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ABSTRACT 

Weakness of inspiratory muscles is a major cause of 

respiratory failure. There are many clinical circumstances 

in which it may occur. 	The diaphragm is a major 

respiratory muscle. It has been difficult to quantify its 

shape, curvature and length. 

To solve this question, a three dimensional diaphragm 

equation was derived on the, assumption that the diaphragm is 

only attached at its periphery to the rib cage and the 

abdomen is filled with fluid. 	Computer 	programs 	were 

developed to fit the equation to the diaphragm contours 

obtained from plane X rays. 

The results indicate that the ratio of 

transdiaphragmatic pressure to the surface tension of the 

diaphragm is relatively independent of lung volume, which 

supports the previous 	finding 	that 	the 	force-length 

relation is a more important geometric factor in diaphragm 

mechanics. Comparing the diaphragm contour of the normal 

person to two patients with ascites, it is suggested that 

the ascites patients have higher transdiaphragmatic pressure 

than normal patients. 
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CHAPTER 1 

INTRODUCTION 

1.1 Physiological View 

Agostoni et al. (1) suggested the concept that there were 

two pathways for lung volume displacement, one via the rib 

cage and one via the diaphragm-abdomen pathway. The 

diaphragm plays a very important role in respiration. 

Normal inspiration is produced principally by the 

contraction of the diaphragm. Other muscles of inspiration 

are external intercostals, erectus muscles of the spine, 

and scapular elevators plus anterior serrati scaleni. The 

muscle of diaphragm is bell shaped so that contraction of 

any of its muscle fibers pulls it downward to cause 

inspiration ie, the contraction of the diaphragm lowers the 

dome. 

The diaphragm is innervated by the phrenic nerves. 

These originate at the third, fourth, and fifth cervical 

levels, where they synapse with axons from cell bodies in 

the medulla. The external intercostals 	are also innervated 

by fibers that synapse with axons from the medulla. For most 

inspiratory demands, contraction of the diaphragm and the 

intercostals, which elevate the ribs, suffices. However, 

during great inspiratory effort, the scaleus and the 

pectoralis minor muscles contribute by raising the rib cage 

and expanding the circumference of the chest cavity. 



Ordinarily, expiration is an entirely passive process; 

that is, when the diaphragm relaxes, the elastic structures 

of the lung, chest cage, and abdomen, as well as the tone of 

the abdominal muscles, force the diaphragm upward. However, 

if forceful expiration is required, the diaphragm can also 

be pushed upward powerfully by active contraction of the 

abdominal muscles against the abdominal contents. Thus, all 

the abdominal muscles combined represent the major muscles 

of expiration. 

Normal pulmonary ventilation is accomplished almost 

entirely by the muscles of inspiration. On relaxation of the 

inspiratory muscle the elastic properties of the lungs and 

thorax cause the lungs to contract passively. Weakness of 

inspiratory muscles is a major cause of respiratory 

failure. There are many clinical circumstances in which this 

may occur. 

The diaphragm is the major inspiratory muscle with its 

curved and three dimensional shape. Its ability to generate 

inspiratory force depends upon at least three variables: 1, 

length; 2, curvature; and 3, its position relative to the 

rib cage. 

1.2 Historical View 

The relationships between the diaphragmatic muscle length, 

contractile tension, and transdiaphragmatic pressure have 

been determined by direct measurement in the open-chest 

dog(2). Braun et al.(3) have 	studied the force-length 
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relationship of the human diaphragm. To characterize the in-

vivo force-length relationship of the human diaphragm, they 

related pressures during static inspiratory efforts, 

respiratory muscle pressure (Pmus) and transdiaphragmatic 

pressures (Pdi) respectively to diaphragm lengths measured 

on chest X rays from 22 normal subjects. They found that the 

diaphragm length-lung volume relation 	is curvelinear, with 

length increasing primarily in the proportion to 	the 

length of the part of the diaphragm which attaches to the 

chest wall. As length increased, Pmus and Pdi rise sharply 

then plateau, generally conforming to force-length behavior 

of isolated muscle. 

