
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

12-31-2021

A practical approach to automated software correctness A practical approach to automated software correctness

enhancement enhancement

Aleksandr Zakharchenko
New Jersey Institute of Technology, az68@njit.edu

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Numerical

Analysis and Scientific Computing Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Zakharchenko, Aleksandr, "A practical approach to automated software correctness enhancement"
(2021). Dissertations. 1578.
https://digitalcommons.njit.edu/dissertations/1578

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1578?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A PRACTICAL APPROACH TO AUTOMATED

SOFTWARE CORRECTNESS ENHANCEMENT

by

Aleksandr Zakharchenko

To repair an incorrect program does not mean to make it correct; it only means to make it

more-correct, in some sense, than it is. In the absence of a concept of relative correctness,

i.e. the property of a program to be more-correct than another with respect to a

specification, the discipline of program repair has resorted to various approximations of

absolute (traditional) correctness, with varying degrees of success. This shortcoming is

concealed by the fact that most program repair tools are tested on basic cases, whence

making them absolutely correct is not clearly distinguishable from making them relatively

more-correct. In this research a theory of relative correctness is used to implement an

instance of a generic algorithm of program repair, whose core idea is to enhance relative

correctness until absolute correctness is achieved. Analytical and empirical results

pertaining to the approach and its high performance parallel implementation are presented

in this work.

A PRACTICAL APPROACH TO AUTOMATED

SOFTWARE CORRECTNESS ENHANCEMENT

by

Aleksandr Zakharchenko

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

December 2021

Copyright © 2021 by Aleksandr Zakharchenko

ALL RIGHTS RESERVED

.

APPROVAL PAGE

A PRACTICAL APPROACH TO AUTOMATED

SOFTWARE CORRECTNESS ENHANCEMENT

Aleksandr Zakharchenko

Dr. Ali Mili, Dissertation Advisor Date

Professor of Computer Science and Associate Dean of Academic Affairs, NJIT

Dr. James M. Calvin, Committee Member Date

Professor and Associate Chair of Computer Science, NJIT

Dr. Iulian Neamtiu, Committee Member Date

Professor of Computer Science, NJIT

Dr. Kurt R. Rohloff, Committee Member Date

Associate Professor of Computer Science, NJIT

Dr. Zhenjiang Hu, Committee Member Date

Professor of Computer Science, Peking University, Peking, People’s Republic of China

iv

BIOGRAPHICAL SKETCH

Author: Aleksandr Zakharchenko

Degree: Doctor of Philosophy

Date: December 2021

ORCID: 0000-0002-5665-4658

Undergraduate and Graduate Education:

 Doctor of Philosophy in Computer Science,

 New Jersey Institute of Technology, Newark, NJ, 2021

 Master of Business Administration in Finance,

 Saint Peter's University, Jersey City, NJ, 2018

 Bachelor of Science in Information Systems with Concentration in Programming,

 Strayer University, Washington, D.C., 2012

Major: Computer Science

Presentations and Publications:

Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2021. The Bane of Generate-

and-Validate Program Repair: Too Much Generation, Too Little Validation. In New

Trends in Intelligent Software Methodologies, Tools and Techniques. IOS Press.

113-126. DOI: https://doi.org/10.3233/FAIA210013

Aleksandr Zakharchenko, Besma Khaireddine, and Ali Mili. 2021. A Massively Parallel

Approach to Automated Software Correctness Enhancement in Java. In New

Trends in Intelligent Software Methodologies, Tools and Techniques. IOS Press.

141-154. DOI: https://doi.org/10.3233/FAIA210015

Aleksandr Zakharchenko. 2020. Implementing AI Models Across International Trading

Systems. ValleyML AI Expo 2020, Virtual Event.

https://doi.org/10.3233/FAIA210013
https://doi.org/10.3233/FAIA210015

v

Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2020. A Semantic Definition

of Faults and Its Implications. In 2020 IEEE 20th International Conference on

Software Quality, Reliability and Security (QRS). Macau, China. IEEE. 14-21.

DOI: https://doi.org/10.1109/QRS51102.2020.00015

Besma Khaireddine, Marwa Ben AbdelAli, Lamia Labed Jilani, Aleksandr Zakharchenko,

and Ali Mili. 2020. Correctness Enhancement: A Pervasive Software Engineering

Paradigm. International Journal of Critical Computer-Based Systems 10 (1), 37-

73.

Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2019. Fault Density, Fault

Depth and Fault Multiplicity: The Reward of Discernment. In 2019 IEEE 19th

International Conference on Software Quality, Reliability and Security Companion

(QRS-C), 532-533, DOI: https://doi.org/10.1109/QRS-C.2019.00110.

Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2017. A Generic Algorithm

for Program Repair. In Proceedings of the 5th International FME Workshop on

Formal Methods in Software Engineering (FormaliSE '17). IEEE Press, 65–71.

Aleksandr Zakharchenko and James Geller. 2016. Expansion of the Hierarchical

Terminology Auditing Framework Through Usage of Levenshtein Distance-Based

Criterion. Studies in Health Technology and Informatics vol. 228, 491-495. DOI:

https://doi.org/10.3233/978-1-61499-678-1-491, PMID: 27577431.

Aleksandr Zakharchenko and James Geller. 2015. Auditing of SNOMED CT's Hierarchical

Structure using the National Drug File-Reference Terminology. Studies in Health

Technology and Informatics vol. 210, 130-134. DOI: https://doi.org/10.3233/978-

1-61499-512-8-130, PMID: 25991116.

Christopher Ochs, Zheng Ling, Gu Huanying, Yehoshua Perl, James Geller, Joan

Kapusnik-Uner, and Aleksandr Zakharchenko. 2015. Drug-drug Interaction

Discovery Using Abstraction Networks for “National Drug File–Reference

Terminology” Chemical Ingredients. In American Medical Informatics Association

Annual Symposium Proceedings. vol. 2015, 973-982, PMID: 26958234, PMCID:

PMC4765653.

Submitted Publications:

Besma Khaireddine, Aleksandr Zakharchenko, Matias Martinez, and Ali Mili. 2021.

Towards a Theory of Program Repair, Acta Informatica. 2021. Revision submitted

for review.

https://doi.org/10.1109/QRS51102.2020.00015
https://doi.org/10.1109/QRS-C.2019.00110
https://doi.org/10.3233/978-1-61499-678-1-491
https://doi.org/10.3233/978-1-61499-512-8-130
https://doi.org/10.3233/978-1-61499-512-8-130

vi

Dedicated to my parents, grandparents, and a long list of people

who helped me become who I am today.

vii

ACKNOWLEDGMENT

I thank Dr. Ali Mili for his guidance. His expertise and continuous feedback made the work

in this dissertation possible.

I thank committee member Dr. James M. Calvin, committee member Dr. Iulian

Neamtiu, committee member Dr. Kurt R. Rohloff and committee member Dr. Zhenjiang

Hu for their time and effort.

I thank the fellow researchers Besma Khaireddine, Lamia Labed Jilani, Marwa Ben

AbdelAli and Matias Martinez for their contributions to the work in this dissertation.

Lastly, I thank my parents and grandparents for their support and encouragement

over the entire course of this multi-year journey.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION. …………………………………………………….…………. 1

 1.1 Motivation. ..……………………………………………………….…………... 1

 1.2 Dissertation Overview. ………….…………….………………………….…... 5

2 THE STATE OF THE ART IN PROGRAM REPAIR. ….…..…….………….…. 7

 2.1 A Brief History of Program Repair. ….……………………………………….. 7

 2.1.1 Hardware Limitations. …………………………………………………... 7

 2.1.2 Evolution of Software Development Approaches. ……………………….. 8

 2.2 Automatic Software Repair - A Survey of Current Practice. ………………… 10

 2.3 A Focus on Faults. ..…………………………………………….…………...…. 14

 2.4 Bane of Program Repair: Too Much Generation, Too Little Validation. .……. 16

 2.5 Premises of the Relative Correctness-based Approach. ……………………… 20

3 BACKGROUND FOR A THEORETICAL APPROACH. ……………………… 21

 3.1 A Critique: The Need for the Theory of Relative Correctness. ..……………… 21

 3.2 Mathematics for Program Repair. …...………………………………………… 24

 3.2.1 Relational Mathematics. ………………………..………………………... 24

 3.2.2 Program Semantics and Correctness. ………...…………………………... 25

 3.3 Absolute Correctness and Relative Correctness. ……………………………… 28

4 INGREDIENTS OF A THEORY BASED PROGRAM REPAIR ALGORITHM. . 31

 4.1 Faults and Elementary Faults. ………………………………………………..... 31

 4.2 Fault Density, Depth and Multiplicity. …………..……………………….…. 34

 4.3 Fault Repair vs. Failure Remediation. ………………..………………………... 35

ix

TABLE OF CONTENTS

(Continued)

Chapter Page

5 A GENERIC ALGORITHM FOR PROGRAM REPAIR. ………………………… 39

 5.1 General Principle.………………………………………………………...… 39

 5.2 An Infrastructure of Oracles. ………………………………………………… 39

 5.2.1 Absolute Correctness With Respect to a Specification R. ……………… 39

 5.2.2 Relative Correctness Over a Program P With Respect to a Specification

R. ………………………………………………………………………………

40

 5.2.3 Strict Relative Correctness Over a Program P With Respect to a

Specification R. ………………………………………………...……………...

41

 5.3 A Generic Algorithm. ………………………...……………………………… 41

 5.4 Assessment of Precision and Recall. ……………………………………….… 43

 5.5 Introducing Parallelism. ………………..……………………………………… 44

6 AN INSTANCE OF THE GENERIC ALGORITHM: CORRECTNESS

ENHANCER. ……………………………………………………………………….

49

 6.1 Specification of Correctness Enhancer. ...…………………………………...… 49

 6.1.1 Design Goals. …………………...………………………………………... 49

 6.1.2 Specifications in Practice. ………………………………………………... 50

 6.2 Design of Correctness Enhancer. ……………………………………………… 51

 6.2.1 A Practical Implementation Analysis - Approaching the Issue. ………… 51

 6.2.2 Programming Language Choice. …………………………………………. 51

 6.2.3 Program Repair Approach. ………………………………..……………… 53

 6.2.4 MuJava. …………………………………………………………………... 53

 6.2.5 The New Patch Validation. ……………………………………………….. 54

x

TABLE OF CONTENTS

(Continued)

Chapter Page

 6.2.6 Adjusting to Changes in Project Structures With Levenshtein Distance-

based Criterion. …………………………………………………...……………... 55

 6.3 Implementation of Correctness Enhancer: Introducing Parallelism. ………… 56

 6.3.1 Reasons for Parallelism. ………………………………………………… 56

 6.3.2 Implementation of Parallelism. …………………………………………... 58

7 EMPIRICAL ASSESSMENT. …………...……………………………………...…. 69

 7.1 Performance on Standard Benchmarks. ……………………………………..… 69

 7.2 Comparison: Fitness Function vs. Relative Correctness. …..……………….…. 69

 7.3 Comparison: Correctness Enhancer vs. Other Tools. ………………………… 72

8 LESSONS LEARNED. ……………….……………………………………………. 74

 8.1 Theoretical Lessons: The Need for Theoretical Foundations. ………………. 74

 8.2 Practical Lessons: The Use / Impact of Computing Power. ……………….….. 76

 8.3 Outstanding Research Questions. …………………..………………………..... 78

9 CONCLUSION. .…………….……………………………………………………... 80

 9.1 Summary. ……………………………………...……………………………… 80

 9.2 Assessment. ………………………………………………………………….… 80

 9.3 Prospects. ……………………………..……………………………………… 81

APPENDIX A PROOF OF PERFECT PRECISION AND PERFECT RECALL. 83

 A.1 Proof of Perfect Recall. ……………………………………………………… 83

 A.2 Proof of Perfect Precision. …………………………………………………… 89

APPENDIX B CORRECTNESS ENHANCER USER MANUAL. ……….......…...... 93

xi

TABLE OF CONTENTS

(Continued)

Chapter Page

APPENDIX C APACHE DERBY LAUNCHER AND DATABASE TABLES. ……. 95

REFERENCES. ……………………………………………………………………….. 98

xii

LIST OF TABLES

Table Page

7.1 Defects4j Results Comparison With Other Published Tools .…….……………. 72

8.1 Results Variation …………...….…....………………..…………………………. 75

xiii

LIST OF FIGURES

Figure Page

1.1 Demonstration of stages of a typical Agile software development process. 4

2.1 Number of papers published on automated program repair from 1996 to 2016. ... 10

2.2 An example of Generate and Validate process. ……………………………….. 13

2.3 An example of Semantic-driven repair process. ………………………………… 14

2.4 Absolute Correctness mandates larger spaces. ………………………………… 17

2.5 Relative Correctness enables step-wise validation. ……………………………... 18

4.1 An elementary fault of multiplicity 2. …………………………………………… 34

4.2 Fault Density vs. Fault Depth. ………………………………………………… 35

4.3 A generic example of correctness enhancement. ………………………………... 37

4.4 Failure Remediation vs. Fault Repair. …………………………………………... 38

5.1 Schematic drawing of a possible parallel implementation. …………...………… 47

5.2 Expanded view of validate stage flow for a single execution path, when

launched on HPC Grid. .………………………………….……………………....

48

6.1 Correctness Enhancer has retained MuJava's mutation mode screen in order to

allow triggering mutant generation from UI locally, in addition to being able to

do it through the console. ……………………………………………………....

59

6.2 Correctness Enhancer has mostly retained the original UI interface of muJava

for local execution on a machine, adding option to control parallelism on

validation and using "Live Mutants" to list results that are more correct than the

original, however, main mode of operation is through console. ….……………...

60

7.1 A screenshot of a portion of the results demonstrating the checks applied. ...…... 71

8.1 P to P' surface of JFreeCharts Charts1b variation. …………...….….….………... 77

xiv

LIST OF SYMBOLS

© Copyright

∀ For all

∃ Exists (at least one)

∈ Belonging to

∧ Logical AND

v Logical OR

∩ Intersection

∪ Union

¬ Not (Logical)

⊇ Superset (For example, B is a superset of A is

written as B ⊇ A)

⊆ Subset

⊃ Proper superset

⊂ Proper subset

∅ Empty set

⊑ Is refined by

⊒ Refines

dom(R) Competence domain of R

T\R The pre-restriction of R to T

xv

LIST OF DEFINITIONS

Fault Given a specification R, a program P and a feature f in P, we

say that f is a fault in P with respect to R if and only if there

exists a feature f′ such that the program P' obtained from P by

replacing f by f' is strictly more-correct than P with respect to

R.

Refining Given two relations R and R', we say that R' refines R (abbrev:

R' ⊒ R or R ⊑ R') if and only if RL ∩ R'L ∩ (R ∪ R') = R.

Absolute Correctness A deterministic program p on space S is said to be correct (or

absolutely correct) with respect to specification R on S if and

only if its function P refines R.

Relative Correctness Given a specification R and two deterministic programs P and

P′, we say that P' is more-correct than P with respect to R if

and only if (R ∩ P')L ⊃ (R ∩ P)L.

Strict Relative Correctness Given a specification R and two deterministic programs P and

P′, we say that P' is strictly more-correct than P with respect

to R if and only if (R ∩ P')L ⊃ (R ∩ P)L.

Fault Removal Given a program P and a specification R, a pair of features (f,

f') is said to be a fault removal in P with respect to R if and

only if f is a fault in P and program P' obtained from P by

replacing f by f' is strictly more-correct than P.

Elementary fault Given a program P, a specification R, and a fault f in P with

respect to R, we say that f is an elementary fault in P with

respect to R if and only if f has a single syntactic atom, or it

has more than one syntactic atom, but no subset thereof is a

fault.

Fault Density Given a program P and a specification R, the fault density of

P with respect to R is the number of elementary faults in P.

Fault Multiplicity Number of syntactic atoms that form an elementary fault

Fault Depth The fault depth of P with respect to R is the minimal number

of elementary fault removals that are needed to transform P

into an absolutely correct program (for the selected set of

atomic changes).

xvi

Oracle of Absolute

Correctness

Given a specification R on space S, the oracle of absolute

correctness derived from R is denoted by Ω(s, s') and defined

by:

Ω(s, s') ≡ (s ∈ dom(R) ⇒ (s, s') ∈ R)

Oracle of Relative Correctness Given a specification R on space S and a program P on S, the

oracle of relative correctness over P with respect to R is

denoted by ω(s, s') and defined by:

ω(s, s') ≡ (Ω(s, P(s)) ⇒ Ω(s, s'))

Oracle of Strict Relative

Correctness

Given a specification R on space S, a subset T of S and a

program P on S, the oracle of strict relative correctness over

P with respect to T\R is denoted by σT () and defined by:

σT (P') ≡ (∀s ∈ T : ω(s, P'(s))) ∧ (∃s ∈ T : ¬Ω(s, P(s)) ∧ Ω(s,

P'(s)))

Syntactic atom Unit of source code at selected level of granularity

Syntactic feature Aggregate of one or more syntactic atoms

Atomic Change Operator A mutation operator that is applied to a syntactic atom to

produce a different unit of code

Levenshtein Distance String metric for measuring distance between two sequences,

as the minimum number of single character edits required to

change one sequence into the other.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Developing a modern software product is a complex multistep process [1], which involves

multiple parties. This process sequentially goes through the steps of collecting the

requirements, coming up with the design ideas to create synergy between the business

definition of the product and its desired technical characteristics in order to form the

product specifications and using the latter as an input for the chain of steps involving

breakdown into individual development requirements, prioritization, implementation of the

requirements in code, quality assurance and testing and finally culminating in release of

the end product followed by post-release monitoring and support (Figure 1.1). The product

that is released, however, is subject to two types of maintenance - adaptive maintenance

stemming from adjustments to user and business requirements as a part of normal business

activities and corrective maintenance that results from imperfect implementation of

original specifications and is manifested as a difference between the expected and actual

software behavior. While both types of maintenance are a source of major expenses

requiring highly skilled resources to change the software product, the corrective

maintenance is an especially painful one, as unlike adaptive maintenance it is normally not

capitalized and is not bringing any new business value per se, while still introducing a risk

of business disruption with patch application going wrong and leading to a continued

accrual of significant costs of ownership of the target product.

2

Any costly labor intensive business process ends up often being considered as a

candidate for automation. The idea of automating the process of program repair is not an

exception with mentions of it being encountered as early as 1973 [2, 3]. However, high

computational cost of localizing and addressing faults, combined with insufficient

computational capacity has ensured that for many decades little progress has been made in

practical addressing of the problem at hand. As time passed by, the hardware and the

software running on it have rapidly evolved both in complexity and in the performance that

they offer, bringing in the renewed interest in the topic of automated program repair.

According to a detailed research survey by Gazzola et al. [4], based on the increase in the

number of papers being published every year on this topic, the interest in the field of

automated program repair has been growing steadily since the middle of the first decade

(from 2005), with certain specific aspects being the focus of the early applications. A large

variety of tools has been presented to the market, supporting different programming

languages [5-30] with a few of them like GenProg setting a high watermark in the industry.

Nevertheless, up until now, the amount of computations required to approach the general

case of a problem of correcting a piece of code that does not conform to its specifications

has remained several orders of magnitude higher than what could be efficiently processed

on an average user desktop, resulting in the proposed tools resorting to artificial limitations

on the search space, reducing the scope of the core algorithm to specific narrow cases of

software faults that could be addressed with an absolute correctness-driven hit-or-miss

enhancement algorithm without having to do a search across the entire search space.

This dissertation describes improvements to existing theoretical framework of

relative correctness-driven correctness enhancement [31, 32] and dives into practical

3

considerations in implementations for automated adjustments to project structure changes

and massively parallel execution. Additionally, tools for the automatic program repair in

general case are introduced. Four important research areas are described:

1. Programming-language specific code structure analysis.

2. Parallelization and scalability of generate and validate approaches for automated

program repair

3. Relative correctness-based optimization in control of validation process.

4. Software tools for automated program repair and correctness enhancement

suggestions.

4

P
o

st-R
ele

ase

A
ctivitie

s
P

o
st-D

e
ve

lo
p

m
e

n
t

D
e

ve
lo

p
m

e
n

t
R

eq
u

ire
m

en
ts G

ath
erin

g &
 A

rch
ite

ctu
ra

l D
esign

A need for the

product is

identified

Business

requirements

are collected

Technical

specifications

are generated

Technical

Designs are

created

A need for the

product is

identified

Business

requirements

are collected

Technical

specifications

are generated

Technical

Designs are

created

A need for the

product is

identified

Business

requirements

are collected

Technical

specifications

are generated

Technical

Designs are

created

A need for the

product is

identified

Business

requirements

are collected

Technical

specifications

are generated

Technical

Designs are

created

A Typical Agile Development Process

...

