
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

12-31-2021

Machine learning techniques for network analysis Machine learning techniques for network analysis

Irfan Lateef
New Jersey Institute of Technology, irfanlateefus@gmail.com

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Digital Communications and Networking Commons, and the Signal Processing Commons

Recommended Citation Recommended Citation
Lateef, Irfan, "Machine learning techniques for network analysis" (2021). Dissertations. 1571.
https://digitalcommons.njit.edu/dissertations/1571

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1571?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1571&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

MACHINE LEARNING TECHNIQUES FOR NETWORK ANALYSIS

by
Irfan Lateef

The network’s size and the traffic on it are both increasing exponentially, making it

difficult to look at its behavior holistically and address challenges by looking at link

level behavior. It is possible that there are casual relationships between links of a

network that are not directly connected and which may not be obvious to observe.

The goal of this dissertation is to study and characterize the behavior of the entire

network by using eigensubspace based techniques and apply them to network traffic

engineering applications.

A new method that uses the joint time-frequency interpretation of eigensubspace

representation for network statistics as features for identification and tracking traffic

flows based on the link level activity is proposed. Eigencoefficients (frequency domain

feature set) and eigencomponents (time domain features) are jointly utilized to

quantify their combined significance on the representation of each link data (each

component of the link traffic vectors) in the eigensubspace.

Several experiments are conducted using the joint time-frequency method to

analyze the traffic data obtained from the Internet2 network. It is shown that the

analysis with link-level resolution brings advantages for network traffic engineering

applications. Specifically, this technique is applied to two scenarios: to identify large

traffic flows and anomalous events in the network.

Furthermore, machine learning methods are investigated to identify network

paths using eigenanalysis of link statistics as the feature set. The merit of this

method is validated by applying the technique on various network experiments.

Eigenvectors and eigenflows in the subspace are jointly used as factors (features)

for linear regression to forecast the network link traffic. It is demonstrated that the

eigensubspace based autoregressive order two, AR (2), predictor is superior to the

time-domain based predictor to forecast the link level traffic of a network.

The unique contribution of this dissertation is using joint time-frequency

interpretation of eigensubspace as features for identification of patterns and anomalies

in conjunction with machine learning methods to automate the process and improve

the accuracy of the method. This idea is not only applicable to the network analysis

as demonstrated in this dissertation, but also applies to various fields of knowledge

including medicine, finance and engineering. All of these fields have very large data

sets in time domain, as well as complex patterns and relationships that exist among

and are not discernible to human mind. This opens up a big area of application

research using a combination of eigensubspace and machine learning.

In the short term, the findings can be used to address 5G wireless energy

optimization challenges wherein the problem involves a large number of communi-

cation channels serving an equally large number of users in time varying channel

conditions. In the long term, the work can be expanded upon by using a Nonlinear

autoregressive exogenous (NARX) machine learning model for forecasting in order to

improve the accuracy, while also exploring other machine learning techniques such as

Long short-term memory (LSTM) model.

MACHINE LEARNING TECHNIQUES FOR NETWORK ANALYSIS

by
Irfan Lateef

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Engineering

Helen and John C. Hartmann Department of
Electrical and Computer Engineering

December 2021

Copyright © 2021 by Irfan Lateef

ALL RIGHTS RESERVED

APPROVAL PAGE

MACHINE LEARNING TECHNIQUES FOR NETWORK ANALYSIS

Irfan Lateef

Dr. Ali N. Akansu, Dissertation Advisor Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Nirwan Ansari, Committee Member Date
Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr. Edip Niver, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Abdallah Khreishah, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Mehmet Ulema, Committee Member Date
Professor of Computer Information Systems, Manhattan College

BIOGRAPHICAL SKETCH

Author: Irfan Lateef

Degree: Doctor of Philosophy

Date: December 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2021

• Master of Science in Telecommunications,
New Jersey Institute of Technology, Newark, NJ, 2000

• Bachelor of Science in Electrical Engineering,
Aligarh Muslim University, Aligarh, India, 1987

Major: Computer Engineering

Presentations and Publications:

I. Lateef, and A. N. Akansu, “Machine Learning in Eigensubspace for Network Path
Identification and Flow Forecast,” IET Communications, pages 1997-2006,
2021.

I. Lateef, and A. N. Akansu, “Link-level interpretation of eigenanalysis for network
traffic flows,” In Proceedings of Conference on Information Sciences and
Systems (CISS), pages 1-6, 2017.

iv

Dedicated to my mother Waheedunnisa Begum who
inspired me and my wife Farah who supported me.

v

ACKNOWLEDGMENT

I would like to express my deepest gratitude to Professor Ali Akansu, who not only

served as my research advisor, providing invaluable insights and guidance, but also

supported me with encouragement and motivation throughout the project. This work

would not have been possible without his untiring support and patience.

I would also like to thank Professors Nirwan Ansari, Edip Niver, Abdallah

Khreishah and Memhet Ulema for taking the time to serve on my dissertation

committee and provide the necessary direction of the work.

A very special thanks to my colleagues Dr. Mustafa Torun and Dr. Onur

Yilmaz helping me during the initial discussion and the lab setup.

I would like to acknowledge and thank Dr. Kathleen Meier-Hellstern, Dr.

Gagan Choudhury and Dr. Simon Tse from AT&T for the valuable insights into

the real-world network challenges and providing the network traffic data to validate

the research.

I would like to thank the NOC group at Internet2 for providing the network

traffic data and supporting me with the necessary clarification about the format of

the data for initial ingestion and validation based on the network topology.

Finally, I would like to thank my four children who cheered me on from time

to time. Anim and Ayan who read and corrected the English in my work, Afia who

helped me with Adobe Photoshop and Afnan with software and computer support.

This endeavor would not have come to fruition without the continuous and unwavering

support and patience of my wife, Farah.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Problem Description . 1

1.2 Principal Component Analysis (Eigen Decomposition) 2

1.3 Machine Learning based Analysis . 2

1.4 Dissertation Outline . 3

2 NETWORK APPLICATION BACKGROUND 5

2.1 Introduction to Traffic Engineering 5

2.2 Methods and Techniques for Traffic Engineering 6

2.3 Traditional Network Performance Monitoring and Analysis 8

2.3.1 Data Measurement Techniques 9

2.3.2 Network Monitoring . 13

2.3.3 Flow Monitoring . 16

2.3.4 Limitations . 16

2.3.5 New Ideas . 17

3 THEORETICAL FOUNDATION . 18

3.1 Discrete AR(1) Signal Model . 18

3.2 Orthogonal Signal Expansions . 19

3.3 Least-Squares Interpretation . 21

3.4 Block Transforms . 23

3.5 Eigendecomposition of Correlation Matrix 24

4 EIGENANALYSIS AND EIGENFLOWS OF A NETWORK 26

4.1 Eigenanalysis and Eigenflows . 26

5 INTERPRETATION OF EIGENFLOWS 30

5.1 Link-Level Interpretation of Eigenflows 30

5.2 Representation of a Link in Eigensubspace 31

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

5.3 Identification of Large Network Flows 32

6 MACHINE LEARNING TECHNIQUES FOR FLOW IDENTIFICATION 36

6.1 ML to Identify Paths with Network Features in Eigensubspace 36

7 NETWORK FORECASTING . 42

7.1 Network Forecast in Eigensubspace 42

8 COMPUTATIONAL COMPLEXITY AND PERFORMANCE ANALYSIS 47

8.1 Computational Complexity . 47

8.2 Performance Comparison of Time Series and PCA Based Network
Forecasts . 48

9 EXPERIMENTS AND RESULTS . 51

9.1 Eigenanalysis Experiments and Results 51

9.1.1 Description of Data and Network 51

9.1.2 Experiment1 . 52

9.2 Machine Learning Experiments and Results 53

9.2.1 Experiment 1 . 53

9.2.2 Experiment 2 . 54

9.2.3 Experiment 3 . 55

9.2.4 Experiment 4 . 56

9.2.5 Experiment 5 . 57

9.2.6 Experiment 6 . 59

9.2.7 Experiment 7 . 60

10 CONCLUSIONS . 62

REFERENCES . 64

viii

LIST OF TABLES

Table Page

9.1 Levenberg-Marquardt Model Validation Performance. 53

9.2 Scaled Conjugate Gradient with Small Samples 55

9.3 SCG with Large Samples . 56

9.4 SCG with Large Samples . 57

9.5 SCG with 30 Neurons in the Hidden Layers 58

9.6 SCG with 40 Neurons in the Hidden Layers 59

9.7 Bayesian Regularization - Model Validation Performance 61

ix

LIST OF FIGURES

Figure Page

3.1 Orthogonality principle demonstration. 23

4.1 The variation of the first eigenflow in time. 27

4.2 The corresponding components of the first eigenvector for one-week
duration of Internet2 link data where N=30. 27

5.1 (a) Components of Eigenvectors, and (b) Joint time-frequency represen-
tation of eigenanalysis where N=30. 34

5.2 (a) 7th column vector of Ψ in Figure 5.1b, and (b) Mapping of the
significant components of the 7th column vector to network paths. . . 35

6.1 Multilayer perceptron model. 37

6.2 Artificial Neural Network Model. 38

6.3 Model validation performance. 41

8.1 Performance comparisons of the two AR(2) based link traffic predictors in
5-minute measurement intervals for one-hour of historical data window
size. The red curve is for the time-domain implementation, while the
blue one is for the implementation in the eigensubspace. 50

9.1 One link down representation in time. 52

9.2 Three links down representation in time. 52

9.3 Levenberg-Marquardt Model Validation Performance. 54

9.4 SCG with small samples - Model Validation Performance. 55

9.5 SCG with large samples - Model Validation Performance. 56

9.6 SCG with large samples (repeated) - Model Validation Performance. . . 57

9.7 SCG with 30 neurons in the hidden layers - Model Validation Performance. 58

9.8 SCG with 40 neurons in the hidden layer - Model Validation Performance. 60

9.9 Bayesian Regularization - Model Validation Performance. 61

x

CHAPTER 1

INTRODUCTION

Network Performance Analysis and Network Traffic Engineering has been extensively

studied for the last couple of decades using well-known time series techniques and

traffic estimation methods. These methods have largely focused on localized data

collection and analysis for traffic matrix prediction and other applications. The focus

of this dissertation is to look at the entire network holistically and formulate the

problem in terms of the state of the entire network using eigensubspace and machine

learning techniques. This chapter provides an introduction to the main topics of this

dissertation and an outline of the thesis.

1.1 Problem Description

Recent developments in the analysis of network traffic data have mostly focused on

classification and characterization of flows by using the flow level statistics [1, 2, 3, 4,

5, 6, 7, 8, 9]. Principal Component Analysis (PCA) was used to analyze the IP flow

statistics to identify anomalous behavior in the network [10]. They used PCA as a

dimension reduction tool by reducing a very large number of flows into a few most

significant eigenflows for analysis. Similarly, PCA was used for traffic classification

with the IP flow statistics [3]. One of the major challenges with these techniques is

the high number of flows in the network, and their lack of link-level granularity, which

makes them impractical.

