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ABSTRACT 

CONTROL OF SMART STRUCTURE 
USING ADAPTIVE DITHER 

by 
Tian Hong 

In this thesis, a mathematical model of a piezoelectric stack actuator is 

presented to describe its voltage versus displacement hysteresis characteristices. 

This model can accommodate a wide range of piezoelectric materials, including 

the PZT (lead zirconate—lead titanate) type which is most popular in industrial 

applications. 

Besides describing the conventional "single-loop" hysteresis, this model also 

accounts for the off-axis minor loops by augmenting the algorithm with loop indexing. 

It is shown that the PZT hysteresis possesses certain "weak scalability" that 

enables the use of spectral analysis to measure the level of nonlinearity. 

After a suitable mathematical model has been obtained, a dither is injected into 

the model to weaken the nonlinearity of hysteresis loop. An integral controller and 

a harmonic ratio comparator are used in an adaptive system to determine suitable 

dither amplitude to meet the requirement of the reference distortion lever. The dither 

effectively "linearizes" the hysteresis nonlinearity, thus rendering it more suitable for 

application to precision control. 

Extensive numerical simulations are carried out and simulation results are 

presented. 
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CHAPTER 1 

INTRODUCTION 

Piezoelectricity means "pressure electricity". It was discovered by Pierre and Jacques 

Curies in the 1880's. Piezoelectricity is a property of certain crystals such as quartz, 

Rochelle salt, tourmaline, barium titanate and many others, those crystals when 

compressed in certain directions show positive and negative charges on certain 

portion of their surfaces. The charges are proportional to the pressure and disappear 

when the pressure is withdrawn. Conversely, when an electric field is applied to 

one of those materials, there will be dimensional changes in those crystals. Because 

of this unique electromechanical property, these materials are also called "smart 

materials". Recently, piezoelectric crystals are being used or are being considered 

for use as actuators in micro-positioning application, notably in electron-optical 

system and precision control system. For example, H. S. Tzou in 1987 used it as a 

sensor and actuator in active vibration control of flexible structure[6], E. F. Crawley 

in 1987 used piezoelectric actuators as elements of intelligent structures[3] , S. Halevi 

in 1983 used this smart structure in bimorph piezoelectric flexible mirror in graphical 

solution and compensation[4] etc. 

While the application of smart materials are receiving more and more attention, 

some problems also appear. A major drawback of usage of these smart materials has 

been the inability to accurately predict the actuator output position for an arbitrary 

input voltage. Such shortcoming is due to the lack of a good mathematical model 

that describes the hysteretic behavior of the crystals as they are actuated, especially 

when off axis hysteresis minor loops are involved. 

The organization of this thesis is as follows: 

1 
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In Chapter 2, a. suitable mathematical model for hysteresis loop is presented, 

it is based on Philip R. Dahl's solid fraction model (SFM) [2] and augmented by 

the Prandtl Laws to account. for the minor hysteresis loops. Analytic and simulation 

results are presented. All simulations are carried out on SIMULINK for Windows 

version 1.2 and Matlab 3.5 of MathWorks Inc. The simulation results confirmed the 

validity of the model. 

In Chapter 3, after obtaining a suitable mathematical model to describe the 

hysteretic behavior of PZT materials, an adaptive dither signal is injected into the 

system to smooth out the nonlinearity so as to improve control accuracy and transient 

dynamics. A controller together with dither signal are applied to regulate the charac-

teristics of the system. This proposed system is shown in Figure 1.1 where the 

hysteresis model block represents the hysteresis model and A is the amplitude of 

dither(A sin w2t, where w2 ≥ 10w1, w1 is the input signal frequency). A is varied 

until a prespecified level of harmonic distortion ratio is satisfied. From an input-

output point of view, the dithered system inside the dash block can be considered 

as a black box so that Figure 1.1 can be redrawn as Figure 1.2. In Chapter 3, it will 

be shown that the output Y of black box is "linear" to the input U. 

In Chapter 4, shape control of PZT materials is presented. Errors due to step 

response of square wave are compared by simulation results with/without dither. 

Off-axis minor loops by the neutralization of the adaptive dither will also be demon-

strated. 

Finally, in Chapter 5, a conclusion of this work is provided together with 

directions for future research. 
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Figure 1.1 System controlled by variable dither 

Figure 1.2 Simplified system 



CHAPTER 2 

MODELING OF PZT HYSTERESIS 

In this chapter a. hysteresis algorithm is presented which is based on Philip R. Dahl's 

solid friction model (SFM) [1][2]. In this approach single hysteresis loop formed 

between applied voltage and mechanical displacement is first considered. This is 

followed by adding loop index into the algorithm to deal with the off-axis minor 

loops. 

2.1 Single Hysteresis Loop 	  

It is well known that the displacement—voltage relation of PZT materials is nonlinear 

with various degrees of hysteresis. The solid friction model, pioneered by Philip R. 

Dahl [1][2], has been considered as a. successful model in describing the hysteresis 

characteristics. The model is given by the following nonlinear differential equation: 

where SGN is sign function: 

where F is a solid friction force which is a. function of displacement x and velocity x. 

F has the characteristic as shown in Figure 2.1. The friction force F monotonically 

approaches +Fc as long as x is positive. While x < 0, F follows the negative of 

it's original shape and approaches —Fe. The friction function slope dF/dx, however, 

always remains positive even though x changes sign. Fc is the Coulomb friction 

4 
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force which can also be though of as a "yield force" or as "running friction force"(for 

example, as found in bearing friction). 