D
e

ve
lo

p
m

e
n

t
P

rio
ritiza

tio
n

Deliverables

are prioritized

Deliverables

are prioritized

Deliverables

are prioritized

Deliverables

are prioritized

DevelopmentDevelopmentDevelopmentDevelopment

Testing

Release

Post-Release

monitoring

Figure 1.1 Demonstration of stages of a typical Agile software development process.

5

1.2 Dissertation Overview

Chapter 2 provides a brief overview of historical background of the field of program repair.

It also provides information on the state of the art in the industry of program repair and

discussed the premises behind this research. Specifically, Section 2.1 does a brief overview

of the field history. Next, Section 2.2 walks over the survey of the current practices in the

industry. Section 2.3 highlights some of the research works in the field that did not fall

under the survey. Section 2.4 explains the conceptual inefficiencies of existing methods.

Section 2.5 discusses the premises behind the new approach capable of addressing these

inefficiencies. Chapter 3 provides a foundational theoretical background necessary for

explanation of the theoretical framework being introduced. Specifically, Section 3.1

describes the need for a solid theoretical foundation. Section 3.2 explains the basics of

relational mathematics. Section 3.3 explains the concepts of relative correctness and

absolute correctness. Chapter 4 builds up on the concepts of chapter 3 to provide the

explanation of the foundational elements specific to the new program repair framework.

Section 4.1 provides the definition of fault and elementary fault. Section 4.2 explains the

concepts of fault depth, fault density and fault multiplicity. Section 4.3 discusses the

connection between fault repair and failure remediation and the differences between fault

repair-driven and failure remediation-driven approaches. Chapter 5 connects the elements

discussed in the previous chapter offering the generic algorithm of program repair. Section

5.1 explains the general principles behind such algorithm. Section 5.2 introduces different

types of oracles and explains the difference between them. Section 5.3 brings the concepts

together to provide the layout of a generic algorithm of program repair using relative

correctness framework. Section 5.4 provides a comparative analysis of precision and recall

6

of this new algorithm. Section 5.5 reworks the algorithm for optimal execution on parallel

machines. Chapter 6 offers an overview of Correctness Enhancer – a new, massively-

parallel implementation of the described algorithm and explores the solutions to practical

issues that arise with implementation. Section 6.1 dives into the design goals and

specifications of the tool. Section 6.2 discusses the functional design of Correctness

Enhancer. Section 6.3 focuses on the aspects of parallelism in the implementation and

researches practical considerations of such implementation. Chapter 7 discusses the

performance of the implementation against standard benchmarks and other tools. Section

7.1 describes the experiment setup. Section 7.2 details the functional components of the

hybrid approach that was applied to generate results. Section 7.3 provides the results of

comparing the code execution against other tools. Chapter 8 looks into the lessons learned

from the experiment and outlines pathways for further research. Section 8.1 assesses the

impact of the new theoretical approaches. Section 8.2 focuses on the practical side of

things, specifically on the impact of computing power that made some of the newly applied

approaches feasible. Section 8.3 details possible pathways for further improvement. Lastly

Chapter 9 provides the concluding remarks. Section 9.1 provides a summary of this

dissertation work and its importance for the field. Section 9.2 assesses the threats to

validity. Section 9.3 provides general suggestions for further expansion and applicability

of the approach in the field.

7

CHAPTER 2

THE STATE OF THE ART IN PROGRAM REPAIR

2.1 A Brief History of Program Repair

2.1.1 Hardware Limitations

The ideas behind the field of automated program repair have been around for many decades

[2, 3], however, active practical build-up of the field has only started gaining traction

recently. The primary reason behind the perceived delay is due to the lack of hardware

capabilities required to support even the most basic general purpose implementations.

While over the course of the last five decades, the ongoing increase in hardware capabilities

was roughly following Moore’s Law [33] even today, the amount of time required to

execute the program repair algorithms remains one of the key considerations in assessing

their efficiency and usability.

The hardware evolution over the years didn’t follow a straight path. Over time it

switched from focusing on maximizing the execution speed of a single thread, to focusing

on heavily distributed parallelized execution [34], including processing beyond the CPU

[35]. That shift in trends has led to changes in development paradigms in order to maximize

the usage of hardware capabilities, however, mainly due to complexity and coordination

overhead, application of these changes has lagged behind in many areas. A portion of this

dissertation focuses on the key considerations behind application of massive parallelism in

automated program repair and their practical implementation.

8

2.1.2 Evolution of Software Development Approaches

The rapid growth of hardware capabilities over the years combined with popularization of

personal computers and later smartphones and computerized wearables has cleared the

pathway for an increase in overall software surface, becoming a catalyst for ongoing digital

transformation and automation of mundane tasks, allowing computerization to penetrate

every area of human lives. The resulting increase in the amount of code being written, as

well as in the complexity of projects being created has led to an evolution in the software

development process, encompassing program management, development, testing and post-

production activities.

The program management approaches evolved over the years from pure Waterfall

software development model with in-deep pre-planning of the development process that

was first presented in early 50s to increasingly more fine-grained and controllable Spiral,

Extreme and finally Agile practices [36-42].

The software development evolution led to a change in software development

language preferences, eventually switching the mainstream preferences to higher-level

languages like C#, Java and Java-based languages like Scala, which, through additional

layers of optimization and compilation to intermediary language, make a tradeoff between

slight decrease in efficiency of hardware resource utilization and ease of writing code in

these languages, as compared to machine code-compilable languages like C, C++, Delphi

or Fortran, which dominated the field of software development before them. In addition to

programming language choice, the need for developing and maintaining large amounts of

code led to a shift from in-house built tools and software solutions to open-source ones [43,

9

44], which, by leveraging shared model of support come with a better and cheaper

maintenance, as well as make it easier to find talent, skilled in working with them.

Evolution in the field of testing was multistage, from creation of a testing theory

[45] to popularization of Test-Driven Development [46] and active introduction of

continuous integration and continuous development approaches (further referred to as

CI/CD) [47], making the specifications provided to code for machine-processable,

followed by underlining the importance of creating them first before development begins

and popularizing the practice of doing so and, finally, creating the systems to automatically

control, whether new code being developed still matches the specifications that were

provided initially and signaling in case the contract has been breached. Creation of test

scripts and test cases, although rather simplistic, is a coding task on its own and as such,

the evolution is currently going towards behavior-driven development (further referred to

as BDD) [48], in order to make creation of machine-processable and machine-verifiable

program specifications from original business specifications more automatic and requiring

less development and QA resources to create. The latest trends in the field of software

testing look to cover post-production testing as well, by designing synthetic monitoring

systems [49], which, through means similar to regression testing provide real-time

coverage of system behavior in production and allow to detect issues proactively, before

real client traffic is impacted.

A combination of all these factors allowed evolution of automated program repair

approaches.

10

2.2 Automatic Software Repair - A Survey of Current Practice

With hardware and software evolution in place the renewed interest to automated program

repair was the logical next step to follow. A detailed industry survey by Gazzola et al. [4],

by looking at the number of papers, published on the topic of automated program repair,

identifies the breaking point being somewhere around 2005 and with the field being the

focus of much recent research and the number of papers growing ever since (see Figure

2.1)

Figure 2.1 Number of papers published on automated program repair from 1996 to 2016.

©2019 IEEE.

Source: [4].

As a part of that survey [4], the authors subdivide the entire field of software repair

solutions into two broad categories - software healing and software repair, based on

whether the proposed solution detects and mitigates the effects of the failure at runtime on

the deployed application, without correcting the fault itself or whether it detects the fault

11

and applies the fix to it at source code level, thus fixing the fault. Software repair

approaches are further subdivided into categories based on the following criteria:

1. Localization approach.

a. Fault localization. Approaches falling under this category are

looking for ways to locate the part of the program that needs fixing

and use these localization results to drive fix generation. [20, 50-52]

b. Fix locus localization. Unlike fault localization, this technique is

locating all areas of the program, where a fix can be applied (also

known as fix loci, hence the name of the category) regardless of

where the actual fault is located. It is further subdivided into:

i. Model-based fix locus localization, which analyzes runtime

usage of the program to draw its conclusions about the model

of object utilization being applied in the original code and

possible incorrect usage of objects and their attributes. [53-

55]

ii. Angelic fix localization, which attempts to identify and fix

faulty or missing decision points (such as if/else blocks) by

changing execution flow through existing decision points

(forcing the execution to follow a different decision branch)

or by evaluating code execution, if several instructions are

skipped (in order to identify the missing decision point and

propose the fix which would effectively gate the skipped

instructions.) [14]

2. Fix generation approaches.

 Based on the scope of repair technique utilized, the approaches are

categorized into:

a. Fault-specific, targeting a specific narrow class of faults by

exploiting certain generation techniques that are specific for

that fault class or type. [56]

b.General, without focus on a specific fault class, potentially

being applicable to fix any fault encountered in the code. [57,

58]

 Based on the way the repaired program Prepair is defined and

addressed the approaches are categorized into:

a. Generate and validate (see Figure 2.2). Generate and validate

approaches are further broken down into:

12

1. Approaches performing an atomic change in one of

the instructions in the code. [5, 23, 59, 60]

2. Approaches applying pre-defined templates that

consist of a set of atomic changes applied together in

response to specific faults. [55, 61]

3. Example-based approaches, which use existing fixes

as source of possible change templates. [56-58]

b.Semantics-driven, also known as correct-by-construction (see

Figure 2.3.) Due to their nature these approaches are

subdivided based on the class of issues that they attempt to

address either being generic or specific to a certain type of

faults, with the latter prevailing in the field due to exploiting

a certain class of faults being a simpler task as compared to

general program repair task formalization [6-8]

3. Fix recommendation approaches. A subset of program repair approaches

that follow one of the patterns described above, but are geared toward

integration with development environments to provide assistance and hints

to developers at design time, as compared to being a standalone product

applied during testing and post-production stages [62].

13

Launch

Generate Mutants

Put Original Program

P into processing pool

Original

Program P

Set of change

operators

Validate Mutants

Is

CS set empty?

Candidate

Solutions P’

Test Cases

Return CS set of

candidate solutions

No

No Solution Yes

Load P’ into

Processing Pool

Record any P’ that

satisfy S into

candidate solution set

CS

Timeout

or target depth

reached?

Yes

No

Pull program P

Is

Processing Pool

empty?

Processing

Pool

No

Yes

Instruction Call

Data Read

Data Write

Figure 2.2 An example of Generate and Validate process.

The survey further notes the overall immaturity of the field of software repair with

only 46 percent of the approaches surveyed having any corresponding tool built and the

majority (62%) of the tools available tending to focus on the same benchmarks, indicating

a risk of overfitting a specific benchmark.

14

Launch

Original

Program P

Pre-process the

program and extract

semantics

information

Instruction Call

Data Read

Data Write

Test Cases

Additional

Program

Specifications

Can

the solution be

found?

Semantics

information

Create formal

encoding of the repair

program

Generate fixes based

on the formal

representation

Return CS set of

candidate solutions

No Solution

No

Has the timeout

occurred?

Yes

No

Yes

Formal

encoding of

repair

problem

Figure 2.3 An example of Semantic-driven repair process.

2.3 A Focus on Faults

As highlighted by Khaireddine et al. [63], despite focusing on a formal analysis of faults

and fault repair, some recent approaches to program repair [64-68] do not fall neatly into

the characterization of Gazzola et al. [4]. Here are some notable examples:

Rothenberg and Grumberg [64] introduce the concept of Must Location Set, which

is a set of program locations that includes at least one program location from each repair

for an observed failure. A fault localization technique is said to be a Must Algorithm if it

15

returns a must location set for each observed program failure. Rothenberg and Grumberg

develop a fault localization algorithm and use it in a program repair algorithm to help

reduce the search space without loss of recall. The concept of must location is reminiscent

of the concept of definite fault introduced by Mili et al. [69]: a definite fault in an incorrect

program is a program part that must necessarily be modified if the program is to be

corrected.

Lou et al. [70] critique the separation between two lines of research, namely fault

localization and fault repair, and the fact that traditionally fault localization has been

viewed as a means to achieve fault repair ends. They argue for a unified debugging

approach, where fault repair is used to refine fault localization. They implement their

approach in a tool, called ProFL, and highlight its performance on test benchmarks and on

real software products.

Christakis et al. [71] present a static technique that analyzes an error trace in a

program and identifies a small set of statements within the trace that may be modified to

satisfy correctness conditions. Suspicious statements are ordered according to their

likelihood of being the source of the observed failure.

The research by Li et al. [21], is a machine learning-based approach, which uses

information about prior bug fixes to train ML models and use these models for automated

code repair. This approach is implemented in a tool called DLFix. Although this tool is not

covered by survey [4], it would likely fall under the same category of general brute-force

techniques as the other machine learning-based approach R2Fix [58], which is included

into the survey. The novelty of DLFix is that by using a two layer tree-based RNN and

separating the tasks of learning the code context from learning the transformation the

16

authors are able to mitigate the impact of the noise in the code, significantly improving the

results.

Zhu et al. [72] also use a deep learning-based automated program repair approach,

achieving improvements in the benchmark results by combining a new approach to the

architecture of the encoder/decoder pair to better support small edits in the target code with

introduction of placeholder generation to be able to properly support project-specific

identifiers as a part of the patch being applied.

Shariffdeen et al. [73] look into the related problem of patch transplantation,

automatically identifying fixed version of a common component in a different product and

performing a context-aware adjustment of the applied patch, achieving better integration

of the applied patch into the application being fixed.

Noda et al. [74] leverage a novel program dependence graphs-based approach to

mine and learn systematic edit patterns (SEPs) from information about code changes

between different code versions, detect locations, where such SEPs can be appliend in the

target code, and apply the same changes that were captured in SEPs to the detected

locations, using information about abstract syntax trees to guide the transplantation.

2.4 Bane of Program Repair: Too Much Generation, Too Little Validation

Khaireddine et al. [11] make an argument that repairing a program does not necessarily

mean to make it (absolutely) correct, it only means to make it more-correct (in some sense)

than it is. It is further claimed that the approximations of absolute correctness that the

program repair methods rely on in absence of a clear definition of relative correctness (the

17

property of a program to be more-correct than another with respect to a specification),

result in too much generation and too little validation.

The reason for too much generation stems from the need to generate larger search

spaces when relying on absolute correctness. Indeed, since relative correctness is expected

to culminate in absolute correctness regardless of definition any pool of candidate repairs

is more likely to have more candidates that are relatively correct than the ones that are

absolutely correct. Conversely, this means that if absolute correctness is the chosen

validation criterion, the probability of hitting a match on analyzing each candidate is lower,

resulting in a larger search space. This problem is illustrated on Figure 2.4, where the star

symbol represents the original (faulty) program, blue dots represent candidate repairs that

are relatively correct but not absolutely correct, and red dots represent candidate repairs

that are absolutely correct.

Figure 2.5 shows potential flows of step-wise validation for more correct programs

under the same conditions.

Figure 2.4 Absolute Correctness mandates larger spaces.

Source: [11].

18

Figure 2.5 Relative Correctness enables step-wise validation.

Source: [11].

The reason for too little validation stems from program repair methods and tools

not relying on a sound foundational definition of relative correctness in their validation

approaches. In absence of such definition, the combination of criteria for patch validation

that gets utilized instead exposes the program repairs methods and tools to a risk of poor

efficiency, loss of precision, and loss of recall. Focusing on each of these risks separately:

 Obstacles to Efficient Validation. Defining the concept of a fault requires a

concept of relative correctness; in the absence of the latter, it is impossible

to define the former. As a result, program repair methods and tools have

made failure remediation the focus of program repair, rather than fault

repair; in other words, rather than focusing on repairing one fault at a time,

they focus on remedying one failure at a time. The trouble with focusing

on failure remediation is that the same failure can be the result of several

faults, which must all be repaired simultaneously before the failure is

addressed.

 Risk of Poor Recall. Several practices in the current methods and tools of

program repair are prone to loss of recall. Here are three of them:

o Testing for Absolute Correctness. In the absence of a concept of

relative correctness, traditional methods and tools of program repair

validate candidate repairs on the basis of absolute correctness.

Absolute correctness is a sufficient but unncessary condition of

relative correctness, hence the use of absolute correctness leads to

loss of recall.

19

o Search Space Pruning. In the face of vast search spaces, many

methods and tools resort to a common device in such cases, namely

search space pruning; though some program repair techniques take

great care to only exclude from consideration candidates that are

known to be invalid [64], not all methods are so deliberate. Pruning

search spaces carries the risk of loss of recall, as we may be

removing from consideration valid repair candidates.

o The Use of Regression Testing. Most program repair methods and

tools perform validation using two sets of test data, both of which

have the form of sets of (input, output) pairs: a positive test suite 𝑇+,

which reflects correct behavior exhibited by the original program 𝑃,

which we want candidate programs to preserve; a negative test suite

𝑇−, which reflects behavior that the original program does not

exehibit, and we want candidate programs to provide. The condition

that a candidate program 𝑃’ provide the behavior represented by 𝑇−

while preserving the behavior represented by 𝑇+ is a sufficient

condition of relative correctness of 𝑃’ over 𝑃, but is not a necessary

condition (since correct behavior is not unique). As such, this

condition leads to a loss of recall.

 Risk of Poor Precision. Not only are some of the common validation

methods prone to miss valid repairs, as we discuss above, some are prone

to retrieve invalid repairs, as we discuss herein.

o Fitness Functions. Several methods and tools rely on the use of a

fitness function, which is supposed to reflect the validity of each

candidate by virtue of some combination of the number of

successful tests and unsuccessful tests of the candidate amongst the

test suite(𝑇+ ∪ 𝑇−). Regardless of how this function is defined, it

creates an artificial total ordering between candidate repairs to

represent what is essentially a very partial ordering; because it

defines a total ordering, the fitness function ranks any pair of

candidate repairs, even when they have no relative correctness

relationship. Hence the use of fitness functions is prone to loss of

precision.

o Small Test Suites. The size of search spaces creates a strong

incentive to reduce the size of test suites, so as to inspect the largest

possible number of candidate repairs per unit of time. Using small

test suites causes a loss of precision, since it increases the likelihood

that a repair candidate passes the tests without being a valid repair.

20

2.5 Premises of the Relative Correctness-based Approach

The relative correctness approach is based on the following premises:

 To repair a program does not mean to make it absolutely correct; it only

means to make it more correct than it is.

 Any definition of relative correctness ought to satisfy some litmus

properties that are introduced and justified in the next chapters.

 Program repair methods ought to be validated by showing that they

enhance relative correctness.

 Any program repair method ought to proceed by a variation on the general

theme: enhance relative correctness until absolute correctness is achieved.

 For the sake of precision, patch validation ought to use large test suites,

including large negative test suites (i.e. data sets where the original program

fails).

21

CHAPTER 3

BACKGROUND FOR A THEORETICAL APPROACH

3.1 A Critique: The Need for the Theory of Relative Correctness

In [4], Gazzola et al. conclude that “it is important to improve the maturity of the field and

obtain a better understanding of useful strategies and heuristics”. In line with this

conclusion, in [63] Khaireddine et al. the argument is made that one of the most

fundamental steps that would help with pushing the industry towards maturity is through

development of theoretical foundations, based upon the concept of relative correctness, i.e.

"the property of a program to be more-correct or strictly more correct than another with

respect to some specification". While the traditional approach is Boolean, defining a

program as either correct or incorrect (absolute correctness) the relative correctness

introduces a partial ordering among candidate programs with absolutely correct programs

being the maximal elements of such ordering, thus allowing to redefine the process of

program repair as an iterative process going over a sequence of increasingly more correct

states eventually achieving absolute correctness.

In the world of computer science it is sometimes the case that the practical

approaches are being created and utilized long before the theory explaining them and

structurizing the approaches offered by them is being drawn. For example, the

programming approaches utilizing high level programming languages have emerged in the

mid to late nineteen fifties with the emergence of such languages as Fortran, Cobol, and

Algol (with the first two seeing heavy usage up to this day) [75, 76]; yet, the first theories

of program correctness providing theoretical foundation for the programming approaches

22

utilized have only emerged in the late nineteen sixties [77, 78] and it took a decade for such

theories to reach maturity and be turned into methodologies for deriving correct-by-design

programs [79-81]. The current state of the field of programming repair with successful

research producing sophisticated engineering solutions without a formal theory suggests a

similar situation and highlights the need to have relative correctness providing a theoretical

basis of programming repair in the same way as the traditional (absolute) correctness

provides the theoretical basis of program derivation from a specification (programming);

the presence of such theory may enhance the state of the art/ practice in the field of program

repair, with the theoretical implication being the usage of relative correctness for patch

validation and eventually for patch generation.

