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ABSTRACT

PARAMETER ESTIMATION AND INFERENCE OF SPATIAL
AUTOREGRESSIVE MODEL BY STOCHASTIC GRADIENT

DESCENT

by
Gan Luan

Stochastic gradient descent (SGD) is a popular iterative method for model parameter

estimation in large-scale data and online learning settings since it goes through the

data in only one pass. While SGD has been well studied for independent data, its

application to spatially-correlated data largely remains unexplored. This dissertation

develops SGD-based parameter estimation and statistical inference algorithms for the

spatial autoregressive (SAR) model, a common model for spatial lattice data.

This research contains three parts. (I) The first part concerns SGD estimation

and inference for the SAR mean regression model. A new SGD algorithm based

on maximum likelihood estimator (MLE) is proposed to accommodate the spatial

correlation in the SAR model. Also, a statistical inference algorithm is proposed based

on the online bootstrap resampling procedure (Fang et al., 2018). The asymptotic

properties are then developed for the estimators and the finite sample properties for

the estimators are investigated by simulations. The SGD-based parameter estimation

procedures are shown to be more than 40 times faster than MLE for the settings

examined. The SGD estimators for all parameters are close to the true values. The

empirical coverages of confidence intervals (CIs) are at the nominal levels for the

coefficients of the covariates but not for the spatial parameter. Two methods are

proposed to improve the empirical coverage of CI for the spatial parameter. (II) The

second part is regarding the SAR quantile regression mode. SGD algorithms based

on one-stage quantile regression (1SQR) and two-stage quantile regression (2SQR)

are developed for parameter estimation and statistical inference. Simulation results

show that SGD estimator based on 2SQR is unbiased while that based on 1SQR



is biased. Also, the empirical coverages of CIs constructed using SGD based on

2SQR are all at the nominal levels. (III) In the last part, this research analyzes a

real dataset on charges for medical services provided by physicians and healthcare

professionals. Both SAR mean regression and quantile regression models are fitted to

study the effect of location and other characteristics of medical facilities on medical

prices. Modeling results show that the spatial correlation parameter is significantly

different from 0 (95% CI is (-0.27, -0.23) for the mean regression), suggesting spatial

correlation of medical charges. Also the models find that charges depend on the total

number of services provided yearly, gender of the provider, facility type, and whether

the provider is in a metropolitan area.
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CHAPTER 1

OVERVIEW

1.1 Spatial Data and Stochastic Gradient Descent

This section briefly introduces two main topics of this dissertation: spatial data and

stochastic gradient descent (SGD).

1.1.1 Spatial data

Many studies make observations of one or more variables at multiple sites. If the

location information of these sites are also observed and attached to the data, then

the resulting data is called spatial data. The specific type of spatial data studied

in this dissertation is the lattice data. For lattice data, the domain under study is

fixed and discrete and the attributes of interest can be observed at a number of fixed

locations. These locations can be points or regions, but usually census track, states,

zip codes etc. [9, 39].

Lattice data has been analyzed and studied in many area, such as economic,

environmental and geographical research [9]. For example, Haider and Miller studied

the effects of transportation infrastructure and location on the residential real estate

values [17]. Permai et al. modelled the average expenditure of Papua providence in

Indonesia and considered spatial correlations [44]. Trzpiot and Orwat-Acedańska

investigated the healthy life years in European countries with a spatial quantile

regression model [53]. Kanaroglou et al. estimated sulfur dioxide air pollution

concentrations with a spatial autoregressive model [19].

One concrete example of lattice data is shown in Figure 1.1. It is a map with

number of confirmed COVID-19 cases in each state of the United States as of October,

27, 2021 (data source: https://coronavirus.1point3acres.com/). Clustering

appears in this map and this suggests the existence of spatial correlation. Also, it is

1
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reasonable to assume that the number of confirmed cases in New Jersey is correlated

with that of New York since they are neighbors and communication between these

two states are in a high degree. For more general data, one can use Moran’s I to

study the strength of spatial dependence [40, 35]. Ignoring spatial correlation when

it is present can significantly affect the modeling of the data.

Figure 1.1 Map of confirmed COVID19 cases in the United States as of
October, 27, 2021.

1.1.2 Stochastic gradient descent

An important parameter estimation method in statistics is estimating by minimizing

a target function (loss function). Optimization is a common problem in machine

learning [14]. Stochastic gradient descent (SGD) is an recursive algorithm for

optimization and parameter estimation. It was first proposed by Robin & Monro [47]

and then studied by many others (for example, [56, 48, 45, 42]). Unlike many other

optimization algorithms that require the availability of all the data, SGD only uses one

data point at each iteration. Let F (θ) = E[f(θ, z)] be the function to be minimized;

where, z is an observation of the random variable Z, f the loss function, θ the unknown

parameter, and the expectation is with respect to (w.r.t.) the random variable Z. Let

θ0 be the minimizer of F (θ) over parameter space Θ; that is θ0 = argminθ∈Θ F (θ). Let

2



{z1, z2, . . . , zn} be independent observations of random variable Z, and θ̂0 an initial

value . If f is differentiable, then the estimate for θ can be updated as:

θ̂k = θ̂k−1 − γk∇f(θ̂k−1, zk), k = 1, . . . , n, (1.1)

where, γk is often called the learning rate. One common way to set γk is γk = γ1k
−α,

with γ1 > 0 and α ∈ (0.5, 1). Also, Ruppert and Polyak & Juditsky suggested that the

convergence of SGD estimates can be accelerated by taking the mean of the estimates

([48, 45]):

θ̄k =
1

k

k∑
i=1

θ̂i. (1.2)

The averaged estimate also can be recursively updated by θ̄k = ((k − 1)θ̄k−1 + θ̂k)/k.

We can use SGD for parameter estimation of the linear regression model:

y = Xβ + ε, ε ∼ N(0, σ2I) (1.3)

where, yn×1 is the response variable; Xn×p are covariates, β and σ2 unknown

parameters. The log-likelihood for y (omitting constant term and constant coefficient)

is:

`(β|y) =
n∑
i=1

−(yi − βTxi)2 =
n∑
i=1

fi, (1.4)

where, fi = −(yi − βTxi)2 is the log-likelihood for i-th data point. The derivative of

fi w.r.t. β is:

∇fβ,i = 2xi(yi − βTxi). (1.5)

Let F = E(fi) and let

β0 = argmin(−F ) = argminE(yi − βTxi)2 (1.6)

3



Given an initial estimate β̂0, the SGD algorithm for updating β̂k is:

β̂k = β̂k−1 + γk(yk − β̂
T

k−1xk)xk. (1.7)

Note that ‘+’ is used in (1.7) rather than ‘−’ like in (1.1) because we are trying to

maximize the log-likelihood. Also, the constant ‘2’ in (1.5) is not carried over to the

updating algorithm (1.7), since we can adjust the initial value for the learning rate,

γ1. Here, in linear regression, we can easily write out the log-likelihood for i-th data

point since data are assumed to be independent. Also, `(β|y), the log-likelihood for

y, can be treated as the sample estimation of nF . The maximum likelihood estimator

(MLE) is the value that maximizes `(β|y), while SGD converges to the value that

maximize nF . This is the connection between the estimators obtained by SGD and

MLE.

SGD has several advantages over other algorithms that require the availability

of the whole dataset. First, it does not require storage of all the data, since the data

are only used once and are not revisited. This can reduce storage need. Also, SGD

is very useful in stream learning (or online learning), where we observe the data one

by one [55]. With SGD, we can estimate the parameters based on available data and

update the estimate whenever new data arrive. When updating the estimate, we only

need the current data point and do not need to revisit the previous data. Finally,

SGD is fast and easy to scale up. Many optimization algorithms involve matrix

calculations, which become very computational intensive for large sample size. Thus,

these algorithms are difficult to scale up. On contrast, SGD can easily scale up since

it only uses one data point for each recursive step.

The asymptotic properties of SGD estimates have been well studied. However,

there are only a few studies look at the inference of SGD estimates. Chen et al. (2016)

suggested two methods for estimating variance and constructing confidence intervals

for SGD estimators: the plug-in method and the batch-mean method [5]. The plug-in

4



method requires the computation of a Hessian matrix and its inverse, which can be

computational intensive. The batch-mean method has a relatively slower convergence

rate compared to the plug-in method. Also, it tends to underestimate the variance

due to the correlation between batch means. Li et al. (2017) proposed a statistical

inference method similar to the batch-mean method and tried to reduce correlation

between batch means by discarding some intermediate estimates [37]. However, their

method only works for M-estimation based on SGD with a fixed learning rate. Su &

Zhu (2018) proposed the statistical inference procedure HiGrad, short for hierarchical

incremental gradient descent [51]. They used a hierarchical tree structure and updated

SGD estimates along the tree. Their method can provide confidence intervals for

predictions but not for vanilla SGD estimators.

Fang et al. (2018) proposed an online bootstrap resampling procedure to

estimate the variance and construct confidence intervals for SGD estimators [13].

This method is simple and can be applied to a general class of models. For this

method, to construct confidence interval (CI), besides the SGD estimates, a number

of perturbed estimates are also obtained. Let θ̂∗ denote the perturbed estimate, and

with θ̂∗0 ≡ θ̂0, the perturbed SGD estimate can be updated as:

θ̂∗k = θ̂∗k−1 − γkWk∇f(θ̂∗k−1, zk), k = 1, . . . , n (1.8a)

θ̄∗k =
1

k

k∑
i=1

θ̂∗i , (1.8b)

where, Wk is the perturbation variable, and Wk
iid∼ W, k = 1, . . . , n, W >

0, E(W ) = V ar(W ) = 1. Fang et.al (2018) show that {θ̄∗n − θ̄n} has the same

asymptotic distribution as {θ̄n − θ0} [13]. In practice, we obtain θ̄∗,bk by sequentially

updating perturbed SGD estimates for each sample, b = 1, . . . , B.

θ̂∗,bk = θ̂∗,bk−1 − γkWk,b∇f(θ̂∗,bk−1, zk), k = 1, . . . , n (1.9a)
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θ̄∗,bk =
1

k

k∑
i=1

θ̂∗,bi , (1.9b)

where, Wk,b
iid∼ W, k = 1, . . . , n. We can approximate the sample distribution of

{θ̄n− θ0} using the empirical distribution of {θ̄∗,bn − θ̄n}, b = 1, . . . , B. They proposed

two procedures for constructing (1−α) confidence intervals of θ0. One is based on the

upper and lower α/2 quantiles of {θ̄∗n− θ̄n}. Assume we want to construct confidence

interval for j-th element of θ0. Let L and U be the empirical α/2 and 1−α/2 quantile

of θ̄
(j)∗,1
n − θ̄(j)

n , θ̄
(j)∗,2
n − θ̄(j)

n , . . . , θ̄
(j)∗,B
n − θ̄(j)

n , then

P (L ≤ θ̄(j)
n − θ

(j)
0 ≤ U) = 1− α

i.e., P (θ̄(j)
n − U ≤ θ

(j)
0 ≤ θ̄(j)

n − L) = 1− α
(1.10)

Thus, the (1 − α) CI for θ
(j)
0 is [θ̄

(j)
n − U, θ̄

(j)
n − L]. The other confidence interval

construction method is based on the sample variance of {θ̄∗n − θ̄n}. Let S(j) be the

sample variance of θ̄
(j)∗,1
n − θ̄

(j)
n , θ̄

(j)∗,2
n − θ̄

(j)
n , . . . , θ̄

(j)∗,B
n − θ̄

(j)
n , then the confidence

interval for θ
(j)
0 can be constructed as [θ̄n − Zα/2

√
S(j), θ̄n + Zα/2

√
S(j)]; here, Zα/2 is

the α/2 percentile of the standard normal distribution. An advantage of this online

bootstrap resamping method for confidence interval construction is that it is recursive

and only uses one data point at each step. Data that have been used are not revisited

again. This algorithm retains all the nice properties of the SGD algorithm.

1.2 Dissertation Outline

Large datasets with spatial correlation are common nowadays in the big data era

[36, 57]. As discussed above, SGD is a scaleable way for parameter estimation

when analyzing large datasets. We consider SGD for parameter estimation of spatial

models and incorporate a perturbation method for inference. The structure of this

dissertation is listed below.
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Chapter 2 discusses applying SGD for mean regression in spatial autoregressive

(SAR) models. We first introduce the SAR mean regression model and common

methods for parameter estimation. The maximum likelihood estimator (MLE) is an

unbiased and efficient estimator but suffers from heavy computation burden. We

circumvent this by using SGD for parameter estimation based on the likelihood.

Different from linear mean regression model, data in SAR model are correlated. We

modify the SGD procedures and the corresponding online bootstrapping procedure

for confidence interval construction to accommodate the data correlation. We derive

the asymptotic properties of the SGD estimator and study the finite sample properties

using simulations. Simulations show that the estimates are close to true value. CIs

for the regressor coefficients achieve nominal level. However, the empirical coverage

of CIs does not reach the desired level for spatial parameter. We propose new ways

to improve the coverage. In addition to the MLE based SGD procedure, we study the

two-stage least square based SGD procedure. Simulations show that the estimates

are close to true value and CIs all achieve nominal level. Besides the SAR model,

we also consider the SGD estimation and CI construction for the spatial regression

model with autoregressive disturbance. Finally, an R package is created to automate

the parameter estimation and CIs construction procedure.

In Chapter 3 we consider SGD for quantile regression in the SAR model for

modelling quantiles of response variables. Quantile regression can provide a more

detailed analysis of the distribution and is more robust to outliers and less restrictive

on error distributions. This chapter first introduces the SAR quantile regression model

and discusses the available parameter estimation methods. Then it investigates the

possibilities and advantages of applying the SGD procedure based on each of these

estimation methods. After that it applies SGD based on the two selected estimation

methods, ie. one-stage quantile regression and two-stage quantile regression methods.
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Lastly finite sample properties of these two SGD estimation methods are investigated

and compared with not applying SGD using simulations.

In Chapter 4, we analyze the Physician and Other Supplier Public Use File

(PUF) data set. This dataset contains information on services and procedures

provided to Medicare beneficiaries by physicians and other healthcare professionals

at medical facilities. Effect of locations as well as other characteristics of the medical

facilities on medical service charges are of interest. We use both mean regression and

quantile regression SAR models to study the effect.

Chapter 5 summarizes this dissertation and provides directions for future study.
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CHAPTER 2

ESTIMATION AND INFERENCE FOR THE SAR MEAN

REGRESSION MODEL USING SGD

2.1 Introduction

2.1.1 Spatial autoregressive model

The spatial autoregressive (SAR) and conditional autoregressive (CAR) models are

often used to model spatial lattice data [11]. SAR model assumes that the response

variable at a given location depends on the response variable at neighboring locations,

whereas the CAR model models the conditional distribution of the response given

the neighboring values. In this dissertation, we focus on the SAR model. The was

first introduced by Cliff and Ord [7] and then studied by many researchers e.g.,

[8, 21, 32, 46, 38]. The SAR model considers effect of covariates and the spatial

correlation on the response variable. The general form for SAR model is:

y = ρWy +Xβ + ε, (2.1)

where, y is the n × 1 response variable vector, n the total number of data points,

X the n × p covariate matrix, p the dimension of covariate, β the parameter for

effects of covariate, ε the random error term with E(ε) = 0, ρ the autoregressive

parameter, and W the n × n neighborhood matrix. Usually ρ is restricted to be

between −1 and 1. The term ρWY is the spatial lag term and controls the effects

of neighborhood units. In this SAR model, we assume εi and εj are independent for

i 6= j. We further assume ε ∼ N(0, σ2I), where, I is the n× n identity matrix. The

unknown parameters are β, ρ and σ2, of which β and ρ are usually of more interest

in data analysis.
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The neighborhood matrix W specifies the neighbors of each data point and the

range of the correlation. The element wi,j is non-zero if and only if data points i and

j are neighbors and the value of wi,j represents how strong the correlation is between

these two data points. There are several common ways to specify W . It can be the

determined by whether two data points share borders, or by the whether the distance

of two data points are within a certain threshold, or as the reciprocal of the distance of

two data points. Usually the diagonal elements of W are zero, since the term ρWY

represents the effect of other spatial data points. Also, W is often row normalized,

i.e., the sum of each row of W is 1. After row normalization, the elements of W are

between 0 and 1 and WY can be interpreted as the weighted average of neighboring

values. Another reason for row normalization concerns the invertibility of the matrix

A = I − ρW . If A is invertible, we can rewrite the SAR model in (2.1) as:

y = A−1(Xβ + ε). (2.2)

Let λi be the eigenvalues ofW , and |λi| ≤ 1 ifW is row-normalized. The determinant

of A, |A| =
∏

i(1 − ρλi), is greater than 0 if ρ is between −1 and 1. Thus, a

row-normalized W can guarantee that A is invertible for ρ between −1 and 1. Figure

2.1 shows a simple example of a neighborhood matrix. The left panel of this figure

shows a dataset of 9 data points arranged on a 3 by 3 grid. Two data points are

neighbors if and only if they share a border. The middle panel shows an adjacency

matrixC before row normalization. Here, Ci,j = 1 if and only if data points i and j are

neighbors. The right panel shows the neighborhood matrix after row normalization.

Based on this neighborhood matrix, we can write the model for y5 as:

y5 = ρ
y2 + y4 + y6 + y8

4
+ βTx5 + ε5. (2.3)
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From Equation (2.3), we can see that the value of y5 is both affected by the value of

its neighbors and the value of its covariates.

Figure 2.1 Simple example of neighborhood matrix.

2.1.2 Estimation methods for SAR model

Various parametric estimators for the SAR model have been studied. The ordinary

least square (OLS) estimator treats the SAR model the same as the regular linear

regression model. It defines X̃ = [Wy X] and unknown parameter γ = [ρ,βT ]T

and the OLS estimators is given by:

γ̂OLS = (X̃
T
X̃)−1X̃

T
y (2.4)

This OLS estimators is easy to calculate but is shown to be inconsistent in general and

consistent only for some special settings [31]. Kyriacou et al. proposed an indirect

inference method to correct the bias in the OLS estimators [29] for the pure SAR

model (the model without the Xβ term in Equation (2.1)).

The two-stage least square (2SLS) estimator is another method for parameter

estimation of the SAR model [30, 22]. Let Z denote the instrumental variables (IV)

that are exogenous for y. Common choices for Z are WX,W 2X, · · · . For the
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first stage, Wy is regressed on X and Z using OLS. Then in the second stage, y

is regressed on Ŵy and X using OLS. Ŵy is the predicted value for Wy in the

first stage. The estimated coefficient for Ŵy and X are the estimates for ρ and

β respectively. The 2SLS estimator is consistent in general, but it is less efficient

than maximum likelihood (MLE). Also, it can not be used when all the coefficients

of covariate X are not significant [32].

The generalized method of moments (GMM) is also used for fitting the SAR

model. Let Q denote the instrumental variable matrix, γ = [ρ,βT ]T , and ε = (I −

ρW )y−Xβ. The moment function is defined as g(γ) = Qε. Note that E[g(γ0)] = 0

for the true parameter values γ0. Parameters are estimated by solving g(γ) = 0. The

GMM estimator relies on the choice of instrumental variables and is less efficient than

MLE in general [34]. MLE is consistent but is computational intensively [43, 33, 20].

We describe the MLE in more detail below.

