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ABSTRACT: 

MULTI-DISK SUBSYSTEM ORGANIZATIONS 
FOR 

VERY LARGE DATABASES 

by 
Zhiyi Huang 

This thesis investigates efficient mappings of very large databases with non-

uniform access to its data. to a. multi-disk subsystem. 

Two algorithms are developed to distribute the database across multiple disks, 

possibly with replication, in order to minimize latency and maximize throughput. 

These algorithms are compared with respect to the amount of replication overhead 

incurred to achieve desired throughput. 

A simulator is developed to simulate these two mapping algorithms and inves-

tigate the efficiency of these two mappings. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

In the. last few years, the performance of processors has been growing steadily, and 

with multiprocessor organizations, the processing power of a computer system has 

been increasing at a. rapid pace. However, the I/O performance has not kept pace 

with the gains in processing power. Currently, there exists a huge disparity between 

the I/O subsystem's performance and the processing power. 

With such differences in processing and I/O capacities, eventually the problem 

solving speed will be determined by how fast the I/O can be done. If the I/O 

is done serially, even if we solve the problem considerably faster, the speed of the 

solution will depend on the serial I/O bottleneck. So, it is essential that some kind 

of improvements be made in I/O performance to avoid these bottlenecks. 

The importance of balancing the I/O bandwidth and the computational power 

has been pointed out by Kung, [1] where it is shown that for some of the applications, 

the I/O problem cannot be alleviated by adding more memory at the processors. 

For such applications, it is essential that the I/O power grows as fast, as the 

processing power of the system. Unless the I/O can also be speeded up by the same 

factor as that of the processing, we cannot truly obtain linear speedups. Hence, to 

improve the overall performance of a system, it is essential that the I/O subsystem 

performance also has to be improved. 

The time required for searching a. database is, in the limit, proportional to the 

size of the database. When databases grow and become very large, a. single I/O 

subsystem consisting of few disks are no longer sufficient. 

1 
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As the number of users increases, the chance that contention occurs (e.g. when 

two or more users trying to access the same data. at the same time) also increases. 

A multi-disk subsystem has the potential of serving a request for data on a. 

number of disks concurrently. The number of disks that. will take part in the execution 

of a request depends on the location of the data to be accessed and the amount of 

data to be transferred. 

There have been a. number of proposals to organize a number of disks together 

to form a. powerful disk system. Some of the previous studies in improving I/O 

performance include [2]-[5]. I will briefly describe these approaches in section 1.3. 

1.2 Objectives 

The objective of this thesis is to investigate efficient, mappings of very large databases 

with non-uniform access to its data to a. multi-disk subsystem. 

Two algorithms are developed to distribute the database across multiple disks, 

possibly with replication, in order to minimize latency and maximize throughput. 

These two algorithms are compared with respect to the amount of replication 

overhead incurred to achieve desired throughput. 

To access the performance of the algorithms, a simulator is developed to 

simulate these two mapping algorithms and investigate the efficiency of these two 

mappings. 

1.3 Previous Work 

A system where all the disks arc organized as independent units and where each file 

is located only on one disk is called a. traditional system. See Fig.] .1. 

In this figure, f stands for a. file, as do as g and h. Each file is stored in its 

entirety on one disk. 



3 

This traditional system is simple to implement and has a reasonably good 

performance on single block requests. If the files are not. uniformly distributed, a 

large number of requests ma arrive at. a. single disk. Hence, this possibility suggests 

that a. traditional system under unbalanced conditions could yield poor performance. 

In a. traditional system, the response time of a request is improved by decreasing the 

waiting time in the queue when the number of disks in the system is increased. The 

service time remains the same. [3] 

Figure 1.1 Traditional System 

Kim [2] shows that disk synchronization leads to efficient transfer of large blocks 

of data. when compared to a traditional system. 

Disk synchronization is useful when file read time is the dominant part of the 

I/O service time. In this organization, a file is interleaved bytewise among the disks. 

The disks are synchronized such that each disk head is positioned at the same place. 

All the disks together function as a single large disk with m  times the transfer rate 

and m times the capacity of a. single disk, where the seek time ( the time spent 

in accessing the right track of the disk ) and latency time ( the time taken for the 

required block to come under the read/write head ) remain the same. See Fig.1 .2. 
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Figure 1.2 Synchronized System 

In this figure, three disks are synchronized as a. single large disk unit, each file 

is located on one disk unit. 

When the transfer time dominates the I/O service time, this organization yields 

high performance. Since all the disks are coupled together, each disk sees the same 

request rate and hence a balanced load on all the disks. The utilization of each disk. 

is higher since each request has to be processed by all disks. Hence, this organization 

is useful when large files need to be transferred. 

Studies by Livny et al. [5] and Salem em et al. [4] report that a system with 

data declustering is better than a traditional system. 

Disk striping or data, declustering calls for blockwise interleaving of the file such 

that a number of blocks of a. file can be read or written in parallel on different disks. 

One way of interleaving of the file is such that, if block i is on disk j, then i + I is on 

j + 1 and so on. See Fig.1.3. 
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Figure 1.3 Declustered System 

In this figure, file f has 4 blocks, they are interleaved onto 4 disks. Blocks of 

file g are interleaved onto 3 disks. Blocks of file h are interleaved onto 6 disks. 

If the I/O request is for a single block, then the request is queued in the disk 

containing that block. If a. multiple block request arrives at the disk system, then 

that request is broken up into a number of single-block requests concurrently. 

By interleaving the data, we can keep the disk system balanced with respect 

to request rates. In this organization, the seek time and latency penalties are paid 

for each block of transfer and hence the service time has effectively increased. 

In this thesis, a traditional system with some modification.s is used. A file is 

allowed to have several copies on disks. 



CHAPTER 2 

MULTI-DISK SYSTEM AND DATABASE MODELS 

2.1 Multi-Disk System Model 

2.1.1 The Model 

In this thesis, the multi-disk subsystem is modeled as in single queue, single-disk 

server queuing systems and a CPU which serves as a dispatcher for user requests, as 

shown in Fig.2.1. Each disk server has its own queue, and the system has a. unique 

incoming request queue to buffer all the requests generated by users from different 

terminals. The incoming request queue has infinite size: it can store all the requests 

and no requests arc lost after they are generated. Several requests may be served 

concurrently on a number of disks if they access different disks. 