Performing an abstraction on the methods described in Gazzola et al. [4] the

following arguments on the need of the relative correctness theory apply:

1. In absence of a definition of relative correctness, the absolute correctness,

by which program repair methods perform patch validation requires

transformation to be done in one shot and is therefore useful only within

striking distance of absolute correctness. Relative correctness allows to

approach the task of transforming a program gradually over several steps of

still faulty, but more correct programs, giving an efficient approach to

addressing faults at arbitrary depth, repairing a program P to obtain a

program P’, where P’ is more-correct than P without being absolutely

correct.

2. Same logic applies to the paradigm shift from remedying a failure to

removing a fault. Most program repair methods rely on negative test data to

drive program modification to remedy the failure represented by the

negative test data. If the observed failure is not due to a single-site fault, but

rather stems from the combination of several faults, that approach means

that in order to make a switch from the program being absolutely incorrect,

to program being absolutely correct all the faults responsible for the failure

have to be correctly located and remedied, leading to unbounded

combinatorial explosion due to imperfect fault generation and fault

localization of the tools being utilized. Introducing relative correctness

allows to define the concept of elementary fault, which, in turn enables to

define program repair as a step-wise repair of elementary faults, rather than

23

the brute force transformation of an incorrect program into an absolutely

correct one. The benefit of such definition change is two-fold:

 The criterion of patch validation can be changed from “Is the

program’s failure corrected?” to “Is the new program (relatively)

more correct?” making it possible to achieve positive result even if

some of the transformations needed to remedy the observed failure

are not known to the tool being utilized. An imperfect tool driven by

the concepts of relative correctness can still eliminate the faults that

it knows, reducing the amount of work that is needed to be done on

the remaining ones.

 Enhancing the correctness repeatedly will over a sufficient number

of iterations remove enough faults to remedy the observed failure.

Combined with running fault localization after each elementary fault

removal, it would allow addressing faults as they appear instead of

trying to guess the right combination of fixes from the beginning

bringing higher level of granularity and precision in targeting the

next fault removal.

3. When traversing the field of candidate repairs, the two commonly used

approaches are repair methods checking that candidates preserve the correct

behavior of the original program (represented by positive test data) or

maximizing some user-defined (or system-defined, by default) fitness

function. Both approaches have major deficiencies:

 Preserving correct behavior is unusable in driving patch generation,

being unable to generate oracles on the next step and being used only

for passive validation. Even for passive validation, with correctness

preservation being a sufficient condition of relative correctness, but

not a necessary one, it excludes the candidates that preserve

correctness without preserving the correct behavior leading to a loss

of recall.

 The fitness function-based approaches that do not account for

relative correctness carry the risk of loss of precision as they

generate oracles focused on candidates that are more reliable, but

not necessarily more correct than the original program. These

candidates can be more reliable, not because they are more-correct,

but because they succeed for inputs that are more likely to occur.

Relative correctness provides foundation for a more efficient candidate

repair space traversal, with the program being both more reliable being a

necessary condition and preserving the correctness as a sufficient condition,

thus, essentially, being the next step in evolution of program repair

approaches.

24

3.2 Mathematics for Program Repair

3.2.1. Relational Mathematics

In order to explain the mathematical foundation of the relative correctness theory, the

following concepts are briefly introduced, as described in [31]:

Given a program p that operates on some variables x and y, let the space of p be

the set S of all the values that the aggregate of variables <x, y> may take; elements of S are

called states of the program, and are usually denoted by lower cases. A relation on set S is

a subset of S×S; constant relations on a set S include the empty relation (∅), the identity

relation (denoted as I and defined as I={(s,s)|s ∈ S}, meaning that each element is related

to itself only) and the universal relation (denoted as L, defined as L=S×S and meaning that

each element of set is related to every element of set); operations on relations include the

set theoretic operations of union, intersection, difference and complement; other operations

include the product of two relations (denoted by R◦R’, or RR’ for short), the converse of a

relation (denoted as R̂ and defined as R̂ = {(s,s’)|(s’,s) ∈ R}) and the domain of a relation

(denoted as dom(R) and defined as dom(R) = {s|∃s’ : (s,s’) ∈ R}). The pre-restriction of

relation R to set T is denoted by T\R and defined as T\R = {(s,s’)|s ∈ T ∧ (s,s’) ∈ R}. A

relation R is said to be reflexive iff I⊆R, symmetric iff R⊆R̂, antisymmetric iff R∩R̂⊆I,

and transitive iff RR⊆R. A relation R is said to be deterministic iff R̂R⊆I. A relation R is

said to be deterministic (or: a function) iff RR̂ ⊆ I, and total iff RL = L. A relation R is said

to be a vector iff RL = R; vectors have the form R = A × S for some subset A of S and are

used here as relational representations of sets. In particular, it should be noted that RL,

which is used as a relational representation of the domain of R, can be written as dom(R)

× S. For the sake of convenience, symbols representing a set (say T) and the vector (T × S)

25

that represents the same set, in relational form are used interchangeably. Hence, for

example, the restriction of relation R to set T can be written as T ∩ R, where T is interpreted

as a vector. Being a well-known property of functions it is admitted without proof that if F

and G are functions then F = G iff F ⊆ G and GL ⊆ FL.

3.2.2 Program Semantics and Correctness

Adopting the definitions by Khaireddine et al. [31, 63], whereby given two relations R and

R’, R’ refines R (R’⊒R) if and only if RL∩R’L∩(R∪R’)=R and given a program p on

space S written in a C-like notation, defining the function of p (denoted by P) as the set of

pairs(s, s’) such that if program p starts execution in state s it terminates in state s’, the

program and its function can be referred to by the same name, P, when no ambiguity arises,

the following definitions can be given:

Definition 1: Given a specification R on space S, a program p is said to be correct

on the space S with respect to specification R if and only if its function P refines R.

This definition is equivalent to traditional definitions [79, 83, 84] of total

correctness with respect to prespecification φ(s) and postspecification ψ(s) for some s0:

φ(s) ≡ s ∈ dom(R) ∧ s = s0.

ψ(s) ≡ (s0,s) ∈ R

∀s : φ(s) ⇒ s ∈ dom(P) ∧ ψ(P(s))

The following proposition can be made due to Mills et al. [85] and is offered here

without proof:

Proposition 1: Program P is correct with respect to specification R on the space S

if and only if (R∩P)L=RL.

26

Definition 2: The set (R∩P) is called the competence domain of P with respect to

R and is the set of initial states on which P behaves according to R.

Proposition 2: Given a specification R and a program P on space S, program P is

correct with respect to R if and only if the following condition holds:

∀s : φ(s) ⇒ s ∈ dom(P) ∧ ψ(P(s)),

where φ(s) ≡ s ∈ dom(R) ∧ s = s0 and ψ(s) ≡ (s0,s) ∈ R for some s0.

Proof:

Proof of Sufficiency. Replacing φ() and ψ() by their expressions, the condition of

the proposition can be simplified into:

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ (s,P(s)) ∈ R.

Since (s,P(s)) is by definition an element of P, this can be written as:

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ (s,P(s)) ∈ (R ∩ P).

By definition of domains it is inferred that:

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ s ∈ dom(R ∩ P).

Since dom(R ∩ P) ⊆ dom(P) it is inferred that:

∀s : s ∈ dom(R) ⇒ s ∈ dom(R ∩ P).

By set theory, we infer: RL ⊆ (R ∩ P)L; since the inverse inclusion is a tautology,

we infer (R ∩ P)L = RL.

Proof of Necessity. Since (R ∩ P)L ⊆ RL is a tautology, the condition of this

proposition is equivalent to RL ⊆ (R ∩ P)L, which is interpreted as follows:

∀s : s ∈ dom(R) ⇒ s ∈ dom(R ∩ P)

 {Interpreting the definition of domain}

∀s : s ∈ dom(R) ⇒ ∃s’ : (s, s’) ∈ (R ∩ P)

27

 {P is deterministic}

∀s : s ∈ dom(R) ⇒ ∃s’ : s’ = P(s) ∧ (s, s’) ∈ R

 {substitution}

∀s : s ∈ dom(R) ⇒ ∃s’ : s’ = P(s) ∧ (s, P(s)) ∈ R

 {Interpreting the definition of domain}

∀s : s ∈ dom(R) ⇒ s ∈ dom(P) ∧ (s, P(s)) ∈ R

 {substituting φ() and ψ()}

∀s : φ(s) ⇒ s ∈ dom(P) ∧ ψ(s) ∈ R.

If s ∈ dom(R) is interpreted as s satisfies the precondition, s ∈ dom(P) as

execution of P on s terminates normally, and (s, P(s)) ∈ R as the final state (P(S))

satisfies the postcondition, then this formula can be interpreted as: for any initial state

that satisfies the precondition, program P terminates normally and returns a final state

that satisfies the postcondition: this is the exact definition of total correctness, as given in

traditional sources. QED

With the provided definitions and propositions, the following definition of relative

correctness can be introduced:

Definition 3: For deterministic programs P and P’ a program P’ is said to be more

correct than P with respect to specification R if and only if (R ∩ P’)L ⊇ (R ∩ P)L (and,

correspondently strictly more correct, iff (R ∩ P’)L ⊃ (R ∩ P)L).

It should be noted that more correct is in fact more-correct-than-or-as-correct-

as, however, for the sake of convenience, a shorter version is utilized, with the stricter

clause without the as-correct-as portion labeled as strictly more correct. Khaireddine et al.

[63] provide the following proof of this definition:

28

Assuming the same notation, this definition can be expanded further for non-

deterministic programs, as follows [32, 86]:

Definition 4: For non-deterministic programs P and P’, P’ is more-correct than P

with respect to R (P’ ⊒ RP) if and only if (R ∩ P)L ⊆ (R ∩ P’)L ∧ (R ∩ P)L ∩ R̄ ∩ P’ ⊆

P, which can be interpreted as: P’ is more-correct than P with respect to R if and only if it

has a larger (or equal) competence domain, and for the elements in the competence domain

of P program P’ has fewer (or the same number of) states that violate R than P does. In

other words, a program P’ is more-correct than a program P with respect to R if and only

if the set of states on which P’ violates R is a subset of the set of states on which P violates

R.

3.3 Absolute Correctness and Relative Correctness

Validation of the adopted definition of relative correctness requires verification of several

relational properties that such definition must satisfy, which, based on Diallo et al. [86]

are:

 Relative correctness is transitive, reflexive, but not antisymmetric.

Indeed, transitivity and reflexivity stem directly from the (R ∩ P’)L ⊇ (R ∩

P)L portion of the definition of relative correctness (where relative

correctness is indeed reflexive and transitive due to reflexivity and

transitivity of set inclusion [63]), however, the non-antisymmetricity of

relative correctness stems from the fact that (R ∩ P)L = (R ∩ P’)L does not

necessarily imply P = P’. It can be observed from the following scenario:

two functions P and P’ may satisfy (R∩P)L=(R∩P’)L while P and P’ are

distinct. A combination of R={(0,1),(0,2)}, P={(0,1)} and P’={(0,2)} can

be considered an example of such scenario. These properties can be

expressed [63] as ⊒R◦⊒R⊆⊒R, I⊆⊒R, ⊒R∩⊑R⊄I.

 Relative correctness culminates in absolute correctness. Relative

correctness culminates in absolute correctness, as, by definition of absolute

correctness, an absolutely correct program P satisfies the condition (R ∩

P)L = RL, hence its competence domain is maximal (hence a superset of the

29

competence domain of any candidate program). The necessity proof looks

as follows: given a specification R and a program p’ on space S, p’ is

absolutely correct with respect to R, iff p’ is more-correct with respect to R

than any candidate program p on S - an absolutely correct program p’ refines

the entire specification R and any other program p" on space S built in

regards to specification R would either refine it in its entirety or refine only

a subset of it, thus allowing program p’ to meet the definition of being more

correct than any other program p". The sufficiency proof also holds - if

program p’ is more correct than any other program on space S in regards to

specification R, it should refine the entire specification R, otherwise, there

would exist a program p" refining a larger portion of specification R than

p’, which, by definition would mean that p" would be more correct than p’,

which contradicts the claim of p’ being more correct than any other p". This

property can be recorded [63] as P⊒R ⇔ (∀P : P’⊒RP).

 For any specification, refinement is equivalent to relative correctness.
Indeed, program p’ refining p means that p’ can do everything that p does

and, for the case of strict relative correctness, can do it better (or that p’

matches every specification r ∈ R that p matches and in addition there exists

specification r’ ∈ R’, r’ ∉ R that p does not meet). In a formal way it can be

proven as follows [63]:

o Proof of Necessity. If P’ ⊒ P then (because P and P’ are both

functions) P’ ⊇ P, whence (by monotonicity of intersection and

domain) (R ∩ P’)L ⊇ (R ∩ P)L.

o Proof of Sufficiency. From (∀R : (R∩P’)L ⊇ (R∩P)L), by letting R

= P, (P∩P’)L ⊇ PL is inferred. This, in conjunction with the set

theoretic identity (P∩P’ ⊆ P), yields (because (P ∩P’) and P are both

functions), P’∩P = P; from which, by set theory P’ ⊇ P is inferred;

given that P’ and P are both function, this yields P’ ⊒ P. QED

 Relative correctness is a sufficient condition of higher reliability, but

not a necessary one. Higher reliability is a stochastic property, and Relative

Correctness is a logical/functional one. A program P’ has a higher reliability

than program P iff P’ has a higher probability of performing as per

specification R than program P does. The fact that P’ meets more of the

specification R than P indeed makes it more reliable, but the opposite is not

always true, as a more reliable program P’ can fail to meet some of the

specifications that P does. This property can be written [63] as: P’⊒RP ⇒ (

∀θ() : ρR
θ()(P’) ≥ ρR

θ()(P)) and can be given a formal proof looks as follows:

Given a specification R and discrete probability distribution θ() on dom(R),

s is a random element of dom(R) selected according to probability

distribution θ(). Execution of a program P on s is successful iff s is in the

competence domain of P with respect to R. Hence the reliability of P with

respect to R and θ() can be written as: ρR
θ()(P)=∑s∈dom(R∩P)θ(s). Clearly,

30

larger competence domains yield greater values for ∑s∈dom(R∩P)θ(s),

regardless of how θ() is defined. Therefore: P’⊒RP ⇒ (∀θ() : ρR
θ()(P’) ≥

ρR
θ()(P))

31

CHAPTER 4

INGREDIENTS OF A THEORY BASED PROGRAM REPAIR ALGORITHM

4.1. Faults and Elementary Faults

In the work by Avizienis et al. [87] and Laprie [88-90] the fault is defined as adjudged or

hypothesized cause of an error. This definition relies on an insufficiently defined concept

of error and highly subjective concepts of adjudging and hypothesizing. A more detailed

definition, however, should be related to the level of granularity, at which the faults are

being isolated. Following Gazzola et al. [4], the following two definitions that determine

the scale of faults are adopted:

 A syntactic atom in program P is a fragment of source code of P at the selected

level of granularity.

 An atomic change in program P is a pair of source code fragments (a, a’) such that

a is a syntactic atom in P and a’ is a code fragment that can be substituted for a

without violating the syntactic integrity of P.

Expanding upon the concepts of relative correctness and competence domain,

Khaireddine et al. [11, 91-93] introduce the following definitions:

Definition 1: Given a program P and a specification R on the space S, a software

failure of program P with respect to specification R is an event that occurs if and only if

execution of P on some initial state s violates the premise that P is correct with respect to

R.

Execution of P on state s violates the assumption that P is correct with respect to R

if and only if P either fails to terminate on s, or it does terminates but the final state s’ fails

to satisfy the condition (s,s’) ∈ R.

32

Definition 2: A feature of program P with respect to give level of granularity is any

part of the source code, including non-contiguous part that is appropriate to cover all code

related to software failure.

Definition 3: Given a specification R and a program P, a fault in program P is any

feature f that admits a substitute f’ such that the program P’ obtained from P by replacing

f with f’ is strictly more correct than P.

Definition 4: A fault removal or fault repair in P is a pair of features (f, f’) such

that f is a feature in P and program P’ obtained from P by replacing f with f’ is strictly more

correct than P.

This definition can be also expanded as follows: Let p be a program on space S and

R be a specification on S, let f be a fault in p, and let f’ be a substitute for f. The pair(f, f’)

is a (monotonic) fault removal iff the program p’ obtained from p by substituting f by f’ is

strictly more-correct than p.

Definition 5: An elementary or unitary fault f in program P with respect to

specification R is a fault such that no part of it is a fault, in other words, an elementary fault

cannot be subdivided into independent faults.

This definition means that all single-site faults (containing just a single atom) are

elementary, but in case of multi-site faults they are considered elementary iff no subset of

their elements is a fault. The number of atoms in a unitary fault is called the multiplicity of

the fault. The concepts of unitary fault and multiplicity can be illustrated with the following

example:

Given space S, specification R on space S and program P defined as:

S = {float x; float a[N+1]}

33

R = {(s, s’)|x’ = ∑N
i=1 a[i]}

P = {int i=0; x=0; while (i<N) {x=x+a[i];i=i+1;}}

Substituting the feature f = (0, <) with the feature f’ = (1, ≤) yields a strictly more

correct program P’:

P’ = {int i=1; x=0; while (i<=N) {x=x+a[i]; i=i+1;}}

Hence f is a fault. In order to determine whether f is a unitary fault with multiplicity

of 2 or a set of two unitary faults with multiplicity of 1 the competence domains of P1’ and

P2’ programs that result from individual application of the constituent atomic faults have

to be verified. The programs P1’ and P2’ are therefore

P1’= {int i=1; x=0; while (i<N) {x=x+a[i]; i=i+1;}}

P2’= {int i=0; x=0; while (i<=N) {x=x+a[i]; i=i+1;}}

Their competence domains are

CD = {s|a[0] = a[N]}.

CD1’ = {s|a[N] = 0}.

CD2’ = {s|a[0] = 0}.

As no inclusion relation can be established between CD and CD1’ P1’ is not more

correct than P. In a similar way, since there is no inclusion relation between CD and CD2’

P2’ is not more correct than P and, therefore, f is the case of a single unitary fault of

multiplicity 2 (Figure 4.1).

34

Figure 4.1 An elementary fault of multiplicity 2. Although P1’ and P2’ are both

modifications of P, there are no arrows as neither P1’ nor P2’ are more correct than P.

Source: [63].

4.2. Fault Density, Depth and Multiplicity

Definition 6: Given a program P and a specification R on space S, the number of unitary

faults in P is the fault density of P with respect to R and the minimal number of unitary

fault repairs that separate P from a correct program is the fault depth of P with respect to

R.

A program having N unitary faults does not necessarily need N unitary fault repairs;

these two metrics are distinct and whereas with each unitary fault repair the fault depth is

decreasing, fault density can vary arbitrarily.

Reusing the same space S, specification R and starting program P from the example

that was considered in Definition 5 it can be observed that in addition to the fault f1 = (0,

<) with multiplicity 2 that gets repaired through substitution f’1 = (1, ≤) generating program

P1’:

35

P1’ = {int i=1; x=0; while (i<=N) {x=x+a[i]; i=i+1;}}

There is also another fault f2=(i) with multiplicity 1 that gets repaired through

substitution with f’2=(i+1) yielding a different program P2’:

P2’ = {int i=0; x=0; while (i<N) {x=x+a[i+1]; i=i+1;}}

That is also absolutely correct to the original specification R. Since there are two

faults, the fault density is 2 (Figure 4.2 - two possible ways to get the program corrected),

whereas the fault depth is 1, as only one unitary fault correction is needed.

Figure 4.2 Fault Density (=2) vs. Fault Depth (=1).

Source: [63].

4.3. Fault Repair vs. Failure Remediation

As noted before, unlike most of the modern research that uses failure remediation for

program repair, this research focuses on fault repair. In order to illustrate the difference,

the following definition needs to be introduced.

Definition 7: A unitary increment of correctness is a step or a set of steps removing

a single fault [94].

36

This concept is illustrated on Figure 4.3, where going from P0 to P4 requires two

steps, but leads to a single unitary increment of correctness, since the intermediary state

P2, while required for the next step does not enhance correctness, hence does not qualify

as a fault removal. A real life example of the scenario shown on Figure 4.1 would be fixing

a program P with two faults with one of them being a simple serialization fault in an object,

where one of the attributes A prevents serialization due to being improperly configured and

the other being wrong relational operator used somewhere in the code. In such scenario P1

might remove the attribute, P3 attempt to fix the relational operator, while P2, P4 chain

would attempt to actually address the root cause of the issue with serialization. As long as

the test suite T doesn’t specifically check for the attribute A to be present in object - each

path would be considered as a valid solution.