2.1.3 MLE for SAR model

To derive MLE for the SAR model, we rewrite the SAR model as:

ε = Ay −Xβ. (2.5)

Then, given ε ∼ N(0, σ2I), the likelihood of the SAR is:

L(θ|y) = L(θ|ε)| dε
dy
| = (2πσ2)−n/2 exp(−ε

Tε

2σ2
)|A|

= (2πσ2)−n/2 exp(−(Ay −Xβ)T (Ay −Xβ)

2σ2
)|A|.

(2.6)

Here, θ = [βT , σ2, ρ]T , and |A| represents the determinant of matrix A. The log-

likelihood of SAR model (omitting constants) is:

`(θ|y) = − ln(σ2)

2
n− (Ay −Xβ)T (Ay −Xβ)

2σ2
+ ln |A|. (2.7)
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We can obtain the maximum likelihood estimator (MLE) of β and σ2 by setting

∂`(θ|y)
∂β

and ∂`(θ|y)

∂σ2 equal to zero, respectively. The MLE of these two parameters as a

function of ρ are then

β̂ = (XTX)−1XTAy, σ̂2 = (Ay)T (I −M )T (I −M )(Ay)/n, (2.8)

where, M = X(XTX)−1XT . We can get the profile log-likelihood for ρ by plugging

these estimates into (2.7):

`(ρ|y) = ln |A| − n

2
ln(Ay)T (I −M )T (I −M)(Ay). (2.9)

Thus, the MLE of ρ is the ρ value that maximizes `(ρ|y) (same as minimizing−`(ρ|y))

subject to ρ ∈ (−1, 1):

ρ̂ = argmin
|ρ|<1

[−`ρ(y)] = argmin
|ρ|<1

[− ln |A|+ n

2
ln(Ay)T (I −M)T (I −M )(Ay)] (2.10)

The MLE of ρ can be plugged into (2.8) to get the final estimate for β and σ2.

The existence and uniqueness of solutions to (2.10) under some regularity

conditions has been established [18]. However, the solution cannot be given in closed

form for most cases due to the ln |A| term in (2.10) [18]. Thus, numerical methods

have to be used to find the MLE of ρ based on profile likelihood [21, 20]. These

involve calculating |A| multiple times, which is computational intensive if A is large.

Thus, this method is difficult to scale up.

Ord [43] has proposed a way to avoid evaluating |A| multiple times by using

the relation:

ln |A| = ln |(In − ρW )| =
n∑
i=1

ln(1− ρλi), (2.11)

where, λi are the eigenvalues of W . Since W is known and fixed, we only

need to calculate its eigenvalues once and ln |A| can be calculated very easily

once the eigenvalues of W are known. This method can be more efficient than
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directly evaluating |A| multiple times. However, calculation of eigenvalues is also

computational intensive for large matrices. Also, Kelejian and Prucha [21] pointed

out that for a general large matrix without any special structure, the eigenvalues

may not be calculated correctly using current computation technology 1. Thus, it

is desirable an estimation method based on maximum likelihood that can scale well.

Stochastic gradient descent is an optimization algorithm that can serve this purpose.

2.1.4 Outline

This chapter is organized as follows. In Section 2.2, we discuss the difficulities in

applying SGD directly to the SAR model. Section 2.3 develops the SGD algorithm

by writing the derivative of the overall log-likelihood as a sum of derivative of log-

likelihood for each data point and also introduces the perturbation method for CIs

construction [13]. Section 2.4 studies the asymptotic properties of the SGD estimators

and Section 2.5 examines the finite sample properties with simulations. Section 2.6

proposes some methods to increase the empirical coverage of the constructed CI for ρ.

Section 2.7 briefly describes the SGD algorithm for spatial model with autoregressive

disturbance. Section 2.8 develops the 2SLS based SGD algorithm and studies its finite

sample properties with simulations. Finally, we summarize and discuss the results in

Section 2.9.

2.2 Difficulties in Applying SGD Directly

To develop the SGD algorithm for estimating parameters for SAR model, we start

by trying following the same SGD algorithm used for parameter estimation of linear

1They concluded this by calculating eigenvalues for matrices with all real eigenvalues. The
absolute value of imaginary parts of some of calculated eigenvalues are more than 0.5. We
also calculated the eigenvalues of some matrices with all real eigenvalues. The imaginary
parts of the calculated eigenvalues are very close to 0. This might due to the improvement
of computational technology.
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regression model. As discussed in Section 1.1.2, the log-likelihood for SAR model is:

`(θ|y) = − ln(σ2)

2
n− (Ay −Xβ)T (Ay −Xβ)

2σ2
+ ln |A| (2.7)

Here, θ = [βT , σ2, ρ]T . If we can write `(θ) into the form of
∑

i fi(θ), where fi

represent the log-likelihood of i-th data point, then we can apply SGD for parameter

estimation by minimizing R(θ) = E(−fi(θ)). However, it is not easy to do so,

because of the ln |A| term. Though we can write ln |A| in the summation form as

in (2.11), we do not have a one-to-one correspondence between one data point and a

specific eigenvalue of W . This ln |A| term appears in log-likelihood because data are

correlated in SAR model. The fact that data are correlated, not independent, brings

more challenges in applying SGD with SAR model.

We circumvent this problem by writing the derivative of the log-likelihood as a

sum of one unit for each data point. As shown in Equation (1.1), it is the derivative

not the target function that is used for updating parameters in each iterative steps

of SGD. Thus, if we have the derivative of the likelihood for each data point, we can

use it in each iterative step. The expression for derivative w.r.t. θ is complicated.

We work on the derivative w.r.t. β, ρ and σ2 respectively:

∇`β(y) =
∑
i

∇`β,i, ∇`ρ(y) =
∑
i

∇`ρ,i, ∇`σ2(y) =
∑
i

∇`σ2,i (2.12)

∇`β,i,∇`ρ,i and ∇`σ2,i are derivative of log-likelihood for i-th data point and can be

used for updating SGD estimates.

2.3 Applying SGD for the SAR Model

2.3.1 Derivative of `(θ|y) with respect to β

Taking derivative `(θ|y) w.r.t. β, we get:

∇`β =
1

σ2
(XTAy −XTXβ). (2.13)
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The terms in the right hand side of (2.13) can be written in summation form:

XTXβ =
n∑
i=1

xix
T
i β (2.14a)

XTAy =
n∑
i=1

xTi (Aiy) =
∑
i=1

xTi ((I − ρW )iy)

=
∑
i=1

xTi (yi − ρȳi), ȳi = wiy,

(2.14b)

where, wi is the i-th row of W . Clearly xix
T
i β only depends on the i-th data point,

and ȳi = wiy is the weighted average of the neighbors of the i-th data point. The

term xi(yi − ρȳi) involves not only the i-th data point but also its neighbors. Note

that usually neighborhood matrix W is a sparse matrix and most elements of vector

wi are 0 [20] - the j-th element of wi is non-zero if and only if data points i and j are

neighbors. Though the expression for ȳi involves y, it is only involves data point i

and the data around it, i.e., neighbors of the i-th data point. It is reasonable to treat

the i-th data point and its neighbors as a whole unit, and we can write the derivative

of the overall log-likelihood as a sum of the derivative of log-likelihood for each data

unit as following:

∇`β,i =
1

σ2
xi(yi − ρȳi − xTi β) (2.15a)

∇`β =
∑
i

∇`β,i (2.15b)

We use ∇`β,i for our SGD algorithm in the SAR model. We can compare the

derivative for the SAR model in (2.15a) with that for the linear model in (1.5). If

we ignore the constant coefficient ( 1
σ2 in (2.15a) and 2 in (1.5)), the only difference

between (2.15a) and (1.5) is that yi in (1.5) is replaced by yi − ρȳi in (2.15a). This

is consistent with the nature of the SAR model, which is that the response variable

is affected both by the neighbors and the covariates. If the effect of neighbors is
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subtracted, the left over part, yi − ρȳi, is equivalent to yi in linear model. Also, this

suggests that if ρ is known, the SGD algorithm for estimating β in SAR model is

simplified to that of the linear model.

2.3.2 Derivative of `(θ|y) with respect to ρ

Taking derivative of `(θ|y) w.r.t. ρ, we get:

∇`ρ = −tr(A−1W ) +
(Ay −Xβ)TWy

σ2
. (2.16)

The −tr(A−1W ) term is the derivative of ln(A) w.r.t. ρ:

d(ln(|A|))
dρ

= tr(A−1dA

dρ
) = tr(A−1d(I − ρW )

dρ
) = −tr(A−1W ). (2.17)

We then write ∇`ρ as a sum of the derivative of log-likelihood for each data point.

The term (Ay −Xβ)TWy on the right hand side of (2.16) can be written as:

(Ay −Xβ)TWy =
n∑
i=1

[(yi − ρȳi − xTi β)ȳi] (2.18)

As discussed above, if we treat yi and the mean of its neighbors ȳi as a single unit,

we can associate the summand in (2.18) with the i-th data point. The first term on

the right hand of (2.16) can be written as:

tr(A−1W ) = tr(A−1 1

ρ
(I −A)), since A = I − ρW

= tr((
1

ρ
(A−1 − I) =

1

ρ
tr(A−1))− n

ρ

=
1

ρ

n∑
i

[(A−1)ii − 1].

(2.19)

Here, (A−1)ii is the i-th diagonal element of A−1. If we want to use (2.19) to

write ∇`ρ as summation of individual terms, we need to prove that there is a
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one-to-one correspondence between (A−1)ii and the i-th data point. This is shown

by Proposition 1 stated below (see Appendix for proof).

Proposition 1. A one-to-one correspondence exists between each diagonal element

of A−1 and each data point of the SAR model.

Thus, we can write the derivative of the overall log-likelihood w.r.t. ρ as a sum

of derivative log-likelihoods w.r.t. ρ for each data as following:

∇`ρ,i = −1

ρ
((A−1)ii − 1) +

1

σ2
(yi − ρȳi − xTi β)ȳi (2.20a)

∇`ρ =
∑
i

∇`ρ,i (2.20b)

We can use ∇`ρ,i for our SGD algorithm in SAR model. For each recursive step,

ρ is updated, and as a result A is also updated. In this SGD algorithm we need

to calculate the inverse of A and get the i-th diagonal element for each recursive

step. Since calculation of matrix inverses is computationally heavy, it can affect the

scalability of the SGD algorithm. Fortunately we can avoid this with the following

Proposition 2.

Proposition 2. A−1 = (I−ρW )−1 =
∑∞

k=0(ρW )k, given W is row normalized and

ρ ∈ (−1, 1).

Proof. W is row normalized, thus, ‖W ‖∞ ≤ 1. Since |ρ| < 1, ‖ρW ‖∞ < 1. Then

we can apply Lemma 2.3.3 on P74 of [15].

In practice, if ρ is bounded away from 1, one can truncate the sum to, say,

K=30 terms and this results in a negligible error [20]. We can the use
∑K

k=0 ρ
k(W )kii

to approximate the i-th diagonal element of A−1. Since W is known and fixed, we

only need to calculate W k once and save all its diagonal elements for k = 1, . . . , K.

Then whenever we need to calculate the i-th diagonal element of A−1, we can just

18



get the i-th diagonal element of W k, multiply with ρk and sum for k = 1, . . . , K.

Thus, for each recursive step of SGD, to calculate (A−1)ii we only need to perform

some scalar multiplication and summation, which is much faster than calculating the

inverse of a matrix.

2.3.3 Derivative of `(θ|y) with respect to σ2

Sometimes the variance σ2 is not of great interest. For example, in linear regression,

if we are only interested in estimating β, we can use SGD to only estimate β and

avoid estimating the variance σ2, as discussed in Section 2.1. However, for the SAR

model σ2 appears in the derivative of log-likelihood w.r.t. ρ, ∇`ρ,i as shown in (2.20a).

Thus, σ2 can not be omitted and an estimate of σ2 is needed for estimating ρ. Also,

the estimation of β requires the estimation of ρ, and vice versa. Thus, we need to

estimate all three parameters, β, ρ, σ2 together even if we are only interested in some

of them.

Taking derivative of `(θ|y) w.r.t. σ2, we get:

∇`σ2 = − n

2σ2
+

1

2(σ2)2
(Ay −Xβ)T (Ay −Xβ) (2.21)

The term of (Ay −Xβ)T (Ay −Xβ) can be written as

(Ay −Xβ)T (Ay −Xβ) =
n∑
i=1

(yi − ρȳi − xTi β)2. (2.22)

Similar to what was discussed before, if we treat yi and its neighbors as a single unit,

the summand in right hand side of (2.22) only involves the i-th data unit. We can

write the derivative of the overall log-likelihood w.r.t. σ2 as a sum of derivative of

log-likelihoods w.r.t. σ2 for each data unit:

∇`σ2,i = − 1

2σ2
+

1

2(σ2)2
(yi − ρȳi − xTi β)2, (2.23a)

∇`σ2 =
∑
i

`σ2,i. (2.23b)
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∇`σ2,i can be used for our SGD algorithm for the SAR model.

2.3.4 SGD algorithm

With all preliminary steps discussed above, we can now implement the SGD algorithm

for the SAR model. Given arbitrary initial values β̂0, ρ̂0 and σ̂2
0, parameter estimates

β̂k, ρ̂k and σ̂2
k can be updated as:

β̂k = β̂k−1 + γk∇`β,k(β̂k−1, ρ̂k−1, σ̂2
k−1)

= β̂k−1 + γk
1

σ̂2
k−1

xk(yk − ρ̂k−1ȳk − xTk β̂k−1)

ρ̂k = ρ̂k−1 + γk∇`ρ,k(β̂k−1, ρ̂k−1, σ̂2
k−1)

= ρ̂k−1 + γk[−
1

ρ̂k−1

((A(ρ̂k−1)−1)kk − 1) +
1

σ̂2
k−1

(yk − ρ̂k−1ȳk − xTk β̂k−1)ȳk]

(2.24)

σ̂2
k = σ̂2

0k−1 + γk∇`σ2
0 ,k

(β̂k−1, ρ̂k−1, σ̂2
k−1)

= σ̂2
k−1 + γk[−

1

2σ̂2
k−1

+
1

2(σ̂2
k−1)2

(yk − ρ̂k−1ȳk − xTk β̂k−1)2]

β̄k =
1

k

k∑
i=1

β̂i, ρ̄k =
1

k

k∑
i=1

ρ̂i, σ̄2
k =

1

k

k∑
i=1

σ̂2
i

where, γk = γ1k
−α, α ∈ (0.5, 1), ȳk = wky and wi is the i-th row of neighborhood

matrix W . The term (A(ρ̂k−1)−1)kk means that we use ρ̂k−1 to calculate A, take its

inverse, and extract the k-th diagonal element (This is only to illustrate the meaning

of this term. For real application we do not directly calculate A−1. We use the

approximation method discussed above). Another point worth mentioning is that

when updating ρ̂k and σ̂2
k, β̂k−1 is used rather than β̂k. What we applied here is

called simultaneous updating. There are also algorithms do not apply simultaneous

updating [16]. These algorithms would use β̂k not β̂k−1 for calculating ρ̂k and β̂k not
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β̂k−1, ρ̂k not ρ̂k−1 for calculating σ̂2
k. There are different convergence properties for

these two different ways. We will use simultaneous updating for this project.

This algorithm (2.24) as written does not consider the constrain that ρ ∈ (−1, 1)

and σ2 > 0. When true value of ρ is close to 1 or −1, the estimate of ρ could end

up outside the range for ρ. Also, it is possible for the estimate of σ2 to be negative

when true value of σ2 is close to 0. To incorporate these two constrains, we introduce

two more parameters η and φ. The relation between ρ, σ2 and η, φ are ρ = sin η

and σ2 = eφ. Instead of directly updating ρ and σ2, η and φ are updated in each

recursive step and then estimates of ρ and σ2 are calculated based on the relation

above. In this way, we can guarantee that ρ is in the range of (−1, 1) and σ2 is always

positive. To update η and φ in each recursive step, we need to calculate the derivative

of log-likelihood for each data w.r.t. η and φ. They can be easily calculated by chain

rule as shown below:

∇`η,i = ∇`ρ,i cos η, ∇`φ,i = ∇`σ2,ie
φ. (2.25)

Thus, we got our updated SGD algorithm for parameter estimation of the SAR model.

Given arbitrary initial values β̂0, ρ̂0 and σ̂2
0, we first calculate the initial value for η̂0

and φ̂0 by η̂0 = arcsin ρ̂0 and φ̂0 = ln σ̂2
0. The parameter estimates can be updated

as:

β̂k = β̂k−1 + γk∇`β,k(β̂k−1, ρ̂k−1, σ̂2
k−1)

η̂k = η̂k−1 + γk∇`ρ,k(β̂k−1, ρ̂k−1, σ̂2
k−1) cos η̂k−1

φ̂k = φ̂k−1 + γk∇`σ2
0 ,k

(β̂k−1, ρ̂k−1, σ̂2
k−1)eφ̂k−1 (2.26)

ρ̂k = sin η̂k, σ̂2
k = eφ̂k

β̄k =
1

k

k∑
i=1

β̂i, ρ̄k =
1

k

k∑
i=1

ρ̂i, σ̄2
k =

1

k

k∑
i=1

σ̂2
i
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There are two ways for calculating the mean to obtain the final estimate for ρ and σ2.

One is to direct taking the mean of ρ̂ and σ̂2, respectively as shown in (2.26). The

other method is to first calculate η̄n and φ̄n as η̄n = 1/n
∑n

i=1 η̂i and φ̄n = 1/n
∑n

i=1 φ̂i,

and set ρ̄n = sin η̄n and σ̄2
n = eφ̄n . Our simulation results (not shown) suggest that

the former method works better.

For confidence interval construction, we applied the online bootstrap resampling

method proposed by Fang et al. [13, 12]. Given arbitrary initial values β̂0, ρ̂0 and

σ̂2
0, let β̂

∗,b
0 ≡ β̂0, ρ̂

∗,b
0 ≡ ρ̂0 and σ̂2

∗,b
0 ≡ σ̂2

0, for b = 1, 2, . . . , B. Similar to the SGD

estimates, we use η and φ for the constrains of ρ and σ2 with η̂∗,b0 = arcsin ρ̂∗,b0 , φ̂∗,b0 =

ln σ̂2
∗,b
0 . These perturbed estimate can be updated as:

β̂
∗,b
k = β̂

∗,b
k−1 + γkW

∗,b
k ∇`β,k(β̂

∗,b
k−1, ρ̂

∗,b
k−1, σ̂

2
∗,b
k−1)

η̂∗,bk = η̂∗,bk−1 + γkW
∗,b
k ∇`ρ,k(β̂

∗,b
k−1, ρ̂

∗,b
k−1, σ̂

2
∗,b
k−1) cos η̂∗,bk−1

φ̂∗,bk = φ̂∗,bk−1 + γkW
∗,b
k ∇`σ2

0 ,k
(β̂
∗,b
k−1, ρ̂

∗,b
k−1, σ̂

2
∗,b
k−1)eφ̂

∗,b
k−1 (2.27)

ρ̂∗,bk = sin η̂∗,bk , σ̂2
∗,b
k = eφ̂

∗,b
k

β̄
∗,b
k =

1

k

k∑
i=1

β̂
∗,b
i , ρ̄∗,bk =

1

k

k∑
i=1

ρ̂∗,bi , σ̄2∗,b
k =

1

k

k∑
i=1

σ̂2
∗,b
i

Here, W ∗,b
k

iid∼ W,k = 1, 2, · · · , n,W > 0, E(W ) = V ar(W ) = 1. With the perturbed

estimates, we can construct confidence intervals using the methods discussed in

Section 1.1.2.