Figure 2.1 The Multi-Disk Subsystem Model 

6 
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The reason why a. queue is used is the existence of contention. Contention 

arises when two or more requests are made concurrently for a resource that cannot 

by shared. 

In the multi-disk subsystem, this happens when: 

1. Two or more requests want to access the same disk at the same time; or 

2. One or more requests want to access a. disk which is currently being accessed. 

The CPU is used as a. dispatcher for incoming requests. It knows what is 

stored on each disk, and keeps track of the queue size of each disk. In this thesis, the 

CPU is not modeled, and is assumed to take zero time to dispatch a. request. The 

performance of the disk subsystem is the only thing modeled. 

The CPU performs in the following steps: 

while (the incoming request queue is not empty) do 

Fetch a request R from the head of the incoming request queue; 

Find disks which contain the data that R wants to access; 

Among disks containing R, find a disk D which has the 

smallest queue size; 

If (queue of D is full) 

Do not dispatch I?, leave it unchanged in the incoming 

request queue; 

Else, remove R. from. CPU's queue and insert it into D's queue; 

end. 

Each disk server performs in the following steps: 

while (the queue of disk is not empty) do 

Fetch a request from. the head of its own queue; 
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Serve that. request; 

Return the size of its queue to CPU; 

end. 

2.1.2 Assumptions and Parameters 

The assumptions about the multi-disk subsystem model are summarized as follows: 

• The disk service time for one request is a fixed constant. 

• One time unit is defined as the disk service time for one request. 

• The incoming request queue size is infinite. 

• The CPU's dispatching time is zero, that. is, CPU can dispatch all the queries 

to disks if the corresponding disks are not full, this costs zero time. In case a. 

disk is full, queries wishing to access to this disk have to stay at the incoming 

request queue. 

• The incoming requests follow a Poisson distribution. 

The parameters for the multi-disk subsystem model are: 

• no_disks: the number of disks used in the disk subsystem; 

• disk_size[i]: length of disk i's queue; 

• disk[i]: linked list of requests dispatched to disk i; 

• maxqueue_size: the maximum queue size of each disk; 

• request: linked list of requests in the incoming request queue; 

• request size: the number of outstanding requests in the incoming request 

queue; 
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2.2 Database Model 

A database is a collection of files or data. It. is stored on some media, such as disks. 

These files or data are public resource: every body can access them. 

Each file or data. has a. frequency of access. Some files or data may be interesting 

to many people, so they will have a. high frequency of access. Some files or data 

may be interesting to few people, so they will have a. low frequency of access. The 

frequency distribution of file access may follow some rules. 

In this thesis, it is assumed that the frequency distribution of access is Gaussian 

or Exponential. These files or data are grouped into N classes. The total frequency 

of access of a. class is the sum of the frequency of all the components in a. class. Every 

class has the same size, that is, the same number of components. 

The parameters for this database model are: 

• class j req[c]: access frequency of class c; 

• no_classes: total number of classes used in the simulation; 

• class_list[i]: linked list of classes assigned to disk i; 

• class_freq[c] disk : access frequency of class c on disk; 

• disk_freq[i]: the sum of class_freq[c]disk of classes assigned to disk i; 

• total_class[i]: number of classes assigned to disk i. 

2.3 Performance Metrics 

To investigate the performance of multi-disk and database models, some definitions 

are needed: 
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• Throughput: 

The number of completed requests per unit time interval. 

• 	Latency: 

In this multi-disk subsystem, this is defined as the time a request stayed in 

the system. That is, the time this request leaves the system upon completion 

of service minus the time this request, enters the system and waits in the queue. 

• Average latency: 

The sum of latencies of all requests served divided by the total number of 

requests served. 

• overhead: 

In order to increase throughput, it might be needed to replicate some 

frequently accessed files. This will increase the size of storage. Overhead is 

defined as: 

where the size of database is defined as: 

number of different files stored on the disk without replication. 



CHAPTER 3 

MAPPING ALGORITHMS 

The goal of mapping the database onto disks is to maximize the throughput given a 

certain maximum amount of allowable overhead. 

3.1 Setting up Database 

We assume the following frequency distributions for the database: 

First, it is assumed that the frequency distribution of information access is 

uni-modal Gaussian with µ=400 and u=100. See Fig.3.1. 

Figure 3.1 One Gaussian Curve 

According to Zipf's Law: 80% of access is to 20% of the data, data. access is 

not; uniformly distributed. Many database files follow a Gaussian distribution. For 

example: 

11 
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• Organization of UNIX file system; 

• Electronic office filling; 

• computerized libraries; 

• Electronic storage and retrieval of articles from newspapers. 

Second, it is assumed that the frequency distribution of information access 

is bimodal Gaussian, one is with y=400 and o-=100, another is with y=1200 and 

o=50. See Fig.3.2. 

Figure 3.2 Two Gaussian Mode with Intersection 

A databases may have two or more sub-databases which follow Gaussian distri-

bution. For example, a New York Times database may have sport and estate 

sub-databases, each of which follows a Gaussian distribution. 
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Third, it is assumed that, the frequency distribution of information access is 

Exponential with (7=15. See Fig.3.3. 

Figure 3.3 Density function of Exponential distribution 

For example, a temporal database which stores data time-wise for future usages. 

For convenience, files will be used to represent information that is stored in a. 

database from now on. 

Files are grouped into N classes. The way of grouping files is to evenly divide 

the shape under the density function into N sub-areas, as shown in Fig.3.1. 

Now I have N classes. no_classes will be used to represent the total number 

of classes being grouped, and no_disks will be used to represent the total number of 

disks being used in th.e disk subsystem. 

We now describe two algorithms for mapping the database classes to the 

disks. Both algorithms allow replication of frequently accessed classes to maximize 

throughput and minimize latency, subject to the constraint. that the overhead 

incurred is no more than a. maximum allowable overhead. 
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3.2 Algorithm One 

/*** Mapping Step ***/ 

for each disk, initialize its disk_freq to zero 

let s = max{no_classes,no_disks} 

while 	> 0) do 

Find the disk which has the minimum disk_freq, called dmin; 

Find the class which has the maximum class_freq, called cmax; 

Assign cmax  to the class_list of dmin; 

Recalculate the disk_freq and total_class of dmin; 

s — —; 

end. 

