
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-1994

Multi-disk subsystem organizations for very large databases Multi-disk subsystem organizations for very large databases

Zhiyi Huang
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Huang, Zhiyi, "Multi-disk subsystem organizations for very large databases" (1994). Theses. 1625.
https://digitalcommons.njit.edu/theses/1625

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1625?utm_source=digitalcommons.njit.edu%2Ftheses%2F1625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT:

MULTI-DISK SUBSYSTEM ORGANIZATIONS
FOR

VERY LARGE DATABASES

by
Zhiyi Huang

This thesis investigates efficient mappings of very large databases with non-

uniform access to its data. to a. multi-disk subsystem.

Two algorithms are developed to distribute the database across multiple disks,

possibly with replication, in order to minimize latency and maximize throughput.

These algorithms are compared with respect to the amount of replication overhead

incurred to achieve desired throughput.

A simulator is developed to simulate these two mapping algorithms and inves-

tigate the efficiency of these two mappings.

MULTI-DISK SUBSYSTEM ORGANIZATIONS
FOR

VERY LARGE DATABASES

by
Zhiyi Huang

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 1994

APPROVAL PAGE

MULTI-DISK SUBSYSTEM ORGANIZATIONS
FOR

VERY LARGE DATABASES

Zhiyi Huang

Dr. M. Palis, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. J. Carpinelli,Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. E. Hou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	Zhiyi Huang

Degree: 	Master of Science in Electrical Engineering

Date: 	May 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, USA, 1994

• Bachelor of Science in Electrical Engineering,
Beijing University of Aeronautics and Astronautics, Beijing, P.R. China, 1991

Major: 	Electrical Engineering

iv

This thesis is dedicated to
my family

ACKNOWLEDGMENT

The author would like to express her sincere gratitude to her advisor, Professor

Michael A. Palis, for his guidance, support, kindness, encouragement and friendship

throughout the process of producing this thesis.

Thanks for Professor E. Hou and Professor J. Carpinelli for serving as members

of the thesis committee.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Motivation 	

1.2 Objectives 	2

1.3 Previous Work 	2

2 MULTI-DISK SYSTEM AND DATABASE MODELS 	 6

2.1 Multi-Disk System Model 	6

2.1.1 The Model 	6

2.1.2 Assumptions and Parameters 	8

2.2 Database Model 	9

2.3 Performance Metrics 	9

3 MAPPING ALGORITHMS 	 11

3.1 Setting up Database 	 11

3.2 Algorithm One 	 14

3.3 Algorithm Two 	 17

4 THE SIMULATOR 	 21

4.1 Motivation of Simulation 	 21

4.1.1. Advantages of Simulation 	 21.

4.1.2 Discrete Event. Simulation 	 21

4.2 Creating the Database 	 22

4.2.1 Gaussian Distribution 	 22

4.2.2 Exponential Distribution 	 24

4.3 Mapping the Database to the Multi-Disk Subsystem 	 25

4.4 Simulating the Multi-Disk Subsystem 	 25

5 EXPERIMENTAL RESULTS 	 27

vii

Chapter 	 Page

5.1 Observations 	 28

6 CONCLUSIONS AND FURTHER. STUDY 	 32

6.1 Conclusions 	 32

6.2 Further Study 	 32

APPENDIX A FIGURES FOR CHAPTER 5 	 .34

APPENDIX B SOURCE CODES 	 4:8

REFERENCES 	 67

viii

LIST OF FIGURES

Figure 	 Page

1.1 Traditional System 	3

1.2 Synchronized System 	4

1.3 Declustered System 	5

2.1 	The Multi-Disk Subsystem Model 	6

3.1 One Gaussian Curve 	 11

3.2 Two Gaussian Mode with Intersection 	 12

3.3 Density function of Exponential distribution 	 13

3.4 An Example of Algorithm One 	 16

3.5 An Example for Algorithm Two 	 19

4.1 Density Function of Gaussian Distribution 	 23

4.2 Density Function of Uniform Distribution 	 24

5.1 Generating Results 	 29

A.1 throughput::100 classes, Gaussian 	 35

A.2 throughput::50 classes, Gaussian 	 36

A.3 throughput::200 classes, Gaussian 	 37

A.4 throughput::64 disks, Gaussian 	 38

A.5 throughput::128 disks, Gaussian 	 39

A.6 throughput::64 disks, 100 classes 	 40

A.7 throughput::128 disks, 100 classes 	 41

A.8 throughput::Two Different Distributions 	 42

A.9 latency::100 classes, Algorithm Two 	 43

A.10 latency::50 classes, Algorithm Two 	 44

A.11 latency::200 classes, Algorithm Two 	 45

A.12 latency::64 disks, Algorithm Two 	 46

ix

Figure 	 Page

A.13 latency::128 disks, Algorithm Two 	 4.7

CHAPTER 1

INTRODUCTION

1.1 Motivation

In the. last few years, the performance of processors has been growing steadily, and

with multiprocessor organizations, the processing power of a computer system has

been increasing at a. rapid pace. However, the I/O performance has not kept pace

with the gains in processing power. Currently, there exists a huge disparity between

the I/O subsystem's performance and the processing power.

With such differences in processing and I/O capacities, eventually the problem

solving speed will be determined by how fast the I/O can be done. If the I/O

is done serially, even if we solve the problem considerably faster, the speed of the

solution will depend on the serial I/O bottleneck. So, it is essential that some kind

of improvements be made in I/O performance to avoid these bottlenecks.

The importance of balancing the I/O bandwidth and the computational power

has been pointed out by Kung, [1] where it is shown that for some of the applications,

the I/O problem cannot be alleviated by adding more memory at the processors.

For such applications, it is essential that the I/O power grows as fast, as the

processing power of the system. Unless the I/O can also be speeded up by the same

factor as that of the processing, we cannot truly obtain linear speedups. Hence, to

improve the overall performance of a system, it is essential that the I/O subsystem

performance also has to be improved.

The time required for searching a. database is, in the limit, proportional to the

size of the database. When databases grow and become very large, a. single I/O

subsystem consisting of few disks are no longer sufficient.

1

2

As the number of users increases, the chance that contention occurs (e.g. when

two or more users trying to access the same data. at the same time) also increases.

A multi-disk subsystem has the potential of serving a request for data on a.

number of disks concurrently. The number of disks that. will take part in the execution

of a request depends on the location of the data to be accessed and the amount of

data to be transferred.

There have been a. number of proposals to organize a number of disks together

to form a. powerful disk system. Some of the previous studies in improving I/O

performance include [2]-[5]. I will briefly describe these approaches in section 1.3.