2.4 Theoretical Properties

In this section, we describes the theoretical properties of the SGD estimates and the

perturbed estimates. Let θ = [βT , σ2, ρ]T and `(θ) denote the log-likelihood of the

SAR model. We have discussed that it is not easy to write out `i(θ), which is the

contribution of the i-th data point to the log-likelihood. Thus, there is no such loss
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function, defined as R(θ) = −E[`i(θ)], to minimize. However, this loss function, R(θ)

is usually needed for developing asymptotic properties. In this dissertation, for SAR

model, the estimates are updated based on ∇`i(θ), which is the contribution of i-th

data unit to the derivative of log-likelihood. However, E[∇`i(θ)|Y ] usually depends

on i (Though we have shown that when θ = θ0, the true value, E[∇`i(θ)|Y = 0 and

does not depend on i. See Appendix B.2). Thus, E[∇`i(θ)|Y ] cannot be used to

develop asymptotic properties either.

In this section, we develops the asymptotic properties with a setting slightly

different from the one discussed above in Section 2.3.4. Let Z1, Z2, · · · be i.i.d. samples

for Z, which follows the SAR model shown in Equation (2.1). Each i.i.d sample

represents all K data points in the SAR model. Let `(θ) be the log-likelihood for

this one dataset and SGD is then used to estimate θ by minimizing L(θ) = E[−`(θ)].

One dataset is used as one data point for this SGD procedure. Given a initial value

for θ as θ̂0 and the SGD estimates and perturbed estimates are updated as:

θ̂k = θ̂k−1 + γk∇`(θ̂k−1, Zk)

θ̂
∗
k = θ̂

∗
k−1 + γkWk∇`(θ̂

∗
k−1, Zk)

(2.28)

Also, we have the following Assumptions.

• A1. Neighborhood matrix W is row-normalized and symmetric.

• A2. Exist a > 0 such that σ2 ∈ [a,∞); exist b > 0, such that ‖β‖ ∈ [0, b]; exist
ρmin, ρmax with 0 < ρmin ≤ ρmax < 1 and |ρ| ∈ [ρmin, ρmax].

• A3. Assumptions 1-8 from [33]. They are required for the existence and
uniqueness of MLE for the SAR model.

• A4. The learning rates are chosen as γk = γ1k
−α and α ∈ (0.5, 1).

• A5. The perturbation variables, W1,W2, . . ., are non-negative i.i.d. random
variables satisfying that E (W ) = Var (W ) = 1.
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Assumption A4-A5 are from [13]. Let S(θ) = ∇2L(θ) and S0 = S(θ0), V 0 =

E{[∇`(θ0, Z)][∇`(θ0, Z)]T ]} and we get the following theorem (See Appendix A.1 for

proof).

Theorem 1. Given Assumption A1-A4, then

√
n(θ̄n − θ0) =⇒ N(0,S−1

0 V 0S
−1
0 ), in distribution, as n→∞

Also, we can derive the following two theorems, which are essentially Theorems

2 and 3 of [13].

Theorem 2. Given Assumption A1-A4, and the perturbed variables, W1, W2, · · · ,

are non-negative i.i.d. random variables with E(W ) = 1, then we have,

√
n
(
θ̄
∗
n − θ0

)
= − 1√

n
S−1

0

n∑
i=1

Wi∇` (θ0;Zi) + op(1) (2.29)

By Theorem 2, let W ≡ 1, we can derive the the following representation for

θ̄n,
√
n
(
θ̄n − θ0

)
= − 1√

n
S−1

0

n∑
i=1

∇` (θ0;Zi) + op(1) (2.30)

Consider the difference between Equations (2.29) and (2.30), we have

√
n
(
θ̄
∗
n − θn

)
= − 1√

n
S−1

0

n∑
i=1

(Wi − 1)∇` (θ0;Zi) + op(1). (2.31)

Let P∗ denote the conditional probability and expectation given the data. Starting

from Equation (2.31), we derive the following theorem.

Theorem 3. If Assumptions A1 to A5 hold, then we have

sup
v∈Rp

∣∣P∗ (√n (θ̄∗n − θ̄n) ≤ v
)
− P∗

(√
n
(
θ̄n − θ0

)
≤ v
)∣∣→ 0, in probability.

(2.32)
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Proof for Theorem 2 and 3 are straightforward, since we have verified that

our assumptions imply assumptions listed in [13] as shown in Appendix A.1 when

proving Theorem 1.

2.5 Simulation Studies

2.5.1 Simulation settings

We use simulations to study the finite sample properties of the SGD algorithms

proposed for SAR model parameter estimation. Data samples are located in a regular

grid as shown in Figure 2.2. Each small square represents one data location and we

have 81 data values in this 9 by 9 grid. We consider three different structures in our

simulation studies. The first is the ‘4-neighbors’ structure, where two data points are

neighbors if and only if they share a common border. Consider the highlighted yellow

data point. In this ‘4-neighbors’ structure the four data containing the thick blue

arrows are its neighbors. The second is the ‘8-neighbor’ structure. In this structure

all the 8 other data points inside the red 3 by 3 block around the yellow highlighted

data point are its neighbors. Similarly, for the ‘24-neighbor’ structure, all the other

24 data points inside the green 5 by 5 block around the yellow highlighted data point

are its neighbors. These 4, 8, or 24 are the number of neighbors for a majority of

the data points and for data points located on the edge of the grid the numbers of

neighbors are less. For example, with ‘4-neighbors’ structure, data labelled 1 only

has 2 neighbors, data 2 and data 10. To construct the neighborhood matrix for n

data points, we first generate a n by n matrix C, with:

ci,j =


1, if data points i and j are neighbors

0, else

(2.33)
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The diagonal element of C are set to be 0. Then the neighborhood matrix W are

calculated by row normalization of C as shown below.

wij = cij/si, si =
∑
j

cij (2.34)

Figure 2.2 Three neighborhood structures.

For simulations, we consider the covariates matrixX = [1,X1,X2]n×3 and each

element ofX1,X2 are generated independently from the uniform (−1, 1) distribution.

The true values for β is β0 = [β0, β1, β2]T = [0.5, 0.5,−0.5]T , while the true value for

σ2 is set to be σ2
0 = 1. We try several different values for parameter ρ and denote

its true value as ρ0. Simulation data are generated as follows: given W and ρ0, we

first calculate A−1 as (I − ρ0W )−1. The inverse is calculated using Proposition 2.

We truncate the sum for the first 81 terms, i.e., A−1
0 ≈

∑80
k=0(ρ0W )k (We used 81

terms instead of 30 terms as discussed in Section 2.3 to reduce the approximation

error when |ρ| is close to 1). Then we sample ε from the N(0, σ2
0I) distribution.

The response variable y is calculated as A−1
0 (Xβ0 + ε). Based on the SAR model

shown in (2.1) we have y ∼ N(A−1
0 Xβ, σ

2
0A
−1
0 (A−1

0 )T ). We do not directly sample y
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from this normal distribution because directly sampling from a multivariate normal

distribution is very time consuming. Since the elements of ε are i.i.d., we can easily

sample ε by making n draws from the univariate normal distribution N(0, σ2
0). This

is much faster than directly sampling y from a multivariate normal distribution.

For the learning rate, γk = γ1k
−α we use α = 2/3. The value of γ1 has to be

carefully selected. Although in theory, the value of γ1 does not affect the convergence

of SGD estimates [45, 13], however, in practice the sample size is finite and the value

of γ1 can have a great impact. If γ1 is too small, the convergence rate is slow and the

estimate may not converge. If γ1 is too large, the convergence rate can also be slow

and sometimes the estimate may even diverge. There is not a standardized guideline

for deciding the value for γ1 to use. For our simulation study, we try several values

and select the one that works best. For each of these simulation studies, we use

500 independent replicates. For each of these, the initial estimates of parameters are

randomly generated. For this simulation, we discard the SGD estimates from the first

20% recursive steps since they are usually not stable.

2.5.2 Comparison of SGD estimates and MLE

First we compare the performance of SGD with maximizing the profile-likelihood

(MLE method). For this study, we consider the ‘4-neighbors’ neighborhood structure.

The true value of ρ is chosen to be 0.3. As mentioned in Section 2.1, MLE of ρ cannot

be expressed in closed form and a numerical method is needed for estimating it. We

used golden section search [23, 1] to maximize (2.10). We need to directly evaluate the

determinant ofAmultiple times or calculate the eigenvalues ofW once and use (2.11)

with different ρ values. We used a sample size of 22,500, the largest W we can use

with our computation clusters available (Details about the clusters used can be found

at https://ist.njit.edu/high-performance-computing-hpc-clusters). This

corresponds to a 150 by 150 regular grid. Eigenvalue calculation of W for 22,500
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data points takes about 16.5 hours. On contrast the time required for calculating

W k for k = 0, . . . , 80 is only about 10 minutes. This suggests that SGD can really

speed up the parameter estimation and the difference will be greater with larger

sample size.

We perform 500 independent runs. For each run, we generate the data and

perform parameter estimation with SGD or profile maximum likelihood on the same

data. With eigenvalues of W and W k for k = 0, . . . , 80 calculated and stored, the

time for each run is about 5 seconds for SGD and about 200 seconds for MLE. We

calculate the mean and standard deviation (SD) of these 500 SGD estimates (see

Table 2.1). For β, we only show the results for β1 since the results of β1 and β2 are

very similar. The true values are given in parentheses beside the parameter name.

The result suggests that both the SGD and ML estimates are close to the true value,

with MLE closer to the true value and a smaller standard error. The estimates for

ρ are also shown in Figure 2.3. Here, each pair of black and red dots with the same

x coordinate represent the SGD and MLE estimates of ρ from the same simulated

dataset, respectively. In most cases we see that the SGD and ML estimates and

MLE are very close. However, there are some instances when the parameters are

poorly estimated by SGD. The reason for this could be that the sample size is not

large enough for convergence. In summary, this simulation suggests that our SGD

algorithm works for SAR model at least in this setting. For the sample size of 22, 500,

SGD estimates are very close to the MLE and SGD estimates and can be calculated

much faster than MLE.

2.5.3 Effect of ignoring spatial correlation

Sometimes researchers ignore the spatial correlation and fit the regular linear

regression (LR) model (shown in Equation (1.3)) for spatial correlated data. We

study the effect of ignoring spatial correlation with simulations in this section. We use
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Table 2.1 Comparison of SGD Estimate and MLE

method parameter mean SD

SGD

β1 (0.5) 0.500 0.015

σ2 (1.0) 1.003 0.011

ρ (0.3) 0.298 0.010

MLE

β1 (0.5) 0.500 0.012

σ2 (1.0) 0.999 0.010

ρ (0.3) 0.300 0.009

‘4-neighbors’ neighborhood structure, set ρ0 = 0.3, and generate 90,000 data points

(in a 300 by 300 regular grid space) using the SAR model. We use Equations (17) and

(18) in Fang, et al., 2018 [13] to obtain SGD estimates and perturbed estimates under

LR model (ignoring spatial correlation), and compare them to estimates obtained

using Equations (2.26) and (2.27) based on the correctly specified SAR model. To

construct confidence intervals, we use B = 200 perturbed estimates.

Simulation results shown in Table 2.2 2 suggest that the estimates from the

SAR model are unbiased and the constructed CIs are at the nominal level. However,

estimates from the LR model are biased and the constructed CIs below the nominal

level. Thus, accounting for spatial correlation when data is spatially correlated is

necessary for correct parameter estimation. Also, comparing with Table 2.1, where

sample size is 25,000, we find that empirical standard deviation of estimates decrease

as sample size increase. Also, the empirical coverage for CI for ρ is close to but not at

the nominal level. A possible reason for this is that the online bootstrapping based

inference method is designed for independent data and SAR data are dependent. In

2Here, the confidence interval is constructed for each individual parameter separately. It is
not family wise confidence interval for several parameters. Same for tables below.
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Figure 2.3 Comparison of SGD estimate and MLE of ρ.

Section 2.6, we propose some modifications to improve the empirical coverage of CIs

for ρ.

2.5.4 Robustness of SGD algorithm

We study the robustness of SGD algorithm by varying the neighborhood structures,

ρ0, and order of data used in the algorithm.

Effect of neighborhood structures First, we study the effect of the neighborhood

structure on the performance of SGD estimates. Three kinds of neighborhood

structure: ‘4-neighbors’, ‘8-neighbors’, and ‘24-neighbors’ are compared. Clearly,

with the same spatial parameter, as the average number of neighbors for each data

get larger, the spatial correlation between data gets larger also. ρ0 is set to be 0.3

and 90,000 data points are generated based on each of these three neighborhood

structures.
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Table 2.2 Effect of Ignoring Spatial Correlation

model parameter mean SD coverage

SAR

β1 (0.5) 0.500 0.006 0.958

β2 (-0.5) -0.500 0.006 0.956

ρ (0.3) 0.299 0.005 0.850

LR
β1 (0.5) 0.512 0.006 0.594

β2 (-0.5) -0.512 0.006 0.546

Table 2.3 shows the mean (SD) of the 500 estimates and the empirical coverage

of the CIs. Comparing the result of the ‘4-neighbors’ structure here with that from

Table 2.1, we find that estimation improves with sample size. Also, the neighborhood

structure has little effect on estimates of β and σ2, but has a large effect on the

estimate of ρ. As spatial correlation increases, both standard deviation and bias

increase. Due to the limitation of computer memory, we cannot try sample sizes

larger than 90,000. However, we suspect that estimate of ρ will improve with sample

size like the case with the ‘4-neighbors’ structure.

The coverage of CIs for β are close to 0.95 for all three neighborhood structures.

Confidence interval coverage for σ2 is close to 0.95 for the first two neighborhood

structures but much lower for ’24-neighbors’ neighborhood structure. The confidence

interval for ρ is not close to 0.95 for any of these three structures and the coverage

is far below 0.95 for ‘24-neighborhood’ structure. Thus, this result suggests that

neighborhood structure has little effect on the CI coverage of β; has some effect on

that of σ2, and has a big impact for ρ.

Effect of ρ0 Besides the neighborhood structure, another factor that affects data

correlation in the SAR model is the spatial parameter ρ. We want to investigate how

the SGD algorithm performs with different ρ values. We consider ρ0 equals to 0.2, 0.3,
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Table 2.3 Effect of Neighborhood Structures

neigh struc parameter mean SD coverage

4-neighbors

β1 (0.5) 0.500 0.006 0.958

σ2 (1.0) 1.001 0.006 0.934

ρ (0.3) 0.299 0.005 0.850

8-neighbors

β1 (0.5) 0.500 0.005 0.985

σ2 (1.0) 1.001 0.006 0.935

ρ (0.3) 0.299 0.006 0.865

24-neighbors

β1 (0.5) 0.500 0.006 0.940

σ2 (1.0) 1.001 0.006 0.900

ρ (0.3) 0.296 0.036 0.580

0.7, 0.8, and -0.3. We use the ‘4-neighbors’ neighborhood structure here. Different

learning rates are used for the different ρ0 values. The final learning rate for each ρ0

is selected to be the best out of several learning rates tested for that ρ0 value. We

calculate the SGD estimate and construct CIs for each run and calculate the empirical

coverage. To save space, we only show the results for β1 and ρ here (Table 2.4)3. Wall

suggested that higher |ρ| does not necessarily mean higher spatial correlation [54]. To

compare the spatial correlation of the data generated with different ρ0 values, we

calculated the Moran’s I index for each dataset. The expected value of Moran’s I

is − 1
n−1

and the value of that usually lies between −1 and 1. Values significantly

below or above − 1
n−1

indicate negative or positive spatial correlation, respectively.

The last column of Table 2.4 shows the mean value of Moran’s I calculated from each

simulated dataset.

3The summary about estimates for β and ρ with ρ0 = 0.3 are different from that shown in
2.3. This is due to randomness in data generation and estimates initialization in different
simulation studies. This is also the reason for ’inconsistencies’ among other tables in this
chapter.
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As shown in Table 2.4, Moran’s I for positive ρ0 are positive and that for

negative ρ0 are negative. Also, for positive ρ0, as ρ0 increasing, Moran’s I also

increases. This suggests that larger |ρ0| corresponds with larger spatial correlation.

The means of the β1, ρ estimates are close to their true value for all ρ0 with standard

errors roughly the same across all ρ0. The confidence interval coverage for β1 are all

close to 0.95. There is a sightly increasing trend for the confidence interval coverage of

ρ as ρ0 increases from 0.2 to 0.8. Though ρ and W both affect the spatial correlation

of the data, their effects on the CI coverage of our algorithm are different. For W , as

the averaged number of neighbors increasing, the empirical SD of ρ estimates increase

and empirical coverages of CIs for ρ decrease. ρ0 does not have much effect on the

empirical SD of the ρ estimates and the empirical coverage of CIs increase as ρ0

increasing from 0.2 to 0.8.

Table 2.4 Effect of ρ0

ρ0 parameter mean SD coverage Moran’s I

0.2
β1 (0.5) 0.500 0.006 0.980

0.1019
ρ (0.2) 0.199 0.006 0.790

0.3
β1 (0.5) 0.500 0.006 0.940

0.1558
ρ (0.3) 0.300 0.005 0.870

0.7
β1 (0.5) 0.500 0.006 0.960

0.4378
ρ (0.7) 0.699 0.003 0.865

0.8
β1 (0.5) 0.501 0.008 0.935

0.5479
ρ (0.8) 0.799 0.005 0.920

-0.3
β1 (0.5) 0.500 0.006 0.955

-0.1557
ρ (-0.3) -0.300 0.005 0.875
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Effect of data order For regular linear regression, the sequence of data used in

SGD recursive step does not matter, since the data are uncorrelated. However, the

sequence of data used in SGD for the SAR model might be important, since the data

are dependent. We investigate the effect of sequence of data on SGD estimation.

For this study, we use the ‘4-neighbors’ neighborhood structure, and ρ0 = 0.3.

We study four different data sequences. We label the data 1 to n by rows and from

left to right in each row according their location in the regular grid space (See Figure

2.4 for an example with n = 25). The first data order we use is 1 to n in orders.

One possible reason we think might be responsible for the bad performance of

the algorithm is that data are used multiple times in several recursive steps. We can

illustrate this by taking data 13 in Figure 2.4 as an example. Data is used once when

updating SGD estimate based on itself, data 13. It is also used as neighbors when

updating estimate based on data 8, data 12, data 14, data 18. A piece of information

used multiple times may affect statistical inference [52]. To study this, we separate

our data into two parts, part A and part B in the following way: first put data 1 in

part A and then put its neighbors into part B; then go to next data not in part A

or part B and put it in part A and its neighbors into part B and so on. In setting

2, when running SGD algorithm, we first use data in part A and then those in part

B. In this way, before the data in part B are used, all the data in part A are only

used once. Since learning rate is decreasing, data used at beginning tends to have

a larger impact on the final estimate. Using this 2nd data order might improve the

performance of the CI construction algorithm.

For the regular data order used (from data 1 to data n), data used in consecutive

recursive steps are highly correlated. Clearly correlation between data 1 and data 2

are higher than that between data 1 and data 20. We investigate whether using less

correlated data in consecutive SGD recursive steps can improve performance. For

settings 3 and 4, we use a randomized order of data for SGD. The difference between
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these two settings is that same random order is used for all runs in setting 3, but each

run has a different random order in setting 4. For each data realization, we apply

SGD with these four different data orders. Table 2.5 shows the result. We find that

the performance is very similar, suggesting that data order may not crucial in our

SGD algorithm for SAR model.

