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ABSTRACT 

INVESTIGATION OF CEBUS TRAFFIC ACROSS A ROUTER, 
WITH AND WITHOUT ACKNOWLEDGMENT 

by 
Wannakuwattawaduge Lalith Fernando 

A power line and twisted pair implementation of the Consumer Electronic 

Bus(CEBus) has great potential toward inexpensive home automation. Since the 

introduction of the CEBus Standard, there has been increasing efforts on evaluating its 

performance. However, most of the work has been performed for unacknowledged 

networks. Pan[18] was able to implement an acknowledged network for PL CEBus. In 

this thesis, the acknowledgment process has been taken one step further. The effect of 

acknowledgment on a Power Line and Twisted Pair CEBus network interconnected by a 

router is studied. CEBus network performance parameters such as message and packet 

delays, message throughput, and channel throughput have been evaluated in this 

simulation for packet lengths of 100, 300, and 600 bits. Acknowledged network 

performance has been confirmed to function well in terms of the delays and message 

throughputs over the practical range of the normalized offered load. For larger loads, the 

acknowledged network provides a more reliable performance, but at the expense of 

increased delays and reduced throughputs when compared with the unacknowledged 

network. 
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CHAPTER 1 

INTRODUCTION 

Home automation systems can increase comfort and security around the house and can 

also provide economic benefits through energy conservation. The concept involves 

granting, the user with complete control over every appliance and electrical equipment in 

the house, thus relieving him from tasks that require manual control. Several home 

automation systems were introduced to the market in the late 70s and the 80s, but these 

manufacturers did not address the problems of cross product compatibility and complete 

system integration. Hence, a variety of products that can only be controlled individually 

were introduced. A few of them are energy management units, security systems, lighting 

controllers, and entertainment systems. In 1983, the Electronic Industries 

Association(EIA) recognized the need to develop standards covering all aspects of home 

automation systems communication. After five years of study, the EIA released a home 

automation system communication standard known as Consumer Electronic Bus. 

The Consumer Electronic Bus (CEBus), is a computer network for the intelligent 

home able to provide a standardized communication interface to 6 different media. They 

are the PLBus (Power Line Bus), TPBus (Twisted-Pair Bus), CXBus (Coaxial Bus), 

SRBus (Infrared or Single-Room Bus), RFBus (Radio Frequency Bus) and FOBus 

(Fiber-Optic Bus). PLBus is likely to be the medium of choice for most appliances 

meant for retrofit installations since almost every house and business in the world is 

wired for electricity. Also TPBus promises to be the most useful high-speed medium in 

the majority of installations[2]. The CEBus is intended to support home communication 

for remote sensing, and control, status indication, security monitoring_ and control, energy 

management, entertainment facilities, lighting and home appliances. 



The CEBus standard, which is continually being updated and which was last 

released in October 1992, sets out to achieve several objectives. It should be easy to 

retrofit, and should be able to expand over time as new media and new technologies are 

adopted. The technical goals are versatility with both distributed and centralized control, 

simplicity of operation, low cost, compatibility regardless of manufacturer, support of 

multiple media and media independence. A new language, the Command Application 

Language (CAL), has been specifically designed for the CEBus for this purpose. It 

provides compatibility among supported devices and allows for extendibility over time as 

new features and services are introduced. 

The protocol layers of the CEBus follow the Open System Interconnection (OSI) 

architectural model of the International Organization for Standardization(ISO). By this 

required specification, the CEBus can be extended and interconnected to various media 

through a router, a bridge, or a gateway. However, only four of the seven OSI layers 

are used by CEBus. Some of the functionality associated with the Transport Layer has 

been built into the CEBus Application and Network Layers. The Session and the 

Presentation Lavers of the OSI model are not required for CEBus. So they have been 

omitted to reduce both packet length and device complexity. 

The architecture of the CEBus routers is layered in the same manner as CEBus 

nodes. However, in contrast to a CEBus node, a router has two Medium Access 

Control(MAC) Sublayers and Logical Link Control (LLC) Sublayers - a set for each 

medium connected to the router[16]. The design of the CEBus router is derived from 

the requirements for simple, low-cost consumer devices, or nodes, and minimal length 

packets. The functionality provided by the routers is complex, and would be expensive 

to include in each individual node in the network. Thus, the functional complexity of 

determining packet routes and storing information concerning network 

topology/connectivity is distributed to the routers. In a typical CEBus network, there 

might be many nodes and only a few routers, justifying the higher complexity and cost. 
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The CEBus protocol employs Carrier Sense Multiple Access with Contention 

Detection and Contention Resolution (CSMA/CDCR) for channel access. The channel 

access delay depends on the packet's priority, the station's queueing state and a random 

access delay time. Three classes of priority messages HIGH, STANDARD, and 

DEFERRED are supported in the CEBus protocol. Priority based channel access enables 

a higher priority message to preempt a lower priority message while the latter is waiting 

for channel access. 

In this thesis, the throughput and delay performance of traffic between the Power 

Line(PL) and the Twisted Pair(TP) media interconnected by a router is studied. The 

router is assigned to handle all three priority classes. Simulation results for the 

throughput and delay behavior are obtained for the acknowledged and unacknowledged 

cases. Simulation results were obtained by Yang and Manikopoulos[17] for 

unacknowledged connectionless service across a router which provides an exchange of 

data between peer Network Layers, but without the acknowledgment mechanism to 

verify the success of the transmission. Pan[18] developed the acknowledgment 

mechanism. and investigated the performance of PL CEBus, with and without 

acknowledgment. 	The present simulation model includes the acknowledgment 

mechanism, and successful transmission on the same channel(Local traffic) or successful 

transmission across the router to another channel(Non-Local traffic) can be verified. 

Two of the home automation systems currently available are X-10 and Smart 

House. X-10 is a one-way open loop system with limited potential for intelligent home 

control[?]. Smart House is currently aimed at the new construction market. Equipment 

for retrofits is still being developed[7]. Although EIA has invited both X-10 and Smart 

House to participate in its standard-setting activities, X-I0 has chosen not to, while 

Smart House is reviewing the EIA standard to ascertain whether portions may be 

incorporated into Smart House[6]. 



CHAPTER 2 

CEBUS ARCHITECTURE AND PROTOCOL 

2.1 CEBus Architecture 

The OSI model is utilized in the design of the CEBus. Only four of the seven OSI layers 

are used in the CEBus as shown in Fig.2.1. The Data Link Layer is divided into the 

Medium Access Control (MAC) Sublayer and the Logical Link Control (LLC) Sublayer. 

By enabling different MAC Sublayers to be interchanged with a universal LLC Sublayer, 

different channel access techniques can be used, thereby increasing the flexibility of the 

Data Link Layer operation. 