Figure 2.1 Typical solid friction force function 

σ

 is the rest stiffness or slope of the force deflection curve at F = 0. The effect 

of varying a is shown in Figure 2.2. It is noted as a increases, the slope of the 

hysteresis loop increases proportionally and shape of hysteresis loop slightly rotates 

counterclockwise. In Figure 2.2 the solid line hysteresis loop is for a = 1, pointed 

line(••••) is for a = 2, dashed line is for a = 5 and dotted line(....) is for a = 10. The 

variable i is a parameter of the type of different crystals, for ductile type i = 1,2, 

for brittle type i = 0, 1/4,1/2. When i is decreased, the hysteresis loop becomes 

"slim" and slightly rotates counterclockwise as shown in Figure 2.3. The solid line 

hysteresis loop is for i = 2, pointed line is for i = 1, dashed line is for i = 0.5 and 

dotted line is for a = 0.25. For most PZT materials a = 1, i = 1, and (2.2) can he 

simplified to: 
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The system to be modeled is a PZT stack consisting of 55 PZT discs, each disc 

is 1.17 cm diameter, 0.18 cm thick and wired in parallel, the model to be simulated 

is shown in Figure 2.4. 

Figure 2.2 Hysteresis loop when o = 1,2,5,10 

The acceleration of the load mass Al is: 

where: 

V: voltage applied to all crystals 

x: actuator end displacement 

b: fraction of stack height in cement(b 0) 

N: number of discs in PZT stack (A' = 55) 



7 

Figure 2.3 Hysteresis loop when i = 0.25,0.5,1,2 

A: area of disc of PZT stack (A ti 4.30 x 10-4 m2 ) 

d33: crystal strain per electric field coefficient (d33  ti 500 x 10-12  m/v) 

S33: crystal strain per stress coefficient (833  ti 20.8 x 10-12  m2 /N) 

H: stack height (H 10 cm) 

FA: accelerating force on the load mass 

-y: damping coefficient 

The diagram of piezoelectric stack actuator model is shown in Figure 2.5. 

Clearly from the block diagram, the system consists of two parts: 

(A) Linear part: 

(B)Nonlinear part: 



Figure 2.4 PZT pieozo-electric stack actuator 

8 
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Figure 2.5 Block diagram of piezo-electric stack actuator model 

It is obvious that the whole system is a second order linear system affected by 

a nonlinear force F. The corresponding simulation diagram is shown in Figure 2.6. 

The model now becomes 

Where 

Kv  and KN are, respectively, the voltage-force scale factor and the equivalent 

spring rate. They are determined by the type and shape of the smart materials. For 

the particular PZT system, 



10 

Figure 2.6 Simulation diagram of PZT stack 

Furthermore, it has been found that two extra gain elements, K1  the gain of 

and K2 the gain of F should be included to vary the effects of nonlinear force F 

as shown in Figure 2.6. For different kind of hysteresis loops the gain of s and F 

will be different, this will be easy to model different degrees of hysteresis. Another 

important additional feature is the relay block, it is introduced to get the correct, 

SGN(ẋ) realization and to avoid undesirable rapid sign changes of SGN(ẋ) that may 

occur under the presence of some high frequency harmonic oscillation or noise. Such 

rapid chattering can significantly slow down the numerical simulation. The rationale 

of using a relay block is based on the observation that SGN(ẋ ) only changes sign 

once when it crosses the line ẋ  = 0 from < 0 to > 0 or from ẋ > 0 to < 0. The 

relay block solves this problem, since it considers not only the present input value 

but also the past input value. Within a small tolerance c, it does not cause SGN(ẋ ) 

to change sign. In later simulation ϵ is set to 10-4. 
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Figure 2.7 Hysteresis model for PZT stack V = 400sin10t 

The properties of hysteresis loop are now assessed by numerical simulation. 

The input voltage (V) for the simulation is a low frequency sine wave V = A sin wt 

(w = 1 and 10, for different amplitude A). , with KN = 2.01944 x 108, K = 5.8300, 

γ = 50000, K1  = 200, K2  = 10000, K3  = 0.001,z = 0 and a = 1. Some simulation 

results are shown in Figures 2.7— 2.16. 

The simulation results indicate while the amplitude of the input signal changes 

in two orders of magnitude, the characteristics of the spectral density of system 

output remains weakly invariant. Suppose the input signal has the frequency f, then 

there will be extra spectral components at 3f, 5f, 7f ...etc. due to the nonlinearity 

of the model. Define now h1, h3, h5...etc. as the height in dB of spectral density 

at f, 3f, 5f...respectively. The harmonic ratios d3, d5 , d7...etc. can be defined as 

follows: 



Figure 2.8 Spectral desity of hysteresis model for PZT stack V = 400sin10t 

Figure 2.9 Hysteresis model for PZT stack V = 40sin10t 
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Figure 2.10 Spectral desity of hysteresis model for PZT stack V = 40sin10t 

Figure 2.11 Hysteresis model for PZT stack V 	Ot 
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Figure 2.12 Spectral desity of hysteresis model for stack V = 4sin10t 

When V = 400 sin 10t, 

• ... 

For V = 40 sin 10t, 
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Figure 2.13 Hysteresis model for stack V = 320sint 

From the simulation data, it is found that as A ranges from one to six hundred, 

the variations in d3, d5, d7  are bounded by +4dB as shown in Table 2.1. This 

means that this model is approximately scalable in this range, thus the term "weak 

scalability.". 