Figure 2.4 Illustration of data orders.

2.6 New Confidence Interval Construction Algorithm

This section summarizes the attempts to modify the confidence interval construction

algorithm to improve the empirical coverage of CI for ρ.

2.6.1 Fisher transformation

Let θ0, θ̄n, θ̄
∗
n be true value, the SGD estimate and, the perturbed SGD estimate,

respectively. As discussed above, there are two ways to construct the confidence

intervals for θ̄n based on θ̄∗n. One is to construct the confidence interval based on

the quantile of θ̄∗n. This is based on assumption that the asymptotic distribution of

√
n(θ̄∗−θ̄n) is the same as that of

√
n(θ̄n−θ0). One way to generate confidence interval
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Table 2.5 Effect of Data Orders

Settings parameter mean SD coverage

1
β1 (0.5) 0.500 0.006 0.958

ρ (0.3) 0.299 0.005 0.850

2
β1 (0.5) 0.500 0.006 0.956

ρ (0.3) 0.300 0.005 0.870

3
β1 (0.5) 0.500 0.006 0.944

ρ (0.3) 0.300 0.005 0.856

4
β1 (0.5) 0.500 0.007 0.942

ρ (0.3) 0.300 0.005 0.828

is to use the standard deviation of θ̄∗n. This is based on the additional assumption that

θ̄∗n is asymptotic normal. For ρ, its range is between −1 and 1, not R, which is the

domain for normal distribution. The asymptotic distribution of ρ̄∗n cannot be normal

due to this range constraint. For the algorithms described above (Equations (2.26)

and 2.27), we let ρ = sin(η), but still the range for η is between −π/2 to π/2, not R.

Then we try Fisher transformation:

η =
1

2
ln

1 + ρ

1− ρ
=⇒ ρ =

e2η − 1

e2η + 1
,

∂ρ

∂η
=

4e2η

(e2η+1)2
.

(2.35)

The range for η is R. We develop the SGD estimation and confidence interval

construction algorithm by modifying Equations (2.26) and (2.27) according. Two

methods are used to construct confidence intervals for ρ:

• Method 1. Get perturbed estimates ρ̄∗n = e2η̄
∗
n−1

e2η̄
∗
n+1

and then get the CIs for ρ̄n
using the SD of ρ̄∗n.
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• Method 2. Get the CIs for η̄n using the SD of η̄∗n and then get the CIs for ρ̄n
by the relationship that ρ = e2η−1

e2η+1
.

For this simulation, we use the ‘4-neighbors’ neighborhood structure and ρ0 =

0.3. The result is summarized in Table 2.6. The estimate and empirical coverage of CIs

for β1 and σ2 for this Fisher transformation method are similar to that of the original

algorithm (see the corresponding part in Tables 2.3 and 2.4). For ρ, neither Method

1 or Method 2 improves the empirical coverage of CIs compared with Tables 2.3 and

2.4, and Method 2 performs even worse than the the original algorithm in terms of

bias of estimate and empirical coverage of CIs. This simulation result suggests that

Fisher transformation does not help in improving the empirical coverage of confidence

interval for ρ. And this can be seen from the histogram of the perturbed estimates

from one of the simulation replicates with ‘4-neighbors’ neighborhood matrix and

ρ0 = 0.3 with the original SGD (Figure 2.5). The probability for the perturbed

estimates to go below 0.25 or above 0.35 is very low. In summary, the reason for low

coverage of CI for ρ is not due to the range constraint of ρ.

Table 2.6 Effect of Fisher Transformation

Setting parameter mean SD coverage

1

β1 (0.5) 0.500 0.005 0.948

σ2 (1.0) 1.001 0.005 0.960

ρ (0.3) 0.299 0.005 0.898

2

β1 (0.5) 0.500 0.007 0.948

σ2 (1.0) 1.001 0.006 0.960

ρ (0.3) 0.295 0.004 0.668
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Figure 2.5 Histogram and density plot of perturbed estimate for ρ.

2.6.2 Increase ranges of confidence intervals

To further investigate the confidence interval construction algorithm, we plot out

25 of the constructed confidence intervals for ρ in Figure 2.6 obtained from a

simulation study with ‘4-neighbors’ neighborhood structure and ρ0 = 0.3. Each red

dot represents the SGD estimate for each run and each black vertical line the range

of its corresponding confidence interval. The true value of ρ is indicated by the blue

dash line. Confidence intervals that not covering the true values are boxed. Though

these confidence intervals do not cover the true value, one of their ends is very close

to the true value. They can cover the true value, if their ranges increase a little bit.

Also, we compare the standard deviation obtained from the perturbed estimates

of each independent replicates, denoted as si, with the standard deviation of estimates

from all of the independent replicates, the empirical standard deviation, denoted as

s. The empirical standard deviation s can be treated as the true standard deviation

of the estimates. To construct confidence interval at desired coverage level, we

need si to be close to s. Figure 2.7 is the plot of si and s from a simulation
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with ‘4-neighbors’ neighborhood structure and ρ0 = 0.3. The result shows that for

β1, most of the standard deviations obtained from the perturbed estimates of each

independent replicate are higher than the standard deviation of the estimates. The

relation is reversed for ρ. Table 2.7 lists the empirical coverage of confidence intervals

constructed using si and s as θ̂±Zα/2 ∗sd (θ̂ the SGD estimate). For ρ, using s as the

standard deviation increases the empirical coverage of CIs to the desired level. As a

control, for β1, using s as the standard deviation decreases the empirical coverage of

CIs, but it is still around the desired level. Motivated by this result, we then study

whether we can increase the range of the confidence intervals so that the empirical

coverage is near the desired level.

Figure 2.6 Plot of confidence interval of ρ.

Using different perturbation variables for β and ρ The range of confidence

intervals for ρ are determined by the sample variance of ρ̄∗,1n −ρ̄n, ρ̄∗,2n −ρ̄n, . . . , ρ̄∗,Bn −ρ̄n.

We can increase the sample variance to increase the range of confidence intervals.

These perturbed estimates are generated by introducing the perturbation random

variable W ∗,b
k as shown in (2.26). As suggested by [13] , W ∗,b

k

iid∼ W,W > 0, E(W ) =
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Figure 2.7 Comparison of empirical sd and sd from perturbed estimates
for β1 and ρ. Each red dot represents one sd from perturbed estimates of one
independent replicate. The blue line represents the empirical sd.

Table 2.7 Comparison of Empirical Coverage of CIs with SD of Perturbed
Estimates and Empirical SD

β1 ρ

si 0.956 0.852

s 0.946 0.948

V ar(W ) = 1. To increase the sample variance of ρ̄∗,1n − ρ̄n, ρ̄∗,2n − ρ̄n, . . . , ρ̄∗,Bn − ρ̄n,

we can still keep the expectation of W to be 1 but increase the variance of W to be

greater than 1. We try this idea by simulation studies with V ar(W ) be several values

greater than 1. We use a Gamma distribution instead of the exp(1) distribution forW ,

choosing the shape parameter and scale parameter so that E(W ) = 1, V ar(W ) = a

and a > 1. The results (not shown) suggest that larger V ar(W ) applied leads to a

larger confidence interval coverage not only for ρ but also for β. Since confidence

interval coverage for β is at the desired level, this large V ar(W ) causes CI coverage

for β to be beyond the desired level.

To solve the problem that empirical CI coverage for β also increases with

V ar(W ), we use different perturbed variable W ∗,b
k for β, σ2 and for ρ. This new
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algorithm is shown in (2.36).

β̂
∗,b
k = β̂

∗,b
k−1 + γkW

∗,b
k ∇`β,k(β̂

∗,b
k−1, ρ̂

∗,b
k−1, σ̂

2
∗,b
k−1)

η̂∗,bk = η̂∗,bk−1 + γkW̃
∗,b
k ∇`ρ,k(β̂

∗,b
k−1, ρ̂

∗,b
k−1, σ̂

2
∗,b
k−1) cos η̂∗,bk−1

φ̂∗,bk = φ̂∗,bk−1 + γkW
∗,b
k ∇`σ2

0 ,k
(β̂
∗,b
k−1, ρ̂

∗,b
k−1, σ̂

2
∗,b
k−1)eφ̂

∗,b
k−1 (2.36)

ρ̂∗,bk = sin η̂∗,bk , σ̂2
∗,b
k = eφ̂

∗,b
k

β̄
∗,b
k =

1

k

k∑
i=1

β̂
∗,b
i , ρ̄∗,bk =

1

k

k∑
i=1

ρ̂∗,bi , σ̄2∗,b
k =

1

k

k∑
i=1

σ̂2
∗,b
i

Here, W ∗,b
k

iid∼ W,W > 0, E(W ) = V ar(W ) = 1, W̃ ∗,b
k

iid∼ W̃ , W̃ > 0, E(W̃ ) =

1, V ar(W̃ ) ≥ 1. We study this with a simulation study, using an exp(1) distribution

for W , a Gamma distribution for W̃ with W , W̃ independent. The results (not

shown) suggest that a larger V ar(W̃ ) leads to a larger confidence interval coverage

not only for ρ but also for β though V ar(W ) is 1. The reason for this could be that by

using two perturbed parameter (W ∗,b
k , W̃ ∗,b

k ) more variability is introduced, affecting

not only the perturbed estimates of ρ but also those of β. To reduce the variability,

we still use different perturbed parameters for β and for ρ but with a new way to

generate them. For recursive step k and perturbed estimate with index b, we first

generate the perturbed parameter W ∗,b
k for β and σ2. Then the perturbed parameter

used for ρ, W̃ ∗,b
k is given by

W̃ ∗,b
k = CW ∗,b

k − (C − 1), C ≥ 1. (2.37)

And like above, W ∗,b
k

iid∼ W,W > 0, E(W ) = V ar(W ) = 1 and it is easy to verify

that E(W̃ ∗,b
k ) = 1, V ar(W̃ ∗,b

k ) = C2. Here, the correlation between W ∗,b
k and W̃ ∗,b

k

is 1, thus, we reduced the extra variability caused by using two different perturbed

parameters.

We use simulations to study this new algorithm. We try different C values,

i.e., different variance for W̃ ∗,b
k , with all three neighborhood structures and ρ0 = 0.3.
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For each neighborhood structure, we generate the data and apply CIs construction

algorithm with several C values. Results shown in Table 2.8 are for the simulation

with ‘4-neighbors’ neighborhood structure. The results suggest that increasing C

does increase the CI coverage of ρ but not that of β. With a carefully tuned value

of C, we can make the coverage of ρ close to the desired level. The C value required

for making the coverage of ρ to be close to the desired level is different for different

neighborhood structures. We find the best C value needed by hyperparameter tuning

for this simulation study.

Table 2.8 CIs Coverage for Algorithm with Two Sets of Perturbed
Parameters

C
CI coverage

β1 ρ

1.0 0.941 0.856

1.15 0.941 0.906

1.2 0.942 0.922

1.25 0.942 0.940

1.3 0.942 0.952

In order to determine the value for C to use in a real application, we study the

asymptotic distribution of the SGD estimates. For a given and fixed data point index,

i, let∇`i be the contribution from the i-th data unit to the derivative of the likelihood,

θ0[q] the true parameter value, S0,i = −E[∇2`i(θ0)] and V 0,i = E[∇`i(θ0)∇`i(θ0)T ].

The i.i.d. ∇`i,1,∇`i,2, · · · ,∇`i,n from independent datasets are used for parameter

estimation with SGD. Based on Theorem 1, the variance of the estimate θ̄n is

M i = S−1
0,iV 0,iS

−1
0,i /n. The variance for ρ̄n is M i,[q,q]. If ∇`i is the derivative from a

genuine likelihood, then S0,i = V 0,i and S−1
0,iV 0,iS

−1
0,i /n = S−1

0,i /n (let Gi = S−1
0,i /n).

In this case, the variance for ρ̂ is S−1
0,i,[q,q]. In Appendix C we derive the explicit
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expressions of S0,i and V 0,i, and also show that all elements S0,i and V 0,i are equal

except that S0,,i,[q,q] 6= V 0,i,[q,q].

To further investigate the difference between S0,,i,[q,q] and V 0,i,[q,q], we generate

simulation data with ‘4-neighbors’ neighborhood structure and ρ0 = 0.3. For

each sample with N = 90, 000 data points, we calculate M 1,M 2, · · · ,MN and

G1,G2, · · · ,GN
4. Then we calculate M̄ = 1

N

∑
iM i and Ḡ = 1

N

∑
iGi. The

ratio of Ḡ[q,q]/M̄ [q,q] is about 2. And
√

2 is close to the C value needed in Table 2.8

to make the empirical coverage of CIs of ρ to close to the nominal level. Hence,

we believe that
»
Ḡ[q,q]/M̄ [q,q] could be used the value of C in Equation (2.37) to

improve the empirical coverage of confidence intervals. This will be part of future

work.

Using randomized learning rates For simulation studies above, we use a

decaying learning rate in the format of γk = γ1k
−α, k = 1, 2, · · · , n, γ1 > 0, α ∈

(0.5, 1). A decaying learning rate helps to guarantee that the SGD increments will

converge to zero and convergence of the SGD estimate [41]. We try two methods to

modify the learning rate to increase the coverage of confidence intervals. The first

method is to shuffle all the learning rates used, γ1, γ1 · 2−α, · · · , γ1 · n−α and then

use them according to the order after shuffling. In this way the learning rate is not

necessarily decreasing and this could cause the final SGD estimate to fluctuate around

a point but not converge to it. This fluctuation can increase the sample variance

of perturbed estimates and therefore increase the coverage of confidence intervals.

The other method we try is to use a constant learning rate for all recursive steps,

γk ≡ γ1, γ1 > 0, k = 1, 2, · · · , n.

We use simulations to study these two methods. For this simulation, we use

the ‘4-neighbors’ neighborhood structure and ρ0 = 0.3. For the first method, we

4We note that for a given data index i, M i,[q,q] andGi,[q,q] do not depend on random samples

generated

43



use the same randomized order of learning rates for all simulation runs as well as

different randomized order of learning rates for different simulation runs. Simulation

results (summarized in Table 2.9) show that means of the SGD estimates from both

methods are close to the true value. Only the method of using randomized learning

rates increases the standard error of SGD estimates comparing with the algorithm

using decaying learning rate (for example see setting 1 in Table 2.5). Also, the

coverage of CI for both β and ρ from the first method are around 0.95. For the

second method, the coverage of CI does not improve compared to using a decaying

learning rate. In summary, though using randomized learning rate can improve CI

coverage, it increases variance of the final SGD estimate. Also, proof of convergence

for this method could be challenging. This will be a focus for future work.

Table 2.9 Effect of Learning Rates

learning rate parameter mean SD coverage

randomized

(same for all runs)

β1 (0.5) 0.501 0.027 0.976

ρ (0.3) 0.298 0.015 0.960

randomized

(diff. for each run)

β1 (0.5) 0.501 0.028 0.974

ρ (0.3) 0.297 0.016 0.944

constant
β1 (0.5) 0.500 0.006 0.958

ρ (0.3) 0.299 0.005 0.822

2.7 SAR Model with Autoregressive Disturbance

Besides SAR model (2.1) described above, another spatial model is spatial model with

autoregressive disturbance, also called the spatial error model. This model is useful

when spatial correlation exists but adding the spatial lag term as in Equation (2.1)
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does not provide significant improvement [11]. The model is given as:

y = Xβ +U

U = ρWU + ε,

(2.38)

The meaning of these notations are the same as described for the SAR model. As

before, we only consider the case that ε ∼ N(0, σ2I).

We develop the SGD procedure for the spatial error model based on MLE. First,

we work out the log-likelihood for this model. Given Equation (2.38) we have:

ε = A(Y −Xβ). (2.39)

Here, A = I − ρW . Then the likelihood is:

L(θ|y) = L(θ|ε)| dε
dy
| = (2πσ2)−n/2 exp(−ε

Tε

2σ2
)|A|

= (2πσ2)−n/2 exp(−(Ay −AXβ)T (Ay −AXβ)

2σ2
)|A|.

(2.40)

The log-likelihood (omitting constant) is:

`(θ|y) = − ln(σ2)

2
n− (Ay −AXβ)T (Ay −AXβ)

2σ2
+ ln |A|. (2.41)

Clearly, due to the existence of the term ln |A|, this log-likelihood can not be

written as summation of contribution from each individual data point. We follow

the procedure for the SAR model, by writing the derivative as the contribution from

each individual data unit.

• for β

∇l(β) =
1

σ2
(XTATAy −XTATXβ)

=
∑
i

1

σ2
(xi − ρx̄i)(yi − ρȳi − (xi − ρx̄i)Tβ)

=
∑
i

∇li(β).

(2.42)
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Here, xi, yi are the i-th data point, x̄i = XTW T
i , W i is the i-th row of W ;

i.e., x̄i is the mean x of neighbors of i-th data point.

• for σ2

∇l(σ2) = − n

2σ2
+

1

2(σ2)2
(Ay −AXβ)T (Ay −AXβ)

=
∑
i

− 1

2σ2
+

1

2(σ2)2
(yi − ρȳi − (xi − ρx̄i)Tβ)2

=
∑
i

∇li(ρ).

(2.43)

• for ρ

∇l(ρ) = −tr(A−1W ) +
(Ay −AXβ)TW (y −Xβ)

σ2

=
∑
i

−1

ρ
(A−1

ii − 1) +
1

σ2
(yi − ρȳi − (xi − ρx̄i)Tβ)(ȳi − x̄iβ)

=
∑
i

∇li(ρ).

(2.44)

Also, to incorporate the constrain that ρ ∈ (−1, 1), we let ρ = sin η, and incorporate

the constrain σ2 = eφ. We follow exactly as in Equations (2.26) and (2.27) for

updating SGD estimates and perturbed estimates for CIs construction.

We then study the performance of the above algorithm with simulations. The

simulation setting is the same as described in Section 2.5.1, except that here for spatial

error model, the response variable y is generated as Xβ0 +A−1
0 ε. We tried all three

neighbor structures described above. The summary of the estimates and empirical

coverages of CIs are shown in Table 2.10 5. Clearly for all three neighborhood

structures studied, the proposed algorithm can provide correct estimates and the

empirical coverages of CIs are at the nominal level for β1 and σ2. However, the

empirical coverages for CIs of ρ are lower than the nominal level. Also, like the SAR

5As in SAR model, we only show the results for β1, and that for β2 are very similar to β1
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model, when the spatial correlation is high (24-neighbors), the performance is worse.

Future work is needed to find ways to improve the performance of confidence intervals.