1.2 Objectives

The objective of this thesis is to investigate efficient, mappings of very large databases

with non-uniform access to its data to a. multi-disk subsystem.

Two algorithms are developed to distribute the database across multiple disks,

possibly with replication, in order to minimize latency and maximize throughput.

These two algorithms are compared with respect to the amount of replication

overhead incurred to achieve desired throughput.

To access the performance of the algorithms, a simulator is developed to

simulate these two mapping algorithms and investigate the efficiency of these two

mappings.

1.3 Previous Work

A system where all the disks arc organized as independent units and where each file

is located only on one disk is called a. traditional system. See Fig.] .1.

In this figure, f stands for a. file, as do as g and h. Each file is stored in its

entirety on one disk.

3

This traditional system is simple to implement and has a reasonably good

performance on single block requests. If the files are not. uniformly distributed, a

large number of requests ma arrive at. a. single disk. Hence, this possibility suggests

that a. traditional system under unbalanced conditions could yield poor performance.

In a. traditional system, the response time of a request is improved by decreasing the

waiting time in the queue when the number of disks in the system is increased. The

service time remains the same. [3]

Figure 1.1 Traditional System

Kim [2] shows that disk synchronization leads to efficient transfer of large blocks

of data. when compared to a traditional system.

Disk synchronization is useful when file read time is the dominant part of the

I/O service time. In this organization, a file is interleaved bytewise among the disks.

The disks are synchronized such that each disk head is positioned at the same place.

All the disks together function as a single large disk with m times the transfer rate

and m times the capacity of a. single disk, where the seek time (the time spent

in accessing the right track of the disk) and latency time (the time taken for the

required block to come under the read/write head) remain the same. See Fig.1 .2.

4

Figure 1.2 Synchronized System

In this figure, three disks are synchronized as a. single large disk unit, each file

is located on one disk unit.

When the transfer time dominates the I/O service time, this organization yields

high performance. Since all the disks are coupled together, each disk sees the same

request rate and hence a balanced load on all the disks. The utilization of each disk.

is higher since each request has to be processed by all disks. Hence, this organization

is useful when large files need to be transferred.

Studies by Livny et al. [5] and Salem em et al. [4] report that a system with

data declustering is better than a traditional system.

Disk striping or data, declustering calls for blockwise interleaving of the file such

that a number of blocks of a. file can be read or written in parallel on different disks.

One way of interleaving of the file is such that, if block i is on disk j, then i + I is on

j + 1 and so on. See Fig.1.3.

5

Figure 1.3 Declustered System

In this figure, file f has 4 blocks, they are interleaved onto 4 disks. Blocks of

file g are interleaved onto 3 disks. Blocks of file h are interleaved onto 6 disks.

If the I/O request is for a single block, then the request is queued in the disk

containing that block. If a. multiple block request arrives at the disk system, then

that request is broken up into a number of single-block requests concurrently.

By interleaving the data, we can keep the disk system balanced with respect

to request rates. In this organization, the seek time and latency penalties are paid

for each block of transfer and hence the service time has effectively increased.

In this thesis, a traditional system with some modification.s is used. A file is

allowed to have several copies on disks.

CHAPTER 2

MULTI-DISK SYSTEM AND DATABASE MODELS

2.1 Multi-Disk System Model

2.1.1 The Model

In this thesis, the multi-disk subsystem is modeled as in single queue, single-disk

server queuing systems and a CPU which serves as a dispatcher for user requests, as

shown in Fig.2.1. Each disk server has its own queue, and the system has a. unique

incoming request queue to buffer all the requests generated by users from different

terminals. The incoming request queue has infinite size: it can store all the requests

and no requests arc lost after they are generated. Several requests may be served

concurrently on a number of disks if they access different disks.

Figure 2.1 The Multi-Disk Subsystem Model

6

7

The reason why a. queue is used is the existence of contention. Contention

arises when two or more requests are made concurrently for a resource that cannot

by shared.

In the multi-disk subsystem, this happens when:

1. Two or more requests want to access the same disk at the same time; or

2. One or more requests want to access a. disk which is currently being accessed.

The CPU is used as a. dispatcher for incoming requests. It knows what is

stored on each disk, and keeps track of the queue size of each disk. In this thesis, the

CPU is not modeled, and is assumed to take zero time to dispatch a. request. The

performance of the disk subsystem is the only thing modeled.

The CPU performs in the following steps:

while (the incoming request queue is not empty) do

Fetch a request R from the head of the incoming request queue;

Find disks which contain the data that R wants to access;

Among disks containing R, find a disk D which has the

smallest queue size;

If (queue of D is full)

Do not dispatch I?, leave it unchanged in the incoming

request queue;

Else, remove R. from. CPU's queue and insert it into D's queue;

end.

Each disk server performs in the following steps:

while (the queue of disk is not empty) do

Fetch a request from. the head of its own queue;

8

Serve that. request;

Return the size of its queue to CPU;

end.

2.1.2 Assumptions and Parameters

The assumptions about the multi-disk subsystem model are summarized as follows:

• The disk service time for one request is a fixed constant.

• One time unit is defined as the disk service time for one request.

• The incoming request queue size is infinite.

• The CPU's dispatching time is zero, that. is, CPU can dispatch all the queries

to disks if the corresponding disks are not full, this costs zero time. In case a.

disk is full, queries wishing to access to this disk have to stay at the incoming

request queue.

• The incoming requests follow a Poisson distribution.

The parameters for the multi-disk subsystem model are:

• no_disks: the number of disks used in the disk subsystem;

• disk_size[i]: length of disk i's queue;

• disk[i]: linked list of requests dispatched to disk i;

• maxqueue_size: the maximum queue size of each disk;

• request: linked list of requests in the incoming request queue;

• request size: the number of outstanding requests in the incoming request

queue;

9

2.2 Database Model

A database is a collection of files or data. It. is stored on some media, such as disks.

These files or data are public resource: every body can access them.

Each file or data. has a. frequency of access. Some files or data may be interesting

to many people, so they will have a. high frequency of access. Some files or data

may be interesting to few people, so they will have a. low frequency of access. The

frequency distribution of file access may follow some rules.

In this thesis, it is assumed that the frequency distribution of access is Gaussian

or Exponential. These files or data are grouped into N classes. The total frequency

of access of a. class is the sum of the frequency of all the components in a. class. Every

class has the same size, that is, the same number of components.