2.1.1 Layer System Management 

The Layer System Management (LSM) 	provides 	an interface mechanism 

between non-adjacent layers, initializing and maintaining the peer-to-peer protocol of 

each of the layers or sublayers. In concept, it is adjacent to each of the layers or 

sublayers, and performs various network administrative functions such as reading and 

setting parameter values in different sublayers and resetting Layer entity to a known 

state. It also notifies different layers/sublayers of significant events in the LSM or in the 

other layers/sublayers of the node [1]. 

2.1.2 Physical Layer 

The Physical Layer provides the direct physical connection to the communication 

medium for transfer of data. It provides the characteristics to activate, maintain and 

deactivate the physical links passing the stream of communication symbols. The Physical 

Layer exchanges symbols with the Data Link Layer, encoding and decoding the 

4 



Fig. 2.1 CEBus Architecture 

5 
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symbols to and from the medium states. The states required to represent the symbols are 

generated on the medium by the Physical Layer. 

The signal encoding for PL control channel will be Non Return to Zero (NRZ). 

Pulse Width Encoding using the symbols "1", "0", "EOF", "EOP". EOF(End Of Field) 

denotes the end of a packet field while EOP (End Of Packet) serves to terminate the 

checksum field and delimit message packets. These symbols are encoded using a swept 

frequency carrier coupled to the power line. 

The carrier will consist of a sinusoidal 	waveform that is swept linearly 

from 203 KHz to 400 KHz for 19 cycles, back to 100 KHz in one cycle, then back to 

203 KHz in 5 cycles during a 100µsec interval. This carrier sweep period represents the 

shortest symbol time, called the Unit Symbol Time. During longer symbol times, the 

carrier sweep repeats for a multiple of the Unit Symbol Time(UST) [1]. 

On the PL medium, the encoding of the symbols will be performed using the 

SUPERIOR and INFERIOR states. During the preamble of the CEBus packet, the 

presence of the carrier on the PL will represent the SUPERIOR state, and the absence of 

the carrier will represent an INFERIOR state. During the non-preamble part of the 

message, the frequency swept carrier is continually transmitted and encodes the different 

symbols by reversing the phase of the carrier sweep at the beginning of each new sweep. 

This can be seen clearly in Fig. 2.2(b). If SUPERIORθ1 and SUPERIORθ2 are used to 

denote the different phase versions of the SUPERIOR state, then they are opposite in 

phase, regardless of the value of the phase. In the Figure SUPERIORθ1 will be used to 

denote the phase of the carrier transmitted during the preamble. 

The time to transmit the shortest data symbol, "I" or ONE, on the PL network is 

defined as the Unit Symbol Time (UST). Since 1 UST is equivalent to 100µsec, the data 

rate of the Power Line is 10,000 ONE bits per second ± 0.1% over the operating 
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Fig. 2.2 (a) PL control channel preamble encoding example, and (b) non-preamble 
encoding example 
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temperature and humidity range of the PL devices. The following table displays the four 

CEBUS encoded symbols and their transmission times. 

To make detection of the preamble easier, the unit symbol time is longer during 

the preamble than the message portion of the packet.(Fig. 2.2(a) ) While the unit symbol 

time is longer(114µs vs. 100µs), the SUPERIORθ 1 carrier sweep remains constant 

throughout the packet. Hence, during the preamble, the time the medium is in the 

INFERIOR state varies, occupying the time between SUPERIORS 1 carrier sweeps. 

Table 2.1 Symbol Duration for PL 

Symbol Transmission time 

ONE 100µs ± 100ns = 1 UST 

ZERO 200µs ± 200ns = 2 UST 

EOF 

 

300µs ± 300ns = 3 UST 

EOP 400µs ± 400ns = 4 UST 

A Twisted Pair(TP) network consists of one or more twisted pair cables attached 

at a TP distribution device and ending at a network tap. The cable consists of four 

twisted pairs referred to as TP0 through TP3. TP0 provides control channel, DC power, 

and data channels to attached devices. TP1-3 provide additional data channel resources 

to the devices in the network. Coupling between TP networks and/or other CEBus 

media can be accomplished by coupling between TP0 control channel and other CEBus 

media control channel across a router. .An optional data bridge could be used for 

coupling the data channels between TP and other CEBus media[10]. 
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The control channel for Twisted Pair occupies the bandwidth from 2 to 64 KHz. 

This channel is used to exchange CEBus protocol information and to transport device 

control information. No other use of this channel is permitted. 

The TP control channel uses a differential bipolar signal employing three signal 

levels to encode the CEBus symbols "1", "0", "EOF", and "EOP". The three signal levels 

are used to represent the two media states of SUPERIOR and INFERIOR. A 

SUPERIOR state is represented by the presence of either a positive or negative 

differential voltage swing about the average DC supply voltage present on the TP 

medium. The absence of any voltage swing, or in other words zero voltage swing with 

respect to the average DC supply voltage, will represent an INFERIOR state. 

The encoding of the symbols is strictly related to the time the INFERIOR or 

SUPERIOR state remains on the media, not whether the INFERIOR or SUPERIOR 

state is used[9]. Any symbol can be defined by either a SUPERIOR or INFERIOR state. 

The " I" symbol is represented by the shortest interval of the SUPERIOR or INFERIOR 

state, the "0" is twice the interval of "1", the "EOF" is three intervals, and the "EOP" is 

four intervals. ( Fig. 2.3 ) 

The signaling rate for TP control channel will be 10 K ONE bits per-

second ± 5% over the operating temperature and humidity range of the attached 

devices. This rate gives the following symbol times for the four CEBus encoded symbols. 

Table 2.2 Symbol times for TP 

ONE 100µs ± 	5 us 

ZERO 200 µs ± 	5 its 

EOF 300 µs ± 	5 us 

EOP 400 µs ± 	5 us 
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Fig.2.3 Bipolar Encoding example for TP control channel 

2.1.3 Medium Access Control Sublayer 

The Medium Access Control (MAC) Sublayer performs the function of transmitting and 

receiving Protocol Data Units from the Logical Link Control Sublayer (LPDU's). Only 

unacknowledged connectionless service is offered. The final form of the data for 

transmission is assembled in the MAC Sublayer. The MAC Sublayer incorporates an 

LPDU into a Medium Access Control PDU, or MPDU, before transmission. Then the 

MPDU is transmitted through the Physical Layer after obeying the channel access 



11 

protocol. The channel access protocol used in CEBus is Carrier Sense Multiple Access 

with Contention Detection and Contention Resolution (CSMA/CDCR). 

When the MAC Sublayer receives an MPDU from the Physical Layer, the 

MPDU Header is stripped away by the MAC Sublayer, and the remaining 

portion(LPDU) is passed up to the Logical Link Control Sublayer. Validation of the 

received frames is also performed through the use of the frame check sequence. 

Fig. 2.4 CEBus frame generation 

The MAC frame is formulated as it passes through each of the layers of the 

CEBus model. The user interface defines the CAL commands and header that make up 

the Application Layer PDU(APDU). This APDU is passed down to the CEBus Network 

Layer where routing and flow control information is appended. Then the new NPDU 

passes through the Logical Link Control Sublayer and Medium Access Sublayer, gaining 

control and addressing information. These processes will be explained in more detail as 

each CEBus Layer is discussed in detail in the following sections. 

