correctness 

enhancement (fitness function) 

Lack of drop 

in testcases 

 



 

 

 

7
1

 

 

Figure 7.1  A screenshot of a portion of the results demonstrating the checks applied. The results that have NO_DROP_IN_TESTCASES 

returning false are results where test execution after mutation triggered abnormal program termination. While in this scenario relative 

correctness criterion is also showing that something went wrong, it is theoretically possible to have a situation, where critical failure 

happens in the part that is failing less critically in the original run and the auxiliary criterion allows to detect such situations. The 

candidates returning true in CORRECTNESS_ENHANCED, RELATIVELY_MORE_CORRECT and NO_DROP_IN_TESTCASES 

are strictly more correct with regards to specification provided by the test in TEST_NAME field, but, need to be evaluated in the context 

of the entire set of specifications. 

Source: [95]  
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7.3 Comparison:  Correctness Enhancer vs. Other Tools 

The effectiveness of the resulting program has been assessed against the defects4j software 

faults dataset.  

Table 7.1  Defects4j results comparison with other published tools [9, 100]. 
 Correctness Enhancer jGenProg jKali jMutRepair 

Chart1 Fixed Patched, not fixed Patched, not fixed Patched, not fixed 

Chart2 Patched - Relative       

Chart3   Patched, not fixed     

Chart4         

Chart5   Patched, not fixed Patched, not fixed   

Chart6         

Chart7 Patched - Relative Patched, not fixed   Patched, not fixed 

Chart8 Patched - Relative       

Chart9         

Chart10         

Chart11 Patched - Relative       

Chart12 Patched - Relative       

Chart13 Patched - Relative Patched, not fixed Patched, not fixed   

Chart14         

Chart15   Patched, not fixed Patched, not fixed   

Chart16 Patched - Relative       

Chart17 Patched - Relative       

Chart18 Patched - Relative       

Chart19 Patched - Relative       

Chart20 Patched - Relative       

Chart21 Patched - Relative       

Chart22 Patched - Relative       

Chart23 Patched - Relative       

Chart24 Patched - Relative       

Chart25 Patched - Relative Patched, not fixed Patched, not fixed Patched, not fixed 

Chart26 Patched - Relative   Patched, not fixed Patched, not fixed 
Note: The results for other tools were differentiated based on the criteria of the resulting solution 

being similar to one that a human developer would create (Fixed) or just meeting the rules provided (patched, 

not fixed.) Reliance on relative correctness has created a new category of results (Patched - Relative), where 

the end result is not necessarily fully conforming to all rules, but it is conforming to all rules that the input 

does, as well as to some additional rules that the original input did not conform to or is, in other words, strictly 

more correct. 

 

Source: [95] 

This dataset consists of six programs with multiple variations of seeded faults, as 

well as their corrected versions. The calculations are done on the first program Chart out 

of 6 available in the database - the JFreeCharts library. This library is offered in 26 faulty 
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variations in the defect4j database, giving a sound sample to validate the tool on. The 

results compared against other industry-leading tools are provided in the Table 7.1. 

It is worth noting that in order to maintain comparability with other tools in the 

industry, the table reports the quality aspect of the result, not the quantity one, as most of 

the results in the field are reported in the form of at least a single candidate repair being 

found for program being repaired, whereas Correctness Enhancer was able to provide 

multiple repair candidates for each case that was reported as Patched in the Table 7.1. 
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CHAPTER 8 

LESSONS LEARNED 

 

8.1 Theoretical Lessons:  The Need for Theoretical Foundations 

As can be easily noticed Correctness Enhancer was able to suggest some patches or fixes 

for almost every task it encountered. The main driver behind it was application of the 

relative correctness concepts, as it allowed to get a much higher degree of usability of the 

results than what could have been achieved otherwise. Without the concept of relative 

correctness, an absolute correctness criteria would have yielded just one fully positive 

result - Chart1, where the code deficiency was strictly falling under one of the mutations 

and was correctly patched in a single step, with the rest of the cases making the "issue not 

resolved" category. Through application of relative correctness the mutation module was 

able to produce a set of program P’ that while still not fully matching the specification (not 

absolutely correct) have come closer to the specification than the original program P 

(strictly more correct.) Table 8.1 illustrates that in practice - the SDL_4 mutation was able 

to increase the percentage of successfully executed test cases under the 

org.jfree.data.xy.junit.DataXYPackageTests test suite, whereas after mutation, the new 

results were relatively more correct than the old results, having P’ pass more tests than P, 

but not breaking any of the tests that P was passing. For a different test suite, specifically 

org.jfree.data.xy.junit.VectorSeriesCollectionTests the same mutation has resulted in an 

absolutely correct pass with all tests succeeding. 

