
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

12-31-2021

Improving programming learners’ experience through interactive Improving programming learners’ experience through interactive

computer tutor based MOOCs computer tutor based MOOCs

Ruiqi Shen
New Jersey Institute of Technology, rs858@njit.edu

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Educational Psychology Commons, Educational Technology Commons, and the

Quantitative, Qualitative, Comparative, and Historical Methodologies Commons

Recommended Citation Recommended Citation
Shen, Ruiqi, "Improving programming learners’ experience through interactive computer tutor based
MOOCs" (2021). Dissertations. 1576.
https://digitalcommons.njit.edu/dissertations/1576

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/798?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1415?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/423?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1576?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1576&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

IMPROVING PROGRAMMING LEARNERS’ EXPERIENCE
THROUGH INTERACTIVE COMPUTER TUTOR BASED MOOCS

by
Ruiqi Shen

With the large demand for technology workers all around the world, more people

are learning programming. Studies show that human tutoring is the most effective

way to learn for novice programmers. However, problems such as the inaccessibility

to physical classes, prohibitive costs, and the lack of educators may limit students’

opportunities to learn from these resources. Additionally, because programming is

a skill requiring continuous practice and immediate feedback, simply listening to

lectures may not be sufficient to learn effectively. This increases the inconvenience

of learners who use online learning tools such as Massive Open Online Courses

(MOOCs).

In recent years, a particular type of MOOC that teaches programming in

an interactive manner has become popular among programming learners, such as

Codecademy and Treehouse. These systems are described as interactive computer

tutors (ICTs) in this dissertation. ICTs provide an efficient solution for programming

learners to practice the idea of learning-by-doing. The commercial application of ICTs

has been growing rapidly in recent years and has gained a broad user base. Despite

their success, there is limited research in the literature that addresses the users of

ICTs. For example, who are the learners, what do they think of these ICT based

MOOCs, and how can we improve their learning experience?

This dissertation examines how learners interact with ICT based MOOCs and

what design features improve their experience. Four studies were conducted to

answer these questions. The results from these studies indicate that learners’ level

of autonomy require different needs from ICTs, which are not addressed by current

ICT designs. In addition, an autonomous feature is tested on an interactive computer

tutor that teaches programming, and the effects for different learners are examined.

IMPROVING PROGRAMMING LEARNERS’ EXPERIENCE
THROUGH INTERACTIVE COMPUTER TUTOR BASED MOOCS

by
Ruiqi Shen

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Information Systems

Department of Informatics

December 2021

Copyright © 2021 by Ruiqi Shen

ALL RIGHTS RESERVED

APPROVAL PAGE

IMPROVING PROGRAMMING LEARNERS’ EXPERIENCE
THROUGH INTERACTIVE COMPUTER TUTOR BASED MOOCS

Ruiqi Shen

Michael J. Lee, Dissertation Advisor Date
Associate Professor of Informatics, New Jersey Institute of Technology

Aritra Dasgupta, Committee Member Date
Assistant Professor of Informatics, New Jersey Institute of Technology

Margarita Vinnikov, Committee Member Date
Assistant Professor of Informatics, New Jersey Institute of Technology

Sang Won Lee, Committee Member Date
Assistant Professor of Computer Science,
Virginia Polytechnic Institute and State University

Austin Z. Henley, Committee Member Date
Assistant Professor of Electrical Engineering and Computer Science,
The University of Tennessee, Knoxville

BIOGRAPHICAL SKETCH

Author: Ruiqi Shen

Degree: Doctor of Philosophy

Date: December 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Information Systems,

New Jersey Institute of Technology, Newark, NJ, December, 2021

• Master in Information Systems,
New Jersey Institute of Technology, Newark, NJ, December, 2017

• Master in Human Resource Management,
Rutgers University, New Brunswick, NJ, May, 2015

• Bachelor of Management in General Administration,
Zhongnan University of Economics and Law, Wuhan, China, June, 2013

Major: Information Systems

Presentations and Publications:

Michael J. Lee and Ruiqi Shen. Autonomy-Supportive Game Benefits Both
Inexperienced and Experienced Programmers. Journal of Computing Sciences
in Colleges (CCSC), Volume 37, Issue 2, pages 89-97, 2021.

Ruiqi Shen and Michael J. Lee. Learners’ Perspectives on Learning Programming
from Interactive Computer Tutors in a MOOC. IEEE Visual Languages and
Human-Centric Computing (VL/HCC), pages 1-5, 2020.

Ruiqi Shen. Interactive Computer Tutor as a Programming Educator: Improving
Learners’ Experiences. IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1-2, 2020.

Ruiqi Shen, Joseph Chiou, and Michael J. Lee. Becoming Lifelong Learners:
CS Learners’ Autonomy. Consortium for Computing Sciences in Colleges -
Northeastern Region (CCSC-NE), pages 1-2, 2020.

iv

Ruiqi Shen, Donghee Yvette Wohn, and Michael J. Lee. Programming Learners’
Perception of Interactive Computer Tutors and Human Teachers. International
Journal of Emerging Technologies in Learning (iJET), Volume 15, Issue 9,
pages 123-142, 2020.

Ruiqi Shen, Donghee Yvette Wohn, and Michael J. Lee. Comparison of Learning
Programming Between Interactive Computer Tutors and Human Teachers.
ACM Conference on Global Computing Education, pages 2-8, 2019.

v

This dissertation is dedicated to my parents Wenjun and
Zhiguo, my husband Bowen, and my son George.

vi

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my dissertation advisor, Dr. Michael

J. Lee, for all the help and guidance he provided throughout my doctoral program.

Thank you for your advice on paper writing, experimental design, research, as well

as on life and career.

I would also like to thank my dissertation committee members, Dr. Aritra

Dasgupta, Dr. Margarita Vinnikov, Dr. Sang Won Lee, and Dr. Austin Z. Henley,

for their time to participate in my dissertation, and their insightful comments and

questions. It is my great honor to have their guidance and help to complete this

dissertation.

I am very thankful to Dr. Brook Wu, Dr. Starr Roxanne Hiltz, Dr. Donghee

Yvette Wohn, and Dr. Shaohua Wang for all the advice and encouragement they

have given me. Special thanks are given to our department assistants, Ms. Patricia

B. Lundberg and Ms. Jacinta Williams, for all their great assistance.

I would also like to thank the Department of Informatics and the National

Science Foundation (DRL-1837489 and IIS-1657160) for funding my research.

Also, a special thanks to all the colleagues and friends, Dr. Yu Xu, Dr. Yang

Liu, Jie Cai, Dr. Mashael Almoqbel, Dr. Han Hu, Dr. Ye Xiong, Mr. Joseph Chiou,

and Dr. Eric Nersesian. For years, they have inspired my research ideas, given me

practical help, and encouraged me when I felt discouraged.

Finally, I give thanks to my mother Wenjun You, father Zhiguo Shen, son George

Pan, and beloved husband Bowen Pan. I could not have done this work without their

understanding, sacrifice, and unconditional love.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Research Objectives . 3

1.3 Dissertation Organization . 4

2 LEARNING FROM INTERACTIVE COMPUTER TUTORS 7

2.1 Introduction . 7

2.2 Interactive Learning System in Theory 7

2.3 Define Interactive Computer Tutor 8

2.4 Interactive Computer Tutors in Programming Education 9

2.5 Interactive Computer Tutor based MOOCs 11

2.6 Summary . 13

3 EXPLORING LEARNERS’ VIEWS ON ICT BASED MOOCS 14

3.1 Introduction . 14

3.2 Background . 15

3.3 Methodology . 16

3.4 Findings . 18

3.4.1 Who are the users? . 18

3.4.2 Why do they use it to learn? 20

3.4.3 Complaints about Codecademy 22

3.5 Discussion . 24

3.6 Limitations . 26

3.7 Summary . 27

4 INTERACTIVE COMPUTER TUTORS OR HUMAN TEACHERS? . . . 28

4.1 Introduction . 28

4.2 Background . 29

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.2.1 Learning from interactive computer tutors 29

4.2.2 Learning from teachers . 31

4.2.3 Comparing/Combining interactive computer tutors and human
teachers . 32

4.2.4 Learning from the learners’ perspective 33

4.3 Methodology . 34

4.4 Findings . 35

4.4.1 RQ1a: What do learners like about learning programming from
ICTs? . 36

4.4.2 RQ1b: What do learners dislike about learning programming
from ICTs? . 40

4.4.3 RQ2a: What do learners like about learning programming from
teachers? . 42

4.4.4 RQ2b: What do learners dislike about learning programming
from teachers? . 44

4.4.5 RQ3: What do learners think are the pros and cons of feedback
from ICTs and teachers? . 47

4.4.6 RQ4: In terms of learning programming, do learners prefer to
learn from ICTs or teachers? 50

4.5 Discussion . 53

4.6 Limitations . 56

4.7 Summary . 57

5 EXPLORING CS LEARNERS’ AUTONOMY AND THEIR PREFERENCE
FOR LEARNING SYSTEMS . 58

5.1 Introduction . 58

5.2 Background . 60

5.2.1 Learner autonomy in general 60

5.2.2 Learner autonomy in natural language learning 61

5.2.3 Learner autonomy in online learning 63

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

5.2.4 Learner autonomy in STEM 64

5.2.5 Learner autonomy in computing education 65

5.3 Methodology . 65

5.4 Findings . 67

5.5 Discussion . 72

5.6 Limitations . 75

5.7 Summary . 76

6 REDESIGNING AUTONOMY FEATURES OF ICTS THAT TARGET AT
LEARNERS’ DIFFERENT AUTONOMY LEVELS 77

6.1 Introduction . 77

6.2 Related Work . 78

6.2.1 Supporting autonomy in traditional pedagogy 80

6.2.2 Supporting autonomy in online environment 82

6.3 Methodology . 83

6.3.1 The Gidget educational game 83

6.3.2 Participant recruitment . 85

6.4 Findings . 86

6.4.1 High learner autonomy players use the jumping feature more . 87

6.4.2 Males use the jumping feature more 88

6.4.3 Low autonomy (female) learners complete more levels 88

6.5 Discussion . 90

6.6 Limitations and Future Work . 90

6.7 Summary . 91

7 DISSERTATION SUMMARY . 93

7.1 Summary of Key Findings . 93

7.2 Design Implications . 95

x

TABLE OF CONTENTS
(Continued)

Chapter Page

7.3 Contribution . 95

7.4 Future Work . 96

APPENDIX A INTERVIEW GUIDE FOR STUDY 2 98

A.1 Recruitment Ad . 98

A.2 Behavioral Questions . 98

A.3 Research Related Questions . 98

A.4 Ending Questions . 101

APPENDIX B SURVEY QUESTIONNAIRE USED IN STUDY 3 102

B.1 Demographics . 102

B.2 Expertise in Computer Science . 103

B.3 Learner Autonomy Scale . 103

B.4 System Scenario Scale . 104

APPENDIX C QUESTIONNAIRE FOR STUDY 4 106

C.1 Questions . 106

REFERENCES . 107

xi

LIST OF TABLES

Table Page

5.1 Factor Loadings and Reliability Scores 68

5.2 The R2 and p-values Between Age, Years of Experience, and Subscales . 69

5.3 Significant Differences Between Experience Level for Each Subscale . . . 69

5.4 R2 and p-values for the Regression Analysis Between Autonomy Level
and System Preference . 70

5.5 Mean Scores for Each System Design Scenario 71

5.6 Comparison of System Preference Between Learners with Higher Autonomy
and Lower Autonomy . 73

xii

LIST OF FIGURES

Figure Page

1.1 The interface of Codecademy. 2

1.2 The connection between studies and the overarching goal. 6

6.1 A screenshot of the Gidget introductory programming game. 79

6.2 Closeup of the level selection map. 85

xiii

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Programming is an ability that learners develop over time, allowing them to apply

knowledge effectively and readily to solve problems [177]. Therefore, learning

programming is largely a learning-by-doing effort that requires prompt feedback and

many problem-solving practices [5] for learners to make progress [96].

One-on-one tutoring is one of the most effective ways to gain sufficient practice

and receive prompt feedback [79]. However, the lack of computing teachers continues

to be a concern of researchers and educators [80]. Moreover, many learners have

limited access to in-person and personalized programming courses. Even for those

who have access to courses, a large lecture-based format is not an ideal setting for

teachers to pay attention to the individual needs of each of their students [10].

With the development of new technologies for communication and education,

many learners are turning to new media such as massive open online courses (MOOC)

to gain cheap and quick access to educational topics of interest. For learning

programming specially, there is one type of MOOC that provides courses in an

interactive manner which has gained it popularity in recent years.

One such popular MOOC is codecademy.com [164] (see Figure 1.1), a website

that provides interactive programming courses. Learners can read the textual

instruction while typing code within the same window. They can also get instant

feedback for the code output and exercises. Anderson et al. [9] were among the first

to introduce this kind of system to teach programming, describing a two-component

system: a “problem solver” (which can interpret learners’ code and provide instant

feedback) and an “advisor” (which provides guidance to learners throughout the

1

learning process). We use this description to define interactive computer tutors (ICTs)

in this dissertation.

Figure 1.1 The interface of Codecademy.

Despite its popularity, few studies have examined these ICT based MOOCs,

especially from the learners’ perspective. We believe that it is important to

understand the learners, since it points out a direction of system design that

could improve learners’ experience, and furthermore, increase their engagement

and potentially improve learning outcomes. Based on this observation, we set

out to investigate ICT based MOOCs using the Human-Computer Interaction

(HCI) approach, emphasizing the users’ (or more specifically in this case, learners’)

interactions, experiences, and needs with such a system. With this initiative, we

conducted four studies.

The results from our four studies suggest that programming beginners are the

main users of these kinds of systems, since these systems are good at delivering basic

programming concepts and providing intensive practice. Experienced learners also

use these systems to learn new languages and refresh their existing skills. Beginners

have lower level of autonomy—meaning that they have less control over their learning

process—and therefore, they prefer a well-structured curriculum and a system that

2

can force them to learn step-by-step. While for more experienced learners, they

tend to have higher level of autonomy, and so they prefer controlling their own

learning process by enjoying the freedom of moving about freely within a learning

environment.We also found that an autonomous feature would affect both.

The contributions of this dissertation are:

1. Among the first to explore ICT based MOOCs from the learners’ perspective;

2. Providing a unique view to classify programming learners, which is from the
level of learn autonomy;

3. Identifying autonomous needs of different programming learners;

4. Applying different autonomous settings to improve learners’ learning experience;

5. Contributing to the field of human-computer interaction, computing education,
and learning science that would be useful to users, researchers, and designers of
interactive learning systems for programming education.

1.2 Research Objectives

This research has two main objectives, the first is to understand the learners of

ICT based MOOC, which includes: 1) who the learners are, 2) why they choose it

to learn, and 3) what they think of it. The second objective is to explore how to

improve learners’ experience with ICT based MOOC. The second objective was built

upon the understanding of the first one.

These research objectives are framed in the scope of programming education.

Since ICT based MOOC has been widely used for learning programming, therefore,

ICT based MOOC in this dissertation refers to an interactive MOOC that teaches

programming courses, and learner refers to programming learner.

To reach the objectives, the methods used in this dissertation include qualitative

methods such as content analysis and interviews, and quantitative method such as

questionnaire and database collection.

3

1.3 Dissertation Organization

This chapter provides a brief introduction and background of our work in general, in

the following chapters, the detailed background, theoretical framework, studies and

findings will be provided.

Chapter 2 summarizes related work, particularly about systems for learning

programming from ICTs. This chapter also specifically defines how the term “ICT”

will be used throughout the document, outlines the theoretical framework and

practical application of interactive learning, and further discusses the state-of-the-art

in ICT research.

Chapter 3 details our first study, in which a content analysis was conducted.

The goal was to understand the users (mostly the learners) of Codecademy. Reviews

about Codecademy on Quora (a well-known Q&A website) were extracted to be used

for inductive analysis. In this study, results indicate that 1) Beginners were the

main users, while experienced learners also used it to learn new languages or refresh

skills, 2) it was good at delivering web development/front end courses, 3) interactive

environment increased the engagement of learners and 4) learners complained that

the courses are not practical. The implication for HCI research and for next study

were also discussed in this chapter.

Chapter 4 explains our second study, in which 20 programming learners were

interviewed about their experience with and preference between ICTs and teachers.

Learners’ perceptions for both learning methods were found and discussed, including

their likes and dislikes. Some patterns were also found, such as 1) experienced

learners had higher autonomy than less experienced ones, and 2) learners with higher

autonomy would prefer learning from autonomy supportive system, and vice versa.

The implications for both ICT designers and CS educators were discussed, and the

patterns we found inspired next study.

4

Chapter 5 presents our third study, in which CS learners’ autonomy were

investigated. The theoretical framework of learner autonomy were provided, including

the definition, manifestation and research in various educational context. A

questionnaire was distributed to 364 CS learners, scaling their autonomy level and

system preference. The results indicated that: 1) CS learners had an overall

medium to high levels of learner autonomy, 2) Experienced CS learners tended

to have higher learner autonomy than beginners, 3) CS learners preferred using

autonomy-supportive systems to learn, and 4) learners with higher autonomy would

prefer autonomy-supportive system more than those with lower autonomy.

Chapter 6 describes our fourth study, in which an autonomous feature was

added in an ICT based debugging game. The effect of this feature on learners with

different levels of autonomy was examined. We found that: 1) learners with higher

autonomy used the autonomous feature more, and 2) learners with lower autonomy

completed more levels.

Chapter 7 concludes the whole work, discusses the contribution, and proposes

future direction for this research.

The diagram shown in Figure (1.2) depicts the connection among each study,

and the connection between the studies and the overarching goal.

5

Figure 1.2 The connection between studies and the overarching goal.

6

CHAPTER 2

LEARNING FROM INTERACTIVE COMPUTER TUTORS

2.1 Introduction

This chapter will first discuss interactive learning theory and practice, and then define

the most important term in this dissertation, the interactive computer tutor (ICT).

Related work of the application of ICT in programming education will be discussed

to highlight the state-of-the-art in the field, while also revealing the knowledge gap

in current research.

2.2 Interactive Learning System in Theory

In the view of constructivism, learners construct knowledge by building on what

they already know [174] (i.e., learning-by-doing). Therefore, educators ascribing to

this learning theory encourage and provide their students with experiences that help

them build on their current knowledge of the world [59]. From this point of view,

learning is not a one-way flow of information from teacher to students, but rather

an interactive process. Learning interactively is fundamental and important for

knowledge acquisition and skill development [18]. Therefore, increasing meaningful

interaction in pedagogy and improving its quality have long been goals for researchers

and educational system designers [6, 8, 82, 170]. To enhance the interactive learning

practice, Woo & Reeves [70] recommended re-conceptualizing web-based interactive

learning based on social constructivism learning theory. In their view, the use

of authentic activities in interactive learning systems [85] is considered meaningful

interactions [185].

From a more practical point of view, interactive learning system has been

applied in different educational contexts and in various formats, and the use of it

7

in formal education has been shown to have positive effects on learning gains and

students’ motivation. Stillson & Alsup [167] used an online, interactive learning

system called ALEKS to teach basic Algebra to students, and they found that

students’ understanding of algebra was enhanced by using this system. Similarly,

Wade-Stein & Kintsch [179] applied interactive computer support for writing,

which resulted in improved student engagement and learning outcomes. Another

interactive system, STAR, used voice recognition technology to help children learn

word pronunciation. This system improved their speech skills and motivation to

learn [152]. Lee et al. [112] used an interactive e-learning system using pattern

recognition and augmented reality, finding that the system was helpful in engaging

elementary students to learn school curricula.

To summarize, many studies have used interactive learning system to teach entry

level courses and basic skills, and demonstrated that using it could improve learner’s

engagement. However, there are limited views on the application of interactive

learning system in more advanced learning scenarios.

2.3 Define Interactive Computer Tutor

According to Anderson’s ACT-R theory [8], the acquisition of cognitive skills points

out a direction for instruction method, in which students are presented with both

declarative instruction and a series of guided practices [9, 8, 11]. This theory

is the foundation for several instructional design practices, including programming

education. An application of it is called Cognitive Tutor, which Anderson et al. used

to build an interactive computer tutor that teaches LISP programming language to

students [9, 8]. In their work, they described the tutor, which is called GRAPE (Goal

Restricted Production Systems), a two-component system: a “problem solver” (which

can interpret learners’ code and provide instant feedback) and an “advisor” (which

provides guidance to learners throughout the learning process). In addition, this

8

system contains both tutorials and coding environment in one window, and the system

interacts with students by providing guidance, hints, queries and feedback [9, 60].

Based on their description, this dissertation adopts their approach and defines

interactive computer tutor as a system that provides both declarative knowledge and

problem-solving practices, and that guides through the learning process by interacting

with students.

Any system that corresponds this description will be included in the scope of

ICT defined in this thesis. A typical example is Codecademy (see Figure 1.1).

To further define the scope of ICT for programming education, here is a list of

features that are considered should not be included in the scope. 1) a system that

only provides tutorials, either in the form of text or video, but does not have any

interactions with learners; 2) a system that has interactive activities, but does not

provide a code editor; 3) a system that has tutorials, interactive activities, and code

editors, but does not provide interactive guidance during the problem solving process,

e.g., no feedback or instruction when learners are doing the coding practices.

2.4 Interactive Computer Tutors in Programming Education

Programming is the ability that learners develop to apply knowledge effectively

and readily to solve problems using computer code [177]. Therefore, learning

programming is largely a learning-by-doing effort that requires many problem-solving

practices [5], and immediate feedback is important for learners to make progress [96].

Researchers have been studying how interactivity can be increasingly better

integrated with the idea of learning-by-doing and how well these methods can

promote programming education. One research direction is about blending ICTs into

traditional classrooms. Learning programming fundamentals has been documented

to be a difficult task for students [25], mainly because of poor teaching methodologies,

low interaction levels with students, and lack of students’ interest [17, 46]. A number

9

of studies have investigated the effect of introducing ICTs into traditional classes to

teach basic concepts with the goal of increasing student motivation. For example, Law

et al. [103] implemented an interactive learning system—Programming Assignment

aSsessment System (PASS)—which provided supportive features to students learning

programming. They found interactive factors such as ‘clear direction’ and ‘reward

and recognition’ can enhance learning motivation and self-efficacy. Brusilovsky et

al. [30] applied ICT in formal classroom settings to teach SQL programming, showing

that complementing teachers’ lessons with ICT helps to increase learners’ motivation.

Biju [25] used Alice, an open source ICT to teach fundamentals in an introductory

programming courses. The results indicated that students gained higher success

rate in understanding programming concepts, and their motivation to complete

assignments improved.

As for novices and children who first learn programming, Lee et al. [108] designed

an interactive debugging game using ICT features that was found to effectively engage

a wide range of users in learning introductory programming concepts. Similarly,

Nersesian et al. [135] created an interactive AR system called CSpresso to teach

middle school students how to count in binary, and found that students using the

system were highly engaged, and performed as well on a post-exam as those who

were taught the same concepts by a teacher.

While the aformentioned studies investigated systems focusing on learning

outcomes, there are some studies that examine how students perceive ICTs. For

example, Karnalim & Ayub [91] applied Python Tutor [78], a web-based interactive

system that teaches python interactively by visualizing the program execution process,

on programming laboratory session and collected the students’ perspectives. They

found that the positive comments towards the system outweighed the negative ones.