The causes that affect the curvature and length of the 

diaphragm are very complicated. Loring et al.(4) used X-

rays, ultrasound, and linear measurements of thoracic 

and abdominal diameters to estimate the relationships 

between lung volume, thoracoabdominal configuration and 

diaphragmatic lengths, and they found that 	diaphragmatic 

length are strongly coupled to both rib cage dimensions as 

well as abdominal PA dimension. 

These studies contributed a lot to the concepts of 

the mechanics of the diaphragm. But all this 	research was 

restricted to measurement and statistics 	and offered no 

mathematical theory or validation for these measurements. In 

1983, Whitelaw et al(5) established a mathematical model to 

describe the relationship between pressure, tension, and 

shape of the diaphragm. Using this model, the shape of the 
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A 

diaphragm dome was calculated from transdiaphragmatic 

pressure and tension in the diaphragm. 

When the author of this thesis tried to use this model 

to study the diaphragm curves, it was found that there were 

some mistakes in this model. 

In this thesis, the simulation model of the diaphragm 

was derived to meet the needs to study the mechanics of the 

diaphragm. 



CHAPTER 2 

DERIVATION OF THE SHAPE EQUATION OF DIAPHRAGM 

To obtain the shape equation of the diaphragm shape, it was 

assumed that the muscle acts as a free membrane,attached at 

its edges to the inside of a vertical rib cage that is 

circular in cross section, that the attachments are inferior 

to the point at which the dome makes contact with the rib 

cage,and the abdomen is filled with fluid with a hydrostatic 

gradient in pressure(6). 

2.1 THE LAW OF LAPLACE 

For any membrane under tension,the force balance between 

transmembrane pressure,and tension is given by a generalized 

form of the "law of laplace",namely 

Where r1(cm) and r2(cm) are the two principal radii of 

curvature, measured in orthogonal planes. P(N/cm2) is the 

transdiaphragmatic pressure, 	which is equal to abdominal 

pressure minus pleural pressure; 	i.e., P=Pab - Ppl. Pab 

is the pressure in the abdomen, Ppl is the pleural pressure 

and T(N/cm) is the tension of the diaphragm. As the muscle 

contracts, tension increases and the dome descends. 

5 



(Facing 7) 

Figure 2.1 Radii of curvature. 
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The surface of the diaphragm is defined by the function 

R(a,b). Any point is described by its distance R from the 

origin and the "elevation" angle a and the "azimuth" angle 

b, as show in 	Fig. 2.1 and Fig. 2.2. In figure 1, at point 

q a line sqt is drawn tangent to the surface in the plane of 

the page. The curvature in the plane of the page is given by 

r1 on the line perpendicular to the tangent line(line vqw) 

and the corresponding center of curvature is at point u 

(Fig.2.1). The curvature in the plane perpendicular to 	the 

page and passing through the line sqt is given by the other 

principal radius of curvature, r2, 	and the corresponding 

center of curvature lies at point w. 	(This have been 

described in (5) and verified in page 335 of (6)) 

2.2 THE PRINCIPLE RADII OF CURVATURE 

According to the definition, at a point P on a regular curve 

C,the curvature K, of C is the absolute value of rate of 

change of the direction angle W of the tangent with respect 

to distance on C in Figure 2.3 

The radius of curvature R is defined as the reciprocal 

of the curvature(7) 

The largest and the smallest radii at the point P are 

called the principle radii of curvature of point P. 
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Figure 2.2 The point of diaphragm surface 
in three dimensions. 



Figure 2.3 Definition of cuvature K. K equal to 1/r. 
r is the principle radius. AA' and BB' 
are the tangent lines at point A and B. w 
is the angle between lines AA' and BE'. s 
is the distance between point A and B. 

9 
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If, in a three dimension rectilinear coordinate system, 

a surface defined by f(x,y,z)=0 and x,y,z are determined by 

two angles a and b in Figure 2, the principle radii can be 

calculated by the equation 

Where the solutions r1 and r2 of equation (4) are the 

principle radii and 

xa,ya,za,et al are the partial 	derivatives of x,y,z 

relative to a and b(7). 