37

An example of Correctness Enhancement

R
e
la

ti
v
e
ly

 m
o

re

co
rr

e
c
t

L
1

O
ri

g
in

a
l

R
e
la

ti
v
e
ly

m
o

re
 c

o
rr

e
ct

L
2

A
b

so
lu

te
ly

co
rr

e
c
t

Program P0

P3

Atomic change

P2

P4

Atomic change

Atomic change

P1

Atomic change

P5

P8

P6

P9

Atomic changeAtomic change Atomic change

P5

Figure 4.3 A generic example of correctness enhancement.

With incremental enhancement of correctness defined the contrast between failure

remediation and program repair can be highlighted as follows: Given program P that fails

on input x, a traditional failure remediation approach would simply try to make it correct

at x, whereas the incremental correctness enhancing approach would mark P as incorrect

and go through a chain of strictly-more-correct programs fixing faults as they appear until

the competence domain of program Pn covers x (as shown on Figure 4.4.)

38

Figure 4.4 Failure Remediation vs. Fault Repair.

Source: [11].

39

CHAPTER 5

A GENERIC ALGORITHM FOR PROGRAM REPAIR

5.1 General Principle

The process offered to address program repair summarizes what was described in Chapters

3 and 4 so far. It is generic in the sense that it outlines a general process for selecting repair

candidates, but does not specify how repair candidates are generated; hence it can be

instantiated for any given patch generation method. The algorithm can be succinctly

defined as enhance relative correctness until either the absolute correctness is

achieved, the user-set limit is reached or the algorithm determines that it can no

longer enhance relative correctness (due to inadequate patch generation).

5.2. An Infrastructure of Oracles

Given a program P’ on space S, with its initial state being s and final state being s’, the

oracle is a binary predicate in(s, s’), which can take several forms depending on the

property being tested about P’. It can be subdivided into following cases:

1) Oracle of absolute correctness with respect to R.

2) Oracle of relative correctness over a program P with respect to a specification R

3) Oracle of strict relative correctness over a program P with respect to a

specification R.

5.2.1. Absolute Correctness With Respect to a Specification R.

Definition: Given a specification R on space S, the oracle for absolute correctness

with respect to R is denoted as Ω(s, s’) and defined by:

Ω(s, s’)≡(s∈dom(R)⇒(s, s’)∈R).

40

Proposition: If a program P satisfies the condition Ω(s, P(s)) for all s in S then it

is absolutely correct with respect to R.

In practice, since it is nearly impossible to check Ω(s, P(s)) for all s in S, as even

for simplest programs such full testing would take an unacceptable amount of time [45], it

is checked for a bounded size test data T. Hence the predicate ΩT(P’) is defined as:

ΩT(P’)≡(∀s∈T: Ω(s, P’(s)))

The program P’ is absolutely correct with respect to T\R if and only if it satisfies

this predicate [63].

5.2.2. Relative Correctness Over a Program P With Respect to a Specification R.

Definition: Given a specification R on space S and a program P on S, the oracle

for relative correctness over program P with respect to R is denoted by ω(s, s’)and defined

by:

ω(s, s’)≡(Ω(s, P(s))⇒Ω(s, s’)).

Proposition: A program P’ is more-correct than program P with respect to R if and

only if ω(s, P’(s)) holds for all s in S.

This formula stems readily from the definition of relative correctness. Again, in

practice, only a bounded size data set T is checked since checking ω(s, P’(s)) for all s in S

cannot be done. Therefore, the predicate ωT(P’) is defined as:

ωT(P’)≡(∀s∈T:ω(s, P’(s)))

The program P’ is said to be more correct than P with respect to T\R if and only if

the execution of P’ on every element of T satisfies oracle ω(s,s’) [63].

41

5.2.3. Strict Relative Correctness Over a Program P With Respect to a Specification

R.

Definition: Given a specification R on space S and a program P on S, the oracle of

strict relative correctness over program P with respect to R is denoted by σ(s, s’) and

defined as:

σ(s, s’)≡ (∀s ∈ S : ω(s, P’(s))) ∧ (∃s ∈ S : ¬Ω(s, P(s)) ∧ Ω(s, P’(s)))

Proposition: A program P’ is strictly more-correct than a program P with respect

to R if and only if P’ is more-correct than P, and there exists at least one element s in S

such that the condition Ω(s, P’(s)) ∧ ¬Ω(s, P(s)) is satisfied.

Similar to absolute correctness case, Ω(s, P’(s))∧¬Ω(s, P(s)) is checked only for a

bounded size dataset T, the predicate σT(P’) is defined as:

σT(P’)≡(ωT(P’)∧(∃s∈T: Ω(s, P’(s))∧ ¬Ω(s, P(s))))

The program P’ is strictly more correct than P with respect to T\R if and only if for

the program P’ the oracle σT(P’) returns true [63].

5.3 A Generic Algorithm

Due to its generic nature, the algorithm applies to programs of arbitrary fault depth, because

it does not test for absolute correctness, but rather tests for relative correctness over the

base program. It is based on an elementary routine that performs a unitary increment of

correctness enhancement; removing one elementary fault at a time. Because elementary

faults may be multi-site, it attempts to enhance correctness by single-site features, then

double-site features, etc., until it succeeds or reaches a user-imposed threshold of fault

multiplicity. The inputs to this algorithm are:

42

1. The specification R with respect to which correctness is judged in the form

of a correctness oracle - a Boolean function between initial states and final

states.

2. The faulty program, P.

3. The test data T that would be used to test for absolute correctness and

relative correctness.

4. The threshold of multiplicity (M) to be considered for multi-site elementary

faults. When restricted to single-site faults, M should be set to 1.

The candidate patches are assumed to be organized as a set of patch streams of

increasing multiplicities, which we name, respectively, PS(1), PS(2), ..., PS(M). Each patch

stream PS(m) is an ordered sequence, supporting application of sequence operators head()

and tail(), referring respectively to the first element, and the remainder of the sequence. It

is assumed that patch generator is providing the following functions:

o MorePatches(P,m), a Boolean function that returns true if and only if there

remains more patches of P of multiplicity m.

o NextPatch(P,m), which returns the next element of PS(m), for 1 ≤ m ≤M.

As shown by Khaireddine et al. [11, 63, 94], the algorithm would look as follows:

void ProgramRepair(program P, specification R, testdata

T, int M) {

 bool incremented=true;

 while (incremented && not abscor(P))

 {

 P = UnitIncCor(P, R, M)

 }

}

programtype UnitIncCor (programtype P, specification R,

int M) {

 int mult=1;

 incremented = false;

 while (not incremented && mult <= M)

 {

 programtype Pp=P;

 initPatches(mult);

 while (not somecndtn (Pp, P) && MorePatches(P,

mult))

43

 {

 Pp = NextPatch(P, mult);

 }

 if somecndtn (Pp, P)

 {

 incremented = true;

 return Pp;

 }

 else

 {

 mult = mult+1;

 }

 }

}

5.4 Assessment of Precision and Recall

Since the generic algorithm is merely an iterative application of UnitIncCor(), the focus of

propositions will be on UnitIncCor(). According to Khaireddine et al. [63] the following

propositions are offered here with proof provided separately in Appendix A:

Proposition 5.4.1: Function UnitIncCor() has perfect recall, in the sense that if the

patch stream has a program that is strictly more-correct than P, then UnitIncCor() will

return in Pp a program that is strictly more-correct than P.

It should be noted that UnitIncCor(), as proposed does not retrieve all the patches

that are strictly more-correct than P; it only retrieves the first patch that it encounters.

Hence, the only guarantee that can be provided is that if there exists a patch Q in the patch

stream that is strictly more-correct than P, then UnitIncCor() will necessarily return in Pp

a program that is strictly more-correct than P (this could be Q or it could be another patch

that it encounters before Q).

Proposition 5.4.2: Function UnitIncCor() has perfect precision, in the sense that if

incremented is set to true then Pp is strictly more-correct than P.

44

The perfect precision and perfect recall that the relative correctness algorithm has

based on the propositions above make it a better approach to patch validation than the

approaches prone to loss of precision, loss of recall or both that are traditionally utilized by

most existing program repair tools.

5.5 Introducing Parallelism

The UnitIncCor() and ProgramRepair() functions that were discussed above are aimed at

sequential execution. Optimization of the algorithm for parallel machines requires changes

to the algorithm to look as follows:

void ParallelProgramRepair(programtype P, specification

R, testdata T, int M, bool stopOnAbsolute) {

 std::list<wrapperprogramtype> controllist;

 controllist.push_back(new

wrapperprogramtype(P,1));

 std::list<wrapperprogramtype>::iterator it;

 it=controllist.begin();

 while (it!=controllist.end())

 {

 int m=*it.getmultiplicitylevel();

 P=*it.getprogram();

 patchLocalization=localize(P,R,T);//fault

localization

 //If fix loci localization is used,

patchLocalization=localize(P) is good enough

 programtype[] Pp =

parInitPatches(m,patchLocalization);//Apply all patches in

parallel

 int jobNum = 0;

 int arrLen =

sizeof(Pp)==0?0:sizeof(Pp)/sizeof(Pp[0]);

 std::future<resulttype> resultarr[arrLen];

 while (jobNum<arrLen)

 {

 //The call to UnitIncCor asynchronous and

non-blocking (future-like datatype).

 //Next cycle will be triggered before

UnitIncCor returns.

45

 resultarr[jobNum] =

std::async(std::launch::async, []{ validate(Pp[jobNum], P,

R, T); });

 jobNum = jobNum+1;

 }

 jobNum=0;

 while (jobNum<arrLen)

 {

 //Here the call becomes blocking

 resultarr[jobNum].wait();

 resulttype

localresult=resultarr[jobNum].get();

 recordresult(Pp,localresult);

 if(stopOnAbsolute &&

abscor(localresult))

 {

 //result is absolutely correct,

abort execution

 return;

 }

 //Use the returned future value to

identify whether the program is strictly more correct

 //If it is, set multiplicitylevel to 1.

else, it is the current multiplicity level+1

 //If max multiplicity limit has not been

breached, find place in the list between it

 //and controllist.end() using binary

search in order to insert the new candidate for repairs

 int

multiplicitylevel=localresult.issmc()?1:m+1;

 if (multiplicitylevel<=M)

 {

 controllist.insert(bsearchInsert(localresult), new

wrapperprogramtype(Pp[jobNum],multiplicitylevel));

 }

 jobNum = jobNum+1;

 }

 it=controllist.erase(it);

 }

}

resulttype validate (programtype Pp, programtype P,

specification R, testdata T) {

 //Check whether the candidate is in relative

correctness relation

46

 //calculate fitness function (whether more tests

passed), control test count

 return new

resulttype(mc(Pp,P,R,T),ff(Pp,P,R,T),tc(Pp,P,R,T);

}

This solution does away with separation of UnitIncCor from ProgramRepair and

slices the process of program repair in a different way sharing localization information for

a given level of multiplicity between independent parallel executing nodes and grouping

similar complexity operations together to achieve higher level of synchronicity in result

generation and minimize the wait that happens on the result aggregation lines:

//Here the call becomes blocking

resultarr[jobNum].wait();

Implementations of this algorithm should also consider passing the results of

original test validation down to the parallel nodes in addition to localization information,

to minimize redundant calculations.

An example of the high-level algorithm implementation for a loosely-coupled

parallel environment like an HPC grid looks as follows:

1) Pre-processing and information extraction

 a) Retrieve information about all potential points of mutation application

and subdivide it into work buckets.

 b) Assign a number to each bucket and store the mapping in a location

accessible to cluster control

2) Generate phase /**Parallel**/ on each process:

 a) Get the work order number from cluster control.

 b) Retrieve work bucket with that number.

 c) /**Parallel**/ on each thread:

 i) Take next mutation

 ii) Apply it to the code based on information in the work bucket

47

 iii) Store mutant candidate P’.

3) Validate phase /**Parallel**/ on each process:

 a) Get the work order number from cluster control.

 b) Retrieve candidate with that number.

 c) Check the shared database for the serialized version of the original

execution run with the assigned tests. If missing - perform the run and cache serialized

version in the database for other threads to use.

 d) /**Parallel**/ on each thread:

 i) Take next test

 ii) Perform test run execution on the candidate

 iii) Compare test execution for P’ to P. Check whether the number

of tests passed have increased; whether the tests passing for P’ are a subset of tests passing

for P.

The applied approach is illustrated on Figure 5.1 and Figure 5.2.

Generate Mutant 1

Generate Mutant 2

Generate Mutant n

Analyze code
structure

...

Validate Test Suite
1.1

Validate Test Suite
1.2

...

Validate Test Suite
1.m

Result 1.1

Result 1.2

...

Result 1.m

Validate Test Suite
2.1

Validate Test Suite
2.2

...

Validate Test Suite
2.m

Result 2.1

Result 2.2

...

Result 2.m

Validate Test Suite
n.1

Validate Test Suite
n.2

...

Validate Test Suite
n.m

Result n.1

Result n.2

...

Result n.m

D
at

ab
as

e

Figure 5.1 Schematic drawing of a possible parallel implementation.

Source: [95].

48

Start
Scan project structure
and available mutants

Compute Cartesian
product of all available

test/mutant
combinations

Assign an order number
to each activity and store

the associated
parameters in the

database

Submit the job array task
with Cartesian product

count to HPC Grid Control

End

HPC Grid Controller
executes the next step in parallel,
launching multiple orders at once

Get a command from HPC
with an assigned task

order number

Retrieve launch
parameters from

database based on
received order number

Is a cache
of original test results for
this program available in

the DB?

Compute the original
results and store a copy in
the DB for other threads

to use

No

Retrieve the original
results

Yes

Execute the assigned test
or group of tests for the

mutant, running as many
threads as there are tests.

Analyze the test results
for coverage and

correctness.

Record the results for
next cycles in the global

flow/end user

Figure 5.2 Expanded view of validate stage flow for a single execution path, when

launched on HPC Grid.

Source: [95].

49

CHAPTER 6

AN INSTANCE OF THE GENERIC ALGORITHM: CORRECTNESS

ENHANCER

6.1 Specification of Correctness Enhancer

6.1.1 Design Goals

As described in Zakharchenko et al. [95] efficiently addressing the problem of correctness

enhancement without artificial limitations requires the tool to follow a set of design goals:

 Reliance on the concepts of relative correctness allowing to gradually approach a

solution through a set of relatively more correct solutions, as compared to the all-

or-nothing approach that is based on absolute correctness. The need to get an

absolutely correct result is understandable from a usage perspective, however, is

not really usable for driving the process as it does not provide any feedback to the

code on whether the applied change was making the results any better, leading to

an essentially stateless trial-and-error, whereas with relative correctness, such

feedback is provided.

 Compatibility with existing mainstream commercial software development

practices and reliance on commonly available sources of program specifications

and ability to integrate into existing systems and pipelines. Keeping the tool

compatible with existing mainstream sources of information allows real-life

applicability beyond the limits of a single synthetic dataset.

 Modular design and open source nature of the tool. There should be no locking into

any black-box or vendor components and individual components of the tools have

to be easily replaceable with their analogues, if such change is considered

beneficial. This way the risk of dependencies having poor support is mitigated and

the functionality of the tool is easy to expand, as needed.

 High level of optimization for massively parallel execution. The task at hand

requires significant computing resources, which only a major cluster, HPC grid or

cloud can provide and therefore the tool should be optimized to be able to achieve

maximum efficiency on the distributed architecture having hundreds and

potentially thousands of independent computing nodes with various levels of

coupling between them.

50

6.1.2 Specifications in Practice

In practical software development, the business and technical specifications of a software

product are the source of both specification R and space description S in which the program

operates. Given through some projection, usually through a set of user stories or JIRA

tickets, such specifications are not easy for correct machine-comprehension in their initial

form. However, as a part of the normal development process done based on this source of

information by human developers the specifications get transcribed into standard unit,

integration and regression tests. Such tests, intended mainly for automated verification of

key specifications of the software over time, provide an easily usable source of

specifications R for the program P. Integrated with automated CI/CD pipelines, synthetic

monitoring tools or generally available to the developer for manual execution, these tests

are capable of automatically detecting a fault in the system, when it occurs and allow for

correctness enhancement procedures to take place as a part of corrective maintenance of

program, where a fault is introduced at a later stage through subsequent development of

additional features.

The corrective maintenance based on specifications provided through tests is not

limited to late-stage development activities, as the continuous rise of popularity of test-

driven and behavior-driven development has resulted in machine-readable specifications

often being created prior to the program itself thus expanding the potential applicability of

correctness-enhancing techniques and allowing for their application as a part of the early

stages of the development process, in theory starting with the program P0 being nothing

more than just abort().

51

As a result, language-specific unit-tests are the chosen source of specifications for

Correctness Enhancer.

6.2 Design of Correctness Enhancer

6.2.1 A Practical Implementation Analysis - Approaching the Issue

Building up on the theoretical foundation and creating a practical implementation requires

answering the following questions:

1. Choice of programming language.

2. Target of application

3. Program repair approach

6.2.2 Programming Language Choice

The question of programming language choice is not critical, when discussing the details

of a generic algorithm. It is, however, one of the first questions to come up, when the

problem switches from theoretical applications to practical implementation, both in the

context of the language choice of the practical implementation as well as in the context of

the language choice of the target benchmarks and programs.

Although the algorithm implementation does not necessarily need to be done in the

same programming language that is being targeted for repairs, doing so can simplify the

deployment and maintenance in production environments, by avoiding dependencies that

would not be present otherwise. Even if the implementation language is different from

target language, in order to maximize the usability and applicability of any practical

framework implementations, they have to be done using one of the mainstream

programming languages.

52

Considering that the choice of the target languages is also tied to usefulness of the

resulting implementation it is driven mainly by how mainstream the language is and the

availability of high-quality benchmarks in that language. The survey of the current

languages [75, 76] highlights C, C++, C#, Java, Python and JavaScript as the potential

candidate languages to focus on. In Appendix Gazzola et al. [4] report data on 25 different

tools. Out of them, 13 are focused on C-based languages, 9 are focused on Java (with 1

supporting Habanero in addition to Java), 1 on Python, 1 on PHP and 1 on Eiffel. Such

breakdown suggests that from the perspective of comparability, any practical research

should be focused on C-family or Java, as the remaining languages do not show a sufficient

representation in the R&D field of program repair. Upon further analysis, Java is

determined to be a better candidate, as, while being a universal language, commonly

encountered in all layers of programming from backend to web and being one of the most

widely used programming languages for commercial software development, Java also has

a significant benefit shared with the scripting languages of being compiled to an

intermediate language (bytecode) instead of machine code, this way leaving the technical

possibility to perform automated analysis and mutation even if the source code is absent.

In addition, its property of relying on garbage collectors for automated memory

management makes its structure less complex to analyze and mutate, as compared to C and

C++ thus reducing potential issues with mutant generation and increasing the efficiency of

the approaches applied. There are however, no technical obstacles, preventing eventual

creation of universal program repair tools targeting multiple languages at once.

With Java being selected as the target language, Junit becomes the selected source

of specifications.

53

6.2.3 Program Repair Approach

As discussed in Chapter 2, the program repair approaches currently utilized in program

repair industry are subdivided into being generate and validate or semantic driven

approaches. Considering that semantic-driven approaches are better geared towards

targeting specific patterns in the source code, generate and validate approaches are a much

better foundation to test the benefits of practical application of program repair theory.

Generate-and-validate approaches are quite popular in the industry, however, the bane of

their existing implementations is that, as shown by Khaireddine et al. [11], without

applying the concept of relative correctness, program repairs methods and tools expose

themselves to a risk of poor efficiency, loss of precision, and loss of recall and using an

existing mutator tool as the source of patch generation [10, 59] and rebuilding it based off

new theoretical and software architecture approaches, while leveraging its collection of

mutators to keep the results comparable is a feasible approach. MuJava

(https://cs.gmu.edu/~offutt/mujava/ Retrieved on November 20, 2021) [96] is a potential

good candidate of such tool.

6.2.4. MuJava

The intent and purpose of muJava is the opposite of what was being pursued in this

research: instead of trying to fix the code that is not operational, muJava is designed to

introduce faults into the operational code in order to test the ability of existing test suites

to detect changes that could have been accidentally done by the developer. In order to

perform this work, out of the box the tool is coming with two modes of operation: a strictly

single-threaded mode allowing to apply the entire code base of mutants one by one and a

test running mode allowing to take any single test case and execute it against all mutants

https://cs.gmu.edu/~offutt/mujava/

54

that have been generated. With most programs in practice having more than one test and a

large mutation surface, neither of the two modes are particularly applicable for the task of

correctness enhancement, however the set of mutant generators that come with the tool is

fully salvageable and easily expandable, determining the next steps of the research being

conducted.