Table 2.10 Simulation Results for the Spatial Error Model

neigh struc parameter mean SD coverage

4-neighbors

β1 (0.5) 0.500 0.006 0.932

σ2 (1.0) 1.00 0.006 0.936

ρ (0.3) 0.300 0.005 0.824

8-neighbors

β1 (0.5) 0.500 0.006 0.968

σ2 (1.0) 1.000 0.005 0.952

ρ (0.3) 0.300 0.007 0.824

24-neighbors

β1 (0.5) 0.500 0.007 0.944

σ2 (1.0) 1.000 0.006 0.924

ρ (0.3) 0.308 0.023 0.724

2.8 SGD Based on Two-Stage Least Square

For the SGD algorithm discussed above, the correlation between data points used

in each iterative step could be the reason that the empirical coverage of CI for ρ

is not at the nominal level. As discussed in Section 2.1.2, besides MLE, two-stage

least square (2SLS) is also a unbiased estimation method. Also, with the help of

instrumental variables, the regressors are exogenous in both stages. We can develop

the SGD algorithm based on two-stage least squares. We apply SGD on both stages

and generate perturbed estimates on on second stage to construct CIs. We illustrate

the detailed algorithm below.
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For the first stage, we fit the model Wy = Xβ̃ + Zζ̃ using SGD for a giving

initial value ˆ̃β0 and ˆ̃ζ0 as:

ˆ̃βk = ˆ̃βk−1 + γk(ȳk − xTk
ˆ̃βk−1 − zTk

ˆ̃ζk−1)xk

ˆ̃ζk = ˆ̃ζk−1 + γk(ȳk − xTk
ˆ̃βk−1 − zTk

ˆ̃ζk−1)zk

(2.45)

The final estimate of β̃ and ζ̃ are given by ˆ̃βn = 1/n
∑n

i
ˆ̃βi and ˆ̃ζn = 1/n

∑n
i

ˆ̃ζi. We

then calculate the fitted value of Wy as:

Ŵy = X ˆ̃βn +Z ˆ̃ζn (2.46)

For the second stage, we fit the model y = ρŴy + Xβ with SGD based

parameter estimation and generate perturbed estimates for CI constructions. Given

initial value for β and ρ of β̂0 and ρ̂0, respectively. Also, let ρ = sin η and η̂0 =

arcsin ρ̂0. The SGD estimates and perturbed estimates are updated as follows:

β̂k = β̂k−1 + γk(yk − ρ̂k−1 ˆ̄yk − β̂
T

k−1xk)xk

η̂k = η̂k−1 + γk(yk − ρ̂k−1 ˆ̄yk − β̂
T

k−1xk)ˆ̄yk cos η̂k−1

ρ̂k = sin η̂k

β̂
∗
k = β̂

∗
k−1 + γk(yk − ρ̂∗k−1

ˆ̄yk − β̂
∗T
k−1xk)xk

η̂∗k = η̂∗k−1 + γk(yk − ρ̂∗k−1
ˆ̄yk − β̂

∗T
k−1xk)ˆ̄yk cos η̂∗k−1

ρ̂∗k = sin η̂∗k.

(2.47)

Here, ˆ̄yk is the k-th element of Ŵy. The CIs are constructed as described in

Section 1.1.2. Please note that for this SGD estimation method, we do not estimate

σ2. As mentioned in Section 2.3.3, σ2 is usually not of great interest. Here, we do

not need to know the estimate of σ2 to estimate β and ρ. Thus, it is not estimated

for this algorithm.

We study the final sample propriety of this SGD estimate and CIs with

simulations. Samples are generated the same as described in Section 2.5.1 for
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‘4-neighbor’ neighborhood structure and ρ0 = 0.3. The estimates are all close to

true values (Table 2.11) and the empirical coverage of CIs are all at the nominal

levels. Compared with the result in Table 2.3, the empirical SD of ρ estimates is

higher than that of MLE based SGD. This is consistent with that MLE is more

efficient than 2SLS [33].

Table 2.11 Simulation Results for SGD Based on Two-Stage Least Square

parameter mean SD coverage

β1(0.5) 0.499 0.006 0.950

β2(0.5) -0.499 0.006 0.960

ρ (0.3) 0.308 0.019 0.965

2.9 Summary and Discussion

This chapter develops the SGD-based parameter estimation and confidence intervals

construction algorithm for the SAR mean regression model. The algorithm is

developed based on the MLE and modification on the algorithm are made to

accommodate the correlation between data points in the SAR model. The asymptotic

properties of the estimates and perturbed estimates are studied. We then use

simulations to study the performance of the proposed algorithms. The estimates are

unbiased for various spatial parameter values, neighborhood structures, and orders of

data used. The empirical coverages of CIs constructed for β are at the nominal level,

while those for ρ are below the nominal level. We propose two ways to improve the

empirical coverage for ρ. One is to use different perturbation variables for β and for

ρ. The other is to use randomized learning rates instead of decaying learning ones.

Both methods can increase the empirical coverage of CIs for ρ.

As discussed in the Section 2.4, the setting we use to develop the theoretical

properties is different from the algorithm developed for the SAR model. To generalize
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from the setting discussed for theoretical study to the SGD procedure used for the

SAR model, we can make further assumptions about the neighborhood structure.

Assume we have a very large grid and we are only looking at a proportion of the

data (N data points). Also, assume all the data points have the same neighborhood

structure. For example, one scenario is that each data point has two neighbors, the

data points left and right to itself. Under this setting, expectation of derivative of

log-likelihood from each individual data should equal to 1/N of expectation of the

overall log-likelihood. Since these two derivatives only differ by a constant, we might

get the convergence of the regular SGD for SAR from the convergence of the SGD in

above setting. However, there are still difference between this setting and the SGD

procedure we used. For this setting, data used in each iterative step are independent

while in our SGD procedure, data in each iterative step are not. And this correlation

could be responsible for the lower empirical coverage of the CIs constructed based on

perturbed estimates. Further investigation on this is needed.

Simulation results show that empirical coverage of confidence interval for ρ

is below the desired level. Analysis in Section 2.6.2 suggests that the width of the

confidence interval might be responsible for this low empirical coverage. Two methods

are proposed to increase the width of the confidence intervals. For the one using

randomized learning rates, the empirical standard deviation of the estimates also

increase. Clearly this method is less efficient compared to using decaying learning

rates. Also, it is challenging for theoretical justification of both methods. Further

investigations on improving the coverage of CIs are required.

We also studied parameter estimation and CIs construction with 2SLS based

SGD. For the simulation setting studied, the estimates are all close to true value and

empirical coverages of CIs are all at nominal levels. Compared with MLE based SGD

algorithm, the disadvantage of this method is that it uses each data point twice. This

means we cannot discard the data point after the first use. Also, for estimating ρ, this
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method is less efficient. More simulations for various neighborhood structures and

various ρ0 values are needed to further investigate the robustness of this algorithm.

Also, we need to study this asymptotic properties of this algorithm.
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CHAPTER 3

ESTIMATION AND INFERENCE FOR THE SAR QUANTILE

REGRESSION MODEL USING SGD

3.1 Introduction

Quantile regression was first introduced by Koenker and Basset (1978) [25], as

an extension of the median regression. Compared with mean regression, quantile

regression provides more detailed information about the model distribution, is more

robust to outliers, and less restrictive on error distributions [10]. The linear quantile

regression is defined as below:

y = Xβτ + ε. (3.1)

Here, τ ∈ (0, 1) is the quantile of interest, y a N × 1 vector for response variable,

X the N × p regressor matrix. βτ is the unknown parameter vector for quantile τ

and ε is the error. Unlike the classic mean regression model Equation (1.3), there are

no restrictions on the error term in quantile regression. Also, the coefficient βτ can

depend on quantile τ . This provides more flexibility on the regression model. The

parameter βτ can be estimated by a minimization problem defined as:

βτ = argmin
β

∑
i

λτ (yi − βTxi). (3.2)

Here, yi,xi are for the i-th data point, λτ (u) = u(τ − I(u < 0)), often referred to as

the check function1, and I(·) the indicator function. This minimization problem can

be solved by linear programming (see [4] for more details).

Spatial autoregressive quantile (SARQ) regression, like spatial autoregressive

mean regression, allows the spatial correlation between data points. There are two

1Check function is usually denoted as ρ in literature. Here, we use λ since ρ is reserved for
spatial parameter.
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definitions of spatial quantile regression [28]. Here, we consider the one proposed by

Kostov in 2009 [27], defined as follows:

y = ρτWy +Xβτ + ε. (3.3)

Here, y is the N × 1 vector of response, W the N × N neighborhood matrix

(see Section 2.1 for more details), X the N × p regressor matrix, ρτ , βτ unknown

parameters, and ε the error. The quantity ρτWY is the spatial lag term. Similar to

the SAR mean regression model, SARQ model assumes that the response variable at

a certain location depends not only on its covariates, also the value of the response

variable of its neighboring data points. Unlike the SAR mean model, in the SARQ

model, coefficients βτ and spatial parameter ρτ can depend on the quantile τ .

This allows for varying degree of spatial dependence at different quantiles of the

response distribution, for example, spatial dependence may exist in some portion of

the distribution but not elsewhere, with constant β and ρ as a special case.

Several methods have been proposed for estimating the model parameters. One

way is to treat the endogenous term WY as an exogenous term like X. Then the

parameters are estimated via:

(βτ , ρτ ) = argmin
(β,ρ)

∑
i

λτ (yi − ρȳi − βTxi). (3.4)

Here yi and xi are from the i-th data point, and ȳi is the i-th element of Wy, which

is the weighted average of the response variables for the neighbors of the i-th data

point. Like for SAR mean regression, this estimator is biased in general case as it

ignores the endogeneity of Wy. We refer this estimator as the one-stage quantile

regression (1SQR) estimator.

Kostov proposed the instrumental quantile regression estimation to deal with

the endogeneity issue [27]. This can be implemented in two ways. Kim and Muller

proposed the two stage quantile regression estimator with the first stage based on
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quantile regression [24]. For parameters estimated in this method, first instrumental

variables Z [N×p′] are generated. Z is usually set as WX,W 2X, · · · . In the first

stage, a quantile regression is fitted:

WY = Xβ̃ +Zζ̃. (3.5)

The fitted value of WY , ŴY = X
ˆ̃
β+Z ˆ̃

ζ, is then used for the second stage quantile

regression:

Y = ρŴY +Xβ. (3.6)

We refer to this method as 2SQR.

Another way to implement the instrumental quantile regression estimation is

proposed by Chernozhukov and Hansen (referred as CH below) [6]. This estimation

method also uses the instrumental variables Z. First β̂(ρ, τ) and ζ̂(ρ, τ) depending

on ρ are estimated using the model:

Y = ρWY +Xβ +Zζ. (3.7)

Then ρ is estimated by:

ρ̂τ = argmin
ρ

»
ζ̂(ρ, τ)T ζ̂(ρ, τ). (3.8)

Then ρ̂τ is plugged back to β̂(ρ, τ) to get the estimate of βτ . In practice, this methods

can be applied by defining a grid of values for ρ, { ρ1, ρ2, · · · , ρK}, and selecting the

value ρk that minimizes
»
ζ̂(ρ, τ)T ζ̂(ρ, τ) for a given quantile τ . Then we can get

the estimate for β by plugging ρk into β̂(ρ, τ). A drawback of this method is that it

requires a predefined grid of ρ values. This can be difficult in some scenarios. Also,

as described above, this method requires fitting multiple models which limits the

scalability of the method. Hence, we do not use this method with the SGD algorithm

(See more discussion on this in Section 3.4).
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Hense, we apply SGD for parameter estimation and online bootstrapping for CIs

construction for SAR quantile regression, focusing on 1SQR and 2SQR. This chapter

is organized as follows. In Section 3.2, we introduce the SGD estimator based on 1SQR

and then propose the SGD-based estimator based on 2SQR. Section 3.3 studies the

finite sample properties of these SGD estimates with a simulation study. Section 3.4

summarizes this chapter and provides directions for future study.

3.2 SGD on SAR Quantile Regression

This section develops the procedure of parameter estimation with SGD and CIs

construction with online bootstrapping for the SAR quantile regression model.

3.2.1 One-stage quantile regression

We first work out the SGD-based parameter estimation and confidence interval

construction procedure according to 1SQR. For a quantile τ of interest, let `i =

λτ (yi − ρȳi − βTxi) and Equation (3.4) can be written as:

(βτ , ρτ ) = argmin
(β,ρ)

∑
i

`i. (3.9)

Following Example 4 in [13], we first get the derivative of `i:

∇`β,i = −xi(τ − I(yi − ρȳi − βTxi))

∇`ρ,i = −ȳi(τ − I(yi − ρȳi − βTxi)).
(3.10)

Like with the SAR mean regression, we set ρ = sin η to accommodate the restriction

that −1 < ρ < 1 and accordingly ∇`η,i = ∇`ρ,i cos η. Given the starting values β̂0

and ρ̂0, the starting value for η is calculated as η̂0 = arcsin ρ̂0. The SGD estimates

β̂k and ρ̂k are updated as:

β̂k = β̂k−1 − γk∇`β,k, η̂k = η̂k−1 − γk∇`η,k

ρ̂k = sin η̂k, β̄k =
1

k

k∑
i=1

β̂i, ρ̄k =
1

k

k∑
i=1

ρ̂i.
(3.11)
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For confidence interval construction, the perturbed estimates are updated by:

β̂∗k = β̂∗k−1 − γkWk∇`β,k η̂∗k = η̂∗k−1 − γkWk∇`η∗,k

ρ̂∗k = sin η̂∗k, β̄∗k =
1

k

k∑
i=1

β̂∗i, ρ̄∗k =
1

k

k∑
i=1

ρ̂∗i,
(3.12)

with γk and Wk in Equations (3.11) and 3.12 are defined the same as described in

Section 1.1.2.

3.2.2 Two-stage quantile regression

For two-stage quantile regression (2SQR), we apply SGD on both stages of the

quantile regression to get the estimates. To construct confidence intervals, we generate

perturbed estimates during the second stage. The detailed procedure is described as

below.

(1) First use SGD to get the estimate for regression in (3.5). The updating

procedure is given by:

ˆ̃βk = ˆ̃βk−1 + γkxk[τ − I(ȳi − ˆ̃βTk−1xk −
ˆ̃ζTk−1zk)]

ˆ̃ζk = ˆ̃ζk−1 + γkzk[τ − I(ȳi − ˆ̃βTk−1xk −
ˆ̃ζTk−1zk)].

(3.13)

Here, ȳk is the k-th element of WY and xk, zk are the k-th row of X,Z respectively.

(2) Calculate the predicted value of WY as follows:

¯̃βN =
1

N

N∑
i=1

ˆ̃βi,
¯̃ζN =

1

N

N∑
i=1

ˆ̃ζi

ŴY = X ¯̃βN +Z ¯̃ζN .

(3.14)

(3) Then apply SGD to generate the estimates and perturbed estimates based

on Equation (3.6). We use η = arcsin ρ and the SGD estimates can be updated as:

β̂k = β̂k−1 + γkxi(τ − I(yk − ρˆ̄yk − β̂
T

k−1xk))

η̂k = η̂k−1 + γk ˆ̄yk(τ − I(yk − ρˆ̄yk − β̂
T

k−1xk)) cos(η̂k−1)

ρ̂k = sin(η̂k).

(3.15)
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The perturbed estimates are updated as:

β̂
∗
k = β̂

∗
k−1 + γkWkxk(τ − I(yk − ρˆ̄yk − β̂

∗T
k−1xk))

η̂∗k = η̂∗k−1 + γkWk ˆ̄yk(τ − I(yi − ρˆ̄yk − β̂
∗T
k−1xk)) cos(η̂∗k−1)

ρ̂∗k = sin(η̂∗k).

(3.16)

Here, xk and yk are from the k-th data point and ˆ̄yk is the k-th element of ŴY

calculated in Equation (3.14).

3.3 Simulation Studies

We use simulations to study the finite sample properties of these two SGD-based

estimators and the empirical coverage of the confidence intervals. We use ‘4-neighbors’

neighborhood matrix discussed in Section 2.5.1 and generate a total of N = 90, 000

data points for each independent replicate. We follow [50] for the data generation

process:

yi = ρ(vi)ȳi + β(vi)
Txi, (3.17)

for i = 1, 2, · · · , N , where vi are i.i.d U(0, 1), ȳi = wiY , wi the i-th row of

neighborhood matrix W , β = [β0, β1, β2]T , xi = [1, x1i, x2i]
T with x1i, x2i are i.i.d.

U(−1, 1). We use five settings which are different in terms of how β and ρ changes

with the quantile τ and whether the error error distribution is symmetric:

• Setting 1: β(vi) = [0.5, 0.5,−0.5]T + [1, 0, 0]TF−1
1 (vi), ρ = 0.3

• Setting 2: β(vi) = [0.5, 0.5,−0.5]T + [1, 0.1, 0.1]TF−1
1 (vi), ρ = 0.3

• Setting 3: β(vi) = [0.5, 0.5,−0.5]T + [1, 0.1, 0.1]TF−1
1 (vi), ρ(vi) = 0.3 +

0.1F−1
1 (vi)

• Setting 4: β(vi) = [0.5, 0.5,−0.5]T + [1, 0.1, 0.1]TF−1
2 (vi), ρ = 0.3

• Setting 5: β(vi) = [0.5, 0.5,−0.5]T + [1, 0.1, 0.1]TF−1
2 (vi), ρ(vi) = 0.3 +

0.1F−1
2 (vi),
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where, F1, F2 are probability distribution functions. We use standard normal

distribution for F1 and standardized χ2
3 (mean 0 and variance 1) for F2. We use

quantile τ = 0.1, 0.25, 0.5, 0.75, and 0.9. The true parameter values for these quantiles

are listed in Table 3.1. Thus, in setting 1, only β0 changes with τ ; in settings 2 and

4, all the βi change with τ , but ρ is constant. In settings 3 and 5, ρ changes with τ

as well. For settings 1,2,3, the error distribution is symmetric, while for settings 4,5,

it is skewed. One advantage of quantile regression over mean regression is that it can

model skewed data.

Table 3.1 Summary of True Quantile Parameters Used in Simulations

Setting τ 0.1 0.25 0.5 0.75 0.9

1

β1(τ) 0.5

β2(τ) -0.5

ρ(τ) 0.3

2

β1(τ) 0.372 0.433 0.500 0.567 0.628

β2(τ) -0.628 -0.567 -0.500 -0.433 -0.372

ρ(τ) 0.3

3

β1(τ) 0.372 0.433 0.500 0.567 0.628

β2(τ) -0.628 -0.567 -0.500 -0.433 -0.372

ρ(τ) 0.172 0.233 0.300 0.367 0.428

4

β1(τ) 0.401 0.427 0.474 0.545 0.633

β2(τ) -0.599 -0.537 -0.526 -0.455 -0.367

ρ(τ) 0.3

5

β1(τ) 0.401 0.427 0.474 0.545 0.633

β2(τ) -0.599 -0.537 -0.526 -0.455 -0.367

ρ(τ) 0.201 0.207 0.274 0.345 0.433
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We first use 1SQR and 2SQR-based SGD and CIs construction for the first

setting and for all five quantiles listed above. For each combination we generate 200

independent replications. The mean and standard deviation of estimates from these

200 independent replications and the empirical coverage of confidence intervals are

shown in Table 3.2. (Only the results for β1 and ρ are shown, since results for β2

is very similar to those for β1.) For 1SQR based on SGD, we find that the mean of

the estimates are close to the true values (i.e., with minimal bias) and the empirical

coverages are at the nominal level for regressors coefficient. For the spatial parameter

ρ, the estimates are biased and the empirical coverage of CIs are all below the nominal

level. This result is consistent with the understanding that 1SQR is biased. For

2SQR-based SGD, simulation results show that the mean of the estimates are close

to the true values. This is consistent with the understanding that 2SLS is generally

unbiased. The empirical coverage of confidence intervals are all close to the nominal

level.

We then use 2SQR-based SGD for Setting 2-5 for all five quantiles. Results

are shown in Tables 3.3 - 3.6. For all these settings, the mean of the estimates are

close to the true values and empirical coverage of the CIs are at the nominal level for

all parameters. These simulation results suggest that our 2SQR-based SGD and CI

construction procedure work well for various scenarios regarding how the coefficients

depend on quantile τ and whether the error distribution is symmetric or not.