The first three rows of Fig.3.4 illustrate the Mapping Step for a database c1 to 

c6 and four disks. 

The Mapping Step maps the database to disks without replication (i.e., the 

overhead is zero). However, the disk access frequencies may be severely unbalanced. 

13y replicating frequently accessed class among several disks, the difference among 

disk access frequencies can be minimized, thereby increasing throughput. 

Before we describe the Replication Step, we first introduce the concept of a 

disk equivalence class: 

Two disks belong to the same equivalence class if and only if they contain the 

same set of database classes. 

For example, in row 3 of Fig.3.4 (after the Mapping Step), each disk belongs 

to its own equivalence class. However, in row 4. disks 2 and 3 belong to the same 

equivalence class. This results when c2 is replicated in disk 3 and c3 and c6 is 

replicated in disk 2. 
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In the Replication Step discussed below, replication is done among disk equiv-

alwnce classes as opposed to two individual disks. 

/*** Replication Step ***/ 

overhead = 0; 

while (overhead < overhead_allowed), do 

Find the disk equivalence class Dx with the maximum disk_freq; 

Find the disk equivalence class Dy  with the minimum disk_freq; 

Merge Dx and Dy  into a single equivalence class as follows: 

(a) copy into Dx all database classes that are in Dy  but not in D„; 

(a) copy into Dy  all database classes that. are in Dx, but not in Dy ; 

Recalculate disk_frcq of each. disk; 

Recalculate overhead; 

end. 

We illustrate the Replication Step just described using the example shown in 

Fig.3.4. Step 3 shows the contents of the disks after the Mapping Step. 

Steps 4-6 of Fig.3.4 correspond to the first three iterations of the Replication 

Step. 

After step 3, we find that disk 2 has the minimum disk_freq, and disk 3 has 

the maximum dis k _f req. They are each in their own equivalence classes. 

Hence, the classes residing in these disks are replicated on both disks, i.e., class 

c2 is copied into disk 3 and classes c3 and c6 are copied into disk 2. 

The result of this replication is to merge the disk equivalence classes {2} and 

{3} into a single equivalence class {2, 3}. The new disk _f req of this equivalence 

class is 24. 
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Figure 3.4 An Example of Algorithm One 
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After step 4, disk 1 has the maximum disk_freq. The equivalence class 

consisting of disks 2 and 3 has the minimum disk _f req. Thus, the two equivalence 

classes are merged into a single equivalence class {1, 2, 3}. This is achieved by 

copying c1 into disks 2 a.nd 3, and copying e2, c3 and c6 into disk I. 

Step 5 is similar to step 4. 

Algorithm One terminates when the current overhead exceeds the maximum 

allowable overhead, or when each class has a. copy in every disk. For example, if the 

maximum allowable overhead is 1.8, Algorithm One returns the database map shown 

in step 5 of Fig.3.4. 

The replication step of Algorithm One could potentially replicate many classes 

during a single iteration. Consequently, the increase in overhead per iteration could 

be very large. Indeed, there is no way to control overhead increase per iteration. 

(refer to step 5 and 6 in Fig.3.4.) 

What a. customer will be interested in is the overhead he paid and the 

throughput he gained. Overhead is critical. It needs to be under control. 

Algorithm two presented below can overcome this problem. 

3.3 Algorithm Two 

/*** Mapping Step ***/ 

This is the same as in algorithm one. 

/*** Replication Step ***/ 

overhead = 0; 

while (overhead < overhead_allowed) do 

find disk Dx  with the maximum disk_freq; 

find disk Dy with the minimum disk_freq; 
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in Dx , find the database class c, with the maximum class_freq that 

is not in Dy; 

in. Dy , find the database class cy  with the maximum class_freq that 

is not in Dx; 

copy cx  to Dy; 

copy Cy to Dx; 

recalculate disk_freq; 

recalculate overhead; 

end. 

Fig.3.5 illustrates Algorithm Two using the same instance as that given in 

The first three steps are the same as Algorithm One. 

Using the terminology of Algorithm Two, we see that, after step 3, Dr  is disk 

3 and Dy is disk 2. Moreover, cx is class c3 (i.e., the class in Dry  but not in Dy which 

has the maximum frequency of access). Similarly, cy is class c2 (i.e., the class in Dy 

but not in Dx  which has the maximum frequency of access). Thus, c3 is copied into 

disk 2 and c2 is copied into disk 3. 

After step 4, we see that Dx  is again disk 3 and Dy is again disk 2. Moreover, 

cx is class c6 (note that. cx  cannot be c2 or c6 since both have copies in Dy, or disk 

2). Now, cy  does not exist because all classes in Dy (= disk 2) have copies in Dr  (= 

disk 3). Therefore, c6 is copied into disk 2 and no new class is copied into disk 3. 

As in Algorithm One, Algorithm Two terminates when the current overhead 

exceeds the maximum allowable overhead. For example, if the maximum allowable 

overhead is 1.8, Algorithm Two returns the dat abase map shown in step 10 of Fig.3.5. 
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Figure 3.5 An Example for Algorithm Two 
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In general, Algorithm Two performs more iterations than Algorithm One for 

the same maximum allowable overhead. The reason is that Algorithm Two replicates 

at most two classes at a. time. Consequently, the:increase in overhead per iteration 

is bounded by a fixed constant. This is not true for Algorithm One. 

As we shall see in Chapter 5, the ability of Algorithm Two to control the 

overhead increase per iteration translates, in general, to a more balanced distribution 

of disk access frequencies. This in turn, results in higher throughput and lower 

latency than Algorithm One, for the same amount of overhead. 



CHAPTER 4 

THE SIMULATOR 

In this chapter, it is shown how to simulate the database model and multi-disk 

subsystem model. 

4.1 Motivation of Simulation 

4.1.1 Advantages of Simulation 

Most complex, real-world systems with stochastic elements are difficult to describe 

by a mathematical model which can be evaluated analytically. Thus, simulation is 

often the only method for investigation. 

Simulation allows us to estimate the performance of an existing system under 

some projected set of operating conditions. 

Alternative proposed system designs can be compared via simulation to see 

which best meets a. specified requirement. 

In a simulation we can maintain much better control over experimental 

conditions than would generally be possible when experimenting with the system 

itself. 