The parameters for this database model are:

• class j req[c]: access frequency of class c;

• no_classes: total number of classes used in the simulation;

• class_list[i]: linked list of classes assigned to disk i;

• class_freq[c] disk : access frequency of class c on disk;

• disk_freq[i]: the sum of class_freq[c]disk of classes assigned to disk i;

• total_class[i]: number of classes assigned to disk i.

2.3 Performance Metrics

To investigate the performance of multi-disk and database models, some definitions

are needed:

70

• Throughput:

The number of completed requests per unit time interval.

• 	Latency:

In this multi-disk subsystem, this is defined as the time a request stayed in

the system. That is, the time this request leaves the system upon completion

of service minus the time this request, enters the system and waits in the queue.

• Average latency:

The sum of latencies of all requests served divided by the total number of

requests served.

• overhead:

In order to increase throughput, it might be needed to replicate some

frequently accessed files. This will increase the size of storage. Overhead is

defined as:

where the size of database is defined as:

number of different files stored on the disk without replication.

CHAPTER 3

MAPPING ALGORITHMS

The goal of mapping the database onto disks is to maximize the throughput given a

certain maximum amount of allowable overhead.

3.1 Setting up Database

We assume the following frequency distributions for the database:

First, it is assumed that the frequency distribution of information access is

uni-modal Gaussian with µ=400 and u=100. See Fig.3.1.

Figure 3.1 One Gaussian Curve

According to Zipf's Law: 80% of access is to 20% of the data, data. access is

not; uniformly distributed. Many database files follow a Gaussian distribution. For

example:

11

1 2

• Organization of UNIX file system;

• Electronic office filling;

• computerized libraries;

• Electronic storage and retrieval of articles from newspapers.

Second, it is assumed that the frequency distribution of information access

is bimodal Gaussian, one is with y=400 and o-=100, another is with y=1200 and

o=50. See Fig.3.2.

Figure 3.2 Two Gaussian Mode with Intersection

A databases may have two or more sub-databases which follow Gaussian distri-

bution. For example, a New York Times database may have sport and estate

sub-databases, each of which follows a Gaussian distribution.

13

Third, it is assumed that, the frequency distribution of information access is

Exponential with (7=15. See Fig.3.3.

Figure 3.3 Density function of Exponential distribution

For example, a temporal database which stores data time-wise for future usages.

For convenience, files will be used to represent information that is stored in a.

database from now on.

Files are grouped into N classes. The way of grouping files is to evenly divide

the shape under the density function into N sub-areas, as shown in Fig.3.1.

Now I have N classes. no_classes will be used to represent the total number

of classes being grouped, and no_disks will be used to represent the total number of

disks being used in th.e disk subsystem.

We now describe two algorithms for mapping the database classes to the

disks. Both algorithms allow replication of frequently accessed classes to maximize

throughput and minimize latency, subject to the constraint. that the overhead

incurred is no more than a. maximum allowable overhead.

11

3.2 Algorithm One

/*** Mapping Step ***/

for each disk, initialize its disk_freq to zero

let s = max{no_classes,no_disks}

while 	> 0) do

Find the disk which has the minimum disk_freq, called dmin;

Find the class which has the maximum class_freq, called cmax;

Assign cmax to the class_list of dmin;

Recalculate the disk_freq and total_class of dmin;

s — —;

end.

The first three rows of Fig.3.4 illustrate the Mapping Step for a database c1 to

c6 and four disks.

The Mapping Step maps the database to disks without replication (i.e., the

overhead is zero). However, the disk access frequencies may be severely unbalanced.

13y replicating frequently accessed class among several disks, the difference among

disk access frequencies can be minimized, thereby increasing throughput.

Before we describe the Replication Step, we first introduce the concept of a

disk equivalence class:

Two disks belong to the same equivalence class if and only if they contain the

same set of database classes.

For example, in row 3 of Fig.3.4 (after the Mapping Step), each disk belongs

to its own equivalence class. However, in row 4. disks 2 and 3 belong to the same

equivalence class. This results when c2 is replicated in disk 3 and c3 and c6 is

replicated in disk 2.

15

In the Replication Step discussed below, replication is done among disk equiv-

alwnce classes as opposed to two individual disks.

/*** Replication Step ***/

overhead = 0;

while (overhead < overhead_allowed), do

Find the disk equivalence class Dx with the maximum disk_freq;

Find the disk equivalence class Dy with the minimum disk_freq;

Merge Dx and Dy into a single equivalence class as follows:

(a) copy into Dx all database classes that are in Dy but not in D„;

(a) copy into Dy all database classes that. are in Dx, but not in Dy ;

Recalculate disk_frcq of each. disk;

Recalculate overhead;

end.

We illustrate the Replication Step just described using the example shown in

Fig.3.4. Step 3 shows the contents of the disks after the Mapping Step.

Steps 4-6 of Fig.3.4 correspond to the first three iterations of the Replication

Step.

After step 3, we find that disk 2 has the minimum disk_freq, and disk 3 has

the maximum dis k _f req. They are each in their own equivalence classes.

Hence, the classes residing in these disks are replicated on both disks, i.e., class

c2 is copied into disk 3 and classes c3 and c6 are copied into disk 2.

The result of this replication is to merge the disk equivalence classes {2} and

{3} into a single equivalence class {2, 3}. The new disk _f req of this equivalence

class is 24.

16

Figure 3.4 An Example of Algorithm One

17

After step 4, disk 1 has the maximum disk_freq. The equivalence class

consisting of disks 2 and 3 has the minimum disk _f req. Thus, the two equivalence

classes are merged into a single equivalence class {1, 2, 3}. This is achieved by

copying c1 into disks 2 a.nd 3, and copying e2, c3 and c6 into disk I.

Step 5 is similar to step 4.

Algorithm One terminates when the current overhead exceeds the maximum

allowable overhead, or when each class has a. copy in every disk. For example, if the

maximum allowable overhead is 1.8, Algorithm One returns the database map shown

in step 5 of Fig.3.4.

The replication step of Algorithm One could potentially replicate many classes

during a single iteration. Consequently, the increase in overhead per iteration could

be very large. Indeed, there is no way to control overhead increase per iteration.

(refer to step 5 and 6 in Fig.3.4.)

What a. customer will be interested in is the overhead he paid and the

throughput he gained. Overhead is critical. It needs to be under control.

Algorithm two presented below can overcome this problem.

3.3 Algorithm Two

/*** Mapping Step ***/

This is the same as in algorithm one.

/*** Replication Step ***/

overhead = 0;

while (overhead < overhead_allowed) do

find disk Dx with the maximum disk_freq;

find disk Dy with the minimum disk_freq;

18

in Dx , find the database class c, with the maximum class_freq that

is not in Dy;

in. Dy , find the database class cy with the maximum class_freq that

is not in Dx;

copy cx to Dy;

copy Cy to Dx;

recalculate disk_freq;

recalculate overhead;

end.