The normal MAC frame consists of the Preamble field (PRE), Control field 

(Control), Destination Address field (DA), Destination House Code field (DHC), Source 

Address field (SA), Source House Code field (SHC), information field and the Frame 
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Check Sequence (FCS) field[13]. The contents of each field are a sequence of 0(ZERO) 

and 1(ONE) symbols. All fields except the FCS field are terminated with an EOF symbol.  

The FCS field is terminated with the EOP symbol.  

Fig. 2.5 Normal MAC Frame Format 

The frame format for the JACK consists of fewer fields. The "Acknowledge" 

frame has only a Preamble field, Control field, Information field and a Frame Check 

Sequence field. The information field can be up to 2 bytes long. This field may only 

contain data relevant to the Data Link Layer(MAC and LLC Sublayers), such as 

remaining Data Link Layer buffer space. Any information about the higher layers is not 

allowed. Normally. this field will be empty (Null). 

Fig. 2.6 IACK Frame Format 

2.1.4 Logical Link Control (LLC) Sublayer 

The LLC Sublayer provides the Network Layer with the facility to transmit its packets 

onto the network and to receive incoming packets from the network. CEBus Logical 

Link Control Sublayer service may be one of two types. They are "unacknowledged 

connectionless service" or "acknowledged connectionless service". 
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(a) Unacknowledged Connectionless Service 

Unacknowledged connectionless service accommodates an exchange of data between 

peer LLC Sublayers without the use of an acknowledgment mechanism. Thus, the 

success or failure of a transmission cannot be verified. The term "connectionless" implies 

that no connection, or virtual circuit, is set up to handle the transfer between the LLC 

Sublavers. The peer LLC will be either the destination node, Brouter, or Router on the 

local medium. A transmission can be sent to a specific address, multicast to a group of 

addresses, or broadcast to all addresses in a particular home system. 

(b) Acknowledged Connectionless Service 

For Acknowledged connectionless service, the LLC Sublayer's Immediate 

Acknowledge(IACK) facility is used to improve the chances of successful message 

delivery between peer LLC Sublayers. Acknowledged connectionless service provides 

IACKs on a hop-by-hop basis and not end-to-end. That is, a transmission to a node in 

the same medium(Local Transmission) is acknowledged by the destination node. But a 

Non-Local transmission across a router is acknowledged by the router, and not the 

destination node. Multicast and broadcast transmissions are prohibited in order to 

prevent collisions between simultaneous, multiple acknowledgments. 

By dividing the CEBus Data Link Layer into two sublayers, a certain degree of 

modularity is achieved. Since different media types require different channel access 

methods, different MAC Sublayers could be added without changing the LLC 

Sublayer. Thus, the medium access technique is transparent to a universal Logical Link 

Control Sublaver. 
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2.1.5 Network Layer 

The job of the CEBus Network Layer is to dynamically maintain a tree structure in the 

network topology, correctly route packets between dissimilar media, prevent duplicate 

packets originating from IR/RF, and provide flow control functions for the Application 

Layer's segmented packet service. The Network Layer is capable of providing either 

unacknowledged connectionless service or acknowledged connectionless service. 

Design criteria for topology and routing are derived from the nature of the 

CEBus network, which is the operation of consumer devices. Rules for interconnecting 

various media must ensure flexibility in installation. Routing must be carried out to 

minimize the delay between user command and device response. 

The Network Layer Protocol Data Unit (NPDU) is the unit of information which 

is generated in the Network Layer in a transmitting node and expected by the Network 

Laver in a receiving node. The NPDU is exchanged between peer Network Layers in the 

network nodes or between nodes and routers. 

The Network Layer creates the NPDU from an APDU and some additional 

control parameters passed down from the Application Layer in an N DATA_REQUEST 

service primitive. Once the NPDU is formed it is passed down to the Data Link Layer 

along with additional control parameters in an LL_DATA_REQUEST or an 

LL_ACK_DATA _REQUEST. Once in the Data Link Layer, these pieces of information 

are incorporated into a frame containing control information, addresses and error 

detection data. The final product is the MAC Layer PDU, or MPDU, which is passed 

down to the Physical Layer for transmission. PDUs created by a higher layer have to be 

handled as an indivisible entity by the lower layers. 

A received MAC frame is stripped of the MPDU Header and passed up to the 

LLC Layer where the control field is taken out. The remaining portion, or NPDU, is 

passed up to the Network Layer where its contents are recognized. If the receiving node 

is a Router or Brouter, the NPDU is used to make routing decisions and to generate a 
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frame onto the next medium. If the receiving Network Layer belongs to a network node, 

then the NPDU is disassembled and passed up to the Application Layer. 

2.1.6 Application Layer 

The CEBus Application Layer is the highest in the CEBus node. It provides the user 

interface to the CEBus network and supports a Common Application Language (CAL) 

through which manufacturers may communicate with other devices in the network[8]. 

The Application Layer is functionally divided into four elements: the user element, the 

CAL element, the message element, and the association control element. 

The user element is the interface to the process which controls the CEBus 

devices. This process, named the application process, performs actions requests by 

remote devices. such as TURN ON or TURN OFF, and generates requests to other 

devices on the network. The user element invokes the services of the CAL to formulate 

CAL commands and relay requests from the application process to remote devices on the 

network. Incoming CAL commands are also processed and the required task is relayed 

to the application process by the CAL element. The CAL element is also responsible for 

resource allocation and segmentation. Long messages are divided into shorter segments 

to fit into one CEBus frame. 

The CAL element subscribes to the services of the message transfer element to 

relay the CAL commands to their destinations. The message transfer element calls on the 

services of the Network Layer to accomplish this task. 

The association control element allows the association of two application 

processes. This part of the service has not yet been specified[21]. The information 

exchange between peer Application Layers is accomplished using Application Layer 

Protocol Data Units(APDUs). An APDU consists of the CAL command and a header 

appended by the message transfer element. 



16 

2.1.7 CEBus Router 

The architecture of the CEBus routers is layered in the same manner as CEBus nodes. 

However, a router has two Medium Access Control (MAC) Sublayers and two Logical 

Link Control (LLC) Sublayers - a set for each medium connected to the router. A single 

Network Layer connects the two "halves" of the router. Layer System Management is 

adjacent to each of the layers. It initializes and maintains each layer's peer-to-peer 

protocol. provides an interface between non-adjacent layers, and manages issues 

pertaining to the system, or network as a whole, such as maintaining a correct network 

 topology. 

Fig. 2.7 Layered Architecture for CEBus Routers 

CEBus routers form the connection between different wired media in the 

network. In the OSI model, a router is considered a Network Layer device. This implies 

that a router executes peer to peer communications with other devices at all layers upto 
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the Network Layer. A router operates at a higher protocol layer than a repeater, which is 

a Physical Layer device, or a bridge, which is a Data Link Layer device. A router 

connects network segments which may communicate using different Data Link Layer 

protocols but the same Network layer protocol. Routers forward packets from one 

medium to another if doing so moves the packet closer to its destination. 