A deeper analysis of the results has demonstrated that some of the mutations that 

Correctness Enhancer suggests are related not to the original, seeded fault, but rather to the 
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fact that the code had additional faults that were caused by the environment change, 

specifically, by the test being executed on Java 12 instead of the earlier Java versions that 

defects4j was designed for. Nevertheless, the code was able to suggest bug-related code 

adjustments for every combination that was tried. 

Table 8.1  Results Variation. A Subset of Results Demonstrating Both Absolute and 

Relative Correctness Enhancements.  

Mutated Class Test Name Original 

Correctness 

Index 

Mutated 

Correctness 

Index 

Correctness 

Enhanced 

Relatively 

More 

Correct 

No Drop in 

Testcases 

Mutation Type 

org.jfree.data.

time.TimeSer

iesCollection 

org.jfree.chart.j

unit.ChartPack

ageTests 

99 100 true true true SDL_31 

org.jfree.data.

time.TimeSer

iesCollection 

org.jfree.chart.j

unit.JFreeChar

tTests 

91 100 true true true SDL_31 

org.jfree.data.

xy.VectorSeri

esCollection 

org.jfree.data.x

y.junit.VectorS

eriesCollection

Tests 

75 100 true true true SDL_4 

org.jfree.data.

xy.VectorSeri

esCollection 

org.jfree.data.x

y.junit.DataX

YPackageTest

s 

96 97 true true true SDL_4 

org.jfree.data.

gantt.TaskSer

iesCollection 

org.jfree.data.g

antt.junit.Task

SeriesCollectio

nTests 

95 100 true true true SDL_104 

org.jfree.data.

gantt.TaskSer

iesCollection 

org.jfree.data.g

antt.junit.Data

GanttPackage

Tests 

96 100 true true true SDL_104 

 
Source: [95] 
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The tendency to remove functionality as a way to pass the required tests is not novel 

for the repair tools, however it allows to highlight the pathways of code execution, which 

have the impact on the overall code failure - an information, which, in absence of the full-

blown solution will allow for simplified manual debugging and operation as a helping tool 

in the traditional DevOps stack.  

 

8.2 Practical Lessons:  The Use / Impact of Computing Power 

As any manual process, the process of software development is theoretically automatable 

with the eventual evolution possibly leading to a situation, where the program development 

is done not by successive refinements, but by successive correctness enhancements [93] 

with developers being responsible for maintaining specification R in a machine-readable 

format and the computers doing the development of program P from the stage of 

P:{abort()} into a successive stage of relatively more correct P’->P’’->...->P(n) programs 

with P(n) being the minimal complexity program refining the specification R and being 

absolutely correct with regards to it. While the computational requirements needed to 

implement this vision are outside of reach for efficient execution on today’s machines, the 

program repair, which is a subset and the first milestone of this vision has significantly 

lower requirements and can be tackled even with the computing power that is provided 

through HPC grids and cluster computing today. 

Given that the algorithm being utilized is computationally intensive and massively 

parallel systems have to be utilized for execution, Correctness Enhancer is relying on 

splitting the work into multiple tiny subtasks optimized for loosely coupled massively 

parallel execution. Integrated into job control on an HPC grid it is able to try all possible 
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combinations with its capacity to try different options only limited by the set of mutations 

that it is aware of and the time spent to obtain the result. 

The tool, however, is just the first milestone in creating a practical parallelized 

implementation of the relative-correctness-based automated program repair framework. 

What the program offers right now is transformation from P to P’ with a validation of 

results after the mutation has been applied. The program can easily use the resulting P’ to 

generate P’’, P’’’, etc. however, the major limitation that is currently encountered is the 

execution time of the validation run. The amount of computation time spent on validating 

is equivalent to the number of all possible mutations that the program is able to apply 

multiplied by the computation time of a single end-to-end test run. This task is highly 

parallelizable and in theory a sufficiently powerful computer would be able to execute all 

possible combinations in parallel with the worst case scenario having a computation time 

of a single longest test suite run and a theoretical limit of a single longest test run. 