Fig.3.5 illustrates Algorithm Two using the same instance as that given in

The first three steps are the same as Algorithm One.

Using the terminology of Algorithm Two, we see that, after step 3, Dr is disk

3 and Dy is disk 2. Moreover, cx is class c3 (i.e., the class in Dry but not in Dy which

has the maximum frequency of access). Similarly, cy is class c2 (i.e., the class in Dy

but not in Dx which has the maximum frequency of access). Thus, c3 is copied into

disk 2 and c2 is copied into disk 3.

After step 4, we see that Dx is again disk 3 and Dy is again disk 2. Moreover,

cx is class c6 (note that. cx cannot be c2 or c6 since both have copies in Dy, or disk

2). Now, cy does not exist because all classes in Dy (= disk 2) have copies in Dr (=

disk 3). Therefore, c6 is copied into disk 2 and no new class is copied into disk 3.

As in Algorithm One, Algorithm Two terminates when the current overhead

exceeds the maximum allowable overhead. For example, if the maximum allowable

overhead is 1.8, Algorithm Two returns the dat abase map shown in step 10 of Fig.3.5.

19

Figure 3.5 An Example for Algorithm Two

20

In general, Algorithm Two performs more iterations than Algorithm One for

the same maximum allowable overhead. The reason is that Algorithm Two replicates

at most two classes at a. time. Consequently, the:increase in overhead per iteration

is bounded by a fixed constant. This is not true for Algorithm One.

As we shall see in Chapter 5, the ability of Algorithm Two to control the

overhead increase per iteration translates, in general, to a more balanced distribution

of disk access frequencies. This in turn, results in higher throughput and lower

latency than Algorithm One, for the same amount of overhead.

CHAPTER 4

THE SIMULATOR

In this chapter, it is shown how to simulate the database model and multi-disk

subsystem model.

4.1 Motivation of Simulation

4.1.1 Advantages of Simulation

Most complex, real-world systems with stochastic elements are difficult to describe

by a mathematical model which can be evaluated analytically. Thus, simulation is

often the only method for investigation.

Simulation allows us to estimate the performance of an existing system under

some projected set of operating conditions.

Alternative proposed system designs can be compared via simulation to see

which best meets a. specified requirement.

In a simulation we can maintain much better control over experimental

conditions than would generally be possible when experimenting with the system

itself.

4.1.2 Discrete Event Simulation

Discrete event simulation is concerned with the modeling of a system as it evolves

over time using a. representation in which state variables change only at a countable

number of points in time. These points in time are the ones at which an event occurs,

where an event is defined to be an instantaneous occurrence which may change the

state of a system.

21

22

Although a discrete event simulation could conceptually be done by hand calcu-

lations, the amount of data that must be stored and manipulated for most real-world

systems dictates that discrete event simulations be clone on a digital computer.

4.2 Creating the Database

In the simulation, several probability distributions are used to represent, the access

frequencies of the database classes.

Bellow we describe these distributions and the methods used to generate the

access frequency for each database class.

4.2.1 Gaussian Distribution

The density function for this distribution is given by

Where µ and a are the mean and standard deviation respectively. The corre-

sponding distribution function is given by

In such case we say that, the random variable X is normally distributed with

mean µ and variance a. See Fig.4.1.

Suppose each file is represented by a unique identification number. I will use

z to represent the identification number. Because z is Gaussian distributed, the

frequency of access of each file will also have Gaussian distribution.

23

Figure 4.1 Density Function of Gaussian Distribution

In the simulation, a standard Gaussian distributed random variable is generated

first. The standard Gaussian distribution has mean µ equal to zero, and variance a

equal to 1. Any other kind of Gaussian distribution can be obtained once the mean

µ and variance a are given according

where X stands for standard Gaussian distributed random variable, and X'

stands for an arbitrary Gaussian distributed random variable with mean p and

variance a. [6]

In the subsequence, N(0, 1) will be used to represent the standard Gaussian

distribution, and U(0,1) to represent the standard Uniform distribution in the

interval [0,1]. Fig.4.2 is the density function of the standard Uniform distribution.

One of the early methods for generating N(0, I) random variable, according to

Box and Muller,[13] is evidently still in wide use despite the current availability of

24

Figure 4.2 Density Function of Uniform Distribution

much faster algorithms. It does have the advantage, however, of maintaining a. one-

to-one correspondence between the U(0,1) random variables and the N(0, 1) random

variable produced.

The method simply says:

1) generate U1 and U2 as independent uniform distributed random variables,

3) X is an independent Gaussian distributed random variables.

Hence, an Gaussian distributed random variable X' can be obtained using

formula 4.3.

For the bi-modal case,

1. generate a standard Gaussian distributed random variable X;

2. generate a (0,1) evenly distributed random variable var;

3. if var > .5, generate X' using formula 4.3;

4. if var < .5, generate X' using formula 4.3.

4.2.2 Exponential Distribution

The density function of an exponential distributed random variable is:

25

The algorithm for generating this kind of random variable is as follows:[6]

1. generate U(0, 1);

The files under these three distributions are divided into N classes evenly,

where N is a variable. Each class has the same size, this is the input to the mapping

algorithms.

4.3 Mapping the Database to the Multi-Disk Subsystem

M disks are used to stored the database. It, is assumed that every disk has unlimited

capacity to store data., and for each file, each disk has the same service time. (Service

time is the total of seek time, latency time and read time.)

Algorithm One and Two are used to map the database to this multi-disk

subsystem.

4.4 Simulating the Multi-Disk Subsystem

The CPU is used as a. dispatcher in my model. It dispatches requests stored in

incoming request queue. It knows what is stored on each disk, and keeps track of

the queue size of each disk. In this thesis, the CPU is not modeled, and is assumed

to take zero time to dispatch a request. That is, as long as there is a request, CPU

will service it using zero time.

Each disk server will service one request using one disk service time if there is

at least a request waiting in the disk's queue.

During one disk service time, a number of A user requests will be generated

and dispatched by CPU.

26

A Poisson distribution is used to simulate the user requests coming in. These

requests are buffered in the incoming request queue, waiting to be served by CPU.

Let X be a discrete random variable which can take on the values 0,1, 2,...

such that the probability of X is given by

where A is a given positive constant. This distribution is called the Poisson

distribution and a random variable having this distribution is said :.to be Poisson

distributed.