4.1.2 Discrete Event Simulation 

Discrete event simulation is concerned with the modeling of a system as it evolves 

over time using a. representation in which state variables change only at a countable 

number of points in time. These points in time are the ones at which an event occurs, 

where an event is defined to be an instantaneous occurrence which may change the 

state of a system. 

21 
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Although a discrete event simulation could conceptually be done by hand calcu-

lations, the amount of data that must be stored and manipulated for most real-world 

systems dictates that discrete event simulations be clone on a digital computer. 

4.2 Creating the Database 

In the simulation, several probability distributions are used to represent, the access 

frequencies of the database classes. 

Bellow we describe these distributions and the methods used to generate the 

access frequency for each database class. 

4.2.1 Gaussian Distribution 

The density function for this distribution is given by 

Where µ and a are the mean and standard deviation respectively. The corre-

sponding distribution function is given by 

In such case we say that, the random variable X is normally distributed with 

mean µ  and variance a. See Fig.4.1. 

Suppose each file is represented by a unique identification number. I will use 

z to represent the identification number. Because z is Gaussian distributed, the 

frequency of access of each file will also have Gaussian distribution. 
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Figure 4.1 Density Function of Gaussian Distribution 

In the simulation, a standard Gaussian distributed random variable is generated 

first. The standard Gaussian distribution has mean µ  equal to zero, and variance a 

equal to 1. Any other kind of Gaussian distribution can be obtained once the mean 

µ and variance a are given according 

where X stands for standard Gaussian distributed random variable, and X' 

stands for an arbitrary Gaussian distributed random variable with mean p and 

variance a. [6] 

In the subsequence, N(0, 1) will be used to represent the standard Gaussian 

distribution, and U(0,1) to represent the standard Uniform distribution in the 

interval [0,1]. Fig.4.2 is the density function of the standard Uniform distribution. 

One of the early methods for generating N(0, I) random variable, according to 

Box and Muller,[13] is evidently still in wide use despite the current availability of 
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Figure 4.2 Density Function of Uniform Distribution 

much faster algorithms. It does have the advantage, however, of maintaining a. one- 

to-one correspondence between the U(0,1) random variables and the N(0, 1) random 

variable produced. 

The method simply says: 

1) generate U1  and U2  as independent uniform distributed random variables, 

3) X is an independent Gaussian distributed random variables. 

Hence, an Gaussian distributed random variable X' can be obtained using 

formula 4.3. 

For the bi-modal case, 

1. generate a standard Gaussian distributed random variable X; 

2. generate a (0,1) evenly distributed random variable var; 

3. if var > .5, generate X' using formula 4.3; 

4. if var < .5, generate X' using formula 4.3. 

4.2.2 Exponential Distribution 

The density function of an exponential distributed random variable is: 
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The algorithm for generating this kind of random variable is as follows:[6] 

1. generate U(0, 1); 

The files under these three distributions are divided into N classes evenly, 

where N is a variable. Each class has the same size, this is the input to the mapping 

algorithms. 

4.3 Mapping the Database to the Multi-Disk Subsystem 

M disks are used to stored the database. It, is assumed that every disk has unlimited 

capacity to store data., and for each file, each disk has the same service time. (Service 

time is the total of seek time, latency time and read time.) 

Algorithm One and Two are used to map the database to this multi-disk 

subsystem. 

4.4 Simulating the Multi-Disk Subsystem 

The CPU is used as a. dispatcher in my model. It dispatches requests stored in 

incoming request queue. It knows what is stored on each disk, and keeps track of 

the queue size of each disk. In this thesis, the CPU is not modeled, and is assumed 

to take zero time to dispatch a request. That is, as long as there is a request, CPU 

will service it using zero time. 

Each disk server will service one request using one disk service time if there is 

at least a request waiting in the disk's queue. 

During one disk service time, a number of A user requests will be generated 

and dispatched by CPU. 
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A Poisson distribution is used to simulate the user requests coming in. These 

requests are buffered in the incoming request queue, waiting to be served by CPU. 

Let X be a discrete random variable which can take on the values 0,1, 2,... 

such that the probability of X is given by 

where A is a given positive constant. This distribution is called the Poisson 

distribution and a random variable having this distribution is said :.to be Poisson 

distributed. 

The algorithm for generating Poisson A random variables is as follows: [6] 

1. let a = 	= 1, and i 0; 

2. generate Ui+1, and replace b by bUi+1; 

3. if b < a, set x = i, and go to step 2. Otherwise, go to step 4; 

4. replace i by i 1, go back to step 2. 



CHAPTER 5 

EXPERIMENTAL RESULTS 

To figure out the influences of the no_classes, the no_disks, and the frequency distri-

bution of disk access to system overhead and throughput, the no_classes is varied 

from 50 to 200, and the no_disk from 32 to 256. Three kinds of density distribution 

functions are used: the uni-modal Gaussian with it equals to 400 and a equals to 

100; the bimodal Gaussian in which two Gaussian distributions are interconnected 

to each other, the other one is with p equals to 1200 and a equals to 50; and the 

Exponential with a equals to 15. 

The procedure for generating results is shown in Fig.5.1. 

The CHOOSE box chooses a. combination of the number of disks, number of 

classes, and the class frequency distribution. These are the input parameters for the 

database which will be mapped to the multi-disk subsystem. 

ALGORITHM X (X=1 or 2) is used to map the database, possibly with some 

iterations of replication steps. 

SIMULATOR takes user requests from the incoming request queue, and uses 

the database developed using ALGORITHM X to simulate the multi-disk subsystem, 

reports results to OBSERVE. 

OBSERVE gathers outputs from SIMULATOR. 
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5.1 Observations 

1. For a. fixed overhead, Algorithm Two gives higher throughput. than Algorithm 

One. See Fig.A.1 -Fig.A.3 in appendix A. 

Fig.A.1 is the results with 100 classes, and Gaussian distribution. The 

number of disks is varied from 32 to 128. 

From Fig.A.1, for example, for the case where there are 100 classes and 64 

disks, for a. given overhead of 0.5, the throughput for Algorithm One is 51 and 

for Algorithm Two is 60. 

The maximum percentage of different throughput between Algorithm One 

and Algorithm Two is 15%. 

Similar observations can be held from other values of number of disks and 

number of classes. 