When the input voltage is A sin t, characteristics of the spectral density do not 

change, so this "weak scalability" is independent of input signal frequency. These 



Figure 2.14 Spectral desity of hysteresis model for PZT stack V = 320sint 

Figure 2.15 Hysteresis model for stack V = 32sint 
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Figure 2.16 Spectral desity of hysteresis model for PZT stack V = 32sint 

A d3  d5  d7  
1 -46 -18 -7 
4 -45 -16 -10 

20 -46 -17 -9 
40 -43 -16 -10 

100 -40 -16 -10 
200 -40 -15 -9 
400 -40 -14 -10 
600 -43 -10 -9 

Table 2.1 Difference of spectral at 3f , 5f and 7f 

17 
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Figure 2.17 Hysteresis model for PZT stack V = 400sin10t — 100 

Figure 2.18: Spectral desity of hysteresis model for PZT stack V = 400sin10t —100 
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simulation results together with their spectral analysis are shown in Figures 2.13-

2.16 

After extensive simulation, it is also found that when applied voltage has a 

DC offset, the characteristics of its spectral density does not change either. Since 

a DC signal can be considered as a signal with zero frequency, and this model has 

the property of frequency independent " weak scalability", therefore the DC offset 

will not affect the system's spectral power characteristics (compare Figure 2.8 with 

Figure 2.18) although the shape of hysteresis loop is changed (compare Figure 2.7 

with Figure 2.17). The same model is simulated with two different input signals: (A) 

V = 400 sin 10t; (B) V = 400 sin 101 — 100. Simulation results are plotted in Figures 

2.17-2.18. 

2.2 Multi-loop Simulation 

It is well known that PZT materials exhibit, minor off-axis hysteresis loops inside the 

main hysteresis loop, as shown in Figure 2.19. A minor off-axis hysteresis loop may 

start from an arbitrary point on the curve of major hysteresis loop and terminate 

at the starting point. Suppose the biggest hysteresis loop in Figure 2.19 is loop1, 

middle one is loop2, smallest one is loop3. Then loop2 is minor loop of loop1, loop3 

is minor loop of loop2. 

Prandtl Laws[5] have been applied by Dahl[2] to account for the behavior of 

the minor loops with satisfactory results. These rules are now stated: 

1) Immediately after the reversal of the sense of deformation, the slope of the 

stress-strain diagram has the same value as at the beginning of first loading. 

2) The shape of any branch of the stress-strain diagram is uniquely determined 

by the position of the point where the last reversal of the sense of deformation 

occurred. 

3) If the sense of deformation is not, reversed again: 
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A) Any such branch will pass through the point where the last but one 

reversal of the sense of deformation occurred. 

B) Thereafter, the stress-strain diagram continues as if the loop had never 

been formed. 

Figure 2.19 Example of minor hysteresis loop 

Prandtl Laws clearly describe the characteristics of the off-axis minor hysteresis 

loops by means of a memory dependent algorithm. The simulation diagram is shown 

in Figure 2.20. It bears strong resemblance to the diagram for single loop simulation. 

However in this case, an extra block, a Matlab function MULTI.M is used. The codes 

of this function and the definition of those variables used in MULTI.M are given by 

Appendix A. A flowchart [2] corresponding to the nonlinear part of the PZT dynamics 

is given in Figure 2.21. It should be noted that .±(N) represents the velocity at the 

step N for the numerical simulation. 

For single loop situation, the SFM model is 
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Figure 2.20 Simulation diagram for multiloop situation 

It is clear that Prandtl Laws 1 is satisfied by (2.16) and to satisfy Prandtl Laws 

3A, (2.16) is modified to [2]: 



Figure 2.21 Flowchart of Matlab function MULTI.M 

22 
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Where: 

K = K 1 is set at Kth turnaround point defined as x undergoes a 

sign change. 

And 

FEX(K) = F is the hysteresis force at the time of Kth turnaround 

after K is set. 

The initial conditions are: 

where Fc is the hysteresis force at the initial loading point. Since the initial curve is 

dependent on the past operating conditions, the previous values of K and FEX(K), 

it is necessary to initialize the curve to be the first loading curve and hence K = 

1 and the hysteresis force at the first loading point of the initial curve is set to 

FEX(1). Substituting (2.19) into (2.17) once again provide (2.16) for single loop 

care. Therefore proper initialization requires running the simulation in the single 

configuration for "a while" and set K =1 and 	until the system output becomes 

stable. 

Prandtl Law 3B is satisfied by the logic expression: 

If 

Then 
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For K =1 or 2, there are at most. two turnaround points, and hence only the 

major loop ca.n exist.. However for K > 2, there must be minor loops. Furthermore, 

if FEX(K — 1) is the hysteresis force at the point where minor loop starts and 

FEX(K) is the hysteresis force at the point where the minor loop turnaround, 

then the difference between FEX(K) and FEX(K — 1) is the maximum difference 

between any other two point on this minor loop. If logic equation (2.20) is satisfied, 

then the point which has the hysteresis force F returns to the point where minor 

loop originated, namely minor loop closed and the subsequent curve will become the 

K — 2 loading curve as if the minor loop was never formed. 

Another problem that can arise is the following: 

When K = 1 or larger than 2, the solid friction model does not present 

unrealistic behavior. However, if K = 2 and the branch keeps going without 

turnaround, then finally it will reaches a point which has the hysteresis force F 

that IFI ≥ |FEX(2)|, then the K = 1 initial condition or maximum value in its 

previous history of first loading curve will be exceeded. If a new FEX(1) is not 

set at. this moment, and if K = 2 curve continued without a velocity reversal or 

turnaround, then the K = 2 branch will finally cross the constant line Fc*SGN(x (̇0)). 