3.4 Summary and Discussion

This chapter develops the SGD-based parameter estimation and confidence interval

construction algorithm for the SAR quantile regression model. The algorithms are

developed based on one-stage quantile regression (1SQR) and two-stage quantile

regression (2SQR). The 1SQR method ignores the endogeneity of the spatial lag

term and treats it as an independent covariate. The 2SQR method, on the other
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Table 3.2 Simulation Result for SAR Quantile Regression–Setting 1

1SQR 2SQR

τ bias sd CI bias sd CI

0.1
β1(τ) 0.001 0.011 0.930 -0.001 0.011 0.945

ρ(τ) 0.217 0.015 0.485 0 0.032 0.945

0.25
β1(τ) 0 0.008 0.960 -0.001 0.009 0.965

ρ(τ) 0.215 0.013 0.12 0.004 0.026 0.990

0.5
β1(τ) 0 0.008 0.955 0 0.009 0.960

ρ(τ) 0.214 0.012 0.005 0.009 0.033 0.965

0.75
β1(τ) 0.001 0.009 0.95 -0.001 0.011 0.935

ρ(τ) 0.215 0.013 0 0.008 0.025 0.970

0.9
β1(τ) 0.001 0.012 0.940 -0.003 0.018 0.985

ρ(τ) 0.214 0.044 0.335 0.004 0.025 0.945

hand, first models the spatial lag term with instrumental variables by quantile

regression. Then the fitted spatial lag term is used as an independent covariates for

modeling the response variable in the second stage. Parameters are estimated based

on minimizing the check function for 1SQR and for both stages of 2SQR. Simulations

results show that the 2SQR-based SGD parameter estimation method is unbiased

and the empirical coverage of constructed confidence interval are at the desired level.

Unlike SAR mean regression model, where the time needed for MLE is much

longer than that for the SGD procedure, for SAR quantile regression model, the time

for SGD procedure is not necessarily less than directly applying quantile regression

function provided in standard packages (e.g., ‘statsmodels’ package in Python [49],

‘quantreg’ package in R [26]). However, the SGD-based procedure can still provide

benefits in two aspects. First, in theory there is no upper limit for the sample size
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Table 3.3 Simulation Result for SAR Quantile Regression–Setting 2

τ bias SD CI

0.1
β1 -0.001 0.012 0.965

ρ -0.011 0.070 0.920

0.25
β1 -0.003 0.010 0.980

ρ -0.005 0.037 0.960

0.5
β1 -0.002 0.008 0.955

ρ 0.004 0.032 0.970

0.75
β1 -0.002 0.010 0.970

ρ 0.004 0.023 0.975

0.9
β1 -0.003 0.016 0.935

ρ 0.006 0.030 0.940

that can be applied, since for each iteration, only one data point and its neighbors are

required for updating the estimates. Second, it is possible to extend the algorithm

discussed here to an online version. The 1SQR-based method is clearly an online

method. For the 2SQR-based SGD method, we can use the current available data to

get the parameter estimates and construct the confidence intervals. Denoting these

estimates from the first and second stages as θ̂s1 and θ̂s2, when new data are available,

we can use θ̂s1 and θ̂s2 as the starting points to continue updating the parameters in

each of the two stages. Thus, in this way, we can make the 2SQR-based SGD method

an online method as well. This idea can be extended further by considering one data

point at a time: i.e., take one data point and update the parameter for first stage,

then obtain the predicted spatial lag term, and use it together with the current data

point for updating parameters in the second stage. This process is then applied for
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Table 3.4 Simulation Result for SAR Quantile Regression–Setting 3

τ bias SD CI

0.1
β1 0.002 0.022 0.955

ρ 0.046 0.135 0.93

0.25
β1 0.001 0.018 0.955

ρ 0.025 0.084 0.955

0.5
β1 -0.011 0.028 0.945

ρ 0.003 0.026 0.970

0.75
β1 0.003 0.020 0.955

ρ -0.002 0.071 0.95

0.9
β1 0 0.029 0.955

ρ -0.037 0.184 0.94

all data points. This way once the data point and all its neighbors are used, it can

be discarded. This method is worth further investigation.

As discussed in Section 3.1, besides the 2SLS method, another instrumental

variable based on method is the CH method [6]. We can derive SGD updating

equations based on this method. First, we select one value of ρ from a pre-defined

grid of values, say ρi. Then we can use SGD to fit the model in Equation (3.7) .

This process can be done for each ρ in the given grid and the final estimate of ρ

is selected based on Equation (3.8). Perturbed estimates can only be generated for

β but not for ρ when fitting the model for Equation (3.7). Thus, we can only use

the online bootstrapping to construct confidence interval for β but not for ρ. Hence,

we do not consider the CH method here. However, obtaining CIs for ρ using online

bootstrapping can be a focus for future work.
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Table 3.5 Simulation Result for SAR Quantile Regression–Setting 4

τ bias SD CI

0.1
β1 0.002 0.004 0.96

ρ -0.003 0.015 0.975

0.25
β1 -0.002 0.005 0.95

ρ -0.001 0.005 0.95

0.5
β1 -0.003 0.009 0.95

ρ 0.004 0.025 0.945

0.75
β1 -0.009 0.020 0.945

ρ -0.001 0.019 0.95

0.9
β1 -0.013 0.038 0.945

ρ 0.002 0.021 0.955

Table 3.6 Simulation Result for SAR Quantile Regression–Setting 5

τ bias SD CI

0.1
β1 0.002 0.008 0.955

ρ -0.006 0.037 0.935

0.25
β1 0.002 0.011 0.930

ρ 0.006 0.031 0.955

0.5
β1 0 0.015 0.955

ρ 0.015 0.063 0.970

0.75
β1 -0.004 0.031 0.975

ρ 0.002 0.047 0.925

0.9
β1 -0.001 0.052 0.970

ρ 0.022 0.131 0.935
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CHAPTER 4

PUF DATA ANALYSIS

4.1 Introduction

According to US census data, in 2018 alone, 8.5 percent of people, or 27.5 million, did

not have health insurance at any point during the year. These numbers were increased

from 7.9 percent (25.6 million) in 2017 [2]. Uninsured Americans are especially

vulnerable to the high cost of health care. The Physician and Other Supplier Public

Use File (PUF) provides information on medical service and procedures provided

to Medicare beneficiaries by physicians and other medical professionals. It contains

information about submitted charges, Medicare allowed amount, Medicare payment

amount and Medicare standardized payment amount [3]. In this chapter, we analyze

the PUF data to study the effect of location and other characteristics of medical

facilities on medical prices. Results from this analysis can help to improve the

transparency in healthcare pricing and thus, benefit both insured and uninsured

patients.

4.2 Data Description

Currently, PUF data from year 2013 to 2019 are available. For year 2017, the dataset

is of size 3GB and contains more than 9 million records, 2018 dataset 3GB and

10 million records, 2019 dataset 3GB more than 10 million records. To analyze

dataset of this size, scaleable statistical methods studied in this dissertation are

necessary. Also, spatial information are included in the PUF dataset, being the

locations of Physicians and Medical providers. For many other products or services,

prices depend on locations. For example, services provided in nearby locations tend to

have similar prices. We use the spatial autoregressive model to take spatial location

into consideration and investigated its effect on charges of medical services. Both
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mean regression and quantile regression are fitted and compared. Quantile regression

can help to identify the relationship between charges and other factors in different

parts of the distribution.

The data studied are the PUF data from year 2017. Each entry of the PUF

data contains variables in the following categories: 1) identification characteristics of

the provider 2) location that the service is provided 3) identification characteristics of

the medical service 4) average charges of the medical service. The charges depend on

the medical service types and for illustration purpose, this dissertation only analyzes

one type of medical service: CT scan on face. Using this dataset, we investigate

relationship of average charge submitted by the provider with the following variables:

• Gender: Gender of the provider. This analysis only considered the providers
registered in NEPPS (National Plan and Provider Enumeration System) as
individuals. Female is coded as 1 while male is coded as 2.

• RUCA: Rural-Urban Commuting Area Codes (RUCAs), are a Census tract-
based classification scheme that utilizes the standard Bureau of Census
Urbanized Area and Urban Cluster definitions in combination with work
commuting information to characterize all of the nation’s Census tracts
regarding their rural and urban status and relationships. Majority of them are
belong to ’Metropolitan area core’. For this analysis we coded ’Metropolitan
area core’ as 1 and all others as 2.

• place of service: The place of service: facility (coded as 1) or non-facility
(coded as 2).

• total number of service: Total number of services provided by the provider
for a certain year.

After removing outliers and missing data, this dataset contains 14464 data points.

We first study the weight average charges in each state. Total number of services

is used as the weight. The result is shown in Figure 4.1. California has the highest

weighted average charges and South Dakota has the lowest. Clustering exists in this

map and this suggests that data are spatially correlated. Figure 4.2 is the scatter

plot of average submitted charges and total number of services provided by a certain
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provider. This plot shows the negative association between the average submitted

charges and number of services provided, since smaller average submitted charges

corresponds to a relative higher proportion of large number of services. Figure 4.3

shows the boxplot of average submitted charges grouped by each of these category

variables: Gender, RUCA, place of service. The plot suggests that overall gender of

male, RUCA of not in metropolitan area, and place of non-facility has a lower average

submitted charges compared to the other level for the same covariate.

Figure 4.1 Weighted average charge in each state of the Contiguous US.

The neighborhood matrix for this dataset is determined in the following way.

We first replace the locations of providers as the centroids of their zipcode and then

calculate the distances of all provider pairs. Then we calculate the 1% quantile of

all these distances, which is about 20.3 miles. Data points with distance less than

this are treated as neighbors. (On average, each data point is neighbors to 1% of

all data points, about 144 data points. See Section 4.4 for other ways to generate

neighborhood matrix.) We give equal weights for all neighbors and the neighborhood

matrix is then row normalized with row sum equal to 1.

66



Figure 4.2 Scatter plot of average submitted charges and number of
services.

We fit both the SAR mean regression and quantile regressions for the dataset.

SGD based on two stage quantile regression procedures are used for parameter

estimation and CIs construction for quantile regressions.

4.3 Models

4.3.1 SAR mean regression

We first estimate parameters and construct CIs for the SAR mean regression model

with SGD algorithm developed in Section 2.3. The result is shown in Table 4.1. The

confidence interval of ρ not covering 0 suggests that data are spatial correlated. The
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Figure 4.3 Boxplot of average submitted plot grouped by Gender, RUCA,
and place of service

effect of all these covariates on submitted charges are significant since 0 is not inside

in any of these confidence intervals. The effect of these covariates suggested by this

model is consistent with the result of descriptive statistical analysis. For examples, it

suggests that providers providing more services a year charges less given other factors

are the same. Also, provides not in the metropolitan area charges less given other

factors are the same.

4.3.2 SAR quantile regression

For SAR quantile regression, SGD based on two-stage quantile regression procedures

are used. We fitted for the following quantiles: 0.1, 0.25, 0.5, 0.75, 0.9 (Table 4.2.

The contribution of values of neighbors and other variables are consistent across

different quantiles in terms of the sign of coefficients. And the sign is the same as

the result of mean regression. As mentioned before, quantile regression provides a

broader information about the effect of these factors on submitted charges.
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Table 4.1 Point Estimates and 95% CIs for Mean Regression

Variable Estimate 95% CI

Gender -1.84 (-2.09, -1.59)

RUCA -3.23 (-3.47, -2.99)

place -4.8 (-5.05, -4.56)

total number -43.2 (-43.21, -43.20)

ρ -0.25 (-0.27, -0.23)

4.4 Summary and Discussion

This chapter investigates the relationship between submitted charges and some factors

in PUF data for the service of CT scan on face. We fit spatial autoregressive models

to incorporate spatial correlations. Both the mean regression and quantile regression

models are built and all models suggest the existence of spatial correlation between

data points. Also, the effect of these factors are consistent between mean regression

and quantile regressions. Besides the analysis done in this chapter, this dataset can

be further analyzed by the following ways:

• Considering other ways to generate neighborhood matrix. For this chapter,
neighborhood matrix is generated by replacing the location of providers with
the centroids of their zipcode and treating two data points as neighbors if their
distance is less than a threshold. Also equal weights are given for all neighbors.
Alternatives include directly calculating the distance between providers without
replacing them with centroids of zipcode or give different weights for neighbors
based on the distances. Also, different thresholds can be chosen to determine
whether two locations are neighbors.

• Considering more covariates. Examples are charges of other services provided
by the same provider, some social and economic variables associated with the
district that the provider is located, etc.

• We can analyze data for the same medical services from multiple years and
see if there are any changes between different years. What’s more, the method
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Table 4.2 Point Estimates and 95% CIs for Quantile Regression

Estimate

τ Gender RUCA place tot num ρ

0.1 -9.64 -9.89 -12.15 -59.54 -0.73

0.25 -6.17 -7.09 -9.00 -59.50 -0.75

0.5 -1.55 -2.69 -4.93 -59.44 -0.78

0.75 -2.07 -2.79 -4.92 -59.46 -0.45

0.9 -1.80 -2.23 -4.27 -59.43 -0.24

95% CI

τ Gender RUCA place tot num ρ

0.1 (-12.55, -6.73) (-12.37, -7.40) (-14.98, -9.31) (-59.62, -59.46) (-0.91, -0.54)

0.25 (-9.47, -2.86) (-9.93, -4.26) (-12.23, -5.77) (-59.58, -59.41) (-0.97, -0.52)

0.5 (-2.86, -0.23) (-3.84, -1.53) (-6.27, -3.59) (-59.47, -59.41) (-0.87, -0.70)

0.75 (-3.35, -0.79) (-3.94, -1.64) (-6.23, -3.61) (-59.48, -59.44) (-0.53, -0.37)

0.9 (-3.00, -0.61) (-3.35, -1.12) (-5.51, -3.03) (-59.45, -59.41) (-0.31, -0.17)

developed here can be used for online learning. We can update the parameter
estimates when new data for a certain year is available.

• The analysis can be easily extended to other medical services provided. Also,
we can analyze several related services together, For example, we can analyze
all types of CT scans, including CT scan on face, with a dummy variable for
the type of CT scans.
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CHAPTER 5

CONCLUSION

Spatial correlation exists in many types of data and ignoring it can affect the

estimation of parameters (e.g., see Section 2.5.3). Spatial autoregressive (SAR)

models are usually used to study spatially correlated data. For the SAR model,

the response variable depends not only on the covariates but also the values of its

neighbors. Stochastic gradient descent (SGD) is an iterative parameter estimation

method that minimizes a target function by processing each data point in turn. Thus,

SGD can scale up easily for large datasets and is suitable for online learning. Fang

et al. developed an online bootstrapping method for statistical inference of estimates

obtained by SGD in the case of independent data[13]. In this research, we consider

SGD and online bootstrapping algorithms for parameter estimation and inference in

the presence of spatially correlation, specifically for the SAR model. In particular, we

study: (1) parameter estimation and inference for the SAR mean regression model;

(2) parameter estimation and inference for the SAR quantile regression model; (3)

analysis of the PUF data using the SAR model.

For the SAR mean regression model, the MLE is unbiased and most efficient.

However, getting MLE for large dataset is computationally heavy. We propose a

modified SGD algorithm based on MLE for parameter estimation and statistical

inference to accommodate the spatial data correlation. Results show that SGD

based estimation is at least 40 times faster than MLE, with the SGD estimators

for all parameters close to the true values. The empirical coverages of CIs are

at the nominal level for the coefficients of the covariates but not for the spatial

parameter. Two methods are proposed to improve the empirical coverages of ρ CI.

Also, we develop the 2SLS-based SGD algorithm for parameter estimation and CIs
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construction. Simulation results show that estimates of this method are unbiased

and empirical coverages of CIs constructed are at the nominal levels. Lastly, we

also develop the SGD algorithm for the spatial autoregressive model with random

disturbance.

The second part of this dissertation investigates SAR quantile regression model.

Compared with SAR mean regression model, this quantile regression model can

provide a more detailed information on the distribution of the response variable.

Also, it provides more flexibility on model specification, as it allows the coefficients

and spatial parameter to be dependent on quantiles. We focus on two parameter

estimation methods: one-stage quantile regression (1SQR) and two-stage quantile

regression (2SQR). 1SQR ignores the endogeneity of spatial lag term and treats it

the same as the exogenous regressors. The parameters are estimated in the same way

as linear quantile regression. In the first stage of 2SQR, a quantile regression is fit for

the spatial lag term using the exogenous regressors and instrumental variables. Then

in the second stage, the fitted spatial lag term is used to fit the quantile regression

for the response variable. We develop parameter estimation and inference algorithms

with SGD based on these two algorithms. Simulation results show that SGD estimator

based on 2SQR is unbiased while that based on 1SQR is biased. Also, the empirical

coverages of CIs constructed based on 2SQR are all at the nominal levels.

Finally, we analyze the Physician and Other Supplier Public Use File (PUF)

data using the methods described in Chapters 2 and 3. This dataset contains

information about charges submitted for medical services provided to Medicare

beneficiaries by physicians and healthcare professionals at medical facilities. The

results suggest that the locations of facilities have significant effect in modelling the

medical charges. Also, the models find that charges depend on the total number

of services provided yearly, gender of the provider, facility type, and whether the

provider is in a metropolitan area.
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As discussed in the end of previous chapters, several work are the focus of the

future work:

• Derive the asymptotic properties for MLE-based and 2SLS-based SGD estimates
and perturbed estimates for the SAR mean regression model

• Develop methods to improve the empirical coverage for ρ CI constructed for the
SAR mean regression model

• Derive the asymptotic properties for 2SQR-based SGD estimates and perturbed
estimates for the SAR quantile regression model

• Derive the 2SQR-based SGD algorithm using one data point at a time for both
stages for the SAR quantile regression model

Besides the future work mentioned above, this work can also be extended

to other models. One example is the spatial autoregressive with autoregressive

disturbance model (SARAR model):

y = ρ1W 1y +Xβ + u, u = ρ2W 2u+ ε (5.1)

Here, y,X,β and ε are defined the same as in (2.1). W 1,W 2, n×n, are neighborhood

matrices; ρ1, ρ2, are autoregressive parameters. This model provides more flexibility

in modeling spatial correlated data [31, 46] and is worth further investigation. Similar

extensions can be made to the conditional autoregressive (CAR) model.
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APPENDIX A

PROOFS OF THEOREMS

Detailed proof of theorems in this dissertation are shown here.

A.1 Proof of Theorem 1

We prove this theorem by verifying the assumption A1 to A5 in [13] (label them as

FA1 to FA5). Note our Assumption A4 is FA5, thus, we only need to verify FA1 to

FA4. First list the log-likelihood and its derivative:

`(θ) = − ln(σ2)

2
n− (Ay −Xβ)T (Ay −Xβ)

2σ2
+ ln |A|

∇`β =
1

σ2
(XTAy −XTXβ)

∇`σ2 = − n

2σ2
+

1

2(σ2)2
(Ay −Xβ)T (Ay −Xβ)

∇`ρ = −tr(A−1W ) +
(Ay −Xβ)TWy

σ2

A.1.1 Verification of assumption FA1

Assumption FA1. The objective function L(θ) is convex, continuously differen-

tiable over θ ∈ Θ, and twice continuously differentiable at θ = θ0, where, θ0 is the

unique minimizer of L(θ).