2. For each pair of curves, it can he noticed that the throughput of Algorithm 

One eventually becomes higher that that for Algorithm Two at a "cross-over 

point". 

For example, in Fig.A.1, for the case where there are 100 classes and 128 

disks, Algorithm One becomes better when overhead is greater or equal to 

1.95. 

However, the difference between throughput value beyond the "cross-over 

point" is very small. 

In the above example, the maximum percentage of different throughput 

between Algorithm One and Algorithm Two after "cross-over point," is 4.4%. 

Moreover, the maximum possible throughput that can be achieved by 

Algorithm One is not significantly higher than the throughput at the cross-

over point. In the above example, it is 4.5%. 
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Figure 5.1 Generating Results 
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3. For a fixed no_classes and overhead, throughput increases as the number of 

disks increasing. See Fig.A.1 - Fig.A.3. 

For example, in Fig.A.1, for a. fixed no_classes equals to 100, the throughput 

with 128 disks is much higher than using 64 disks for a certain amount of 

allowable overhead. 

4. the throughput curves using uni-modal and bi-modal Gaussian distributions 

are very similar. See Fig.A.6 and Fig.A.7 in appendix A. 

Fig.A.6 is the result with 64. disks and 100 classes. 

From Fig.A.6, for example, the two curves are nearly the same. 

Therefore, if someone has a multi-disk subsystem established using Gaussian 

distribution, when there is another database which has to be stored onto the 

same multi-disk subsystem, as long as the new database holds Gaussian distri-

bution of file access, we need not to rearrange the older database. We just 

"acid" the new one to the old one. 

5. For two totally different file access distributions, the throughput curves are 

different. See Fig.A.8 in appendix A. 

Fig.A.8 is the results using Exponential distribution and Gaussian distri-

bution separately with 64. disks and 100 classes. 

From this figure, we can see that Algorithm Two is still better than One, 

although the throughput curves are different from those using Gaussian distri-

bution. 

6. For a fixed no_classes and overhead, the less disks we have, the lower latency 

we need to pay. See Fig.A.9 - Fig.A.11 in appendix A. 
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Fig.A.9 is the results of 100 classes. Number of disks are varied from 32 to 

128. Gaussian distribution is used. 

From Fig.A.9, for example, the latency using 128 disks is higher than using 

64 disks. 



CHAPTER 6 

CONCLUSIONS AND FURTHER STUDY 

6.1 Conclusions 

This thesis investigate the efficient mappings of very large databases with non-

uniform access to its data to a multi-disk subsystem. 

Two algorithms are developed to distribute the database across multiple disks, 

possibly with replication, in order to balance the frequency of access to disks. 

From the results of the previous chapter, it is clear that replication improve 

both throughput and latency. Because of replication, the storage overhead is 

increased. 

These two algorithms can maximize throughput and latency for a. given 

maximum allowable overhead. However, Algorithm One cannot control the increase 

in overhead, Algorithm Two can control it. 

In general, Algorithm Two gives better throughput and latency for the same 

amount of allowable overhead. 

6.2 Further Study 

In this thesis, I focussed on a. single processor service system. CPU time is assumed 

to be negligible. But in practice, we should consider CPU time. 

To reduce the CPU time, multiple processors could be used. Each processor 

may or may not have its own memory. Now given multi-processor and multi-disk 

subsystem, how should these two subsystems be connected? 

There are three different architectures, namely, Shared Everything, Shared 

Nothing and Shared Disks. In shared Everything, any processor can access any disk 
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and all memory is shared. In Shared Nothing, neither disk.nor memory is shared. In 

Shared Disks, any processor can access any disk, but each has its own.private main 

memory. These architectures deserve further study. 

In the, it is assumed that no index files are used and files are stored on disks 

directly to simplify the task to find the right starting. Since each file may have 

more than one level of index file, and each file may have different length, how to 

construct and store those index files and main files to achieve the minimum seek 

time, maximum throughout, are still need to be studied. 

Finally, this thesis is based on a traditional multi-disk subsystem, as we defined 

in Section 1.3. Disk synchronization and disk striping multi-disk subsystems are more 

powerful than a traditional one in improving the I/O service time, how to introduce 

these two multi-disk subsystems is still an area of research. 



APPENDIX A 

FIGURES FOR CHAPTER 5 

34 



Figure A.1 throughput:: 100 classes, Gaussian 3
5 



Figure A.2 throughput:: 50 classes, Gaussian 3
6

 



Figure A.3 throughput:: 200 classes, Gaussian 

3
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Figure A.4 throughput:: 64 disks, Gaussian 3
8

 



Figure A.5 throughput:: 128 disks, Gaussian 

3
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Figure A.6 throughput:: 64 disks, 100 classes 40  



Figure A.7 throughput:: 128 disks, 100 classes 4
1
 



Figure A.8 Two Different Distributions 4
2

  



Figure A.9 latency:: 100 classes, Algorithm Two 43  



Figure A.10 latency:: 50 classes, Algorithm Two 4
4
  



Figure A.11 latency:: 200 classes, Algorithm Two 4
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Figure A.12 latency:: 61 disks, Algorithm Two 46  



Figure A.13 latency:: 128 disks, Algorithm Two 4
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APPENDIX B 

SOURCE CODES 

/************************************************************ 

head.h 

globle definitions of source codes 
************************************************************/ 

#define DISK 1024 
#define MAXSIZE 50000 
#include <stdio.h> 
#include <math.h> 

typedef struct queue { 
int q_name; 
int c_name; 
int time_in; 
struct queue *next; 

} QUEUE, *QUEUEP; 

typedef struct table { 
int c_name; 
double c_freq; 
struct table *next; 

} TABLE, *TABLEP; 

int disk_size[DISK], request_size, name; 
int req_freq, no_loop, no_disk, ntime; 
int diskfull[DISK], out, delay; 
double GaussRe1, GaussRe2; 

int total_class[DISK]; 

int SET; 
int total_classes; 
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double class_freq[3000]; 
int maxclass, maxdisk, mindisk; 
double maxfreq, maxtotal, mintotal; 

double total_freq[DISK]; 
double accuracy; 
double overhead; 

float lamta; 
QUEUEP before; 
QUEUEP request; 
QUEUE? bfr; 
QUEUE? cpu, ptr[DISK]; 
QUEUEP delocate(QUEUEP ff); 
QUEUE? relocation(QUEUEP ff); 
QUEUE? nextlocation(QUEUEP ff); 
QUEUE? disk[DISK]; 
TABLE? class_list[DISK]; 
TABLE? fp[DISK]; 
TABLE? bpr[DISK]; 