The merits of analyzing the traffic data with PCA to assess the state of the

network for certain cases were presented in [10]. They argued that shifts in traffic

behavior can be analyzed better by looking at multiple links. They collected the

time series data of the Origin-Destination (O-D) pair IP flows traversing multiple

links in the network and transformed them onto an eigensubspace using PCA. It

1

was demonstrated that the overall network behavior could be studied by analyzing

the first few eigenflows (eigencoefficients). This scheme suffers from two systemic

problems. First, one needs to collect packet level statistics on a per-flow basis for a

large number of flows, there are n(n − 1)/2 flows for a network of n nodes. This is

computationally very expensive in terms of data collection and processing. Second,

these eigenflows do not reveal the significance and the status of a specific link within

the O-D flow in the network. Therefore, if an O-D flow is identified as anomalous, it

is not possible to find which link in the path is the root cause of the problem. We

address these issues by demonstrating the advantages of the proposed method in the

following sections.

1.2 Principal Component Analysis (Eigen Decomposition)

The PCA for flow decomposition and prediction by adding extensions and improvement

to the basic PCA was used in [11]. They have primarily employed robust PCA

(RPCA) that allows the normal data to dwell in a low dimensional space [12]. This is

due to the strong correlation among normal observations and special events, as well as

allowing noise to dwell in a sparse subspace. This technique was applied to highway

traffic data. This dissertation reinforces our perspective of using the PCA components

for prediction, but the use of RPCA is not applicable for our case since the focus

here is for telecommunication network traffic data. The PCA based network traffic

prediction problem was also studied in [13]. In that study, the K-means clustering

algorithm to separate the flows into relevant groups was utilized. It also suffers from

the same problems discussed above.

1.3 Machine Learning based Analysis

An overview of machine learning (ML) methods to analyze networks and their flows

is given in [14]. They presented the state-of-the-art deep learning architectures and

2

algorithms relevant to the network traffic control systems, and demonstrated a use

case for intelligent traffic routing. They also discussed the applicability of deep

learning for network flow prediction. Another survey on ML applications in all aspects

of networking, including traffic classification, prediction, routing, congestion control,

resource management, fault management and network security and their merits are

given in [15].

1.4 Dissertation Outline

In this dissertation, we utilize the link level statistics to identify large flows in the

network by using PCA (eigendecomposition) in a novel way [1]. This technique

reduces the data collection overhead and provides a finer tracking of the flows at

the link level resolution. It allows improved solutions to network problems. We also

use linear regression to predict eigenvectors and eigencoefficients that are successfully

used as features, as explained and verified through performance simulations for the

real data of Internet2 network. The dissertation is organized as follows.

In Chapter 2, we provide the industry trend of the tools and techniques available for

network performance analysis.

In Chapter 3, we present the theoretical foundation necessary for the discussion in

the later chapters.

In Chapter 4, the concept of using eigenanalysis for data networks is introduced.

In Chapter 5, a novel time-frequency interpretation of the eigenanalysis is presented

to identify large flows.

In Chapter 6, we introduce the concept of using machine learning to identify the large

network flows.

In Chapter 7, the forecasting method in the network eigensubspace is introduced.

In Chapter 8, the computational complexity of the implementation is analyzed and

discussed in detail.

3

In Chapter 9, we present the experimental results and discussion.

Finally, in Chapter 10, the summary of the results is presented, and the conclusions

are highlighted.

4

CHAPTER 2

NETWORK APPLICATION BACKGROUND

Network performance management consists of measuring, modeling, planning, and

optimizing networks to ensure that they perform at the targeted efficiency, reliability,

and capacity. This dissertation reviews the current practices prevalent in the

networking industry for measuring the real-time performance of data networks at

different levels of the Open System Interconnection (OSI) model and for different

physical and logical layer technologies. It summarizes the usage of this information

for network traffic monitoring and traffic engineering applications by the network

operators. It identifies some limitations with the current data and practices that

need to be addressed. Finally, we present some new data analysis technologies

and performance indicators that can be collected and used to improve the current

techniques. Even though the information presented is applicable to all types of data

networks, the focus of this dissertation is the application and usage in service provider

networks.

2.1 Introduction to Traffic Engineering

Internet traffic engineering is defined as the part of network engineering that deals

with performance evaluation and optimization of operational IP networks. Traffic

Engineering consists of measurement, characterization, modeling, and control of

Internet traffic based on scientific principles. The optimization of the network is

achieved by evaluating the performance of the network in two dimensions: the traffic

level and resources level. Traffic oriented measurements traditionally include the

delay, delay variation, packet loss and throughput. The throughput can be expressed

statistically as peak rates, mean rates, burst sizes, or as some deterministic notion

of effective bandwidth. The resource measurements include the CPU loads, queue

5

overflows, packet drops and other factors that contribute to the overall performance of

the nodes in the network. This optimization is currently implemented in the network

through careful capacity and traffic management. Capacity management includes

capacity planning, routing control, and resource management. Network resources of

particular interest include link bandwidth, buffer space, and computational resources.

Certain aspects of capacity management, such as capacity planning, are long-term

activities, ranging from days to possibly years. Routing control functions operate in

medium term, ranging from milliseconds to days. Finally, the packet level processing

functions (e.g., rate shaping, queue management and scheduling) operate at very

short-term level, ranging from picoseconds to milliseconds while responding to the

real-time statistical behavior of traffic.

Traffic management includes (1) nodal traffic control functions such as traffic

conditioning, queue management, scheduling, and (2) other functions that regulate

traffic flow through the network or that arbitrate access to network resources between

different packets or between different traffic streams.

2.2 Methods and Techniques for Traffic Engineering

This section provides a list of methods and techniques used for network traffic

engineering application as given below:

• Dynamic Routing - This technique employs Shortest Path First (SPF)
routing algorithms where costs are based on link metrics. The link metric
based on static quantities may be assigned administratively according to local
criteria. The link metric based on dynamic quantities may be a function of a
network congestion parameters, such as delay or packet loss.

• Equal Cost Multi-Path (ECMP) - It is a technique that attempts to address
the deficiency in the SPF interior gateway routing systems [RFC-2328].

• Overlay Model - The overlay model essentially decouples the logical topology
that routers see from the physical topology that is underlying the network. Even

6

though the overlay model was originally designed for ATM and frame-relay, it
has been well adapted to Multiprotocol Label Switching (MPLS) and widely
used mechanism for traffic engineering.

• Constraint-based Routing - This method computes routes through a
network subject to the satisfaction of a set of constraints and requirements.
It seeks to optimize overall network performance while minimizing costs.

• Integrated Services (Intserv) - This model requires resources, such as
bandwidth and buffers, to be reserved a priori for a given traffic flow to
ensure that the quality of service requested by the traffic flow is satisfied.
The integrated services model includes additional components beyond those
used in the best-effort model, such as packet classifiers, packet schedulers, and
admission control.

• Resource Reservation Protocol (RSVP) - This is a soft state signaling
protocol [RFC-2205]. It supports receiver initiated establishment of resource
reservations for both multicast and unicast flows. It has been modified and
extended to reserve resources for the aggregation of flows in order to set up
MPLS explicit label switched paths, as well as to perform other signaling
functions within the Internet.

• Differentiated Services (Diffserv) - The purpose of this protocol is to devise
scalable mechanisms for categorization of traffic into behavior aggregates, which
ultimately allows each behavior aggregate to be treated differently, especially
when there is a shortage of resources such as link bandwidth and buffer space
[RFC-2475].

• MPLS - It is a routing protocol that uses labels instead of full IP addresses
to forward data packets from one node to the next. This is an advanced
forwarding scheme which also includes extensions to conventional IP control
plane protocols. MPLS extends the Internet routing model and enhances packet
forwarding and path control [RFC-3031].

All the above described technologies are currently used by Tier 1 service providers

for traffic engineering applications. Most often the dynamic routing is applied by

changing the Interior gateway protocols (IGP), namely, Open Shortest Path First

(OSPF) and Intermediate System to Intermediate System (IS-IS, also written ISIS)

7

metrics for “best effort traffic” and MPLS with Resource Reservation Protocol-Traffic

Engineering (RSVP-TE) is employed for traffic with well known characteristics.

Traffic engineering and optimization is a continuous and evolving process [1]

and requires continual development of new technologies and new methodologies for

network performance enhancement. The network traffic characteristics have changed

in several ways. The traffic itself has increased many folds, the nature of the traffic has

evolved from asymmetrical to symmetrical, user traffic has changed from irregular web

traffic for short intervals to regular multimedia and streaming data traffic over longer

periods of time. The traffic and the business models are also continuously changing to

adapt to the evolving trends in Internet usage, like the proliferation of social media,

rapid adoption of cloud services and virtualization technologies, and replacement of

regular video with Video On Demand (VoD) from sources like YouTube, Netflix and

Hulu.

2.3 Traditional Network Performance Monitoring and Analysis

Real-time fault and performance monitoring has been an essential tool for ensuring

the efficient utilization of the network and delivering the desired performance to the

customer and users of the network. For this purpose, several standards, techniques

and tools have been developed by the industry and widely deployed. The data

collected by these tools has also been used in non-real-time applications like planning,

forecasting, and traffic engineering of the network in the long term. With the recent

advances in the hardware and software technologies, a large amount of new data

has become available that can be augmented with the existing data that is being

collected. This enhanced data set can be used to identify new trends and behaviors

and improving the accuracy of the current models. This chapter reviews the standards

used, the data collected by these new technologies, and also how they relate to each

8

other in creating a holistic picture of the state of the network. This section is divided

into several subsections:

• Data Measurement Techniques

• Network Monitoring

• Flow Monitoring

• Limitations

• New Ideas

2.3.1 Data Measurement Techniques

The performance metrics are collected at different layers:

• Data link layer (Layer2)

• Network layer (Layer3)

• Transmission layer (Layer4), and

• Application layer(Layer7)

The various techniques used in the measurement of the metrics have been

defined in the framework for Internet Protocol Performance Metric (IPPM) [16]. The

metrics collected at different layers of the network using Simple Network Management

Protocol (SNMP) are as follows:

Data Link Layer - It provides the functional and procedural means to transfer

data between network entities and to detect and possibly correct errors that may occur

in the physical layer. Specifically, two technologies are considered at this layer:

• Synchronous Optical NETworking (SONET) and Optical Transport Network
(OTN) in the optical layer and

9

• Ethernet in the electrical layer

For the optical layer, there are currently two separate technologies being used in

the optical transport, the SONET technology which has been traditionally employed

for transporting voice and other digital information over optical network and the

OTN technology which has been developed to enable the use of wavelength-division

multiplexing (WDM) in the optical networks. Since both these technologies will be

present in the networks for the foreseeable future, it is reasonable to assume that

network providers will continue measurement and monitoring them in their network.

Some of the metrics measured in this layer as defined by ITU-T G.8013/Y.17131 are

as follows [17]:

• Frame Loss Ratio is expressed as percentage, of the number of frames not
delivered divided by the total number of frames during the time interval T

• Frame Delay is the one-way delay of the frame

• Frame Delay Variation is the measure of the variation in the frame delay between
a pair of service frames

For the electrical layer, Ethernet protocol defined by IEEE 802.3 standards is

the most commonly used method for medium access control in the data link layer.

For the Ethernet links, the following metrics can be measured [18]:

• Link utilization in bits/sec

• Link Errors are defined as errors/sec

• Link Packets are defined as packets/sec

Network Layer - It is also called Internet Protocol (IP) layer based on the

protocol used to deliver the functionality at this layer. The network layer provides

10

the functional and procedural means of transferring variable length data sequences

from a source host on one network to a destination host on a different network,

while maintaining the quality of service requested by the transport layer. The

octets/bytes entering an interface at any given node provides the interface effective

ingress bandwidth utilization of that link. The octets/bytes leaving an interface

provide the effective egress bandwidth utilization of the link. If there are no losses

in the lower layers, then the octets arriving at the interface should be the same

as the octets leaving the corresponding interface on the other end of the network

link. Therefore, a connection between New York (NY) and Los Angeles (LA) will be

analyzed as two separate links in two directions. The data collected at this layer is

specified by the RFC1213 [19]

• ifInOctets

• ifInErrors

• IfOutOctets

• ifOutErrors

A second metric available from the network layer using the ping tool is the

round trip time (RTT) taken by a packet. This gives an indication of the congestion

in the network.