6.2.5. The New Patch Validation

When assessing, whether a program is operating in line with its specifications, the concept

of absolute correctness is usually applied: either all tests pass and the program meets

corresponding specifications or some of the tests fail and the program is considered faulty

until all of its issues are resolved. While such definition is good enough for a common,

business definition of software meeting or not meeting expectations, the change, necessary

to go from the state "the program is faulty" to the state "the program is operational again"

is multi-step and often requires days and weeks of qualified work by software development

teams in order to make the transition. As a result, the level of granularity that is provided

by absolute correctness is insufficient and therefore, in this work the program’s correctness

is evaluated through the prism of getting a program to a "strictly more correct" state, once

mutation is applied. In practice it translates to evaluating a program P’ against three

separate criteria: whether mutated program P’ is more correct with respect to P (meaning

that all tests that pass for P pass for P’), a fitness function like approach, which, in its basics,

is looking at the percentage of tests that have passed successfully in the test run on program

P, comparing it to the percentage of tests that were successful for the mutated program P’

and verifying that there has been no drop in the number of testcases executed between the

two program states.

55

The tool, while being capable of fixing both single-site and multi-site faults, might require

traversing the entire search space for a multi-site fault, if the intermediary results required

to fix it do not make the program relatively more correct, however, in such scenarios it can

often give suggestions on disabling part of the functionality, which can serve as an indicator

of potential problematic areas for manual debugging.

6.2.6 Adjusting to Changes in Project Structures With Levenshtein Distance-based

Criterion

In practical software development a project structure is typically not standardized and can

wary greatly depending on the project itself and the mixture of programming languages,

technologies and tools being utilized. For the majority of automated program repair tools,

the target software project structure is normally specified through a set of configurations.

These configurations, however, in addition to being unique for each project due to lack of

uniformity, also require continuous redundant maintenance and adjustment for any kind of

continuous deployment alongside the project, as they need to reflect any and all ongoing

changes to the project structure, which routinely happens as a part of refactoring, clean-

ups, technical debt remediations and changes in the underlying technologies, which reflect

in the project structure. Manual maintenance of such configuration-based automation is

cumbersome and prone to mistakes. Although automatic rescanning of the project structure

can get the adjustments factored in, it can be inconvenient if configuration is used to limit

the patch generation with subsequent validation to a selected group of files only.

Researching the problem of merging and automatically auditing hierarchical data

structures in medical domain, Zakharchenko et al. [97, 98] have come up with a design of

an automated-comparison framework implemented in the form of a software tool, which,

through reliance on a combination of partial-string matching and application of

56

Levenshtein distance-based criterion was successful in detecting similarities and giving

suggestions in merging large complex hierarchical data structures. Realizing that the task

of automatically adjusting to changes in project structure is dealing with a related problem,

this framework has been expanded upon in the Correctness Enhancer tool.

Using the combination of unqualified class name and information about the

expected hierarchical placement in the project structure, in case a precise match is not

found, Correctness Enhancer is looking for a class that is similarly-named, but has the

smallest deviance in the hierarchical path (measured through the smallest Levenshtein

distance) from the original described in the configuration. This enhancement allows it to

operate from an imprecise or outdated configuration, automatically dealing with package

renaming and regrouping of files within projects without a need to rescan the project and

rebuild the configurations, dealing with the most common change scenarios. Introducing

new files, however, would still require adjusting the configurations or performing a new

scan to include them in the scope of the tool.

6.3 Implementation of Correctness Enhancer: Introducing Parallelism

6.3.1. Reasons for Parallelism

In its general generate and validate form, the task of program repair is traversing the entire

field of possible candidate repair programs first generating and then validating each of

them. Assuming that the program is prone to generate an average of m mutations that can

be applied over n points in code, with the code (and each mutant) covered by t tests, the

task of executing a generate and validate program repair becomes O(m*n) for generate and

O(m*n*t) for validate portion of task. While m remains relatively constant and is mutation-

57

system defined, for large commercial projects the number t runs in thousands and the

number n grows at least proportional to the number of lines of code being written, preparing

the ground for combinatorial explosion. While the optimal approach would be reducing the

complexity of the algorithm, such optimization is not always possible. A more common

practical approach to dealing with similar tasks is transformation of the code architecture

and the underlying algorithm to reduce dependencies between different parts of the

algorithm and allow their simultaneous parallel execution on a highly parallelized

environment, such as GPU or cluster, essentially dividing the total number of sequential

steps being needed to compute the problem by the number of threads being utilized, with

that number easily reaching thousands on the modern hardware. While the GPU-based

approaches are especially common, due to wider hardware availability, the major limitation

of such approaches is that they are suitable for tasks with high computational and low data

demands as transfer of the data between main memory and GPU memory is extremely

slow. The task of generate and validate program repair though is both computation and

data-intensive and as a result is a bad candidate for GPU-driven techniques. However, it

still remains a perfect candidate for cluster and HPC-based computing [99] as well as APU

units, which use regular computer memory for graphic computations, thus making it

possible to achieve a significant boost in performance and ability to scale horizontally, if

the program repair tool’s architecture is properly designed to support not just

multithreaded, but also distributed usage, potentially with elements of service oriented

architecture.

In generate and validate process, both the generate part and the validate part of the

approach can be built to efficiently handle parallel execution. For generate part parallelism

58

can be injected by either approaching each generate task as an independent and isolated

task or by sharing initial code analysis to make the process of generation more efficient.

For the validate part, the naive approach of just testing each mutant separately in an isolated

environment is often not cost effective and provides insufficient performance, however, as

long as isolation is achieved between different runs and utilization of shared resources is

limited, each individual run can be further subdivided into runnable sub-tasks that can be

executed concurrently.

6.3.2. Implementation of Parallelism

In order to apply that approach in practice, a fork of the original muJava repository has

been created with the new tool named "Correctness Enhancer" in order to reflect its

intended usage. As per classification from Gazzola et al. [4], this tool is a general purpose

tool that utilizes fix locus localization, however, by design, since it relies on static code

analysis to identify fix loci it can be used both as a standalone solution and as a source of

recommendations deployed alongside the development environment.

The spin-off version was redone to support the parallelism described above both

via GUI (Figure 6.1, Figure 6.2) and as a command-line tool. This allowed patch generation

and validation to be performed for simplistic faults, however, as the tool was going through

the entire search space which offered thousands of mutants running thousands of tests and

the space being a Cartesian product between them, generation of all possible mutants for

defects4j test suite was taking days and validation of them weeks even on relatively modern

personal machines. As a result, the code was further enhanced to support HPC-driven

execution, breaking the validate process into subtasks going beyond test suites to the

individual test level thus providing a significant increase of horizontal scalability, bringing

59

an almost linear boost in performance directly correlated with the increase in the number

of cores allocated for the task.

Figure 6.1 Correctness Enhancer has retained MuJava’s mutation mode screen in order to

allow triggering mutant generation from UI locally, in addition to being able to do it

through the console. Similar to MuJava’s interface, File column on the left side lists the

files of the project where mutation is possible and Method-level and Class-level mutants

on the right show available method and class mutations.

Source: [95]

The switch of the tool to massively parallel grid-based execution, deployed on an

HPC grid (using NJIT’s Kong HPC cluster, which has now been replaced by Lochness

[99]) has highlighted two issues:

1. Overloading of the control node feeding work to sub-nodes. By splitting the

task into small sub-tasks the issue of control queue overflow has been

encountered, where the grid was not able to efficiently operate with millions

of subtasks that were assigned to it. This problem has been resolved by

adjusting the design of the program for the control node of the grid to pull

the work from task-arrays instead of the code pushing it to the node, having

a minor penalty on performance, but achieving stable grid operation.

60

2. The common issue of massively parallel execution is dealing with a

bottleneck of combining the results from all processors into a single place.

For Correctness Enhancer, the standard approach of distributed applications

has been leveraged, overcoming this limitation by using an Apache Derby

database (https://db.apache.org/derby Retrieved on November 20, 2021) as

a shared collection endpoint.

Figure 6.2 Correctness Enhancer has mostly retained the original UI interface of muJava

for local execution on a machine, adding option to control parallelism on validation (up to

256 threads as shown on the screenshot) and using "Live Mutants" to list results that are

strictly more correct than the original or absolutely correct, however, main mode of

operation is through console.

Source: [95]

https://db.apache.org/derby

61

The code below shows a bash shell launcher for the SGE-based cluster that

illustrates both solutions:

001 #!/bin/bash

002 for i in "$@"

003 do

004 case $i in

005 -tf1=*|--testfilter1=*)

006 testFilterFile1="${i#*=}"

007 shift # past argument=value

008 ;;

009 -tf2=*|--testfilter2=*)

010 testFilterFile2="${i#*=}"

011 shift # past argument=value

012 ;;

013

014 -rs=*|--rangestart=*)

015 rangestart="${i#*=}"

016 shift # past argument=value

017 ;;

018 -re=*|--rangeend=*)

019 rangeend="${i#*=}"

020 shift # past argument=value

021 ;;

022

023 -db2=*|--dbconfig2=*)

024 dbconfig2="${i#*=}"

025 shift # past argument=value

026 ;;

027 -db1=*|--dbconfig1=*)

028 dbconfig1="${i#*=}"

029 shift # past argument=value

030 ;;

031

032 -mf1=*|--mutationfilter1=*)

033 mutantFilterFile1="${i#*=}"

034 shift # past argument=value

035 ;;

036 -mf2=*|--mutationfilter2=*)

037 mutantFilterFile2="${i#*=}"

038 shift # past argument=value

039 ;;

040

041 -db=*|--dbcontrol=*)

042 dbcontrol="${i#*=}"

043 shift # past argument=value

62

044 ;;

045

046 -l=*|--launcher=*)

047 launcher="${i#*=}"

048 shift # past argument=value

049 ;;

050

051 -p=*|--program=*)

052 program="${i#*=}"

053 shift # past argument=value

054 ;;

055 -m=*|--mode=*)

056 mode="${i#*=}"

057 shift # past argument=value

058 ;;

059

060 -c1=*|--config1=*)

061 config1="${i#*=}"

062 shift # past argument=value

063 ;;

064 -c2=*|--config2=*)

065 config2="${i#*=}"

066 shift # past argument=value

067 ;;

068

069 -o=*|--output=*)

070 output="${i#*=}"

071 shift # past argument=value

072 ;;

073 -e=*|--error=*)

074 error="${i#*=}"

075 shift # past argument=value

076 ;;

077

078

079 *)

080 # unknown option

081 ;;

082 esac

083 done

084

085 queues=(‘short’ ‘medium’ ‘long’ ‘short’ ‘medium’)

086 queuelen=${#queues[@]}

087

088 if [[$mode == *"list"*]]

089 then

090 for ((i=$rangestart; i<=$rangeend; i++))

63

091 do

092 temp="${program} mode=\"${mode}\"

configurationmode=\"file\"

configurationpath=\"${config1}${i}${config2}\"";

093 echo "qsub -l mem_free=1.0G -q

${queues[i%$queuelen]} ${temp}"

094 qsub -l mem_free=1.0G -q

${queues[i%$queuelen]}<<MARKER

095 ${temp}

096 MARKER

097 done

098 exit

099 elif [[$mode == *"test"*]]

100 then

101 if ["${dbcontrol}"]

102 then

103 for ((i=$rangestart; i<=$rangeend; i++))

104 do

105 #echo "Getting ready to cat

${dbconfig1}${i}${dbconfig2}"

106 cat ${dbconfig1}${i}${dbconfig2} | while

read line

107 do

108 temp="${launcher} \"${program}\"

mode=\"${mode}\" configurationmode=\"file\"

configurationpath=\"${config1}${i}${config2}\"";

109 echo "qsub -t 1-${line} -l

mem_free=1.0G -q ${queues[i%$queuelen]} ${temp}"

110

111 qsub -t 1-${line} -o "~/logs" -e

"~/logs" -l mem_free=1.0G -q ${queues[i%$queuelen]}<<MARKER

112 ${temp}

113 MARKER

114

115 done

116 done

117 elif [-z "${mutantFilterFile1}"]

118 then

119 for ((i=$rangestart; i<=$rangeend; i++))

120 do

121 numoflines=wc -l

${testFilterFile1}${i}${testFilterFile2} | awk ‘{print $1;}’

122 echo ${numoflines}

123

124 cat

${testFilterFile1}${i}${testFilterFile2} | while read line

125 do

64

126 temp="${program} mode=\"${mode}\"

configurationmode=\"file\"

configurationpath=\"${config1}${i}${config2}\"

testfilter=\"${line}\"";

127 echo "qsub -l mem_free=1.0G -q

${queues[i%$queuelen]} ${temp}"

128

129 qsub -l mem_free=1.0G -q

${queues[i%$queuelen]}<<MARKER

130 ${temp}

131 MARKER

132

133 done

134 done

135 else

136 for ((i=$rangestart; i<=$rangeend; i++))

137 do

138 numoflines=$(wc -l

${testFilterFile1}${i}${testFilterFile2} | awk ‘{print

$1;}’)

139 echo ${numoflines}

140 numoflines2=$(wc -l

${mutantFilterFile1}${i}${mutantFilterFile2} | awk ‘{print

$1;}’)

141 echo ${numoflines2}

142 echo $((${numoflines}*${numoflines2}))

143

144 cat

${testFilterFile1}${i}${testFilterFile2} | while read line

145 do

146 cat

${mutantFilterFile1}${i}${mutantFilterFile2} | while read

line2

147 do

148 temp="-t 1-

$((${numoflines}*${numoflines2}))"

149 if [-n "${output}"]

150 then

151 temp+=" -o ${output}"

152 fi

153

154 if [-n "${error}"]

155 then

156 temp+=" -e ${error}"

157 fi

158 temp+=" ${program} mode=\"${mode}\"

configurationmode=\"file\"

65

configurationpath=\"${config1}${i}${config2}\"

testfilter=\"${line}\" mutationfilter=\"${line2}\"";

159 echo "qsub -l mem_free=1.0G -q

${queues[i%$queuelen]} ${temp}"

160

161 qsub -l mem_free=1.0G -q

${queues[i%$queuelen]} <<MARKER

162 ${temp}

163 MARKER

164 done

165 done

166 done

167

168 fi

169 elif [[$mode == *"mutate"*]]

170 then

171 if ["${dbcontrol}"]

172 then

173 for ((i=$rangestart; i<=$rangeend; i++))

174 do

175 #echo "Getting ready to cat

${dbconfig1}${i}${dbconfig2}"

176 cat ${dbconfig1}${i}${dbconfig2} | while

read line

177 do

178 temp="${launcher} \"${program}\"

mode=\"${mode}\" configurationmode=\"file\"

configurationpath=\"${config1}${i}${config2}\"";

179 echo "qsub -t 1-${line} -l

mem_free=1.0G -q ${queues[i%$queuelen]} ${temp}"

180

181 qsub -t 1-${line} -o "~/logs" -e

"~/logs" -l mem_free=1.0G -q ${queues[i%$queuelen]}<<MARKER

182 ${temp}

183 MARKER

184

185 done

186 done

187 else

188 for ((i=$rangestart; i<=$rangeend; i++))

189 do

190 cat

${mutantFilterFile1}${i}${mutantFilterFile2} | while read

line

191 do

192 temp="${program} mode=\"${mode}\"

configurationmode=\"file\"

66

configurationpath=\"${config1}${i}${config2}\"

mutationfilter=\"${line}\"";

193 echo "qsub -l mem_free=1.0G -q

${queues[i%$queuelen]} ${temp}"

194

195 qsub -l mem_free=1.0G -q

${queues[i%$queuelen]}<<MARKER

196 ${temp}

197 MARKER

198

199 done

200 done

201 fi

202 else

203 echo "Mode not recognized"

204 fi

205

The list of queues on line 85 lists the queues on which the jobs can be executed.

Since the cluster being utilized had an uneven distribution of resources between queues,

the queues that had more resources available were included more than once with a basic

round-robin running against this list on all execution lines (94, 111, 129, 161, 181 and 195)

giving a roughly similar computation end time. The execution through this launcher had

the modes list, mutate and test with list doing the initial environment preparation, mutate

running the patch generation and test running the test validation. Control of what gets

submitted for execution is possible either from files generated by list option or by

instructing the grid to assign a unique sequence number to each job and correlating it with

the database instructions (the portions of code that get triggered if dbcontrol is not null.)

While this launcher records logs from each execution for further analysis (the -o and -e

options), most of the launchers that were used were setting the target directory as /dev/null,

as for heavy runs, due to the number of jobs being executed logs could hit the limit on the

maximum number of files in the same directory, destabilizing the process. The launcher

67

above also reflects both modes of operation: the one with task array utilization (seen on

lines 111, 181) and the one with direct job triggering (seen on lines 94, 129, 161, 195.)

Inside the code, the Cartesian product used to control all possible tasks is capable

of working with arbitrary number of dimensions, allowing further splitting into subtasks,

as necessary and it gets computed using Google guava’s cartesianProduct method:

01 MutationControl.Inputs[] valuesArray =

MutationControl.Inputs.values();

02 List<Set<String>> cartesianInput=new ArrayList<>();

03 for(MutationControl.Inputs s:valuesArray)

04 {

05 if(!modeTypes.containsKey(s.getLabel()))

06 {

07 HashSet<String> fillerList=new

HashSet<String>();

08 fillerList.add("");

09 modeTypes.put(s.getLabel(),fillerList);

10 cartesianInput.add(fillerList);

11 }

12 else

13 {

14

cartesianInput.add(modeTypes.get(s.getLabel()));

15 }

16

17 }

18 Set<List<String>>

product=Sets.cartesianProduct(cartesianInput);

19

20 for (List<String> entry : product) {

21 HashMap<String, String> property=new HashMap<>();

22 for(int i=0;i<entry.size();i++) {

23

property.put(valuesArray[i].getLabel(),entry.get(i));

24 }

25 localList.add(new ConfigurationItem(property));

26 }

27 if (!localList.isEmpty()) {

28 DatabaseCalls.insertConfiguration(localList);

29 }

68

The description of the tool’s companion files and configurations, as well as a link

to the repository containing full source code are provided in Appendices B and C.

69

CHAPTER 7

EMPIRICAL ASSESSMENT

7.1 Performance on Standard Benchmarks

In order to validate the tool, it is executed in a clustered environment against the Chart

program set of Defects4j faults database, which represents the JFreeChart

(https://www.jfree.org/jfreechart/ Retrieved on November 20, 2021) library. The faulty set

is used automatically, while the repaired set is only relied upon for manual evaluation of

the quality of suggestions provided by Correctness Enhancer. Throughout the experiment,

the NJIT’s Kong HPC cluster has been utilized with resource availability varying from 450

cores to almost 2000 cores at a time in parallel processing. A shared storage with several

TBs of free space available has been used to store the intermediate results as well as to host

an Apache Derby database, which was running on one of the cluster nodes and was used

for job coordination between nodes and the result storage.

7.2 Comparison: Fitness Function vs. Relative Correctness

The quality of the results is controlled by three basic criteria:

1) Whether the tests that pass on a mutant are a superset of the original set of tests

(the criteria of relative correctness.)

2) Whether the percentage of tests that have passed on a mutant is greater than on

the original program P (a fitness function ensuring the strictness of enhancements.)

3) Whether the mutant has the same or larger amount of tests executed as compared

to the original. This control is used to handle behavior of more complex tests suites, which

skip execution of some of the tests if the mutant behavior is identified as a major failure.

The first two are primary driving criteria, whereas the last criterion is an auxiliary

one helping remove abnormal edge cases from the result pool. It is worth highlighting that

https://www.jfree.org/jfreechart/

70

the correctness criterion utilized here is not a strict one on its own, however, it becomes a

strict one, when combined with the implemented fitness function, as long as auxiliary test

count control does not indicate major issue with the result. The fitness function

implementation is also allowing to establish ordering between relatively correct candidates,

allowing them to be pursued not in the order they were detected, but in the order better

aligned with the impact they make on the results. Figure 7.1 shows an example of such

verification applied to Chart group of programs from Defects4j testset.

Considering that an elementary fault with high multiplicity will be ranked low until

its multiplicity layer is reached as atomic changes will not be producing more correct

results, Correctness Enhancer provides an alternative way to drive the process of mutant

validation using simulated annealing on top of the validation criteria described above.

When activated, the code will step back from ordering and check random candidates with

a given probability, improving the average case of converging on elementary faults of

multiplicity m, while reducing the recall for the normal operation.