 

Figure 8.1  P to P’ surface of JFreeCharts Charts1b variation. 
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8.3 Outstanding Research Questions 

Based on the review of the results, only a tiny fraction of mutants appears to yield 

correctness enhancement suggesting that a less resource-intensive approach is possible, It 

may be worthwhile to investigate ways to identify and prioritize validation of those 

mutation operators that enhance correctness. It is conceivable that these mutants depend 

on the specification and on the nature of the failure; subject to future research. 

The problem with applying the optimization is that the program does not have any 

information about the impact of a certain mutation, before it is applied and, while P’’, P’’’, 

P’’’’, etc. layer runs can rely on the information from P’ run (Figure 8.1 shows the input 

surface for the P to P’ layer of Chart1 JFreeCharts program,) even the P’ run itself takes a 

considerable amount of time to complete. A preliminary code flow analysis can be the 

missing link that would allow to optimize the walk through the mutant space, keeping the 

code oriented on fix loci localization, but prioritizing the locus based on fault localization. 

Another option to make the program more efficient is to provide it with context 

awareness. One of the key approaches to automating any solution is analyzing the way a 

human would approach the task and implementing the same approach in an algorithm. With 

the current approach in the code, the program takes every single mutation operation that it 

knows and attempts to apply it to the code at hand, until it reaches the result. From a purely 

theoretical perspective, if the number of transformations that the tool is aware of is 

increased to cover all possible single step transformations in a software development 

language and allowed to group them into chains the program would eventually find the 

solution to any problem at hand. However, this is not the way a human developer would 

approach the problem, as while the direct application of code patch that would fix the fault 

is the only way of getting more correct software, a human developer does not go through 
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all possible combinations of the code that could be applied, using a much smaller set of 

transformations specifically directed at increasing the competence domain of the code. In 

order to drive this decision-making process, a human developer relies on two main sources 

of information: 

1) The knowledge about specifics of the target programming language. Letting the 

program "learn" the typical constructs of a programming language can significantly help 

in increasing efficiency of the patches it suggests.  

 

2) The knowledge about the target competence domain of the program being fixed. 

The availability of that knowledge to the program is limited and only partially reflected in 

unit and regression tests, however, newer, more advanced methodics coming with 

Behavior-Driven Development help to bridge that gap by providing additional insights into 

what is expected from the program, going beyond specific pairs of input and output values 

and provide additional information about functions behind them. 
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CHAPTER 9 

CONCLUSION 

 

9.1 Summary 

The field of automated program repair is still a developing one. This dissertation has 

contributed to this field, exploring the following important research topics: 

1. Expanding on the framework of relative correctness to offer a new approach to 

program repair through the framework of relative correctness. 

2. Optimizing application of massively parallel approaches in the field of program 

repair and using the results of the analysis in a practical implementation. 

3. Addressing issues of integration and usability of program repair in production 

environments. 

4. Providing tools to support automated program repair research and utility. 

Combining the outcomes of the research made it possible to explore and obtain positive 

answers for questions that would otherwise be beyond reach. 

 

9.2 Assessment 

Whereas this research talks about a number of practical approaches and enhancements, the 

main contribution is considered to be tri-fold: providing a general purpose tool that can 

serve as a platform for easy expansion, giving a practical implementation of the framework 

of relative correctness and creating a tool optimized for massively parallel execution. 

Whilst the latter has been attempted by Matsumoto et al. on GenProg applying 

parallelization to individual runs and creating KGenProg [60], the approach presented in 

Correctness Enhancer went deeper into splitting runs into sub-tasks to allow multiple 
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cluster nodes to work on as single run at the same time, achieving a higher level of support 

for massive parallelism. 

The threats to validity of the presented approach include the reliance on a limited 

set of known mutators to find solution. This issue is partially addressed by keeping the set 

of available mutants modularized, open-source and easy to expand, allowing users to plug 

in custom mutators as seen fit. Another constraint is the high resource demand of the 

solution, however, the computing power necessary for its efficient operation is easily 

available on HPC-grids and clouds and is becoming available on regular user-level 

desktops, eroding the concern with ongoing development in the industry. 

 

9.3 Prospects 

Further research can achieve additional improvements by switching from the breadth-first 

search walking through mutations layer by layer to a hybrid one that can interrupt execution 

of the current layer of mutation to jump to a perspective candidate that is a layer deeper, 

essentially allowing to explore a chain of k atomic changes to process a highly promising 

fault with multiplicity n+k before finishing the lookup among faults with multiplicity n, 

theoretically allowing better convergence and faster best and average cases, subject to 

further research. 