This is intuitively incorrect behavior for most hysteresis phenomena. To avoid such 

unrealistic situation, an Fc  limiting logic is introduced: 

Equally, this correction can be made at the first loading exceedance, i.e. 

Because of this limiting logic there will be a discontinuity in dF/dx at the first 

loading exceedance point, and the curve of K = 2 becomes a new K =1 curve and 

then the new K = 1 curve will be approximate to the original K = 1 curve. 



25 

Figure 2.22 Input signal for multiloop simulation 

For K1  = 2.0944 x 108, Kv = 5.8300, y = 50000 K1  = 500, K2  = 10000, 

K3 = 0.001, i = 0 and o = 5, the simulation results are plotted in Figure 2.23 and 

Figure 2.24. 

The applied voltage is a combination of 400sint, 280sin3t, 160sin4t as shown 

in Figure 2.22. Therefore there are 3 loops. The biggest one is, by definition, major 

hysteresis loop, the rest are considered as minor hysteresis loops. Denote the middle 

one minor loop 1 and the smallest one minor loop 2. Major hysteresis loop starts from 

point A, along with curve 1, now the loop index K = 1. When it reaches turnaround 

point B, it follows the curve 2 which is symmetrical to curve 1, the virgin curve with 

respect to the origin (Prandtl Laws 2). The loop index is now incremented to 2. 

Because of the symmetry, the slope at point A along curve 1 is the same as that at 

point B along curve 2(Prandtl Laws 1). Curve 2 will finally reach point A again, then 

turnaround and follow curve 1 again(Prandt1 Laws 3A). Next time when it reaches 

point C, the applied voltage changes its direction, so the curve turnaround at point 

C, and along with curve 3, K = 2. The slope(mc) at point C along curve 3 is the 



Figure 2.23 Simulation result of hysteresis model for PZT stack 

same as that (mA, see Figure 2.23) at point A along with curve 1 ( Prandtl Laws 

2). Then after it turnaround at point D, it follows the curve 4, K = 3, and reach 

point C again(Prandtl Laws 3A). So curve 3 and curve 4 formed a minor hysteresis 

loop(minor loop 1). When it reaches point C again, the loop index K reset to 1. 

Since point C both belong to major loop and minor loop 1, so at that moment minor 

loop 1 is closed, it return to curve 1 as if minor loop1 was never formed (Prandtl 

Laws 3B). Similarly for minor loop 2, minor loop 1 is its major hysteresis loop as if 

the major loop does not exist. The only difference is that for minor loop 1 the loop 

index K = 2 or 3, but for minor loop 2, K = 3 or 4. 

In Figure 2.24, the applied voltage is the same as that before except a DC offset 

—100 is added to the applied voltage. The shape of the hysteresis loops is changed 

due to a DC offset, but their spectral characteristics do not change. And all loops 

still follow Prandtl Laws as well as that. in Figure 2.23. 
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Figure 2.24 Simulation result of PZT model when input have a DC offset 

2.3 Model for Actual Experimental Date 

The experimental data in Dahl's [2] are used to parameterized the model by adjusting 

i, -y, K1  and K2. Since the values of a and i are already known, it remains to 

determine K1 , K2, Kv, KN  and -y as follows: 

-y is a damping coefficient. Its presence is due to mechanical losses in the 

PZT materials and it has the effect of stabilizing the system. The value of -y is, in 

general, unknown. It was found by simulation that y 5 x 104  is appropriate. Other 

parameters are also adjusted to match the experimental data. The parameters are 

chosen for the simulation model: 
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Point Voltage S 	j D e a 
A -160 -24.76 -23.98 -0.78 3.25 % 
B -100 -17.49 -18.05 -0.54 2.92 % 
C -50 -11.00 -10.05 -0.95 9.55 % 

0 -3.34 -3.19 -0.15 4.70 % 
E 50 +4.98 +5.03 -0.05 0.99 % 
F 100 +14.66 +14.61 +0.05 0.34 % 
G 150 +25.08 +25.58 -0.50 1.95 % 
H 200 +36.14 +37.68 +1.54 4.09 % 
I 250 +48.29 +48.88 -0.59 1.21 % 
J 290 +58.83 +60.07 -1.24 2.06 % 

Table 2.2 Comparation of simulation data and experiment data.  

When modeling PZT stack with Dahl's experiment data, the most important 

thing is to fit the first loading curve because all the following curves are based on the 

first loading curve. Therefore emphasis is placed on the first loading curve of both 

simulation and experiment result. As show in Figure 2.25, the first loading curve is 

curve AHJ. The result of comparison is shown in Table 2.2. Where S(micrometer) 

represents Simulation data, D(micrometer) represents experiment data. e = S - D 

is the difference between simulation data and experiment data. 

the percentage of difference compare to experimental data. 



Figure 2.25 Simulation result of PZT stack model for experimental data 
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CHAPTER 3 

CONTROL OF PZT STACK 

3.1 Measure of Nonlinearity 

3.1.1 Measure from I/O Curve 

A simple and intuitive way to measure nonlinear distortion of hysteresis loop is 

to calculate the area of the hysteresis loop formed between the input and output. 

Suppose the hysteresis loop in Figure 3.1 has area SA, and suppose with the same 

input signal the I/O curve of another system(System B) has the area SB, where 

SB  > SA, then it is concluded that the nonlinearity of System B is more severe than 

that of System A. 