One noteworthy point is that the students appreciated the system’s help in finding

errors for them. Similarly, Sharp [159] used Codecademy’s interactive lessons as

10

an instructional supplement in a Python programming course, and also found that

positive comments about the system greatly outweighed the negatives. From the

students’ perspective, while they enjoyed the interactive nature of the system, they

had critiques about limited use of their creativity due to the nature of the system’s

predefined solutions.

To summarize, although a number of studies have shown that ICTs can increase

programming learners’ motivation and engagement, there are only a handful of studies

that probed learners’ perceptions of ICTs. A holistic picture is needed to understand

learners’ experiences and needs for using ICTs when learning programming to

continue improving on current implementations.

2.5 Interactive Computer Tutor based MOOCs

A successful application of ICTs for programming is within ICT based MOOCs

(or Massive Open Online Course), such as Codecadmy [164]. This kind of ICT has a

broad user base [32], not only because they provide various programming courses [164],

but also due to the (usually positive) experience provided by the integrated interactive

learning environment. In these systems, the tutorial/instructions and coding panes

are displayed in one application window or webpage. Learners type into the

coding pane while following the tutorial, and receive feedback from the system

immediately [148]. Using Codecademy as an example to illustrate the interactivity

(see Figure 1.1), the interface resembles the interactive tutor described in this chapter,

and proposed by Anderson et al. [9].

Recently, Kim & Ko [97] provide a general report for ICT based MOOCs,

investigating 30 popular online coding sites, and found that these systems could

be improved by personalized support, and more precise and contextualized feedback.

One such interactive educational system is Khan Academy [158]. It applies the same

kind of code editor as Codecademy does, but adds gamification elements to motivate

11

programming novices [176]. However, meaningful gamification in education should

help learners build up engagement for long term change [136]. In learning systems

such as Khan Academy, simply using a reward system may increase learners’ extrinsic

motivation for the short term, but may reduce their intrinsic motivation for the long

term [130, 136]. This was demonstrated by Morrison & DiSalvo [130], who found that

some of the gamification elements in Khan Academy were not meaningful to users.

Because this study exclusively focused on novices, it raises the opportunity to learn

more about non-novices, their motivations to learn, and their views about different

interaction elements within these ICT based MOOCs.

Another application of ICT based MOOC is SoloLearn, a tool that learners

can use in their web browser or mobile phone to learn programming. Deshmukh

& Raisinghani [54] combined this application with the use of the Application

Based Collaborative approach (working on a collaborative project) to teach students

programming. This approach assumes that the interactive learning system can teach

learners basic concepts, while the collaborative project can keep experienced learners

engaged. The study found that this combintion of approaches positively affected

learners’ motivation. However, since this approach used collaborative projects to

engage experienced learners, it is unclear whether ICT based MOOCs could also

attract and engage experienced learners. We plan to explore this, examining how we

can improve systems to serve both beginners and experienced learners based on their

unique needs.

In this section, we looked at several ICT based MOOCs that are commercially

available online. Although we ground our study on the users of these systems, we

do not base our work on a single system. Instead, we started the work by first

exploring ICTs in theory and in academic practice, we found out that although

these studies have proposed several designs and pedagogy to engage learners and

improve learning outcome, there lacks the learners’ view about ICTs. Especially

12

when we look at the commercial application as next step, which is the ICT based

MOOC, it has a broad learner base, however, little work has been done to study

these learners. Understanding the learners is important, since it points out a direction

of system design that would improve learners’ experience, and furthermore, increase

engagement.

The contribution of this study is beyond an analysis of a specific application

or tool, but a broader perspective from the learners’ point of view to improve their

experience with ICT based MOOCs in general.

2.6 Summary

This chapter discussed the theoretical framework and practical application of

interactive learning, and investigated the current state of ICTs in the context of

programming education. While much work has been done to increase motivation

and engagement for beginners through interactive learning, there does not appear to

be much research done examining more advanced learners. In addition, the current

literature focuses on the positive aspects and resulting outcomes of using ICTs for

students, but do not explore ICTs from the perspective of the learners themselves.

This key aspect—how learners perceive ICTs—is the gap in knowledge that this

dissertation seeks to address.

13

CHAPTER 3

EXPLORING LEARNERS’ VIEWS ON ICT BASED MOOCS

3.1 Introduction

The demand for technology workers continues to rise around the world. Nowadays,

many people are becoming self-taught programmers, learning how to code on their

own using books and online resources. Even for those who take a more formal

route of learning computer science (CS) in school, learning programming outside

of the classroom is common. Recently, Stackoverflow, an online community for

programmers, surveyed its users and found that 37.6 percent of respondents did not

have a computer science degree, but 85.5 percent of them learned a new programming

language, framework, or tool without taking a formal course [165]. Prior work by

Scaffidi [155] estimates that for every one trained professional programmer in the

US, there were four non-professionals without any formal training, programming in

their everyday jobs. Supporting these large numbers of self-taught programmers is

the increasing availability of Massive Open Online Courses (MOOCs) [143]. As an

alternative to physical, in-person courses to learn programming, MOOCs provide a

cheaper (often free) and more accessible means to learn programming, while serving

a large scale of learners [171].

As discussed in Chapter 2, Codecademy is one of the most commonly used ICT

based MOOCs. Although some studies have investigated the effect of integrating

Codecademy into traditional classes [61, 110, 139, 159], we lack the input and

perspective from the larger population of self-taught programmers who choose to

learn from ICTs. Despite their enormous number of users, we do not clearly

understand what programming learners think about these ICT based MOOCs—such

as Codecademy—they are using. Who are the users? Why do they choose

14

Codecademy and what do they think about it? Answering these questions will help

us understand the importance of ICTs as a programming instructor will allow us to

rethink and improve on the design features that will improve the learning experience.

Since we are among the first to probe self-taught learners’ views about learning

coding through Codecademy, we decided to adopt a grounded theory approach to

our analysis [168]. By reviewing 218 Codecademy related answers from Quora, we

extracted 3 themes and 14 codes that answer three questions: 1) who are Codecademy

users?; 2) why do they choose Codecademy to learn coding?; and 3) do they have any

issues using it? We found that 1) it is mainly designed for beginners learning a new

language, 2) it is good at delivering programming skills that can be visualized, such as

web development skills, 3) interactive environment increases the learners’ engagement

and 4) the biggest complaint is that the courses are not practical. The findings suggest

that ICTs can be an effective tool to teach programming from beginning, especially

when there is a shortage in CS educators [80]. Our contributions are: 1) the first to

study the users of ICT based MOOC; 2) pointing out a direction for researchers to

study how users interact with ICTs; 3) proposing design features that can improve

learning experience with ICTs.

3.2 Background

The rapid growth of Codecademy raises the interest of researchers and educators.

There are several studies that investigated the application of Codecademy in

programming education. Lee & Ko [110] compared the learning gains for novice

programmers with Codecademy and an online coding game called Gidget [109], they

found that both learning tools can teach novice programmers effectively. Figueroa

& Amoloza [61] studied how interactive platforms can help non-computer science

learners reduce programming anxiety. They found that using a system such as

Codecademy can lead to “a significant decrease in learning anxiety and an increase in

15

perceived learning”. A more recent study introduced Codecademy as an instructional

supplement in an introductory Python programming course. From an educator’s view,

the result was positive, indicating that ICTs can be a useful supplemental tool for

formal classroom instruction [159]. Although they pointed out the negatives of using

Codecademy interactive lessons, such as limited opportunity for creativity and critical

thinking, this study lacks the views from the students. Olsson & Mozelius [139]

explored the design of online learning environment from the learners’ perspective.

In their case study, they utilized Codecademy to teach a group of self-learners, and

found that the learners’ overall experience with Codecademy was positive, and that

the immediate feedback the site provided was brought up by the users as a particularly

useful feature. However, despite the study’s focus on the learners’ perspective when

using ICT based MOOCs, there is still a gap in knowledge about how general learners

perceive these systems and why they choose them to learn programming.

3.3 Methodology

Since there is limited research examining learners’ perspectives of ICTs, we adopted

a grounded theory methodology to explore this space [168]. For the study described

in this chapter, we followed the most recent grounded theory framework suggested by

Tie et al. [41], which includes six steps: purposive sampling [7], generating/collecting

data, initial coding, intermediate coding, advanced coding, and the grounded theory.

We collected data from Quora (www.quora.com), a popular question-and-

answer website where users post questions and others respond, either factually or

in the form of opinions [141]. We chose to use Quora as our data source because:

1) it has over 50,000 users subscribed to the topic “Codecademy”, which represented

a large number of Codecademy users around the world; 2) the respondents of most

Codecademy-related questions have their real names and background information

16

displayed, and 3) responses are typically high-quality and authoritative, building on

a reputation system among users [144, 181].

The data collection and analysis was conducted at the same time, implementing

the following steps: 1) searched for the keyword “Codecademy” on Quora’s homepage,

the website returned the results ranked by popularity, 2) starting from the most

popular question, looked at each retrieved question, decided whether it is relevant

to our research, 3) once considered relevant, we went to the question page to

review the answers, 4) we extracted relevant answers to our data analysis tool called

MAXQDA, 5) codes were assigned to snippets of the text using the inductive analysis

approach [43] (a research method that allows findings to emerge from the themes

inherent in raw text data [173]). These steps were completed iteratively until we

reached the data saturation [154], meaning that there were no more new codes

emerging. The data saturation was reached at around 140 answers (57 questions).

To ensure reliability, we continued to retrieve and analyze 68 more answers. One

researcher did the initial data collection and analysis, and another researcher verified

the data and codes. Our relevance criteria required a question to be learner-focused

(e.g. “Is Codecademy an effective way to learn how to program”) rather than

company/application focused (e.g. “How will Codecademy monetize?”). Another

selection criterion was for the answer to be informational enough to extract codes.

For example, a response such as “Codecademy is good” would not be selected, because

words such as “good” and“bad” is too general and does not point to a specific feature

or audience. In contrast, a statement such as “Codecademy is good for beginners.”

would be selected because it gives a specific reason to why Codecademy was regarded

as good.

17

3.4 Findings

In total, we analyzed 62 questions and 218 answers (from unique individuals).

Through inductive analysis, we consolidated this data down to 3 themes and 14 codes.

Between two researchers, we reached an intercoder reliability of 0.89 and intercoder

agreement of 0.93 [33]. In the following subsections, we describe our results using

representative excerpts from our Quora questions and answers about Codecademy.

Although we had access to the Quora users’ real names and additional background

information through their online profiles, we intentionally refer to them as S1-S218

throughout this chapter to give them a degree of anonymity.

3.4.1 Who are the users?

We identified three types of users of Codecademy: 1) self-taught learners, which

include beginners (101/218) and intermediate learners (19/218), 2) teachers who use

it as a supplementary tool to teach students (3/218), and 3) companies who use it to

train staff (1/218).

Beginners We found that most users think of Codecademy as an ideal starting

point to learn programming. Even experienced learners who expressed major

criticisms about Codecademy tended to admit that it does a good job in teaching

programming to beginners. P1, a web developer for many years, wrote: “I do

recommend the [Codecademy] tutorials for complete beginners. Though a few things

may be misleading, the tutorials provide the best information (I have come across) for

complete beginners to learn from. As you advance, you’ll inevitably find other sources

more useful. But initially they provide a pretty good foundation for web development

newbies.” Another example is P2, a programming beginner when he starting to use

Codecademy 5 years prior, who stated: “As an English teacher who had no technical

background at all, I really enjoyed learning and writing code on that website. It was

this website that helped me step into the world of code.”

18

Experienced learners We also found that some experienced learners (learners

who have prior experience in learning programming) use Codecademy as a tool to

refresh their knowledge or learn the basics of a new language. For example, P3 wrote:

“Codeacademy tends to work well for experienced programmers who want to brush

up on some syntax or want to learn a new language.” Although this review seems

more an opinion than an experience, we have P4, who is programming since 1985,

shared his personal experience. He said: “From the personal perspective, every now

and then I go to those sites when I’m curious about a language I don’t know.[...] I

find sometimes that’s the fastest way to learn a new skill. It doesn’t matter how long

you’ve been programming, you will always be a newbie at something.”

Others As we mentioned above, besides self-taught learners, there are other users

who use Codecademy as a training tool, such as teachers and companies. Although

limited comments are found, we think it is noteworthy to mention because it suggests a

broader usage of ICTs. For example, P5 seems to be a middle or high school teacher,

he used Codecademy to arouse coding interests of his students. He commented:

“Codecademy feels more like an interactive game that you experiment with and, in

general, tends to more lightly scratch the surface of general concepts/languages. For

us, at our school, we used Codecademy in our intro course to get kids’ feet wet with

the whole process of programming.” On the other hand, companies will use it to train

their staff. P6 thought that Codecademy is good for beginners that have some coding

experience. Tools like it can be effective for training teams. He shared his friend’s

experience: “he really enjoyed them and found them pretty effective for introducing

their team to the BASICS of new technologies that the team is not already familiar

with.”

19

3.4.2 Why do they use it to learn?

Learners find it helpful because it delivers basic content in a structured way, which

makes learners pick up skills quickly and easily (93/218). And people thought it

was engaging and one potential reason can be that the website provides interactive

learning environment (35/218). We also encountered many discussions about learning

a specific language or skill from it, such as web development skills (61/218) and

Python (17/218).

Learning basic content in a structured way In addition to providing basic

content, providing it in a structured way is the key. As for beginners, it is often

difficult to determine the direction of learning and the essential parts of the material,

so it is the educators’ job to carefully point out the direction and select the relevant

information [35]. Codecademy does a good job from this point of view, compared

with searching for scattered information online. P7 compared it with Youtube videos

and commented that: “A word of caution to youtube videos: I found 2–3 videos pretty

useful/interesting but the rest were extremely hard, and for beginners it seemed too

much, as you have to grasp the concept/theory first then code.” Another way to

understand “structue” is that it builds up the knowledge incrementally. For example,

P8 said: “I found it had a larger repertoire of topics I could learn from. I also found

it to be slightly more structured in terms of progressing from lesson to lesson, and

Codecademy had some repetition and slight jumps in difficulty level between some

exercises.”

Learning quickly and easily While learning structurally may be a demand only

for beginners, learning basic content quickly and easily is a need for both beginners

and experienced learners. Codecademy breaks down the materials into small pieces

followed with exercises, which are easy to digest and follow. P9’s words can better

describe this: “Codecademy (at least for me) was much easier for me to learn the

20

basics from because it has a very easy workflow and is kind of dummy proof to follow

along with.” Another example is from P10: “But the Codecademy definitely works

very well for beginners. The course, say, JavaScript one, is well designed in terms of

the difficulty, how easy for a beginner to learn and apply, and the little test project also

summaries well each chapter’s major points.” As for experienced learners, since they

already know the theories of programming, when they learn a new language, they just

need to pick up the basic syntax quickly. Codecademy provides a good environment

for them. P11 was an experienced learner from his description. Although he had

critiques about Codecademy, he often used it to learn new languages. He said: “I

use Codecademy A LOT. The last time I used it was for PHP. I needed to work on

a wordpress site ASAP, and I’d never used PHP before. I sat down and finished the

course in about an hour and a half. This made it much easier for me to jump right

in and read the code I was working on.”

Interactive environment increases engagement Many users mentioned that

using Codecademy makes them engage more. Structured and easy-to-follow tutorial

is one reason, for example, “Codecademy is one of the best places to spur your interest

in computer programming by giving you nice and simple exercises to get a hang of

the syntax.” said by P12. Interactive learning environment is another. “Interactivity

makes the entire learning process quite engaging and, for many people, less boring than

just copying code from a book/tutorial. It can also provide great help in ‘breaking the

wall’ that generally scares people who are approaching programming.” said by P13.

The gamified feature of interactivity is a possible reason for the fun. Just as P14

commented: “The tutorials are made in a way that is interactive, conversational and

has some gaming elements that keep you moving forward.You will appreciate the idea

that they are really trying to help people who wants to learn to code but too afraid

to take first step to do it.” Another angle to interpret the “engagement” is that the

21

interactivity act as an external motivation for learners who are otherwise not learning

by doing. We can get this point of view from P15: “The best part about Codecademy,

which makes it superior to other types of learning, is the interactive way in which

they teach code. You are forced to write the code as you go along the lessons rather

than sitting on your couch and passively reading a fat, old book.”

Learning a specific language It is interesting to find many discussions about the

application of using Codecademy to learn web development skills, such as HTML,

CSS, PHP, and JavaScript. Most users who learned these skills from it gave good

comments. With its interactive feature, Codecademy does a good job in delivering web

development courses. One possible reason is that these skills are tangible, meaning

that learners can see the results of their code by viewing the website they create

through the interactive window. Instant feedback is received by learners because

the system visualizes the results for them. P16 articulate this point of view in

his comment: “For early-stage learning, I preferred Codecademy for the following

reasons: 1)Really quick feedback loops - I knew whether I was coding right/wrong

almost immediately because the coding and preview screen were built in. 2) And I

thought they should have started with HTML5 and CSS as the first part on ’Intro to

Programming’ as it’s more tangible.”

3.4.3 Complaints about Codecademy

While we found good feedback of Codecademy among learners, complaints followed.

The codes we extracted are: not practical (49/218), not comprehensive (27/218), and

rigid system (15/218).

Not practical When we collected the data by first reviewing the questions, we

found that there are some learners who got confused after they finished Codecademy

courses, because they did not know how to apply their skills to real work. These

22

questions bring out discussions that Codecademy courses are not practical. Many

users complained that these courses are too basic to be applicable. However, as a

website intended for all levels of learner, it is nothing wrong to provide basics as easy

as possible. But programming learners need real projects to polish their skills, that is

what they found missing in Codecademy. Just as P17 commented:“It [Codecademy]

is a good place to learn basic syntax. But, if you really want to be a good programmer,

you need to solve real world programming problems and gain through that experience.

The best way to do that is to either work on your own project, or contribute in an

open source project.” Similar to P17, P18 said: “Codecademy is a great place to begin

Python, but you’ll need to progress to projects in order to develop real skills.” Besides

the lacking of real projects, not teaching problem solving is another reason for not

practical. P19 thought that it emphasized too much on syntax, so that the part to

think of problem solving is missing. He commented: “I thought the UI was great and

the instructions very clear. However, I felt there was too much emphasis on syntax

and mechanics and not quite enough focus on learning how to think through problems.

After a while it begins to feel more like wrote memorization than learning how to get

stuff done with code.” And in P20’s opinion, “too helpful” can sometimes be a hurdle

to learn: “It [Codecademy] is, in my opinion, too helpful, so people don’t learn how to

debug/answer their own questions, which is a critical skill to be a good professional.”

Not comprehensive Not comprehensive can be interpreted from two kinds of

expectations. Some learners expect it to be a one-stop shop to learn both the basic

the advanced topics, but they often find there is missing the advanced parts. For

example, P21 commented: “I will not recommend you to learn java from this site

because I already completed 2 to 3 course on it and after completion I found that the

tutorial are to basic.” Even for learners who only expect to learn the basics, they

often find it not comprehensive with the basic stuff. This expectation is addressed by

23

learners such as P22, he commented: “However, Codecademy can sometimes ignore

very important details in various programming languages, which can be a huge issue

depending on how often / how vital it is to the language.”

Rigid system Codecademy offers structured tutorials where learners have to follow

the path strictly. While some learners find it helpful as we mentioned above, other

learners think it is as a rather rigid feature. They have complaints that some contents

are repetitive, so they get boring after a while. P23 had a comment for this: “While i

think that Codecademy is fun to ‘play with’, after a while it becomes pretty repetitive

and you won’t learn anything new.” The learning system is also rigid and makes

people “too relax”, according to P24. We can tell from his answer: “In my opinion

it is too boring and relaxed. Just repeating language constructs after a template won’t

help you learn a language or technology since you will forget everything you’ve learned

that way in a week.” In the interactive learning environment, although learners can

benefit from the instant feedback, the rigid format can sometimes make it hard to

proceed. Learners have to type in the code exactly as the system requires to get the

right answer.P25 complained about it: “I didn’t like its strict and rigid expectations

of the answers. For example if it asks your to write print ‘Hello World’ and you wrote

print ‘Hello world’ it will give you an error without telling you what it is.”

3.5 Discussion

To summarize our findings, we found that: 1) the main users of Codecademy are

beginners and experienced learners who want to learn a new language, 2) it is good at

delivering courses that can be visualized, such as web development/front end courses,

3) interactive environment increases the engagement of learners and 4) learners have

criticism that the courses are not practical. These results have implication for both

ICT designers and researchers.

24

From the learners perspective, while most of the users are beginners, we cannot

ignore the fact that experienced learners also represent a certain user type. As we

mentioned above, beginners often lack the ability to select the learning materials

and decide the direction. They need educators to hold they hand and guide them

through [101]. However, experienced learners have higher autonomy as regard to

self-learning. This brings up a question that beginners and experienced learners have

different preference for ICT based MOOC designs. While beginners may enjoy the

system forcing them to learn step by step, experienced learners may prefer more

freedom to pick up whatever they want to learn quickly. Further experiments can be

done to explore what specific design features will serve different types of learner.

According to Moser [131], learning programming is difficult because it is too

abstract to relate to everyday life. This probably explains why many ICT based

MOOCs start with web development courses [50, 89], because they let learners

visualize their codes by displaying the web page they create through the learning

window. The interactivity even make the process faster and easier. With the demand

for learning more languages increases, Codecademy now provides more courses that

cover almost all the mainstream programming languages. Although we know its

success in teaching web development skills, there should be further research to study

the application of it on other programming languages. Especially to understand

how interactivity, as a main feature of ICTs, acts its role in delivering these courses.

Another noteworthy point for interactivity is that, although we found that interactive

environment increases the engagement, the reasons are hidden from us. We need more

in-depth analysis to understand, from learner’s view, why and how interactivity can

motivate them.

As for the complaints, we can see the efforts that Codecademy made to minimize

the learning barriers. The easy learning process is indeed attractive to learners.

However, it brings out the concerns for practicability. Teaching problem solving is

25

as important as teaching syntax. Not only curriculum design can adjust the weight

of problem solving, but also the exercises can be designed towards it. For example,

debugging is common problem solving process for learning programming [40], using

the advantage of interactive learning, designers can add more debugging exercises

that practice learner’s problem solving skills.

3.6 Limitations

As a qualitative study, our goal was to discover patterns within a population, and

therefore no attempt was made to assign frequencies to words in the text data. Thus,

our study does have limitations [138] from this point of view, but we propose future

work that can reduce the effects of limitation.

First, there are ambiguities inherent in human language. Especially when

the data is a one-time post, there is no way to request reviewers to explain their

responses in the same context when they posted their answers. It is also a limitation

that we cannot ask follow-up questions behind one sentence judgement. However,

synchronized communication, such as interviews or focus groups can solve this

problem. With the patterns identified, we can have a clear outline for interview

protocols to conduct semi-structured interviews.

Second, the time span for the data gathered was 2011-2019. With the ever-

changing nature of ICT based MOOCs (e.g., functionality, content, and usability),

early answers may not be representative in current context. In addition, the sample

number is limited compared with the larger user population of ICTs. To generalize the

findings to the population and get more up-to-date information, quantitative method

such as large-scale questionnaires may be used for followup studies. The results of

this study can serve as a good outline for the questionnaire design.

Finally, there might exist participant bias, because the answers we collected were

from those who were active enough within an online community to answer questions

26

on Quora. We may be missing the opinions from silent learners who are not active

on this online platform. However, this bias is common in research that involves

human subjects. Subjects who opt-in the research are those who tend to express

their opinions and interests more actively. To mitigate the participant bias, we will

use the patterns we identified to reach more general learner population, e.g., using

questionnaires.