Indicating a potential for expanding the applicability of the tool, some authors [101-

104] have highlighted the vector of application security as a potential target of program 

repair. Whereas addressing some of the security concerns like execution time of different 

branches of code execution [104], although doable with a general purpose tool like 

Correctness Enhancer, might require specialized modules for validation and analysis 
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additional security-specific properties recorded alongside general program specifications 

[103] or a combination thereof to achieve a sufficient level of efficiency, other security 

flaws like OWASP top 10 vulnerabilities [101, 102] are potentially addressable using tools 

like Correctness Enhancer without any further changes and modifications to the tool 

structure, provided that the testing coverage is sufficient to properly define these security 

flaws as faults under the program specifications and the set of mutators being used is 

sufficient. 
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APPENDIX A 

PROOF OF PERFECT PRECISION AND PERFECT RECALL 

 

A.1 Proof of Perfect Recall 

In order to prove that UnitIncCor() has perfect recall [63], provided below is a proof that 

the following Hoare formula is valid in Hoare’s deductive logic: 

v: {(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P )} 

 
m=1; inc=false; Pp=P; 

 

while (!inc && m<=M) 

{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

if smc(Pp,P) {inc=true;} 

 

else {m=m+1;}}//try higher multiplicity 

 

{Pp ⊐ R’ P}. 

 

Proof: Applying the sequence rule to v, with the following intermediate predicate 

int: 

(∃m : 1 ≤ m ≤ M : ∃Q ∈ PS(m) : Q ⊐ R’ P ) 

∧m = 1 ∧ ¬inc ∧ Pp = P 

 

yields the following lemmas:  

v0: {(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P )} 

 
m=1; inc=false; Pp=P; 

 

{(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P ) ∧ m = 1 ∧ ¬inc ∧ P p = P }. 

 

v1: {(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P ) ∧ m = 1 ∧ ¬inc ∧ P p = P } 

 
while (!inc && m<=M) 

{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

if smc(Pp,P) {inc=true;} 
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else {m=m+1;}}//try higher multiplicity 

 

{Pp ⊐ R’ P }. 

 

Applying the (concurrent) assignment rule to v0 results in: 

v00: (∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐ R’ P ) 

⇒ 

(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐ R’ P ) ∧ 1 = 1 ∧ true ∧ P = P }. 

 

This formula is clearly a tautology. The attention is now turned to v1. Using inb(m) 

(stands for: in bounds) as shorthand for: 1 ≤ m ≤ M and the while rule is applied to v1 with 

the following loop invariant inv: 

inb(m) ∧ ((inc ∧ Pp ⊐ R’ P ) 

∨(¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P ))). 

 

This yields three lemmas: 

v10: (∃m : 1 ≤ m ≤ M : ∃Q ∈ PS(m) : Q ⊐R’ P ) ∧ m = 1 ∧ ¬inc ∧ Pp = P 

⇒ 
inb(m) ∧ ((inc ∧ Pp ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ))). 

 

v11: {(¬inc ∧ m ≤ M ) ∧ inb(m) ∧ ((inc ∧ Pp ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : 

∃Q ∈ P S(h) : Q ⊐ R’ P )))} 
 

{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

if smc(Pp,P) {inc=true;} 

 

else {m=m+1;}}//try higher multiplicity 

 

{inb(m) ∧ ((inc ∧ P p ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P 

)))}. 

 

v12: ¬(¬inc ∧ m ≤ M ) ∧ inb(m) ∧ ((inc ∧ Pp ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : 

∃Q ∈ 

PS(h) : Q ⊐ R’ P ))) 

⇒ 
P p ⊐ R’ P . 

 

To check the validity of v10, it is rewritten by distributing inb(m) over the 

disjunction and replacing m by 1 on the right hand side: 
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v10: (∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐ R’ P ) ∧ m = 1 ∧ ¬inc ∧ P p = P 

⇒ 

(inb(m) ∧ inc ∧ Pp ⊐ R’ P ) ∨ (inb(m) ∧ ¬inc ∧ (∃h : 1 ≤ h ≤ M : ∃Q ∈ P S(h) : Q 

⊐ R’ P )). 