The input for simulated annealing to walk through the space of Pn is the result of

the validation runs for the space of Pn-1, in which the degree to which the latest application

of mutation has refined the program and the combination of its stop-gap factors (the

strictness of refinement and the absence of test suit degradation) is quantified to produce a

single number as defined below, with simulated annealing used to find the global

maximum.

Higher bits Lower bits

Relative correctness percentage

on mutant application

Strictness of correctness

enhancement (fitness function)

Lack of drop

in testcases

7
1

Figure 7.1 A screenshot of a portion of the results demonstrating the checks applied. The results that have NO_DROP_IN_TESTCASES

returning false are results where test execution after mutation triggered abnormal program termination. While in this scenario relative

correctness criterion is also showing that something went wrong, it is theoretically possible to have a situation, where critical failure

happens in the part that is failing less critically in the original run and the auxiliary criterion allows to detect such situations. The

candidates returning true in CORRECTNESS_ENHANCED, RELATIVELY_MORE_CORRECT and NO_DROP_IN_TESTCASES

are strictly more correct with regards to specification provided by the test in TEST_NAME field, but, need to be evaluated in the context

of the entire set of specifications.

Source: [95]

72

7.3 Comparison: Correctness Enhancer vs. Other Tools

The effectiveness of the resulting program has been assessed against the defects4j software

faults dataset.

Table 7.1 Defects4j results comparison with other published tools [9, 100].
 Correctness Enhancer jGenProg jKali jMutRepair

Chart1 Fixed Patched, not fixed Patched, not fixed Patched, not fixed

Chart2 Patched - Relative

Chart3 Patched, not fixed

Chart4

Chart5 Patched, not fixed Patched, not fixed

Chart6

Chart7 Patched - Relative Patched, not fixed Patched, not fixed

Chart8 Patched - Relative

Chart9

Chart10

Chart11 Patched - Relative

Chart12 Patched - Relative

Chart13 Patched - Relative Patched, not fixed Patched, not fixed

Chart14

Chart15 Patched, not fixed Patched, not fixed

Chart16 Patched - Relative

Chart17 Patched - Relative

Chart18 Patched - Relative

Chart19 Patched - Relative

Chart20 Patched - Relative

Chart21 Patched - Relative

Chart22 Patched - Relative

Chart23 Patched - Relative

Chart24 Patched - Relative

Chart25 Patched - Relative Patched, not fixed Patched, not fixed Patched, not fixed

Chart26 Patched - Relative Patched, not fixed Patched, not fixed
Note: The results for other tools were differentiated based on the criteria of the resulting solution

being similar to one that a human developer would create (Fixed) or just meeting the rules provided (patched,

not fixed.) Reliance on relative correctness has created a new category of results (Patched - Relative), where

the end result is not necessarily fully conforming to all rules, but it is conforming to all rules that the input

does, as well as to some additional rules that the original input did not conform to or is, in other words, strictly

more correct.

Source: [95]

This dataset consists of six programs with multiple variations of seeded faults, as

well as their corrected versions. The calculations are done on the first program Chart out

of 6 available in the database - the JFreeCharts library. This library is offered in 26 faulty

73

variations in the defect4j database, giving a sound sample to validate the tool on. The

results compared against other industry-leading tools are provided in the Table 7.1.

It is worth noting that in order to maintain comparability with other tools in the

industry, the table reports the quality aspect of the result, not the quantity one, as most of

the results in the field are reported in the form of at least a single candidate repair being

found for program being repaired, whereas Correctness Enhancer was able to provide

multiple repair candidates for each case that was reported as Patched in the Table 7.1.

74

CHAPTER 8

LESSONS LEARNED

8.1 Theoretical Lessons: The Need for Theoretical Foundations

As can be easily noticed Correctness Enhancer was able to suggest some patches or fixes

for almost every task it encountered. The main driver behind it was application of the

relative correctness concepts, as it allowed to get a much higher degree of usability of the

results than what could have been achieved otherwise. Without the concept of relative

correctness, an absolute correctness criteria would have yielded just one fully positive

result - Chart1, where the code deficiency was strictly falling under one of the mutations

and was correctly patched in a single step, with the rest of the cases making the "issue not

resolved" category. Through application of relative correctness the mutation module was

able to produce a set of program P’ that while still not fully matching the specification (not

absolutely correct) have come closer to the specification than the original program P

(strictly more correct.) Table 8.1 illustrates that in practice - the SDL_4 mutation was able

to increase the percentage of successfully executed test cases under the

org.jfree.data.xy.junit.DataXYPackageTests test suite, whereas after mutation, the new

results were relatively more correct than the old results, having P’ pass more tests than P,

but not breaking any of the tests that P was passing. For a different test suite, specifically

org.jfree.data.xy.junit.VectorSeriesCollectionTests the same mutation has resulted in an

absolutely correct pass with all tests succeeding.

A deeper analysis of the results has demonstrated that some of the mutations that

Correctness Enhancer suggests are related not to the original, seeded fault, but rather to the

75

fact that the code had additional faults that were caused by the environment change,

specifically, by the test being executed on Java 12 instead of the earlier Java versions that

defects4j was designed for. Nevertheless, the code was able to suggest bug-related code

adjustments for every combination that was tried.

Table 8.1 Results Variation. A Subset of Results Demonstrating Both Absolute and

Relative Correctness Enhancements.

Mutated Class Test Name Original

Correctness

Index

Mutated

Correctness

Index

Correctness

Enhanced

Relatively

More

Correct

No Drop in

Testcases

Mutation Type

org.jfree.data.

time.TimeSer

iesCollection

org.jfree.chart.j

unit.ChartPack

ageTests

99 100 true true true SDL_31

org.jfree.data.

time.TimeSer

iesCollection

org.jfree.chart.j

unit.JFreeChar

tTests

91 100 true true true SDL_31

org.jfree.data.

xy.VectorSeri

esCollection

org.jfree.data.x

y.junit.VectorS

eriesCollection

Tests

75 100 true true true SDL_4

org.jfree.data.

xy.VectorSeri

esCollection

org.jfree.data.x

y.junit.DataX

YPackageTest

s

96 97 true true true SDL_4

org.jfree.data.

gantt.TaskSer

iesCollection

org.jfree.data.g

antt.junit.Task

SeriesCollectio

nTests

95 100 true true true SDL_104

org.jfree.data.

gantt.TaskSer

iesCollection

org.jfree.data.g

antt.junit.Data

GanttPackage

Tests

96 100 true true true SDL_104

Source: [95]

76

The tendency to remove functionality as a way to pass the required tests is not novel

for the repair tools, however it allows to highlight the pathways of code execution, which

have the impact on the overall code failure - an information, which, in absence of the full-

blown solution will allow for simplified manual debugging and operation as a helping tool

in the traditional DevOps stack.

8.2 Practical Lessons: The Use / Impact of Computing Power

As any manual process, the process of software development is theoretically automatable

with the eventual evolution possibly leading to a situation, where the program development

is done not by successive refinements, but by successive correctness enhancements [93]

with developers being responsible for maintaining specification R in a machine-readable

format and the computers doing the development of program P from the stage of

P:{abort()} into a successive stage of relatively more correct P’->P’’->...->P(n) programs

with P(n) being the minimal complexity program refining the specification R and being

absolutely correct with regards to it. While the computational requirements needed to

implement this vision are outside of reach for efficient execution on today’s machines, the

program repair, which is a subset and the first milestone of this vision has significantly

lower requirements and can be tackled even with the computing power that is provided

through HPC grids and cluster computing today.

Given that the algorithm being utilized is computationally intensive and massively

parallel systems have to be utilized for execution, Correctness Enhancer is relying on

splitting the work into multiple tiny subtasks optimized for loosely coupled massively

parallel execution. Integrated into job control on an HPC grid it is able to try all possible

77

combinations with its capacity to try different options only limited by the set of mutations

that it is aware of and the time spent to obtain the result.

The tool, however, is just the first milestone in creating a practical parallelized

implementation of the relative-correctness-based automated program repair framework.

What the program offers right now is transformation from P to P’ with a validation of

results after the mutation has been applied. The program can easily use the resulting P’ to

generate P’’, P’’’, etc. however, the major limitation that is currently encountered is the

execution time of the validation run. The amount of computation time spent on validating

is equivalent to the number of all possible mutations that the program is able to apply

multiplied by the computation time of a single end-to-end test run. This task is highly

parallelizable and in theory a sufficiently powerful computer would be able to execute all

possible combinations in parallel with the worst case scenario having a computation time

of a single longest test suite run and a theoretical limit of a single longest test run.

Figure 8.1 P to P’ surface of JFreeCharts Charts1b variation.

78

8.3 Outstanding Research Questions

Based on the review of the results, only a tiny fraction of mutants appears to yield

correctness enhancement suggesting that a less resource-intensive approach is possible, It

may be worthwhile to investigate ways to identify and prioritize validation of those

mutation operators that enhance correctness. It is conceivable that these mutants depend

on the specification and on the nature of the failure; subject to future research.

The problem with applying the optimization is that the program does not have any

information about the impact of a certain mutation, before it is applied and, while P’’, P’’’,

P’’’’, etc. layer runs can rely on the information from P’ run (Figure 8.1 shows the input

surface for the P to P’ layer of Chart1 JFreeCharts program,) even the P’ run itself takes a

considerable amount of time to complete. A preliminary code flow analysis can be the

missing link that would allow to optimize the walk through the mutant space, keeping the

code oriented on fix loci localization, but prioritizing the locus based on fault localization.

Another option to make the program more efficient is to provide it with context

awareness. One of the key approaches to automating any solution is analyzing the way a

human would approach the task and implementing the same approach in an algorithm. With

the current approach in the code, the program takes every single mutation operation that it

knows and attempts to apply it to the code at hand, until it reaches the result. From a purely

theoretical perspective, if the number of transformations that the tool is aware of is

increased to cover all possible single step transformations in a software development

language and allowed to group them into chains the program would eventually find the

solution to any problem at hand. However, this is not the way a human developer would

approach the problem, as while the direct application of code patch that would fix the fault

is the only way of getting more correct software, a human developer does not go through

79

all possible combinations of the code that could be applied, using a much smaller set of

transformations specifically directed at increasing the competence domain of the code. In

order to drive this decision-making process, a human developer relies on two main sources

of information:

1) The knowledge about specifics of the target programming language. Letting the

program "learn" the typical constructs of a programming language can significantly help

in increasing efficiency of the patches it suggests.

2) The knowledge about the target competence domain of the program being fixed.

The availability of that knowledge to the program is limited and only partially reflected in

unit and regression tests, however, newer, more advanced methodics coming with

Behavior-Driven Development help to bridge that gap by providing additional insights into

what is expected from the program, going beyond specific pairs of input and output values

and provide additional information about functions behind them.

80

CHAPTER 9

CONCLUSION

9.1 Summary

The field of automated program repair is still a developing one. This dissertation has

contributed to this field, exploring the following important research topics:

1. Expanding on the framework of relative correctness to offer a new approach to

program repair through the framework of relative correctness.

2. Optimizing application of massively parallel approaches in the field of program

repair and using the results of the analysis in a practical implementation.

3. Addressing issues of integration and usability of program repair in production

environments.

4. Providing tools to support automated program repair research and utility.

Combining the outcomes of the research made it possible to explore and obtain positive

answers for questions that would otherwise be beyond reach.

9.2 Assessment

Whereas this research talks about a number of practical approaches and enhancements, the

main contribution is considered to be tri-fold: providing a general purpose tool that can

serve as a platform for easy expansion, giving a practical implementation of the framework

of relative correctness and creating a tool optimized for massively parallel execution.

Whilst the latter has been attempted by Matsumoto et al. on GenProg applying

parallelization to individual runs and creating KGenProg [60], the approach presented in

Correctness Enhancer went deeper into splitting runs into sub-tasks to allow multiple

81

cluster nodes to work on as single run at the same time, achieving a higher level of support

for massive parallelism.

The threats to validity of the presented approach include the reliance on a limited

set of known mutators to find solution. This issue is partially addressed by keeping the set

of available mutants modularized, open-source and easy to expand, allowing users to plug

in custom mutators as seen fit. Another constraint is the high resource demand of the

solution, however, the computing power necessary for its efficient operation is easily

available on HPC-grids and clouds and is becoming available on regular user-level

desktops, eroding the concern with ongoing development in the industry.

9.3 Prospects

Further research can achieve additional improvements by switching from the breadth-first

search walking through mutations layer by layer to a hybrid one that can interrupt execution

of the current layer of mutation to jump to a perspective candidate that is a layer deeper,

essentially allowing to explore a chain of k atomic changes to process a highly promising

fault with multiplicity n+k before finishing the lookup among faults with multiplicity n,

theoretically allowing better convergence and faster best and average cases, subject to

further research.

Indicating a potential for expanding the applicability of the tool, some authors [101-

104] have highlighted the vector of application security as a potential target of program

repair. Whereas addressing some of the security concerns like execution time of different

branches of code execution [104], although doable with a general purpose tool like

Correctness Enhancer, might require specialized modules for validation and analysis

82

additional security-specific properties recorded alongside general program specifications

[103] or a combination thereof to achieve a sufficient level of efficiency, other security

flaws like OWASP top 10 vulnerabilities [101, 102] are potentially addressable using tools

like Correctness Enhancer without any further changes and modifications to the tool

structure, provided that the testing coverage is sufficient to properly define these security

flaws as faults under the program specifications and the set of mutators being used is

sufficient.

83

APPENDIX A

PROOF OF PERFECT PRECISION AND PERFECT RECALL

A.1 Proof of Perfect Recall

In order to prove that UnitIncCor() has perfect recall [63], provided below is a proof that

the following Hoare formula is valid in Hoare’s deductive logic:

v: {(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P)}

m=1; inc=false; Pp=P;

while (!inc && m<=M)

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

else {m=m+1;}}//try higher multiplicity

{Pp ⊐ R’ P}.

Proof: Applying the sequence rule to v, with the following intermediate predicate

int:

(∃m : 1 ≤ m ≤ M : ∃Q ∈ PS(m) : Q ⊐ R’ P)

∧m = 1 ∧ ¬inc ∧ Pp = P

yields the following lemmas:

v0: {(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P)}

m=1; inc=false; Pp=P;

{(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P) ∧ m = 1 ∧ ¬inc ∧ P p = P }.

v1: {(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐R’ P) ∧ m = 1 ∧ ¬inc ∧ P p = P }

while (!inc && m<=M)

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

84

else {m=m+1;}}//try higher multiplicity

{Pp ⊐ R’ P }.

Applying the (concurrent) assignment rule to v0 results in:

v00: (∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐ R’ P)

⇒

(∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐ R’ P) ∧ 1 = 1 ∧ true ∧ P = P }.

This formula is clearly a tautology. The attention is now turned to v1. Using inb(m)

(stands for: in bounds) as shorthand for: 1 ≤ m ≤ M and the while rule is applied to v1 with

the following loop invariant inv:

inb(m) ∧ ((inc ∧ Pp ⊐ R’ P)

∨(¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P))).

This yields three lemmas:

v10: (∃m : 1 ≤ m ≤ M : ∃Q ∈ PS(m) : Q ⊐R’ P) ∧ m = 1 ∧ ¬inc ∧ Pp = P

⇒
inb(m) ∧ ((inc ∧ Pp ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P))).

v11: {(¬inc ∧ m ≤ M) ∧ inb(m) ∧ ((inc ∧ Pp ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M :

∃Q ∈ P S(h) : Q ⊐ R’ P)))}

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

else {m=m+1;}}//try higher multiplicity

{inb(m) ∧ ((inc ∧ P p ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P

)))}.

v12: ¬(¬inc ∧ m ≤ M) ∧ inb(m) ∧ ((inc ∧ Pp ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M :

∃Q ∈

PS(h) : Q ⊐ R’ P)))

⇒
P p ⊐ R’ P .

To check the validity of v10, it is rewritten by distributing inb(m) over the

disjunction and replacing m by 1 on the right hand side:

85

v10: (∃m : 1 ≤ m ≤ M : ∃Q ∈ P S(m) : Q ⊐ R’ P) ∧ m = 1 ∧ ¬inc ∧ P p = P

⇒

(inb(m) ∧ inc ∧ Pp ⊐ R’ P) ∨ (inb(m) ∧ ¬inc ∧ (∃h : 1 ≤ h ≤ M : ∃Q ∈ P S(h) : Q

⊐ R’ P)).

Now it is clear that v10 is a tautology, since the left hand side logically implies the

second disjunct of the right hand side, assuming, as is done here, that M ≥ 1. As for v12,

its left hand side can be simplified into (inc ∧ P p ⊐R’ P), due to the contradiction between

m > M and inb(m), and the contradiction between inc and ¬inc. Hence v12 is also a

tautology. The attention is now turned to v11, which is first simplified as follows:

v11: {¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)}

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

else {m=m+1;}}//try higher multiplicity

{inb(m) ∧ ((inc ∧ P p ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P

)))}.

The sequence rule is now applied to v11 with the following intermediate predicate

int’:

(Pp ⊐ R’ P ∨ PS(m) = є)∧

¬inc ∧ inb(m)∧

(Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)).

This yields the following two lemmas:

v110: {¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P))}

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

{(Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈

PS(h) : Q ⊐ R’ P)).}.

v111: {(Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M :

∃Q ∈ P S(h) : Q ⊐ R’ P)).}

86

if smc(Pp,P) {inc=true;}
else {m=m+1;}}//try higher multiplicity

{inb(m) ∧ ((inc ∧ Pp ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P

)))}.

The while rule is applied to v110, with the following loop invariant, inv’:

¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)).

This yields the following three lemmas:

v1100: ¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P))

⇒

¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)).

v1101: {¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)) ∧

¬(Pp ⊐ R’ P ∧ PS(m) ≠ є)}

{Pp = NextPatch(P,m);}

{¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P))}

v1102: ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P)) ∧

(Pp ⊐ R’ P ∨ P S(m) = є)

⇒

(Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈

PS(h) : Q ⊐ R’ P)).

To see that v1100 is a tautology, it suffices to distribute the ∧ over the ∨ on the right

hand side of the implication, and to notice that the second disjunct on the right hand side

is a copy of the left hand side of the implication. As for v1102, it is clearly a tautology,

since the right hand side of ⇒ is merely a copy of the left hand side. The attention is now

turned to v1101. Its precondition can be simplified by virtue of Boolean identities:

v1101: {¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P) ∧ ¬(Pp ⊐ R’ P

) ∧ PS(m) ≠ є)}

{Pp = NextPatch(P,m);}

{¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P))}

87

In order to apply the assignment statement rule to v1101, the semantics of function

NextPatch(P,m) needs to be analyzed. This function is assumed to perform the

following operation:

Pp=head(PS(m)); PS(m)=tail(PS(m));

Hence application of the assignment rule yields the following formula:

v11010: ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)) ∧

(¬(Pp ⊐ R’ P ∧ P S(m) ≠ є)

⇒

¬inc ∧ inb(m) ∧ (head(P S(m)) ⊐ R’ P ∨ (∃Q ∈ tail(PS(m)) : Q ⊐ R’ P) ∨ (∃h : m +

1 ≤ h ≤ M : ∃Q ∈ P S(h) : Q ⊐ R’ P)).

The first two disjuncts in the parenthesized expression:

(head(PS(m)) ⊐ R’ P) ∨ (∃Q ∈ tail(PS(m)) : Q ⊐ R’ P)

can be merged into a single expression:

(∃Q ∈ PS(m) : Q ⊐ R’ P).

This expression can now be merged with the third disjunct above:

(∃Q ∈ PS(m) : Q ⊐ R’ P) ∨ (∃h : m + 1 ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P),

to obtain:

(∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P).

Replacing these in v11010, makes it easy to notice that the right hand side is a

logical conclusion of the left hand side, hence v11010 is a tautology.

Switching the attention back to v111 and applying the if-then-else rule yields two

lemmas:

v1110: {(Pp ⊐ R’ P) ∧ (Pp ⊐ R’ P ∨ PS(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨ (∃h

: m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)).}

inc=true;

88

{inb(m) ∧ ((inc ∧ Pp ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P

)))}.

v1111: {¬(Pp ⊐ R’ P) ∧ (Pp ⊐ R’ P ∨ P S(m) = є) ∧ ¬inc ∧ inb(m) ∧ (Pp ⊐ R’ P ∨

(∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)).}

m=m+1;

{inb(m) ∧ ((inc ∧ Pp ⊐ R’ P) ∨ (¬inc ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P

)))}.

Simplifying v1110 and applying the assignment rule to it yields:

v11100: (Pp ⊐ R’ P) ∧ ¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’ P)

⇒

inb(m) ∧ (P p ⊐ R’ P).

This is clearly a tautology.