3.7 Summary

In this chapter, we used grounded theory to study the learners of Interactive Computer

Tutor based MOOC. Using Codecademy as an example, we collected and analyzed

relevant questions and answers from Quora iteratively. We collected 218 reviews in

total, and extracted 3 themes and 14 codes from them. By interpreting these codes, we

summarize our findings as: 1) Beginners are the main users, while experienced learners

also use it to learn new languages or refresh skills, 2) it is good at delivering web

development/front end courses, 3) interactive environment increase the engagement

of learners and 4) learners complain that the courses are not practical. These findings

indicate the importance of interactive computer tutor as a programming instructor

that teaches programming from scratch, and imply design features that can improve

the learning experience for learners with different needs.

27

CHAPTER 4

INTERACTIVE COMPUTER TUTORS OR HUMAN TEACHERS?

4.1 Introduction

Learning to program is considered a difficult process and requires continuous practice

much like learning natural languages. But unlike natural languages that can be

used in different situations of everyday life, learners typically program within the

constraints of a computer screen [131]. The difficult nature of programming may

increase the dropout rate in both classrooms [137, 188], and massive open online

courses (MOOC) [140]. In addition, the quality of programming teachers and MOOCs

can also serve as a factor affecting dropout rates.

Learning from either teachers or computer tutors may have obvious advantages

and disadvantages. Individual tutoring is an ideal strategy for teaching and

learning programming—human tutoring is one of the most effective ways to overcome

programming obstacles [79], but the lack of computer teachers continues to be a

concern of researchers and educators [80]. Many learners have limited access to

in-person and personalized programming courses. Even for those who have access

to courses, a large lecture-based format is not an ideal setting for teachers to pay

attention to the individual needs of each of their students [10]. More recently, MOOCs

become popular alternative or supplement for traditional classroom lectures, as they

are often cheaper, more accessible, and can support more students simultaneously

than traditional classrooms [171]. However, the limited amount of interaction

with teachers and limited extrinsic motivators are major constraints and future

development opportunities for MOOCs.

In this work, we only focus on MOOCs that offer instructions through virtual

agents or interactive computer tutors (rather than those that primarily provide

28

instructions through text or video), such as Codecademy, Datacamp, and Treehouse.

We choose to focus on ICT-enabled MOOCs instead of other types of MOOCs

because the literature suggests that the former type of environments can provide

effective programming instruction [48, 103] and are gaining more popularity with

learners [130, 133]. Although learning programming from either ICTs or teachers

have shown positive learning outcomes for learners, few studies explicitly examine

learners’ perceptions of the experience of using and comparing the two approaches.

Exploring these ideas can surface important features to better design and highlight

the effective techniques that learners seek when learning to program.

This work describes a qualitative, exploratory study examining learning experiences

from the perspective of learners and compares their views on learning from an ICT

and from a teacher in a classroom. Although we compare the pros and cons of ICTs

and teachers, our goal is not to suggest one is better than the other. Instead, we

aim to find ways to improve all learners’ educational experience by exploring the best

practices, qualities, and techniques used by teachers to apply to and improve ICTs,

and vice-versa.

4.2 Background

4.2.1 Learning from interactive computer tutors

Mastering programming skills requires extensive practice and making mistakes [5].

Many MOOC websites, such as Codecademy and Khan Academy, integrate tutorials

with extensive exercises using code editors with feedback systems [148]. Empirical

studies show that students who learn programming interactively through well-

designed computer systems can achieve good learning outcomes and higher self-

efficacy [60, 103].

However, what are the good features of an ICT based MOOC for delivering

educational programming content? According to Woolf & McDonald [186], an

29

effective tutor must deal with the fundamental problem of communication, therefore,

they suggested a computer tutor to adapt a system’s response to the student’s level

of knowledge. Early research by Reiser et al. [149] developed an intelligent tutor that

teaches LISP programming. The main goal of this tutor, called GREATERP, was

to structure students’ problem-solving episodes and provide feedback and guidance

adaptively. This tutor was demonstrated to be more effective than traditional

classroom instruction. More recent work by Staubitz et al. [166] proposed five

requirements for an ICT to deliver programming courses: Versatility (support

multiple programming languages), Novice-Friendliness (UI catered for beginners),

Scalability (support for many users), Security (secure students’ submissions/assessments),

and Interoperability (integrate into existing infrastructures). Pritchard & Vasiga [148]

summarized that built-in coding environments are beneficial for students’ continuity

in learning-by-doing. While most educators will agree that a mentor is essential in the

initial learning process for beginners, Liyanagunawardena et al. [115] showed that in

an online course, the learners’ community itself can act as a mentor and could possibly

mitigate the issue of not having enough teachers for students. Users can also identify

the benefits of features such as deliberate instructional design (designed instructions),

learning analysis (self-reflecting information), and instant feedback [191].

One problem associated with ICT is that learners would “game the system”.

Baker defined gaming the system as “attempting to succeed in an educational

environment by exploiting properties of the system rather than by learning the

material and trying to use that knowledge to answer correctly” [16]. Some research

has found “gaming the system” to be associated with poorer learning in ICTs [15, 180].

Therefore, Baker et al. [14] investigated the reasons that learners game the system,

and according to the findings, they gave suggestions on ICT design, which include:

1) balancing the problem difficulties, 2) balancing the problem length, and 3) giving

learners freedom to skip problems.

30

In this section, we discussed the good design features of ICT and the problem

associated with it. Our study expands on these works, aiming to explore from

learner’ perspectives on whether these commercial systems (such as Codecademy and

DataCamp), which can also be called ICT based MOOC, have the deign features

mentioned above, and whether do they have the mechanism to alleviate the problem.

4.2.2 Learning from teachers

Unlike ICTs which have a relatively short history in education, human teachers have

been a part of education for centuries. Studies have shown the effectiveness of human

teachers [26, 83, 125]. A teacher can guide students and can effectively time how

much thinking a student should do before providing hints or answers directly [65].

This is especially important for novices, who can benefit more from interactions with

teachers [132]. Teachers can also intervene at the right time to prevent students

from becoming too frustrated [125], which is especially important in the early

stage of learning, when learners have a higher likelihood of quitting [188]. Robins

et al. [150] concluded that an effective programming class should raise students’

interest and participation by setting clear goals and actively involving participants

in course materials and problem-solving activities. However, questions remain about

what specific teaching methods contribute to an effective programming class. Pears

et al.’s [145] overview of programming classes found little systematic evidence to

support any particular teaching approach that answers this question. Tan et al. [169]

conducted a survey to gain insight from the learners’ perspective and discovered that

programming learners found the practical application of programming to be the most

difficult, and therefore considered lab sessions with consultation more helpful than

lectures. However, questions such as what kind of lab sessions they like and whether

they could get sufficient consultation opportunities remain largely unknown to us.

31

4.2.3 Comparing/Combining interactive computer tutors and human
teachers

Means et al. [123] conducted an extensive literature review comparing online learning

and face-to-face learning. They found that on average, students in online learning

situations (including teachers teaching in an online setting) outperformed those in

face-to-face situations. Merrill et al. [125] were the first to give a comprehensive

comparison between the effectiveness of human tutors and computer tutors, focusing

primarily on feedback. They found that feedback from both human tutors and

computer tutors help students detect and fix errors and overcome obstacles. However,

human tutors outperformed computer tutors in communicating the diagnosis of the

errors to students, and therefore, the highly interactive nature of tutor-student

communication led to better motivational benefits compared to computer-student

communication. Human tutors also outperformed in encouraging students to spend

more effort to solve problems. Another major difference of feedback is that human

tutors can strategically moderate their intervention while most of the computer

systems cannot. As a conclusion, they suggested that computer tutors could be

improved by capturing the features of a human tutor in a model-tracing way, and

they further encouraged more empirical research on the differences in motivational

outcomes of feedback from both computer and human tutors.

For teaching programming specifically, Warren et al.[182] compared the feedback

from both computer tutors and teachers in a classroom setting. They observed that

though computers could give instant feedback on whether students were correct or not,

they could not accurately describe where and why answers were wrong. Furthermore,

computers are unable to suggest different types of coding styles the way a teacher

could. Conversely, it may be difficult for teachers to give individual feedback in a

timely fashion, especially when they have a large number of students with complex

assignments.

32

Since both computers and teachers exhibit positive and negative qualities,

researchers are trying to blend the two methods and prove its validity. Heffernan &

Koedinger [84] proposed a computer tutor built based on observation of experienced

human tutors. This intelligent tutor, called Ms. Lindquist, could not only model

trace students’ actions, but could also do more human-like activities such as hold

conversations and provide explanations on request. Deperlioglu & Kose [52] found

that a combination of computer learning and face-to-face learning achieved more

effective and efficient educational experience than traditional face-to-face classes in

terms of delivering programming education. Beyyoudh et al.’s [24] work also indicated

that a combination of intelligent tutoring system and human tutors increased learners’

motivation.

4.2.4 Learning from the learners’ perspective

Based on our literature review, we found a gap in knowledge examining learners’

perspectives on receiving instruction from either ICTs or teachers. It is important

to examine learners’ perceptions of the differences between computers and teachers,

and their preferences when interacting with either of these choices when learning

programming. The chosen educational guide can influence their perception of the

topic and activity and therefore may affect retention rates and learning experience.

Therefore, our overarching research objective is to better understand the

learners’ perspective towards ICTs and human teachers, and how we can use this

knowledge to improve both ICTs and human instruction in classrooms. To address

this goal, we raise the following research questions which we will explore in this article:

RQ1: What do learners (a) like, and (b) dislike, about learning programming
from ICTs?

RQ2: What do learners (a) like, and (b) dislike, about learning programming
from teachers?

33

RQ3: What do learners think are the pros and cons of feedback from ICTs and
teachers?

RQ4: Do learners prefer to learn programming from ICTs or teachers?

4.3 Methodology

To answer these research questions, we conducted 20 in-person, semi-structured

interviews. We chose to use interviews as our means of data collection as they are

a commonly used in exploratory work [151, 183], especially when there is limited

research in the literature to gain an in-depth perspective into subjects’ views and

experiences [72]. We used a snowball sampling method to recruit our participants [74],

where we asked each participant to recommend people they knew that met our

inclusion criteria and that they thought would be a good candidate for us to interview.

The initial six participants were students who responded to recruitment e-mails sent

to mailing lists at two different public universities in the northeastern United States.

Subsequent participants were classmates, alumna, or professional colleagues of these

initial six participants, representing a wide range of demographics (e.g., gender,

ethnicity, age, job/major), distributed across the US.

One researcher conducted all the interviews. 16 interviews were conducted

in-person and 4 occurred over the phone. All interviews were audio recorded,

averaging 29 minutes per interview. The inclusion criteria for participants was that

they had experience learning programming from both teachers and ICTs. We defined

a teacher as a human instructor in a classroom setting, and used Farrell et al.’s [9]

two-component definition for ICTs. We intentionally did not constrain ICTs to

certain systems any further, as we wanted our participants to talk broadly about

the different technologies they had used without being limited to a specific ICT.

The interview questions were divided into two main parts: 1) behavioral questions

that asked participants about their occupations, majors, coding experience, and

coding-related behaviors (e.g., “In general, how long have you been programming?”);

34

and 2) research-related questions that probed participants about their experiences

learning programming from both ICTs and human teachers (e.g., “What problems

did you encounter, and how did you resolve them?”).

All of the recorded interviews were transcribed and coded using NVivo. Two

researchers conducted the coding, using the three-stage coding process outlined by

Cambell et al. [33] in their work describing how to measure intercoder reliability for

semi-structured interview studies. This was done iteratively until the two researchers

came to a consensus on codes and a sufficient level of intercoder reliability and inter-

coder agreement (stages 1 and 2); then the full set of transcripts were analyzed

(stage 3). Since participants could state their likes, dislikes, and preferences in every

research related question, we read through all the transcriptions and assigned tags to

any emergent patterns (e.g., code editors, content design, flexibility, and efficiency).

After assigning the initial tags, we read through those tagged texts, and consolidated

similar tags into one tag (i.e., code families), or split one tag into different tags.

Finally, we identified 19 themes (each research question has several themes) and more

than 50 tags. We reached a high level of intercoder reliability (.87) and intercoder

agreement (.92). We note that while well-established in quantitative work, there is no

community consensus about the applicability of inter-rater/coder reliability measures

for qualitative studies [12, 81], so we include our scores for completeness for the

analysis of 20 interview transcripts. Next, we present representative quotes from

participants to better explain our themes.

4.4 Findings

Our participants included 9 females and 11 males, ranging from 22 to 32 years old

(median 26). Everyone was from a STEM field/major or job, consisting of 13 students

(6 females and 7 males) and 7 working professionals (3 females and 4 males). Their

programming experience ranged from 1 to 15 years (median 4.5).

35

4.4.1 RQ1a: What do learners like about learning programming from
ICTs?

Provides a code editor — a code editor that is embedded with the ICT, which

allows learners to write and run their code directly within the system. There are

three main reasons that made our participants consider this helpful: First, a code

editor dismisses the need to set up a local programming environment. 7 out of 20

participants mentioned that they only wanted to learn some basics, and that they

did not want to spend time and effort to set up a local environment. Therefore, an

embedded code editor saves time and effort from having to set up a local programming

environment. P3, a 26-year-old male told us: “I think it’s a powerful tool, because if

we want to try something on local, you need to set up your environment, you need to

spend a lot of time for those.” (P3, 6 years of programming experience)

Second, a code editor provides one-window convenience. Participants mentioned

that they liked embedded code editors because they displayed tutorials, examples,

and exercises in the same browser pane, which was more convenient for them to

do exercises, rather than switching windows/tabs/applications between tutorials and

coding tools. P9 told us how she found embedded code editors to be convenient: “If I

follow YouTube, it’s not convenient because I code on my local computer, I watch the

video, then switch to my software. But in Dataquest, the screen is separated in two

parts. You can see the instruction and at the same time, you can type your code.”

(P9, 3 years of programming experience)

Third, a code editor provides a similar, but better-than-real environment. Two

participants mentioned that they liked the embedded code editor because it was

similar to a real coding environment (e.g., a local programming environment) but

better because a code editor in an ICT gives customized feedback while a real

environment does not. “If you actually coding in R, like R studio, you don’t know

36

whether you’re doing right or wrong, but this [Codecademy] actually gives you a

feedback.” said P19 (P19, 3 years of programming experience).

Content design — the course materials and the way ICTs organize and deliver

information, broken down into important components: outline, practice, and

examples. First, ICTs have a clear outline organizing and displaying lessons. The

outline allows users to see exactly where they are in the learning process (i.e.,

curriculum). P20 described how the organization was useful in Dataquest: “The

lessons are very simplified. They are broken down into different modules, so it makes

it very easy to consume.” (1 year of programming experience). P1 compared it with

tutorials from Youtube and commented: “like on YouTube, everything is scattered but

on Codecademy, they have particular syllabus that is planned for you.” (P1, 6 years

of programming experience)

Second, opportunities for practice are provided immediately after each lesson,

so learners can (re)apply what they learned into practice promptly. P3 elaborated

how immediate practice was useful: “for the W3 school, you’ll first grab the same

concept, but immediately you will use the ‘try it yourself ’ demo page. You can put this

knowledge into real world practice. That’s why I like it.” (P3, 6 years of programming

experience)

Third, examples provided along with each lesson. Participants mentioned that

the examples from ICTs were very helpful to understand lessons. As a novice

programmer, P5’s biggest concern was that he could not visualize his code’s output.

He described how examples in Codecademy helped him learn web development: “It

[Codecademy] has an example to show you the final version, you can test again and

compare your code to the example, that will help you to improve your code.” (P5, 1

year of programming experience)

37

Flexible — this allows learners to go at their own pace whenever and wherever they

want. 8 participants mentioned that learning from ICTs satisfied their desire to learn

at their own pace. P2 told us that he preferred online learning for this reason: “For

[classroom] lectures [that are] 3 hours long, if you don’t understand something an hour

in, then you kind of waste two hours. Whereas you can make sure you understand it

online before proceeding onto the next section or the next concept.” (P2, 4 years of

programming experience).

Participants also highlighted flexibility in location, such as P20, who said: “I

don’t have Python installed on my phone and I can still do my lessons [on Dataquest]

even if I’m in transit traveling somewhere.” (P20, 1 year of programming experience).

In the case of P8, he was a full-time student who also held a part-time job. He told

us how time flexibility helped him learn. “I could do it at 2am if I want. A teacher

is not available at 2am,” he said, (P8, 5 years of programming experience).

Efficient — ICTs helped with learning more efficiently compared to other resources.

When comparing the time spent learning from an ICT and from a teacher in a

classroom, two participants felt that being present in a classroom physically was

time-consuming, just as P19 told us: “Because if I want to go to school and take

a class, that’s going to be very time-consuming.” (P19, 3 years of programming

experience).

When comparing ICTs with textbooks, four participants thought that learning

from ICTs helped them apply skills more efficiently than reading textbooks. For

example, P7 told us: “I think for textbook resource, one annoying thing is it doesn’t

show you like all the command[s] and what it does. So, you have to waste time

reading it yourself, but for Codecademy, they just teach you each command. It’s a

faster way to learn it.” (P7, 6 years of programming experience). P15 gave us a very

interesting point that she can be more concentrative on computer tutors than reading

38

the textbook, when the computer tutors provide video-based tutorials: “I don’t want

to read books because when I read a book, I cannot concentrate [. . .] I spend more

time reading a book than watching a video to get the concepts I want to learn.” (P15,

5 years of programming experience).

Provide sufficient help — ICTs provide in-context resources within the system

to help if needed. There are three specific functions that provide sufficient help for

learners: (1) hint systems, (2) staff help, and (3) discussion panels. A hint system

provide general help (usually generated automatically), and usually the very first type

of assistance learners receive. P14 gave us an example on a hint system: “you can

just get the hints and they’ll give you a hint and then you can either get the answer or

you can just continue trying, but you’re not just stuck there if you really can’t figure

it out.” (P14, 4 years of programming experience).

Although the next two kinds of help require some type of human intervention,

we report them since they were emergent themes. Currently, it appears that ICTs do

not have the capability to supply some types of help that learners want (but humans

can provide). However, this may change with advancements in natural language

processing and machine learning, where systems might better detect and understand

the context of their users’ need for help [107, 190].

If the hint system fails to address learners’ problems, some ICTs provide

(human) staff help (also known as course experts). P1 gave us an example: “They

have two or three hints that they give, after that, they even say if you have any issues,

we have [real] people who would help you out, and you can send your queries to them.”

(P1, 6 years of programming experience). Besides human staff help, discussion panels

are built-in forums that provide a place for learners to discuss questions and ask for

help. P9 described how ‘community’ in Dataquest helped her: “Because in Dataquest,

they also have something called ‘the community’, you can search [for] your questions

39

in the community and the community members will post the answers. You can refer

to their answers.” (P9, 3 years of programming experience).

Designed for various learner levels — Some ICTs provide different pathways

based on skill levels. It is helpful for learners to find courses matching their experience.

P16 said: “For Codecademy, they have levels, like ‘did you just start learning code,’

‘you already have some experience,’ ‘you’re an expert.’ So that helps because if you

already know some coding you don’t need a simple example because it’s too easy.”

(P16, 4 years of programming experience).

Interestingly, one participant mentioned that he liked the feature of Codecademy

which locks access to next module until he finished the current module. He had one

year of programming experience, and he emphasized many times his anxiety as a

beginner. This feature forced him to learn step-by-step. He told us: “I really like

this design, because this way can force me to do all the tasks in order one by one

from easiest to the difficult one. I think this is really good, and I like it.” (P5, 1 year

of programming experience). Another participant mentioned that he liked the short

video tutorials provided by Treehouse. The short videos relieve the cognitive load of

learners when compared with a long video tutorial.

4.4.2 RQ1b: What do learners dislike about learning programming from
ICTs?

Content design — This again refers to the course materials and the way ICTs

organize and deliver information. Although 15 out of 20 participants liked the content

provided by ICTs, there were also participants who did not like the content design.

Those who did not like it thought that the tutorials and practice exercises were too

basic to be useful. They liked ICTs but wished they could provide more advanced

content. P2 considered himself as having a good understanding of programming basics

40

since he had 4 years of programming experience. He explained his concern to us: “I

was doing C++ [online], but I kind of stopped because I thought it was too easy and

too basic. They just teach you such basic concepts and they don’t go in-depth.”

Another reason for the dislike was that the sections were redundant. One

participant mentioned this to us: “At the beginning, I find they are pretty useful,

but like 4-5 lessons after, I find the content to be very dry, meaning it’s really the

same thing over-and-over again, I’m not really learning a lot of things that weren’t

[covered] there before.” (P13, 2.5 years of programming experience).

We noticed that those who considered the content to be too basic were

experienced learners (who had at least 3 years of programming experience), however,

other junior-level learners mentioned that sometimes, information was too brief to

understand sufficiently. Some ICTs only provide short introductions without really

explaining the logic behind the material. P11 started programming 2 years ago, and

was struggling to understand the complex logic behind certain concepts. “For me, I

don’t like reading introductions [online], because they want to simplify their content

and the introduction is so brief. Sometimes I don’t fully understand the [programming]

language,” she said.

Locks access to more advanced concepts — Some ICTs require learners to

finish the current module to unlock the next one. While we mentioned that one

participant liked this feature earlier, four participants disliked this feature. All of them

had prior programming experience and had clear goals on what they had to learn.

Their learning efficiency was limited by this feature. P13 was learning programming

for fun during his leisure time at work. He had been learning programming for 2

years. He complained to us: “I already know what this is, and I want to skip it to [go

to] the next module. I’m not able to do that, because I got to complete the first module,

and then go to the second module. So, I didn’t find that to be very user-friendly.” If

41

that situation happens, the learner would try gaming the system [16], P19 shared her

experience to us: “Sometimes I just randomly select and if it’s wrong, I’ll just move

on to the next options and then I don’t really pay attention on the multiple choices

questions.” (P19, 3 years of programming experience).

Does not provide sufficient help — Although 9 out of 20 participants reported

they could get sufficient help from ICTs, other participants held a different opinion.

These participants reported that ICTs could not guide them to understand the

logic behind problems effectively. P5, a novice programmer who often got stuck

on problems in Codecademy, shared his experience with us: “They [Codecademy] will

actually show me the right answer. I still don’t know what’s wrong with my answer

and it didn’t show me or highlight the mistakes that I made, so I still don’t know the

answer.” (P5, 1 year of programming experience).

4.4.3 RQ2a: What do learners like about learning programming from
teachers?

Has real life programming experience – Teachers who are willing to share their

real-life programming experience were favored by our participants. These experiences

include: how to avoid common mistakes, how to style code, tips on interviews, and

how to become a good programmer. P5 was a beginner in programming, he said:

“They [professors] always try to tell you how to avoid mistakes.” Another example

is P11, who had 2 years of programming experience, but was anxious about being a

novice. She enjoyed learning from her teachers. “They teach some things about the

languages and they also tell some real experience for coding, and even some tips about

interview and future working. They told us how a good programmer should do their

job,” she said. One participant observed that teachers are not only experienced in

programming, but also in teaching. “I think they not only have the real experience

42

on using them [programming languages], but also have some experience on teaching,

because they have a lot of students learn in this class, if they have problems, they

will ask. So, the professor will know which part that most people think is difficult, so

they will pay more attention on that part,” He said. (P17, 6 years of programming

experience).