 

Now it is clear that v10 is a tautology, since the left hand side logically implies the 

second disjunct of the right hand side, assuming, as is done here, that M ≥ 1. As for v12, 

its left hand side can be simplified into (inc ∧ P p ⊐R’ P ), due to the contradiction between 

m > M and inb(m), and the contradiction between inc and ¬inc. Hence v12 is also a 

tautology. The attention is now turned to v11, which is first simplified as follows: 

v11: {¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )} 

 
{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

if smc(Pp,P) {inc=true;} 

 
else {m=m+1;}}//try higher multiplicity 

 

{inb(m) ∧ ((inc ∧ P p ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P 

)))}. 

 

The sequence rule is now applied to v11 with the following intermediate predicate 

int’: 

(Pp ⊐ R’ P ∨ PS(m) = є)∧ 

¬inc ∧ inb(m)∧ 

(Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )). 

 

This yields the following two lemmas: 

v110: {¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ))} 

 
{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

 

{(Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ 

PS(h) : Q ⊐ R’ P )).}. 

 

v111: {(Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : 

∃Q ∈ P S(h) : Q ⊐ R’ P )).} 
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if smc(Pp,P) {inc=true;} 
else {m=m+1;}}//try higher multiplicity 

 

{inb(m) ∧ ((inc ∧ Pp ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P 

)))}. 

 

The while rule is applied to v110, with the following loop invariant, inv’: 

¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )). 

 

This yields the following three lemmas: 

v1100: ¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )) 

⇒ 

¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )). 

 

v1101: {¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )) ∧ 

¬(Pp ⊐ R’ P ∧ PS(m) ≠ є)} 

 
{Pp = NextPatch(P,m);} 

 

{¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ))} 

 

v1102: ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P )) ∧ 

(Pp ⊐ R’ P ∨ P S(m) = є) 

⇒ 

(Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ 

PS(h) : Q ⊐ R’ P )). 

 

To see that v1100 is a tautology, it suffices to distribute the ∧ over the ∨ on the right 

hand side of the implication, and to notice that the second disjunct on the right hand side 

is a copy of the left hand side of the implication. As for v1102, it is clearly a tautology, 

since the right hand side of ⇒ is merely a copy of the left hand side. The attention is now 

turned to v1101. Its precondition can be simplified by virtue of Boolean identities: 

v1101: {¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ) ∧ ¬(Pp ⊐ R’ P 

) ∧ PS(m) ≠ є)} 

 
{Pp = NextPatch(P,m);} 

 

{¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ))} 
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In order to apply the assignment statement rule to v1101, the semantics of function 

NextPatch(P,m) needs to be analyzed. This function is assumed to perform the 

following operation: 

Pp=head(PS(m)); PS(m)=tail(PS(m)); 

 

Hence application of the assignment rule yields the following formula: 

v11010: ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )) ∧ 

(¬(Pp ⊐ R’ P ∧ P S(m) ≠ є) 

⇒ 

¬inc ∧ inb(m) ∧ (head(P S(m)) ⊐ R’ P ∨ (∃Q ∈ tail(PS(m)) : Q ⊐ R’ P ) ∨ (∃h : m + 

1 ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P )). 

 

The first two disjuncts in the parenthesized expression: 

(head(PS(m)) ⊐ R’ P ) ∨ (∃Q ∈ tail(PS(m)) : Q ⊐ R’ P ) 

 

can be merged into a single expression: 

(∃Q ∈ PS(m) : Q ⊐ R’ P ). 

 

This expression can now be merged with the third disjunct above: 

(∃Q ∈ PS(m) : Q ⊐ R’ P ) ∨ (∃h : m + 1 ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ), 

 

to obtain: 

(∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ). 

 

Replacing these in v11010, makes it easy to notice that the right hand side is a 

logical conclusion of the left hand side, hence v11010 is a tautology. 

Switching the attention back to v111 and applying the if-then-else rule yields two 

lemmas: 

v1110: {(Pp ⊐ R’ P ) ∧ (Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h 

: m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )).} 

 
inc=true; 
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{inb(m) ∧ ((inc ∧ Pp ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P 

)))}. 

 

v1111: {¬(Pp ⊐ R’ P ) ∧ (Pp ⊐ R’ P ∨ P S(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ 

(∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P )).} 

 
m=m+1; 

 

{inb(m) ∧ ((inc ∧ Pp ⊐ R’ P ) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P 

)))}. 

 

Simplifying v1110 and applying the assignment rule to it yields: 

v11100: (Pp ⊐ R’ P ) ∧ ¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P ) 

⇒ 

inb(m) ∧ (P p ⊐ R’ P ). 

 

This is clearly a tautology. 