A router must receive packets from one medium, buffer the packets, and decide 

whether or not to forward each packet onto the next medium, based on a routing 

algorithm and several other criteria. The routing algorithms used in a CEBus network are 

Flood Routing and Directory Routing[5]. The effect of Flood Routing is to get the 

packet onto all allowed media. If all media are permitted, the packet will reach all parts 

of the network. Loops in the network topology and the resulting duplicate packets are 

prevented by the network topology protocol. Directory Routing uses the Directory 

Routing Table(in the Router Network Layer) to determine if the Destination Address can 

be reached by forwarding the packet onto an adjacent medium. 

Each router should also communicate with the other routers to maintain the 

network topology in a tree structure. The tree structure is necessary to prevent loops, 

which would generate redundant traffic. To accomplish this task, the topology protocol 

disables the forwarding function of certain routers. 

The danger of having physical loops in the network is that there could be packets 

circling endlessly inside the network, causing duplicate packets to be received by a node. 

Duplicate packets may not be a problem in some cases like turning on a light, but could 

be a major problem in the case of turning up the volume on a stereo. One solution to this 

problem is to have intelligent nodes which distinguish every packet from every other 

packet and only processes the first instance of a packet. But this feature adds greatly to 

the complexity of the nodes, which being the most common element of the network, 

should remain as inexpensive as possible[16]. 
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The Physical Layers which may be part of a router are Power Line (PL), Twisted 

Pair (TP), Coaxial Cable (CX), and Fiber Optic (FO). These Physical Layers are identical 

to the corresponding Layers for nodes. Infrared (IR) and Radio Frequency (RF) media 

are not allowed for routers. These media are restricted to be the first and/or last media in 

a path which spans several media[1]. IR and RF may not be used to route data traffic 

between wired media. To connect IR and RF to the wired media, special devices called 

CEBus "Brouters" are used[15]. A Brouter is a combination of a forwarding device 

operating at the Data Link Layer (Bridge) and a Network Layer forwarding function 

(Router) Brouters operate in a manner which accommodates the broadcast nature of IR 

and RF 

2.2 CHANNEL ACCESS PROTOCOL 

Since multiple nodes are connected to an individual channel, it's probable that several 

nodes might want to transmit at the same time. When such conflicting transmissions 

occur, the conflicting nodes are said to be in a state of "contention". To ensure optimum 

channel conditions and increase the probability of successful transmission, the following 

steps are taken: 

Avoid contention, 

If contention occurs, resolve in favor of only one node. 

Therefore, before a node may transmit a frame it must follow a channel access method 

designed to minimize the probability of simultaneous transmissions. The following four 

steps form the channel access method for CEBus. 

1. Deference to other channel traffic (SUPERIOR State Deference) 

2. Prioritization of channel access 

3. "Round-robin" queueing to ensure equal access within a priority level 

4. Randomization of start time delay interval within each priority and queueing state 
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2.2.1 SUPERIOR State Deference 

The Physical Layer of each node constantly monitors the channel for "activity"(either 

noise or packet transmissions from other nodes). If the Physical Layer detects a 

SUPERIOR state on the medium, 	it sends a PH CC STATUS.indication 

(CHANNEL_ACTIVE) service primitive, causing the Data Link Layer to enter its 

receive mode. If the Data Link Layer has a frame to transmit, it will "defer" its 

transmission until the Physical Layer passes up an EOP symbol, allowing the Data Link 

Laver to exit its receive mode[1]. 

Following the EOP symbol of a passing frame, all nodes must remain quiet for a 

minimum of 10 USTs (Unit Symbol Times). This mandatory channel quiet time allows an 

immediate acknowledgment (IACK) or a retransmission to be sent without conflict for 

the channel. The IACK and retransmission mechanism will be explained in detail in the 

following sections. 

If the channel remains quiet throughout the 10 USTs, nodes may begin 

competing for channel access. However, if the node detects channel activity before it 

begins transmission, the Data Link Layer will again defer its transmission until the 

channel is quiet. Any node that hears another node will not attempt to transmit. 

2.2.2 Prioritization 

Each CEBus message is associated with a priority level which is passed down from the 

Network Layer and denotes its relative level of importance. The purpose of priority 

levels is to delay the transmission of a message for an additional period of time, such that 

lower priority messages do not have the opportunity to interfere with higher priority 

messages, for control of the channel. 

The three priority levels are named HIGH, STANDARD and DEFERRED. A 

HIGH priority message will be eligible for transmission immediately after the minimum 

channel access delay. A STANDARD priority will impose 4 Unit Symbol Times of 
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additional delay to a message transmission, and a DEFERRED message will be delayed 

for an additional 8 Unit Symbol Times. This scheme allows nodes with higher priority 

frames to seize the channel before nodes with lower priority frames. Since the lower 

priority nodes will always hear the higher priority nodes and defer to them, contention is 

minimized by prioritization. 

2.2.3 "Round-robin" queueing 

Although the above two methods reduce the probability for conflict over use of the 

channel, contention may still arise between nodes at the same priority level. To ensure 

that contending nodes within each priority level have an equal opportunity for channel 

access. a "round-robin queueing" method is used. A transmitting node is considered to 

be in either a QUEUED or an UNQUEUED state. A node which has already completed 

a successful transmission is placed in the QUEUED state.(Transmission of an LACK does 

not count.) This state introduces an additional delay of 4 Unit Symbol Times into the 

node's channel access delay. A node which has not yet successfully transmitted a packet 

is in an UNQUEUED state. For an UNQUEUED node, no additional delay is added[4]. 

The effect of this queueing process is to remove the successful nodes from contention 

with those which have not yet been able to get a message through. 

A node will become UNQUEUED if it has made an unsuccessful transmission 

attempt during its priority/queueing time slot. A node will also become UNQUEUED if 

it has no frame to send and counts quiet time on the channel for the maximum channel 

access time ( 26 UST ). 

2.2.4 Randomization 

Because more than one node may be in the same priority level and queueing state, the 

probability of contention still exists. An additional measure to reduce this probability is 

to have each node randomize its transmission start time into four distinct periods within 



21 

Fig. 2.8 (a) Priority queuing, (b) Random access time 
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its priority and queue.(Fig. 2.8b) A random delay of either 0, 1, 2, or 3 Unit Symbol 

Times is added to each transmitting node's channel access delay. This ensures that nodes 

in the same priority and queueing state will have different start times for transmission. 

Therefore, the probability of contention is further reduced. 

2.3 Contention Detection and Resolution 

In the earlier section, steps taken to avoid contention were discussed. However, two or 

more nodes may still attempt to transmit a frame during the same time interval. To 

ensure reliable communication between Data Link Layers, a means of detecting 

contention and resolving in favor of one node is still required. 