Provides solid learning experience — Participants believed that they could

learn programming with teachers more concretely and systematically than from

ICTs. Teachers introduce new concepts along with background information and logic

about these concepts. Teachers also help students stay on track. As an experienced

programmer with 10 years’ programming experience, P4 suggested beginners to start

programming with a good teacher. He said: “I believe a good teacher will teach you

knowledge in a systematic way. If you have zero knowledge, the best way is to learn

from a teacher, because if you learn from an online app, your knowledge is scattered,

and it’s not systematic. You learn piece-by-piece, [so] you might miss some bigger

parts.”

Provides conversations — Learners pointed out that conversations with teachers

are invaluable because they can discuss ideas, explain their specific problems, and

have someone to relate and/or look up to. P17 was an experienced programmer, and

was full of project ideas that he liked to discuss with his advisor. He said: “When

you communicate with him, firstly you can solve your problem. And secondly if you

have some ideas, you can talk with him and since he’s experienced, he’ll give you some

feedback on your ideas and you know how to improve yourself or your program.” (P17,

6 years of programming experience).

Another three participants thought that conversations let teachers better

understand students’ problems. Since learners can use different methods to express

themselves in-person (e.g., drawing, writing, gesticulating), face-to-face conversation

43

with experts is a more efficient way to get problems solved than exchanging emails or

searching for answers elsewhere. P10 told us that she could show her code directly to

teachers when communicating face-to-face, so that the teachers can better understand

her questions and help her line-by-line (P10, 2 years of programming experience).

Provides real-time help — When in class with teachers, learners can usually

have their questions answered immediately. It is common to have bugs and errors

when learners program. However, if these errors or bug are not solved immediately,

it may lead to other issues that cause the learner to get stuck. ICTs often cannot

provide real-time, customized help for specific questions, while teachers can. P11, a

beginner in programming pointed out this advantage to us:“I think it is better with a

teacher. Because if there are any questions you can immediately ask for help.”(P11, 2

years of programming experience). Another more advanced programmer, P16, said:

“[Learning] in-person is more instant, and I can do some things right away and get

out the way whatever question I have.” (P16, 4 years of programming experience).

4.4.4 RQ2b: What do learners dislike about learning programming from
teachers?

Not efficient — Most participants reported that learning from teachers was less

efficient. Teachers usually take more time in assigning practice and giving feedback,

while online tools do these immediately and on-demand. As P2 told us: “Because at

the same time a teacher, you don’t get assignments as quickly as you would online.

So, the feedback comes in once a week as opposed to maybe you could literally do the

whole course in a day if you want.” (P2, 4 years of programming experience).

The teacher’s lecturing style can also be less efficient than reading the course

materials by learners themselves. P6 had 15 years of programming experience.

Most of his teachers would just read straight from the textbooks. He expressed his

44

frustration with these types of teachers since he could just read from the textbooks

himself at home: “Most of the teacher just repeat the content of the book. They just

read out the paragraph, the statements in a book. I think we can learn this from a book

much faster than learning from a class. So, you can read the book and then practice

by yourself.”

In addition, three participants felt that it was easier to access materials through

ICTs than teachers. For example, P13 stated that online materials could be accessed

immediately, while for teachers, he needed to register and pay for a course first, and

even be physically present in the class (P13, 2.5 years of programming experience).

Does not follow pace with students — Learners also have a big concern about

teachers’ speed of instruction. 9 out of 20 participants reported their experience of

being unable to keep up with their teachers’ pace. This occurred when the teachers

delivered the content too quickly, or when students had difficulties understanding

some content, but the teachers kept moving forward. For example, P20 was a novice

programmer with only one year of experience; she once had a fast-paced programming

course and could not keep up with the teacher’s progress, so she turned to online

courses to learn the same content. She said: “And with class, things go by so quickly,

we met only once a week and we have to cover so much. So, I feel like I’m lagging

behind, I’m not catching up fast enough with the professor in the class, so I went to

do something online where it can go at my own pace.”

Two participants had the opposite experience—they found classes were far

behind their progress. P16 was a student who always learned things quickly, and

so, she often felt bored when she took a class but was ahead of the teacher’s pace.

She said: “The class gets boring, because you already know. [...] there are students

around you that are still asking questions and they don’t get it, it’s very hard for them

to understand.” (P16, 4 years of programming experience)

45

Provides inflexible curriculum — The content taught in a class were not always

what learners expected. P12 had learned programming for years. He recalled his

experience in college, when he selected a C++ course, expecting to learn something

advanced, but the teacher only taught basic concepts. He told us how disappointed

he was: “what he taught during lecture, I already know, and what he taught was just

the basic syntax, but he did not introduce those advanced [content] which [...] I already

learned from another way. That’s why I say he is not very helpful.” (P12, 11 years

of programming experience). While P10, who was less experienced than P12, told us

that she expected to learn something basic, but what she got in class was too advanced

to understand. She said: “I figured I will get a tutor to teach me the basics, because

he [professor] didn’t teach us the basics.” (P10, 2 years of programming experience).

Not responsive — Some participants complained that they lacked teacher attention

in large classes. “They (professors) are always busy; your problems might not be solved

in time,” P18 said (P18, 6 years of programming experience). Teacher’s personal style

may also be attributed to the lack of responsiveness. P17 told us one of his teachers

who never replied his emails, he said: “one of my professors never replied [to] my

e-mails. The only way you’ll find him is in his class. So, I will only have limited

chances to ask questions.” (P17, 6 years of programming experience).

Has insufficient teaching competencies — Some of the participants questioned

the teaching competencies of some programming teachers, and there are three main

types that refer to teaching competency. 3 out of 20 participants thought that the

teachers they had were not experienced at programming. Just as P9 said: “Maybe

he is very experienced, but he is not experienced in programming, all of his code is

just copy paste from another website, and then share it to you. He can’t explain any

details to you.” (P9, 3 years of programming experience)

46

Participants also had concerns that their teachers’ skills were not up-to-date

since programming skills and technologies are constantly changing. For example, P12

had a solid foundation in programming; he found that teachers in school did not

satisfy his needs because his goal was to always learn about the newest technologies.

“I think the teacher is usually far behind the current progress [...] But what I want to

learn, is always something new,” he said (P12, 11 years of programming experience).

Additionally, one participant shared her experience when she had a programming

teacher who brought her personal emotions into teaching and made her upset: “I

always felt that particular teacher had some personal [issue] against me. I always felt

that she deliberately did not grade me as much as I deserved. [. . .] she just asked

me to leave her room, which is very rude. I don’t know why. [. . .] It did matter to

me for some time. I was kind of hurt and I was sad.” (P1, 6 years of programming

experience).

4.4.5 RQ3: What do learners think are the pros and cons of feedback
from ICTs and teachers?

Pros of feedback from ICTs — The biggest positive feature of ICTs is the

immediacy of feedback. Getting feedback immediately helps learning-by-doing. P5

just started learning programming and he believed that getting feedback immediately

was important. He said: “I think the most useful feature is that you can test

immediately and get feedback. That’s the most important one.” (P5, 1 year of

programming experience). P6 was more experienced than P5 but expressed something

similar, saying: “When you use an interactive tool to learn the programming language,

you can get feedback immediately [...] You can learn it immediately, so that you can

improve your programming skill very fast.” (P6, 15 years of programming experience).

Some ICTs can provide step-by-step feedback, which is good in a way that the

machine lets learners reflect on the errors as much as possible before giving them

47

the correct solutions. Just as P19 told us: “The application lets you rethink about

one point by giving you only a little bit of information to help. And if you still

don’t know the answer, they will ask you whether you want a hint.” (P19, 3 years

of programming experience). An even better interactive system can highlight the

learners’ errors, which helps them pinpoint errors quickly. P17 elaborated this point:

“They will show the result for your wrong code, and the result for the right code. And

they will let you know which part you did wrong. So, it’s quite clear. I think this

feedback is useful. [...] If I did something wrong, it will highlight that specific part.”

(P17, 6 years of programming experience).

Cons of feedback from ICTs — The major problem of ICTs is that they often

only tell the learners whether the final output is right or wrong. When learners

generate the wrong output, the systems only tell them that they are wrong but do

not specify where in the code an error exists (or when they do, it is typically a list

of compile-time or run-time errors with an unhelpful error message), and why it is

wrong. For example, P15 told us: “If I did the exercises correctly, it will let you

know you are correct. If I did something wrong, it will tell me to try again, [with] no

specific instructions.” (P15, 5 years of programming experience).

Even when learners generate the right output, ICTs will often only tell them

that they are right, but will not give any additional feedback that a human teacher

might (e.g., suggestions about coding style or alternative ways to solve a problem).

P8 was a software engineer and knew the importance of a program’s running speed

in real-world scenarios and how important coding style can affect a group’s efficiency.

He said: “There’s code that’s faster and then there’s also code that’s more efficient

and then there’s also code that takes up less space and you’re basically looking for the

[most] efficient one where it takes into account time and space. I mean the Treehouse

48

and all these coding websites don’t give you that kind of feedback.” (P8, 5 years of

programming experience).

Pros of feedback from teachers — Compared with ICTs, participants expressed

that teachers’ feedback were more specific and focused. As mentioned above,

participants thought that it was important not only to understand where their code

errors were, but also why it was an error so that they can better learn how to resolve

it and avoid similar errors in the future. P5 told us a general impression on teacher’s

feedback: “The professor is more specific and is more accurate. You can ask your

professor to check your code line-by-line, and then he will point out your error, and

will explain more. Maybe he will give you a reference.”. (P5, 1 year of programming

experience).

P7 had a nice and patient teacher who gave him detailed explanations for his

problems. He said: “For SQL, I think at that time most of the problems we had is

when we had to join table, and so she’d try to help me to understand. She will basically

just draw out a table and then show me what my wrong code would produce as the

output, and how it would be different from my input.” (P7, 6 years of programming

experience).

In addition, teachers can suggest and discuss different solutions of a problem

with the students. Students can learn better solutions that can make their code run

more efficiently. P3 gave us a comparison between feedback from ICTs and from

teachers: “You write a sorting algorithm and you think it is correct. If you tried on

the website, it is also right, you think it is a perfect solution, but for the professor,

he will tell you that there’s a better sorting algorithm, so you will learn something

better. But for the online tutorial, it only tells you if it is right or not.” (P3, 6 years

of programming experience).

49

Cons of feedback from teachers — Five participants mentioned that it took a

long time to get feedback from their programming teachers. If learners do not get

feedback in a timely manner, the benefits of learning-by-doing might not be realized

since students might have forgotten about the specifics of the task(s) by the time they

get the feedback. P8 shared his thoughts with us: “With the teacher setting, you’re

submitting an assignment, waiting a week for them to look at it. So that it’s a long

process. Like it takes a while just to even know what you did wrong.” (P8, 5 years of

programming experience).

4.4.6 RQ4: In terms of learning programming, do learners prefer to learn
from ICTs or teachers?

Prefer to learn from ICTs — 11 out of 20 participants reported that they

preferred learning from ICTs. Among the 11 participants, one had 1-year programming

experience, and the others had 3 or more years of experience. Most of them were

self-identified as having good knowledge in programming basics. During the interview,

most of them showed confidence on their self-learning abilities. Participants expressed

that they liked to study at their own pace and in a more efficient way. In this sense,

ICTs are better than teachers. This reasoning was more commonly seen with our

experienced programmers. For example, P4 had 10 years of programming experience;

when he learned a new skill or function, he aimed at applying it quickly to solve real

problems. For him, learning from a teacher from the basics was not as efficient and

flexible as learning from computer tutors. He said: “Because I don’t have time to

spend a whole hour to sit in a classroom to take a course. Learning from a teacher,

the time is not flexible, usually, I would prefer that I can learn this language this

morning and I can use it this afternoon. It is not efficient to learn from a teacher.

A teacher will teach you language from scratch. I already know some common sense

about programming language, and the teacher will not personalize the course for you.”

50

P20 was a more junior programmer than P4, but she had some foundation

in programming. The interactive tool she used gave her a positive experience in

learning programming, she expressed her preference for using it to learn: “[I prefer]

computer applications. It’s sectioned so that it’s easier to consume. And I can go at

my own pace.with a class in the classroom, whether or not you get it, or you don’t

understand it, or you need some more time. The professor has to go. So, it’s not

at your own pace you can’t like control the pace at which the class proceeds” (P20, 1

year of programming experience).

Two participants thought that the skills and knowledge provided by ICTs were

more up-to-date, while some teachers’ skills might not. For example, P12 told us:

“I would prefer to learn through the [computer] application but not teacher. I think

the teacher is usually far behind the current progress, because a teacher needs to learn

this programming language first and then he can teach you. But what I would learn,

is basically always something new.”(P12, 11 years of programming experience). P19,

a more junior programmer held the same view. She was a working professional; her

work required her knowing new skills. She felt that what programming skills she

learned at school could not apply to the problems she encountered at work, whereas

what she learned from ICTs were always helpful. She said: “The stuff you learn

from school was more like standard ones, that everybody needs to learn. That’s the

basics. But actually, whatever you’re doing in work or in life, it’s totally different than

what you learned from school. It doesn’t really help.” (P19, 3 years of programming

experience).

Prefer to learn from teachers — Three participants expressed that they

preferred to learn programming from teachers. They all had 1-2 years of programming

experience. During the interview, they tended to be more anxious about any questions

dealing with learning programming. They thought that they needed more expert help

51

to guide them through the process of learning programming. For example, P11 told

us: “I personally prefer someone to tell me. Not just that I go to read. For coding, I

prefer following some examples, it doesn’t matter if it’s with the teacher or with the

video, but I think it is better with a teacher. Because if there are any questions you

can immediately ask for help.” (P11, 2 years of programming experience).

Prefer to learn from both in combination — Instead of learning programming

from a single method, some participants said that they preferred to learn from both

in combination. They liked to learn from computers because they could grasp basic

concepts efficiently and at their own pace. But they also liked to learn from teachers

because they could discuss questions and advanced ideas with them. They agreed

that a combination would be ideal. P1 elaborated her preference: “[I] like a hybrid

kind of thing, take a course online and then just meet my professor once a week to

discuss what issues I had or just shoot out an e-mail saying that ‘I was doing this

particular section and I feel this could be done this way.’ But just sitting there and

just talking with the machine, I think it feels less personal. So, if it’s a hybrid thing,

you have the feasibility of doing the course and taking the course whenever you want

to, and plus having the chance of speaking to a teacher gives you a broader platform

to discuss your issues.” (P1, 6 years of programming experience).

Preference depends on different situations — One participant said that his

preference depended on his knowledge of the language. He said: “It depends on what

I try to achieve. If it’s a new type of programming that I have no knowledge about at

all, then I’ll probably prefer to learn from a teacher. If I sort of know what it is about,

I’ll probably start with a computer-based method, and I’ll go from there.” (P13, 2.5

years of programming experience).

Another participant said that his preference for learning between an ICT or

teacher depended on how deeply he wanted to learn. If he wanted to learn something

52

thoroughly, he preferred learning from a teacher; if he only needed to understand

others’ code at work, he would rather use an online interactive tool to understand

the basics. He said: “If I just want to know the programming language, so that I can

understand other people’s code, I think a computer application is good enough, because

it teaches you basic syntax, basic logic, and I think that’s all you need to be able to

read and understand other people’s code. But if you actually want to program by

yourself, I would prefer taking a class with a professor.” (P7, 6 years of programming

experience).

One participant said that it depended on the teachers’ teaching competency. If

the teacher was experienced and willing to help, he would rather learn from them

instead of an ICT. He said: “If your professor is good at the language he is teaching,

and if his skill is up to date, I think it’s more helpful than learning yourself [with an

ICT].” (P18, 6 years of programming experience).

4.5 Discussion

We identified several features that learners like or dislike when learning programming

from ICTs and teachers. Learners cared most about the following three factors:

efficiency, feedback, and practice. We discovered that most of our participants’

primary learning goal was to apply new programming skills quickly into their work

or studies, so learning efficiency was their biggest concern. Most of them also

believed that learning-by-doing was the best way to master programming skills,

so immediate practice was an important factor to consider when choosing learning

methods. In addition, due to the complexity of programming skills, learners preferred

to get detailed feedback as quickly as possible. Designers of ICTs and teachers can

benefit from this knowledge by focusing efforts on improving on these three aspects

when teaching programming.For ICTs, the biggest strength, which most participants

mentioned, was the embedded code editors and immediate practice, while a major

53

weakness was the content design (too basic, repetitive, or brief). To address this

issue, designers could take advantage of code editors to provide more advanced,

practice-oriented tutorials.

We also identified another factor to consider during our interviews, which was

the existence of both basic and advanced levels of learners. While a few ICTs might

separate their content for different experience levels of learners, most ICTs we are

aware of do not; one beginner liked when the (ICT) system forced him to learn

step-by-step (by locking content until finishing the current activity), whereas four,

more experienced learners, did not like this feature. A key design consideration is to

gauge a learner’s experience at the beginning of the course/tutorial/activity so that

the teacher or ICT can deliver content in a manner consistent with one’s experience.

According to our findings, ICTs are efficient at delivering content with

immediate practice, while teachers did a better job in providing customized help with

real life experience. Both ICTs and teachers can benefit from these observations.

First, ICTs can incorporate human experts to provide help when requested by online

learners. Experts can also interact with learners in the system’s online learning

community, such as having conversations with learners or posting guides to address

learners’ concerns.

Second, we learned that teachers who are experienced in teaching were especially

good at paying extra attention to students’ needs when introducing content that

students typically find difficult. ICTs can improve from this observation by gathering

data from learners’ learning logs in every course section (e.g., how many tries does

someone take to write the correct code, or how much time do they spend on a concept)

and provide extra instruction, help, or practice for the parts that most learners have

difficulties with.

Third, our participants valued having conversations with teachers. They

used these opportunities to gain coding tips, learn about real life experience as

54

programmers, exchange project ideas, and get help with questions. Listening to long

lectures without minimal interaction was boring and meaningless to learners. Since

we found that existing ICTs are good at delivering basic concepts and exercises, we

believe it is beneficial to integrate them into programming classes to compliment

teachers. Teachers can have ICTs deliver basic information (e.g., concepts, syntax)

outside of class, and spend the time saved having more conversations with students

regarding problems, projects, and real-life programming experience (e.g., using the

“flipped classroom” model [175]).

Fourth, the comparison of feedback between ICTs and teachers suggests design

opportunity for ICTs. It may not be feasible for teachers to give immediate feedback

to students for all assignments/tasks, but ICTs can benefit from what we learned

about feedback from teachers. This includes commenting on, giving suggestions,

and showing alternative coding styles and run-time issues (such as code execution

efficiency).

Finally, we identified two patterns from our participants, which were not

anticipated from research questions but raised interesting questions to explore for

future work. One is that experienced learners (who showed more confidence in

learning) have higher learner autonomy [87] than beginners (who were more anxious

about learning), meaning that experienced learners tend to use ICTs to conduct

self-directed learning more often than beginners. Another pattern is that those with

higher level of autonomy would prefer learning in an autonomy supportive system,

such as a system that gives them more freedom to learn (see Subsection 5.4.2 “Locks

Access to More Advanced Concepts”). While those with lower level of autonomy

would prefer a system that can force them to learn (see Subsection 5.4.1 “Designed

for Various Learner Levels”).

These two emergent patterns indicate that beginners and experienced learners

have different system preference for ICTs, and these differences are associated with

55

the level learner autonomy. This finding suggests a novel view for ICT designs that

address the learner autonomy feature, which we will discuss in the following chapters.

4.6 Limitations

Our study has limitations that present further research opportunities. First, the

snowball sampling method we used may have introduced a sampling bias. However,

our participants represented a broad range of demographics, including years of

experience with coding. Second, having 20 participants may raise questions about the

representativeness of our sample and generalizability of our results. We reached data

saturation [119]on our 16th interview and verified that our additional participants

did not provide significantly different information from previous participants. Third,

we found that there are factors that may affect how learners evaluate their learning

experience, for example, learning environment (e.g., summer camp, college course,

vocational training) and learning goals (e.g., learning for work, school practice, or

personal inter-est). We will further investigate whether learning environments and

learning goals, or even other factors (e.g., gender, age, job, level of experience,

order of learning from a specific type of tutor), will cause effect on how learners

evaluate their learning experience(s). Fourth, our study defined and examined ICTs

within a specific subset of MOOCs. Furthermore, our study specifically examined

only human teachers. There may be different types of ICTs and MOOCs that

people have used to learn programming. Similarly, people may have learned from

non-professional teachers or professors, such as informal tutors, friends, or relatives.

These different types of ICTs/MOOCs and human teachers were deliberately excluded

from this study to maintain a viable scope. However, our future work can include

discussion about people’s use of these other learning resources, which may reveal

different findings and preferences from what was found here. Lastly, when presenting

the quotes, we described the participants using their self-reported number of years

56

in programming (e.g., “P11 had 2 years of programming experience”). However,

self-reported years of experience may not be a good indicator of participants’ real

programming ability or expertise. We will further study the relationship between

years of experience and programming expertise. Other objective measures (e.g., test

of knowledge) can be used to gauge learners’ programming ability and experience

level.

4.7 Summary

In this chapter, we explored learners’ perspectives on receiving instruction from

human teachers versus interactive computer tutors when learning programming. We

found that efficiency and practice are the two main factors that learners care about

when choosing between these two types of instruction, and the findings suggest the

strengths and weaknesses of learning from interactive computer tutors and teachers,

which we use as a basis for design suggestions for these types of instruction. We

also find that learners with different autonomy level have different system preference,

which raises future discussion about the design features to improve experiences for

both kinds of learners.

57

CHAPTER 5

EXPLORING CS LEARNERS’ AUTONOMY AND THEIR
PREFERENCE FOR LEARNING SYSTEMS

5.1 Introduction

Innovation in technology continues to change at a rapid rate. Kruchten [100] coined

the “five-year hypothesis,” which posits that software engineers’ key ideas become

obsolete every five years. Given this situation, computer science (CS) learners have

to continuously learn new skills to keep up with the ever-changing technology trends.

Therefore, the knowledge they gain from formal education (e.g., from higher education

institutions, which are often slow in changing curricula) may become obsolete or

outdated fairly quickly. This requires those pursuing CS-related careers to be flexible

and persistent—for them to be lifelong learners.

According to the literature, learner autonomy plays a vital role in developing

lifelong learners [34]. Heloc [87] defines learner autonomy as the ability for one

to control his/her own learning. The “control of learning” can be broken down

into different aspects, including: setting goals, planning and executing learning

activities, and evaluating the process [49, 114]. Contrasting traditional, teacher-

centered pedagogy, autonomous learning requires classes to be student-centered,

where teachers act in supportive roles to facilitate students’ decision-making and

problem-solving processes [104].

In past decades, learner autonomy has been frequently studied and promoted

in the context of foreign language learning [172]. In Najeeb’s [134] view, studying a

foreign language is a lifelong endeavor, which neither starts nor ends in a language

class, but something that must be constantly worked upon. This is very similar to

the situation of CS learners. If they choose careers that deal with CS, they will have

to continually work to maintain and update their knowledge. However, compared

58

with the long history of studying and researching learner autonomy in the context

of foreign language, there are only a handful of similar works of language learning in

computing education.

In order to gain a better understanding of their autonomy, our past work

explored the experience of CS learners’ thoughts about learning CS both online and

in the classroom. We found that learners who showed a high level of autonomy

felt that they were not supported by the educational system(s) or the educators. For

example, they complained that the online systems they used did not give them enough

freedom to explore on their own, and that their teachers often failed to help them

achieve their learning goals. We also found that learners who showed a low level of

autonomy felt that they needed extra guidance from their teachers. Our interview

results also indicated some patterns, for example, that learners with more experience

showed higher levels of autonomy than those with less experience, and learners with

a higher level of autonomy preferred to study using an autonomy-supportive system

while those with lower level of autonomy preferred to study using a non-autonomy

supportive system.