Simplifying v1111 and applying the assignment rule to it yields: 

v11110: ¬(Pp ⊐ R’ P ) ∧ PS(m) = є ∧ ¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) 

: Q ⊐ R’ P ) 

⇒ 

inb(m +1)∧ ((inc ∧ Pp ⊐ R’ P )∨ (¬inc ∧ (∃h : m +1 ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ 

P )))}. 

 

If it is known that there exists Q strictly more-correct than P in one of the patch 

sequences PS(m), PS(m+1), …PS(M) but PS(m) is empty, then it must be in one of the 

sequence PS(m + 1), PS(m +2), …PS(M). For the same reason, m is necessarily strictly 

less than M, since Q is somewhere in PS(m + 1), PS(m + 2), …PS(M). Hence inb(m + 1) 

holds. Therefore, it is concluded that v11110 is a tautology. Since all the lemmas generated 

from v are valid, so is v. Hence UnitIncCor() is partially correct with respect to the 

specification: 

– Precondition: (∃m : 1 ≤ m ≤ M : ∃Q ∈ PS(m) : Q ⊐ R’ P ). 

– Postcocndition: Pp ⊐R’ P. 
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A.2 Proof of Perfect Precision 

In order to prove that UnitIncCor() has perfect precision [63], provided below is a 

proof that the following Hoare formula is valid in Hoare’s deductive logic: 

v: {true} 

 
m=1; inc=false; Pp=P; 

while (!inc && m<=M) 

{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

if smc(Pp,P) {inc=true;} 

 

else {m=m+1;}}//try higher multiplicity 

 

{inc ⇒ Pp ⊐ R’ P}. 

 

Proof: Applying the sequence rule to v with the intermediate predicate int: 

inc ⇒ Pp ⊐ R’ P yields the following formulas: 

v0: {true } 

 
m=1; inc=false; Pp=P; 

 

{inc ⇒ Pp ⊐ R’ P}. 

 

v1: {inc ⇒ Pp ⊐ R’ P} 

 
while (!inc && m<=M) 

{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

if smc(Pp,P) {inc=true;} 

 

else {m=m+1;}}//try higher multiplicity 

 

{inc ⇒ Pp ⊐ R’ P}. 

 

The (concurrent) assignment rule applied to v0 yields: 

v00: true ⇒ (false ⇒ P ⊐ R’ P). 

 

This is a tautology. 
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Applying the while rule to v1 with the loop invariant inv: inc ⇒ Pp ⊐ R’ P 

yields the following formulas: 

v10: (inc ⇒ Pp ⊐ R’ P) ⇒ (inc ⇒ Pp ⊐ R’ P) 

v11: {(inc ⇒ Pp ⊐ R’ P) ∧ (¬inc ∧ m ≤ M)} 

 
{while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

if smc(Pp,P) {inc=true;} 

 

else {m=m+1;}}//try higher multiplicity 

 

{inc ⇒ Pp ⊐ R’ P}. 

 

v12: (inc ⇒ Pp ⊐ R’ P) ∧ (inc ∨ m > M) ⇒ (inc ⇒ Pp ⊐ R’ P). 

 

Formulas v10 and v12 are clearly tautologies. 

Applying the sequence rule to v11, with int: inc ⇒ Pp ⊐ R’ P yields the 

following formulas: 

v110: {(inc ⇒ Pp ⊐ R’ P ) ∧ (¬inc ∧ m ≤ M )} 

 
while (!smc(Pp,P) && MorePatches(P,m)) 

{Pp = NextPatch(P,m);} 

 

{inc ⇒ Pp ⊐ R’ P} 

 

v111: {(inc ⇒ Pp ⊐ R’ P)} 

 
if smc(Pp,P) {inc=true;} 

 

else {m=m+1;}//try higher multiplicity 

 

{inc ⇒ Pp ⊐ R’ P}. 

 

Applying the while rule to v110 with the loop invariant inv: ¬inc yields the 

following formulas: 

v1100: (inc ⇒ Pp ⊐ R’ P) ∧ (¬inc ∧ m ≤ M) ⇒ ¬inc. 

v1101: {¬inc ∧ (¬Pp ⊐ R’ P ∧ MorePatches(P, m))} 

 
{Pp = NextPatch(P,m);} 
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{¬inc}. 

 

v1102: ¬inc ∧ ¬(¬Pp ⊐ R’ P ∧ MorePatches(P, m)) ⇒ (inc ⇒ Pp ⊐ R’ P). 