11 

2.3 THE SHAPE EQUATION OF DIAPHRAGM 

Substituting r1 and r2 in the Laplace law, 	equation(1) 

(please find the derive of r1 and r2 in Appendix B), 	we 

have 

Solving for RR" 

Substituting P=P0+pgh and h=H-Rcos(a) in equation(16), 

where p is the density coefficient of the abdominal fluid, 

g is the gravitation coefficient, H is the distance from 

the top of the dome to the origin (refer to Figure 1.1). we 

get 

,Equation (17) is the shape equation of diaphragm. 	It 

is different from Whitelaw's equation in the sign between 

the 2nd and 3rd terms, and the denominators of the second 

and third terms. 



In a personal contact with Dr. Whitelaw, he clarified 

that an associate developed the equation and he was unable 

to explain the discrepancy(16). 

12 



CHAPTER 3 

PROGRAMS DEVELOPED TO PROCESS CURVES 
USING DIAPHRAGM EQUATION 

3.1 About the MATLAB 

MATLAB was originally written to provide easy access to 

matrix software developed by the LINPACK and EISPACK 

projects. It is a high-performance interactive software 

package for scientific and engineering numeric computation. 

MATLAB integrates numerical analysis, matrix computation, 

and graphics in an easy-to-use environment. It supplies the 

users flexible and programmable ways to process differential 

equation and curve analysis. These are why the author of 

this thesis chose it as the major software to develop the 

diaphragm model. 

MATLAB is usually used in a command-driven mode; when 

single-line commands are entered, MATLAB processes them 

immediately and displays the results. It also has a strong 

function to execute sequences of commands that are stored in 

files. Disk files that contain MATLAB statements are called 

M-file. The following programs are edited in the M-files. 

3.2 HBU.M Representing the Diaphragm Equation 

A function in MATLAB used to present the diaphragm equation 

is ODE23, which integrates a system of ordinary differential 

equations using 2nd and 3rd order Runge-Kutta formulas. In 
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ODE23 it is necessary to have an equation representing M-

file. HBU.M is the M-file to represent diaphragm 

equation(16) which is showed as follow: 

% function to represent the diaphragm equation 

% t, x are the input supplied by the ODE23 

% x(1)=x'(t), x(2)=x(t) 

% xdot is the output matrix of the function to ODE23. 

function xdot=hbu(t,x) 

In this M-file, x is the radius R in Figure 2.1; t is 

the angle a in Figure2.1; ru is the density of the fluid 

under the diaphragm, 	which is p in equation(16); to is the 

tension of the diaphragm, which is T in equation(16); r0 is 

the radius when the "elevation" angle a in Figure 1 equal to 

zero. 



3.3 BB.M Integrating and Plotting the 
Diaphragm Curve 

This M-file use the ODE23 to integrate the diaphragm 

equation and plot out the result. (Refer BB.M in appendix 

C) 

3.4 M.M Obtaining the Mid Point of X-ray 
Data Became Zero 

To compare the measured(traced) contour of the 	diaphragm 

with the mathematically derived contour( Equation 17), it is 

necessary that the two curves be compared at the same 

coordinate scales. To this end the two curve are scaled so 

that the start and end points have the same x coordinates, 

and the mid point of the measured curve is positioned 

at y=0 (Figure 3.1). 

%Shifting the middle point of d to zero 

dm=mean(d); 

% dm=the mean value of the x-ray curve. 

d(:,2)=d(:,2)-dm; 

clear dm 

3.5 ZH.M Fitting the Curve with the 
X-ray Film Data 

ZH.M (Refer ZH.M in Appendix D and Figure 3.1) is a M-file 

that shifts the calculated curve to overlap the 

measured(traced) curve. It functions to scale the measured 

curve such that the beginning and the end points of the 
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measured and calculated curves have the same x coordinates, 

and that the mid point of the curve crosses the x axis 

(y=0). The program then calculates the mean of the square of 

the difference in the y coordinates of the two curves. 

sf is used to measure the goodness of the fit between 

the two curves. N is the number of the points in each curve. 