Figure 3.1 Nonliear hysteresis loop of System A 
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However, such measure has its drawbacks. For example, consider the following 

linear transfer function(System C): 

When the same signal is applied to the model, we can find its Lissajous's 

pattern is almost the same as the hysteresis loop in Figure 3.1, as shown in Figure 

3.2. 

Figure 3.2 I/O curve of System C 

So an alternative way to measure nonlinearity is now proposed. 

3.1.2 Probing Signal Spectral Density 

Another method to measure nonlinearity is to analyze the distortion spectrum by 

means of Fast Fourier Transform(FFT). 

For a linear system the characteristics of the spectral density of its input and 

output are the same, but for nonlinear system they are different. For example, in 

Figure 3.1 and Figure 3.2, although the shape of both loops is similar, when use 



Figure 3.3 Spectral density of Asin10t 

Figure 3.4 Spectral density of System C 
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FFT to calculate the spectral density of them, it is found that, their spectral density 

distribution are totally different, see Figures 3.3-3.5. 

Figure 3.5 Spectral density of System A 

By comparing Figure 3.3 with Figure 3.4, it is clear that for a linear system 

the characteristics of spectral density of its input and output are the same(the 

high frequency components in Figure 3.4 are due to numerical effects and are at 

least 150dB lower than that of signal frequency). Further comparison between 

Figure 3.3 and Figure 3.5 reveals that for a nonlinear system the characteristics 

of spectral density of its input and output are totally different, besides the funda-

mental harmonic, there are extra harmonic components. Suppose the frequency 

of the input signal is f, then due to the hysteresis nonlinearity, there are extra 

components appearing at 3f, 5f, 7f ... etc. The magnitude of these higher order 

harmonics is a direct indication of the nonlinearity of the system. Therefore, spectral 

analysis is a viable way to measure the nonlinearity. 
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3.2 Dither Function 

A dither is a high frequency signal introduced into a nonlinear system in order to 

improve its performance. By sweeping back and forth quickly across the domain of a 

nonlinear element, a dither has the effect of averaging the nonlinearity and making it 

smoother, and in some sense reduced the nonlinearity of the system. If the frequency 

of dither is high enough, it is easy to get filtered out before it reaches the output. 

As previously discussed in Chapter 1, adding a dither and a low pass filter to a 

nonlinear system, it becomes a system shown in Figure 1.2. Thereafter, even though 

the nonlinear element still exists, the output of the system is "linear" to its input. 

Figure 3.6 Spectral density of model of PZT stack while A = 10 

A comparison on some simulation results is now made to access dither affects 

on a nonlinear system. Apply now a low frequency sine wave(400sin10t) to the model 

of PZT stack actuator, the spectral distribution of its output is shown in Figure 3.5. 

A dither(Asin103t) is then injected to the system. For different dither amplitude A, 

the spectral distribution of system output is shown in Figures 3.6-3.8. 



Figure 3.7 Spectral density of model of PZT stack while A = 50 
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Figure 3.8 Spectral density of model of PZT stack while A = 100 
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From Figure 3.5, it is observed that when the.-frequency of input signal is 

f, the spectral of nonlinear element appears at the odd harmonics with decreasing 

strength. After the dither is introduced, the spectral power of the higher order 

harmonic decreases as the amplitude of dither increases. Suppose that the height 

of spectral at (2n + 1)f is given by H(2n+1)f, n = 0,1,2 ... .... (H(2n+1)f  expressed as 

dimensionless quantities), the following ratios are now defined: 

Figure 3.9 Relation between ratio and amplitude of dither 
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Furthermore, define the system harmonic ratio as: 

Since r9, r11  ... ... ... is relatively small compare to r3, r5, r7, emphasis is placed on 

r3, r5, r7  only. After extensive simulation, it is found that as the dither amplitude 

increases, the ratio of spectrum decreases. Refer to Figure 3.9, the value in y-axis is 

the average value of r3, r5, r7. The x-axis represent the amplitude of dither. Here 

two model with different degree of nonlinearity are compared. All the parameters in 

these two models are same as those in page 11 except for K1 , the gain of F. The 

results are summarized in Figure 3.9, dashed line is for K1  = 200 and solid line is 

for K1  = 2000. It is observed that, as the nonlinearity is increased, proportionally 

higher dither amplitude is required to achieve the same harmonic ratio. 

3.3 Harmonic Contents Attenuation 

Although nonlinearity smoothing by dither is the objective of this work, issues such 

as "what is a suitable dither?" and "what is a criterion of reduction of nonlin-

earity?" remain to be addressed. As discussed in Section 3.2, a dither has the 

effect of averaging the nonlinearity of the PZT stack system, i.e. attenuating the 

harmonic components H(2n+1)f n = 1,2,3 ... ... .... However, to completely recover the 

linearity, unacceptably large dither is required. Therefore, it is desirable to balance 

the amplitude against linearity recovery. This observation motivates the definition 

of a suitable dither amplitude as the minimum dither amplitude so that the system 

harmonic ratio r (3.5) is less than a prespecified value. 

For example, as shown in Figure 3.9, r̅  of original nonlinear system (dashed 

line) is 0.08061, and if it is to be reduce by 40dB(r̅   = 0.0008061), then adding 

a dither with A 	400, meets the requirement. Since the PZT model is "weak 

scalable", its distortion spectrum is relatively invariant. Therefore F is used as a 
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Figure 3.10 System with integral controller and ratio comparator 

criterion in harmonic analysis to measure nonlinearity and later as a. basis adaptive 

dither control. 