The use of SUPERIOR and INFERIOR states on the transmission medium 

enables contention detection. By definition, a SUPERIOR state on the medium will 

dominate any attempt to transmit an INFERIOR state. As a result of this property, any 

node which senses a SUPERIOR state while sending, an INFERIOR state, will defer its 

transmission. It becomes aware of the presence of one or more other transmitting nodes. 

The Physical Layer is responsible for actually switching the state of the medium to 

encode symbols from the Data Link Layer, and also for sensing the current state of the 

medium. Therefore, contention detection is achieved by the Physical Layer. 

Contention will normally occur at the beginning of the transmission. Therefore, 

the Preamble, positioned at the beginning of the frame, serves to provide a contending 

signal pattern and to shield the information from being lost during contention. The 

Preamble field is made up of a random sequence of bits, which is usually a function of 

the node address and the number of ONE symbols already transmitted by the node[1]. 

In CEBus terminology, contention resolution involves the simultaneous 

transmission of more than one Preamble. Since the node which drops into the 

INFERIOR state first is removed from contention, the winning node is able to transmit 

free of contention. Contention should never result in lost information. That is, contention 



23 

has to be resolved during the Preamble. Because the Preamble carries no information and 

its bits are not included in the calculation of the checksum(contained in the FCS field), 

delivery of the frame will be successful. 

Fig. 2.9 Resolving Contention with SUPERIOR and INFERIOR states 

A collision refers to overlapping transmissions after the Preamble. Although 

conflict over the channel during any part of the frame after the end of the Preamble 

constitutes a breakdown of the channel access method, a sending node will abort its 

transmission and defer during any part of its frame. This will result in the reception of a 

bad packet. Therefore, a retransmission will be required. 

2.4 Message Failure and Retransmission 

Message failure occurs when the received frame does not appear to be valid to the 

receiving node. If all required fields of the frame are not received properly, the frame will 

be rejected as being a fragment. Also a packet could be rejected if the checksum 

performed at the receiving node indicates faulty data. Noise on the channel and 

conflicting node transmissions could cause these message failures. Therefore a 

retransmission may be needed to guarantee a successful delivery. To increase the 
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reliability of the network, an Immediate Acknowledgment (IACK) and retransmission 

mechanism could be used. 

2.4.1 Immediate Acknowledgment (IACK) 

The Immediate Acknowledgment mechanism enables the transmitting node to determine 

the success or failure of its message across a single medium. It is invoked when the 

Network Layer requests acknowledged connectionless service. 

When a message is received without errors, and an acknowledgment is requested, 

the receiving node forms an IACK frame. The IACK frame is sent out onto the local 

medium within 2 USTs of the end of the EOP symbol of the originating frame. By 

immediately responding within the minimum channel access time (10 UST), the receiving 

node is assured of sending the IACK without having to contend for the channel. This 

method also associates the IACK with its originating frame without the use of extra 

information, such as sequence numbers. 

An originating node, which is waiting for an acknowledgment, expects to hear 

the beginning of the IACK Preamble within 6 USTs of the end of the EOP symbol of its 

frame. As the originating node receives the JACK frame, the incoming fields are parsed 

to ensure that a fragment is not received. The checksum is used to determine the validity 

of the contents of the received frame. When the IACK is correctly received, its Preamble 

and FCS field are discarded, and its Control field is processed within the Data Link 

Layer. In CEBus, three features distinguish an IACK from an originating frame. They are 

its time of arrival, the way in which the frame parses(the number of EOF fields), and the 

Control field(Packet Type) [1]. 

Contention during IACK transmission constitutes a failure of the Data Link 

Layer protocol and will cause the receiving node to abort the IACK. Also, received noise 

during the time between the originating frame and the IACK will prevent the JACK from 

ever beginning. 
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If a receiving node cannot accommodate an acknowledged service frame, a 

Failure Packet is transmitted, rather than an IACK. The Failure Packet is an IACK frame 

with a Packet Type of Failure in the Control field. Normally, Failure packets will be sent 

by a router whose forwarding buffer is full. Reception of a Failure Packet constitutes a 

"negative acknowledgment". 

2.4.2 Retransmission 

If a negative acknowledgment is received, or if no JACK is received within 6 USTs at 

the originating node, then a retransmission is sent. Immediate channel access is achieved 

by beginning the retransmission of the originating frame Preamble before the minimum 

channel access time has elapsed. All nodes counting the minimum wait time will hear the 

retransmission and defer to it. 

If an IACK is not correctly received at the originating node, (i.e., fragmented, or 

checksum indicates errors in transmission, or if it is rejected during reception due to bit 

errors), the originating node will begin a retransmission within 7 USTs after the end of 

the faulty IACK. Noise received after the end of the originating frame is treated in the 

same manner. An EOP symbol is decoded at the end of the noise, and the retransmission 

will begin within 7 USTs. 

Fig. 2.1g Immediate Retry Timing 
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CEBus allows only one retransmission by the Data Link Layer. Its purpose is to 

increase the probability of successful transmission. It is assumed that the initial non-

delivery was caused by noise on the channel. Therefore, an immediate retry should not be 

in contention with anyone and should be successful. 

A received retransmission can be due to one of two things. It could be that the 

initial transmission was received correctly, but the JACK sent was faulty. Then the 

retransmission is a duplicate of the previous packet. Then it has to be discarded at the 

receiving. node. A duplicate packet can be identified by its arrival time. Retries will begin 

during the seventh unit symbol time, and new frames may not begin until after the tenth 

unit symbol time. The tenth unit symbol time of the minimum wait time helps the 

receiving node handle retries by separating the time window for retries from the time for 

new frames. Although a duplicate is rejected, it must be acknowledged with a second 

LACK. 

The second case of handling a retransmission occurs when the first transmission 

was not received correctly and an IACK was never sent. When the retry, which is not a 

duplicate arrives, it is simply accepted and acknowledged. 



CHAPTER 3 

SIMULATION MODEL 

3.1 The Simulator 

The simulator is briefly described in this chapter. The definitions which govern the analysis 

and discussion of the simulation results are introduced here. 

The simulator for the system and protocol model for the experiment was written in 

C language using the C-Library functions provided by LANSF[19]. LANSF is a 

configurable simulator designed to model communication networks. It can be modified to 

simulate the CEBus architecture proposed in the EIA standard released in October 

1992[1]. The attributes of a communication network specified by LANSF can be divided 

into two categories. The first category contains static elements, for example, system 

architecture and topology. The second category contains dynamic attributes that describe 

the temporal behavior of the modeled system, for example, traffic patterns and 

performance measures. The simulation involves two tasks, system and protocol modeling 

and network configuration. The CEBus system and protocol model requires a C program 

using LANSF's C-Library functions while the network configuration does not require a C 

program. It is specified in a data file which is interpreted by the system and protocol 

created by the user. There are four program files needed to interface LANSF and the 

CEBus network. They are protocol.c, protocol.h, options.h, and the input data file. 