Considering these past results and the role learner autonomy plays in developing

lifelong learning, we believe that it is important to address the needs of CS learners

with different levels of learner autonomy. Therefore, in this work, we describe results

from an online questionnaire study designed to extend our past work and further

explore CS learners’ autonomy.Since we are using self-reported scale to gauge learner

autonomy, the level of learner autonomy in this research also refers to the perceived

level of learner autonomy.

Specifically, we ask the following research questions within the context of

computing education:

1. What is the overall autonomy level of CS learners?

2. What factors contribute to the differences in CS learners’ autonomy?

59

3. What kind of system designs are preferred by CS learners?

Understanding these questions can help us reflect on whether current pedagogies

of computer science and educational systems can support learners in developing and

maintaining autonomy, and how can we develop strategies to support the needs of CS

learners with different levels of autonomy.

To explore these questions, we developed a survey and gathered 364 responses

from CS learners. The results showed that our participants have overall high levels

of learner autonomy, and that learners with more CS experience tend to have

higher autonomy than learners with less CS experience. Our results also suggest

that CS learners tend to prefer using autonomy supportive systems to study. By

evaluating these results, we discuss implications for both computer science educators

and educational system designers.

5.2 Background

5.2.1 Learner autonomy in general

Learner autonomy has been extensively discussed and applied in the context of

education. Autonomy is broadly accepted as the “ability to take charge of one’s own

learning” [87], and many researchers have further elaborated autonomous learning in

terms of a learner’s ability to lead and control his or her own learning process and

content. For example, Little [113] described autonomy as “a capacity for detachment,

critical reflection, decision-making, and independent action”. Dickinson [55] held

that autonomy occurs when a learner becomes totally responsible for all of the

decisions concerned with his or her learning and the implementation of those

decisions. In modern education, where learners are more acclimated to reacting

to established instructions, they develop autonomy when they independently set

objectives of a learning program based on his or her status, which goes beyond

established instructions or stimuli given by a teacher or instructor [27, 129, 128].

60

Personal initiative is key in autonomous learning when learners proactively engage

with finding resources and opportunities, and become persistent and resourceful in

learning [53, 146, 147]. Such ability to acquire knowledge or skills of value reflects

the processes that learners’ determine [39], or the psychological characteristic of

individuals who are able to independently direct their learning [99, 124, 146]. To

be more specific on what skills an autonomous learner should possess, Dam [49]

detailed that a qualified autonomous learner independently chooses aims and purpose.

Once these goals are set, he or she chooses supportive materials, methods, and

tasks. The learner further exercises the choice and purpose made in implementing the

selected plans. Upon accomplishment, an autonomous learner determines criteria for

evaluation and complete self-assessment. In addition, Benson and Voller [21] discussed

autonomy from its elements and concluded that it involves at least five phases, “for

situations in which learners study entirely on their own; for a set of skills which

can be learned and applied in self-directed learning; for an inborn capacity which

is suppressed by institutional education; for the exercise of learners’ responsibility

for their own learning; for the right of learners to determine the direction of their

own learning”. No matter which forms of autonomy learners take in their education,

autonomy is recognized as “a recognition of the rights of learners within educational

systems” [22] and “the freedom to learn and the opportunity to become a person” [95].

The concept of learner autonomy is instructive in many fields of education. Not only

is it a method to educate students, but also an objective of education; to give someone

the ability to seek out, find, and internalize information to satisfy their curiosity—to

become a lifelong learner.

5.2.2 Learner autonomy in natural language learning

The relationship between learner autonomy and natural language learning has been

widely investigated as many researchers identified that autonomy is useful in learning

61

a new language and the ability to control learning experiences plays an important role

in language education. Najeeb [134] suggested that independent language learning

optimizes learner choice of decision making and targets on the needs of individual

learners. With autonomy in language learning, learners develop skills in the target

language individually, and benefit from the learning environments which are not

directly mediated by a teacher nor in the interests of an institution. Learners’

language proficiency is shown to be significantly and positively correlated with

their autonomous level in language education [47, 127]. In examination of adult

Japanese EFL learners in terms of autonomy, Mineishi [127] used learners’ perception

of autonomy to differentiate successful and less successful learners and found that

successful learners are those who possessed autonomy proactively, while less successful

ones are in the stage of achieving either active or reactive autonomy. Maftoon

et al. [118] showed that good language learners tend to be more attentive to the

class standards rather than cohering with the group, and all of the good language

learners are autonomous. Razeq & Ahmad [1] suggested that training students to

be autonomous learners contributes to and improves their English skills. With the

understanding and implementation of autonomous learning strategies in and outside

the classroom, students show improvement in English achievement and motivation to

be responsible for their own learning. Furthermore, previous works have shown the

importance of cultivating autonomy for English literature learning as it stimulates

learners’ interests and improves their strategies [69]. Abdipoor & Gholami [2] held

that autonomous English learners tend to apply more language learning strategies

than non-autonomous learners.

While there are obvious differences, learning a natural language and computer

language also have some similarities (e.g., learning language rules, grammar, syntax,

and semantics). In fact, several states in the USA have started allowing high school

computer science courses to fulfill foreign language requirements for students [68].

62

With the similarities and the research of autonomy in language learning, we believe

that the study of autonomy can be applicable in the context of computer science, and

can benefit the community of computing education.

5.2.3 Learner autonomy in online learning

Distance (or online) learning has become increasingly popular in recent years.

Firat [62] investigated the validity of autonomy concepts on distance learning

environment and developed a scale to evaluate the e-learning autonomy of distance

students who are responsible for their own learning. Based on the results, student

autonomy in e-learning environments positively correlated to the level of ICT

(Information, Communication and Technologies) but was not affected by enrolled

program or gender. Lynch & Dembo [116] experimented on the five selected

self-regulatory attributes (motivation, internet self-efficacy, time management, study

environment management, and learning assistance management), and concluded

that successful e-learning depends highly on five self-regulatory attributes which

contribute to learners’ different psychological processes to comprise their autonomy

in online environment. In addition, Arnold [13] mentioned that the opportunities for

learner autonomy can be created in online environments by introducing the eleven

factors that promote autonomy in the online learning environment. Of the eleven

factors, six of them (“peer learning, peer review, dialogue, reflection on learning,

self-evaluation, and negotiated learning activities”) are consistent with autonomy

factors that were mentioned in the traditional learning literature while the other five

(flexible access, learning facilitation, self-selection, lack of face-to-face contact, and

media choices) were not identified as promoting factors in the previously mentioned

literature. Although developing autonomy is important for online, self-paced students,

whether the online environment can support learners’ autonomy is still an open-ended

question.

63

5.2.4 Learner autonomy in STEM

Learning and teaching in the fields of science, technology, engineering, and math

is commonly referred to as STEM education [73]. STEM education has been

discussed extensively internationally in the past decade [94], and engaging learners

in STEM education has been shown to be important to society [29, 187]. Kelley

& Knowles [93] reported that students of STEM fields lose interest in these areas

when the connections to “crosscutting concepts and real-world applications” are

missing in the learning process. In order to understand STEM learners, some works

seek to understand learners in several fields of STEM. For example, in the field of

Engineering, Chen et al. [36, 37] found several interesting results about learners’

year of study in college, gender, race and college major in this context. His study

demonstrated an effect of college students’ year of study on their autonomous level

as well as a positive relationship between Asian students’ weaker self-beliefs and their

autonomous learner traits. In addition, he also argued that engineering students

gains autonomous learner traits through their engineering education journey while

the differences of learner autonomy traits between their subgroups remain unclear.

Similarly, Scott [157] confirmed that students’ learner autonomy increases by the time

they are in college while detailed correlation between autonomous level and year of

study is unclear for biology college students. Although the term learner autonomy

has not been commonly used in computing education studies, other similar terms,

such as self-directed learning, have been explored. Boyer et al. [28] discussed how

constructivism can improve programming pedagogy and student self-direction. They

implemented a survey instrument on 15 students, and found that the majority of

them were reported to have the ability to take control of their own learning, while

surprisingly, students with less learning experience had higher self-directed learning

scores than students with more learning experience. However, the small sample

size of their study limited generalization. Mccartney et al. [122] interviewed 17

64

programming students and found that self-directed students are motivated to learn

new programming topics, and that the students believed the benefits of self-directed

learning when they join the workforce in the future. After the students join the

workforce, it is more likely that they would learn new topics through online resources.

Whether these online learning tools can support their self-directed learning remains

an open question.

5.2.5 Learner autonomy in computing education

Through our literature review, we found that there are still several open questions

of learner autonomy in the context of computing education. As the aforementioned

work in foreign language learning suggested the positive relationship between learner

autonomy and learning outcome, and considering the similarities between learning

foreign language and computer science, we believe that autonomous learning can

have positive impact on lifelong learning accomplishment of computer science (CS)

learners. We were curious about CS learners’ autonomy, and how this may affect their

learning. In addition, previous work in e-learning and other STEM disciplines found

attributes to differentiate autonomous learners, and our past work using interviews

found differing needs based on CS learners’ autonomy levels. In this work, we examine

potential differences of autonomous learners and how to better support them through

online learning tools.

5.3 Methodology

To study the autonomy and system preference of CS learners, we distributed a survey

(See Appendix B for the whole survey) online and at a public university in the

Northeast USA. The survey consisted of 3 sections. Section 1 had two parts, the first

part collected the basic demographic information such as age, gender, ethnicity, degree

and occupation. The second part was about participants’ experience in learning

65

computer science related knowledge and skills. Since our target population was CS

learners, the experience questions also served as filter questions. In our study, we

apply the definition of computer science from Comer et al. [42] as “the systematic

study of algorithmic processes that describe and transform information: their theory,

analysis, design, efficiency, implementation, and application.” However, in the survey,

we deliberately left the definition of computer science open to our participants, as

we determined in past studies that using a strict/specific definition can potentially

confuse or discourage participants who might consequently miscategorize themselves

or self-select out of participation even though they meet our eligibility criteria. To

ensure that we had a good representation of our target population, we included a

free-response question asking them to list some of their computer science knowledge

and skills. Three researchers discussed the scope of computer science to determine

which skills fit within the scope of computer science. For example, skills such as“Excel

VBA” and“building website” were considered within the scope of computer science,

while“Word and Powerpoin” and “browsing websites and social medi” were not.

Section 2 was the learner autonomy scale. We adopted 8 items from the Learner

Autonomy Scale developed by Macaskill and Taylor [117] and 4 items from the

E-learning Autonomy Scale developed by Firat [62]. These items were measured

using a 5-point Likert scale from 1-strongly disagree to 5-strongly agree. Section

3 included system design scenarios, which measured participants’ preference for

autonomy supportive or non-supportive system designs. These items were measured

using a 5-point Likert scale from 1-very unhelpful to 5-very helpful. These scenarios

were created through interview, observation, and literature review.

We collected 364 valid responses. These consisted of 189 online responses from

Amazon Mechanical Turk using Google Forms, and 175 responses were from students

at a US university using paper forms. Recent studies have suggested that Mechanical

Turk yields high quality results when used with specific parameters [23], which we

66

utilized in our study. We chose to use both online and in-person data sources to get

a broad perspective (e.g., a student-centric and non-student-centric point-of-view)

about learning from both online and offline resources. After the data collection, we

compared the demographic information from the two sources. Although the gender

distribution was comparable between the two groups, we found that both age and

ethnicity were significantly different between the online and in-person groups. The

difference in age was expected, as the university campus where we surveyed is mainly

comprised of college-aged students (typically 18-22 years old). However, we had not

expected the difference in ethnicity, as our surveyed university is listed as one of the

top in diversity in the country (we found that this was due to a higher-than-expected

number of Asian students participating in the study on-campus, which we cannot

explain as this was not typical of other surveys we have conducted on our campus).

5.4 Findings

Data from the two survey sources were combined and analyzed together using SPSS.

Our 364 valid responses were composed of 35.7% females and 64.3% males, with ages

ranging from 18 to 71 years old (mean=28.44, stdev=10). The ethnicity distribution

is: White (42.6%), Asian (34.1%), African American (9.9%), Hispanic (8%), and

other (5.4%).

For the Learner Autonomy Scale, we first conducted factor analysis using

PCA with Varimax rotation, since we assume that the factors are not correlated.

The factors converged in two iterations. We identified two factors that both have

high internal consistencies. Referring to the Learner Autonomy scale developed by

Macaskill & Taylor (2010), we named the two factors Independence of Learning, which

reflects all core components of autonomous learning, and Time Management, which

reflects issues of managing learning time. The factor loadings and scale reliability

67

score are shown in Table 5.1. Throughout the study, we refer to these two factors as

subscales.

Table 5.1 Factor Loadings and Reliability Scores

Items Independence of learning Time Management

I determine my own learning goals 0.74 -

I am open to new ways of doing familiar things 0.73 -

I control my own learning process 0.76 -

I enjoy finding information about new topics on my own 0.78 -

Even when tasks are difficult, I try to stick with them 0.67 -

I take responsibility for my learning experiences 0.68 -

My time management is good - 0.82

I plan my time for study effectively - 0.80

Internal consistency

Cronbach’s Alpha (Total scale=0.848) 0.842 0.855

The scores for both subscales were calculated by averaging the individual score

of the items loaded on them. The resulting mean scores are 3.98 for Independence

of Learning (median = 4.00), and 3.50 for Time Management (median = 3.50). The

result indicates that CS learners have an overall medium to high level of learner

autonomy.

To understand what factors may affect learners’ autonomy level, we conducted

a series of tests. When comparing means, the learner autonomy scores of gender and

ethnicity were not significantly different for both subscales. Using age and years of

experience as independent variable to check the relationship with dependent variable,

the autonomy level, we conducted linear regression and found that age and years of

experience in learning computer science have significant (p <0.05), positive, but very

weak relationship with both subscales. The R2 and p-values are shown in Table 5.2.

We asked participants to self-report their experience level in computer science

on a four-level scale: beginner, intermediate, advanced, and professional. Since there

are four groups, we used a one-way ANOVA test, with the result indicating that there

was at least one group that has a significantly different autonomous mean score than

68

Table 5.2 The R2 and p-values Between Age, Years of Experience, and Subscales

Independence of learning Time Management

R2 p-value R2 p-value

Age 0.013 0.032 0.05 <0.001

Years of Experience 0.043 <0.001 0.014 0.024

other groups. Since the four level groups meet the assumption of homogeneity of

variances, we used Turkey’s HSD to conduct a Post-Hoc test. The results indicate

that learners in the self-identified advanced and professional levels have significantly

higher means than beginner and intermediate level for both subscales, which means

that experience level has a positive relationship with autonomy level. The means for

each group and the significant level are shown in Table 5.3.

Table 5.3 Significant Differences Between Experience Level for Each Subscale

Learner autonomy scales Group (mean) Group in comparison (mean) p-value

Independence of Learning
Beginner (3.83)

Professional (4.28)
0.002

Intermediate (3.97) 0.048

Time Management

Beginner (3.25)
Advanced (3.8)

0.002

Intermediate (3.38) 0.018

Beginner (3.25)
Professional (3.88)

0.004

Intermediate (3.38) 0.026

To analyze whether autonomy level has relationship with system preference, we

conducted linear regression for each subscale with each individual design. The results

indicate that autonomy level has very weak relationship with system preference. Table

5.4 shows the R2 and p-value for the regression analysis between autonomy level and

system preference. To further analyze the system preference, we calculated the mean

score for each individual design. We found that all of the five autonomy supportive

system designs win higher score than the three non-supportive system designs. The

mean scores for each system design scenarios are shown in Table 5.5. The results

indicate that CS learners prefer to use an autonomy supportive educational system

to learn.

69

Table 5.4 R2 and p-values for the Regression Analysis Between Autonomy Level
and System Preference

Independence of learning Time Management

Supportive R2 p-value R2 p-value

For each new term in the course material, the

system will provide you with links to explore

the term.

0.226 <0.001 0.025 <0.001

You have a study log to manage your study

progress, including your course list, material

list and error logs. So that you can reflect on

your learning whenever you want.

0.085 <0.001 0.014 0.026

The system allows you to set up your goals

at first and recommends courses that can

help you achieve your goals. You have the

freedom to choose the course portfolio to

accomplish your goals.

0.164 <0.001 0.008 0.090

At the end of each section, you will be given

practice problems/tasks. All of the practice

is optional, so you have the option to skip

them if you prefer.

0.073 <0.001 0.021 0.006

In the curriculum, all of the sections are

unlocked, so you can learn from any section

in any order that you want.

0.114 <0.001 0.042 <0.001

Non-supportive

At the end of each section, you will be given

practice problems/tasks. All of these are

mandatory, and you have to correctly finish

each of them to proceed.

0.036 <0.001 0.018 0.100

In the curriculum, all of the sections are

locked, you can only go on to the next section

by finishing the current one.

0.011 <0.001 0.027 0.002

For each practice, the system only has one

correct solution. You will have to produce

the exact same answer to proceed.

0.014 <0.001 0.021 0.006

70

Table 5.5 Mean Scores for Each System Design Scenario

Mean Std.

Supportive

For each new term in the course material, the system will

provide you with links to explore the term.

4.18 0.80

You have a study log to manage your study progress, including

your course list, material list and error logs. So that you can

reflect on your learning whenever you want.

4.07 0.91

The system allows you to set up your goals at first and

recommends courses that can help you achieve your goals.

You have the freedom to choose the course portfolio to

accomplish your goals.

4.04 0.97

At the end of each section, you will be given practice

problems/tasks. All of the practice is optional, so you have

the option to skip them if you prefer.

3.97 1.04

In the curriculum, all of the sections are unlocked, so you can

learn from any section in any order that you want.

3.82 1.04

Non-supportive

At the end of each section, you will be given practice

problems/tasks. All of these are mandatory, and you have

to correctly finish each of them to proceed.

3.59 1.04

In the curriculum, all of the sections are locked, you can only

go on to the next section by finishing the current one.

3.06 1.22

For each practice, the system only has one correct solution.

You will have to produce the exact same answer to proceed.

2.91 1.19

71

To compare system preference of learners with different autonomy level, we

grouped them as learners with lower level of autonomy (autonomy score less than

3.0 with a total of 5.0), and learners with higher level of autonomy (autonomy score

equal to or higher than 3.0 with a total of 5.0). We ran independent sample t-test for

each system design scenario, the results indicate that learners with higher autonomy

had significantly higher preference for autonomy-supportive system design, while in

non-supportive designs, no significant results were found. The results are summarized

in Table 5.6.

5.5 Discussion

To summarize our findings, we found that: 1) CS learners have an overall medium to

high level of learner autonomy, 2) Experienced CS learners tend to have higher learner

autonomy than beginners, 3) CS learners prefer using autonomy supportive systems

when learning, and that 4) learners with higher autonomy would prefer autonomy-

supportive system more than those with lower autonomy.

Our findings have implications for both computer science educators and

educational system designers. Since CS learners have overall medium to high level

of autonomy, educators could adjust their instructional techniques to better support

learner’s autonomy: 1) Respect students’ goals. The very first core component of

learner autonomy is that learners can set their own goals [87], so we suggest that in a

classroom setting, the course goals should reflect the students’ goals. Instead of setting

the goals for the whole class, teachers can act in the role that assist the students in

setting and achieving their own goals for the course. 2) Encourage students to reflect

and access their own learning. Autonomous learners constantly evaluate their own

learning. Teachers should provide opportunities for their students to participate in

the evaluation process by encouraging them to discuss their problem-solving process

frequently in class. 3) Allow freedom for students on course activities. Learning

72

Table 5.6 Comparison of System Preference Between Learners with Higher
Autonomy and Lower Autonomy

Lower Autonomy Higher Autonomy

Supportive means means p-value

For each new term in the course material, the

system will provide you with links to explore

the term.

3.65 4.27 <0.001

You have a study log to manage your study

progress, including your course list, material

list and error logs. So that you can reflect on

your learning whenever you want.

3.73 4.12 <0.001

The system allows you to set up your goals

at first and recommends courses that can

help you achieve your goals. You have the

freedom to choose the course portfolio to

accomplish your goals.

3.69 4.09 0.001

At the end of each section, you will be given

practice problems/tasks. All of the practice

is optional, so you have the option to skip

them if you prefer.

3.55 4.04 <0.001

In the curriculum, all of the sections are

unlocked, so you can learn from any section

in any order that you want.

3.25 3.92 <0.001

Non-supportive

At the end of each section, you will be given

practice problems/tasks. All of these are

mandatory, and you have to correctly finish

each of them to proceed.

3.27 3.64 0.049

In the curriculum, all of the sections are

locked, you can only go on to the next section

by finishing the current one.

2.65 3.13 0.97

For each practice, the system only has one

correct solution. You will have to produce

the exact same answer to proceed.

2.55 2.96 0.472

73

activities are often associated with learning goals. If the autonomous learners have

clear goals, they will be able to select the proper learning activities for themselves

(with guidance from teachers). In the classroom, instead of assigning the same

practice to the whole class, teachers can provide alternative practices for students

to choose from, or they can allow students to create their own projects.

While CS learners have an overall medium to high level of autonomy, we also

found that beginners are less autonomous than more experienced learners. According

to Heloc [87], autonomous learning is not only learning a certain knowledge or skill,

but also about learning how to learn. Therefore, beginners, in their first stage of

learning computer science, can be trained or encouraged to be better autonomous

learners. Teachers, instead of focusing only on course materials, can also teach the

process of learning computer science: 1) Train students to set goals step-by-step.

Autonomous learners know how to set goals. For beginners, they often have general

goals such as “I will learn this programming language,” but they might get confused

about where to start. Once they are familiar with the learning process, they will better

understand how to break down the goals into smaller ones such as “I will learn syntax

first” and “I will learn logic next.” 2) Train them to select resources. Once goals have

been set, autonomous learners will collect and screen the resources to accomplish their

goals. Beginners can be trained to select the resources for their learning goals, they

should also be trained that when they have problems, where can find resources to

solve them. 3) Train them for self-evaluation. To take full ownership of the learning

process, learners should be able to self-evaluate their learning without much help

from others. Beginners should be trained the evaluation criteria for computer science

subjects and be encouraged by teachers to conduct self-evaluation.

Since we found that CS learners tend to prefer using autonomy supportive

system to learn, we suggest some ideas for designing an autonomy supportive system

for educational system designers: 1) Respect learners’ goal(s). The goal of courses

74

should be specified in the course description. Learners who come with specific learning

goals can input these goals (or a subset of goals) into a course selection search system,

which could then recommend courses accordingly. 2) Be resourceful. According to

Candy [34], autonomous learners are motivated and curious. An autonomy supportive

system should satisfy learners’ curiosity. We suggest that for each new term or

learning objective in the course material, the system provide links that learners can

use to further explore the concept(s). This feature had the highest preference in

our system design scenario survey. 3) Allow maximum freedom. Some instructional

systems require mandatory pathways for learners. For example, sections are locked,

and learners can proceed only by completing sections one-by-one, even if the material

is already familiar/known to the learner. For autonomous learners, systems should

allow maximum freedom for them to choose sections, practice, and allow some

flexibility for evaluation criterion.

For the results that learners with higher autonomy would prefer autonomy-

supportive system more than those with lower autonomy, it has implications for

system designers to deign online educational tools that address the needs of highly

autonomous learners.