Transport Layer - It is also known as the Transmission Control Protocol

(TCP) layer, based on the protocol predominantly used in this layer. The TCP

provides a communication service at an intermediate level between an application

program and the IP. It provides host-to-host connectivity at the transport layer of

the Internet model. The network management systems (NMS) generally collect the

connection related metrics as defined by RFC4022 [20]. In the context of network

traffic analysis, these metrics are not very helpful. However, the routers also provide a

11

fine-grained flow level metrics collection from the router interface. For example, Cisco

provides the NetFlow protocol and Juniper provides the JFlow protocol for collecting

the statistics of the TCP/IP flows passing through the router [21][22]. These statistics

provide an insight into what applications are consuming the bandwidth and which

flows are a major consumer of bandwidth. This can be used for identifying the paths

in the network which are heavily used and rerouting/load balancing the flows on

alternate paths. These are some of the key metrics used in this dissertation for the

research on network performance analysis.

• IPv4 Source Address

• IPv4 Destination Address

• IPv4 TOS

• Protocol Type

• Source Port

• Destination Port

• ICMP Type

• Input Intf SNMP Index

• IPv4 Source Mask

• IPv4 Destination Mask

• Source AS

• Destination AS

• TCP Flags

• Output Interface SNMP Index

12

• IPv4 Next Hop

• Number of Bytes

• Number of Packets

• Flow Start Time

• Flow End Time

Application layer - This layer interacts with software applications that

implement a communicating component. The applications written at this layer

which are used in network monitoring are One-Way Active Measurement Protocol

(OWAMP) as defined in RFC4656 [23] and Two-Way Active Measurement Protocol

(TWAMP) RFC5357 [24]. These applications provide the following two metrics in

the network.

• One-Way Delay

• Two-Way Delay

The metrics from this layer are not used in the work presented in this

dissertation. The data from different layers is collected using different SNMP,

NETCONF and vendor specific protocols.

2.3.2 Network Monitoring

Amonitoring system monitors the network for problems caused by overloaded systems

and/or crashed servers, network connections impairments at physical or logical level

due to physical disruptions (cable cuts or damage due to wear) and logical disruptions

due to failure of active and passive devices in various layers of the network. The

monitoring can be done at every node/device and link/interface, as called network

performance monitoring. A second way of monitoring the health of the link in

13

the network is by monitoring the traffic at the edge of the network and building

traffic matrices. This method is called Network Tomography [8]. It has been widely

studied and is not the focus of this study [25][26]. A third way is to monitor the

routing behavior of the network; this area is called Route Analytics which includes

the systems, algorithms and tools to monitor the network [27]. This is beyond the

scope of this work. In this Section, the capabilities, features and limitations of some

common tools are discussed.

The network monitoring tools are categorized based on the information that is

being monitored. At a high level we can have the following categories:

• Up/Down Monitoring - This is a simple yet powerful mechanism where
alarms and traps are used to monitoring the line condition and find out if
it is up/down. This is the condition we would like to predict before it happens
based on the other metrics in the network. Our focus is not on this type of
monitoring. There are several tools that facilitate this type of monitoring. For
example, WhatsupGold [28], Nmap [29] and Ping are very popular in the user
community. The comparison of the tools in this category is beyond the scope
of this dissertation.

• Performance Monitoring/SNMP Monitoring - This kind of monitoring is
done when the line is up and status is green, but the conditions are not perfect.
The data collected for this type of monitoring is listed in the data measurement
Section above. This is the focus of the current research topic, where the data
is collected and analyzed in a novel way providing a new perspective of the
network not shown before.

There are several network management systems (NMS) that facilitate the data

collection, analysis and monitoring of the network. A comprehensive list of tools

for gathering data from the network are listed at the Stanford University Website

[30]. A comprehensive list of tools and their comparison is given in the references

[31][32]. Some of the popular tools are discussed as follows:

14

• Multi Router Traffic Grapher (MRTG) [33] - This tool typically collects
data using SNMP at a given interval (generally 5 mins) and displays it as a
function of time. It does not perform any analysis across the links.

• Paessler Route Traffic Grapher (PRTG) Network Monitor[8] - This is
good tool for monitoring small networks using windows platforms and can also
use the NetFlow enabled devices for flow monitoring. However, it does not scale
to large networks.

• OpenNMS [34] - OpenNMS is by far the best and most comprehensive
network management tool that supports performance measurement, event
and notification management, alarm correlation and automated discovery and
provisioning of the network devices. However, it does not provide a correlation
of alarms with the performance and link level measurements and certainly not
multilink and multilayer correlation.

• HP Openview Network Node Manager [35], HP OpenView Network Node
Manager is a network monitoring tool that uses SNMP and other technologies to
retrieve the information it requires. It provides a simple and intuitive network
status summary, maps of networks both physical and virtual and quick view
of incoming alarms. It can provide a good alarm correlation based on network
topology, and it can handle networks of any size and complexity. It is probably
the most widely deployed application of its kind.

• SolarWinds [36], It is another commercially available tool that does network
performance monitoring using SNMP and bandwidth monitoring using tools
like NetFlow, JFlow and IP Flow Information Export [37]. Orion Network
Performance Monitor is part of SolarWinds, it provides correlation among
different tools.

• IBM Netcool - This is a good network management tools with standard
features, it does not have any network topology specific analytics in the software
suite.

• SevOne [38]- This is also a popular performance measurement collection tool
and widely used in the industry. It is a highly scalable distributed architecture
based on appliances real and virtual placed in the network collecting and
analyzing data with support for big data technologies.

15

2.3.3 Flow Monitoring

Flow monitoring is the fine-grained collection of the network traffic data at the

TCP/IP flow level, enabling the understanding of flows across the network. This

kind of data collection is enabled by devices that support NetFlow /JFlow /IPFIX

and export data in this format to the monitoring system. The tools discussed in

this section do not take into account the availability of this kind of data in their

monitoring system. These systems have not been designed to exploit the availability

of this information from the network. One of the tools that does flow monitoring

is Guavus. This is the software that comes closest to analyzing the network wide

statistics. The other tool is PeakFlow from Arbor Networks. These two software

tools are discussed below.

• Guavus - Guavus Big Data analytics platform is a grid based, scalable, and
highly available computing architecture, it offers a powerful solution for data
analytics using an innovative paradigm of stream processing and analytics for
collection, processing and advanced visualization. The analytics is based on
Lakhina’s Ph.D. thesis [10] [39] on network wide analytics using Principal
Component Analysis (PCA) for anomaly detection in the network traffic. We
are proposing improvement to this work as suggested in this thesis.

• Arbor Network PeakFlow - Arbor provides a commercial tool called
PeakFlow that collects and analyzes network wide flow level statistics. This tool
is focused on security management and distributed denial of service (DDOS)
protection and threat management system. It also claims to perform traffic
engineering by correlating the topology to the historical performance statistics.
It is not clear if it uses the flow level data with link level statistics.

2.3.4 Limitations

The tools discussed above generally have the following features: automated network

discovery, network performance monitoring at a node level, link level and interface

level. There are two main limitations with these tools.

16

• Firstly, the tools do not analyze the data at the network wide level and provide
correlations of behavior.

• Secondly, they do not provide a multi-layer correlation of statistics for fault
isolation and analysis.

In the later chapters, we propose some ideas to address these concerns.

There are several reasons for the lack of network wide analytics. Until recently,

the infrastructure to collect and process the data in a large network was almost

non-existent and prohibitively expensive. With the advent of cloud computing, this

kind of big data analytics have come within the realm of practical possibilities.

2.3.5 New Ideas

This dissertation explores ideas to leverage such technologies. Another reason is the

virtualization of network functions has now made it possible to process the raw data

at the collection point within a cloud instance. This greatly reduces the processing

requirements on the collecting nodes and eliminates the need for CPU resources in

the network elements. The multi-layer analytics have largely been unattractive due to

the lack of information at different layers. Lately, the separation of Layer-2 transport

infrastructure and Layer-3 routing infrastructure have had added some true meaning

and value to this kind of analysis. The recent development of newer metrics like

one-way and two-way delay at the application layer have not been incorporated into

older platforms.

Hence, there is a strong motivation to pursue research in the area of network-

wide analysis using the current metrics data in a scalable fashion.

17

CHAPTER 3

THEORETICAL FOUNDATION

This chapter presents the theoretical foundation and the principles behind the

eigendecomposition, and its application in signal processing and dimensionality

reduction. These concepts are applied to network traffic engineering problems in this

dissertation. We present the theoretical framework in this chapter and later use it in

the development of analytic techniques. This chapter includes discrete autoregressive

order one, AR(1), signal model, orthogonal transform and eigendecomposition for the

AR(1) signal model statistics.

3.1 Discrete AR(1) Signal Model

Autoregressive discrete process of order one, AR(1), is one of the most widely

used signal model for the performance analysis and comparative evaluation of signal

processing techniques. It is the first order approximation for many real-world signals

like images, network traffic data time series and others. The AR(1) process can be

expressed as [1]

x(n) = ρx(n− 1) + ξ(n) + c (3.1)

where ξ(n) is the white noise sequence with zero-mean and variance σ2
ξ ,

E {ξ(n)ξ(n+ k)} = σ2
ξδn−k (3.2)

and c is a constant and δn−k is the Kronecker delta function. The first order correlation

coefficient ρ of the AR(1) model for wide-sense stationary (WSS) with −1 < ρ < 1 is

defined as

18

ρ =
Rxx (0)

Rxx (1)
=
E {x(n)x(n+ 1)}
E {x(n)x(n)}

(3.3)

The mean of x(n) is calculated as

µx = E {x(n)} =
c

(1− ρ)
(3.4)

and, the variance is calculated as

σ2
x = E

{
x(n)2

}
− µ2

x =
σ2
ξ

(1− ρ2)
(3.5)

The auto-correlation sequence for the AR(1) model is given as

Rxx (k) = E {x(n)x(n+ k)} = σ2
xρ
|k|; k = 0,±1,±2, . . . (3.6)

The resulting Toeplitz correlation matrix of size N ×N for AR(1) source is shown to

be in the form [1]

Rx = σ2
x

1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...

ρN−1 ρN−2 ρN−3 · · · 1

(3.7)

3.2 Orthogonal Signal Expansions

Let us define a set of basis vectors
{
e0, e1, . . . , eN−1

}
in the N dimensional Euclidean

space. These vectors are assumed to be linearly independent, such that a linear

combination of

c0e0, c1e1, . . . , cN−1eN−1 (3.8)

19

will not exist if and only if c0 = c1 = · · · = cN−1 = 0. In other words, any given

vector cannot be expressed as a linear combination of any other vector.

Let us define a signal samples {f(k)} that can be represented by a weighted

sum of component sequences as given below

f(n) =
∞∑

k=−∞

f(k)δ(n− k) (3.9)

where δ(n− k) is the Kronecker delta sequence:

δ(n− k) =

1, n− k = 0

0, otherwise

(3.10)

The norm of f for a finite number of dimensions is defined as [1]

norm(f) =

[
N−1∑
k=0

|f(k)|2
]1/2

(3.11)

Based on the above equations, it can be said that, {f(k)} can represent a point

in the N dimensional Euclidean space spanned by the basis vectors
{
e0, e1, . . . , eN−1

}
.