The length of the diaphragm model and the area under the 

diaphragm are also calculated in the ZH.M. 



Figure 3.1To make the measured (traced) curve A and 
the calculated curve B comparable, 	M.M 
shifts curve A to A' where the mid point 
of the curve crosses the x axis 	(y=0); 
ZH.M shifts the calculated curve B to B' 
such that A' and B' have the same x 
values at the begining and end points. 

17 



CHAPTER 4 

RESULTS FROM MATHEMATICAL MODEL 

Figure A.1 to A.6 show the calculated curves with the 

curvature equal to 11cm at the top of the dome. The model 

equation was solved by starting at an angle equal to 0.001 

degree and applying the Runge-Kutta method. 

The 2nd and 3rd Runge-Kutta method is the scheme to 

integrate from one point(t) to next point(t+t1). The 

compution procedure was carefully arranged as 

R"(t) was calculated by the equation (17). 

Figure A.1, A.3 and A.5 shows the simulate curve in 

polar coordinates. The lower solid lines are the derivative 

of radius R with respect to the angle a (Figure 2.1). The 

upper dotted lines show the radius against the angle a. The 

radius decreases when the angle increases. 

Fig A.2, A.4 and A.6 shows the model curves in the 

rectlinear coordinate system for different tension values 

te. With the same radius of curvature at the top of the 

dome, r0=11cm, the shape of the curve changes as tension te 

changes. 

In the beginning, the initial conditions were choosen 

as R'(0.001)=0, R"(0.001)=0. It was found that changing the 

value of R'(0.001) from 0 to -1*10-5  will not significantly 
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change the result. The radius of curvature r0 and surface 

tension coefficient are the two parameters which can be 

arbitrarily assigned. The transdiaphrarnatic pressure at the 

apex is determined by the boundary condition 

Figure A.7 to A.15 show the families of solutions to 

mathematical model with the same radius of curvature at the 

apex but different tensions. The range of radius of 

curvature at the apex varies from 6 to 60 cm. 	The surface 

tension coefficient varies from 0.05 to 10N/cm, which is 

sufficient to cover the range of the shapes of the human 

diaphragm. When the radius of curvature at the top of the 

dome was fixed, the shape of the simulated curve 

significantly changed with the change in surface tension. It 

is evident from the curves that the larger the radius of the 

rib cage is, the more tension is needed to maintain 	the 

contour of the diaphragm which forms a tangent to 	the 

vertical rib cage. It means the larger the diaphragm size 

is, the larger the tension is needed to sustain the shape of 

diaphragm. This result is independent with change of the 

curvature radius at the apex. 

Figure A.16 to A.19 are the curves of the ratio of 

diaphragmatic pressure to surface tension P/Te against P. It 

can be seen in these graphs that the changes of P/Te 	is 

small when P is greater than about 0.3 N/cm. 	Because the 

abdominal pressure Pab changes very little, the changes in 

P=Pab-Ppl is nearly equal to the changes of Ppl(pleural 
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pressure). The lung compliance is also nearly constant in 

this region of the pressure-volume 	curve, so that 	the 

changes in pleural pressure Ppl are approximate proportional 

to the changes in lung volume. 	We therefore deduce that 

when the lung volume increases, the changes of the ratio of 

transdiaphragmatic pressure to surface tension is small. 

Figure A.20 to A.22 shows best fitting curve for two 

ascites patients and a normal person. 

Ascites is a reflection of changes in colloidal osmotic 

pressure within the fluid vessels (including the lymphatics) 

draining the peritoneal cavity. In this case, the diaphragm 

of ascites patient is quite like the simulated model that 

assumes the abdomen is filled with fluid. 

In the thesis the mathematical model was applied to two 

patients with ascites, and one normal patient. In order to 

obtain the best fit of the mathematical model 	of the 

diaphragm contour to the contour measured by conventional X 

ray, the surface tension Te were 4.5 and 3.5 N/cm for 	the 

ascites models and 3.35 N/cm for the normal model (Fig A.20-

A.22). These values do not differ significantly. 