Simplifying v1111 and applying the assignment rule to it yields:

v11110: ¬(Pp ⊐ R’ P) ∧ PS(m) = є ∧ ¬inc ∧ inb(m) ∧ (∃h : m ≤ h ≤ M : ∃Q ∈ PS(h)

: Q ⊐ R’ P)

⇒

inb(m +1)∧ ((inc ∧ Pp ⊐ R’ P)∨ (¬inc ∧ (∃h : m +1 ≤ h ≤ M : ∃Q ∈ PS(h) : Q ⊐ R’

P)))}.

If it is known that there exists Q strictly more-correct than P in one of the patch

sequences PS(m), PS(m+1), …PS(M) but PS(m) is empty, then it must be in one of the

sequence PS(m + 1), PS(m +2), …PS(M). For the same reason, m is necessarily strictly

less than M, since Q is somewhere in PS(m + 1), PS(m + 2), …PS(M). Hence inb(m + 1)

holds. Therefore, it is concluded that v11110 is a tautology. Since all the lemmas generated

from v are valid, so is v. Hence UnitIncCor() is partially correct with respect to the

specification:

– Precondition: (∃m : 1 ≤ m ≤ M : ∃Q ∈ PS(m) : Q ⊐ R’ P).

– Postcocndition: Pp ⊐R’ P.

89

A.2 Proof of Perfect Precision

In order to prove that UnitIncCor() has perfect precision [63], provided below is a

proof that the following Hoare formula is valid in Hoare’s deductive logic:

v: {true}

m=1; inc=false; Pp=P;

while (!inc && m<=M)

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

else {m=m+1;}}//try higher multiplicity

{inc ⇒ Pp ⊐ R’ P}.

Proof: Applying the sequence rule to v with the intermediate predicate int:

inc ⇒ Pp ⊐ R’ P yields the following formulas:

v0: {true }

m=1; inc=false; Pp=P;

{inc ⇒ Pp ⊐ R’ P}.

v1: {inc ⇒ Pp ⊐ R’ P}

while (!inc && m<=M)

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

else {m=m+1;}}//try higher multiplicity

{inc ⇒ Pp ⊐ R’ P}.

The (concurrent) assignment rule applied to v0 yields:

v00: true ⇒ (false ⇒ P ⊐ R’ P).

This is a tautology.

90

Applying the while rule to v1 with the loop invariant inv: inc ⇒ Pp ⊐ R’ P

yields the following formulas:

v10: (inc ⇒ Pp ⊐ R’ P) ⇒ (inc ⇒ Pp ⊐ R’ P)

v11: {(inc ⇒ Pp ⊐ R’ P) ∧ (¬inc ∧ m ≤ M)}

{while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

if smc(Pp,P) {inc=true;}

else {m=m+1;}}//try higher multiplicity

{inc ⇒ Pp ⊐ R’ P}.

v12: (inc ⇒ Pp ⊐ R’ P) ∧ (inc ∨ m > M) ⇒ (inc ⇒ Pp ⊐ R’ P).

Formulas v10 and v12 are clearly tautologies.

Applying the sequence rule to v11, with int: inc ⇒ Pp ⊐ R’ P yields the

following formulas:

v110: {(inc ⇒ Pp ⊐ R’ P) ∧ (¬inc ∧ m ≤ M)}

while (!smc(Pp,P) && MorePatches(P,m))

{Pp = NextPatch(P,m);}

{inc ⇒ Pp ⊐ R’ P}

v111: {(inc ⇒ Pp ⊐ R’ P)}

if smc(Pp,P) {inc=true;}

else {m=m+1;}//try higher multiplicity

{inc ⇒ Pp ⊐ R’ P}.

Applying the while rule to v110 with the loop invariant inv: ¬inc yields the

following formulas:

v1100: (inc ⇒ Pp ⊐ R’ P) ∧ (¬inc ∧ m ≤ M) ⇒ ¬inc.

v1101: {¬inc ∧ (¬Pp ⊐ R’ P ∧ MorePatches(P, m))}

{Pp = NextPatch(P,m);}

91

{¬inc}.

v1102: ¬inc ∧ ¬(¬Pp ⊐ R’ P ∧ MorePatches(P, m)) ⇒ (inc ⇒ Pp ⊐ R’ P).

Formula v1100 is clearly a tautology; formula v1102 is also a tautology

because it has the form ((¬a∧b) ⇒ (a ⇒ c)), which can be simplified as (a ∨ ¬b) ∨

(¬a ∨ c).

Applying the assignment statement rule to v1101 yields:

v11010: (¬inc ∧ (¬Pp ⊐R’ P ∧ MorePatches(P, m))) ⇒ ¬inc.

This is clearly a tautology.

Switching to v111 and applying the if-then-else rule yields:

v1110: {(inc ⇒ Pp ⊐ R’ P) ∧ (Pp ⊐ R’ P)}

{inc=true;}

{inc ⇒ Pp ⊐ R’ P}.

v1111: {(inc ⇒ Pp ⊐ R’ P) ∧ ¬(Pp ⊐ R’ P)}

{m=m+1;}

{inc ⇒ Pp ⊐ R’ P}.

Application of the assignment statement rule to v1110 and v1111 yields,

respectively:

v11100: (inc ⇒ Pp ⊐ R’ P) ∧ (Pp ⊐ R’ P) ⇒ (Pp ⊐ R’ P).

v11110: (inc ⇒ Pp ⊐ R’ P) ∧ ¬(Pp ⊐ R’ P) ⇒ (inc ⇒ Pp ⊐ R’ P).

Formulas v11100 and v11110 are both tautologies. This concludes the proof

that

v: {true}
UnitIncCor()

{inc ⇒ Pp ⊐ R’ P }

92

is valid in Hoare’s logic. Hence UnitIncCor() is partially correct with respect

to the specification defined by the following pre/post condition pair:

– Precondition: true.

– Postcondition: inc ⇒ Pp ⊐ R’ P.

93

APPENDIX B

CORRECTNESS ENHANCER USER MANUAL

This tool requires latest version of Java to run. The latest version can be obtained from

Oracle’s website. The current link is

https://www.oracle.com/java/technologies/downloads/ (Retrieved on November 20, 2021.)

As any Java program, this tool can be executed both on Linux-based and Windows-

based environments. The tool operation is controlled through a combination of data from

the command line parameters, if they are provided during startup, and from mujava.config

file, which comes with the tool, and which, although it inherited the naming from the

muJava tool, is completely different in terms of the options provided. In the default setting

the tool can be launched out of the box as any regular commercial tool with only the setup

of the source and target directories required in the configuration. The results can be output

to console, file or a database. The configuration below shows example of setup for

operation on a Windows-based OS for Chart_b program from defects4j suite that is located

in J:\VM-SHARED location with connection to local database:

mujava.config

MuJava_HOME=J:\VM-SHARED\Chart_6b

config_mode=true

filter_tests=N

MuJava_src=J:\VM-SHARED\Chart_6b\source

MuJava_class=J:\VM-SHARED\Chart_6b\build

MuJava_mutants=J:\VM-SHARED\Chart_6b\mutants

MuJava_tests=J:\VM-SHARED\Chart_6b\build-tests

MuJava_chain=J:\ VM-SHARED\Chart_6b\mutationchain

number_of_mutation_threads=256

number_of_testing_threads=64

Results_output=J:\VM-SHARED\mutantResults.txt

List_Target_Mutation_Files=J:\VM-SHARED\mujavaMutation.txt

List_Target_Tests=J:\VM-SHARED\mujavaTest.txt

https://www.oracle.com/java/technologies/downloads/

94

debug_output_enabled=N

test_results_jdbc=jdbc:derby://localhost:1527/tests.db;create=true

test_results_output_mode=database

soft_class_match_allowed=Y

database_marker=Chart_6b

database_count=J:\VM-SHARED\Chart_6b_dbcount.txt

annealing=0

chain_length=2

stop_on_correct=true

For an HPC launch the tool comes equipped with several shell scripts that are

easy to operate with to get the user started. Latest instructions and versions of the tool can

be found here: https://github.com/zakhalex/correctnessEnhancer (Retrieved on November

20, 2021.)

https://github.com/zakhalex/correctnessEnhancer

95

APPENDIX C

APACHE DERBY LAUNCHER AND DATABASE TABLES

Out of the box, the tool supports three operating modes: console-oriented, file-oriented and

database-oriented. If database-oriented mode is utilized, the wrapper around Apache

Derby, provided with the tool, can help with spinning up the database environment.

Alternatively - any mainstream database can be utilized, however database drivers might

need to be replaced with the suitable ones.

DerbyWrapper/Main.java

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.net.InetAddress;

import org.apache.derby.drda.NetworkServerControl;

public class Main

{

 public static void main(String[] args) throws Exception

 {

 PrintWriter pw=new PrintWriter("database.log");

 String ip="0.0.0.0";

 int

portNumber=NetworkServerControl.DEFAULT_PORTNUMBER;

 if(args.length>2)

 {

 ip=args[1];

 portNumber=Integer.parseInt(args[2]);

 System.out.println("New host is:

"+ip+":"+portNumber);

 }

 InetAddress inetaddr=InetAddress.getByName(ip);

 NetworkServerControl server = new

NetworkServerControl(inetaddr,portNumber);

 server.start (pw);

 System.in.read();

 server.shutdown();

 }

96

}

On startup, the APP.TESTRESULTS, APP.ORIGINALTESTRESULTS,

APP.CHAINCONTROL and APP.CONFIGURATIONS tables will be checked for on the

provided database connection and generated if they are not detected. If database other than

Derby is utilized or the default implementation is not considered optimal for the usage,

they might need to be created manually, using the SQL syntax conforming to the

environment being utilized. The default implementations are provided below:

APP.TESTRESULTS

CREATE TABLE

 TESTRESULTS

 (

 BASE_DIR VARCHAR(1024),

 PROGRAM_LOCATION VARCHAR(1024) NOT NULL,

 MUTATED_CLASS VARCHAR(1024) NOT NULL,

 TEST_NAME VARCHAR(1024) NOT NULL,

 MUTATION_TYPE VARCHAR(64) NOT NULL,

 ORIGINAL_CORRECTNESS_INDEX INTEGER,

 CORRECTNESS_ENHANCED BOOLEAN,

 RELATIVELY_MORE_CORRECT BOOLEAN,

 MUTATED_CORRECTNESS_INDEX INTEGER,

 ORIGINAL_RUN INTEGER,

 MUTATED_CASES_RUN INTEGER,

 NO_DROP_IN_TESTCASES BOOLEAN,

 LAST_UPDATED TIMESTAMP,

 COMMENT VARCHAR(1024),

 PRIMARY KEY (PROGRAM_LOCATION, MUTATED_CLASS, TEST_NAME,

MUTATION_TYPE)

);

APP.ORIGINALTESTRESULTS

CREATE TABLE

 ORIGINALTESTRESULTS

 (

 BASE_DIR VARCHAR(1024) NOT NULL,

 TEST_NAME VARCHAR(1024) NOT NULL,

 ORIGINAL_CORRECTNESS_INDEX INTEGER,

97

 SERIALIZED_DATA BLOB(2147483647),

 PRIMARY KEY (BASE_DIR, TEST_NAME)

);

APP.CONFIGURATIONS

CREATE TABLE

 CONFIGURATIONS

 (

 ID INTEGER NOT NULL,

 FILE_NAME VARCHAR(1024) NOT NULL,

 CLASS_NAME VARCHAR(4096) NOT NULL,

 METHOD_NAME VARCHAR(4096) DEFAULT ‘‘ NOT NULL,

 TEST_NAME VARCHAR(4096) DEFAULT ‘‘ NOT NULL,

 LAST_UPDATED TIMESTAMP,

 PRIMARY KEY (FILE_NAME, CLASS_NAME, METHOD_NAME,

TEST_NAME)

);

APP.CHAINCONTROL

CREATE TABLE

 CHAINCONTROL

 (

 BASE_DIR VARCHAR(1024) NOT NULL,

 MUTATION_CHAIN VARCHAR(1024) NOT NULL,

 SERIALIZED_MUTATION_CHAIN BLOB,

 OVERALL_INDEX INTEGER DEFAULT 0,

 LAST_UPDATED TIMESTAMP,

 PRIMARY KEY (BASE_DIR, MUTATION_CHAIN)

);

98

REFERENCES

[1] Serguei Khramtchenko. 2004. Comparing eXtreme Programming and Feature

Driven Development in Academic and Regulated Environments. Feature

Driven Development (2004). Final paper for CSCIE-275: Software

Architecture and Engineering, Harvard University May 17, 2004, Retrieved

November 12, 2021 from

http://www.featuredrivendevelopment.com/files/FDD_vs_XP.pdf

[2] Shigeru Igarashi, Ralph L. London, and David C. Luckham. 1973. Automatic

Program Verification I: A Logical Basis and Its Implementation. May 1973,

Stanford University, Department of Computer Science, Technical Reports,

Stanford University, Palo Alto, CA

[3] Jack R. Buchanan. 1974. A Study in Automatic Programming. May 1974, Memo

(Stanford Artificial Intelligence Laboratory). Stanford University, Palo Alto,

CA

[4] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic

Software Repair: A Survey. In IEEE Transactions on Software Engineering.

vol. 45, no. 1, 34-67, DOI: https://doi.org/10.1109/TSE.2017.2755013

[5] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest and Westley Weimer.

2012. GenProg: A Generic Method for Automatic Software Repair. In IEEE

Transactions on Software Engineering. vol. 38, no. 1. 54-72. DOI:

https://doi.org/10.1109/TSE.2011.104

[6] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish

Chandra. 2013. SemFix: Program Repair via Semantic Analysis. In

Proceedings of the 2013 International Conference on Software Engineering

(ICSE ‘13). San Francisco, CA, USA. IEEE Press. 772–781.

[7] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix:

Looking for Simple Program Repairs. In Proceedings of the 37th International

Conference on Software Engineering - Volume 1 (ICSE ‘15). Florence, Italy.

IEEE Press. 448–458.

[8] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix:

Scalable Multiline Program Patch Synthesis via Symbolic Analysis. In

Proceedings of the 38th International Conference on Software Engineering

(ICSE ‘16). Association for Computing Machinery, New York, NY, USA,

691–701. DOI: https://doi.org/10.1145/2884781.2884807

http://www.featuredrivendevelopment.com/files/FDD_vs_XP.pdf
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/2884781.2884807

99

[9] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair

Library for Java (Demo). In Proceedings of the 25th International Symposium

on Software Testing and Analysis (ISSTA 2016). Association for Computing

Machinery, New York, NY, USA, 441–444. DOI:

https://doi.org/10.1145/2931037.2948705

[10] Vidroha Debroy and W. Eric Wong. 2014. Combining Mutation and Fault

Localization for Automated Program Debugging. Journal of Systems and

Software. 90, C (April 2014), 45–60. DOI:

https://doi.org/10.1016/j.jss.2013.10.042

[11] Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2021. The Bane of

Generate-and-Validate Program Repair: Too Much Generation, Too Little

Validation. In New Trends in Intelligent Software Methodologies, Tools and

Techniques. IOS Press. 113-126. DOI: https://doi.org/10.3233/FAIA210013

[12] Matias Martinez and Martin Monperrus. 2015. Mining Software Repair Models

for Reasoning on the Search Space of Automated Program Fixing. Empirical

Software Engineering. 20, 1. 176–205. DOI: https://doi.org/10.1007/s10664-

013-9282-8

[13] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013.

Automatic Patch Generation Learned From Human-written Patches. In

Proceedings of the 2013 International Conference on Software Engineering

(ICSE ‘13). San Francisco, CA, USA. IEEE Press, 802–811. DOI:

https://doi.org/10.1109/ICSE.2013.6606626

[14] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.

Automatic Repair of Buggy if Conditions and Missing Preconditions With

SMT. In Proceedings of the 6th International Workshop on Constraints in

Software Testing, Verification, and Analysis (CSTVA 2014). Association for

Computing Machinery, New York, NY, USA, 30–39. DOI:

https://doi.org/10.1145/2593735.2593740

[15] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated

Program Repair. Communications of the ACM 62, 12. 56–65. DOI:

https://doi.org/10.1145/3318162

[16] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:

Fixing Common C Language Errors by Deep Learning. In Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17). San

Francisco, CA, USA. AAAI Press, 1345–1351.

https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1016/j.jss.2013.10.042
https://doi.org/10.3233/FAIA210013
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/2593735.2593740
https://doi.org/10.1145/3318162

100

[17] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.

2018. Shaping Program Repair Space With Existing Patches and Similar Code.

In Proceedings of the 27th ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA 2018). Association for Computing

Machinery, New York, NY, USA, 298–309. DOI:

https://doi.org/10.1145/3213846.3213871

[18] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem

Visser. 2017. S3: Syntax- and Semantic-Guided Repair Synthesis via

Programming by Examples. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE 2017). Association for

Computing Machinery, New York, NY, USA, 593–604. DOI:

https://doi.org/10.1145/3106237.3106309

[19] Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current

Challenges in Automatic Software Repair. Software Quality Journal, 21(3).

421–443.

[20] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.

2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105

Bugs for $8 Each. In Proceedings of the 34th International Conference on

Software Engineering (ICSE ‘12), Zurich, Switzerland. 3-13. DOI:

https://doi.org/10.1109/ICSE.2012.6227211

[21] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-based Code

Transformation Learning for Automated Program Repair. In Proceedings of

the ACM/IEEE 42nd International Conference on Software Engineering (ICSE

‘20). Association for Computing Machinery, New York, NY, USA, 602–614.

DOI: https://doi.org/10.1145/3377811.3380345

[22] Martin Monperrus. 2014. A Critical Review of "Automatic Patch Generation

Learned From Human-written Patches": Essay on the Problem Statement and

the Evaluation of Automatic Software Repair. In Proceedings of the 36th

International Conference on Software Engineering (ICSE 2014). Association

for Computing Machinery, New York, NY, USA, 234–242. DOI:

https://doi.org/10.1145/2568225.2568324

[23] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of

Patch Plausibility and Correctness for Generate-and-Validate Patch Generation

Systems. In Proceedings of the 2015 International Symposium on Software

Testing and Analysis (ISSTA 2015). Association for Computing Machinery,

New York, NY, USA, 24–36. DOI: https://doi.org/10.1145/2771783.2771791

https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/2568225.2568324
https://doi.org/10.1145/2771783.2771791

101

[24] Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing

Evolution for Multi-hunk Program Repair. In Proceedings of the 41st

International Conference on Software Engineering (ICSE ‘19). Montreal,

Quebec, Canada. IEEE Press, 13–24. DOI:

https://doi.org/10.1109/ICSE.2019.00020

[25] Mauricio Soto and Claire Le Goues. 2018 Using a probabilistic model to predict

bug fixes. In Proceedings of the 2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER). Campobasso, Italy.

221–231. DOI: https://doi.org/10.1109/SANER.2018.8330211

[26] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.

Context-aware Patch Generation for Better Automated Program Repair. In

Proceedings of the 40th International Conference on Software Engineering

(ICSE ‘18). Association for Computing Machinery, New York, NY, USA, 1–

11. DOI: https://doi.org/10.1145/3180155.3180233

[27] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-related Code for

Automated Program Repair. In Proceedings of the 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE 2017).

Urbana-Champaign, IL, USA. IEEE Press. 660–670.

[28] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and

Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In

Proceedings of the 39th International Conference on Software Engineering

(ICSE ‘17). Buenos Aires, Argentina. IEEE Press. 416–426. DOI:

https://doi.org/10.1109/ICSE.2017.45

[29] Jifeng Xuan and Martin Monperrus. 2014. Test Case Purification for Improving

Fault Localization. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE 2014). Association

for Computing Machinery, New York, NY, USA, 52–63. DOI:

https://doi.org/10.1145/2635868.2635906

[30] Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. 2018.

Repairing Crashes in Android Apps. In Proceedings of the 40th International

Conference on Software Engineering (ICSE '18). Association for Computing

Machinery, New York, NY, USA, 187–198. DOI:

https://doi.org/10.1145/3180155.3180243

[31] Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2017. A Generic

Algorithm for Program Repair. In Proceedings of the 5th International FME

Workshop on Formal Methods in Software Engineering (FormaliSE ’17).

Buenos Aires, Argentina. IEEE Press. 65-71

https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1109/SANER.2018.8330211
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1145/2635868.2635906
https://doi.org/10.1145/3180155.3180243

102

[32] Jules Desharnais, Nafi Diallo, Wided Ghardallou, Marcelo F. Frias, Ali Jaoua,

and Ali Mili. 2015. Relational Mathematics for Relative Correctness. In

RAMICS, 2015, volume 9348 of LNCS, 191-208, Braga, Portugal. Springer

Verlag.