The algorithm for generating Poisson A random variables is as follows: [6]

1. let a = 	= 1, and i 0;

2. generate Ui+1, and replace b by bUi+1;

3. if b < a, set x = i, and go to step 2. Otherwise, go to step 4;

4. replace i by i 1, go back to step 2.

CHAPTER 5

EXPERIMENTAL RESULTS

To figure out the influences of the no_classes, the no_disks, and the frequency distri-

bution of disk access to system overhead and throughput, the no_classes is varied

from 50 to 200, and the no_disk from 32 to 256. Three kinds of density distribution

functions are used: the uni-modal Gaussian with it equals to 400 and a equals to

100; the bimodal Gaussian in which two Gaussian distributions are interconnected

to each other, the other one is with p equals to 1200 and a equals to 50; and the

Exponential with a equals to 15.

The procedure for generating results is shown in Fig.5.1.

The CHOOSE box chooses a. combination of the number of disks, number of

classes, and the class frequency distribution. These are the input parameters for the

database which will be mapped to the multi-disk subsystem.

ALGORITHM X (X=1 or 2) is used to map the database, possibly with some

iterations of replication steps.

SIMULATOR takes user requests from the incoming request queue, and uses

the database developed using ALGORITHM X to simulate the multi-disk subsystem,

reports results to OBSERVE.

OBSERVE gathers outputs from SIMULATOR.

27

28

5.1 Observations

1. For a. fixed overhead, Algorithm Two gives higher throughput. than Algorithm

One. See Fig.A.1 -Fig.A.3 in appendix A.

Fig.A.1 is the results with 100 classes, and Gaussian distribution. The

number of disks is varied from 32 to 128.

From Fig.A.1, for example, for the case where there are 100 classes and 64

disks, for a. given overhead of 0.5, the throughput for Algorithm One is 51 and

for Algorithm Two is 60.

The maximum percentage of different throughput between Algorithm One

and Algorithm Two is 15%.

Similar observations can be held from other values of number of disks and

number of classes.

2. For each pair of curves, it can he noticed that the throughput of Algorithm

One eventually becomes higher that that for Algorithm Two at a "cross-over

point".

For example, in Fig.A.1, for the case where there are 100 classes and 128

disks, Algorithm One becomes better when overhead is greater or equal to

1.95.

However, the difference between throughput value beyond the "cross-over

point" is very small.

In the above example, the maximum percentage of different throughput

between Algorithm One and Algorithm Two after "cross-over point," is 4.4%.

Moreover, the maximum possible throughput that can be achieved by

Algorithm One is not significantly higher than the throughput at the cross-

over point. In the above example, it is 4.5%.

29

Figure 5.1 Generating Results

30

3. For a fixed no_classes and overhead, throughput increases as the number of

disks increasing. See Fig.A.1 - Fig.A.3.

For example, in Fig.A.1, for a. fixed no_classes equals to 100, the throughput

with 128 disks is much higher than using 64 disks for a certain amount of

allowable overhead.

4. the throughput curves using uni-modal and bi-modal Gaussian distributions

are very similar. See Fig.A.6 and Fig.A.7 in appendix A.

Fig.A.6 is the result with 64. disks and 100 classes.

From Fig.A.6, for example, the two curves are nearly the same.

Therefore, if someone has a multi-disk subsystem established using Gaussian

distribution, when there is another database which has to be stored onto the

same multi-disk subsystem, as long as the new database holds Gaussian distri-

bution of file access, we need not to rearrange the older database. We just

"acid" the new one to the old one.

5. For two totally different file access distributions, the throughput curves are

different. See Fig.A.8 in appendix A.

Fig.A.8 is the results using Exponential distribution and Gaussian distri-

bution separately with 64. disks and 100 classes.

From this figure, we can see that Algorithm Two is still better than One,

although the throughput curves are different from those using Gaussian distri-

bution.

6. For a fixed no_classes and overhead, the less disks we have, the lower latency

we need to pay. See Fig.A.9 - Fig.A.11 in appendix A.

31

Fig.A.9 is the results of 100 classes. Number of disks are varied from 32 to

128. Gaussian distribution is used.

From Fig.A.9, for example, the latency using 128 disks is higher than using

64 disks.

CHAPTER 6

CONCLUSIONS AND FURTHER STUDY

6.1 Conclusions

This thesis investigate the efficient mappings of very large databases with non-

uniform access to its data to a multi-disk subsystem.

Two algorithms are developed to distribute the database across multiple disks,

possibly with replication, in order to balance the frequency of access to disks.

From the results of the previous chapter, it is clear that replication improve

both throughput and latency. Because of replication, the storage overhead is

increased.

These two algorithms can maximize throughput and latency for a. given

maximum allowable overhead. However, Algorithm One cannot control the increase

in overhead, Algorithm Two can control it.

In general, Algorithm Two gives better throughput and latency for the same

amount of allowable overhead.

6.2 Further Study

In this thesis, I focussed on a. single processor service system. CPU time is assumed

to be negligible. But in practice, we should consider CPU time.

To reduce the CPU time, multiple processors could be used. Each processor

may or may not have its own memory. Now given multi-processor and multi-disk

subsystem, how should these two subsystems be connected?

There are three different architectures, namely, Shared Everything, Shared

Nothing and Shared Disks. In shared Everything, any processor can access any disk

32

33

and all memory is shared. In Shared Nothing, neither disk.nor memory is shared. In

Shared Disks, any processor can access any disk, but each has its own.private main

memory. These architectures deserve further study.

In the, it is assumed that no index files are used and files are stored on disks

directly to simplify the task to find the right starting. Since each file may have

more than one level of index file, and each file may have different length, how to

construct and store those index files and main files to achieve the minimum seek

time, maximum throughout, are still need to be studied.

Finally, this thesis is based on a traditional multi-disk subsystem, as we defined

in Section 1.3. Disk synchronization and disk striping multi-disk subsystems are more

powerful than a traditional one in improving the I/O service time, how to introduce

these two multi-disk subsystems is still an area of research.