Now, let us assume that {xn(k), 0 ≤ n, k ≤ N − 1} represent a family of N

linearly independent sequences on the interval [0, N − 1]. This family of sequences

are considered to be orthogonal if [1]

N−1∑
k=0

xn(k)x∗s(k) = c2
nδ(n− s) =

c2
n n = s

0 otherwise

(3.12)

where cn is the norm of {xn(k)}. The orthonormal family of sequences corresponding

to the sequence defined in the Equation 3.12 is obtained by the normalization as

20

follows

φn(k) =
1

cn
xn(k) 0 ≤ n ≤ N − 1 (3.13)

As a corollary to Equation 3.13, it can be shown that
N−1∑
k=0

φn(k)φ∗s(k) = δ(n− s) (3.14)

Therefore, it can be said that, any nontrivial set of functions satisfying Equation

3.14 forms an orthonormal basis for the linear vector space. Consequently, {f(k)}

can be uniquely represented as [1]

f(k) =
N−1∑
n=0

θnφn(k), 0 ≤ k ≤ N − 1 (3.15)

where

θs =
N−1∑
k=0

f(k)φ∗s(k), 0 ≤ s ≤ N − 1 (3.16)

The set of coefficients {θs, 0 ≤ s ≤ N − 1} are known as the spectral coeffi-

cients of {f(k)} relative to the given orthonormal family of basis functions. These are

called generalized Fourier coefficients, even when the family of functions represented

by {φn(k)} are not sinusoidal [1].

3.3 Least-Squares Interpretation

In this section, a least squares interpretation is provided to the orthogonal signal

expansion presented in the previous section. The set of coefficients {θn} as defined

in Equation 3.16 also provides the least-squares approximation to {f(k)} [1]. Let us

suppose an approximation of {f(k)} can be made by the superposition of the first L

of the N basis sequences, using weighting coefficients {γi, i = 0, 1, . . . , L− 1}. Then

the optimal least-squares approximation for these coefficients is given as below

21

{γi = θi, i = 0, 1, . . . , L− 1} (3.17)

Now, let us assume that the approximation of the orthonormal basis function

can be defined as

f̂(k) =
L−1∑
r=0

γrφr(k) (3.18)

and the corresponding error in approximation is defined as

ε(k) = f(k)− f̂(k) (3.19)

Then, the {γr} can be chosen to minimize the sum squared error as shown below

JL =
N−1∑
k=0

|ε(k)|2 (3.20)

Expanding the above equation by substituting the values from Equation 3.19

and invoking orthonormality and setting the partial of JL with respect to γs to zero

gives the following solution (For the proof, see Section 2.1.2 of [1])

γs =
N−1∑
k=0

f(k)φs(k) ≡ θs (3.21)

A simple sketch depicting the relationship is shown in Figure 3.1 for the case of

N = 3, L = 3.

The Figure 3.1 demonstrates that
{
f̂(k)

}
, the least square approximation to

{f(k)} is the orthogonal projection of {f(k)} onto the two-dimensional subspace

spanned by basis sequences {φ1(k)} , {φ2(k)}. It may also be noted that these results

are valid for infinite dimensional spaces and finite dimensional spaces, as long as the

norms of the sequences (L2) are bounded [1].

22

1
(k)

3
(k)

2
(k)

Figure 3.1 Orthogonality principle demonstration.
Source:[1]

3.4 Block Transforms

A vector-matrix representation of the orthonormal expansions described in the

previous section provides an a compact form for block transform for various matrix

operations and interpretation. The signal and spectral vectors representations given

as below

fT = [f0, f1, . . . , fN−1] (3.22)

θT = θ0, θ1, . . . , θN−1 (3.23)

Let us assume that the real orthonormal sequences φr(k) are represented by the

rows of the transformation matrix φ(r, k)

23

Φ = [φ(r, k)] : k, n = 0, 1, . . . , N − 1 (3.24)

It can be shown that

θ = Φf (3.25)

and

f = Φ−1θ = ΦT θ (3.26)

therefore it can be said that

Φ−1 = ΦT (3.27)

Using subspace orthonormality property, it can be stated that

ΦΦ−1 = ΦΦ∗T = I (3.28)

The above equation, implies that the inverse of Φ is its conjugate transpose,

defines a unitary matrix where ∗T indicates the conjugate transpose of a matrix.

3.5 Eigendecomposition of Correlation Matrix

An eigenvalue λ and its paired eigenvector φ of an N × N correlation matrix Rx

satisfy the matrix equation

Rxφ = λφ (3.29)

Rxφ− λIφ = (Rx − λI)φ = 0 (3.30)

24

such that (Rx − λI) is singular. Namely

det (Rx − λI) = 0 (3.31)

Rx of AR(1) process given in Equation 3.7 , is real and symmetric matrix, and

its eigenvectors are linearly independent. Therefore, the determinant is a polynomial

of degree N in λ , and has N roots and Equation 3.30 has N solutions for φ that result

in the eigenpair set {λk, φk} ; 0 ≤ k ≤ N − 1. Therefore, the eigendecomposition of

Rx is expressed as [1]

Rx = ATKLTΛAKLT =
N−1∑
λkφkφ

T
k

k=0

(3.32)

where Λ = diag (λk) ; k = 0, 1, . . . , N − 1, and kth column of ATKLT matrix is the kth

eigenvector φk of Rx with the corresponding eigenvalue λk.

25

CHAPTER 4

EIGENANALYSIS AND EIGENFLOWS OF A NETWORK

4.1 Eigenanalysis and Eigenflows

The eigendecomposition of N ×N matrix R is expressed as [1]

Rθ = ΦRΦT = Λ (4.1)

where Λ is the diagonal matrix with its elements as the eigenvalues, and equivalently,

Rθ is the covariance matrix of eigencoefficients. Φ is the eigenmatrix of R and

populated by the eigenvectors as its columns, and T indicates matrix transpose

operation. It defines the resulting N-dimensional orthonormal eigensubspace for the

given R [40].

In this dissertation, eigensubspace representations of random vectors, that

describe traffic variables like link bandwidth at measurement instances in megabits

per second (Mbps), are used to analyze and understand the status of communication

networks. Let’s assume a network of N links, and the snapshot of the link traffic

vector at a periodic measurement time point is expressed by rT = [r1, r2, ..., rN].

The empirical correlation matrix R of link traffic is calculated as for the predefined

historical measurement data window of W samples as [1]

R =

r11 · · · r1N

...

rN1 · · · rNN

 (4.2)

where rij = cov(rirj)/(σriσrj) for W and σri and σrj are the standard deviations of

ri and rj, respectively.

26

0 500 1000 1500 2000 2500
Time (5-min intervals)

1

1.5

2

2.5

3

3.5

4

4.5

E
ig

e
n
fl
o
w

 (
1
)

10
8

Figure 4.1 The variation of the first eigenflow in time.

0.05

0.1

0.15

0.2

0.25

0.3

E
ig

e
n
v
e
c
to

r
(

1
)

0 5 10 15 20 25 30
Component (Link)

Figure 4.2 The corresponding components of the first eigenvector for one-week
duration of Internet2 link data where N=30.
Source: [40]

It is used in Equation (4.1) to create the eigensubspace expressed in Φ matrix.

The measurements are repeated periodically to update the eigensubspace due to the

statistical variations (non-stationarity) of the network dynamics. The snapshot of

N link bandwidths populate the column vector cn where n is the measurement time

index in the regular clock with the assumption of the stationarity during the update

period until n+1. Then, one can project this link traffic vector onto the currently

defined eigensubspace as (forward transform) [1]

θn = ΦTcn (4.3)

27

where the most significant eigenvector, also known as the principal eigenvector, is

commonly the first column of the eigenmatrix Φ. The link variables are expressed

through the inverse transformation operator as

cn = Φθn (4.4)

Now, we can rewrite this expression more explicitly as follows

cn1
...

cnN

 =

Φ11 · · · Φ1N

...

ΦN1 · · · ΦNN

θn1
...

θnN

=

θn1 Φ11 + θn2 Φ12+ · · · +θnNΦ1N

...

θn1 ΦN1 + θn2 ΦN2+ · · · +θnNΦNN

 (4.5)

Note that the components of the first eigenvector in (4.5) are [Φ11 Φ21 ...ΦN1] as

the first column vector of Φ.

We compute eigenflows {θnk , k = 1, 2, · · ·N} that characterize the entire network

at time n by using Equation (4.3). Figure 4.1 displays the variations of the most

significant eigenflow, θn1 at time n, for the network. The components of the principal

eigenvector are displayed in Figure 4.2 for the case where one week of the Internet2

link data is used [41]. These components represent the contribution from the

corresponding links into the most significant eigenflow of the network.

As a corollary to Equation (4.4), we express the kth link traffic for the

measurement at time n in the eigensubspace is expressed as

cn
l =

N∑
k=1

θnkΦkl l = 1, 2, ..., N (4.6)

28

In Chapter 5, we give a new interpretation of eigenflows with the link-level focus

for the network using the eigensubspace representation framework described above.

29

CHAPTER 5

INTERPRETATION OF EIGENFLOWS

5.1 Link-Level Interpretation of Eigenflows

The vector θn in Equation (4.3) represents the eigenflows (eigencoefficients) in the

network at time n. For example, the first eigenflow is the inner product of the

first eigenvector and traffic measurement vector cn at time n with link attributes

as its components. A high value of an eigenvector component is related to high

contribution of that link into the given eigenflow due to the least squares (L2 norm)

based optimality of the eigendecomposition [1].

Figure 5.1a shows the component values of all eigenvectors of the link data

matrix where N=30. In contrast, Figure 5.1b displays the corresponding joint time-

frequency matrix Ψ as defined in Equation (5.3) below where the vertical axis is the

component indices of eigenvectors and the horizontal axis is the eigenvector indices

[1, 2]. In contrast to the traditional PCA based studies reported in the literature [42,

43, 44], our experiments show that a few most significant eigenvectors and eigenflows

(dimension reduction) are not always able to capture all the network characteristics.

They are rather spread out to a larger subset, as shown in Figure 5.1a. We highlight

that some components of eigenvectors with low eigenvalues, that may not survive

the dimension reduction step, can be significant for the representation of certain link

traffic in the eigensubspace. Therefore, we need to jointly look at the variations of

all eigenvectors and all eigenflows in time in order to better track network dynamics

and anomalies with the highest level of representation granularity.

Eigenflow (frequency domain) interpretation of network dynamics does not

emphasize link or path specific (time/signal domain) features in a network. These

features are equally critical to assess the state of the network. We propose the

30

joint time-frequency interpretation [2] of eigenanalysis for network engineering, as

explained in the next Section [1].

5.2 Representation of a Link in Eigensubspace

Let {cnl } represent link measurements at time instance n for the entire network, l =

1,2, . . . N. Let us define a more detailed eigensubspace representation of the network

status where the product of eigenflows and eigenvectors are interpreted for analysis

as shown in the matrix

Ψ = ΦΘ (5.1)

where

diag{Θ}= Iθn = diag{Θ} (5.2)

and, I is N ×N identity matrix.

It is explicitly shown as

Ψ =

θn1 Φ11 · · · θnNΦ1N

...

θn1 ΦN1 · · · θnNΦNN

 (5.3)

where θnk is the ktheigenflow and Φkl is the lth component of the kth eigenvector

corresponding to the lth link of the network at time n.