[33] Robert R. Schaller. 1997. Moore’s Law: Past, Present, and Future. IEEE

Spectrum 34, 6. 52–59. DOI: https://doi.org/10.1109/6.591665

[34] Volodymyr Kindratenko and Pedro Trancoso. 2011. Trends in High-Performance

Computing. In Computing in Science and Engineering. 13, 3. 92–95. DOI:

https://doi.org/10.1109/MCSE.2011.52

[35] Mayank Daga, Ashwin M. Aji and Wu-chun Feng. 2011. On the Efficacy of a

Fused CPU+GPU Processor (or APU) for Parallel Computing. 2011

Symposium on Application Accelerators in High-Performance Computing.

Knoxville, TN, USA. 141-149. DOI:

https://doi.org/10.1109/SAAHPC.2011.29

[36] H. D. Benington. 1983. Production of Large Computer Programs. In Annals of

the History of Computing, vol. 5, no. 4. IEEE. 350-361. DOI:

https://doi.org/10.1109/MAHC.1983.10102

[37] Barry W. Boehm, 1988. A Spiral Model of Software Development and

Enhancement. In Computer. 21, 05. IEEE. 61-72, 1988. DOI:

https://doi.org/10.1109/2.59

[38] Kent Beck. 1999. Embracing Change with Extreme Programming. In Computer.

32, 10. IEEE. 70–77. DOI: https://doi.org/10.1109/2.796139

[39] Kent. Beck. 2000. Extreme Programming Explained: Embrace Change.

Reading, MA, USA: Addison-Wesley, ISBN: 0201616416

[40] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,

Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken

Schwaber, Jeff Sutherland, and Dave Thomas. 2001. Manifesto for Agile

Software Development. Retrieved on November 20, 2021 from

https://agilemanifesto.org/.

[41] Ken Schwaber and Mike Beedle, 2001, Agile Software Development with Scrum

(1st ed.) Upper Saddle River, NJ, USA: Prentice Hall PTR. 2001, ISBN:

0130676349

[42] Corey Ladas. 2008. SCRUMBAN, And Other Essays on Kanban Systems for

Lean Software Development. Seattle, USA: A Division of Modus Cooperandi,

Inc.

https://doi.org/10.1109/6.591665
https://doi.org/10.1109/MCSE.2011.52
https://doi.org/10.1109/SAAHPC.2011.29
https://doi.org/10.1109/MAHC.1983.10102
https://doi.org/10.1109/2.59
https://doi.org/10.1109/2.796139
https://agilemanifesto.org/

103

[43] Jaap-Henk Hoepman, Bart Jacobs. 2008. Increased Security Through Open

Source. arXiv:0801.3924v1. Retrieved on November 20, 2021 from

https://arxiv.org/abs/0801.3924v1

[44] Dirk Riehle. 2010. The Economic Case for Open Source Foundations. Computer

43, 1, 86–90. DOI: https://doi.org/10.1109/MC.2010.24

[45] Larry J. Morell. 1989. Unit Testing and Analysis, Software Engineering Institute,

April 1989. CMU/SEI Report Number: CMU/SEI-89-CM-009. Carnegie

Mellon University Software Engineering Institute. Pittsburgh, PA, USA.

Retrieved on April 23, 2019 from

https://apps.dtic.mil/dtic/tr/fulltext/u2/a236119.pdf

[46] Kent Beck, 2003. Test-driven Development: By Example. Reading, MA, USA:

Addison-Wesley Professional.

[47] R. Owen Rogers. 2004. Scaling Continuous Integration. In Proceedings of the

5th International Conference on Extreme Programming and Agile Processes in

Software Engineering. XP 2004. Garmisch-Partenkirchen, Germany. Springer.

68-76.

[48] Dan North. 2006. Introducing Behaviour Driven Development. Better Software

Magazine. Retrieved online on November 20, 2021 from

https://dannorth.net/introducing-bdd/

[49] Chadarat Phipathananunth and Panuchart Bunyakiati, 2018. Synthetic Runtime

Monitoring of Microservices Software Architecture, In Proceedings of the

IEEE 42nd Annual Computer Software and Applications Conference

(COMPSAC ‘18). Tokyo, Japan. IEEE Press. 448-453. DOI:

https://doi.org/10.1109/COMPSAC.2018.10274

[50] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the

tarantula automatic fault-localization technique. In Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering (ASE

‘05). Association for Computing Machinery, New York, NY, USA, 273–282.

DOI: https://doi.org/10.1145/1101908.1101949

[51] Rui Abreu, Peter Zoeteweij and Arjan JC Van Gemund. 2007. On the Accuracy

of Spectrum-based Fault Localization, Testing: Academic and Industrial

Conference Practice and Research Techniques - MUTATION (TAICPART-

MUTATION 2007), 2007, pp. 89-98, DOI:

https://doi.org/10.1109/TAIC.PART.2007.13

[52] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox and Eric Brewer.

2002. Pinpoint: problem determination in large, dynamic Internet services, In

Proceedings of the International Conference on Dependable Systems and

Networks, Washington D.C., USA. 595-604. DOI:

https://doi.org/10.1109/DSN.2002.1029005

https://arxiv.org/abs/0801.3924v1
https://doi.org/10.1109/MC.2010.24
https://apps.dtic.mil/dtic/tr/fulltext/u2/a236119.pdf
https://dannorth.net/introducing-bdd/
https://doi.org/10.1109/COMPSAC.2018.10274
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1109/DSN.2002.1029005

104

[53] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. 2009. Generating Fixes

from Object Behavior Anomalies. In Proceedings of the 2009 IEEE/ACM

International Conference on Automated Software Engineering (ASE ’09),

Auckland, New Zealand. IEEE. 550-554, DOI:

https://doi.org/10.1109/ASE.2009.15

[54] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand

Meyer, and Andreas Zeller. 2010. Automated Fixing of Programs With

Contracts. In Proceedings of the 19th international symposium on Software

testing and analysis (ISSTA ‘10). Association for Computing Machinery, New

York, NY, USA, 61–72. DOI: https://doi.org/10.1145/1831708.1831716

[55] Yu Pei, Yi Wei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. 2011.

Code-based Automated Program Fixing. In Proceedings of the 2011 26th

IEEE/ACM International Conference on Automated Software Engineering

(ASE ‘11). Lawrence, KS, USA IEEE. 392–395. DOI:

https://doi.org/10.1109/ASE.2011.6100080

[56] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. 2015.

Automatic Error Elimination by Horizontal Code Transfer Across Multiple

Applications. In Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ‘15). Association

for Computing Machinery, New York, NY, USA, 43–54. DOI:

https://doi.org/10.1145/2737924.2737988

[57] Shin Hwei Tan and Abhik Roychoudhury. 2015. Relifix: Automated Repair of

Software Regressions. In Proceedings of the 37th International Conference on

Software Engineering - Volume 1 (ICSE ‘15). Florence, Italy. IEEE Press.

471–482. https://doi.org/10.1109/ICSE.2015.65

[58] Chen Liu, Jinqiu Yang, Lin Tan and Munawar Hafiz. 2013. R2Fix:

Automatically Generating Bug Fixes from Bug Reports. In Proceedings of the

2013 IEEE Sixth International Conference on Software Testing, Verification

and Validation. Luxembourg, Luxembourg. IEEE. 282-291. DOI:

https://doi.org/10.1109/ICST.2013.24

[59] Vidroha Debroy and W. Eric Wong. 2010. Using Mutation to Automatically

Suggest Fixes for Faulty Programs. In Proceedings of the 2010 Third

International Conference on Software Testing, Verification and Validation

(ICST ‘10). Paris, France. IEEE. 65-74. DOI:

https://doi.org/10.1109/ICST.2010.66

[60] Junnosuke Matsumoto, Yoshiki Higo, Hiroyuki Matsuo, Ryo Arima, Shinsukue

Matsumoto and Shinji Kusumoto. 2019. GenProg Meets Cluster Computing. In

2019 10th International Workshop on Empirical Software Engineering in

Practice (IWESEP). Tokyo, Japan. 337-375. DOI:

https://doi.org/10.1109/IWESEP49350.2019.00015

https://doi.org/10.1109/ASE.2009.15
https://doi.org/10.1145/1831708.1831716
https://doi.org/10.1109/ASE.2011.6100080
https://doi.org/10.1145/2737924.2737988
https://doi.org/10.1109/ICSE.2015.65
https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1109/IWESEP49350.2019.00015

105

[61] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning

Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ‘16).

Association for Computing Machinery, New York, NY, USA, 298–312. DOI:

https://doi.org/10.1145/2837614.2837617

[62] Francesco Logozzo and Thomas Ball. 2012. Modular and verified automatic

program repair. In Proceedings of the ACM international conference on Object

oriented programming systems languages and applications (OOPSLA ‘12).

Association for Computing Machinery, New York, NY, USA, 133–146. DOI:

https://doi.org/10.1145/2384616.2384626

[63] Besma Khaireddine, Aleksandr Zakharchenko, Matias Martinez, Ali Mili. 2021.

Toward a Theory of Program Repair, Acta Informatica. 2021. Revision

submitted for review.

[64] Bat-Chen Rothenberg and Orna Grumberg. 2020. Must Fault Localization for

Program Repair. In Proceedings of the 32nd International Conference on

Computer-Aided Verification (CAV ’20). Virtual Event. 658–680.

[65] Jan A. Bergstra. 2020. Instruction Sequence Faults With Formal Change

Justification. Scientific Annals of Computer Science, 30(2):105–166.

[66] Evren Ermis,Martin Schaef, and ThomasWies. 2012. Error Invariants. In

Proceedings of the 18th International Symposium on Formal Methods (FM

‘12). Paris, France. Springer. 187–201. DOI: https://doi.org/10.1007/978-3-

642-32759-9_17

[67] Manu Jose and Rupak Majumdar. 2011. Cause Clue Clauses: Error Localization

Using Maximum Satisfiability. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI

‘11). Association for Computing Machinery, New York, NY, USA, 437–446.

DOI: https://doi.org/10.1145/1993498.1993550

[68] W Ric Wong, Ruizhi Gao, Yi Hao Li, Rui Abreu, and Franz Wotawa. 2016. A

Survey of Software Fault Localization. IEEE Transactions on Software

Engineering, 42. 707–740.

[69] Ali Mili, Marcelo Frias, and Ali Jaoua. 2014. On Faults and Faulty Programs. In

P. Hoefner, P. Jipsen, W. Kahl, and M. E. Mueller, editors, Proceedings,

RAMICS 2014, volume 8428 of LNCS, pages 191–207.

[70] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,

and Lu Zhang. 2020. Can Automated Program Repair Refine Fault

Localization? a unified debugging approach. In Proceedings of the 29th ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

2020). Association for Computing Machinery, New York, NY, USA, 75–87.

DOI: https://doi.org/10.1145/3395363.3397351

https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2384616.2384626
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/3395363.3397351

106

[71] Maria Christakis, Matthias Heizmann, Muhammad Numair Mansur, Christian

Schilling, and Valentin Wuestholz. 2019. Semantic Fault Localization and

Suspiciousness Ranking. In Proceedings of the 25th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS

’19). Prague, Czech Republic. Springer. 226–243.

[72] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei

Xiong, and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural

Program Repair. In Proceedings of the 29th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE ’21), Association for Computing Machinery, New

York, NY, USA, 341-353. DOI: https://doi.org/10.1145/3468264.3468544

[73] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik

Roychoudhury. 2021. Automated Patch Transplantation. ACM Transactions on

Software Engineering and Methodology 30, 1, Article 6 (January 2021), 36

pages. DOI: https://doi.org/10.1145/3412376

[74] Kunihiro Noda, Haruki Yokoyama, and Shinji Kikuchi. 2021. Sirius: Static

Program Repair with Dependence Graph-Based Systematic Edit Patterns. In

2021 IEEE International Conference on Software Maintenance and Evolution

(ICSME, ‘21). IEEE. 437-447. DOI:

https://doi.org/10.1109/ICSME52107.2021.00045

[75] Stephen Cass. 2018. The 2018 Top Programming Languages. IEEE Spectrum.

Retrieved online on November 20, 2021 from https://spectrum.ieee.org/at-

work/innovation/the-2018-top-programming-languages

[76] Stephen Cass. 2020. Top Programming Languages 2020 Python Rules the Roost,

but Cobol Gets a Pandemic Bump. IEEE Spectrum. Retrieved online on

November 20, 2021 from https://spectrum.ieee.org/top-programming-

language-2020

[77] Robert W. Floyd. 1967. Assigning Meaning to Programs. In Proceedings of the

American Mathematical Society Symposium in Applied mathematics, 19, New

York, NY, USA. American Mathematical Society. 19–31, 1967. DOI:

https://doi.org/10.1090/psapm/019/0235771

[78] C.A.R. Hoare. 1969. An Axiomatic Basis for Computer Programming.

Communications of the Association for Computing Machinery, 12(10):576–

583, October 1969.

[79] David Gries. 1981. The Science of Programming. Heidelberg, Germany:

Springer Verlag.

[80] Eric C.R. Hehner. 1992. A Practical Theory of Programming. Englewood Cliffs,

NJ, USA: Prentice Hall.

https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3412376
https://doi.org/10.1109/ICSME52107.2021.00045
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://spectrum.ieee.org/top-programming-language-2020
https://spectrum.ieee.org/top-programming-language-2020
https://doi.org/10.1090/psapm/019/0235771

107

[81] Ralph-Johan J. Back, Abo Akademi, J. Von Wright, F. B. Schneider, and David

Gries. 1998. Refinement Calculus: A Systematic Introduction (1st. ed.). Berlin,

Heidelberg, Germany: Springer-Verlag.

[82] Carroll Morgan. 1998. Programming From Specifications (2nd ed.) Great

Britain: Prentice Hall International (UK) Ltd.

[83] Zohar Manna. 1974. A Mathematical Theory of Computation. New York, NY:

McGraw-Hill.

[84] Edsger Wybe Dijkstra. 1976. A Discipline of Programming. Englewood Cliffs,

NJ: Prentice Hall.

[85] Harlan D. Mills, Victor R. Basili, John D. Gannon, and Dick R. Hamlet. 1986.

Structured Programming: A Mathematical Approach. Boston, MA, USA:

Allyn and Bacon.

[86] Nafi Diallo, Wided Ghardallou, Jules Desharnais, Marcelo Frias, Ali Jaoua, and

Ali Mili. 2017. What Is a Fault? And Why Does It Matter? Innovations in

Systems and Software Engineering. 13, 2–3. 219–239. DOI:

https://doi.org/10.1007/s11334-017-0300-7

[87] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.

2004. Basic Concepts and Taxonomy of Dependable and Secure Computing.

IEEE Transactions on Dependable and Secure Computing. 1, 1. 11–33. DOI:

https://doi.org/10.1109/TDSC.2004.2

[88] Jean-Claude Laprie. 1991. Dependability: Basic Concepts and Terminology. In

English, French, German, Italian and Japanese. Wien, Austria: Springer

Verlag.

[89] Jean-Claude Laprie. 1995. Dependability — Its Attributes, Impairments and

Means. In Predictably Dependable Computing Systems, Berlin, Heidelberg,

Germany. Springer. 3-18.

[90] Jean-Claude Laprie. 2004. Dependable Computing: Concepts, Challenges,

Directions. In Proceedings of the 28th Annual International Computer

Software and Applications Conference (COMPSAC ‘04). 1. Hong Kong,

China. IEEE. 242.

[91] Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2020. A Semantic

Definition of Faults and Its Implications. In 2020 IEEE 20th International

Conference on Software Quality, Reliability and Security (QRS), Macau,

China. IEEE. 14-21. DOI: https://doi.org/10.1109/QRS51102.2020.00015

https://doi.org/10.1007/s11334-017-0300-7
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/QRS51102.2020.00015

108

[92] Besma Khaireddine, Aleksandr Zakharchenko, and Ali Mili. 2019. Fault Density,

Fault Depth and Fault Multiplicity: The Reward of Discernment. In 2019 IEEE

19th International Conference on Software Quality, Reliability and Security

Companion (QRS-C.) Sofia, Bulgaria. IEEE. 532-533.

[93] Besma Khaireddine, Marwa Ben AbdelAli, Lamia Labed Jilani, Aleksandr

Zakharchenko, and Ali Mili. 2020. Correctness Enhancement: a Pervasive

Software Engineering Paradigm. In International Journal of Critical

Computer-Based Systems. 10(1), 37-73.

[94] Besma Khaireddine, Matias Martinez, and Ali Mili. 2019. Program Repair at

Arbitrary Fault Depth. In International Conference on Software Testing (ICST

’19.) Xian, China. IEEE. April 2019. 465-472.

[95] Aleksandr Zakharchenko, Besma Khaireddine, and Ali Mili. 2021. A Massively

Parallel Approach to Automated Software Correctness Enhancement in Java.

In New Trends in Intelligent Software Methodologies, Tools and Techniques,

IOS Press. 141-154. DOI: https://doi.org/10.3233/FAIA210015

[96] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. 2005. MuJava : An Automated

Class Mutation System. Journal of Software Testing, Verification and

Reliability, 15(2):97-133, June 2005. Retrieved on November 20, 2021 from

https://cs.gmu.edu/~offutt/rsrch/papers/mujava.pdf

[97] Aleksandr Zakharchenko and James Geller. 2015. Auditing of SNOMED CT’s

Hierarchical Structure using the National Drug File - Reference Terminology.

Studies in Health Technology and Informatics. 210. IOS Press. 130-134. DOI:

https://doi.org/10.3233/978-1-61499-512-8-130

[98] Aleksandr Zakharchenko and James Geller. 2016. Expansion of the Hierarchical

Terminology Auditing Framework Through Usage of Levenshtein Distance-

Based Criterion. Studies in Health Technology and Informatics. 228. IOS

Press. 491-495. DOI: https://doi.org/10.3233/978-1-61499-678-1-491

[99] NJIT High Performance Computing Machine Specifications. Retrieved on

October 10, 2021 from https://ist.njit.edu/high-performance-computing-

machine-specifications/

[100] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.

Empirical Review of Java Program Repair Tools: a Large-scale Experiment on

2,141 Bugs and 23,551 Repair Attempts. In Proceedings of the 2019 27th ACM

Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE 2019). Association

for Computing Machinery, New York, NY, USA, 302–313. DOI:

https://doi.org/10.1145/3338906.3338911

https://doi.org/10.3233/FAIA210015
https://cs.gmu.edu/~offutt/rsrch/papers/mujava.pdf
https://doi.org/10.3233/978-1-61499-512-8-130
https://doi.org/10.3233/978-1-61499-678-1-491
https://ist.njit.edu/high-performance-computing-machine-specifications/
https://ist.njit.edu/high-performance-computing-machine-specifications/
https://doi.org/10.1145/3338906.3338911

109

[101] Mahmoud Mohammadi, Bill Chu, and Heather Richter Lipford. 2019.

Automated Repair of Cross-Site Scripting Vulnerabilities through Unit

Testing. In 2019 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW ‘19.) IEEE. 370-377.

[102] Alexander Marchand-Melsom and Duong Bao Nguyen Mai. 2020. Automatic

repair of OWASP Top 10 security vulnerabilities: A survey. In Proceedings of

the IEEE/ACM 42nd International Conference on Software Engineering

Workshops (ICSEW ‘20). Association for Computing Machinery, New York,

NY, USA, 23–30. DOI: https://doi.org/10.1145/3387940.3392200

[103] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using safety

properties to generate vulnerability patches. In 2019 IEEE Symposium on

Security and Privacy (SP ’19.) IEEE. 539-554.

[104] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018.

Eliminating timing side-channel leaks using program repair. In Proceedings of

the 27th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA 2018). Association for Computing Machinery, New York,

NY, USA, 15–26. DOI: https://doi.org/10.1145/3213846.3213851

https://doi.org/10.1145/3387940.3392200
https://doi.org/10.1145/3213846.3213851

	A practical approach to automated software correctness enhancement
	Recommended Citation

	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: The State of the Art in Program Repair
	Chapter 3: Background for a Theoretical Approach
	Chapter 4: Ingredients of a Theory Based Program Repair Algorithm
	Chapter 5: A Generic Algorithm for Program Repair
	Chapter 6: An Instance of the Generic Algorithm: Correctness Enhancer
	Chapter 7: Empirical Assessment
	Chapter 8: Lessons Learned
	Chapter 9: Conclusion
	Appendix A: Proof of Perfect Precision and Perfect Recall
	Appendix B: Correctness Enhancer User Manual
	Appendix C: Apache Derby Launcher and Database Tables
	References

	List of Tables
	List of Figures
	List of Symbols
	List of Definitions (1 of 2)
	List of Definitions (2 of 2)