 

Formula v1100 is clearly a tautology; formula v1102 is also a tautology 

because it has the form ((¬a∧b) ⇒ (a ⇒ c)), which can be simplified as (a ∨ ¬b) ∨ 

(¬a ∨ c). 

Applying the assignment statement rule to v1101 yields: 

v11010: (¬inc ∧ (¬Pp ⊐R’ P ∧ MorePatches(P, m))) ⇒ ¬inc. 

 

This is clearly a tautology. 

Switching to v111 and applying the if-then-else rule yields: 

v1110: {(inc ⇒ Pp ⊐ R’ P) ∧ (Pp ⊐ R’ P)} 

 
{inc=true;} 

 

{inc ⇒ Pp ⊐ R’ P}. 

 

v1111: {(inc ⇒ Pp ⊐ R’ P) ∧ ¬(Pp ⊐ R’ P)} 

 
{m=m+1;} 

 

{inc ⇒ Pp ⊐ R’ P}. 

 

Application of the assignment statement rule to v1110 and v1111 yields, 

respectively: 

 

v11100: (inc ⇒ Pp ⊐ R’ P ) ∧ (Pp ⊐ R’ P ) ⇒ (Pp ⊐ R’ P ). 

v11110: (inc ⇒ Pp ⊐ R’ P ) ∧ ¬(Pp ⊐ R’ P ) ⇒ (inc ⇒ Pp ⊐ R’ P ). 

 

Formulas v11100 and v11110 are both tautologies. This concludes the proof 

that 

 

v: {true} 
UnitIncCor() 

{inc ⇒ Pp ⊐ R’ P } 
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is valid in Hoare’s logic. Hence UnitIncCor() is partially correct with respect 

to the specification defined by the following pre/post condition pair: 

– Precondition: true. 

– Postcondition: inc ⇒ Pp ⊐ R’ P. 
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APPENDIX B 

CORRECTNESS ENHANCER USER MANUAL 

 

This tool requires latest version of Java to run. The latest version can be obtained from 

Oracle’s website. The current link is 

https://www.oracle.com/java/technologies/downloads/ (Retrieved on November 20, 2021.) 

As any Java program, this tool can be executed both on Linux-based and Windows-

based environments. The tool operation is controlled through a combination of data from 

the command line parameters, if they are provided during startup, and from mujava.config 

file, which comes with the tool, and which, although it inherited the naming from the 

muJava tool, is completely different in terms of the options provided. In the default setting 

the tool can be launched out of the box as any regular commercial tool with only the setup 

of the source and target directories required in the configuration. The results can be output 

to console, file or a database. The configuration below shows example of setup for 

operation on a Windows-based OS for Chart_b program from defects4j suite that is located 

in J:\VM-SHARED location with connection to local database: 

mujava.config 

MuJava_HOME=J:\VM-SHARED\Chart_6b 

config_mode=true 

filter_tests=N 

MuJava_src=J:\VM-SHARED\Chart_6b\source 

MuJava_class=J:\VM-SHARED\Chart_6b\build 

MuJava_mutants=J:\VM-SHARED\Chart_6b\mutants 

MuJava_tests=J:\VM-SHARED\Chart_6b\build-tests 

MuJava_chain=J:\ VM-SHARED\Chart_6b\mutationchain 

number_of_mutation_threads=256 

number_of_testing_threads=64 

Results_output=J:\VM-SHARED\mutantResults.txt 

List_Target_Mutation_Files=J:\VM-SHARED\mujavaMutation.txt 

List_Target_Tests=J:\VM-SHARED\mujavaTest.txt 

https://www.oracle.com/java/technologies/downloads/
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debug_output_enabled=N 

test_results_jdbc=jdbc:derby://localhost:1527/tests.db;create=true 

test_results_output_mode=database 

soft_class_match_allowed=Y 

database_marker=Chart_6b 

database_count=J:\VM-SHARED\Chart_6b_dbcount.txt 

annealing=0 

chain_length=2 

stop_on_correct=true 

 

For an HPC launch the tool comes equipped with several shell scripts that are 

easy to operate with to get the user started. Latest instructions and versions of the tool can 

be found here: https://github.com/zakhalex/correctnessEnhancer (Retrieved on November 

20, 2021.) 

 

  

https://github.com/zakhalex/correctnessEnhancer
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APPENDIX C 

APACHE DERBY LAUNCHER AND DATABASE TABLES 

 

Out of the box, the tool supports three operating modes: console-oriented, file-oriented and 

database-oriented. If database-oriented mode is utilized, the wrapper around Apache 

Derby, provided with the tool, can help with spinning up the database environment. 