Consequently it is concluded that it is 	the 

transdiaphragmatic pressure which is significantly higher in 

the ascites cases related to the normal case. 

The length of diaphragm were 13.30 and 13.31 cm for the 

ascites models and 11.59 cm for the normal model. The area 

under diaphragm are 55.45 and 55.63 cm2  for the ascites 

models and 40.97 cm2  for the normal model. 



CHAPTER 5 

CONCLUSION AND DISCUSSION 

A three dimensional mathematical diaphragm model is 

established. The shape of the diaphragm dome is determined 

by the transdiaphragmatic pressure and tension in the 

diaphragm. 

The model is based on the following assumption: 

(1) The diaphragm acts like a free membrane attached to 

therib cage. It offers no resistance to bending and 

distortion but supports tension. 

(2) The diaphragm is attached to the lower borders of the 

rib cage at its edges. 

(3) The ligaments, which attach the diaphragm to the 

pericardium and liver, are assumed to have no significant 

local tension. 

(4) The abdomen is filled with fluid which generates a 

hydrostatic gradient in pressure. 

(5) The model mechanics of the diaphragm follow Laplace's 

law. 

(6) The thorax is upright in a gravitational field. 

(7) The pressure everywhere above the diaphragm is equal and 

is represented as Ppl. 

Based on these assumptions, we can calculate the two 

principle radii of curvature of the mathematical model 

surface. In a three dimensional coordinate system, using the 
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Laplace law, the following mathematical model for 	the 

diaphragm was derived: 

This model indicates that there must be tension(T) for 

the diaphragm to have the dome shape. If T=O, then the 

radius of the curve R in Figure 1 approach infinity and the 

diaphragm is flat. The fluid in the abdomen tends to 	pull 

the dome of the diaphragm down and thus deforms it from the 

spherical shape it would have if tension and 

transdiaphragmatic pressure were the only contributing 

factors. The experiment of the model shows that the higher 

the density of the fluid in the abdomen is, 	the lower and 

narrower the dome surface is. 	It is the tension, 

transdiphragmatic pressure, and the hydrostatic gradient 

which draw the upper surface of the abdominal fluid into a 

curved dome or it will become a flat horizontal surface. 

In figure A.16 to A.19, we found that P/Te is 

relatively independent of lung volume. When the lung volume 

changes, the shape of the diaphragm changes. 	This 	result 

partially explains why the length-tension 	characteristics 

outweigh geometric considerations in explaining diaphragm 

functions(2). 
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The simulated results comparing the diaphragms from two 

ascites patients with that of a normal patient's suggests 

that the two patients have higher transdiaphragmatic 

pressure comparing with the normal patient's. 