The protocol.c file specifies the executable part of the protocol specification and 

functions which represent protocol processes executed by stations(nodes). It also contains 

two other subroutines that must be included with the protocol module. The first, 

in protocol, initializes the simulator and reads the values of the global protocol-specific 

parameters. The second, out _protocol, contains the output results and the protocol-

specific input parameters. 
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The definitions of protocol-specific symbolic constants and the declarations of 

non-standard station attributes are found in the protocol.h 

The options.h file contains the local options such as precision of numbers, the type 

of port variables representing port transmission rates, the length of additional information 

carried by messages and packets, the type of transmission link, and the number of 

moments to be calculated for standard statistics. 

The input data file contains the time section and the configuration section which 

define the backbone of the network. It contains the number of stations, the number of 

ports per station, the link number and type, the total number of ports and their 

transmission rates. the distance matrix describing the distance between the nodes, the 

number of messages. the message length, the mean interarrival time, the number of senders 

and receivers. and optional flood group or broadcast type messages. The final segment 

consists of the exit conditions, namely, the total number of messages to be generated, the 

simulation time, and the CPU time limit. 

Table 3.1 Service Primitives 

Transmitter 

 

Receiver 

N DATA.request N DATA.indication 

L DATA.request L DATA.indication 

M DATA.request M DATA.indication 

LACK DATA.request 	LACK DATA.indication 

A station transmitter's function can be explained by the service 	primitives 

(Table 3 1) which provide the interlayer communications as described in the EIA 

Standards[1]. Lets consider a message fetched into the station buffer with its length 

defined in the input data file. The Application Layer sends a signal (N_DATA.request) to 
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the Network Layer which in turn adds an NPDU to the packet and passes it to the LLC 

Sublayer with a L_DATA.request (Unacknowledged service) or a L_ACK_DATA.request 

(Acknowledged service). After processing, an LPDU is passed down to the MAC 

Sublayer with a M_DATA.request. While passing the packet between the different layers, 

only pointers to data are passed through the layer rather than copying the data several 

times. The MAC frame is transmitted after obeying the channel access protocol. 

After a successful transmission, all the nodes (stations) wait for an additional delay 

of 10 UST before accessing the channel. After a packet is transmitted, the MAC Sublayer 

sends an M_DATA.confirm to the LLC Sublayer, to report a successful transmission. 

However, this is not an indication of successful delivery. This is the case for 

unacknowledged service. 

For acknowledged service, a M_DATA.confirm is not sent until an 

acknowledgment is received. An IACK packet is sent from the receiving to the originating 

station within 2 USTs of the end of the EOP symbol of the originating frame. Since the 

originating station still owns the channel, there is no contention during IACK transmission. 

At the receiver, the MAC Sublayer sends a M_DATA.indication and passes the 

packet to the LLC Sublayer. The LLC strips the header information and passes the packet 

to the layer above by sending a L_DATA.indication or L_ACK_DATA.indication 

depending on the type of service. 

3.2 Network Model and Traffic Patterns 

The Power Line (PL) and Twisted Pair (TP) physical media for CEBus both operate at a 

data rate of 10 Kb/s. In the simulation experiments, this data rate of 10 Kb/s has been 

utilized for both media. In general, local area networks using wire pairs may operate up to 

a couple of Mb/s. The standard operating rate for coaxial cable is in the region of 10 Mb/s. 

For optical fiber. the data rate is several hundred Mb/s and rising. If lasers and single mode 

fibers are used, the range of bandwidth is much higher and is in the Gb/s range. The low 
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bandwidth in the home environment could lead to larger delays and high normalized 

throughputs, when compared to high data rate channels. However, the channel throughput 

turns out to be substantial. This high throughput is due to relatively larger packet sizes 

with respect to the network capacity[17]. 

The assumptions used to develop the model are as follows: 

• Independent Poisson arrival process at each node with rate X packets/sec; 

• The packet lengths are exponentially distributed with mean L bits; 

• The end-to-end propagation delay around the CEBus network is ignored, since it 

is much smaller than the packet transmission time[3]; 

• The bit rate on the channel is c b/s; 

• There are M nodes on the network. 

The total number of nodes, M, utilized in the simulation is 18 plus 2 for the router. 

There are 9 nodes on each medium. Three nodes each for HIGH, STANDARD, and 

DEFERRED priority classes. All the generated messages are symmetric for each priority 

class, thus each of the 18 nodes employ the same rates(e.g. same arrival time) to get 

access to the medium. The normalized offered load, G, is calculated using the following 

relationships. 

The value c is the channel capacity or data rate in bits/sec. Lp = Lh = Ls  = Ld is 

the same packet length in bits, while λPL→PL  denotes the arrival rate from PL to itself.  
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Also λPL→TP  indicates the arrival rate from PL to TP, and λPL←TP  indicates the same in 

the opposite direction. These groups have the same arrival rate when the traffic generated 

is symmetric. Then λPL→TP  = 	= λPL←TP  = Xxy. Furthermore, each direction 

group is composed of the three priority classes such that λxy  = a h + 	λd , where λh, 

λd represent the arrival rates for the HIGH, STANDARD and DEFERRED priorities, 

respectively.  

In this simulation study packet lengths of 100 bits, 300 bits, and 600 bits have been 

considered. The 600 bit packet is around the maximum allowed packet size and the 100 bit 

packet is around the minimum packet size as specified in the CEBus standard. Therefore, 

no segmentation is performed before transmission. However, for larger messages some 

kind of segmentation will be required to break the message into several packets prior to 

transmission. 

A 24 bit IACK frame will be used for acknowledgment, consistent with the study 

by Pan and Manikopoulos [18], who investigated the acknowledgment process for PL 

CEBus. Furthermore, the following studies involve equal message and packet length to 

reveal the queueing time effect which was the approach used in the literature[12,20]. All 

the simulations were run for a total of 5,000 messages. 

3.3 Performance Measures and Definitions 

The data and framing bits that can be sent in a single block constitute a packet. A message 

may consist of one or more packets. The traffic generator in LANSF generates the packets 

and places them in station's queues. Once a packet is in a queue it waits until it reaches the 

top of the queue[14]. When the packet is on top of its queue it is ready to be transmitted. 

The time spent in the queue awaiting transmission is called the queueing time. 

The most important measures of network performance are delay of signal 

transmission and throughput of the channel. There are two types of delays. They are 
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 delay and packet delay. Also we can consider two different types of throughput. 

Namely, channel throughput and message throughput. 

• Message Delay: it is measured as the time elapsed from the moment a message 

is queued at the originating node(station) to the moment the entire 

message(all the packets in the message) is successfully received by a node[11] 1]. 

Message delay includes the message queueing time. 

• Packet Delay: it is defined as the time elapsed from the moment a packet becomes 

ready for transmission in the originating node to the moment the packet is 

successfully received by a node. It does not include queueing time[11]. 