The reason for considering adaptive dither control, where the suitable dither 

amplitude is automatically generated, is that for most systems, such amplitude is 

unknown on a priori basis. The adaptive mechanism is based on the following: 

First, an arbitrarily small value dither amplitude is chosen. Secondly, r̅ is 

calculated by real-time FFT. Thirdly, an error signal e = r̅ ref  — r̅ is formed where 

Tref is prespecified. Finally the dither amplitude A is continuously adjusted by a 

integral controller that operate on the error signal: 

Upon adding the integral controller and the ratio comparator to the PZT model, 

the adaptive closed loop system is shown in Figure 3.10. The spectrum comparator 
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113f  + H5 f  + f  
calculate 	

3H 	
every 512 sample points. It is realized by a Matlab 

f  
function S_COM.M(program list is on appendix A). 

3.4 Simulation Result 

Simulation studies are now carried out using the hysteresis model with the parameters 

given in page 11. As shown in Figure 3.10, the amplitude of the dither is A = Al — Ad, 

where Al  is the initial best estimate of the suitable dither amplitude and Ad is the 

compensatory dither amplitude generated by the adaptive mechanism. r (3.5) is the 

output of spectrum ratio comparator and a (3.6) is error between the reference signal 

Tref  and r̅ . Moreover, x is PZT end displacement., while x1  is the baseband version 

of x. From Figure 3.9, in an undithered system r = 0.0149 (K1  = 200), suppose 

that r̅ ref=0.001. The system shown in Figure 3.10 is simulated with K1  = 1000, 

A l  = 20(5%a) and input signal is 400sin10t. The simulation result is show in Figures 

3.12 and 3.11. It shows finally when the amplitude of dither is 20 — (-45) = 65. it 

meets the distortion requirement r̅ ref. 

In fact the phase of dither is not important, so that a sin wdt has the same 

effects as a sin(wdt + 7r) = —a sin wdt. This can be verified by simulating the system 

again with all the same parameters used before except K1  = —1000. The simulation 

result is show in Figure 3.13 and Figure 3.14. It shows finally the suitable dither 

amplitude becomes 20 — (+85) = —65. This shows the whole system is quite robust 

and it is insensitive to the sign of gain of integral controller. 

The spectral density of x and x1  is shown in Figure 3.15 and 3.16, it shows the 

spectral density of x1 has almost the same characteristics as that of the input (the 

harmonic components in Figure 3.16 are due to numerical effects. and the filter used 

here is a fourth order butterworth low pass filter with cut-off frequency 20 rad I sec) 

i.e. x1 is "linear" to the input (asin10t). 



Figure 3.11 Compensatory dither amplitude when K1  = 1000 
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Figure 3.12 Error signal in integral control when K 1  = 1000 



Figure 3.13 Compensatory dither amplitude when K1 = —1000 

Figure 3.14 Error signal in integral control when K1  = —1000 

4
1 



Figure 3.15 Spectral density of displacement x 
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Figure 3.16 Spectral density of x1 



CHAPTER 4 

COMPARISON OF PERFORMANCE OF DITHERED SYSTEM 

4.1 Problem in Nonlinear System 

A fundamental property of linear systems is scalability. That is, given a spectral 

Y(w) due to input X(w), then the spectral corresponding to αX(w) is given by 

aY(w), where a is a positive scalar. This property, however, does not hold in a 

nonlinear system. For example, as discussed in Chapter 2, a nonlinear hysteresis 

model consists of two parts: (A) linear part : a second order linear system; (B) 

nonlinear part: multiloop hysteresis. Part (B) is memory dependent and maybe 

poorly known. Therefore in application, especially in precision control, this nonlin-

earity can adversely affect the system performance. With further analysis in 

frequency domain, it is found that PZT hysteresis causes harmonic distortion. 

In this chapter, the properties of the dithered system will be compared to those 

of the nonlinear system as well as the linear portion of the original system. Two sets 

of tests will be carried out: 

(A) Square wave test, where the steady-state output values of the above 

mentioned systems will be compared. 

(B) Multiloop test, where it will be shown that the effects of the off-axis loops 

can be sufficiently reduced by means of a suitably chosen dither. 

4.2 Properties of Linearized System 

As shown in Chapter 3, when a suitable dither is injected into the nonlinear hysteresis 

model, the harmonic components are sufficiently attenuated, i.e. the system is 

"linearized". It is therefore of interest to determine the extend of linearization by 

 
43 



Figure 4.1 Hysteresis model, ideal linear system and dithered system 
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comparing the dithered system to an ideal linear one. To facilitate the comparison, 

three systems are proposed as shown in Figure 4.1. 

System (I) is the original nonlinear hysteresis model as shown on Figure 2.6 : 

System (II) is linear part of System (I), i.e. an ideal linear system: 

System (III) is a dithered system which is System (I) plus a dither. 

Where FA  = M and YN, YL and YD are respectively the outputs of Systems 

(I), (II) and (III) . V is input drive voltage. b represents dither. 

4.2.1 Square Wave Test 

The purpose of the test is to determine the steady-state performance of the dithered 

system by comparing the tracking error between System (I), (II) and (III). 