APPENDIX A

FIGURES FOR CHAPTER 5

34

Figure A.1 throughput:: 100 classes, Gaussian 3
5

Figure A.2 throughput:: 50 classes, Gaussian 3
6

Figure A.3 throughput:: 200 classes, Gaussian

3

7

Figure A.4 throughput:: 64 disks, Gaussian 3
8

Figure A.5 throughput:: 128 disks, Gaussian

3
9

Figure A.6 throughput:: 64 disks, 100 classes 40

Figure A.7 throughput:: 128 disks, 100 classes 4
1

Figure A.8 Two Different Distributions 4
2

Figure A.9 latency:: 100 classes, Algorithm Two 43

Figure A.10 latency:: 50 classes, Algorithm Two 4
4

Figure A.11 latency:: 200 classes, Algorithm Two 4
5

Figure A.12 latency:: 61 disks, Algorithm Two 46

Figure A.13 latency:: 128 disks, Algorithm Two 4
7

APPENDIX B

SOURCE CODES

/**

head.h

globle definitions of source codes
**/

#define DISK 1024
#define MAXSIZE 50000
#include <stdio.h>
#include <math.h>

typedef struct queue {
int q_name;
int c_name;
int time_in;
struct queue *next;

} QUEUE, *QUEUEP;

typedef struct table {
int c_name;
double c_freq;
struct table *next;

} TABLE, *TABLEP;

int disk_size[DISK], request_size, name;
int req_freq, no_loop, no_disk, ntime;
int diskfull[DISK], out, delay;
double GaussRe1, GaussRe2;

int total_class[DISK];

int SET;
int total_classes;

48

double class_freq[3000];
int maxclass, maxdisk, mindisk;
double maxfreq, maxtotal, mintotal;

double total_freq[DISK];
double accuracy;
double overhead;

float lamta;
QUEUEP before;
QUEUEP request;
QUEUE? bfr;
QUEUE? cpu, ptr[DISK];
QUEUEP delocate(QUEUEP ff);
QUEUE? relocation(QUEUEP ff);
QUEUE? nextlocation(QUEUEP ff);
QUEUE? disk[DISK];
TABLE? class_list[DISK];
TABLE? fp[DISK];
TABLE? bpr[DISK];

/***

main.c

this is the main program
using infinite system and disk buffers

***/

#include <stdlib.h>
#include "head.h"

main(argc, argv)
int argc;
char *argv[];
{

int m;

help(argc);
initl(argc, argv);
setup_database();
disk_overhead();

49

init2().; run();

result();
finish();

free_database();

} /* end of main */

/**.****
run.c

Run the simulation
***/

#include <stdlib.h>
#include "head.h"

void run()
{

int i, k, iseed, 1, j;
double a, b, drand48();
QUEUEP ww[DISK];

iseed=64;
srand48(iseed);
a=pow(M_E, -lamta);

for (i=0; i<no_loop; i++) {
b=1.0;
while((b*=drand48()) >= a) req_freq++;

for(k=0;k<no_disk;k++) {
if(disk_size[k]>0) SET=1;

}

if(SET==1) diskserver();
if(req_freq > 0) {

for(k=1; k<=req_freq; k++) {
gauss_incoming(name);
name++;

}

}

50

if(request_size>0) {
if(bfr != NULL) {

cpu=bfr;
bfr=NULL;
before=NULL;

}

for(1=request_size, 	
dispatch();
}

}
if ((bfr==NULL)&&(request_size==0)&&(cpu->c_name!=0)){

printf("error w\n");
exit(1);

}

if ((bfr!=NULL)&&(request_size==0)) {
printf("error s\n");
exit(1);

}

if ((bfr==NULL)&&(request_size!=0)) {
printf("error r\n");
exit(1);

}

if (request->next!=NULL) {
printf("error t\n");
exit(1);

}

if (request!=cpu) {
printf("error y\n");

printf("request_size is %d\n", request_size);
exit(1);

}
if (cpu->next!=NULL) {

printf("error p\n");
printf("i= %d lamta= %f \n", i lamta);

exit(1);
}

req_freq=0;
ntime++;

}
/* end of run */

51

/** general-utilities.c

***/

#include "head.h"

void help(int argc)
{

if (argc != 2) {
printf("Usage: input accuracy\n");
exit(1);
}

}

void initl(int argc, char *argv[])
{

int d;

sscanf(argv[1], "%if", &accuracy);
no_disk=32;
lamta=32.0;
no_loop=300;
for(d=0;d<no_disk;d++) {

if((class_list[d]=(TABLEP)malloc(sizeof(TABLE)))==NULL){
printf("malloc error in initl\n");
exit(1);

}
class_list[d]->c_name=-1;
class_list[d]->c_freq=0.0;
total_freq[d]=0.0;
total_class[d]=0;
class_list[d]->next=NULL;
fp[d]=class_list[d];
bpr[d]=fp[d];

}
GaussRe1=GaussRe2=0;
overhead=0.0;

}

52

void init2()
{

if((request=(QUEUEP) malloc(sizeof(QUEUE))) 	NULL). {
printf("malloc error in init2(1)\n");
exit(1);

}
request_size=0;
request->q_name=-1;
request->c_name=0;
request->time_in=0;
request->next=NULL;

cpu=request; /* cpu initially points to the beginning of
request's link list */

for (d=0; d<no_disk; d++) {
if((disk[d]=(QUEUEP) malloc(sizeof(QUEUE))) == NULL) {

printf("malloc error in init2(2) when d is %d\n", d);
exit(1);

}

disk_size[d]=0;
disk[d]->q_name=-1;
disk[d]->c_name=-1;
disk[d]->time_in=0;
disk[d]->next=NULL;
diskfull [d] =0;

ptr[d]=disk[d]; /* ptr[d] initially points to the beginning
of disk[d]'s link list 	*/

}

bfr=NULL; /* bfr records the first address blocked by disk due
to disk full */

before=NULL;
name=0;
out=0;
delay=0;
SET=0;
ntime=0;

}

53

void result()
{

double throughput, latency;
throughput=(double)out/ntime;
latency=(dpuble).delay/out;
printf("%d %.7f 	%.7f %.7f %.7f\n", \

no_disk,overhead,throughput,throughput/31.8267,latency):;
}

void finish()
{ int i, d;

QUEUEP tmp, fs;

for(d=0;d<no_disk;d++) {
if(disk_size[d]>0) {
for(i=disk_size[d];i>0;i--) {

tmp=ptr[d]->next;
free(ptr[d]);
ptr[d]=tmp;

}

free(ptr[d]);
}

}

if(request_size>0) {
if(bfr != NULL) fs=bfr;
if(bfr == NULL) fs=cpu;
for(i=request_size;i>0;i--) {

tmp=fs->next;
free(fs);
fs=tmp;

}

free(fs);
}

}

QUEUEP delocate(QUEUEP ff)
{

QUEUEP tmp;
tmp=ff->next;
if(before != NULL) before->next=tmp;

54

ff->next=NULL; free(ff);
return(tmp).;

QUEUEP nextlocation(QUEUEP ff)
{

if (bfr == NULL) bfr=ff;
before=ff;
ff=ff->next;
before->next=ff;
return(ff);