The sum of the elements of the lth row of Ψ is equivalent to the traffic

measurement on the lth link cnl as given in Equation (4.6). Ψ is called the joint

time-frequency matrix. Figure 5.1b displays the joint time-frequency matrix for the

link measurements of the network that we analyze in the dissertation [1, 2]. We will

31

use this matrix to identify large network data flows through the network topology, as

described in the next section.

5.3 Identification of Large Network Flows

We demonstrate the use of the joint time-frequency matrix to identify large network

flows. The identification process is comprised of the following steps.

1. Identify the column vector containing the most significant components. This
is done by taking the L2-norm of the column vectors and sorting them. It is
seen from Figure 5.1b that the 7th column vector of Ψ has the most significant
components for this case.

2. Find the components of the vector identified in Step.1 with significant contri-
butions by setting a threshold α = 0.35. The components of that vector are
plotted as a bar graph in Figure 5.2a.

3. Map the components to the network topology [40].

4. Identify the paths in the network created by the referenced eigenvector
components. This can be done by verifying that more than one link corre-
sponding to the components are connected together to form a path. It is seen
in Figure 5.2b that the links identified in Step.3 traverse a path taken by a flow
from DC to LA. We also observe that there is a second path taken by another
flow from Seattle to Houston.

5. Go back to Step.1 and repeat the process for the next significant column vector
of Ψ.

Note that Link6 is mapped in the Figure 5.2b even though it is below the threshold

because its two adjacent links are significant contributors to a large flow. By inference,

it has to pass through this link. While performing Step.4, there may be some links

that are above the threshold but are not connected to any other link to form a path.

Such links can be safely ignored from further analysis, mapping or plotting. For

example, in Figure 5.2b Link5 and Link20 are ignored.

32

The link-level interpretation of eigenanalysis and its mapping on to the topology

demonstrates that large flows in the network can be detected. It helps us to

better understand the network activity in a real-world scenario with a more efficient

implementation than the currently used methods [3, 4, 5]. Note that the selection

of the threshold to identify significant links requires some experimental study on the

network of interest and may also be automated.

There are various applications of this research. Network traffic has been growing

drastically in the last decade with the advent of smartphones and proliferation of video

applications. Due to this, it has become a huge challenge to characterize, forecast

and engineer network traffic. The traffic is largely comprised of many small flows

and a few large flows over a period of time with their specific network requirements.

The identification of these large flows as addressed in the dissertation has a major

impact in the overall network performance and security. If the flow is from a trusted

source on the expected path, then the information is used for traffic engineering

and optimization applications. The link level granularity of data is instrumental

in long-term network planning applications. It is also used in congestion control,

resource management, fault management and Quality Of Service (QOS) management

to name a few. Besides the network applications mentioned above, there are several

other uses in the areas of application monitoring, security awareness and intrusion

detection, policy validation and service assurance. For example, if a large flow is

identified and the source or the path is anomalous, then it could be a security violation

or a Denial of Service (DOS) attack. It is extremely difficult to build these applications

that infer the network behavior by merely looking at the traffic on a single link or to

the entire network. Thus, the joint time-frequency interpretation of network traffic

data in the eigensubspace gives better insight and features in analyzing link level and

network wide behavior.

33

(a)

(b)

Figure 5.1 (a) Components of Eigenvectors, and (b) Joint time-frequency repre-
sentation of eigenanalysis where N=30.

34

0 5 10 15 20 25 30

Component (Link) Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
o
m

p
o
n
e
n
t
V

a
lu

e

(a)

(b)

Figure 5.2 (a) 7th column vector of Ψ in Figure 5.1b, and (b) Mapping of the
significant components of the 7th column vector to network paths.

35

CHAPTER 6

MACHINE LEARNING TECHNIQUES FOR FLOW
IDENTIFICATION

6.1 ML to Identify Paths with Network Features in Eigensubspace

The use of machine learning (ML) methods for network traffic classification and flow

prediction was reported in [14]. We extend that work to investigate the use of

network eigenfeatures in such learning methods. In Section 5.3, we used manual

thresholding of the joint time-frequency matrix elements defined in the

eigensubspace to identify large network flows. The manual thresholding as described

in Section 5.3 suffers from several short comings:

• The threshold needs to be set heuristically based on historical data.
Therefore, the threshold detection will fail as soon as the trend diverges from
the historical trend. Hence, it may produce inaccurate results in the long-run
when the non-stationarity in data becomes significant.

• The value of threshold is crucial for this method, and it becomes a major
challenge due to the exponential growth in broadband traffic and increased
data types. It may be an interesting research topic to employ ML method for
threshold selection that is beyond the scope of this study.

• Finally, the usage patterns are driven by many events and large geographies
where the thresholding method may not work as the center of gravity of
source and destinations of the traffic change.

Hence, we came up with the ML method that learns from its past experience

and quickly adapts to new trend in the traffic characteristics automatically without

manual intervention.

In this section, we present the method to automate the identification process.

Instead of thresholding, we employ a machine learning technique utilizing the same

column vectors of the joint time-frequency matrix, see Equation (5.3), to identify

36

paths carrying large traffic flows. It is based on an artificial neural network (ANN)

using a multilayer perceptron (MLP) model.

The MLP is a class of feedforward (FF) artificial neural network [45]. A single

neuron multilayer perceptron (MLP) model is shown in Figure 6.1. Its inputs xT =[
x1 x2 · · · xn

]
are weighted by the coefficients wT =

[
w1 w2 · · · wn

]
and

summed together in ν. The output y is obtained through the activation function g(ν)

with the threshold T. Each node in a neuron uses a nonlinear activation function

except for the input nodes [45].

Figure 6.1 Multilayer perceptron model.
Source:[46]

The MLP model is expressed as follows

ν =
n∑
i=0

xiwi = xTw (6.1)

where

x =

[
x1 x2 · · · xn

]T
∈ Rn

37

w =

[
w1 w2 · · · wn

]T
∈ Rn

y = g(ν) (6.2)

There are several activation functions commonly used in machine learning

algorithms. We mostly used the sigmoid function in this study given as [46]

g(ν) =
1

1 + e−ν
(6.3)

We also experimented hyperbolic tangent and other activation functions as

discussed later [47].

In this study, we use the neural network that is comprised of the input layer,

one or more hidden layers and the output layer as displayed in Figure 6.2.

Figure 6.2 Artificial Neural Network Model.

We use the column vectors of the joint time-frequency matrix of the network

statistics defined in Equation (5.3) as the input feature set to the neural network.

38

The network path numbers are labeled as the outputs of the neural network model.

We have a training set of p pairs of Ψi, yi where Ψi is a column vector of the joint

time-frequency matrix and yi is a network path index corresponding to that column

vector wherei=1 ... p. The network paths are identified by using the method described

in 5.3. Herein, we intend to calculate the weights of the neurons that map a given

joint time-frequency vector to the corresponding path index at the output.

The training process is an optimization problem expressed as [46]

min
1

2

p∑
i=1

(yi −ΨT
i w)2

It can be rewritten as

minJ(w) =
1

2

∥∥y −ΨTw
∥∥2 (6.4)

In Equation (6.4), we assumed that the activation function is the identity map

to simplify the optimization model [46]. We use this supervised ANN algorithm in

the eigensubspace where built-in dimension reduction is inherently achieved.

The optimization problem defined in (6.4) is solved to find the optimal sets

of weights used by the neural network model to identify the paths. We used the

feed forward with back propagation (FFBP) technique for learning as described

in the references [48, 49, 47]. This technique is implemented as an unconstrained

optimization that uses a gradient descent algorithm. The gradient descent algorithm

used to find the optimal weights of the model is written as [50]

w(k+1) = w(k) + α(k)Ψie
(k) (6.5)

e(k) = yi −ΨT
i w

(k)

39

where

k is the index of iteration step,

α(k) is the learning rate,

e(k) is the error between actual and predicted value.

It is noted that, we use the batch gradient descent (BGD) [50] in Equation (6.5)

due to its superior performance over scaled conjugate gradient (SCG) [51], Levenberg-

Marquardt (LM) [52, 53] and Bayesian regularization (BR) algorithms [54, 55]. It

yields an unbiased estimate of gradients and theoretically guaranteed to converge to

the global minimum along with a straight trajectory if the loss function is convex.

Similarly, we used the tan sigmoid (TS) and Elliott Sigmoid (ES) activation

functions [52]. We also used the minimization loss function of mean squared error

(MSE) and cross-entropy error (CEE) in our experimental studies and identified the

best ones for the task at hand [56, 57].

We experimented with various optimization algorithms and activation functions

to train of the network. We varied the number of neurons in the hidden layers and

the size of training data features in the eigensubspace, Equation (5.3), to evaluate

the convergence and performance of the algorithm.

Note that each Ψi column vector of Equation (5.3) corresponds to a network

path identified with the label yi. Using the network traffic data, we identified and

labeled the large network flows traversing a certain path in the network during the

training step. We had limited data for only 200 input vectors with 100 network paths

from the actual network. This dataset was too small for these experiments. Therefore,

we generated a dataset of 100 times larger size by adding 20% Gaussian noise to the

actual network measurements Ψi and keeping the same output label for a given pair.

This allows us to train the algorithm with sufficient amount of training data.

We found that more than 20,000 raw data samples are required to train our

model, which uses a feature set of 30, with the SCG training algorithm. The model is

40

built using three layers, input layer, output layer and one hidden layer. There are 30

neurons in each layer, employing the TS activation and the CEE loss function. Figure

6.3 displays CEE error performance of this ANN and its convergence for the network

path identification problem, using column vectors of the joint time-frequency matrix

in Equation (5.3), as a function of training data size (epochs).

As a result of this investigation, we conclude that the use of eigenfeatures is an

effective tool for network traffic classification. For the traffic characteristics present

in the data used, the three layers (input, output and one hidden) model using the

SGC algorithm with CEE loss function provides the fastest convergence.

Figure 6.3 Model validation performance.

41

CHAPTER 7

NETWORK FORECASTING

7.1 Network Forecast in Eigensubspace

Using variations of eigenvectors and eigencoefficients, we train a linear regression

model to predict their future values which are tied to link parameters of the network.

A subset of the link traffic data provided by a large service provider is used for this

study. The network characteristics are summarized as follows.

• There are 50 nodes in the network {n1, . . . , n50}

• These 50 nodes are fully connected to each other resulting in 2,450 links labeled
as
{
l1 l2 l3 . . . l2,450

}
• The link traffic measurement data (average bandwidth utilized) was collected
for each link at 5-minute time intervals for one-hour duration (12 samples)

• The data was collected for the same hour of the day for 92 days (three months)

• Initially, we use a subset consisting of 24 links to run our experiments

In this analysis, we write link traffic measurements in the 3-D data array L(l, t, d)

where

l – link index l =1, 2, . . . , N where N=24,

t – time index of 5-minute intervals for the same one-hour period in each day t

=1, 2, . . . , T where T=12,

d – day index, d=1, 2, . . . , D where D=92.

This 3-dimensional (3-D) array might also be represented as Ldl,t with the same

subscripts and superscript as defined. For convenience, we drop subscript and/or

superscript and use the following notation.

42

Ld – matrix of link traffic measurements for day d, and for all 24 links,

where each row vector of the matrix is twelve-dimensional and populated by the

corresponding measurements of the 5-minute intervals for the given hour of the day.

In this experiment, we only used the hour between 9:00 PM and 10:00 PM.