One of the major causes of respiratory failure is the 

weakness of inspiratory muscles. 	It may occur in many 

clinical circumstance. The diaphragm is the most important 

inspiratory muscle. The establishment of this three 

dimensional simulated diaphragm model may help to quantify 

the shape, curvature and length of the diaphragm, which may 

make a contribution to the study of the function of the 

diaphragm. 
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APPENDIX A 

DIAPHRAGM MODEL CURVES 

This appendix include 22 figures of diaphragm model curves 

which are indicated in chapter 4. 
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Figure A.1 Diaphragm model curve in polar coordinates 
while r0=11cm, te=0.03N/cm. 
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Figure A.2 Diaphragm model curve in rectilinear 
coordinates while r0=11cm, te=0.03N/cm. 
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Figure A.3 Diaphragm model curve in polar coordinates 
while r0=11cm, te=0.3N/cm. 
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Figure A.4 Diaphragm model curve in rectilinear 
coordinates while r0=11cm, te=0.3N/cm. 
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Figure A.5 Diaphragm model curve in polar coordinates 
while r0=11cm, 
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Figure A.6 Diaphragm model curve in rectilinear 
coordinates while r0=11cm, te=3N/cm. 
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Figure A.7 Family of solution 	to diaphragm model 
with different tensions, te= 0.5, 0.8, 
1, 2, 5, 	10N/cm (from left to right), 
and the same radius of curvature at the 
top of the dome equal to 8 cm. Vertical 
solid lines indicate the location of the 
rib cage. 
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Figure A.8 Family of solution to diaphragm model 
with different tensions, te= 0.5,0.8, 
1, 2, 5, 	10N/cm(from left to right), 
and the same radius 	of curvature at 
the top of the dome equal to 9 cm. 
Vertical solid lines indicate 	the 
location of the rib cage. 
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Figure A.9 Family of solution to diaphragm model 
with different tensions, te= 0.5, 0.8, 
1, 2, 5, 	10N/cm (from left to right), 
and the same radius of curvature 	at 
the top of the dome equal to 10 cm. 
Vertical solid lines 	indicate 	the 
location of the rib cage . 
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Figure A.10 Family of solution to diaphragm model 
with different tensions, te= 0.5, 0.8, 
1, 2, 5, 	10N/cm (from left to right), 
and the same radius of curvature 	at 
the top of the dome equal to 11 cm. 
Vertical solid lines 	indicate 	the 
location of the rib cage . 

3
4 



Figure A.11 Family of solution to diaphragm model 
with different tensions, te=1, 2, 5, 
10N/cm (from left to right), and the 
same radius of curvature at the top 
of the dome equal to 20 cm. Vertical 
solid lines indicate 	the rib cage 
sizes. 
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Figure A.12 Family of solution to diaphragm model 
with different tensions, te= 5, 10N/cm 
(from left to right), and the 	same 
radius of curvature at the top of the 
dome 	equal to 30 cm. 	Vertical 
solid lines indicate the location 	of 
the rib cage. 
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Figure A.13 Family of solution to diaphragm model 
with different tensions, te=5, 10N/cm 
(from left to right), and the same 
radius of curvature at the top of the 
dome equal to 40 cm. 	Vertical 
solid lines indicate the location of 
the rib cage. 
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Figure A.14 Family of solution to diaphragm model 
with different tensions, te=5, 10N/cm. 
(from left to right), and the 	same 
radius of curvature at the top of the 
dome equal to 50 cm. 	Vertical 
solid lines indicate 	the location of 
the rib cage. 
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Figure A.15 Family of solution to diaphragm model 
with different tensions, te= 5, 10N/cm 
(from left to right), and 	the same 
radius of curvature at the top of the 
dome equal to 60 cm. 	Vertical 
solid lines indicate the location of 
the rib cage. 
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• 
Figure A.16 The ratio of transdiaphragmatic pressure 

to tension P/te against P, while rib cage 
radius equal to 6cm. 
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Figure A.17 The ratio of transdiaphragmatic pressure 
to tension P/te against P, while rib cage 
radius equal to 7cm. 
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Figure A.18 The ratio of transdiaphragmatic pressure 
to tension P/te against P, while rib cage 
radius equal to 8cm. 
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Figure A.19 The ratio of transdiaphragmatic pressure 
to tension P/te against P, while rib cage 
radius equal to 9cm. 
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Figure A.20 Best fitting curve for the diaphragm 
roentgenogram of ascites patient A, 
Te=4.5N/cm, P=0.9 N/cm2. 
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Figure A.22 Best fitting curve for the diaphragm 
roentgenogram of a normal person, 
Te=3.35N/cm, P=0.168N/cm2. 



APPENDIX B 

DERIVATION OF RADII 

1 THE DERIVATION OF r1 

Suppose in a rectilinear system,the curve shown in Fig 1 be 

defined as x=x(t), y=y(t). t is the only parameter which 

can determine the value of x and y. 

Taking the derivate of both sides with respect to s, 

we have 
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Let's transfer the result from rectiliner coordinates 

to polar coordinates, and let t=a( because angle a is the 

parameter which can independantly determine the x and y). 