/************************************************* 

main.c 

this is the main program 
using infinite system and disk buffers 

*************************************************/ 

#include <stdlib.h> 
#include "head.h" 

main(argc, argv) 
int argc; 
char *argv[]; 
{ 

int m; 

help(argc); 
initl(argc, argv); 
setup_database(); 
disk_overhead(); 
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init2().; run(); 

result(); 
finish(); 

free_database(); 

} /* end of main */ 

/************************************************.**** 
run.c 

Run the simulation 
*****************************************************/ 

#include <stdlib.h> 
#include "head.h" 

void run() 
{ 

int i, k, iseed, 1, j; 
double a, b, drand48(); 
QUEUEP ww[DISK]; 

iseed=64; 
srand48(iseed); 
a=pow(M_E, -lamta); 

for (i=0; i<no_loop; i++) { 
b=1.0; 
while((b*=drand48()) >= a) req_freq++; 

for(k=0;k<no_disk;k++) { 
if(disk_size[k]>0) SET=1; 

} 

if(SET==1) diskserver(); 
if(req_freq > 0) { 

for(k=1; k<=req_freq; k++) { 
gauss_incoming(name); 
name++; 

}  

} 
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if(request_size>0) { 
if(bfr != NULL) { 

cpu=bfr; 
bfr=NULL; 
before=NULL; 

} 

for(1=request_size, 	  
dispatch(); 
} 

} 
if ((bfr==NULL)&&(request_size==0)&&(cpu->c_name!=0)){ 

printf("error w\n"); 
exit(1); 

} 

if ((bfr!=NULL)&&(request_size==0)) { 
printf("error s\n"); 
exit(1); 

} 

if ((bfr==NULL)&&(request_size!=0)) { 
printf("error r\n"); 
exit(1); 

} 

if (request->next!=NULL) { 
printf("error t\n"); 
exit(1); 

} 

if (request!=cpu) { 
printf("error y\n"); 

printf("request_size is %d\n", request_size); 
exit(1); 

} 
if (cpu->next!=NULL) { 

printf("error p\n"); 
printf("i= %d lamta= %f \n", i lamta); 

exit(1); 
} 

req_freq=0; 
ntime++; 

} 
/* end of run */ 
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/************************************************** general-utilities.c 

*****************************************************/ 

#include "head.h" 

void help(int argc) 
{ 

if (argc != 2) { 
printf("Usage: input accuracy\n"); 
exit(1); 
} 

} 

void initl(int argc, char *argv[]) 
{ 

int d; 

sscanf(argv[1], "%if", &accuracy); 
no_disk=32; 
lamta=32.0; 
no_loop=300; 
for(d=0;d<no_disk;d++) { 

if((class_list[d]=(TABLEP)malloc(sizeof(TABLE)))==NULL){ 
printf("malloc error in initl\n"); 
exit(1); 

} 
class_list[d]->c_name=-1; 
class_list[d]->c_freq=0.0; 
total_freq[d]=0.0; 
total_class[d]=0; 
class_list[d]->next=NULL; 
fp[d]=class_list[d]; 
bpr[d]=fp[d]; 

} 
GaussRe1=GaussRe2=0; 
overhead=0.0; 

} 
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void init2() 
{ 

if((request=(QUEUEP) malloc(sizeof(QUEUE))) 	NULL). { 
printf("malloc error in init2(1)\n"); 
exit(1); 

} 
request_size=0; 
request->q_name=-1; 
request->c_name=0; 
request->time_in=0; 
request->next=NULL; 

cpu=request; /* cpu initially points to the beginning of 
request's link list */ 

for (d=0; d<no_disk; d++) { 
if((disk[d]=(QUEUEP) malloc(sizeof(QUEUE))) == NULL) { 

printf("malloc error in init2(2) when d is %d\n", d); 
exit(1); 

} 

disk_size[d]=0; 
disk[d]->q_name=-1; 
disk[d]->c_name=-1; 
disk[d]->time_in=0; 
disk[d]->next=NULL; 
diskfull [d] =0; 

ptr[d]=disk[d]; /* ptr[d] initially points to the beginning 
of disk[d]'s link list 	*/ 

} 

bfr=NULL; /* bfr records the first address blocked by disk due 
to disk full */ 

before=NULL; 
name=0; 
out=0; 
delay=0; 
SET=0; 
ntime=0; 

} 
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void result() 
{ 

double throughput, latency; 
throughput=(double)out/ntime; 
latency=(dpuble).delay/out; 
printf("%d %.7f 	%.7f %.7f %.7f\n", \ 

no_disk,overhead,throughput,throughput/31.8267,latency):; 
} 

void finish() 
{ int i, d; 

QUEUEP tmp, fs; 

for(d=0;d<no_disk;d++) { 
if(disk_size[d]>0) { 
for(i=disk_size[d];i>0;i--) { 

tmp=ptr[d]->next; 
free(ptr[d]); 
ptr[d]=tmp; 

} 

free(ptr[d]); 
} 

} 

if(request_size>0) { 
if(bfr != NULL) fs=bfr; 
if(bfr == NULL) fs=cpu; 
for(i=request_size;i>0;i--) { 

tmp=fs->next; 
free(fs); 
fs=tmp; 

} 

free(fs); 
} 

} 

QUEUEP delocate(QUEUEP ff) 
{ 

QUEUEP tmp; 
tmp=ff->next; 
if(before != NULL) before->next=tmp; 
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ff->next=NULL; free(ff); 
return(tmp).; 

QUEUEP nextlocation(QUEUEP ff) 
{ 

if (bfr == NULL) bfr=ff; 
before=ff; 
ff=ff->next; 
before->next=ff; 
return(ff); 

} 

QUEUEP relocation(QUEUEP ff) 
{ 

QUEUEP tmp; 
tmp=ff->next; 
free(ff); 
return(tmp); 

} 

/***************************************************** 

system-utilities.c 

*****************************************************/ 

#include "head.h" 

void diskserver() 
{ 

int d, t=0; 
for(d=0; d < no_disk ; d++) { 
if ( disk_size[d]>0) { 

if(ptr[d]->c_name ==0) { 
printf("diskserver error\n"); 
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exit(1).; 