Ldl – corresponds to a single row vector of Ld matrix as mentioned above for

link l.

The empirical correlation matrix of size 24 × 24 for the link traffic on a given

day d is computed as

Rd
L =

r11 · · · r1N

...

rN1 · · · rNN

 (7.1)

where i and j are the link indices, and the pairwise correlations rij = E
{
Ld

i Ld
j

}
are

calculated based on the 12 measurements of the 5-minute intervals. The eigenmatrix

Φd of the network for day d is expressed as

Rd
LΦd = ΛdΦd (7.2)

Then, the daily eigencoefficient matrix Θd of size N × T comprised of

eigencoefficient vectors calculated for each 5-minute interval of 9:00PM to 10:00PM

as its columns is defined in the current subspace Φd as

Θd =
[
Φd
]T
Ld (7.3)

Now, we drop the superscript d for convenience and expand the equation where

the first row of
[
Φd
]T is the principal eigenvector as follows

43

Θ =

θ11 · · · θ1T

...

θN1 · · · θNT

 = (7.4)

Φ11 · · · ΦN1

...

Φ1N · · · ΦNN

L11 · · · L1T

...

LN1 · · · LNT

The first column vector of the eigencoefficient matrix in Equation (7.4)

corresponds to the first 5-minute time interval and written as

θ11

...

θN1

 =

Φ11L11 + Φ21L21 · · · ΦN1LN1

...
...

...

Φ1NL11 + Φ2NL21 · · · ΦNNLN1

 (7.5)

Similarly, its second column corresponds to the second 5-minute time interval

as

θ12

...

θN2

 =

Φ11L12 + Φ21L22 · · · ΦN1LN2

...
...

...

Φ1NL12 + Φ2NL22 · · · ΦNNLN2

 (7.6)

and so on. As a result, the elements of the first row vector of the N × T

eigencoefficient matrix where N=24 and T=12 in this example. Similarly, the second

row corresponds to the second most significant eigencoefficients for those 5-minute

time intervals, and so on. A subset of the rows of Θ matrix given in Equation (7.4)

are used for linear regression and prediction of link values as discussed later in this

section.

44

From Equation (4.4), the traffic of link l, for day d, and the specific 5-minute

time interval t is calculated as follows

Ld
l,t =

V∑
k=1

Θd
klΦ

d
lk (7.7)

where V is the predefined number of most significant vectors (dimension

reduction based on explained variance, V≤ N) running on the dimension index k

as used to approximate the link traffic values in the subspace. When we drop the day

superscript d, for t =1 and V=N (no dimension reduction) (7.7) is expanded as

L11

...

LN1

 =

θ11Φ11 + θ21Φ21 · · · θN1ΦN1

...
...

...

θ11Φ1N + θ21Φ2N · · · θN1ΦNN

 (7.8)

In Equation (7.8), only the first column of the Θ matrix has been used to

compute the link traffic values for the first 5-minute time slot. Similarly, the link

values for the second 5-minute time interval is computed by using the second column

of the Θ matrix as follows

L12

...

LN2

 =

θ12Φ11 + θ22Φ12 · · · θN2Φ1N

...
...

...

θ12ΦN1 + θ22ΦN2 · · · θN2ΦNN

 (7.9)

Hence, the link traffic measurement matrix is defined for each 5-minute time slot, and

for all the links when T=12 and N=24 as

Ldl,t =

L11 L12 · · · L1T

...
...

...

LN1 LN2 · · · LNT

 (7.10)

45

Now, we use the eigenvectors and eigencoefficients of the previous two days to

predict the link traffic for the next day as [58, 59].

Φ̂d+1 = ρ1Φd + ρ2Φd−1 + εΦ (7.11)

Θ̂d+1 = ϑ1Θd + ϑ2Θd−1 + εΘ (7.12)

where ρ1 and ρ2 are the autoregressive order two, AR(2), regression model parameters

used to predict the eigenmatrix Φ,

εΦ is the prediction (white) noise corresponding to the AR(2) process of the

eigenmatrix Φ .

ϑ1 and ϑ2 are the AR(2) regression model parameters to predict the eigencoef-

ficients matrix Θ

εΘ is the prediction (white) noise corresponding to the AR(2) process of the

eigencoefficients matrix Θ.

By using the predicted Φ̂d+1 and Θ̂d+1 in Equation (4.4), we compute L̂d+1
l as

expressed in Equation (7.13) below

L̂d+1
l =

V∑
k=1

Θ̂d+1
kl Φ̂d+1

lk (7.13)

where V is the reduced dimension in the eigensubspace, V≤ N, to approximate the

time series with the permissible prediction error (or explained variance).

The two network engineering applications that use the joint time-frequency

features of a network as described in its eigensubspace are discussed in the following

two sections of the dissertation.

46

CHAPTER 8

COMPUTATIONAL COMPLEXITY AND PERFORMANCE
ANALYSIS

8.1 Computational Complexity

We analyzed the computational complexity of the proposed techniques and compared

them with the prior work in [60]. The are two fundamental differences in the collection

of time series data. First, the method in [10] collects O-D flows data which can be

very large in a given network, versus in our proposed methods it is link level which

scales only with the number of links in the network. For example, a network of n

nodes, there are n(n − 1)/2 possible O-D flows in a maximally connected network

as compared to (n − 1) links in a minimally connected network. Second, the O-D

flow data is collected by sampling the arriving packets, therefore it depends on the

link bandwidth whereas link level data is collected at regular intervals of 5 minutes

regardless of the link bandwidth.

Assuming these flows are going over 100Gbps links with a packet size of 1,500

bytes, there are 8.3M packets/sec passing through each interface. If a sampling rate

N=1,000 is used, then there are 8.3K packet headers/second being collected per flow.

With a standard 20 bytes packet header size, the total data collected is approximately

600Mbytes/hour. For n=10 nodes, there are 45 O-D flows, which results in 27

Gb/hour data collection volume. Clearly, this is an insurmountable challenge for

using this technique. It calls for further increase in sampling rate, aggregation

and pre-processing at local nodes. This also adds to the infrastructure overhead

and bandwidth load on the network. For the proposed method, the same network

with n=10, we have 9 links to monitor every 5 minutes, i.e., 108 samples/hour.

Furthermore, this data is already being collected, and therefore, there is no overhead

47

to the network. Therefore, in terms of computational complexity, our method is

several orders of magnitude simpler than O-D flow analysis.

It is noted that the O-D flows use Deep Packet Inspection (DPI) methods to

infer the path of the flow using the origin and destination of the packets. They

utilize an additional step of routing table lookup to identify the path in the network.

The computation complexity analysis of this method is studied well. It is known

to be computationally expensive and it cannot be deployed in very large networks

[61, 62]. A performance comparison of the TomoGravity method used by O-D flows,

the traditional PCA and the Deep architecture Long Short-Term Memory traffic

matrix (DLSTM) prediction method was reported in [63]. They demonstrated the

superiority of the PCA and LSTM based methods over the O-D flow (TomoGravity)

with respect to the temporal relative prediction error.

8.2 Performance Comparison of Time Series and PCA Based Network
Forecasts

In this Section, we develop an autoregressive, order two, AR(2), model to predict

the link traffic of a network based on its historical data [14]. We built AR(2)

predictors in the time domain and also in the eigensubspace, and compared their

performances as explained in the following two Subsections.

A. Linear Regression in Time Domain

We employed a vector autoregressive model for linear regression in the time domain

[64]. The 3-D data set Ldl,t introduced in 7.1 is labeled as Lt. We regressed the link

traffic in the time domain for day d by using the data of the previous days d − i,

i = 1, 2, ...,M by using the vector autoregressive (VAR) model expressed as [64, 65]

L̂dt = Ct +
M∑
i=1

ψt,iL
d−i
t + ξt (8.1)

48

where

Ct is a column vector of constant offsets,

ψt,i is a vector of AR parameters of the model,

M is the order of the autoregressive model for t, M=2 for AR(2) model,

t is the time index of 5-minute intervals for the same one hour period in each

day t =1, 2, ... , T where T=12,

ξt is a column vector of white noise.

Equation (8.1) is rewritten for AR(2) as follows

L̂dt = Ct + ψt,1L
d−1
t + ψt,2L

d−2
t + ξt (8.2)

This VAR model is written for all the T column vectors of the time intervals as

L̂d1 = C1 + ψ1,1L
d−1
1 + ψ1,2L

d−2
1 + ξ1

L̂d2 = C2 + ψ2,1L
d−1
2 + ψ2,2L

d−2
2 + ξ2

...

L̂d12 = C12 + ψ12,1L
d−1
12 + ψ12,2L

d−2
12 + ξ12

(8.3)

The column vectors L̂d1 to L̂d12 are combined to form the forecasted link traffic matrix

for 5-minute intervals for day d. Then, we estimate the parameters of AR(2) by using

Equation (8.3).

Figure 8.1 displays the link measurements for the link l = 24 of day d along

with their forecasted values by the AR(2) model in the time domain. It is seen from

the Figure that the downward trend of the link traffic is forecasted with about 10%

prediction error. We will repeat the same experiment in the eigensubspace in the next

section and show its merit.

B. Linear Regression with Joint Time-Frequency Features in Eigensubspace

49

In this experiment, the regression is performed by using the Θ and eigenmatrix Φ,

and the link traffic is predicted as per (7.13). We used the same data set as the one

used in the time-domain based experiment. The traffic measurements are mapped

onto the currently defined eigensubspace. A small subset of eigenflows (dimension

reduction) are used in the parameter calculations of AR(2) model. The eigensubspace

based AR(2) predictor results are also displayed in Figure 8.1. It is observed from

the Figure that the eigensubspace based linear regression model forecasts the network

traffic more accurately than the time domain based prediction [60].

0 10 20 30 40 50 60

Time (minutes)

5000

5500

6000

6500

7000

7500

L
in

k
 T

ra
ff

ic
 (

M
b

p
s
)

Actual

Eigen-Pred

AR-Pred

Figure 8.1 Performance comparisons of the two AR(2) based link traffic predictors
in 5-minute measurement intervals for one-hour of historical data window size. The
red curve is for the time-domain implementation, while the blue one is for the
implementation in the eigensubspace.

50

CHAPTER 9

EXPERIMENTS AND RESULTS

This chapter presents the experiments conducted to evaluate the effectiveness of

eigenanalysis and machine learning algorithms on the network traffic data.

9.1 Eigenanalysis Experiments and Results

This Section presents the eigenanalysis experiments and results using the network

data.

9.1.1 Description of Data and Network

For the purpose of this study, the data was collected from the Internet2 network

consisting of 10 nodes and 30 links. The link data collected for every five-minute

interval is used as the 95 percentile value of the bandwidth utilized by a given link.

The data was collected for a period of one week in order to capture daily and weekly

behavior of the network. It is noted that, the ingress and egress statistics were

collected for each link interface. It was found that the egress at one end of the link

is the same as the ingress at the other end. Hence, only the egress statistics in were

used our study.

Figure 5.2b shows the network topology as given by [64] consisting of the

backbone links under consideration in this study. As indicated earlier, an eight-hour

time window is chosen for calculation of the eigensubspace (eigenvectors) and a

two-hour refresh rate. It is observed that the overall dynamics of the network does not

change significantly in less than two hours to justify the recalculation of eigensubspace

(eigenvectors). A few experiments were conducted on this data to demonstrate the

effectiveness of the proposed method as follows.