The input signal is a low frequency square wave with 25 second period and a 

40 V amplitude as shown in Figure 4.2. The dither is 65sin103t. Its amplitude is 

chosen by the adaptive mechanism which is now disable, i.e. the dither is injected 

on an open-loop basis. The outputs of the three models are plotted in Figure 4.3, 

where dashed line is the output of system (I), pointed line is that of system (II) and 

solid line is that of system (III). Defined now e1  = YN  — YL, e2  = YD  — YL  as the 

output deviation of the nonlinear and dithered nonlinear systems from the ideal linear 

part. The quantities are plotted in Figure 4.4 and Figure 4.5. It is observed that 

the nonlinear hysteresis force F causes a. steady state error about ±2.023 micrometer 

(17.6%) between YN  and YL. For the dithered system, the steady state error between 



Figure 4.2 Square wave input 

Figure 4.3 Output of system (/), (II) and (III) with same square wave input 



Figure 4.4 Error function of e1  

Figure 4.5 Error function of e2 
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YD and YL  is bounded by ±0.019 micrometer (0.165%). in other words, the steady 

state error is reduced by more than 100 times by the dither, verifying the dither 

"linearized" hysteresis model quite well. The dithered system (III) is approximately 

"linear", it has almost the same characteristic as that of linear system (II). It should 

be noted that the "spikes" in e2  (Figure 4.5) are due to the transient of the low pass 

filter. The low pass filter used here is a third order butterworth low pass filter with 

the cut-off frequency of 0.6 Hz. 

4.2.2 Multiloop Test 

In this section, it is desired to examine the effects of dither on the off-axis minor 

hysteresis loops. The configuration of the three systems: nonlinear, linear and dither-

linearized remains as the same as in the previous section. The input voltage V 

however is now a composite sine wave as shown in Figure 4.6. For the nonlinear 

system this input. signal effectively generate three hysteresis loops: one major loop 

and two minor off-axis loops as shown in Figure 4.7. The baseband response of the 

dither-linearized system is shown in Figure 4.8 which is almost the same as that of an 

ideal linear system as shown in Figure 4.9 (to compare under equal conditions, the 

same low pass filter is added to the ideal linear system. Since the low pass filter is 

linear, this will not affect the linearity comparison). It is observed that the undesired 

off-axis "memory" has been neutralized by the dither. The off-axis minor hysteresis 

loops now become ellipses that are symmetrical to the origin with the presence of 

dither. 



Figure 4.6 Input signal in multiloop test 
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Figure 4.7 Multiloop situation 



Figure 4.8 Lissajous's pattern of dithered system 
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Figure 4.9 Lissajous's pattern of ideal linear system 



CHAPTER 5 

CONCLUSION 

In this thesis, a nonlinear mathematical model of the PZT stack actuator is presented. 

It is based on Dahl's solid friction model (2] with the enhancement that it can accom-

modate different degrees of nonlinearity. The objective is to model and control 

nonlinear hysteresis loops, major and off-axis minor loops, formed between the 

applied voltage and PZT stack end displacement. 

Extensive numerical simulations have been carried out to assess the charac-

teristics of the PZT stack model. Once a suitable mathematical model has been 

obtained, a dither is injected to the model to attenuate the nonlinearity of the model. 

An adaptive system has been setup to find out a suitable amplitude of the dither to 

meet the requirement of a reference distortion ratio. Simulation results confirmed the 

effectiveness of dither in linearizing the PZT stack system. Furthermore, it is found 

that the adaptive mechanism is highly robust with satisfactory transient behavior. 

The future work on control PZT stack can be suggested as follows: 

1) Although a dither effectively linearized the hysteresis, it should be turned off 

when the PZT actuator displacement reaches the required end position. An optimal 

switching characteristic of the dither (e.g. at the zero crossing) should be studied. 

2) Feedback control of the PZT stack position under adaptive dither should be 

carried out. 

3) A more general and accurate mathematical model of hysteresis behavior 

remains a research topic. 
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APPENDIX A 

Code of MatLab Functions Used in Simulation 

Ad Function INITIAL1.M 

%this function should be run before simulation, it setup all the 
%initial condition 

global FEX 

global true 

global fl 

global Fc 
global FFc 

global kk 

global mm 

global nn 

global DFDX 

global x_dot 

%following 6 global varibles are use in function SPEC_COM.M 

global nnn 

global yy 

global MM 
global 111 

global as 

global flag1 

%following variable need an initial value before simulation 

true=0; 

f1=0; 

nn=0; 

kk=1;; 

x_dot(1)=0.1; 

MM=0.0014; 
nnn=0; 

aa(1)=0; 
flag1=0; 
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point=2048 
fd=30/2048 

The meaning of those global variables in INITIAL1.M is following 

nn : an index for each step of simulation; 

FEX : hysteresis force at the Kth turnaround point; 

True : an index shows simulation is in transient(true = 0) or transient 

finished(true = 1); 

fl : an index for reset initial condition when transient finished; 

Fc : hysteresis force at first loading point; 

FFc : Hysteresis force at the point transient state finished; 

kk : an index for Kth turnaround point; 

mm : a variable record the variation of kk; 

DFDX : dF(x)/dx; 

x_dot : velocity; 

aa : record for 2 points, let function check if the second point is a sample point; 

nnn : an index for each sample point in function SPEC_COM.M 

yy : a vector to record 512 points for spectrum density analysis; 

MM : the output of the function SPEC_COM.M, namely the ratio of spectrum 

density 

Ill : the largest spectrum within 20 nearby points; 

flag]. : an indicator to tell the function that 512 points are gottten and FFT is 

calculated. 