Let 

We have 

Also we have 

and 



So that 

2 THE DERIVATION OF r2 

From Figure 2, we can get 

In these equations, x, y, z, and R are 	dependent 

variables, a and b are independent variables. We can obtain 

the partial derivatives of x, y, z 
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Substituing these partial derivatives to former 

formulas (4) to (14) , we have 



Because zbb=zb=0, so that 
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APPENDIX C 

M-FILE BB.M 

% define the initial conditions, where x1d=x'(t0) 

% r0=radius when the angle equal to zero. 

global r0 

global ru 

global te 

% make r0, ru, and te available in every M-file 

[t,x]=ode23('hbu', t0, tf, x0); 

% Integrating the diaphragm equation. where to, tf, and 

% x0 are initial conditions. t0 and tf represent the 

% start and the final angles, x0(1)=x'(t0), x0(2)=x(t0) 

% transfer the results from polar coordinate system 

% to rectilinear coordinate. 

plot(t,x); 

title('Diaphragm Simulate Curve in Polar Coordinates') 

xlable('angle(degree)') 

ylable('curvature radius(cm)') 
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grid 

pause 

% plot the simulation curve in polar coordinate system 

plot(x1,y1); 

pause 

% plot the simulation curve in rectilinear coordinate 

% system. name and label the diagram. 
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APPENDIX D 

M-FILE ZH.M 

dn=max(size(d)); 

% decide the size of the X-ray data 

x1n=max(size(x1)); 

% Obtain the size of the simulate curve data 

dmax=max((max(d))); 

% dmax is the largest value of X-ray data in x 

%dimension 

% Cut the size of simulate curve in x dimension to the 

% same as the X-ray data's 

for i=1:x1n 

a=x1(i); 

if a==dmax 

x2n=i; 

clear a 

break 

end 

if a>dmax 

x2n=i; 

a=y1(i)-y1(i-1))*(dmax-xl(i-1)); 

b=x1(i)-x1(i-1); 

yl(i)=a/b+yl(i-l); 

clear a b 
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end 

end 

pause 

% x2 and y2 are the simulate curve with the same x 

% dimension width as the X-ray data's 

for i=1:x2n 

x2(i)=x1(i); 

y2(i)=y1(i); 

end 

%Calculate the length of the diaphragm and the area 

%under the diaphragm 

length=0; 

area=0; 

for i=2:x2n 

length=((x2(i)-x2(i-1))^2+(y2(i)-y2(i-1))^2)^0.5+1ength; 

end 

b=y2(x2n); 

for i=1:x2n 

x21(i)=x2(i); 

y21(i)=y2(i)-b; 

end 
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for i=2:x2n 

area=area+y21(i)*(x21(i)-x21(i-1)); 

end 

% transpose the matrixes from rows to columns. 

x2=x2'; 

y2=y2'; 

pause 

% Chose the y value that its corresponding x value is 

% the same as the X-rays to make the results comparable 

% x3, y3 are the results 

x3(1)=0; 

y3(1)=y2(1); 

for i=2:dn 

for j=2:x2n 

if x2(j)==d(i,l) 

x3(i)=x2(j); 

y3(i)=y 2(j); 

break 

end 

if x2(j)>d(i,l) 

a=(y2(j)-y2(j-1))*(d(i,1)-x2(j-1)); 

b=x2(j)-x2(j-1) 

y3(i)=a/b+y2(j-1); 

x3(i)=d(i,1); 
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clear a b 

end 

end 

end 

%transpose the matrixes from rows to columns 

x3=x3' 

y3=y3' 

pause 

% make the y3 lower to the same level as the data 

% of X-ray film 

y3mean=mean(y3) 

pause 

y3=y3-y3mean; 

pause 

% y4 is the difference of the simulate curve data 

% and the X-ray data 

y4=y3-d(:,2); 

y4 	% display y4 

pause 

n=max(size(y4)); 
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sf=sum(y4.^2)/n; % sf is the square difference. 

% The less it is, the better the curve 

% fit is. 

pause 

%display the results 

sf 

r0 

length 

area 

pause 

% plot the x-ray data and the simulation cur 

% at the same diagram. name and label it. 

plot(x2, y2-y3mean, d(:,1), d(:,2),'+'); 

title('Best fitting curve for the Roentgenogram') 

xlabel('Radius(cm)') 

ylabel('Height(cm)') 

grid 

pause 

pause 

clear x2 x3 y2 y3 y4 sf 
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