51

9.1.2 Experiment1

One link and multiple links down cases In this experiment, the effect of any link down

on the rest of the network is demonstrated. Therefore, one of the link values is set

to zero and its effect on network covariance and the resulting eigenmatrix is studied.

In the next experiment, setting the measured traffic values for links 15, 22 and 26

to zero indicating that the links are down, and to see that those links are shown as

anomalies by the proposed method.

5 10 15 20 25 30

Eigenvector Index

5

10

15

20

25

30

C
o
m

p
o
n
e
n
ts

(L
in

k
s
)

Joint Time-Freq Matrix Squared (%) - Update # 32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 C

o
n

tr
ib

u
ti
o

n

Figure 9.1 One link down representation in time.

5 10 15 20 25 30

Eigenvector Index

5

10

15

20

25

30

C
o
m

p
o
n
e
n
ts

(L
in

k
s
)

Joint Time-Freq Matrix Squared (%) - Update # 32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 C

o
n

tr
ib

u
ti
o

n

Figure 9.2 Three links down representation in time.

52

It is observed from Figures 9.1 and 9.2 that these three links going down are

mapped as large percentage contribution in the least three significant eigenvectors in

the method. This example clearly shows us the strength of the link-level granularity

in traffic analysis. Moreover, it highlights the dynamically changing nature of non-

stationarities in network statistics, where traditional eigenanalysis based techniques

cannot capture.

9.2 Machine Learning Experiments and Results

In order to have a high level of confidence in the model, it is important to accurately

choose the parameters of the model. For this, we run several experiments conducted

to identify the optimal learning algorithm, number of hidden neurons and the type

of activation functions. In this section, the findings and conclusions are presented.

9.2.1 Experiment 1

In this experiment, the following parameters were used as displayed in Table 9.1 below

with a small number of samples.

Table 9.1 Levenberg-Marquardt Model Validation Performance

Exp. Attribute Description Attribute Value

Number of input samples 2000

Number of neurons in hidden layer 20

Random Noise added to samples 20

Training Algorithm Levenberg-Marquardt

Activation Function Tan Sigmoid

Loss Function Mean Squared Error

53

Figure 9.3 Levenberg-Marquardt Model Validation Performance.

9.2.2 Experiment 2

In this experiment, the following parameters were used as shown in Table 9.2. The

sample size was increased and the number of neurons in the hidden layer and noise

samples decreased.

54

Table 9.2 Scaled Conjugate Gradient with Small Samples

Exp. Attribute Description Attribute Value

Number of input samples 5888

Number of neurons in hidden layer 10

Random Noise added to samples 10

Training Algorithm Scaled Conjugate Gradient

Activation Function Tan Sigmoid

Loss Function Cross-Entropy Error

Figure 9.4 SCG with small samples - Model Validation Performance.

9.2.3 Experiment 3

In this experiment, the following parameters were used as shown in Table 9.3. The

sample size was increased and the number of neurons in the hidden layer and noise

samples were doubled from the previous experiment.

55

Table 9.3 SCG with Large Samples

Exp. Attribute Description Attribute Value

Number of input samples 23552

Number of neurons in hidden layer 20

Random Noise added to samples 20

Training Algorithm Scaled Conjugate Gradient

Activation Function Tan Sigmoid

Loss Function Cross-Entropy Error

Figure 9.5 SCG with large samples - Model Validation Performance.

9.2.4 Experiment 4

In this experiment, the following parameters were used, which are the same as in the

previous experiment, and the experiment was repeated to make sure it works with

these values.

56

Table 9.4 SCG with Large Samples (repeat experiment)

Exp. Attribute Description Attribute Value

Number of input samples 23552

Number of neurons in hidden layer 20

Random Noise added to samples 20

Training Algorithm Scaled Conjugate Gradient

Activation Function Tan Sigmoid

Loss Function Cross-Entropy Error

Figure 9.6 SCG with large samples (repeated) - Model Validation Performance.

9.2.5 Experiment 5

In this experiment the following parameters were used as shown in Table 9.5. The

number of neurons in the hidden layer were increased from the previous experiment.

57

Table 9.5 SCG with 30 Neurons in the Hidden Layers

Exp. Attribute Description Attribute Value

Number of input samples 23552

Number of neurons in hidden layer 30

Random Noise added to samples 20

Training Algorithm Scaled Conjugate Gradient

Activation Function Tan Sigmoid

Loss Function Cross-Entropy Error

Figure 9.7 SCG with 30 neurons in the hidden layers - Model Validation
Performance.

58

9.2.6 Experiment 6

In this experiment, the following parameters were used as shown in Table 9.6. The

number of neurons in the hidden layer were increased to 40 hidden layers from the

previous experiment.

Table 9.6 SCG with 40 Neurons in the Hidden Layers

Exp. Attribute Description Attribute Value

Number of input samples 23552

Number of neurons in hidden layer 40

Random Noise added to samples 20

Training Algorithm Scaled Conjugate Gradient

Activation Function Tan Sigmoid

Loss Function Cross-Entropy Error

59

Figure 9.8 SCG with 40 neurons in the hidden layer - Model Validation
Performance.

9.2.7 Experiment 7

In this experiment, the following parameters were used as displayed in Table 9.7. The

training algorithm was changed to Bayesian Regularization and the loss function to

Mean Squared Error.

60

Table 9.7 Bayesian Regularization - Model Validation Performance

Exp. Attribute Description Attribute Value

Number of input samples 23552

Number of neurons in hidden layer 30

Random Noise added to samples 20

Training Algorithm Bayesian Regularization

Activation Function Tan Sigmoid

Loss Function Mean Squared Error

Figure 9.9 Bayesian Regularization - Model Validation Performance.

61

CHAPTER 10

CONCLUSIONS

Origin-Destination (O-D) flow based eigensubspace methods are computationally

costly. More importantly, they lack the link-level resolution required to efficiently

track the dynamics of a heterogeneous network [40]. We developed a granular method

to monitor the variations of network traffic to identify anomalies. The method utilizes

the eigendecomposition of the empirical correlation matrix of link traffics in a given

network. This joint time-frequency interpretation of eigensubspace representation

of traffic data provides additional insights to better understand the overall network

behavior as well as the individual links. We demonstrate in this dissertation that

the link-level focus on the statistical analysis leads to identify local anomalies as the

building blocks of elephant flows in the network. We also show that the eigensubspace

based network forecast outperforms the methods that use the time domain based

measurements and predictions.

ANN with FFBP was employed to identify network paths by using joint

time-frequency (eigencoefficient weighted) eigenvectors as features. Specifically, for

the network model with 30 inputs (links/vectors) and 100 possible outputs (network

paths), the following observations have been made:

1. A training set of approximately 25,000 inputs is required to accurately train an
ANN model for network path identification.

2. The same number of neurons are required in the hidden layers as the number
of neurons in the input layer.

3. The performance of the learning algorithm does not degrade with up to 20% of
random noise in the input vector components.

62

4. The Scaled Conjugate Gradient (SCG) algorithm with Cross-entropy loss
function (CEE) shows better performance and speed of convergence in our
experiments for the given data set. The rate of convergence differs from one
sample data set to another, but always converges.

5. Elliott Sigmoid (ES) activation function works faster than tan sigmoid (TS) due
to elimination of the exponential (e) factor in the function.

It is concluded that an artificial neural network with feed forward and backward

propagation model using scaled conjugate gradient optimization can be used as an

effective machine learning technique to identify large network flow paths using the

proposed joint time-frequency matrix as its input data features in the eigensubspace.

This novel technique provides new insights to the operators for automating the

network engineering operations.

It is also concluded that eigensubspace based forecasting is computationally

more efficient and accurate than time domain based techniques employing autore-

gressive models.

63

REFERENCES

[1] A. N. Akansu and R. A. Haddad. Multiresolution Signal Decomposition: Transforms,
Subbands, and Wavelets, San Diego. CA Academic Press, 1992.

[2] R. A. Haddad, A. N. Akansu, and A. Benyassine. Time-frequency localization in
transforms, subbands, and wavelets: a critical review. Optical Engineering,
32(7):1411–1430, 1993.

[3] R. Yan and R. Liu. Principal component analysis based network traffic classification.
Journal of Computers, 9(5):1234–1240, May 2014.

[4] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran, K. Salamatian, and C. Diot. A
pragmatic definition of elephants in internet backbone traffic. In Proceedings of
the 2nd Association for Computing Machinery (ACM) Special Interest Group
on Data Communication (SIGCOMM) Workshop on Internet measurement,
pages 175–176, November 2002.

[5] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran, K. Salamatian, and C. Diot.
On the feasibility of identifying elephants in internet backbone traffic. Sprint
Labs, Sprint ATL, Tech. Rep. TR01-ATL-110918, November 2001.

[6] T. Jin, C. Tracy, M. Veeraraghavan, and Z. Yan. Traffic engineering of high-rate
large-sized flows. In Proceedings 14th IEEE International Conference on High
Performance Switching and Routing (HPSR), pages 128–135, July 2013.

[7] R. Hayashi, T. Miyamura, K. Shiomoto, and S. Urushidani. Impact of traffic
correlation on the effectiveness of multilayer traffic engineering. Proceedings
of Asia-Pacific Conference on Communications, October 2005.

[8] A. Coates, A. O. Hero, R. Nowak, and B. Yu. Internet tomography. IEEE Signal
Processing Magazine, 19.3:47–65, May 2002.

[9] M. Joshi and T. Hadi. A review of network traffic analysis and prediction techniques.
arXiv preprint, July 2015. arXiv:1507.05722.

[10] A. Lakhina. Network-Wide Traffic Analysis: Methods and Applications. Ph.d. thesis,
Boston University, Boston, Massachusetts, 2007.

[11] X Xing, X Zhou, H Hong, W Huang, K Bian, and K Xie. Traffic flow decomposition
and prediction based on robust principal component analysis. International
Conference on Intelligent Transportation Systems, 59:2219–2224, 2015.

[12] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis.
Journal of the ACM (JACM), 58(3):1–37, 2011.

64

[13] R. H. Filho and J. E. B. Maia. Network traffic prediction using pca and k-means. In
2010 IEEE Network Operations and Management Symposium-NOMS, pages
938–941, 2010.

[14] Z. M. Fadlullah and et al. State of the art deep learning Evolving machine
intelligence toward tomorrowś intelligent network traffic control systems. IEEE
Communications Surveys & Tutorials, 19(44):2432–2455, 2017.

[15] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-Solano,
and O. M. Caicedo. A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities. Journal of
Internet Services and Applications, 9(1):1–99, 2018.

[16] V Paxson, G Almes, J Mahdavi, and M Mathis. Framework for IP Performance
Metrics - RFC 2330. IETF, Standard Specification, May 1998. Accessed on:
June 26, 2021. [Online]. Available: https://datatracker.ietf.org/doc/
html/rfc2330.

[17] ITU-T. Y.1731. Recommendation G.8013/Y.1731, ITU-T, Aug 2015. Accessed
on: Oct 18, 2021. [Online]. Available: https://www.itu.int/rec/T-REC-Y.
1731/en.

[18] IS Association et al. IEEE 802.3-2018 - IEEE Standard for Ethernet (Revision of
IEEE 802.3-2015), 2018.

[19] K McCloghrie and M. T. Rose. Management Information Base for Network
Management of TCP/IP-based internets: MIB-II. STD 17, RFC 1213, March
1991.

[20] R. Raghunarayan. Management Information Base for the Transmission Control
Protocol (TCP). RFC 4022, March 2005.

[21] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes. Cisco Systems NetFlow Services
Export Version 9. RFC 3954, October 2004.