• Channel Throughput: it is calculated as the ratio of the total number of information 

bits successfully transmitted through the channel to the simulation time. Packet 

headers and trailers do not count. This is also referred to as the effective 

throughput of a link, since it includes not only the bits that were successfully 

received on the link, but also the bits that were successfully relayed to another link, 

e. g. to the router. 

• Message Throughput: it is measured as the ratio of the total number of bits 

received at the destination address to the number of bits generated at the source. 



CHAPTER 4 

ANALYSIS AND DISCUSSION OF SIMULATION RESULTS 

4.1 CEBus Performance With and Without JACK: Case of 600 bits 

(a) Message delay vs. Load 

For the 600 bit message shown in Fig. A.1,. 	the message delay for HIGH priority 

unacknowledged Local packets start to increase rapidly when the normalized load exceeds 

2. For the STANDARD priority a similar trend is observed when the normalized load is 

greater than 0.85, and for DEFERRED priority it is around 0.6. In the acknowledged case 

the delay is higher than the unacknowledged case, for each of the corresponding priorities. 

Also drastic increases in delay are noticed at smaller values of normalized load for the 

acknowledged case. For example, the acknowledged Local packets in the HIGH, 

STANDARD and DEFERRED priorities begin their upward trend for loads of 1.8, 0.7, 

and 0.5 respectively. 

Non-Local packets, or packets transmitted via the router to the other medium, also 

display similar tendencies, but at higher values of Message delay(Fig. A.2). For relatively 

small loads, the delay for Local transmissions is approximately 80 ms. However, for Non-

Local traffic it is around 1 1 0 ms. 

(b) Packet delay vs. Load 

Packet delay for Local transmission only includes the channel access plus transmitting 

time, unlike Message delay which also includes the queueing time. Therefore, for HIGH 

priority packets, Packet delay remains small and bounded (Fig. A.3 & Fig. A.4), while 

'Message delay becomes excessively large, for heavy traffic load. 
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For Non-Local packet transmissions the Packet delay is approximately equal to the 

Message delay (Fig. A.5 & Fig. A.6). This is due to the fact that after a message succeeds 

in reaching the router, it usually fails to access the channel on the other side immediately. 

So it has to wait in the router buffer and then try to access the channel again. Thus, most 

of the delay is due to the time spent in the router buffer. 

(c) Message throughput vs. Load 

In Fig. A.7, the relationship between Message throughput and normalized load is shown 

for a Local 600 bit packet, with and without acknowledgment. In Fig. A.8 the same is 

shown for a Non-Local packet. In heavy traffic conditions, a noticeable difference in 

Message throughputs is found between the Local and Non-Local traffic for all three 

priorities. Local traffic seems to have a better chance for successful delivery, than Non-

Local traffic. For example, when the load is 1.5, the Message throughput for 

unacknowledged STANDARD priority is approximately 0.8 for Local traffic, while it is 

0.5 for Non-Local (Fig. A.7). 

Furthermore, when acknowledged and unacknowledged cases are compared, the 

Message throughput for acknowledged traffic is consistently on the lower side for all three 

priorities. This fact confirms the notion that the introduction of an TACK frame causes a 

reduction in effective throughput of the channel. 

4.2 CEBus Performance With and Without JACK: Case of 300 bits 

(a) Message delay vs. Load 

In Fig. 4.1, the effect of traffic load on Message delay is illustrated for a 300 bit Local 

packet. As in the event of 600 bits, the delay for acknowledged case is greater than the 

unacknowledged case. The point at which the delay starts to increase rapidly is dependent 

on the priority class. For Local traffic, HIGH priority, the delay becomes excessively large 
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Fig. 4.1 Message delay vs. Normalized offered load for 300 bit Local 
packets, with and w/o JACK 
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Fig. 4.2 Message delay vs. Normalized offered load for 300 bit Non-Local 
packets, with and w/o IACK 
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after the normalized load exceeds 2. Although the total normalized offered load is 2, only 

one third of the total traffic is due to HIGH priority packets. 

At higher loads, it becomes increasingly difficult for lower priorities to get access 

to the channel. After the normalized load exceeds 2, only HIGH priority packets have any 

chance of getting through. Since contention is always among packets of the same priority, 

the possibility of collisions increases, thus increasing the Message delay. 

For Non-Local traffic(Fig. 4.2), the Message delay is greater than the Local traffic. 

This is due to the extra time in the router buffer waiting to access the destination medium.  

The Message delay is bounded and small for light loads, while it becomes excessively large 

for heavy loads. 

(b) Packet delay vs. Load 

As in the case of 600 bits, the packet delay in bounded for HIGH priority packets. As 

observed in previous studies [12, 20], a special feature of Packet delay for HIGH priorities 

appears when the load is high, for both acknowledged and unacknowledged cases. The 

Packet delay seems to reach a point of saturation. The saturation occurs when the message 

throughputs for STANDARD and DEFERRED priorities have already reached zero, and 

only the HIGH priorities transmit over the channel. After the load reaches the limit for 

optimum channel throughput, then further increases in load does not have any effect. This 

is specially true for the Packet delay, since it indicates the service time. No matter how 

large the queue, the service time remains approximately the same after passing its 

threshold. However, as load increases the time spent in the queue increases. Thus, 

Message delay rises with increased load. 

For Non-Local transmissions, the differences between Packet delay for 

unacknowledged and acknowledged cases mirrors the same features as Message delay for 

the two cases. This is due to the fact that a close relationship exists between Message and 

Packet delay, for Non-Local transmissions, due to the time spent in the router buffer. 



38 

Fig. 4.3 Packet delay vs. Normalized offered load for 300 bit Local 
packets, with and w/o IACK 
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Fig. 4.4 Packet delay vs. Normalized offered load for 300 bit Non-Local 
packets, with and w/o IACK 
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(c) Message throughput vs. Load 

The Message throughput vs. Normalized load for Local 300 bit packets is illustrated in 

Fig. 4.5. For HIGH priority, the throughput starts to fall below the ideal value of I when 

the normalized load approaches and exceeds twice the channel capacity. This is true for 

both acknowledged and unacknowledged traffic. For STANDARD priority, the 

corresponding values are 1.2 for unacknowledged traffic, and 1.0 for acknowledged 

traffic. Similarly, for DEFERRED priority the Message throughput begins to decrease at 

normalized load values of 0.7 and 0.6, for the unacknowledged and acknowledged case. 

For traffic across the router (Non-Local), the pattern is similar with a steeper rate 

of descent(Fig. 4.6). However, the lower priorities are observed to fall off at a slightly 

lower value of the normalized load, when compared to Local traffic. 