}

QUEUEP relocation(QUEUEP ff)
{

QUEUEP tmp;
tmp=ff->next;
free(ff);
return(tmp);

}

/***

system-utilities.c

***/

#include "head.h"

void diskserver()
{

int d, t=0;
for(d=0; d < no_disk ; d++) {
if (disk_size[d]>0) {

if(ptr[d]->c_name ==0) {
printf("diskserver error\n");

55

exit(1).;

}

out++;

t = ntime 	.(ptr[d]->time_in);

delay+=t;

disk_size[d]--;

ptr[d]=relocation(ptr[d]);
}

}

SET=0;

}

int dispatch()

{

int i, j;

int set=0;

int less_queue;

int less_size;

less_queue=-1;

less_size=-1;

if(cpu->c_name == 0) {

printf("dispatch error\n");

exit(1);

}

for(i=0;i<no_disk;i++) {

fp[i]=bpr[i];
for(j=total_class[i];(j>0) && (set==0);j--) {

if(cpu->c_name == fp[i]->c_name) set=1;

if(fp[i]->next == NULL) j=-1;

else fp[i]=fp[i]->next;
}

if(set==1) {

if (less_size == -1) {

less_size=disk_size[i];

less_queue=i;

}

else if(disk_size[i] < less_size) {

less_size=disk_size[i];

less_queue=i;

}

}

set=0;

56

}

disk_size[less_queue]++;
disk[less_queue]->q_name=cpu->q_name;
disk[less_queue]->c_name=cpu->c_name;
disk[less_queue]->time_in=cpu->time_in;
if((disk[less_queue]->next=(QUEUEP)malloc(sizeof(QUEUE)))

== NULL) {
printf("malloc error in dispatch\n");
exit(1);
}

disk[less_queue]=disk[less_queue]->next;
disk[less_queue]->c_name=0;
disk[less_queue]->next=NULL;
request_size--;
cpu=delocate(cpu);

}

/***
setup_database.c

***/

#include "head.h"
#include <stdio.h>
#include <math.h>

setup_database()
{

int i, j;
TABLEP ff[DISK];

calculation();
database();
calculation();
adjustment();

1*
for(i=0;i<no_disk;i++) {
ff[i]=bpr[i];
j=total_class[i];
printf("\n\ndisk %d's class_list is: ", i);
while(j>0) {

57

printf("%d, /f 	ff[i]->c_name, ff[i]->c_freq);

ff[i]=ff[i]->next;
j --;

}

printf("\ndisk %d's total_class is %d, total_freq is %f\
\n", i , total_class[i], total_freq[i]);

}
*/
}

/**
database-utilities.c

**/

#include "head.h"

calculation()
{

int i;

double mu, sigma;
double x1, x2, z1, z2, fl, f2, f;

tot al_classes=100;
for(i=0;i<total_classes+1;i++) class_freq[i]=0.0;
mu=400.0;
sigma=100.0;
x2=mu;
xl=mu-4.0;
for(i=0;i<total_classes;i++) {

z1=(xl-mu)/sigma;
z2=(x2-mu)/sigma;
fl=.5+.5*erf(z1/(sqrt(2)));
f2=.5+.5*erf(z2/(sqrt(2)));
if(x2==4.0) f1=0.0;
f=(f2-f1)*2;
class_freq[i+1]=f;
x2-=4.0;
xl-=4.0;

}

58

}

Maxclass()
{

int i;

maxfreq=0.0;
maxclass=total_classes-1;
for (i=1;i<=total_classes;i++) {

if(class_freq[i] > maxfreq) {
maxfreq=class_freq[i];
maxclass=i;

}

}
if(maxfreq>0) class_freq[maxclass]=-1.0;

}

MaxMindisk()

int i;

maxtotal=mintotal=total_freq[0];
maxdisk=mindisk=0;
for (i=1;i<no_disk;i++) {

if(total_freq[i] > maxtotal) {
maxtotal=total_freq[i];
maxdisk=i;

}

if(total_freq[i] < mintotal) {
mintotal=total_freq[i];
mindisk=i;

}
}

}

59

/*** Mappig Step ***/

60

database()
{

int i, j, end;

end = (total_classes > no_disk) 	no_disk : total_classes;
for(i=0;i<end;i++) {

Maxclass();
class_list[i]->c_name=maxclass;
class_list[i]->c_freq=maxfreq;
total_freq[i]+=(double) maxfreq;
total_class[i]++;
if((class_list[i]->next=(TABLEP)malloc(sizeof(TABLE)))==NULL){

printf("malloc error in database(1)\n");
exit(1);

}
class_list[i]=class_list[i]->next;
class_list[i]->next=NULL;

}

if(total_classes>no_disk) {
for(j=no_disk;j<total_classes;j++) {

Maxclass();
MaxMindisk();
if(maxfreq>0) {

class_list[mindisk]->c_name=maxclass;
class_list[mindisk]->c_freq=maxfreq;
total_freq[mindisk]+=(double) maxfreq;
total_class[mindisk]++;
if((class_list[mindisk]->next=(TABLEP)malloc(sizeof(TABLE)))

== NULL) {
printf("malloc error in database(2)\n");
exit(1);

}

class_list[mindisk]=class_list[mindisk]->next;
class_list[mindisk]->next=NULL;

}

}
}

/*end of mapping step*/

/*** replication step for algorithm one ***/

61

adjustment()

int i, j;
int sett=0;
int tot;
int class;
int copy=0;
double eventotal;
TABLEP fp[DISK], tmp;

MaxMindisk();
disk_overhead();
eventotal=0.0;
while((overhead < accuracy) && (maxdisk != mindisk)) {
tot=total_class[mindisk]+total_class[maxdisk];
fp[maxdisk]=bpr[maxdisk];
for(i=0;i<total_class[maxdisk];i++) {

class=fp[maxdisk]->c_name;
eventotal=eventotal+class_freq[class];
class_list[mindisk]->c_name=fp[maxdisk]->c_name;
class_list [mindisk] ->c_freq=fp [maxdisk] ->c_freq;
if((class_list[mindisk]->next=(TABLEP) malloc(sizeof(TABLE)))
== NULL){

printf("malloc error in adjustment(1)\n");
exit(1);

}

class_list[mindisk]=class_list[mindisk]->next;
class_list[mindisk]->next=NULL;
fp[maxdisk]=fp[maxdisk]->next;