} 

out++; 

t = ntime 	.(ptr[d]->time_in); 

delay+=t; 

disk_size[d]--; 

ptr[d]=relocation(ptr[d]); 
} 

} 

SET=0; 

} 

int dispatch() 

{ 

int i, j; 

int set=0; 

int less_queue; 

int less_size; 

less_queue=-1; 

less_size=-1; 

if(cpu->c_name == 0) { 

printf("dispatch error\n"); 

exit(1); 

} 

for(i=0;i<no_disk;i++) { 

fp[i]=bpr[i]; 
for(j=total_class[i];(j>0) && (set==0);j--) { 

if(cpu->c_name == fp[i]->c_name) set=1; 

if(fp[i]->next == NULL) j=-1; 

else fp[i]=fp[i]->next; 
} 

if(set==1) { 

if (less_size == -1) { 

less_size=disk_size[i]; 

less_queue=i; 

} 

else if(disk_size[i] < less_size) { 

less_size=disk_size[i]; 

less_queue=i; 

} 

} 

set=0; 
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} 

disk_size[less_queue]++; 
disk[less_queue]->q_name=cpu->q_name; 
disk[less_queue]->c_name=cpu->c_name; 
disk[less_queue]->time_in=cpu->time_in; 
if((disk[less_queue]->next=(QUEUEP)malloc(sizeof(QUEUE))) 

== NULL) { 
printf("malloc error in dispatch\n"); 
exit(1); 
} 

disk[less_queue]=disk[less_queue]->next; 
disk[less_queue]->c_name=0; 
disk[less_queue]->next=NULL; 
request_size--; 
cpu=delocate(cpu); 

} 

/******************************************************* 
setup_database.c 

*******************************************************/ 

#include "head.h" 
#include <stdio.h> 
#include <math.h> 

setup_database() 
{ 

int i, j; 
TABLEP ff[DISK]; 

calculation(); 
database(); 
calculation(); 
adjustment(); 

1* 
for(i=0;i<no_disk;i++) { 
ff[i]=bpr[i]; 
j=total_class[i]; 
printf("\n\ndisk %d's class_list is: ", i); 
while(j>0) { 
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printf("%d, /f 	ff[i]->c_name, ff[i]->c_freq); 

ff[i]=ff[i]->next; 
j --; 

} 

printf("\ndisk %d's total_class is %d, total_freq is %f\ 
\n", i , total_class[i], total_freq[i]); 

} 
*/ 
} 

/****************************************************** 
database-utilities.c 

******************************************************/ 

#include "head.h" 

calculation() 
{ 

int i; 

double mu, sigma; 
double x1, x2, z1, z2, fl, f2, f; 

tot al_classes=100; 
for(i=0;i<total_classes+1;i++) class_freq[i]=0.0; 
mu=400.0; 
sigma=100.0; 
x2=mu; 
xl=mu-4.0; 
for(i=0;i<total_classes;i++) { 

z1=(xl-mu)/sigma; 
z2=(x2-mu)/sigma; 
fl=.5+.5*erf(z1/(sqrt(2))); 
f2=.5+.5*erf(z2/(sqrt(2))); 
if(x2==4.0) f1=0.0; 
f=(f2-f1)*2; 
class_freq[i+1]=f; 
x2-=4.0; 
xl-=4.0; 

} 
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} 

Maxclass() 
{ 

int i; 

maxfreq=0.0; 
maxclass=total_classes-1; 
for (i=1;i<=total_classes;i++) { 

if(class_freq[i] > maxfreq) { 
maxfreq=class_freq[i]; 
maxclass=i; 

} 

} 
if(maxfreq>0) class_freq[maxclass]=-1.0; 

} 

MaxMindisk() 

int i; 

maxtotal=mintotal=total_freq[0]; 
maxdisk=mindisk=0; 
for (i=1;i<no_disk;i++) { 

if(total_freq[i] > maxtotal) { 
maxtotal=total_freq[i]; 
maxdisk=i; 

} 

if(total_freq[i] < mintotal) { 
mintotal=total_freq[i]; 
mindisk=i; 

} 
} 

} 
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database() 
{ 

int i, j, end; 

end = (total_classes > no_disk) 	no_disk : total_classes; 
for(i=0;i<end;i++) { 

Maxclass(); 
class_list[i]->c_name=maxclass; 
class_list[i]->c_freq=maxfreq; 
total_freq[i]+=(double) maxfreq; 
total_class[i]++; 
if((class_list[i]->next=(TABLEP)malloc(sizeof(TABLE)))==NULL){ 

printf("malloc error in database(1)\n"); 
exit(1); 

} 
class_list[i]=class_list[i]->next; 
class_list[i]->next=NULL; 

} 

if(total_classes>no_disk) { 
for(j=no_disk;j<total_classes;j++) { 

Maxclass(); 
MaxMindisk(); 
if(maxfreq>0) { 

class_list[mindisk]->c_name=maxclass; 
class_list[mindisk]->c_freq=maxfreq; 
total_freq[mindisk]+=(double) maxfreq; 
total_class[mindisk]++; 
if((class_list[mindisk]->next=(TABLEP)malloc(sizeof(TABLE))) 

== NULL) { 
printf("malloc error in database(2)\n"); 
exit(1); 

} 

class_list[mindisk]=class_list[mindisk]->next; 
class_list[mindisk]->next=NULL; 

} 

} 
} 

/*end of mapping step*/ 

/*** replication step for algorithm one ***/ 
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adjustment() 

int i, j; 
int sett=0; 
int tot; 
int class; 
int copy=0; 
double eventotal; 
TABLEP fp[DISK], tmp; 

MaxMindisk(); 
disk_overhead(); 
eventotal=0.0; 
while((overhead < accuracy) && (maxdisk != mindisk)) { 
tot=total_class[mindisk]+total_class[maxdisk]; 
fp[maxdisk]=bpr[maxdisk]; 
for(i=0;i<total_class[maxdisk];i++) { 

class=fp[maxdisk]->c_name; 
eventotal=eventotal+class_freq[class]; 
class_list[mindisk]->c_name=fp[maxdisk]->c_name; 
class_list [mindisk] ->c_freq=fp [maxdisk] ->c_freq; 
if((class_list[mindisk]->next=(TABLEP) malloc(sizeof(TABLE))) 
== NULL){ 

printf("malloc error in adjustment(1)\n"); 
exit(1); 