5.6 Limitations

Our work has limitations which we plan to address in future work. First, the criteria

we used to determine participants’ experience level was from a self-reported scale from

beginner to professional. However, participants may have different criterion for these

selections and therefore may have led to inconsistencies in our user groupings. For

future work, we can use more objective measures such as quizzes to test the skill level

of participants as an alternative measure to experience. We could use this measure to

reexamine if it has relationship with autonomy level. Second, for the system design

scenarios, we asked participants to rate system features on a usefulness scale based

75

on descriptions. Although these scenarios and descriptions came from real, existing

resources that the participants may be familiar with, having participants actually

try/interact with these features before rating them may yield different response and

results. For future studies we can put the described designs into a usable system that

participants can actually interact with before rating them. Finally, besides using the

preference scale, we may be able to get a richer account of participants’ views of

specific features through qualitative methods such as think-aloud or interviews.

5.7 Summary

This chapter investigated learner autonomy in the context of computing education.

We surveyed 364 computer science learners to gain insight into their autonomy levels

and autonomy-supportive system preferences. Our results indicate that: 1) CS

learners have an overall medium to high levels of learner autonomy, 2) Experienced CS

learners tend to have higher learner autonomy than beginners, 3) CS learners prefer

using autonomy-supportive systems to learn, and 4) learners with higher autonomy

would prefer autonomy-supportive system more than those with lower autonomy.

These results better inform CS educators how to adapt their teaching and teaching

tools to better train and support autonomous learning, and learning system designers

to design autonomy supportive system for learners.

76

CHAPTER 6

REDESIGNING AUTONOMY FEATURES OF ICTS THAT TARGET
AT LEARNERS’ DIFFERENT AUTONOMY LEVELS

6.1 Introduction

As we discussed in previous chapters, there are still many open questions about

ICT based MOOCs. For example, who are the users and how do they perceive these

systems? Some studies have investigated the positive relationship between interactive

learning and learner’s motivation [35, 98, 189]. However, there are limited studies that

look at different types of learners and how they interact with these systems. Knowing

these is important, because our goal is to redesign the features of ICT based MOOC to

make it more general inclusive to the learners, which means that we need to consider

the different needs of different types of learners, in order to improve their learning

experience.

In our past studies, Study 1 (Chapter 3) explored the learners of ICT based

MOOCs [160], and found that not only beginners use it for introductory programming

courses; experienced learners also use it to refresh skills or learn a new language.

In Study 2 (Chapter 4), in-depth interviews were conducted with 20 programming

learners with various experience levels [163]. This study revealed a pattern where

experienced learners showed more control over their learning process, and that they

were selective on ICT based MOOCs that could allow them to control their own

learning. On the contrary, less experienced learners showed more anxiety when

learning, and required scaffolding instruction from an instructor, either a computer

tutor or a human teacher. This pattern can be partly explained by learner autonomy

theory [87]. Experienced learners showed higher level of autonomy than beginners,

and therefore, prefer more control over their learning. This implies a design feature

77

that should be considered for ICT based MOOCs: they should account for learners

with different autonomy levels.

To generalize this finding from the qualitative study, Study 3 (Chapter 5) was

conducted, which was a quantitative study to explore CS learners’ autonomy and

their preference for autonomous feature on ICT based MOOCs [161]. In this study,

we found that CS learners overall tend to have medium to high level of autonomy, and

that learners with higher autonomy report preferring autonomy-supportive system

more than those their lower autonomy counterparts.

Considering these past results and the role learner autonomy plays in developing

lifelong learning, we believe that it is important to address the needs of CS learners

with different levels of learner autonomy. In order to test how an autonomy-supportive

feature might affect learners (based primarily their level of learning autonomy), we

implemented a level-jumping feature into an online educational programming game

(see Figure 6.1). This is in contrast to most online learning curriculums and MOOCs

that we have encountered, which are often locked to a specific sequence where later

parts of the course are inaccessible until earlier parts are completed. We tested the

game with this new level jumping feature with 350 new users, tracking their progress

through the game for one week (7 days) each, spanning a total of 1.5 months. The

results indicate that learners with higher autonomy use this feature more than their

lower autonomy counterparts.

6.2 Related Work

In the research for lifelong learning, the three terms: Learner Autonomy (LA),

Self-directed Learning (SDL) and Self-regulated Learning (SRL) are often been used

interchangeably, as they share a lot in common. By definition, all of the three terms

point out that learners take active part in their learning process [86, 87, 192]. However,

these three terms differ in some dimensions.

78

Figure 6.1 A screenshot of the Gidget introductory programming game.

For example, autonomy can be seen as a design feature of the learning

environment [102], in contrast, “the extent to which self-regulation resides in the

person or in the activity of the person underlies considerable conceptual divergence

in the literature on self-regulation” [121].

For LA and SDL, SDL can be viewed as a manifestation of learner autonomy

in the sense that learners take responsibilities for all the decisions related to their

learning [56]. While LA is described as an ability to control one’s own learning, it is

also seen either (or both) as a means or as an end in education [87]. SDL can be the

best method to develop LA and that is demonstrated by some research in different

context [3, 4, 58, 71]. LA informs a significant measure of independence from the

control of the environment or learners’ degree of freedom [71, 88], and it can be seen

as a design feature of the learning environment [102]. Therefore, it is more suitable

to be used in the context of this study.

79

However, it is not our goal in this research to discuss the difference among the

three terms. Although they share commons and differ in dimensions, the research on

supporting SDL and SRL also has meaning for the design of learning environment

that encompass autonomous features. For this reason, in the following related work

discussion, besides the research for LA, we will also discuss the work for supporting

SDL and SRL.

6.2.1 Supporting autonomy in traditional pedagogy

As early as the emergence of the concept of learner autonomy, researchers have been

discussing the models and ways to promote and support learner autonomy from

teacher’s perspective in a traditional pedagogy.

For example, Vygotsky [178] emphasized the social-interactive dimensions of

the learning process. In this model, the teacher’s role is to create and maintain a

learning environment in which learners can be autonomous in order to become more

autonomous. Thanasoulas [172] considered an autonomous learner to be someone

who is aware of, and identifying, his/her strategies, needs, and goals as a learner, and

having the opportunity to reconsider approaches and procedures for optimal learning.

During this process, a teacher’s role cannot be neglected. There has to be a teacher

who will adapt resources, materials, and methods to the learners’ needs and even

abandon all this if necessary.

Mariani [120] proposed a challenge-support model for teachers to produce their

own individual and unique teaching style. In this model, low challenge with low

support would discourage autonomous learners in a way that is the same as high

challenge with low support would do to non-autonomous learners. And that is the

teacher’s job to find the balance between the challenge and the support.

Besides the teacher’s role, Najeeb [134] emphasized the importance of learning

environment. She proposed that the learning environment should be comfortable

80

enough for learners to feel encouraged, so that they are more willing to experiment

with various learning strategies and not be afraid to ask questions and assistance.

Similarly, other studies also discussed that an autonomy-supportive environment

can facilitate learners’ preference for more difficult tasks, active engagement, and

perceived competence [44, 153].

As for curriculum design, researchers also explored ways to promote autonomy.

For example, Cotterall [45] proposed five principles to design an autonomy supportive

curriculum, which include: 1)the course reflects learners’ goals, 2) tasks are explicitly

linked to a simplified model of learning process, 3) task reflects real-world scenarios,

4) discussion and practice should facilitate task performance, 5) the course promotes

reflection on learning.

Empirical studies have explored the effects of autonomy-supportive teaching on

learning outcomes and motivation. Furtak & Kunter [66] conducted a 2 x 2 factorial

design experiment, and they found that learners in a low autonomy-supportive

condition learned significantly more, perceived more choice, and rated instruction as

more positive than did students in a high autonomy-supportive condition. However,

this experiment has been carried out in a traditional classroom, the research question

that effects of autonomy supportive environment on learning outcome and motivation

has not been explored in an online learning environment.

Some studies explored the barriers of promoting autonomy between teacher

and students. For example, a recent qualitative study conducted by Basri [19] found

that mismatch between teacher and learner expectations, spoon-feeding tendencies

of teachers, limited teacher autonomy and large classes are the main barriers.

However, the barrier of promoting autonomy between ICT and learners has not been

investigated.

81

6.2.2 Supporting autonomy in online environment

Self-Determination Theory (SDT) argues that humans have a natural need for control,

or autonomy. SDT asserts that the need for autonomy is one of the three basic

psychological needs (i.e., autonomy, competence, and relatedness) humans have for

the sake of thriving in life [51, 153].

In the same era as Ryan & Deci [51, 153], Goodyear [75] discussed the ways to

develop educational technology that support learner autonomy or learner-managed

learning. He proposed that autonomous learners have strong influence on the

educational technology design, since they can reject the technologies that do not

meet their needs, therefore, educational technology should be designed toward

learner-centered.

On the contrary, there are debates that argue that the freedom to choose

between a lot of choices may overload, distract or even disorientate learners [38, 67, 77,

92, 156]. For novices and learners with less prior knowledge and lower self-regulatory

skills, studies have found that it is hardly for them to choose materials and information

that best fulfill their needs [38, 90, 156].

Therefore, balancing the control between the systems and the learners becomes

a question for researchers and designers who are pursuing the design for autonomy

supportive systems.

Fischer & Scharff [63] contrasted three types of computational approaches to

self-directed learning, including: 1) Intelligent tutoring systems [184], which represent

a teacher- or system-driven approach; 2) Interactive learning systems [142], which

represents a learner-drive approach; 3) Domain-oriented design environments, which

are intermediate between the other two approaches by providing a more distributed

approach to interact with domain problems. In their work, they held the opinion that,

to support self-directed learning, the learning environment should allow learners to

82

work on real problems and tasks of their own choice, and yet still provide them with

learning support contextualized to their chosen problems [64].

Gorrissen et al. [76] examined learning outcome and learners’ motivation in three

different hypermedia environments, which include autonomous-supportive, learner-

controlled and system-controlled. The results indicated that providing learners with

autonomy-supportive learning system had some beneficial effects compared to system-

controlled and learner-controlled learning environments.

Throughout the literature review, we can summarize that much work has

been done to discuss how to promote autonomy supportive learning environment to

facilitate lifelong learning. However, with the development of educational technology,

it attracts and supports a broader learner population, among which, there is a group

of learners who are considered non-autonomous learners, or learners with lower level

of autonomy. Their needs for an educational technology has not been addressed

adequately by researchers.

Based on the literature review and our prior studies, we want to know how

learners with different autonomy level would act differently for a same feature.

Therefore, the research question for this study is: How does the autonomy-supportive

feature of skipping to any part of the curriculum affect learners (based primarily on

their level of learning autonomy)?

6.3 Methodology

6.3.1 The Gidget educational game

We modified our free introductory coding game, Gidget (www.helpgidget.org), for this

study. Gidget has a total of 37 core levels in its curriculum, where each level teaches

a new programming concept (e.g., variable assignment, conditionals, loops, functions,

objects) using a Python-like, imperative language [106, 111]. The objective of each

level is to fix existing code to help the game’s protagonist pass 1–4 test cases (i.e.,

statements that evaluate to true) after running the code. Each level introduces at

83

least one new programming concept, becoming progressively difficult in subsequent

levels. Therefore, users are exposed to more programming concepts the farther they

progress through the game. Finally, the game also includes a set of help features to

help players overcome obstacles while coding on their own [105, 111]. This includes

a frustration detector that provides encouraging hints/messages to those that are

struggling with a level [107], and also auto-generates additional levels covering the

same concept(s) to provide additional practice [106].

Normally, the game follows a specific order of levels (i.e., curriculum), building

on content from previous levels. While the user interface shows the sequence/map

of all core levels in the game (and indicating the players’ current level; see top of

Figure 6.1), it only allows the player to jump back to any previously completed level

(at any time during game play). Players can also jump forward to the last level

they have reached sequentially, but no further. All levels are visualized on the map as

circles, with completed levels shown as solid circles, incomplete levels shown as hollow

circles, and incomplete exam levels (explained in [111]) shown as hollow circles with a

check mark. Finally, the currently loaded level is indicated with the Gidget character

(see Figure 6.2). Hovering the mouse cursor over an incomplete level does not show

any visual change, and clicking on an incomplete level does not do anything.

For this study, we modified the level-selection interface to allow players to jump

to any level in the game, regardless of level completion status. Placing the mouse

cursor on any other level grays out the current level’s Gidget character and places a

solid Gidget character that slowly rocks back-and-forth on that level marker. Clicking

on the rocking character immediately jumps the player to that level. In addition, to

keep the overall experience consistent across all users of this study, we disabled the

game’s auto-generated extra levels (as described in [106]). This was to prevent cases

where someone might jump to a difficult level, trigger the frustration detector, then

offered multiple additional practice levels covering the same concept(s). Finally, we

84

specifically pointed out this level-jumping feature in the game’s introductory on-

boarding tutorial (which all players see the first time they load the game), explaining

the user interface, interaction method, and the level-jumping feature.

Figure 6.2 Closeup of the level selection map.

6.3.2 Participant recruitment

Our goal was to observe if and how players would use the level-jumping features within

the game. We evaluated our system with a group of 350 new users of the game. The

sign-up screen asked users for their age, gender, e-mail address, a checkbox indicating

whether they have prior programming experience, and a checkbox (with link to

consent form) asking if they were willing to participate in a research experiment.

We intentionally did not define ”programming” or ”programming experience” as we

determined in past studies [161, 162] that using a specific definition could potentially

confuse or discourage participants who might consequently miscategorize themselves

or self-select out of participation even though they meet our eligibility criteria.

Mirroring a previous study [161], we asked those who indicated that they had

prior programming experience an additional question: how they would rate their

programming experience level on a four-level scale (beginner, intermediate, advanced,

and professional). We used this measure to assign each player a learner autonomy

group, which includes 1 (low learner autonomy) for beginners and intermediate levels,

and 2 (high learner autonomy) for advanced and professional levels based on our

prior work [161], which showed that this measure was significantly correlated with

learner autonomy. This prior study combined subsets of the Learner Autonomy Scale

created by Macaskill and Taylor [117] and the E-learning Autonomy Scale developed

85

by Firat [62], and demonstrated that higher self-rating in programming experience

has a positive relationship with autonomy level.

For this study, we only selected users that indicated they were 18+ years and

willing to participate in a research experiment. Adapting the methodology from our

prior studies [106, 107], we set the observation time to 7 days (168 hours) per user to

have a consistent evaluation window for all users. To promote quick account creation,

we did not collect other demographic information such as ethnicity, geographical

location, or education level. Participants were required to read and digitally sign an

online consent form that briefly described the study. We were intentionally vague

in our description of the level-jumping feature, stating that we were ”testing new

navigational features” to minimize potential leading or biasing of participants to

pay attention more to that specific part of the interface. However, we debriefed

all participants of the study procedures 7 days after the end of their individual

observation window, by e-mail.

6.4 Findings

We report on our quantitative results comparing our participants’ outcomes—split

by demographic and experience features—using nonparametric Wilcoxon rank sums

tests, kruskal wallis test, or simple linear regression, with a confidence of α = 0.05, as

our our data were not normally distributed. For all post-hoc analyses regarding gender

data, we use the Bonferroni correction for three comparisons: (α = .05/3 = 0.0167).

The study included 350 participants (aged 18–58; median 20). As a whole,

our participants were composed of 180 females (51.4%), 161 males (46%), and 9

“not listed” or “decline to state” (2.6%). In addition, 255 (72.9%) indicated their

experience level as beginner or intermediate, and 95 (27.1%) indicated their experience

level as advanced or professional. We operationalized our key dependent variables,

engagement and jumping, as the number of levels completed and the number of times

86

the jumping feature was used, respectively. In this study, jumping is defined as a

click on the level selection map (see Figure 6.2) that results in loading another level

(regardless of its completion status). For example, a player on Level 6 clicking on

Level 6 would not count as a jump (since another level is not loaded). However, a

player on Level 1 clicking on Level 30, then on Level 1, would count as 2 jumps.

6.4.1 High learner autonomy players use the jumping feature more

We found that all learners used the level jumping feature at least 2 times, regardless

of having low learner autonomy (range 2-17; median 3) or high learner autonomy

(range 2-38; median 8). Looking at the data more closely, we found that there was

a significant difference in the number of levels participants completed by autonomy

level (W = 34722, Z = 12.370, p < .05), with the high autonomy learners using the

feature more than their counterparts.

We believe that all learners jumped at least two times because this feature

was specifically mentioned in the on-boarding game tutorial, and at the minimum,

someone using the feature to jump forward (first jump), would need to jump back

to their original level (second jump). Next, our finding that high autonomy learners

use the jumping feature more often than their low autonomy counterparts verifies our

hypothesis (based on our previous work in [161]) that those with more experience (and

therefore higher learner autonomy) would use and benefit from this jumping feature.

Unlike low autonomy (inexperienced) learners, who do not necessarily know much

about the topic and therefore would be better served learning programming concepts

in a sequenced curriculum, the goal of high autonomy (experienced) learners may be

to review or improve on their existing programming skills, refresh their knowledge

for concepts, and/or to look for programming resources. Therefore, they may be

more likely to use the jumping feature to browse through the different parts of the

curriculum quickly, being more in control of their learning.

87

6.4.2 Males use the jumping feature more

We found a significant difference in usage of the jumping feature by gender (χ2(2,

N=350)=17.226, p < .05). Doing post-hoc analysis with the Bonferroni correction,

we found that males used the jumping feature significantly more overall than their

female counterparts (W=42.307,Z=4.109, p < .05/3). This result was independent

of low learner autonomy (χ2(2,N=255)=6.1464, p < .05) or high learner autonomy

(χ2(2,N=95)=6.1583, p < .05) in programming.

This result was not too surprising, as prior research [31] has shown that

compared to females, males are statistically more likely to use selective information

styles (following the first promising information, then potentially backtracking) [126],

have lower risk aversion (be less wary of consequences) [57], and more willing to tinker

(playfully experiment) [20]. Based on this, we believe that our male players were more

likely to use the jumping feature simply because it was available in the interface (and

also mentioned in the tutorial).

6.4.3 Low autonomy (female) learners complete more levels

Next, we explored if there was a difference in the number of levels participants

completed. This is not a completely fair comparison, as everyone may have

encountered levels in a different sequence (with later levels being considerably more

difficulty than earlier levels) because of the jumping feature.

We found that low autonomy learners completed significantly more levels

compared to their high autonomy counterparts (W = 15002.5, Z = −1.987, p < .05).

Further analysis revealed that there was a significant different in the number of

levels completed by gender within the low autonomy group (χ2(2, N=255)=43.3806,

p < .05). A post-hoc analysis with the Bonferroni correction showed that the

low autonomy group females completed significantly more levels compared to their

male counterparts (W=-61.579,Z=-6.655,p < .05/3). We calculated a simple linear

88

regression to predict level completion based on jumping behavior. Within the

low autonomy group, we found a positive relationship between these variables

(F (1, 253) = 255.290, p < .05), R2 = .502). Examining this more closely, we

found that this effect was strongest with females, where females in the low autonomy

group who jumped more often completed more levels (F (1, 144) = 206.433, p < .05),

R2 = .589).

This result supports our hypothesis discussed in Section 6.4.1. The goal

of high autonomy (experienced) learners may be to review or improve on their

existing programming skills, and/or to look for programming resources. If high

autonomy learners were using the level jumping feature primarily to explore what

programming concepts the game curriculum covered, it would explain why they

did not necessarily stay to solve/complete those levels. On the other hand, a low

autonomy (inexperienced) learner’s aim in playing a programming game is more likely

to learn new things, and most or all of the programming concepts would be new to

them. Therefore, whether or not they jump through the curriculum, less experienced

learners have more incentive to complete levels. Perhaps those low autonomy learners

that jump around the levels have a better idea of what is coming next (and also

gain additional insights from the broken, starting code each level provides), and

therefore more successful in completing levels. Most surprisingly, although our female

participants were most likely not to use the jumping feature, those that did went on

to be the individuals that completed most (or all) of the game levels. Females who

did decide to use the jumping feature may have jumped back and forth between levels

as a comprehensive information processing problem-solving strategy [31, 126], where

they used the jumping feature to preview what was coming up, thereby gathering

fairly complete information about the entire system before proceeding.

89

6.5 Discussion

Our findings show that both high and low autonomy learners (particularly males),

used the level-jumping feature, with the former using this feature significantly more

than the latter. We also found that high autonomy learners tend not to complete the

levels they jump to, and that they complete significantly fewer levels overall compared

to their low autonomy counterparts. We also found that the few low autonomy female

learners who used the jumping feature readily, also ended up completing more levels

than any other group.

These results support our findings discussed in Chapter 3, Chapter 4, and

Chapter 5, in which we found that learners with different autonomy levels have

different needs when using ICTs to learn. Higher autonomy learners may have the goal

to refresh skills efficiently, and therefore they tend to prefer the system to allow them

jumping freely, while their counterparts have the goal to learn new things concretely,

so they would complete more levels.

In this study, higher autonomy learners used jumping feature more, while lower

autonomy learners completed more levels, which means that satisfying the need of

the former does not necessarily dissatisfy the latter. Therefore, designers for online

resources teaching programming may benefit from allowing all users to skip around

and explore the curriculum, instead of locking them into a specific sequence.

They may also do well in encouraging more of their learners (especially females)

to use these types of jumping features to have them preview and better prepare for

what is coming later in the curriculum.

6.6 Limitations and Future Work

We have several limitations to our study. We recruited participants who opted into

a research study while signing up for an educational game. These participants may

90

already have high motivation, and therefore may not be completely representative of

the larger population.

Next, we asked participants to self-report their own programming expertise.

Participants may have different criterion for these selections and therefore may have

led to inconsistencies in our user groupings. The groupings themselves may not

account for all the different nuances of experience and/or learner autonomy. For

future work, we could use more objective measures such as quizzes to test the skill

level of participants as an alternative measure to experience.

In addition, in Study 3 (see Chapter5), we found that CS learners tend to have

medium to high level of learner autonomy, while in this study, the participants skewed

towards low autonomy learners. The reason might be that the tool we used, Gidget, is

a system that teaches free introductory coding concept, which attracts more beginners

than experienced learners. However, attracting more beginners is the current status

for most interactive learning systems (see Section 2.2). For future research, we will

evaluate the use cases for both beginners and experienced learners within the same

system, and choose a system that attracts both learners to conduct further research.

Finally, our study results show that both high autonomy and low autonomy

learners use the level-jumping feature (presumably to preview levels), and that

although low autonomy users are less likely to utilize this feature, those that do are

especially successful in completing more levels (particularly females). Our future work

will examine these outcomes in more detail, and gather complementary qualitative

data, to isolate the factors that are causing these effects.

6.7 Summary

In this chapter, we examined how an autonomous feature (jumping) affects learners

with different autonomy levels. We found that 1) learners with higher autonomy used

91

the autonomous feature more, and 2) learners with lower autonomy completed more

levels. We then discussed the implication of these findings.

92

CHAPTER 7

DISSERTATION SUMMARY

Learning interactively is fundamental and important for knowledge acquisition and

skill development [18], especially for skills like programming, which requires extensive

practice and making mistakes [5]. With the large demand for technology workers

all around the world, and the lack of programming educators, interactive computer

tutor (ICT) based MOOCs become popular alternative or supplement for traditional

classroom lectures [171].

However, there is handful research about this kind of system, especially from

learner’s perspective. This work started out from understanding the learners of ICTs,

and extended to the system redesign that would improve learner’s experience.

7.1 Summary of Key Findings

This research is multidisciplinary, which consists of human computer interaction

(HCI) and computing education. The goals of this research are:1) understanding the

learners of ICT based MOOCs, and 2) exploring how to improve learners’ experience

with these systems. To reach the goals, we have conducted four studies using mixed

methods. Except for the first study, which was an exploratory study, each study was

built upon the findings of previous studies.