}

fp[mindisk]=bpr[mindisk];
for(i=0;i<total_class[mindisk];i++) {

class=fp[mindisk]->c_name;
eventotal=eventotal+class_freq[class];

fp[mindisk]=fp[mindisk]->next;
}

tmp=bpr[maxdisk];
bpr[maxdisk]=bpr[mindisk];

class_list[maxdisk]=class_list[mindisk];
for(i=0;i<no_disk;i++) {

if(bpr[i]==tmp) copy++;

if(bpr[i]==bpr[mindisk]) copy++;

}

eventotal=eventotal/copy;

total_freq[maxdisk] =eventotal;

total_freq[mindisk]=eventotal;
total_class[mindisk]=total_class[maxdisk]=tot;

for(i=0;i<no_disk;i++) {

if(bpr[i]==tmp) {

bpr[i]=bpr[mindisk];

class_list[i]=class_list[mindisk];

total_freq[i]=total_freq[mindisk];

total_class[i]=total_class[mindisk];
}

if(bpr[i]==bpr[mindisk]) {

total_freq[i]=total_freq[mindisk];
total_class[i]=total_class[mindisk];

}
}

tmp=NULL;

MaxMindisk();

disk_overhead();

eventotal=0.0;

copy=0;

}

/* end of replication step */

/*** replication for algorithm two ***/

adjustment()

{

int i, j;

int sett=0;

int tot;

int class;

int copy=0;

double eventotal;

TABLEP fp[DISK], tmp;

MaxMindisk();

disk_overhead();

62

eventotal=0.0;
while((overhead < accuracy) && (maxdisk != mindisk)) {
tot=total_class[mindisk]+total_class[maxdisk];
fp[maxdisk]=bpr[maxdisk];
for(i=0;i<total_classEmaxdiskLi++) {

class=fp[maxdisk]->c_name;
eventotal=eventotal+class_freq[class];
class_list[mindisk]->c_name=fp[maxdisk]->c_name;
class_list[mindisk]->c_freq=fp[maxdisk]->c_freq;
if((class_list[mindisk]->next=(TABLEP)malloc(sizeof(TABLE)))

== NULL){
printf("malloc error in adjustment(1)\n");
exit(1);

}

class_list[mindisk]=class_list[mindisk]->next;
class_list[mindisk]->next=NULL;
fp[maxdisk]=fp[maxdisk]->next;

}

fp[mindisk]=bpr[mindisk];
for(i=0;i<total_class[mindisk];i++) {

class=fp[mindisk]->c_name;
eventotal=eventotal+class_freq[class];
fp[mindisk]=fp[mindisk]->next;

}

tmp=bpr[maxdisk];
bpr[maxdisk]=bpr[mindisk];
class_list[maxdisk]=class_list[mindisk];
for(i=0;i<no_disk;i++) {

if(bpr[i]==tmp) copy++;
if(bpr[i]==bpr[mindisk]) copy++;

}

eventotal=eventotal/copy;
total_freq[maxdisk] =eventotal;
total_freq[mindisk]=eventotal;
total_class[mindisk]=total_class[maxdisk]=tot;

for(i=0;i<no_disk;i++) {

if(bpr[i]==tmp) {
bpr[i]=bpr[mindisk];
class_list[i]=class_list[mindisk];

total_freq[i]=total_freq[mindisk];

63

64

total_class[1]=total_class[mindisk];
}

if(bpr[i]==bpr[mindisk]) {

total_freq[i]=total_freq[mindisk];
total_class[i]=total_class[mindisk];

}

}

tmp=NULL;

MaxMindisk();

disk_overhead();

eventotal=0.0;

copy=0;

}

} /* end of replication step */

free_database()

{

int i, d;

TABLEP tmp, ff[DISK];

for(d=0;d<no_disk;d++) {

ff[d]=bpr[d];

for(i=total_class[d];i>0;i--)

tmp=ff[d]->next;

free(ff[d]);

ff[d]=tmp;

}

}

}

disk_overhead()

{

int i;

int over=0;

for (i=0;i<no_disk;i++) over+=total_class[i];

overhead=(double)(over-total_classes)/total_classes;

void gauss_incoming(int name)

{

if((name % 2) == 0) {

gauss48();

request->c_name=match(GaussRel);
}

else request->c_name=match(GaussRe2);

request_size++;

request->q_name=name;

request->time_in=ntime

if((request->next=(QUEUEP)malloc(sizeof(QUEUE)))==NULL){

printf("malloc error in gauss_incoming\n");

exit(1);

}

request=request->next;

request->c_name=0;

request->next=NULL;

}

int match(xx)

float xx;

int i;

double step, y1, y2;

step=4.0;

yl=y2=400.0;

for(i=0;i<100;i++) {

if((4.0<xx) && (xx<=796.0))

if(((yl-step<xx)&&(xx<=y1))||((y2<xx)&&(xx<=y2+step))){

return(i+1);

}

y1-=step;

y2+=step;

}

if((xx<=4.0) || (xx>796.0)) return(100);

}

65

gauss48()

{

double sigma=100.0.;
int u=400.0;

double log(), sqrt(), drand48();
double r, a, b, theta, st, ct;

theta = 2.0 * M_PI * drand48();
r = sigma * sqrt(-2.0 * log(drand48()));
st = sin(theta);
ct = cos(theta);
a=r*st;
b=r*ct;
GaussRel=a+u;
GaussRe2=b+u;

}

66

REFERENCES

1. H. T. Kung. "Memory Requirements for Balanced Computer Architectures",
Proc. 13th Annu. Int. Symp. Comput. Architecture, 1986

2. M. Y. Kim. "Synchronized disk Interleaving", IEEE Trans. Comput., 'Vol. C-35,
NO. 11, November, 1986.

3. A. L. Narasimha Reddy and Peithviraj Banerjee. "An Evaluation of Multiple-
Disk I/O Systems", IEEE Transactions on Computers, Vol. 38, No. 12,
December 1989.

4. K. Salem and FL Garcis-Molina. "Disk Striping", Int. Conf on data Engineering,
1986.

5. M. Livny and S. Khoshafian and H. Boral. "Multi-disk Management Algorithms",
Proc. ACM SIGMETRICS Conf., pages 69-77, May 1987.

6. A. M. Law and W. D. Kelton. Simulation. Modeling and Analysis, NewYork:
McGraw-Hill Book Company, 1982.

67

	Multi-disk subsystem organizations for very large databases
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Multi-Disk System and Database Models
	Chapter 3: Mapping Algorithms
	Chapter 4: The Simulator
	Chapter 5: Experimental Results
	Chapter 6: Conclusions and Further Study
	Appendix A: Figures for Chapter 5
	Appendix B: Source Codes
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