As defined in Section 2.4, S(θ) = ∇2L(θ) and clearly S(θ) is positive

semi-definite, thus, L(θ) is a convex function. Also, according to [33], under some

Assumption A3, θ0 is the unique minimizer of L(θ) (Other assumptions listed in [33]
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can be easily verified). Clearly L(θ) is continuous differentiable over θ and twice

continuous differentiable at θ = θ0. Thus, we finish the verification of A1.

A.1.2 Verification of assumption FA2

Assumption FA2 The gradient of L(θ), R(θ) = ∇L(θ), is Lipschitz continuous with

constant L1 > 0; that is, for any θ1 and θ2, ‖R (θ1)−R (θ2)‖ ≤ L1 ‖θ1 − θ2‖.

We can write R(θ) as [RT
1 , R2, R3]T , and R1 = −E[∇`β], R2 = −E[∇`σ2 ], and

R3 = −E[∇`ρ]. To prove R(θ) is Lipschitz continuous, we only need to show R1, R2

and R3 are Lipschitz continuous.

For R1:

R1 = −E[∇`β] = −E[
1

σ2
(XTAy −XTXβ)]. (A.1)

Clearly R1 is a linear function of ρ and β, thus, it is Lipschitz continuous w.r.t. ρ

and β. Also, easy to show R1 is Lipschitz continuous w.r.t. σ2 as long as σ2 ∈ [a,∞)

for some a > 0. And this is guaranteed by Assumption A2.

For R2

R2 = −E[∇`σ2 ] = −E[− n

2σ2
+

1

2(σ2)2
(Ay −Xβ)T (Ay −Xβ)]. (A.2)

Clearly, R2 is a quadratic function for β and ρ. Easy to show R2 is Lipschitz

continuous w.r.t. them as long as ‖β‖ ∈ [ 0, b] , b ≥ 0 (Guaranteed by Assumption

A2. Also, note we already have the restriction that ρ ∈ (−1, 1)). To show R2 is

Lipschitz continuous w.r.t. σ2, is the same as to show a function y = C1

x
+ C2

x2 is

Lipschitz continuous w.r.t. x. Easy to show as long as σ2 ∈ [ a,∞), a > 0, R2 is

Lipschitz continuous w.r.t. σ2.

For R3

R3 = −E[∇`ρ] = E[tr(A−1W )]− E[
(Ay −Xβ)TWy

σ2]
(A.3)
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Easy to see, the second part of R3 (the part does not include tr(A−1W ) is Lipschitz

continuous w.r.t. β, σ2, and ρ given σ2 ∈ [a,∞), a > 0. For the first part, note,

A−1 = (I − ρW )−1 =
∞∑
k=0

(ρW )k =
∞∑
k=0

ρkW k

let f(ρ) = (A−1W ) = (
∞∑
k=0

ρkW k+1) =
∞∑
k=0

ρktr(W k+1)

|f(ρ1)− f(ρ2)| = |
∞∑
k=0

(ρk1 − ρk2)tr(W k+1)| ≤
∞∑
k=0

|ρk1 − ρk2|tr(W k+1)

≤ N
∞∑
k=0

|ρk1 − ρk2|, since tr(W k+1) ≤ N

= N
∞∑
k=1

|ρk1 − ρk2| = N
∞∑
k=1

|(ρ1 − ρ2)
k−1∑
m=0

(ρm1 ρ
k−1−m
2 )|

≤ |ρ1 − ρ2|
∞∑
k=1

kρk−1
m , given |ρ| ≤ ρm

= |ρ1 − ρ2|C, C =
∞∑
k=1

kρk−1
m which converges given 0 < ρm < 1

Easy to see f(ρ) is Lipschitz continous w.r.t. ρ given |ρ| ∈ [ρmin, ρmax] , 0 < ρmin ≤

ρmax < 1. This is guaranteed by Assumption A2. This R3 is Lipschitz continuous

w,r.t. ρ. (Note: tr(W k) ≤ N can be argued as following. All the elements of W

between 0 and 1 and the sum of each row of W is 1. Thus, each element of W 2 is

just a weighted average of elements in a certain column of W . Thus, each element of

W 2 is between 0 and 1. Follow the same procedure, we can show elements of W k is

between 0 and 1.)

A.1.3 Verification of assumption FA3

Assumption FA3 The Hessian matrix of L(θ), S(θ) = ∇2L(θ), exists and is positive

definite at θ0 with S0 = S (θ0) > 0 and is Lipschitz continuous at θ0 with constant

L2 > 0.
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S(θ) = ∇R(θ) and since R(θ) is a smooth function, S(θ) exists. First to show

S0 is Lipschitz continuous, we only need to show all its elements (elements in this

matrix) are Lipschitz continuous w.r.t. β, σ2 and ρ respectively. We show this by

showing the derivative of R1, R2 and R3 w.r.t. β, σ2 and ρ are Lipschitz continuous.

For derivatives of R1

R1 is a linear function for ρ and β, thus, ∂R1

∂ρ
and ∂R1

∂β
are Lipschitz continuous.

∂R1

∂σ2 is in the format of C
(σ2)2 . It is Lipschitz continuous as long as σ2 ∈ [ a,∞), a > 0.

And this is guaranteed by Assumption A2.

For derivatives of R2

R2 is a quadratic function for β and ρ, the derivative is a linear function, which

is Lipschitz continuous. ∂R2

∂σ2 is in the format of C1

(σ2)2 + C2

(σ2)3 . Easy to show it is

Lipschitz continuous w.r.t. x as long as σ2 ∈ [ a,∞), a > 0.

For derivatives of R3

Following the similar argument for showing R3 is Lipschitz continuous, easy to

see derivative of R3 is Lipschitz continuous w.r.t. β and σ2. Derivative second half

of R3 is also Lipschitz continuous w.r.t. ρ. If we differentiate the first half of R3, we

will get the term of kρk−1. We can show the derivative is also Lipschitz continuous by

following the same argument as showing the second half of R3 is Lipschitz continuous.

Next we show S0 is positive definite. We first we write down expression of S0

explicitly, S = ∇R = ∇2(−L). Take derivative of R with respect to β, σ2 and ρ,

− ∂L

∂β
= − 1

σ2
E{XT (Ay −Xβ)} (A.4)

− ∂L

∂σ2
=

n

2σ2
− 1

2(σ2)2
E{(Ay −Xβ)T (Ay −Xβ)} (A.5)

−∂L
∂ρ

= tr(A−1W )− 1

σ2
E{(Ay −Xβ)TWy} (A.6)
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Take second derivative and evaluate at θ0,

− ∂2L

∂β2

∣∣∣∣
θ0

=
E{XTX}

σ2
0

(A.7)

− ∂2L

∂β∂σ2

∣∣∣∣
θ0

= (
∂2L

∂σ2∂β
)T
∣∣∣∣
θ0

=
1

(σ2)2
E{XT (Ay −Xβ)}

∣∣∣∣
θ0

=
1

(σ2
0)2

E(XTε) = 0

(A.8)

− ∂2L

∂β∂ρ

∣∣∣∣
θ

= (
∂2L

∂ρ∂β
)T
∣∣∣∣
θ

=
1

σ2
0

E{XTWy} (A.9)

− ∂2L

∂(σ2)2

∣∣∣∣
θ0

= − n

2(σ2)2
+

1

(σ2)3
E{(Ay −Xβ)T (Ay −Xβ)}

∣∣∣∣
θ0

= − n

2(σ2
0)2

+
1

(σ2
0)3

E(εTε) =
n

2(σ2
0)2

(A.10)

− ∂2L

∂σ2∂ρ

∣∣∣∣
θ0

=
∂2L

∂ρ∂σ2

∣∣∣∣
θ0

=
E{(A0y −Xβ0)TWy}

(σ2
0)2

=
E[εTWy]

(σ2
0)2

=
tr(WA−1

0 )

σ2
0

(A.11)

− ∂2L

∂ρ2

∣∣∣∣
θ0

= tr(A−1
0 WA−1

0 W ) + tr((A−1
0 )TW TWA−1

0 )

+
1

σ2
0

βTXT (A−1
0 )TW TWA−1

0 Xβ

(A.12)
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Let S0 = ∇2L|θ0
, thus,

S0 = −


∂2L
∂β2

p×p
∂2L
∂β∂σ2

p×1

∂2L
∂β∂ρp×1

∂2L
∂σ2∂β 1×p

∂2L
∂(σ2)2

1×1

∂2L
∂σ2∂ρ1×1

∂2L
∂ρ∂β 1×p

∂2L
∂ρ∂σ2

1×1

∂2L
∂ρ2

1×1


∣∣∣∣∣∣∣∣∣∣
θ0

=


E{XTX}

σ2
0 p×p

0p×1
1
σ2

0
E{XTWy}p×1

01×p
n

2(σ2
0)2

1×1

tr(WA−1
0 )

σ2
0 1×1

1
σ2

0
E{yTW TX}1×p

tr(WA−1
0 )

σ2
0 1×1

T1×1


where, T = tr(A−1

0 WA−1
0 W ) + tr((A−1

0 )TW TWA−1
0 )

+
1

σ2
0

βTXT (A−1
0 )TW TWA−1

0 Xβ

= 2tr(A−1
0 WA−1

0 W ) +
1

σ2
0

βTXT (A−1
0 )TW TWA−1

0 Xβ

(given W is symmetric by Assumption A1)

(A.13)

To show S0 is positive definite, we only need to show all its leading principal

minors are positive. For the first p leading principle minors, consider a nonzero vector

z[p],

zTE(XXT )z = E((XTz)TXTz)

> 0, (given columns of X are linearly independent)

This means the first p order leading principal minor of S are positive. And this also

means that |E{X
TX}
σ2

0
| > 0. Denote M as the upper left (p + 1) × (p + 1) part of

S0. Then |M | = |E{X
TX}
σ2

0
| n
2(σ2

0)2
1×1

> 0. Thus, the (p+ 1)-th order leading principal

minor of S0 is also positive.
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Next we show the last leading principle minor of S0, i.e., the determine of S0

is also positive. We calculate the determinant along the (p+ 1)-th row.

Det =
n

2(σ0)2

∣∣∣∣∣∣∣
E{XTX}

σ2
0 3×3

1
σ2

0
E{XTWy}3×1

1
σ2

0
E{yTW TX}1×3 T1×1

∣∣∣∣∣∣∣
− tr(WA−1

0 )

σ2
0

∣∣∣∣∣∣∣
E{XTX}

σ2
0 3×3

03×1

1
σ2

0
E{yTW TX}1×3

tr(WA−1
0 )

σ2
0 1×1

∣∣∣∣∣∣∣
=

n

2(σ2
0)2

|E(XTX)|
σ2

0

T − tr(WA−1
0 )

σ2
0

tr(WA−1
0 )

σ2
0

|E(XTX)|
σ2

0

= [ntr(A−1
0 WA−1

0 W )− tr(WA−1
0 )tr(WA−1

0 )]
E(XTX)

(σ2
0)3

+
1

σ2
0

βTXT (A−1
0 )TW TWA−1

0 Xβ
nE(XTX)

2(σ2
0)3

(A.14)

Easy to see that the second part of of the last expression in the above equation is non-

negative. And we only need to show ntr(A−1
0 WA−1

0 W )−tr(WA−1
0 )tr(WA−1

0 ) > 0.

To prove this, first note that all eigenvalues of W are real (given W is symmetric)

and if λ is an eigenvalue of W , then λk is an eigenvalue of W k for k = 1, 2, · · · . Also,

A−1W = (
∑∞

k=0 ρ
kW k)W =

∑∞
k=0 ρ

kW k+1. Thus, all the eigenvalues of A−1W are

real. Let λi, i = 1, · · · , n be eigenvalues of A−1
0 W , According to Lemma 2.1 in [20],

λi cannot be all identical. By Cauchy-Schwarz inequality, we have

(1 · λ1 + 1 · λ2 + · · ·+ 1 · λn)2 < (1 + 1 + · · ·+ 1)(λ2
1 + λ2

2 + · · ·+ λ2
n)

i.e., (
∑

λi)
2 = [tr(A−1

0 W )]2 < n ·
∑

λ2
i = n · tr[(A−1

0 W )2]

(A.15)

Thus, we prove the determinant of S0 is positive and finish the proof of S0 is positive

definite.

A.1.4 Verification of assumption FA4

Assumption FA4 Assume E‖∇`(θ;Z)‖2 ≤ C (1 + ‖θ‖2) for some C and

E ‖∇`(θ;Z)−∇` (θ0;Z)‖2 ≤ δ (‖θ − θ0‖) for some δ(·) with δ(x)→ 0 as x→ 0.
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First, we prove E‖∇`(θ)‖2 ≤ C(1 + ‖θ‖2) for some constant C. We prove

this by showing that E‖∇`β‖2 ≤ C1(1 + ‖θ‖2), E‖∇`σ2‖2 ≤ C2(1 + ‖θ‖2), and

E‖∇`ρ‖2 ≤ C3(1 + ‖θ‖2), here, C1, C2, and C3 are constants.

Prove E‖∇`β‖2 ≤ C1(1 + ‖θ‖2)

Assume σ2 is bounded below by σ̃2 and ‖β‖ is bounded above.

E‖∇`β‖2 ≤ 1

σ̃2
E[(XTAy −XTXβ)T (XTAy −XTXβ)]

≤ 2

σ̃2
E[(XTAy)T (XTAy) + (XTXβ)T (XTXβ)], by triangle inequality

= K1E[yTAXXTAy + βTXTXXTXβ], let K1 =
2

σ̃2

= K1[Tr(AXXTAσ2
0(A−1

0 )2) + (A−1
0 Xβ0)TAXXTA(A−1

0 Xβ0)

+ βTXTXXTXβ]

(A.16)

Here, σ2
0(A−1

0 )2,A−1
0 Xβ0,X

TXXTX are constants, andAXXTA = (I−ρW )XXT (I−

ρW ) is a second order function of ρ, so we can bound Tr(AXXTAσ2
0(A−1

0 )2) +

(A−1
0 Xβ0)TAXXTA(A−1

0 Xβ0) with K2(1 + ‖θ‖2). Also, easy to see we can bound

βTXTXXTXβ with K3(1 + ‖θ‖2). Thus, E‖∇`β‖2 ≤ C1(1 + ‖θ‖2).

Prove E(∇`σ2)2 ≤ C2(1 + ‖θ‖2)

E(∇`σ2)2 = E[− n

2σ2
+

1

2(σ2)2
(Ay −Xβ)T (Ay −Xβ)]2

≤ 2
n2

(2σ2)2
+ 2(

1

2(σ2)2
)2E[(Ay −Xβ)T (Ay −Xβ)]2

≤ K4 +K5E[(Ay −Xβ)T (Ay −Xβ)]2, since σ2 ≥ σ2
0

≤ K4 +K5E[2‖Ay‖2 + 2‖Xβ‖2]2

≤ K4 +K5E[8‖Ay‖4 + 8‖Xβ‖4]

(A.17)
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Clearly, E[8‖Ay‖4 + 8‖Xβ‖4] is a 4th order function of ρ and β, ρ is between −1

and 1 and ‖β‖ is bounded above, so that E(∇`σ2)2 ≤ C2(1 + ‖θ‖2).

Prove E(∇`ρ) ≤ C3(1 + ‖θ‖2)

E(∇`ρ)2 = E[−tr(A−1W ) +
(Ay −Xβ)TWy

σ2
]2

≤ 2[tr(A−1W ]2 +K6E(yTAWy − βTXTWy)2, since σ2 ≥ σ̃2

≤ 2[tr(A−1W ]2 + 2K6E[(yTAWy)2 + (βTXTWy)2]

(A.18)

Note that,

|tr(A−1W )| = |tr(
∞∑
k=0

ρkW k+1)| ≤ n
∞∑
k=0

|ρ|k,

since elements of W k are positive and less than 1

=
n

1− |ρ|
≤ n

1− ρ̃
= K7, ρ̃ = min(|ρ|).

(A.19)

Also, (yTAWy)2 and (βTXTWy)2 are 2nd order polynomial function of ρ and β,

thus, E(∇`ρ) ≤ C3(1 + ‖θ‖2).

Then we prove E‖∇`(θ, Z) − ∇`(θ0, Z)‖2 ≤ δ(‖θ − θ0‖) for some δ(·) with

δ(x) → 0 as x → 0. Let δ1(x), δ2(x) and δ3(x) are functions go to 0 as x → 0.

We prove this by show that (1) E‖∇`β(θ) − ∇`β(θ0)‖2 ≤ δ1(‖θ − θ0‖), (2)

E‖∇`σ2(θ)−∇`σ2(θ0)‖2 ≤ δ2(‖θ−θ0‖) and (3) E‖∇`ρ(θ)−∇`ρ(θ0)‖2 ≤ δ3(‖θ−θ0‖).
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Prove E‖∇`β(θ)−∇`β(θ0)‖2 ≤ δ1(‖θ − θ0‖)

∇`β(θ)−∇`β(θ0) =
1

σ2
(XTAy −XTXβ)− 1

σ2
0

(XTA0y −XTXβ0)

= (
1

σ2
XTAy − 1

σ2
0

XTA0y)− (
1

σ2
XTXβ − 1

σ2
0

XTXβ0)

= [(
1

σ2
− 1

σ2
0

)XTAy +
1

σ2
0

XT (A−A0)y]

− [(
1

σ2
− 1

σ2
0

)XTXβ +
1

σ2
0

XTX(β − β0)]

(A.20)

E‖∇`β(θ)−∇`β(θ0)‖2

≤ 2E‖( 1

σ2
− 1

σ2
0

)XTAy +
1

σ2
0

XT (A−A0)y‖2

+ 2‖( 1

σ2
− 1

σ2
0

)XTXβ +
1

σ2
0

XTX(β − β0)‖2

≤ 4(
1

σ2
− 1

σ2
0

)2E‖XTAy‖2 +
4

(σ2
0)2

E‖ 1

σ2
0

XT (ρ− ρ0)y‖2

+ 4(
1

σ2
− 1

σ2
0

)2E‖XTXβ‖2 +
4

(σ2
0)2

E‖XTX(β − β0)‖2

≤ 4K8
(σ2

0 − σ2)2

σ2σ2
0

+
4K9

(σ2
0)2

(ρ− ρ0)2+ ≤ 4K10
(σ2

0 − σ2)2

σ2σ2
0

+
4K11

(σ2
0)2
‖β − β0‖2

(A.21)

K8 is the maximum of E‖XTAy‖2, E‖XTAy‖2 is a smooth function of ρ, and ρ is

in a closed set, thus, maximum exist and is finite. K9 = E‖ 1
σ2

0
XTy‖2. K10 is the

maximum of E‖XTXβ‖2 and this maximum exist and is finite since ‖β‖ is bounded

above.

Note,

‖XTX(β − β0)‖2 = (β − β0)XTXXTX(β − β0) ≤ λmax‖β − β0‖ (A.22)

Here, λmax is the largest eigenvalue of XTXXTX and K11 = λmax. Thus, easy to

show E‖∇`β(θ) − ∇`β(θ0)‖2 ≤ δ1(‖θ − θ0‖) = C4‖(‖θ − θ0‖)‖2 for some constant

C4.
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Prove E‖∇`σ2(θ)−∇`σ2(θ0)‖2 ≤ δ2(‖θ − θ0‖)

∇`σ2(θ)−∇`σ2(θ0)

= − n

2σ2
+

1

2(σ2)2
(Ay −Xβ)T (Ay −Xβ) +

n

2σ2
0

− 1

2(σ2)2
(A0y −Xβ0)T (A0y −Xβ0), letσ2 = γ, σ2

0 = γ0

=
n

2
(γ0 − γ) +

1

2
γ2(Ay −Xβ)T (Ay −Xβ)− 1

2
γ2

0(Ay −Xβ)T (Ay −Xβ)

+
1

2
γ2

0(Ay −Xβ)T (Ay −Xβ)− 1

2
γ2

0(A0y −Xβ0)T (A0y −Xβ0)

=
n

2
(γ0 − γ) +

1

2
(γ2 − γ2

0)(Ay −Xβ)T (Ay −Xβ)

+
1

2
γ2

0 [(Ay −Xβ)T (Ay −Xβ)− (A0y −Xβ0)T (A0y −Xβ0)].