[22] Juniper Networks. Juniper Flow Monitoring. Juniper Networks Application Note,
Online Website, 2011.

[23] S Shalunov, B Teitelbaum, A Karp, J Boote, and M Zekauskas. A One-way Active
Measurement Protocol (OWAMP)-RFC 4656. IETF, Standard Specification,
2006. Accessed on: June 26, 2021. [Online]. Available: https://www.
rfc-editor.org/rfc/rfc4656.txt.

[24] J. Babiarz, R. M. Krzanowski, K. Hedayat, K. Yum, and A. Morton. A Two-Way
Active Measurement Protocol (TWAMP). IETF, Standard Specification,
October 2008. Accessed on: June 26, 2021. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc5357.

65

https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2330
https://www.itu.int/rec/T-REC-Y.1731/en
https://www.itu.int/rec/T-REC-Y.1731/en
https://www.rfc-editor.org/rfc/rfc4656.txt
https://www.rfc-editor.org/rfc/rfc4656.txt
https://datatracker.ietf.org/doc/html/rfc5357
https://datatracker.ietf.org/doc/html/rfc5357

[25] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network Tomography: Recent
Developments. Statistical Science, 19(3):499 – 517, 2004.

[26] Y. Vardi. Network tomography: Estimating source-destination traffic intensities from
link data. Journal of the American Statistical Association, 91(433):365–377,
1996.

[27] G. Hooten. Real-world uses of route analytics. Online Website, 2004. Accessed on:
Oct 18, 2021. [Online]. Available: https://archive.apnic.net/meetings/
21/docs/sigs/routing/routing-pres-hooten-analytics.pdf.

[28] WhatsUpGold. Progress whatsup gold. Online Website, 2021. Accessed on: June 26,
2021. [Online]. Available: https://www.whatsupgold.com/.

[29] G. Lyon. Nmap: The network mapper–free security scanner. Nmap.org, 2016.
Accessed on: June 26, 2021. [Online]. Available: https://https://nmap.
org/.

[30] L. Cotterell. Network monitoring tools. Stanford University, 2021. Accessed on: June
26, 2021. [Online]. Available: https://www.slac.stanford.edu/xorg/nmtf/
nmtf-tools.html.

[31] Wikipedia. Comparison of network monitoring systems. Online Website, 2000.
Accessed on: July 5, 2021. [Online]. Available:http://en.wikipedia.org/
wiki/Comparison_of_network_monitoring_systems.

[32] IBM. IBM software and solutions. IBM Manual, 2000. Accessed on: July 5,
2021. [Online]. Available: http://www-03.ibm.com/software/products/us/
en/netcool-network-management/.

[33] T. Oetiker and D. Rand. MRTG: The Multi Router Traffic Grapher. In LISA,
volume 98, pages 141–148, 1998.

[34] The OpenNMS Group. Meridian OpenNMS - Open Source Network Monitoring
Platform. Online Website, 2000. Accessed on: July 3, 2021. [Online]. Available:
https://www.opennms.com/.

[35] Wikipedia. HP openview. Online Website, 2000. Accessed on: July 3, 2021. [Online].
Available: https://en.wikipedia.org/wiki/HP_OpenView.

[36] Solarwinds. IT service management without the friction. SolarWinds User
Manual, 2000. Accessed on: July 5, 2021. [Online]. Available: http://www.
solarwinds.com/.

[37] P. Aitken, B. Claise, and B. Trammell. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011,
September 2013.

66

https://archive.apnic.net/meetings/21/docs/sigs/routing/routing-pres-hooten-analytics.pdf
https://archive.apnic.net/meetings/21/docs/sigs/routing/routing-pres-hooten-analytics.pdf
https://www.whatsupgold.com/
https://https://nmap.org/
https://https://nmap.org/
https://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
https://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems
http://www-03.ibm.com/software/products/us/en/netcool-network-management/
http://www-03.ibm.com/software/products/us/en/netcool-network-management/
https://www.opennms.com/
https://en.wikipedia.org/wiki/HP_OpenView
http://www.solarwinds.com/
http://www.solarwinds.com/

[38] SevOne. Sevone network data platform. Online Website, 2000. Accessed on: July 5,
2021. [Online]. Available:https://www.sevone.com/products.

[39] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distri-
butions. ACM SIGCOMM Computer Communication Review, 35(4):217–228,
2005.

[40] Internet2. perfSONAR User Guide. Online Website, April 2016. Accessed on: July
5, 2021. [Online]. Available: https://docs.perfsonar.net/index.html.

[41] U. DemÅ¡ar, P. Harrisand C. Brunsdon, A. S. Fotheringham, and S. McLoone.
Principal component analysis on spatial data: An overview. Annals of the
Association of American Geographers, 103:1(103:1):106 –128, 2013.

[42] G. H. Golub and H. A. Van der Vorst. Eigenvalue computation in the 20th
century. Journal of Computational and Applied Mathematics - Special Issue
on Numerical Analysis, III(1-2):35 – 65, November 2000.

[43] MATLAB. MATLAB Vector Autoregression (VAR) Models. Online Website, April
2019. Accessed on: July 5, 2021. Available: https://www.mathworks.com/
help/econ/introduction-to-vector-autoregressive-var-models.html.

[44] J. Liu, P. Gao, J. Yuan, and X. Du. An effective method of monitoring the large-scale
traffic pattern based on rmt and pca. Journal of Probability and Statistics,
2010.

[45] F. F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. American Journal of Psychology, 76(No.4), 1963.

[46] E. K. P. Chong and S. H. Zak. An Introduction to Optimization,3rd Ed. New York,
pages 247–265. John Wiley & Sons, 2008.

[47] M. J. Realff J. H. Lee, J. Shin. Machine learning: Overview of the recent progresses
and implications for the process systems engineering field. Computers &
Chemical Engineering, 114(No. 4):111–121, 2018.

[48] Y. Chauvin and D. E. Rumelhart. Backpropagation: Theory, Architectures, and
Applications. Lawrence Erlbaum Associates Inc, 1995.

[49] J. Pospichal D. Svozil, V. Kvasnicka. Introduction to multi-layer feed-forward neural
networks. Chemometrics and Intelligent Laboratory Systems, 39:43–66, 1997.

[50] Y. Bengio. Practical recommendations for gradient-based training of deep archi-
tectures. Neural Networks: Tricks of the Trade, 7700, 2012.

[51] M. F. Moller. A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6:525–533, 1993.

[52] D. Marquardt. An algorithm for leastsquares estimation of nonlinear parameters.
SIAM Journal on Applied Mathematics, 11(No. 2):431–441, 1963.

67

https://www.sevone.com/products
https://docs.perfsonar.net/index.html
https://www.mathworks.com/help/econ/introduction-to-vector-autoregressive-var-models.html
https://www.mathworks.com/help/econ/introduction-to-vector-autoregressive-var-models.html

[53] M. T. Hagan and M. Menhaj. Training feedforward networks with the marquardt
algorithm. IEEE Transactions on Neural Networks, 5(No.6):989–993, 1999.

[54] D. J. C. MacKay. Bayesian interpolationÂ . Neural computation, 4(No.3):415–447,
1992.

[55] F. D. Foresee and M. T. Hagan. Gauss-newton approximation to bayesian learning.
In Gauss-Newton Approximation to Bayesian Learning. Proceedings of the
International Joint Conference on Neural Networks, June 1997.

[56] T. P. Vogl, J.K. Mangis, A.K. Rigler, W.t. Zink, and D.L. Alkon. Accelerating the
convergence of the backpropagation method. Biological Cybernetics, 59:257–
263, 1998.

[57] C. M. Bishop. Pattern Recognition and Machine Learning, pages 235–236. Springer
Verlag New York NY, 2006.

[58] E. Zivot and J. Wang. Vector autoregressive models for multivariate time series.
Modeling Financial Time Series with SPLUS, pages 385–429, 2006.

[59] D. Hawkins. On the investigation of alternative regressions by principal component
analysis. Journal of the Royal Statistical Society. Series C AppliedStatistics,
22(3):275–286, 1973.

[60] I. Lateef and A. N. Akansu. Link-level interpretation of eigenanalysis for network
traffic flows. In Proceedings of Conference on Information Sciences and
Systems (CISS), pages 1–6, 2017.

[61] C. Niccolò, C. Luigi, and R. Fulvio. Optimizing deep packet inspection for high-speed
traffic analysis. Journal of Network and Systems Management, 19(1):7–31,
2011.

[62] C. Niccolo, E. Alice, G. Francesco, R. Fulvio, and S. Luca. An experimental evaluation
of the computational cost of a dpi traffic classifier. In GLOBECOM 2009-2009
IEEE Global Telecommunications Conference, pages 1–8. IEEE, 2009.

[63] Z. Jianlong, Q. Hua, Z. Jihong, and J. Dingchao. Towards traffic matrix prediction
with lstm recurrent neural networks. Electronics Letters, 54(9):566–568, 2018.

[64] Internet2. Internet2 network infrastructure topology. Online Website, April 2019.
Accessed on: July 5, 2021. [Online]. Available: https://internet2.edu/
network/state-and-regional-r-e-networks/.

[65] H. Lutkepohl. Stable Vector Autoregressive Processes, pages 13–16. Springer, New
York, NY, 2005.

68

https://internet2.edu/network/state-and-regional-r-e-networks/
https://internet2.edu/network/state-and-regional-r-e-networks/

	Machine learning techniques for network analysis
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	1.1 Problem Description
	1.2 Principal Component Analysis (Eigen Decomposition)
	1.3 Machine Learning based Analysis
	1.4 Dissertation Outline

	Chapter 2: Network Application Background
	2.1 Introduction to Traffic Engineering
	2.2 Methods and Techniques for Traffic Engineering
	2.3 Traditional Network Performance Monitoring and Analysis
	2.3.1 Data Measurement Techniques
	2.3.2 Network Monitoring
	2.3.3 Flow Monitoring
	2.3.4 Limitations
	2.3.5 New Ideas

	Chapter 3: Theoretical Foundation
	3.1 Discrete AR(1) Signal Model
	3.2 Orthogonal Signal Expansions
	3.3 Least-Squares Interpretation
	3.4 Block Transforms
	3.5 Eigendecomposition of Correlation Matrix

	Chapter 4: Eigenanalysis and Eigenflows of a Network
	4.1 Eigenanalysis and Eigenflows

	Chapter 5: Interpretation of Eigenflows
	5.1 Link-Level Interpretation of Eigenflows
	5.2 Representation of a Link in Eigensubspace
	5.3 Identification of Large Network Flows

	Chapter 6: Machine Learning Techniques for Flow Identification
	6.1 ML to Identify Paths with Network Features in Eigensubspace

	Chapter 7: Network Forecasting
	7.1 Network Forecast in Eigensubspace

	Chapter 8: Computational Complexity and Performance Analysis
	8.1 Computational Complexity
	8.2 Performance Comparison of Time Series and PCA Based Network Forecasts

	Chapter 9: Experiments and Results
	9.1 Eigenanalysis Experiments and Results
	9.1.1 Description of Data and Network
	9.1.2 Experiment1

	9.2 Machine Learning Experiments and Results
	9.2.1 Experiment 1
	9.2.2 Experiment 2
	9.2.3 Experiment 3
	9.2.4 Experiment 4
	9.2.5 Experiment 5
	9.2.6 Experiment 6
	9.2.7 Experiment 7

	Chapter 10: Conclusions
	References

	List of Tables
	List of Figures