The first study was a content analysis study (see Chapter 3). The goal was to

understand the users (mostly the learners) of Codecademy (a well-known ICT based

MOOC that delivers programming courses). We reviewed 218 “Codecademy” related

answers on Quora (a well-known Q&A website), and analyzed the textual data using

inductive analysis. In this study, results indicated that 1) beginners were the main

users, while experienced learners also used it to learn new languages or refresh skills, 2)

it was good at delivering skills that can be visualized, such as web development/front

93

end courses, 3) interactive environment increased the engagement of learners, and 4)

learners complained that the courses are not practical. This study uncovered that

both beginners and experienced learners used ICTs to learn, but they had different

goals. To further explore the difference between beginners and experienced learners,

we conducted Study 2.

The second study was an interview study (see Chapter 4), in which we

interviewed 20 programming learners about their experience with and preference

between ICTs and teachers. Learners’ perceptions for both learning methods were

found and discussed, including their likes and dislikes. Some patterns were also found,

such as 1) experienced learners had higher autonomy than less experienced ones, and

2) learners with higher autonomy would prefer learning from autonomy supportive

system, and vice versa. The implications for both ICT designers and CS educators

were discussed, and the patterns we found inspired next study.

In the third study (see Chapter 5), we investigated CS learners’ autonomy using

questionnaire built upon the findings from Study 2. It was distributed to 364 CS

learners, scaling their autonomy level and system preference. The results indicated

that: 1) CS learners had an overall medium to high levels of learner autonomy, 2)

Experienced CS learners tended to have higher learner autonomy than beginners, 3)

CS learners preferred using autonomy-supportive systems to learn, and 4) learners

with higher autonomy would prefer autonomy-supportive system more than those

with lower autonomy.

For the fourth study, we implemented an autonomous feature within an ICT

based debugging game. The effect of this feature on learners with different levels of

autonomy was examined. We found that: 1) learners with higher autonomy used

the autonomous feature more, and 2) learners with lower autonomy completed more

levels.

94

7.2 Design Implications

Educational technology should be designed toward learner-centered because learners

can reject the technologies that do not meet their needs [75]. Researchers have been

exploring ways to design for learners, and most of their work focused on increasing

engagement and improving learning outcome (see Chapter 2). This work provides

another unique view to design a learner-centered ICT, which is designing for learners

with different autonomy.

Based on what we have done, we know that learners had complaints for current

systems that do not give them freedom to learn, and that autonomous feature can

affect both high and low autonomy learners in a positive way, satisfying autonomous

learners will not necessarily dissatisfy non-autonomous learners. In addition, since

non-autonomous learners will become autonomous learners eventually, when they

become experienced learners (see Chapter 5), we can infer that all learners will need

a certain level of autonomy within an ICT some time in their learning process.

The design implication for ICTs is that the system can add more autonomous

features to serve learners with different autonomy. Although, the degree to which

the system should provide the autonomy worth discussion, we will discuss that in the

section of future work (see Section 7.4).

7.3 Contribution

The contributions of this dissertation are:

1. Among the first to explore ICT based MOOCs from the learners’ perspective;

2. Providing a unique view to classify programming learners, which is from the
level of learn autonomy;

3. Identifying autonomous needs of different programming learners;

4. Applying different autonomous settings to improve learners’ learning experience;

5. Contributing to the field of human-computer interaction, computing education
and learning science that would be useful to users, researchers, and designers of
interactive learning systems for programming education.

95

7.4 Future Work

While the research questions for this dissertation have been answered, the results

from our studies opens up a wide possibility of extended work for the future.

First, we tested the jumping feature in Study 4, and got some objective data

such as the number of clicks and the number of completed level. The results were

consistent with our previous findings, which are that high autonomy learners used this

feature more and low autonomy learners completed more levels. For future work, we

can get the learners’ ratings of perceived usefulness and perceived ease of use to find

out their subjective views about this feature. And furthermore, in-depth interviews

or focus group can be done to understand the reasons behind the frequent use.

Second, learning outcome is always an indicator for a good learning system.

The reason that we did not use this indicator in this dissertation is because learning

outcome is not necessarily associated with learner’s satisfaction, since learners had

different goals when using ICTs to learn (see Chapter 3, and Chapter 4). Although

the focus of this dissertation is all about learners, including who they are, why do

they use and what do they think, for future work, the learning outcome can be tested

together with the perceived usefulness and perceived ease of use. The correlation

between these indicators can be checked, and control experiment can be conducted

to compare these three indicators between the system with autonomous features and

those without.

Third, we tested only one autonomy-related feature in this dissertation.

However, according to our results from Study 3 (see Chapter 5), there are additional

autonomy-related features that can be tested to observe their effect on different types

of users.

Finally, although we found that autonomous feature can satisfy autonomous

learners without necessarily dissatisfying non-autonomous learners, in the literature,

there are debates that argue that the freedom to choose between a lot of choices

96

may overload, distract or even disorientate learners [38, 67, 77, 92, 156]. For novices

and learners with less prior knowledge and lower self-regulatory skills, studies have

found that it is hardly for them to choose materials and information that best fulfill

their needs [38, 90, 156]. For future studies, we can put more focus on the learners

with less autonomy, and explore their preference(s) between autonomous features and

non-autonomous features. The findings will give us ideas and justifications to design

more generally inclusive interactive computer tutors to benefit a broader range of

learners.

97

APPENDIX A

INTERVIEW GUIDE FOR STUDY 2

In this appendix, you will see the recruitment ad that was used for recruiting

participants, and the interview questions used for the study.

A.1 Recruitment Ad

Hi, My name is Ruiqi Shen and I am a PhD student at Department of Informatics

at NJIT. I am currently conducting a research about what are learners’ views

about interactive computer-based tutors vs. human tutors, in terms of learning

programming skills. An interactive computer-based tutor means a website or

an application that you can learn programming interactively, with no or a little

involvement of human teachers. This interview will take about 30 mins, I will do

the audio recording throughout the interview.

A.2 Behavioral Questions

1) What is your occupation?

2) (If student) What is your major?

3) How long have you been learning programming in general?

4) What programming skills do you have?

5) How did you learn these skills? (online courses or applications? Human tutors?

Digital or paperback books?)

6) When you have problems during learning programming skills, what will you do?

7) If you want to learn a new programming skill, what is the first method that comes

to your mind? (why is that?)

A.3 Research Related Questions

1) Have you ever used any Computer-based tutors to learn a course or a skill?

98

a. What skill/course?

b. (If multiple, ask what’s their most frequently used)

2) Could you describe the applications in detail?

a. How do you learn through this app?

3) What level of that course or skill are you learning from that application?

4) When you did something wrong with the questions. What feedback will you get?

a. How do you think about these feedback?

5) Have you ever got stuck in one problem and can’t move on?

a. What will you do in this situation?

6) How did you hear about that application at first time?

7) Why do you think you need this application?

8) How long have you been using that application?

9) Did you complete that course/skill?

a. (If yes,) By completing that course, did you learn the knowledge and skill

that you expected?

b. (If no,) What reasons caused you to quit?

10) Does the application provide you with all the help that you need?

11) Did you have to go elsewhere to get help?

a. (If no,) why not?

12) In what ways (if any), do you think this application helped you to learn?

a. Which features, or functions did you think were helpful for you to learn?

13) Did you experience anything negative when using this application to learn?

a. (If yes,) could you tell me more about that?

b. How did you deal with it?

14) In general, do you like this app or not?

a. (if yes, why) b. (if no, why)

15) To learn the knowledge/skill, have you tried any other methods?

99

a. (If yes,) could you tell me that method in detail?

b. (if no, why not?)

16) Do you plan to learn any programming skills recently?

a. (if no, do you plan to learn any programming skills in the future?)

b. (if yes, could you tell me more about that skill? (Such as levels, what is it

used for etc.))

17) To learn this course/skill, which method do you plan to use (through digital

applications, face to face with a teacher, with teachers online, read materials yourself,

combination of those methods (what combinations?), or other methods you can think

about?)

18) Have you ever learned programming from a teacher or a tutor?

a. Could you tell me more about this experience?

19) Did your teacher provide you with any feedback on your programming course?

a. What do you think the difference between feedback from a computer

application and your teacher

20) In terms of learning programming, do you prefer to learn from a teacher, or to

learn from a computer application

a. (If teacher, why, why not computer?)

b. (If computer, why, why not teacher)

21) Did you experience anything negative when learning from a teacher?

a. (if yes,) could you tell me more about that?

22) Do you like to communicate with your programming teachers?

a. (if yes,) In what ways do you like to communicate with you teachers?

b. Why (in that way)?

c. (If no, why not?)

100

A.4 Ending Questions

Is there anything that we didn’t cover that you would like to talk about?

Just for the record, would you please tell me your age and race?

101

APPENDIX B

SURVEY QUESTIONNAIRE USED IN STUDY 3

In this appendix, you will see the survey questionnaire that was used for Study 3.

B.1 Demographics

1) What is your gender?

Female

Male

Prefer not to answer

Other:

2) What is your age?

3)Please specify your ethnicity

White

Hispanic, Latino, or Spanish origin

Black or African American

Asian

American Indian or Alaska Native

Middle Eastern or North African

Native Hawaiian or Other Pacific Islander

Some other race, ethnicity, or origin

4) What is the highest degree or level of school you have completed?

No schooling completed

Nursery school to 8th grade

Some high school, no diploma

High school graduate, diploma or the equivalent (e.g. GED)

Some college credit, no degree

102

Trade/technical/vocational training

Associate degree

Bachelor’s degree

Master’s degree

Professional degree (e.g. M.D., J.D.)

Doctorate degree (e.g. PhD)

5) What is your occupation?

B.2 Expertise in Computer Science

6) How many cumulative years have you learned/used computer science related

knowledge/skills?

7) Please specify your level of computer science related knowledge/skills.

No experience

Beginner

Intermediate

Advanced

Professional

8) What are some of the computer science related knowledge and skills you’ve learned?

B.3 Learner Autonomy Scale

In the following statements, please rate from 1 (Strongly disagree) to 5(Strongly

agree).

9) When I learn computer science: I determine my own learning goals.

I am open to new ways of doing familiar things.

I control my own learning process.

I don’t evaluate my own studies.

I enjoy finding information about new topics on my own.

Even when tasks are difficult I try to stick with them.

103

I tend to be motivated to study by assessment deadlines.

I take responsibility for my learning experiences.

My time management is good.

I plan my time for study effectively.

I am happy studying on my own.

I don’t arrange learning environments for myself.

For quality purpose, please select neutral for this line.

B.4 System Scenario Scale

In the following scenarios, please rate from 1 (Completely unhelpful) to 5(Completely

helpful).

In the curriculum, all of the sections are unlocked, so you can learn from any

section in any order that you want.

At the end of each section, you will be given practice problems/tasks. All of

the practice is optional, so you have the option to skip them if you prefer.

If you get stuck on a practice problem/task, you can ask the system to provide

you with the solution immediately instead of providing you with stepbystep hints.

You have a study log to manage your study progress, including your course list,

material list and error logs. So that you can reflect on your learning whenever you

want.

For each practice, the system only has one correct solution. You will have to

produce the exact same answer to proceed.

At the end of each section, you will be given practice problems/tasks. All of

these are mandatory, and you have to correctly finish each of them to proceed.

The system allows you to set up your goals at first, and recommends courses

that can help you achieve your goals. You have the freedom to choose the course

portfolio to accomplish your goals.

104

For each new term in the course material, the system will provide your with

links to explore the term.

In the curriculum, all of the sections are locked, you can only go on to the next

section by finishing the current one.

For quality purpose, please select neutral for this line

105

APPENDIX C

QUESTIONNAIRE FOR STUDY 4

In this chapter, you will see a short questionnaire used for Study 4

C.1 Questions

1. What is your gender?

2. What is your age?

3. Do you have any coding experience? yes/no

4. Please rate your programming experience level. Select from the following scale:

beginner/intermediate/advanced/professional

5.Are you willing to participate in a research experiment?

If yes — go to the consent form page If no — go to the game directly

106

REFERENCES

[1] Anwar Ahmad Abdel Razeq. University efl learners’ perceptions of their autonomous
learning responsibilities and abilities. Regional Language Centre Journal,
45(3):321–336, 2014.

[2] Neda Abdipoor and Hamid Gholami. Autonomous and non-autonomous efl learners’
strategies and practices. International Journal of Foreign Language Teaching
and Research, 4(14):107–121, 2016.

[3] Muhammad Madi Bin Abdullah, Sebastian Francis Koren, Balakrishnan Muniapan,
Balakrishnan Parasuraman, and Balan Rathakrishnan. Adult participation in
self-directed learning programs. International Education Studies, 1(3):66–72,
2008.

[4] Badli Esham Ahmad and Faizah Abdul Majid. Self-directed learning and culture:
A study on malay adult learners. Procedia-Social and Behavioral Sciences,
7:254–263, 2010.

[5] Carlos Alario-Hoyos, C Delgado Kloos, Iria Estévez-Ayres, Carmen Fernández-
Panadero, Jorge Blasco, Sergio Pastrana, and J Villena-Román. Interactive
activities: the key to learning programming with moocs. European Stakeholder
Summit on Experiences and Best Practices in and Around MOOCs, EMOOCS,
319, 2016.

[6] Vincent Aleven, Elmar Stahl, Silke Schworm, Frank Fischer, and Raven Wallace.
Help seeking and help design in interactive learning environments. Review of
Educational Research, 73(3):277–320, 2003.

[7] Heather Ames, Claire Glenton, and Simon Lewin. Purposive sampling in a qualitative
evidence synthesis: A worked example from a synthesis on parental perceptions
of vaccination communication. BMC Medical Research Methodology, 19(1):1–9,
2019.

[8] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier.
Cognitive tutors: Lessons learned. The Journal of the Learning sciences,
4(2):167–207, 1995.

[9] John R Anderson, Robert Farrell, and Ron Sauers. Learning to program in lisp.
Cognitive Science, 8(2):87–129, 1984.

[10] John R. Anderson and Edward Skwarecki. The automated tutoring of introductory
computer programming. Communications of the ACM, 29(9):842–849, 1986.

[11] John Robert Anderson. The architecture of cognition, volume 5. Psychology Press,
East Sussex, United Kingdom, 1996.

107

[12] David Armstrong, Ann Gosling, John Weinman, and Theresa Marteau. The place of
inter-rater reliability in qualitative research: An empirical study. Sociology,
31(3):597–606, 1997.

[13] Lydia Arnold. Understanding and promoting autonomy in uk online higher
education. International Journal of Instructional Technology & Distance
Learning, 3(7):33–46, 2006.

[14] Ryan Baker, Jason Walonoski, Neil Heffernan, Ido Roll, Albert Corbett, and
Kenneth Koedinger. Why students engage in “gaming the system” behavior in
interactive learning environments. Journal of Interactive Learning Research,
19(2):185–224, 2008.

[15] Ryan Shaun Baker, Albert T Corbett, Kenneth R Koedinger, and Angela Z Wagner.
Off-task behavior in the cognitive tutor classroom: when students “game
the system”. In Special Interest Group on Computer-Human Interaction
Conference, pages 383–390, 2004.

[16] Ryan Shaun Baker, Ido Roll, Albert T Corbett, and Kenneth R Koedinger. Do
performance goals lead students to game the system? In International
Artificial Intelligence in Education Society (AIED), pages 57–64, 2005.

[17] Lecia J Barker, Charlie McDowell, and Kimberly Kalahar. Exploring factors that
influence computer science introductory course students to persist in the
major. The ACM Special Interest Group on Computer Science Education
(SIGCSE) Bulletin, 41(1):153–157, 2009.

[18] Philip Barker. Designing interactive learning. In Design and production of multimedia
and simulation-based learning material, pages 1–30. Springer, New York City,
NY, United States, 1994.

[19] Fatma Basri. Factors influencing learner autonomy and autonomy support in a faculty
of education. Teaching in Higher Education, pages 1–16, 2020.

[20] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph
Lawrance, Alan Blackwell, and Curtis Cook. Tinkering and gender in
end-user programmers’ debugging. In ACM Conference on Human Factors
in Computing Systems (CHI), pages 231–240, 2006.

[21] Phil Benson and Peter Voller. Autonomy and independence in language learning.
Routledge, England, United Kingdom, 2014.

[22] Philip Benson. Autonomy as a learners’ and teachers’ right. In Learner Autonomy,
Teacher Autonomy: Future Directions, pages 111–117. Longman, London,
England, 2000.

[23] Frank R Bentley, Nediyana Daskalova, and Brooke White. Comparing the reliability
of amazon mechanical turk and survey monkey to traditional market research

108

surveys. In Conference on Human Factors in Computing Systems Extended
Abstracts, pages 1092–1099, 2017.

[24] Mohammed Beyyoudh, Mohammed Khalidi Idrissi, and Samir Bennani. Towards
a new generation of intelligent tutoring systems. International Journal of
Emerging Technologies in Learning (iJET), 14(14):105–121, 2019.

[25] Soly Mathew Biju. Taking advantage of alice to teach programming concepts. E-
Learning and Digital Media, 10(1):22–29, 2013.

[26] Benjamin S Bloom. The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Educational Researcher, 13(6):4–16, 1984.

[27] David Boud. Developing Student Autonomy in Learning. Routledge, England, United
Kingdom, 2012.

[28] Naomi R Boyer, Sara Langevin, and Alessio Gaspar. Self direction & constructivism in
programming education. In 9th ACM Special-Interest Group for Information
Technology Education (SIGITE), pages 89–94. ACM, 2008.

[29] Jonathan M Breiner, Shelly Sheats Harkness, Carla C Johnson, and Catherine M
Koehler. What is stem? a discussion about conceptions of stem in education
and partnerships. School Science and Mathematics, 112(1):3–11, 2012.

[30] Peter Brusilovsky, Sergey Sosnovsky, Michael V Yudelson, Danielle H Lee, Vladimir
Zadorozhny, and Xin Zhou. Learning sql programming with interactive
tools: From integration to personalization. ACM Transactions on Computing
Education (TOCE), 9(4):1–15, 2010.

[31] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Anicia Peters,
and William Jernigan. Gendermag: A method for evaluating software’s gender
inclusiveness. Interacting with Computers, 28(6):760–787, 2016.

[32] J Bussgang and J Bacon. When community becomes your competitive advantage.
Harvard Business Review, 2020.

[33] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. Coding
in-depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement. Sociological Methods & Research, 42(3):294–320,
2013.

[34] Philip C Candy. Self-Direction for Lifelong Learning. A Comprehensive Guide
to Theory and Practice. Education Resources Information Center (ERIC),
Washington, D.C, United States, 1991.

[35] Yi-Hsing Chang, Jhen-Hao Hwang, Rong-Jyue Fang, and You-Te Lu. A kinect-
and game-based interactive learning system. Eurasia Journal of Mathematics,
Science and Technology Education, 13(8):4897–4914, 2017.

109

[36] John C Chen, Susan M Lord, and Karen J McGaughey. Engineering students’
development as lifelong learners. In 120th American Society for Engineering
Education Annual Conference and Exposition Proceedings, 2013.

[37] John C Chen, Karen McGaughey, Susan M Lord, et al. Measuring students’
propensity for lifelong learning. In 23rd Annual Conference of the Australasian
Association for Engineering Education, page 617, 2012.

[38] Sherry Y Chen, Jing-Ping Fan, and Robert D Macredie. Navigation in hypermedia
learning systems: experts vs. novices. Computers in Human Behavior,
22(2):251–266, 2006.

[39] Adele Chene. The concept of autonomy in adult education: A philosophical
discussion. Adult Education Quarterly, 34(1):38–47, 1983.

[40] Ryan Chmiel and Michael C Loui. Debugging: from novice to expert. The ACM
Special Interest Group on Computer Science Education (SIGCSE) Bulletin,
36(1):17–21, 2004.

[41] Ylona Chun Tie, Melanie Birks, and Karen Francis. Grounded theory research:
A design framework for novice researchers. SAGE open medicine,
7:2050312118822927, 2019.

[42] Douglas E Comer, Peter J Denning, David Gries, and Michael C Mulder. Report of
the ACM Task Force on the Core of Computer Science. ACM, New York City,
NY, United States, 1988.

[43] Juliet Corbin and Anselm Strauss. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Sage publications, Thousand
Oaks, CA, United States, 2014.

[44] Diana I Cordova and Mark R Lepper. Intrinsic motivation and the process of learning:
Beneficial effects of contextualization, personalization, and choice. Journal of
Educational Psychology, 88(4):715, 1996.

[45] Sara Cotterall. Promoting learner autonomy through the curriculum: Principles for
designing language courses. English Language Teaching Journal, 54(2):109–
117, 2000.

[46] Natalie J Coull and Ishbel MM Duncan. Emergent requirements for supporting intro-
ductory programming. Innovation in Teaching and Learning in Information
and Computer Sciences, 10(1):78–85, 2011.

[47] Deng Dafei. An exploration of the relationship between learner autonomy and english
proficiency. Asian English Language Education Publishing Journal, 24(4):24–
34, 2007.

110

[48] Brian LF Daku and Keith Jeffrey. An interactive computer-based tutorial for matlab.
In 30th Annual Frontiers in Education Conference, volume 2, pages F2D–2.
IEEE, 2000.

[49] Leni Dam. From Theory to Classroom Practice. Authentik, Dublin, Ireland, 1995.

[50] Refsnes Data. w3school. com the world’s largest web developer site, 2017.

[51] Edward L Deci and Richard M Ryan. The “what” and “why” of goal pursuits:
Human needs and the self-determination of behavior. Psychological Inquiry,
11(4):227–268, 2000.

[52] Omer Deperlioglu and Utku Kose. The effectiveness and experiences of blended
learning approaches to computer programming education. Computer
Applications in Engineering Education, 21(2):328–342, 2013.

[53] Marcia Gail Derrick. The Measurement of An Adult’s Intention to Exhibit Persistence
in Autonomous Learning. The George Washington University, Washington,
DC, United States, 2001.

[54] Sneha R Deshmukh and Vijay T Raisinghani. Abc: Application based collaborative
approach to improve student engagement for a programming course. In IEEE
10th International Conference on Technology for Education (T4E), pages 20–
23, 2018.

[55] Leslie Dickinson. Autonomy, self-directed learning and individualization. English
Language Teaching Journal, 103:14–15, 1978.

[56] Leslie Dickinson. Self-Instruction in Language Learning. Cambridge University Press,
Cambridge, England, 1987.

[57] Thomas Dohmen, Armin Falk, David Huffman, Uwe Sunde, Jürgen Schupp, and
Gert G Wagner. Individual risk attitudes: Measurement, determinants, and
behavioral consequences. Journal of the European Economic Association,
9(3):522–550, 2011.

[58] Fengning Du. Student perspectives of self-directed language learning: Implications for
teaching and research. International Journal for the Scholarship of Teaching
and Learning, 7(2):n2, 2013.

[59] Reinders Duit and Jere Confrey. Reorganizing the curriculum and teaching to improve
learning in science and mathematics. Improving Teaching and Learning in
Science and Mathematics, pages 79–93, 1996.

[60] Robert G Farrell, John R Anderson, and Brian J Reiser. An interactive computer-
based tutor for lisp. In The Association for the Advancement of Artificial
Intelligence (AAAI), pages 106–109, 1984.

111

[61] Roberto B Figueroa and Emely M Amoloza. Addressing programming anxiety among
non-computer science distance learners: A upou case study. International
Journal for Educational Media and Technology, 9(1):56–67, 2015.