A.2 Function INITIAL2.M 

%initial purpose for multi-loop input, this file will generate a 

%input signalused in simulate minor loop inside minor loop 
%and the meaning of following variables are same as 
%those in INITIAL1.M 

global FEX 

global true 

global fl 

global Fc 

global FFc 

global kk 

global mm 

global nn 

global DFDX 

global x_dot 

T=linspace(0,45,1500); 

t1=T(1:451); 

t2=T(452:610); 

t3=T(611:715); 

t4=T(716:830); 

t5=T(831:1500); 

u1=sin(t1); 
u2=-.7*sin(3*t2+1.7)+.125; 

u3=.4*sin(4*t3-1.0)+.09; 

u4=.7*sin(3*t4+1.7)+.125; 

u5=sin(t5-5.25); 

U=400* [ul u2 u3 u4 u5] '; 

T=[t1 t2 t3 t4 t5]'; 

%above set up [T,U] workspace 

true=0; 

f1=0; 

nn=0; 

kk=1; 
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x_dot(1)=0.1; 

point=2048; 

fd=45/point; 

plot(U),grid 

A.3 Function MULTI.M 

function f=multi(uu) 

%nn is a index for each step simulink call this function 

nn=nn+1; 

%if nn=1, it means simulation first tme call this function, so 

%initial condition should be set, F is the hysteresis force. 

%Fc is hysteresis force at first loading time. x_dot is the 

%velocity. 

if nn==1 

F=uu(1); 
Fc=5; 

FEX(1)=-Fc*sgn(x_dot); 

else 

F=uu(1); 

end 

x_dot(2)=uu(2); 

%if f1=1 means transient state finished and reset 

%initial condition 

if fl==1 

Fc=FFc; 
FEX(1)=-Fc*sgn(x_dot(2)); 

kk=1; 
f1=0; 
true=1; 

end 
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%if true=0 means simulation is still in transient state, 

%in the other hand true=1 means transient finished 

if true==0 

% check for turnaround point 

if x_dot(2)*x_dot(1)<=0 

%kk is the index for Kth turnaround point, and FEX(kk) is set 

%when Kth turnaround point occur. mm is an index which 

%indicate the times kk changes,we suppose after kk change 
%4 times transient finished, and FFc is the hysteresis force at 

%4th turnaround point, it will be the new Fc. 

kk=kk+1; 

FEX(kk)=F; 

mm= [mm kk] ; 

KK=max(size(mm)); 

if KK==4 

f1=1; 

FFc=-F; 

end 
else 

%kk > 2 means hysteresis loop possible 

if kk>2 

%next chech if minor loop closed or not, if closed kk=kk-2, 

%revert to kk-2 curve 

if abs(F-FEX(kk)) >= abs(FEX(kk)-FEX(kk-1)) 

kk=kk-2; 
end 

%check for first loading exceedance if exceed reset initial 

%condition and the curve will be the new k=1 curve 

if kk<=2 
if abs(F) > abs(FEX(2)) 

kk=1; 

FEX(1)=-Fc*sgn(x_dot(2)); 

end 

end 
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end 
end 
else 

%following is for true=1,all others is same as above 

if x_dot(2)*x_dot(1)<=0 
kk=kk+1; 
FEX(kk)=F; 
else 
if kk>2 
if abs(F-FEX(kk)) >= abs(FEX(kk)-FEX(kk-1)) 
kk=kk-2; 
end 
if kk<=2 
if abs(F) > abs(FEX(2)) 
kk=1; 
FEX(1)=-Fc*sgn(x_dot(2)); 
end 
end 
end 

end 
end 
%Prandtl law 1 and 3A is satisfied by the next equatio 
DFDX=2-(F-FEX(kk))/Fc*sgn(x_dot(2)); 

%update x_dot 
x_dot(1)=x_dot(2); 

%stiffness coefficient set to 5 
f=5*DFDX; 

A.4 Function AFFT.M 

% for fft analysis a signal spectrum desity in db; 
function afft(a,b,point); 
x=hanning(point); 
xx=a.*x; 
Xdot=fft(xx); 
mmag=20*log10(abs(Xdot(1:point/2))); 
fs=1/b; 
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f=2*pi*fs/point*(0:(point/2-1)); 
plot(f,mmag),grid 
xlabel('frequency : rad/sec') 
ylabel('Spectrum density') 

A.5 Function SPEC_COM.M 

%this function compare the spectrum density in 2f , 3f, 4f ... 8f 
%to that in f,which f is the frequency of the input signal, we 
%pick the average of 3 most large spectrum in 2f, 3f ...8f, 
%devided by that in f. 

function z=spec_com(x); 
%since we use a zero order hold before this function, 
%so only when x changes its this means we get next 
%sample point 
aa(2)=x; 
if aa(2)==aa(1) 
aa(2)=aa(2); 

else 
%nnn is an index for number of sample point, we will calculate 
%spectrum density ratio every 512 points 
nnn=nnn+1; 
yy(nnn)=x; 
aa(1)=aa(2); 
end 
if nnn==512 
Y=fft(yy); 
mag=abs(Y); 
flag1=1; 
nnn=0; 
end 
1=0; 
%flag1=1 means we got 512 point and FFT result 
if flag1==1 
11(1)=max(mag(19:23)); 

11(2)=max(mag(59:63)); 
11(3)=max(mag(99:103)); 
11(4)=max(mag(139:143)); 

s_max=sum(11(2:4))/11(1)/3; 
z=s_max; 
MM=z; 
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flag1=0; 

else 

end 

%We here check 5 point around f,3f,5f,7f to make sure 

%get the highest spectrum.. 

5.9 
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