(A.23)

Thus,

E[‖∇`σ2(θ)−∇`σ2(θ0)‖2]

≤ 3[
n

2
(γ0 − γ)]2 + 3E[

1

2
(γ2 − γ2

0)(Ay −Xβ)T (Ay −Xβ)]2

+ 3E{1

2
γ2

0 [(Ay −Xβ)T (Ay −Xβ)− (A0y −Xβ0)T (A0y −Xβ0)]}2

(A.24)

And,

(γ0 − γ)2 = (
(σ2

0)2 − (σ2)2

(σ2
0)2(σ2)2

)2 ≤ K13‖θ − θ0‖ (A.25)

(γ2 − γ2
0)2 =

(σ2
0 + σ2)2(σ2

0 − σ2)2

(σ2)4(σ2
0)4

≤ K14(σ2 − σ2
0)2 (A.26)
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E[(Ay−Xβ)T (Ay−Xβ)]2 can be bounded above, since it is a continuous function

of ρ and β and both ρ and β are in a closed set.

[(Ay −Xβ)T (Ay −Xβ)− (A0y −Xβ0)T (A0y −Xβ0)]]2

= [yTAAy − yTA0A0y − (2yTAXβ − 2yTA0Xβ0)

+ βTXTXβ − β0X
TXβ0]2

≤ 3[yT (AA−A0A0)y]2 + 12(yTAXβ − yTA0Xβ0)2

+ 3(βTXTXβ − β0X
TXβ0)2

(A.27)

Note,

E[yT (AA−A0A0)y]2

= Tr[(AA−A0A0)σ2
0A0A0] + (A−1

0 Xβ0)T (AA−A0A0)(A−1
0 Xβ0)

(A.28)

and

‖AA−A0A0‖ = ‖(I − ρW )2 − (I − ρ0W )2‖

= ‖−2(ρ− ρ0)W + (ρ− ρ0)(ρ+ ρ0)W 2‖2

≤ 4(ρ− ρ0)2‖W ‖2 + 4(ρ− ρ0)2‖W 2‖2 ≤ K15(ρ− ρ0)2

(A.29)

Thus, E[yT (AA−A0A0)y]2 ≤ K16‖θ − θ0‖2. Note,

(yTAXβ − yTA0Xβ0)2

= (yTAXβ − yTA0Xβ + yTA0Xβ − yTA0Xβ0)2

≤ 2(yTAXβ − yTA0Xβ)2 + 2(yTA0Xβ − yTA0Xβ0)2

= 2[yT (ρ0 − ρ)WXβ]2 + 2[yTA0X(β − β0)]2

≤ K17‖θ − θ0‖2, since ‖β‖ is bounded above.

(A.30)
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Note,

(βTXTXβ − β0X
TXβ0)2

= [(β − β0 + β0)TXTX(β − β0 + β0)− βT0XTXβ0]2

= [(β − β0)TXTX(β − β0) + 2(β − β0)TXTXβ0]2

≤ K18‖θ − θ0‖4 +K19‖θ − θ0‖3 +K20‖θ − θ0‖2

(A.31)

Combined all the argument above, we proved that E‖∇`σ2(θ)−∇`σ2(θ0)‖2 ≤ δ2(‖θ−

θ0‖) = K21‖θ − θ0‖4 +K22‖θ − θ0‖3 +K23‖θ − θ0‖2.

Prove E‖∇`ρ(θ)−∇`ρ(θ0)‖2 ≤ δ3(‖θ − θ0‖)

∇`ρ(θ)−∇`ρ(θ0)

= −tr(A−1W ) + tr(A−1
0 W ) +

1

σ2
(Ay −Xβ)TWy

− 1

σ2
0

(A0y −Xβ0)TWy)

= −tr[(A−1 −A−1
0 )W ] + {[( 1

σ2
− 1

σ2
0

)Ay −Xβ)TWy

+
1

σ2
0

[(Ay −Xβ)T − (A0y −Xβ0)T ]Wy}

(A.32)

We have shown above ( 1
σ2 − 1

σ2
0
)2 ≤ K13‖θ − θ0‖2. Also, ‖Ay − Xβ)TWy‖2 is

bounded above. Note,

E{[(Ay −Xβ)T − (A0y −Xβ0)T ]Wy}2

= E{yT (A−A0)Wy − (β − β0)TXTWy}2

= E{yT (ρ0 − ρ)W 2y − (β − β0)TXTWy}2

≤ 2(ρ− ρ0)2E‖yTWWy‖2 + 2E‖(β − β0)TXTWy‖2

≤ 2K24(ρ− ρ0)2 + 2E[(β − β0)TXTWyyTW TX(β − β0)]

≤ 2K24(ρ− ρ0)2 + 2 ˜λmax‖β − β0‖2,

λ̃max is the max eigenvalue of XTWyyTW TX

(A.33)
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{tr[(A−1 −A−1
0 )W ]}2

= {tr[
∞∑
k=0

(ρk0 − ρk)W k+1]}2

≤ {tr[
∞∑
k=0

|ρk0 − ρk|W k+1]}2

= {tr[
∞∑
k=0

|ρ0 − ρ||ρk−1
0 + ρk−2

0 ρ+ · · ·+ ρk−1|W k+1]}2

≤ {tr[
∞∑
k=0

|ρ0 − ρ|kρ̃W k+1]}2, ρ̃ = min(|ρ|)

≤ K25(ρ− ρ0)2,
∞∑
k=0

kρ̃k−1 converges since ρ̃ < 1

(A.34)

Thus, E‖∇`ρ(θ)−∇`ρ(θ0)‖2 ≤ δ3(‖θ − θ0‖) = C6‖θ − θ0‖2.
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APPENDIX B

PROOFS OF PROPOSITIONS

Detailed proof of propositions in this dissertation are shown here.

B.1 Proof of Proposition 1

Proposition. A one-to-one correspondence exists between each diagonal element of

A−1 and each data point of the SAR model.

Proof. To show this we only need to show that if we swap the location of two data

in the neighborhood matrix W , the location of these two corresponding diagonal

elements of A−1 switches accordingly and other diagonal elements do not change.

Suppose we want to swap the location of ith and jth data point to generate a new

neighborhood matrix W ′ and A′ = I − ρW ′. We want to see how A′−1 changes

compared to A−1.

Indeed, to generate W ′, we only need to swap the ith and jth row of W , and

then swap the ith and jth column of W . Let P be a permutation matrix, which

is generated by swapping the ith and jth row of the identity matrix I, note that

PP = I. Thus, we have W ′ = PWP , and accordingly we have

A′ = I − ρPWP = PIP − ρPWP

= P (I − ρW )P = PAP .

(B.1)

Then,

A′
−1

= (PAP )−1 = P−1A−1P−1 = PA−1P . (B.2)

Thus, compared to A−1, A′−1 just swaps the ith and jth rows, and also, the ith

and jth columns. These two swaps will lead to the swap of the ith and jth diagonal

element of A−1, and keep other diagonal elements unchanged.
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B.2 Proof of Proposition 3

Proposition 3. Let the SAR model defined as Equation (2.1), let θ = [βT , σ2, ρ]T ,

θ0 = [βT0 , σ
2
0, ρ0]T be the true parameter, and ∇`β,i,∇`σ2,i,∇`ρ,i are the contribution

of i-th data unit to the derivative of log-likelihood w.r.t. β, σ2 and ρ, respectively.

Then, E[∇`β,i(θ0)] = 0,E[∇`σ2,i(θ0)] = E[∇`ρ,i(θ0)] = 0. Here, the expectation is

with respect to Y , the conclusion is still true if the expectation is with respect to Y

and X.

Proof. As discussed in Section 2.3, the expression for ∇`β,i,∇`ρ,i and ∇`σ2,i are:

∇`β,i =
1

σ2
xi(yi − ρȳi − xTi β) (B.3a)

∇`ρ,i = −1

ρ
((A−1)ii − 1) +

1

σ2
(yi − ρȳi − xTi β)ȳi (B.3b)

∇`σ2,i = − 1

2σ2
+

1

2(σ2)2
(yi − ρȳi − xTi β)2 (B.3c)

It is easy to see that E[∇`β,i(θ0)] = 0 and E[∇`σ2,i(θ0)] = 0, since yi−ρ0ȳi−βT0 xi = εi

and E[εi] = 0, V ar(εi) = σ2. For ∇`ρ,i(θ0),

E[∇`ρ,i(θ0)] = − 1

ρ0

((A0
−1)ii − 1) +

1

σ2
0

E[(yi − ρ0ȳi − βT0 xi)ȳi] (B.4)

and,

E[(yi − ρ0ȳi − βT0 xi)ȳi] = E[εiwiY ] = E[εiwi(A
−1
0 Xβ +A−1

0 ε)]

=E[εiwiA
−1
0 Xβ] + E[εiwiA

−1
0 ε] = E[(eiε)wiA

−1
0 ε] = E[wiA0

−1ε(εTeTi )]

=wiA
−1
0 E[εεT ]eTi = wiA

−1
0 σ2

0Ie
T
i = σ2

0wiA
−1
0 e

T
i = σ2

0eiWA−1
0 e

T
i ,

(B.5)

where, ei is a 1 × n vector and ei = [0, · · · , 0, 1, 0, · · · , 0], i.e., the ith element is 1

and the rest are 0.

Thus,

E[∇`ρ,i(θ0)] = − 1

ρ0

((A0
−1)ii − 1) + eiWA−1

0 e
T
i . (B.6)
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To show E[∇`ρ,i(θ0)] = 0, we only need to show

(A0
−1)ii − 1 = ρ0eiWA−1

0 e
T
i . (B.7)

Note A−1
0 = (I − ρ0W )−1 = I +

∑∞
k=1(ρ0W )k, thus, the LHS of (B.7) equals

to
∑∞

k=1 ρ
k
0(W k)ii.

Now the RHS of (B.7):

RHS = ρ0eiW (I +
∞∑
k=1

ρk0W
k)eTi = ei(ρ0W +

∞∑
k=1

ρk+1
0 W k+1)eTi

= ei(
∞∑
k=1

ρk0W
k)eTi =

∞∑
k=1

ρk0(eiW
keTi )

=
∞∑
k=1

ρk0(W k)ii = LHS of (B.7).

(B.8)
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APPENDIX C

S0 AND V 0 FOR A SINGLE DATA POINT

Let ∇`i = [∇`Tβ,i,∇`σ2,i,∇`ρ,i]T be the contribution from the i-th data unit to the

derivative of the likelihood of the SAR model. Let θ0 be the true parameter value,

S0,i = −E[∇2`i(θ0)] and V 0,i = E[∇`i(θ0)T∇`i(θ0)]. In this chapter we derive the

explicit expression of S0,i and V 0,i for the SAR model Equation (2.1).

Note that both S0 and V 0 are symmetric and we can write explicitly as:

S0 = −E


∂2`i

∂β∂βT
|θ0 ∗ ∗

∂2`i
∂βT ∂σ2 |θ0

∂2`i
∂(σ2)2 |θ0 ∗

∂2`i
∂βT ∂ρ

|θ0

∂2`i
∂σ2∂ρ

|θ0

∂2`i
∂ρ2 |θ0


and

V 0 = E


∂`i
∂β

(∂`i
∂β

)T |θ0 ∗ ∗

(∂`i
∂β

)T ∂`i
∂σ2 |θ0 ( ∂`i

∂σ2 )2|θ0 ∗

(∂`i
∂β

)T ∂`i
∂ρ
|θ0

∂`i
∂σ2

∂`i
∂ρ
|θ0 (∂`i

∂ρ
)2|θ0


Below we workout the expression of each element in these two matrices.

E[
∂2`i

∂β∂βT
|θ0 ]

= E[
∂( 1

σ2xi(yi − ρȳi − βTxi))
∂β

|θ0 ] = E[− 1

σ2
0

xix
T
i ] = − 1

σ2
0

E(xix
T
i )

E[
∂`i
∂β

(
∂`i
∂β

)T |θ0]

= E[(
1

σ2
xi(yi − ρȳi − βTxi))(

1

σ2
xi(yi − ρȳi − βTxi))T |θ0 ]

= E[
1

σ2
0

xiεi(
1

σ2
0

xiεi)
T ] =

1

(σ2
0)2

E[xix
T
i ]E[ε2i ] =

1

σ2
0

E[xix
T
i ]
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E[
∂2`i

∂βT∂σ2
|θ0 ]

= E[
∂( 1

σ2xi(yi − ρȳi − βTxi)T )

∂σ2
|θ0 ] = − 1

(σ2
0)2

E[xTi εi] = 0T

E[(
∂`i
∂β

)T
∂`i
∂σ2
|θ0 ]

= E[(
1

σ2
xi(yi − ρȳi − βTxi)T (− 1

2σ2
+

1

2(σ2)2
(yi − ρȳi − βTxi)2)|θ0 ]

= E[
1

σ2
0

xTi εi(−
1

2σ2
0

+
1

2(σ2
0)2

)ε2i ] = 0T

E[
∂2`i
∂(σ2)2

|θ0 ]

= E[
∂(− 1

2σ2 + 1
2(σ2)2 (yi − ρȳi − βTxi)2)

∂σ2
|θ0 ]

=
1

2(σ2
0)2
− 1

(σ2
0)3

E(ε2i ) = − 1

2(σ2
0)2

E(
∂`i
∂σ2

)2|θ0 ]

= E[(− 1

2σ2
+

1

2(σ2)2
(yi − ρȳi − βTxi)2)2|θ0 ]

= E[(− 1

2σ2
0

+
1

2(σ2
0)2

ε2i )
2]

=
1

4(σ2
0)2
− 1

2(σ2
0)3

E[ε2i ] +
1

4(σ2
0)4

E[ε4i ]

=
1

4(σ2
0)2
− 1

2(σ2
0)3

σ2
0 +

1

4(σ2
0)4

3(σ2
0)2 =

1

2(σ2
0)2

Let ei = [0, · · · , 1, · · · , 0]T , i.e., ei is a n by 1 column vector whose ith element

is 1 and the rest are 0. Also, note

ȳi = wiy = eTi Wy = eTi W (A−1
0 Xβ0 +A−1

0 ε)

And easy to verify that, −1
ρ
((A)−1

ii − 1) = −eTi WA−1ei
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E[
∂2`i

∂βT∂ρ
|θ0 ]

= E[
∂( 1

σ2xi(yi − ρȳi − βTxi)T

∂ρ
|θ0 ]

= − 1

σ2
0

E[ȳix
T
i ] = − 1

σ2
0

E[eTi W (A−1
0 Xβ +A−1

0 ε)e
T
i X]

= − 1

σ2
0

E[(eTi WA−1
0 Xβ0)eTi X] = − 1

σ2
0

eTi WA−1
0 E[Xβ0e

T
i X]

E[(
∂`i
∂β

)T
∂`i
∂ρ
|θ0 ]

= E[(
1

σ2
xi(yi − ρȳi − βTxi)T (−eTi WA−1ei +

1

σ2
(yi − ρȳi − βTxi)ȳi)|θ0 ]

=
1

σ2
0

E[εix
T
i (−eTi WA−1ei +

1

σ2
0

εiȳi)] =
1

(σ2
0)2

E[xTi ε
2
i ȳi]

=
1

(σ2
0)2

E[xTi ε
2
ie

T
i W (A−1

0 Xβ0 +A−1
0 ε)] =

1

(σ2
0)2

E[ε2ie
T
i WA−1

0 Xβ0x
T
i ]

=
1

σ2
0

eTi WA−1
0 E[Xβ0e

T
i X]

E[
∂2`i
∂σ2∂ρ

|θ0 ]

= E[
∂(−eTi WA−1ei + 1

σ2 (yi − ρȳi − βTxi)ȳi)
∂σ2

|θ0 ]

= E[− 1

(σ0)2
εiȳi] = − 1

(σ2
0)2

E[εie
T
i W (A−1

0 Xβ0 +A−1
0 ε)]

= − 1

(σ2
0)2

E[eTi WA−1
0 εεi] = − 1

(σ2
0)2

E[eTi WA−1
0 εε

Tei]

= − 1

σ2
0

eTi WA−1
0 ei
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E[
∂`i
∂σ2

∂`i
∂ρ
|θ0 ]

= E[(− 1

2σ2
+

1

2(σ2)2
(yi − ρȳi − βTxi)2)(−eTi WA−1ei +

1

σ2
(yi − ρȳi − βTxi)ȳi)|θ0 ]

= E[(− 1

2σ2
0

+
1

2(σ2
0)2

ε2i )(−eTi WA−1ei +
1

σ2
0

εiȳi)]

= E[(− 1

2σ2
0

+
1

2(σ2
0)2

ε2i )(−eTi WA−1ei)] + E[(− 1

2σ2
0

+
1

2(σ2
0)2

ε2i )
1

σ2
0

εiȳi]

= E[(− 1

2σ2
0

+
1

2(σ2
0)2

ε2i )
1

σ2
0

εiȳi] = − 1

2(σ2
0)2

E[εiȳi] +
1

2(σ2
0)3

E[ε3i ȳi]

= − 1

2σ2
0

eTi WA−1
0 ei +

1

(2σ2
0)3

E[ε3ie
T
i W (A−1

0 Xβ0 +A−1
0 ε)]

= − 1

2σ2
0

eTi WA−1
0 ei +

1

(2σ2
0)3
eTi WA−1

0 E[ε3i ε]

= − 1

2σ2
0

eTi WA−1
0 ei +

1

(2σ2
0)3
eTi WA−1

0 E(ε4i )ei

= − 1

2σ2
0

eTi WA−1
0 ei +

1

(2σ2
0)3
eTi WA−1

0 (3(σ2
0)2)ei

=
1

σ2
0

eTi WA−1
0 ei

Note that ∂A−1

∂ρ
= −A−1 ∂A

∂ρ
A−1 = A−1WA−1. To simplify notation, let

P = eTi WA−1
0 Xββ

TXT (A−1
0 )TW Tei

E[
∂2`i
∂ρ2
|θ0 ]

= −eTi WA−1
0 WA−1

0 ei −
1

σ2
0

P − eTi WA−1
0 (A−1

0 )TW Tei

E[(
∂`i
∂ρ

)2|θ0 ]

= (eTi WA−1
0 ei)

2 +
1

σ2
0

P + eTi WA−1
0 (A−1

0 )TW Tei
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APPENDIX D

R PACKAGE

This appendix briefly describes a R package, ’SGDCI’, developed for applying SGD

algorithm for parameter estimation and perturbed estimates for CIs construction.

The most updated version of the package is available at http://github.com/

ganluannj/Spatial_SGD_Inference. It contains the parameter estimation function

and CIs construction function for the following models:

• Linear mean regression

• Logistic regression

• linear quantile regression

• SAR mean regression
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