} 

class_list[mindisk]=class_list[mindisk]->next; 
class_list[mindisk]->next=NULL; 
fp[maxdisk]=fp[maxdisk]->next; 

} 

fp[mindisk]=bpr[mindisk]; 
for(i=0;i<total_class[mindisk];i++) { 

class=fp[mindisk]->c_name; 
eventotal=eventotal+class_freq[class]; 

fp[mindisk]=fp[mindisk]->next; 
} 

tmp=bpr[maxdisk]; 
bpr[maxdisk]=bpr[mindisk]; 

class_list[maxdisk]=class_list[mindisk]; 
for(i=0;i<no_disk;i++) { 

if(bpr[i]==tmp) copy++; 



if(bpr[i]==bpr[mindisk]) copy++; 

} 

eventotal=eventotal/copy; 

total_freq[maxdisk] =eventotal; 

total_freq[mindisk]=eventotal; 
total_class[mindisk]=total_class[maxdisk]=tot; 

for(i=0;i<no_disk;i++) { 

if(bpr[i]==tmp) { 

bpr[i]=bpr[mindisk]; 

class_list[i]=class_list[mindisk]; 

total_freq[i]=total_freq[mindisk]; 

total_class[i]=total_class[mindisk]; 
} 

if(bpr[i]==bpr[mindisk]) { 

total_freq[i]=total_freq[mindisk]; 
total_class[i]=total_class[mindisk]; 

} 
} 

tmp=NULL; 

MaxMindisk(); 

disk_overhead(); 

eventotal=0.0; 

copy=0; 

} 

/* end of replication step */ 

/*** replication for algorithm two ***/ 

adjustment() 

{ 

int i, j; 

int sett=0; 

int tot; 

int class; 

int copy=0; 

double eventotal; 

TABLEP fp[DISK], tmp; 

MaxMindisk(); 

disk_overhead(); 
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eventotal=0.0; 
while((overhead < accuracy) && (maxdisk != mindisk)) { 
tot=total_class[mindisk]+total_class[maxdisk]; 
fp[maxdisk]=bpr[maxdisk]; 
for(i=0;i<total_classEmaxdiskLi++) { 

class=fp[maxdisk]->c_name; 
eventotal=eventotal+class_freq[class]; 
class_list[mindisk]->c_name=fp[maxdisk]->c_name; 
class_list[mindisk]->c_freq=fp[maxdisk]->c_freq; 
if((class_list[mindisk]->next=(TABLEP)malloc(sizeof(TABLE))) 

== NULL){ 
printf("malloc error in adjustment(1)\n"); 
exit(1); 

} 

class_list[mindisk]=class_list[mindisk]->next; 
class_list[mindisk]->next=NULL; 
fp[maxdisk]=fp[maxdisk]->next; 

} 

fp[mindisk]=bpr[mindisk]; 
for(i=0;i<total_class[mindisk];i++) { 

class=fp[mindisk]->c_name; 
eventotal=eventotal+class_freq[class]; 
fp[mindisk]=fp[mindisk]->next; 

} 

tmp=bpr[maxdisk]; 
bpr[maxdisk]=bpr[mindisk]; 
class_list[maxdisk]=class_list[mindisk]; 
for(i=0;i<no_disk;i++) { 

if(bpr[i]==tmp) copy++; 
if(bpr[i]==bpr[mindisk]) copy++; 

} 

eventotal=eventotal/copy; 
total_freq[maxdisk] =eventotal; 
total_freq[mindisk]=eventotal; 
total_class[mindisk]=total_class[maxdisk]=tot; 

for(i=0;i<no_disk;i++) { 

if(bpr[i]==tmp) { 
bpr[i]=bpr[mindisk]; 
class_list[i]=class_list[mindisk]; 

total_freq[i]=total_freq[mindisk]; 
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total_class[1]=total_class[mindisk]; 
} 

if(bpr[i]==bpr[mindisk]) { 

total_freq[i]=total_freq[mindisk]; 
total_class[i]=total_class[mindisk]; 

} 

} 

tmp=NULL; 

MaxMindisk(); 

disk_overhead(); 

eventotal=0.0; 

copy=0; 

} 

} /* end of replication step */ 

free_database() 

{ 

int i, d; 

TABLEP tmp, ff[DISK]; 

for(d=0;d<no_disk;d++) { 

ff[d]=bpr[d]; 

for(i=total_class[d];i>0;i--) 

tmp=ff[d]->next; 

free(ff[d]); 

ff[d]=tmp; 

} 

} 

} 

disk_overhead() 

{ 

int i; 

int over=0; 

for (i=0;i<no_disk;i++) over+=total_class[i]; 

overhead=(double)(over-total_classes)/total_classes; 



void gauss_incoming(int name) 

{ 

if((name % 2) == 0) { 

gauss48(); 

request->c_name=match(GaussRel); 
} 

else request->c_name=match(GaussRe2); 

request_size++; 

request->q_name=name; 

request->time_in=ntime 

if((request->next=(QUEUEP)malloc(sizeof(QUEUE)))==NULL){ 

printf("malloc error in gauss_incoming\n"); 

exit(1); 

} 

request=request->next; 

request->c_name=0; 

request->next=NULL; 

} 

int match(xx) 

float xx; 

int i; 

double step, y1, y2; 

step=4.0; 

yl=y2=400.0; 

for(i=0;i<100;i++) { 

if((4.0<xx) && (xx<=796.0)) 

if(((yl-step<xx)&&(xx<=y1))||((y2<xx)&&(xx<=y2+step))){ 

return(i+1); 

} 

y1-=step; 

y2+=step; 

} 

if((xx<=4.0) || (xx>796.0)) return(100); 

} 
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{ 

double sigma=100.0.; 
int u=400.0; 

double log(), sqrt(), drand48(); 
double r, a, b, theta, st, ct; 

theta = 2.0 * M_PI * drand48(); 
r = sigma * sqrt( -2.0 * log(drand48()) ); 
st = sin(theta); 
ct = cos(theta); 
a=r*st; 
b=r*ct; 
GaussRel=a+u; 
GaussRe2=b+u; 

} 
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