4.3 CEBus Performance With and Without IACK: Case of 100 bits 

(a) Message delay vs. Load 

In Fig. A.9, Message delay vs. Normalized load is shown for traffic on the same side of a 

router ( Local traffic) for a 100 bit packet. Among the cases discussed, the Message delay 

for a 100 bit packet is the smallest for lighter loads. This is due to the shortest packet 

taking the least amount of time in the queue and subsequently in the channel. But the delay 

starts to increase at a load much smaller than the 300 and 600 bit cases. For HIGH priority 

it is around 1.5 for the unacknowledged case, and 1.4 for the acknowledged case. For 

STANDARD priority, the corresponding load values are 0.6 and 0.5, for unacknowledged 

and acknowledged cases, respectively. 
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Fig. 4.5 Message throughput vs. Normalized offered load 
for 300 bit Local packets, with and w/o IACK 
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Fig. 4.6 Message throughput vs. Normalized offered load 
for 300 bit Non-Local packets, with and w/o JACK 
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(b) Packet delay vs. Load 

The same observations made for the previous two cases are valid here. For smaller loads, 

the Packet delay is small and bounded. And for higher loads drastic increases are 

noticeable. 

(c) Message throughput vs. Load 

For Local and Non-Local traffic, the message throughput for HIGH priority 

unacknowledged transmissions starts to reduce at a normalized load of 1.5 (Fig. A.15 & 

Fitt. A.16). The corresponding value for acknowledged transmissions is slightly less than 

1.5. This is in agreement with the rapid increase in Message delay observed in section (a). 

4.4 Comparison of Channel throughput With and Without IACK 

In Fig.4.7, Channel throughputs for the three packet lengths, with and without 

acknowledgment, are presented. In all three cases, the unacknowledged channel 

throughput is greater than the acknowledged channel throughput. Since the channel 

throughput is a function of the channel occupation time, the extra time taken for IACK 

transmission reduces the throughput. Also the IACK frames do not count as information 

packets. 
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Fig. 4.7 Comparison of Channel throughput vs. Normalized offered load 
for packet lengths of 100,300, and 600 bits 



CHAPTER 5 

CONCLUSIONS 

In this study, a CEBus model comprising of two different media interconnected via a 

router is simulated. Since both the PL and TP media operate at the same data rate, with 

symmetric traffic across the router, and symmetric traffic on the same channel, only one 

side is considered, arbitrarily, for the purpose of data evaluation. It could be either the Ph 

or TP medium. If asymmetric traffic patterns were used on PL and TP, then the results of 

the simulation would not be similar on either side of the router, and two separate studies 

would have to be conducted for TP and PL. 

Performance measures for the network, with and without acknowledgment, have 

been considered for different packet lengths. It was found that the IACK creates the 

biggest difference for smaller packets, as far as delay and throughput are concerned. 

For loads below 50% of channel capacity, Message delays and Packet delays were 

bounded to an acceptable value. This trend was observed for both acknowledged and 

unacknowledged transmissions for all three priority classes, and also all three packet 

lengths. Furthermore, message throughput is I in this region. Therefore, packets can be 

transmitted and received with a high degree of success . Specially, the use of an 

acknowledgment mechanism does not effect the overall performance to a great extent. 

Thus, a more reliable service is guaranteed when an JACK is used. 

As load increases, the ability of lower priority packets to access the channel is 

reduced. Under heavy load conditions, only the HIGH priority packets may have a chance, 

but still after an extensive delay in the queue. 

The channel throughput was observed to be highest for 600 bit packets while it 

was lowest for 100 bit packets. The maximum channel throughput for 600 bit packet is 

0.888 for unacknowledged, and 0.775 for acknowledged transmissions. Similarly, the 
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maximum channel throughput for 300 bit packet is 0.8 for unacknowledged, and 0.7 for 

acknowledged traffic. The corresponding values for the 100 bit packet is 0.575 and 0.51. 

for the unacknowledged and acknowledged cases, respectively. The throughput increase 

for increased message size, was already known for unacknowledged transmissions[12,20]. 

According to the results, it is also valid for acknowledged transmissions. 

The fact that the introduction of an LACK decreases the throughput slightly, but 

increases the reliability, promises to be a valuable fact to consider in the design of CEBus 

for home automation. Since CEBus provides distributed control, a command may be given 

in one room, but not obeyed in another room. Let's assume that you want to turn off a 

light in the bedroom, from the living room, and the destination node is beyond the field of 

vision of the controller. Then he has no guarantee that his command was received at the 

destination. But with the use of an IACK, successful arrival at the destination is 

guaranteed. If no 1ACK is received, then a retransmission could be attempted. 

Since a home may be wired using several different media, for example PL, TP and 

Coax. the behavior of an acknowledgment mechanism across a router becomes an issue to 

be investigated. These simulations prove that for nominal loads, up to 50% of channel 

capacity, the acknowledged network functions well in terms of delays and message 

throughputs. For higher loads, the acknowledged network provides a more reliable service 

but at the expense of increased delays and reduced throughputs. 



APPENDIX A 

SIMULATION RESULTS FOR 100 AND 600 BIT PACKETS 

In accordance with the thesis format, most of the figures from the simulations are 

included in Appendix A. Namely, figures illustrating different performance measures for 

600 bit and 100 bit packets have been included. 
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Fig. A.1 Message delay vs. Normalized offered load for 600 bit Local 
packets, with and w/o IACK 
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Fig. A.1 Message delay vs. Normalized offered load for 600 bit Non-Local 
packets, with and w/o IACK 
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Fig. A.3 Message and Packet delay vs. Normalized offered load 
for 600 bit Local packets, without JACK 
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Fig. A.4 Message and Packet delay vs. Normalized offered load 
for 600 bit Local packets, with IACK 
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Fig. A.5 Message and Packet delay vs. Normalized offered load 
for 600 bit Non-Local packets, without LACK 
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Fig. A.6 Message and Packet delay vs. Normalized offered load 
for 600 bit Non-Local packets, with IACK 
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Fig. A.7 Message throughput vs. Normalized offered load 
for 600 bit Local packets, with and w/o IACK 
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Fig. A.8 Message throughput vs. Normalized offered load 
for 600 bit Non-Local packets, with and w/o IACK 
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Fig. A.9 Message delay vs. Normalized offered load for 100 bit Local 
packets, with and w/o IACK 
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Fig. A.10 Message delay vs. Normalized offered load for 100 bit Non-Local 
packets, with and w/o IACK 
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Fig. A.11 Message and Packet delay vs. Normalized offered load 
for 100 bit Local packets, without IACK 
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Fig. A.12 Message and Packet delay vs. Normalized offered load 
for 100 bit Local packets, with IACK 
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Fig. A.13 Message and Packet delay vs. Normalized offered load 
for 100 bit Non-Local packets, without IACK 
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Fig. A.14 Message and Packet delay vs. Normalized offered load 
for 100 bit Non-Local packets, with IACK 
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Fig. A.15 Message throughput vs. Normalized offered load 
for 100 bit Local packets, with and w/o IACK 
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Fig. A.16 Message throughput vs. Normalized offered load 
for 100 bit Non-Local packets, with and w/o IACK 
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