Alternatively - any mainstream database can be utilized, however database drivers might 

need to be replaced with the suitable ones. 

DerbyWrapper/Main.java 

import java.io.FileNotFoundException; 

import java.io.PrintWriter; 

import java.net.InetAddress; 

 

import org.apache.derby.drda.NetworkServerControl; 

 

public class Main 

{ 

 

    public static void main(String[] args) throws Exception 

    { 

        PrintWriter pw=new PrintWriter("database.log"); 

        String ip="0.0.0.0"; 

        int 

portNumber=NetworkServerControl.DEFAULT_PORTNUMBER; 

        if(args.length>2) 

        { 

            ip=args[1]; 

            portNumber=Integer.parseInt(args[2]); 

            System.out.println("New host is: 

"+ip+":"+portNumber); 

        } 

        InetAddress inetaddr=InetAddress.getByName(ip); 

        NetworkServerControl server = new 

NetworkServerControl(inetaddr,portNumber); 

        server.start (pw); 

        System.in.read(); 

        server.shutdown(); 

    } 
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} 

 

On startup, the APP.TESTRESULTS, APP.ORIGINALTESTRESULTS, 

APP.CHAINCONTROL and APP.CONFIGURATIONS tables will be checked for on the 

provided database connection and generated if they are not detected. If database other than 

Derby is utilized or the default implementation is not considered optimal for the usage, 

they might need to be created manually, using the SQL syntax conforming to the 

environment being utilized. The default implementations are provided below: 

 

APP.TESTRESULTS 

 

CREATE TABLE 

    TESTRESULTS 

    ( 

        BASE_DIR VARCHAR(1024), 

        PROGRAM_LOCATION VARCHAR(1024) NOT NULL, 

        MUTATED_CLASS VARCHAR(1024) NOT NULL, 

        TEST_NAME VARCHAR(1024) NOT NULL, 

        MUTATION_TYPE VARCHAR(64) NOT NULL, 

        ORIGINAL_CORRECTNESS_INDEX INTEGER, 

        CORRECTNESS_ENHANCED BOOLEAN, 

        RELATIVELY_MORE_CORRECT BOOLEAN, 

        MUTATED_CORRECTNESS_INDEX INTEGER, 

        ORIGINAL_RUN INTEGER, 

        MUTATED_CASES_RUN INTEGER, 

        NO_DROP_IN_TESTCASES BOOLEAN, 

        LAST_UPDATED TIMESTAMP, 

        COMMENT VARCHAR(1024), 

        PRIMARY KEY (PROGRAM_LOCATION, MUTATED_CLASS, TEST_NAME, 

MUTATION_TYPE) 

    ); 

 

APP.ORIGINALTESTRESULTS 

 

CREATE TABLE 

    ORIGINALTESTRESULTS 

    ( 

        BASE_DIR VARCHAR(1024) NOT NULL, 

        TEST_NAME VARCHAR(1024) NOT NULL, 

        ORIGINAL_CORRECTNESS_INDEX INTEGER, 
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        SERIALIZED_DATA BLOB(2147483647), 

        PRIMARY KEY (BASE_DIR, TEST_NAME) 

    ); 

 

APP.CONFIGURATIONS 

 

CREATE TABLE 

    CONFIGURATIONS 

    ( 

        ID INTEGER NOT NULL, 

        FILE_NAME VARCHAR(1024) NOT NULL, 

        CLASS_NAME VARCHAR(4096) NOT NULL, 

        METHOD_NAME VARCHAR(4096) DEFAULT ‘‘ NOT NULL, 

        TEST_NAME VARCHAR(4096) DEFAULT ‘‘ NOT NULL, 

        LAST_UPDATED TIMESTAMP, 

        PRIMARY KEY (FILE_NAME, CLASS_NAME, METHOD_NAME, 

TEST_NAME) 

    ); 

 

APP.CHAINCONTROL 

 

CREATE TABLE 

    CHAINCONTROL 

    ( 

        BASE_DIR VARCHAR(1024) NOT NULL, 

        MUTATION_CHAIN VARCHAR(1024) NOT NULL, 

        SERIALIZED_MUTATION_CHAIN BLOB, 

        OVERALL_INDEX INTEGER DEFAULT 0, 

        LAST_UPDATED TIMESTAMP, 

        PRIMARY KEY (BASE_DIR, MUTATION_CHAIN) 

    ); 
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