[62] Mehmet Firat. Measuring the e-learning autonomy of distance education students.
Open Praxis, 8(3):191–201, 2016.

[63] Gerhard Fischer and Kumiyo Nakakoji. Amplifying designers’ creativity with domain-
oriented design environments. In Artificial Intelligence and Creativity, pages
343–364. Springer, New York City, NY, United States, 1994.

[64] Gerhard Fischer and Eric Scharff. Learning technologies in support of self-directed
learning. Journal of Interactive Media in Education, 1998(2), 1998.

[65] Barbara A Fox. Cognitive and interactional aspects of correction in tutoring. Teaching
Knowledge and Intelligent Tutoring, 1, 1991.

[66] Erin Marie Furtak and Mareike Kunter. Effects of autonomy-supportive teaching
on student learning and motivation. The Journal of Experimental Education,
80(3):284–316, 2012.

[67] James E Gall and Michael J Hannafin. A framework for the study of hypertext.
Instructional Science, 22(3):207–232, 1994.

[68] Gaby Galvin. Some say computer coding is a foreign language. US News, October
2016.

[69] Xu Gang. A case study on the effectiveness of learner autonomy in british and
american literature study. Studies in Literature and Language, 10(1):88, 2015.

[70] Kenneth J Gergen. An Invitation to Social Construction. Sage, Thousand Oaks, CA,
United States, 1999.

[71] Luk Gharti. Self-directed learning for learner autonomy: Teachers’ and students’
perceptions. Journal of NELTA Gandaki, 1:62–73, 2019.

[72] Paul Gill, Kate Stewart, Elizabeth Treasure, and Barbara Chadwick. Methods of
data collection in qualitative research: interviews and focus groups. British
Dental Journal, 204(6):291–295, 2008.

[73] Heather B Gonzalez and Jeffrey J Kuenzi. Congressional research service science,
technology, engineering, and mathematics (stem) education: A primer.
Retrieved May, 8:2018, 2012.

[74] Leo A Goodman. Snowball sampling. The Annals of Mathematical Statistics, pages
148–170, 1961.

[75] Peter Goodyear. Environments for lifelong learning. In Integrated and Holistic
Perspectives on Learning, Instruction and Technology, pages 1–18. Springer,
New York City, NY, United States, 2000.

112

[76] Chantal JJ Gorissen, Liesbeth Kester, Saskia Brand-Gruwel, and Rob Martens.
Autonomy supported, learner-controlled or system-controlled learning in
hypermedia environments and the influence of academic self-regulation style.
Interactive Learning Environments, 23(6):655–669, 2015.

[77] Judith TM Gulikers, Theo J Bastiaens, and Rob L Martens. The surplus value of an
authentic learning environment. Computers in Human Behavior, 21(3):509–
521, 2005.

[78] Philip J Guo. Online python tutor: embeddable web-based program visualization
for cs education. In 44th ACM Technical Symposium on Computer Science
Education, pages 579–584, 2013.

[79] Philip J Guo. Codeopticon: Real-time, one-to-many human tutoring for computer
programming. In 28th Annual ACM Symposium on User Interface Software
& Technology, pages 599–608, 2015.

[80] Mark Guzdial. Limitations of moocs for computing education-addressing our needs:
Moocs and technology to advance learning and learning research (ubiquity
symposium). Ubiquity, 2014(July):1–9, 2014.

[81] Kevin A Hallgren. Computing inter-rater reliability for observational data: an
overview and tutorial. Tutorials in Quantitative Methods for Psychology,
8(1):23, 2012.

[82] Michael J Hannafin. Interaction strategies and emerging instructional technologies.
Canadian Journal of Educational Communication, 167, 1989.

[83] John Hattie. Visible Learning for Teachers: Maximizing Impact on Learning.
Routledge, England, United Kingdom, 2012.

[84] Neil T Heffernan and Kenneth R Koedinger. An intelligent tutoring system incorpo-
rating a model of an experienced human tutor. International Conference on
Intelligent Tutoring Systems, pages 596–608, 2002.

[85] Jan Herrington, Thomas C Reeves, Ron Oliver, and Younghee Woo. Designing
authentic activities in web-based courses. Journal of Computing in Higher
Education, 16(1):3–29, 2004.

[86] Roger Hiemstra. Self-directed learning. The Sourcebook for Self-Directed learning,
920, 1994.

[87] Henri Holec. Autonomy and Foreign Language Learning. Education Resources
Information Center (ERIC), Washington, D.C, United States, 1979.

[88] Jing Peter Huang and Phil Benson. Autonomy agency and identity in foreign and
second language education. Chinese Journal of Applied Linguistics, 36(1):7,
2013.

113

[89] Lon Ingram and Michael Walfish. Treehouse: Javascript sandboxes to helpweb
developers help themselves. In The Advanced Computing Systems Association
(USENIX) conference on Annual Technical Conference, pages 13–13, 2012.

[90] Slava Kalyuga. The expertise reversal effect. In Managing Cognitive Load in Adaptive
Multimedia Learning, pages 58–80. IGI Global, Hershey, PA, United States,
2009.

[91] Oscar Karnalim and Mewati Ayub. The use of python tutor on programming
laboratory session: Student perspectives. Kinetik: Game Technology,
Information System, Computer Network, Computing, Electronics, and
Control, 2(4):327–336, 2017.

[92] Judy Kay. Learner control. User Modeling and User-adapted Interaction, 11(1-2):111–
127, 2001.

[93] Todd R Kelley and J Geoff Knowles. A conceptual framework for integrated stem
education. International Journal of STEM Education, 3(1):11, 2016.

[94] Teresa J Kennedy and Michael R.L Odell. Engaging students in stem education.
Science Education International, 25(3):246–258, 2014.

[95] Brian Kenny. For more autonomy. System, 21(4):431–442, 1993.

[96] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic review
of automated feedback generation for programming exercises. In ACM
Conference on Innovation and Technology in Computer Science Education,
pages 41–46, 2016.

[97] Ada S Kim and Amy J Ko. A pedagogical analysis of online coding tutorials. In
ACM Technical Symposium of Special Interest Group on Computer Science
Education (SIGCSE), pages 321–326, 2017.

[98] Kyong-Jee Kim. Motivational challenges of adult learners in self-directed e-learning.
Journal of Interactive Learning Research, 20(3):317–335, 2009.

[99] Malcolm S Knowles. The Modern Practice of Adult Education: From Pedagogy to
Andragogy. Cambridge Book Co., Cambridge, England, 1988.

[100] Philippe Kruchten. The biological half-life of software engineering ideas. IEEE
software, 25(5):10–11, 2008.

[101] Mikko-Jussi Laakso, Teemu Rajala, Erkki Kaila, and Tapio Salakoski. Novice
learning. In Norbert M. Seel, editor, Encyclopedia of the Sciences of Learning,
pages 2482–2483, New York City, NY, United States, 2012. Springer.

[102] Terry Lamb and Hayo Reinders. Learner and Teacher Autonomy: Concepts,
Realities, and Response, volume 1. John Benjamins Publishing, Amsterdam,
Netherlands, 2008.

114

[103] Kris MY Law, Victor CS Lee, and Yuen-Tak Yu. Learning motivation in e-
learning facilitated computer programming courses. Computers & Education,
55(1):218–228, 2010.

[104] Lina Lee. Blogging: Promoting learner autonomy and intercultural competence
through study abroad. Language Learning & Technology, 2011.

[105] Michael J Lee. How can a social debugging game effectively teach computer
programming concepts? In ACM The International Computing Education
Research (ICER) Conference, pages 181–182, 2013.

[106] Michael J Lee. Auto-generated game levels increase novice programmers’ engagement.
The Journal of Computing Sciences in Colleges, page 70, 2020.

[107] Michael J Lee. (re)engaging novice online learners in an educational programming
game. The Journal of Computing Sciences in Colleges, 35(8), 2020.

[108] Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters, Amber
Horvath, Fanny Luor, Jill Cao, Catherine Law, Michael Beswetherick, et al.
Principles of a debugging-first puzzle game for computing education. In
2014 IEEE Symposium on Visual Languages and Human-centric Computing
(VL/HCC), pages 57–64. IEEE, 2014.

[109] Michael J Lee and Amy J Ko. Personifying programming tool feedback improves
novice programmers’ learning. In 7th International Workshop on Computing
Education Research, pages 109–116, 2011.

[110] Michael J Lee and Amy J Ko. Comparing the effectiveness of online learning
approaches on cs1 learning outcomes. In 11th Annual International Conference
on International Computing Education research, pages 237–246, 2015.

[111] Michael J Lee, Amy J Ko, and Irwin Kwan. In-game assessments increase
novice programmers’ engagement and level completion speed. In ACM The
International Computing Education Research (ICER) Conference, 2013.

[112] Sang Hwa Lee, Junyeong Choi, and Jong-il Park. Interactive e-learning system using
pattern recognition and augmented reality. IEEE Transactions on Consumer
Electronics, 55(2):883–890, 2009.

[113] David Little. Learner autonomy. Dublin, 86:11, 1991.

[114] David Little. Freedom to learn and compulsion to interact: promoting
learner autonomy through the use of information systems and information
technologies. Taking Control: Autonomy in Language Learning, 1:203–218,
1996.

[115] Tharindu Rekha Liyanagunawardena, Karsten O Lundqvist, Luke Micallef, and
Shirley Ann Williams. Teaching programming to beginners in a massive open
online course. OER14: building communities of open practice, 2014.

115

[116] Richard Lynch and Myron Dembo. The relationship between self-regulation and
online learning in a blended learning context. The International Review of
Research in Open and Distributed Learning, 5(2), 2004.

[117] Ann Macaskill and Elissa Taylor. The development of a brief measure of learner
autonomy in university students. Studies in Higher Education, 35(3):351–359,
2010.

[118] Parviz Maftoon, Parisa Daftarifard, and Morvarid Lavasani. Good language learner:
from autonomy perspective. Linguistic and Literary Broad Research and
Innovation, 2(1):104–114, 2011.

[119] Kirsti Malterud, Volkert Dirk Siersma, and Ann Dorrit Guassora. Sample size in
qualitative interview studies: guided by information power. Qualitative Health
Research, 26(13):1753–1760, 2016.

[120] Luciano Mariani. Teacher support and teacher challenge in promoting learner
autonomy. Perspectives: A Journal of TESOL Italy, 1997.

[121] Jack Martin and Ann-Marie McLellan. The educational psychology of self-regulation:
A conceptual and critical analysis. Studies in Philosophy and Education,
27(6):433–448, 2008.

[122] Robert McCartney, Jonas Boustedt, Anna Eckerdal, Kate Sanders, Lynda Thomas,
and Carol Zander. Why computing students learn on their own: Motivation
for self-directed learning of computing. ACM Transactions on Computing
Education, 16(1):2, 2016.

[123] Barbara Means, Yuki Toyama, Robert Murphy, Marianne Bakia, and Karla Jones.
Evaluation of evidence-based practices in online learning: A meta-analysis and
review of online learning studies. Centre for Learning Technology, 2009.

[124] Sharan B Merriam, Rosemary S Caffarella, and Lisa M Baumgartner. Learning in
Adulthood: A Comprehensive Guide. John Wiley & Sons, Hoboken, NJ, United
States, 2006.

[125] Douglas C Merrill, Brian J Reiser, Michael Ranney, and J Gregory Trafton. Effective
tutoring techniques: A comparison of human tutors and intelligent tutoring
systems. The Journal of the Learning Sciences, 2(3):277–305, 1992.

[126] Joan Meyers-Levy and Barbara Loken. Revisiting gender differences: What we know
and what lies ahead. Journal of Consumer Psychology, 25(1):129–149, 2015.

[127] Midori Mineishi. East asian efl learners’ autonomous learning, lerner perception on
autonomy and portfolio development: In the case of educational contexts in
japan. International Journal of Arts and Sciences, 3(17):234–241, 2010.

[128] Michael Grahame Moore. Learner autonomy: The second dimension of independent
learning. Convergence, 5(2):76, 1972.

116

[129] Michael Grahame Moore. The theory of transactional distance. In Handbook of
Distance Education, pages 84–103. Routledge, England, United Kingdom,
2013.

[130] Briana B Morrison and Betsy DiSalvo. Khan academy gamifies computer science.
In 45th ACM Technical Symposium on Computer Science Education, pages
39–44, 2014.

[131] Robert Moser. A fantasy adventure game as a learning environment: why learning
to program is so difficult and what can be done about it. In 2nd Conference
on Integrating Technology into Computer Science Education, pages 114–116,
1997.

[132] Zahraa Muhisn, Mazida Ahmad, Mazni Omar, and Sinan Muhisn. The impact
of socialization on collaborative learning method in e-learning management
system (elms). International Journal of Emerging Technologies in Learning,
14(20):137–148, 2019.

[133] Robert Murphy, Larry Gallagher, Andrew E Krumm, Jessica Mislevy, and Amy
Hafter. Research on the use of khan academy in schools: Research brief.
Stanford Research Institute (SRI) International, 2014.

[134] Sabitha SR Najeeb. Learner autonomy in language learning. Procedia-Social and
Behavioral Sciences, 70:1238–1242, 2013.

[135] Eric Nersesian, Margarita Vinnikov, Jessica Ross-Nersesian, Adam Spryszynski, and
Michael J Lee. Middle school students learn binary counting using virtual
reality. In IEEE Integrated STEM Education Conference (ISEC), pages 1–8.
IEEE, 2020.

[136] Scott Nicholson. A recipe for meaningful gamification. In Gamification in Education
and Business, pages 1–20. Springer, New York City, NY, United States, 2015.

[137] Pratya Nuankaew. Dropout situation of business computer students, university
of phayao. International Journal of Emerging Technologies in Learning,
14(19):115–131, 2019.

[138] Pamel Ochieng. An analysis of the strengths and limitation of qualitative and
quantitative research paradigms. Problems of Education in the 21st Century,
13:13, 2009.

[139] Marie Olsson and Peter Mozelius. On design of online learning environments
for programming education. In Academic Conferences and Publishing
International ECEL, pages 12–24, 2016.

[140] Daniel FO Onah, Jane Sinclair, and Russell Boyatt. Dropout rates of massive open
online courses: behavioural patterns. EDULEARN14 Proceedings, 1:5825–
5834, 2014.

117

[141] Steven Ovadia. Quora. com: another place for users to ask questions. Behavioral &
Social Sciences Librarian, 30(3):176–180, 2011.

[142] Seymour A Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic
books, New York City, NY, United States, 2020.

[143] Laura Pappano. The year of the mooc. The New York Times, 2(12):2012, 2012.

[144] Sharoda A Paul, Lichan Hong, and Ed H Chi. Who is authoritative? understanding
reputation mechanisms in quora. arXiv Preprint arXiv:1204.3724, 2012.

[145] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. A survey of literature on
the teaching of introductory programming. Working group reports on ITiCSE
on Innovation and technology in computer science education, pages 204–223,
2007.

[146] Michael Kamano Ponton. The Measurement of An Adult’s Intention to Exhibit
Personal Initiative in Autonomous Learning. The George Washington
University, Washington, DC, United States, 1999.

[147] MK Ponton, PB Carr, and GJ Confessore. Learning conflation: A psychological
perspective of personal initiative and resourcefulness. Practice & Theory in
Self-directed Learning, pages 65–82, 2000.

[148] David Pritchard and Troy Vasiga. Cs circles: an in-browser python course
for beginners. In 44th ACM Technical Symposium on Computer Science
Education, pages 591–596, 2013.

[149] Brian J Reiser, John R Anderson, and Robert G Farrell. Dynamic student modelling
in an intelligent tutor for lisp programming. In International Joint Conference
on Artificial Intelligence (IJCAI), volume 85, pages 8–14, 1985.

[150] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching
programming: A review and discussion. Computer Science Education,
13(2):137–172, 2003.

[151] Herbert J Rubin and Irene S Rubin. Qualitative Interviewing: The Art of Hearing
Data. SAGE, Thousand Oaks, CA, United States, 2011.

[152] Martin Russell, Robert W Series, Julie L Wallace, Catherine Brown, and Adrian
Skilling. The star system: an interactive pronunciation tutor for young
children. Computer Speech & Language, 14(2):161–175, 2000.

[153] Richard M Ryan and Edward L Deci. Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary Educational Psychology,
25(1):54–67, 2000.

118

[154] Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie Waterfield,
Bernadette Bartlam, Heather Burroughs, and Clare Jinks. Saturation in
qualitative research: exploring its conceptualization and operationalization.
Quality & Quantity, 52(4):1893–1907, 2018.

[155] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the numbers of end
users and end user programmers. In IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 207–214, 2005.

[156] Katharina Scheiter and Peter Gerjets. Learner control in hypermedia environments.
Educational Psychology Review, 19(3):285–307, 2007.

[157] Graham W Scott, J Furnell, CM Murphy, and R Goulder. Teacher and student
perceptions of the development of learner autonomy; a case study in the
biological sciences. Studies in Higher Education, 40(6):945–956, 2015.

[158] Charles Severance. Khan academy and computer science. Computer, 48(1):14–15,
2015.

[159] Jason H Sharp. Using codecademy interactive lessons as an instructional supplement
in a python programming course. Information Systems Education Journal,
17(3):20, 2019.

[160] Ruiqi Shen. Interactive computer tutors as a programming educator: Improving
learners’ experiences. In IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1–2, 2020.

[161] Ruiqi Shen, Joseph Chiou, and Michael J Lee. Becoming lifelong learners: Cs learners’
autonomy. Journal of Computing Sciences in Colleges, 35(8):267–267, 2020.

[162] Ruiqi Shen and Michael J Lee. Learners’ perspectives on learning programming
from interactive computer tutors in a mooc. In IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 1–5, 2020.

[163] Ruiqi Shen, Donghee Yvette Wohn, and Michael J Lee. Comparison of learning
programming between interactive computer tutors and human teachers. In
ACM Conference on Global Computing Education, pages 2–8, 2019.

[164] Zach Sims and C Bubinski. Codecademy. http://www.codecademy.com, 2011.

[165] StackOverflow. Stack overflow developer survey 2019, 2019.

[166] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and Christoph Meinel.
Towards practical programming exercises and automated assessment in
massive open online courses. In IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE), pages 23–30. IEEE, 2015.

[167] Holly Stillson and John Alsup. Smart aleks... or not? teaching basic algebra using
an online interactive learning system. Mathematics and Computer Education,
37(3):329, 2003.

119

[168] Anselm Strauss and Juliet M Corbin. Grounded Theory in Practice. SAGE, Thousand
Oaks, CA, United States, 1997.

[169] Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling. Learning difficulties
in programming courses: undergraduates’ perspective and perception.
In International Conference on Computer Technology and Development,
volume 1, pages 42–46, 2009.

[170] Tan-Hsu Tan and Tsung-Yu Liu. The mobile-based interactive learning environment
(mobile) and a case study for assisting elementary school english learning.
In IEEE International Conference on Advanced Learning Technologies, pages
530–534, 2004.

[171] Terry Tang, Scott Rixner, and Joe Warren. An environment for learning interactive
programming. In 45th ACM Technical Symposium on Computer Science
Education, pages 671–676, 2014.

[172] Dimitrios Thanasoulas. What is learner autonomy and how can it be fostered. The
Internet Teachers of English as a Second Language(TESL) Journal, 6(11):37–
48, 2000.

[173] David R Thomas. A general inductive approach for qualitative data analysis.
American Journal of Evaluation, 2003.

[174] Kenneth Tobin, Deborah J Tippins, and Alejandro José Gallard. Research on
instructional strategies for teaching science. Handbook of Research on Science
Teaching and Learning, 45:93, 1994.

[175] Bill Tucker. The flipped classroom. Education Next, 12(1):82–83, 2012.

[176] Marisa Venter and Arthur James Swart. Continuance use intention of a gamified
programming learning system. In Annual Conference of the Southern African
Computer Lecturers’ Association, pages 17–31, 2018.

[177] Jorge A Villalobos, Nadya A Calderon, and Camilo H Jiménez. Developing
programming skills by using interactive learning objects. ACM Special Interest
Group on Computer Science Education (SIGCSE) Bulletin, 41(3):151–155,
2009.

[178] Lev S Vygotsky. Thought and Language. MIT press, Cambridge, MA, United States,
2012.

[179] David Wade-Stein and Eileen Kintsch. Summary street: Interactive computer support
for writing. Cognition and Instruction, 22(3):333–362, 2004.

[180] Jason A Walonoski and Neil T Heffernan. Detection and analysis of off-task gaming
behavior in intelligent tutoring systems. In International Conference on
Intelligent Tutoring Systems, pages 382–391, 2006.

120

[181] Gang Wang, Konark Gill, Manish Mohanlal, Haitao Zheng, and Ben Y Zhao. Wisdom
in the social crowd: an analysis of quora. In 22nd International Conference
on World Wide Web, pages 1341–1352, 2013.

[182] Joe Warren, Scott Rixner, John Greiner, and Stephen Wong. Facilitating human
interaction in an online programming course. In 45th ACM Technical
Symposium on Computer Science Education, pages 665–670, 2014.

[183] Robert S Weiss. Learning from Strangers: The Art and Method of Qualitative
Interview Studies. Simon and Schuster, New York City, New York, United
States, 1995.

[184] Etienne Wenger. Artificial Intelligence and Tutoring Systems: Computational
and Cognitive Approaches to the Communication of Knowledge. Morgan
Kaufmann, Burlington, MA, United States, 2014.

[185] Younghee Woo and Thomas C Reeves. Meaningful interaction in web-based learning:
A social constructivist interpretation. The Internet and Higher Education,
10(1):15–25, 2007.

[186] Beverly Woolf and David D. McDonald. Building a computer tutor: Design issues.
Computer, 17(09):61–73, 1984.

[187] Yu Xie, Michael Fang, and Kimberlee Shauman. Stem education. Annual Review of
Sociology, 41:331–357, 2015.

[188] Aharon Yadin. Reducing the dropout rate in an introductory programming course.
ACM Inroads, 2(4):71–76, 2011.

[189] Noriyasu Yamamoto. An interactive learning system using smartphone: Improving
students’ learning motivation and self-learning. In 9th International
Conference on Broadband and Wireless Computing, Communication and
Applications, pages 428–431. IEEE, 2014.

[190] An Yan, Michael J Lee, and Amy J Ko. Predicting abandonment in online coding
tutorials. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 191–199, 2017.

[191] Ahmed Mohamed Fahmy Yousef, Mohamed Amine Chatti, Ulrik Schroeder, and
Marold Wosnitza. What drives a successful mooc? an empirical examination
of criteria to assure design quality of moocs. In IEEE 14th International
Conference on Advanced Learning Technologies, pages 44–48, 2014.

[192] Barry J Zimmerman. A social cognitive view of self-regulated academic learning.
Journal of Educational Psychology, 81(3):329, 1989.

121

	Improving programming learners’ experience through interactive computer tutor based MOOCs
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Learning From Interactive Computer Tutors
	Chapter 3: Exploring Learners' Views on ICT Based MOOCs
	Chapter 4: Interactive Computer Tutors or Human Teachers?
	Chapter 5: Exploring CS Learners' Autonomy and Their Preference for Learning Systems
	Chapter 6: Redesigning Autonomy Features of ICTs That Target at Learners' Different Autonomy Levels
	Chapter 7: Dissertation Summary
	Appendix A: Interview Guide for Study 2
	Appendix B: Survey Questionnaire Used in Study 3
	Appendix C: Questionnaire for Study 4
	References

	List of Tables
	List of Figures

