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ABSTRACT

MODELING DEWETTING, DEMIXING, AND THERMAL EFFECTS
IN NANOSCALE METAL FILMS

by
Ryan Howard Allaire

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest.

The process by which thin liquids evolve is far from trivial and can lead to dewetting

and drop formation. Understanding this process involves not only resolving the fluid

mechanical aspects of the problem, but also requires the coupling of other physical

processes, including liquid-solid interactions, thermal transport, and dependence of

material parameters on temperature and material composition. The focus of this

dissertation is on the mathematical modeling and simulation of nanoscale liquid

metal films, which are deposited on thermally conductive substrates, liquefied by laser

heating, and subsequently dewet into nanoparticles, before cooling and resolidifying.

Both single- and multi-metal configurations are considered.

In the former case, continuum theory is used to describe the thermohydrody-

namics. Separation of length scales (in-plane length scales are larger than those in the

out-of-plane direction) allows for formulation of asymptotic theory that reduces the

fluid dynamics problem, involving Navier-Stokes equations in evolving domains, to a

fourth order nonlinear partial differential equation for the fluid thickness. Similarly, a

leading order thermal model is developed that is novel, computationally efficient, and

accurate. The resulting coupled fluid dynamics and thermal transport model is then

used to simulate metal film evolution in both two and three dimensional domains,

and to investigate the role of various material parameters. Thermal effects are found

to play an important role; in particular it is found that the inclusion of temperature

dependence in the metal viscosity modifies the time scale of the evolution significantly.

On the other hand, in the considered setup the Marangoni (thermocapillary) effect



turns out to be insignificant. The rate of heat lost in the substrate, measured by a Biot

number (Bi) is found to influence peak metal film temperatures and liquid lifetimes

(time from film melting to resolidification) more strongly than substrate thickness

(Hs). Nevertheless, changes in both Bi and Hs can lead to films that freeze in place

prior to full dewetting due to the strong dependence of viscosity on temperature.

In the case of multi-metal configurations, molecular dynamics simulations are

used to investigate the competition between chemical instabilities and Rayleigh-

Plateau type dewetting behavior in NiAg alloys of various geometries. Phase

separation occurs for decreasing temperatures and results in Ag@Ni core-shell

particles. During the breakup, phase separation and the Rayleigh-Plateau instability

either compete or cooperate depending on the relative positioning of Ag and Ni.

When the phase separation length scale is sufficiently large, axial migration of Ag

onto Ni can result in both Ag@Ni core-shell and pure Ag nanoparticles. Chemical

instabilities, therefore, can strongly affect the dewetting mechanism.
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CHAPTER 1

INTRODUCTION

1.1 Motivation from Nanoscale Metallic Films

Metal films on the nanoscale are relevant for a number of applications. Recently,

there has been great interest in using pulsed laser-induced dewetting (PLiD) to turn

these thin metallic films into ensembles of nanoparticles. During PLiD, the nanoscale

liquid metals and other patterned nanostructures are irradiated by a nanosecond

laser pulse, break up (dewet) into nanoparticles, and subsequently freeze in place on

underlying substrates. These arrangements of metallic nanoparticles have a number

of applications due to the optical and magnetic properties [18,77,111], and have been

used, for example, as a catalyst for the growth of nanowires [25, 54, 72, 114, 145],

to enhance solar cell devices by trapping light [8], and as waveguides to transport

electromagnetic energy [88]. Numerous other examples ranging from advanced sensing

to photonics leverage metallic nanoparticles [9, 38, 87, 94, 130]. The initial deposited

films could either be made out of a single metal, or multiple metals. The motivation

for considering multiple metals is that, when molten, the film may destabilize, leading

to particles with a specific composition, which may inherit properties from each of the

constituent metals. Harnessing these effects to direct the assembly of nanostructures

is a grand challenge in materials synthesis [6, 36,70].

The dynamics of thin liquid films has been a topic of interest for a number

of years, with a range of applications such as paint drying and tear films, as well

as many others (see [27] for a review). Understanding the thin film dynamics

becomes increasingly difficult in the context of liquid metals deposited on thermally

conductive substrates because, in addition to the fluid dynamics, one must account

for thermal effects, including the external heating, dependence of material properties
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on temperature, heat losses, and phase changes. One must also account for the

heat flow within the substrate as well as the interaction between the liquid and the

substrate. Numerous models have been developed to address these complications

using continuum theory, which in general describes both the thermodynamics and

fluid dynamics in terms of partial differential equations (PDEs), derived from first

principles. Since the films are typically thin relative to their width (small aspect

ratio) long-wave theory (LWT) can be used to simplify the fluid dynamics problem

into a 4th order PDE for film thickness.

A number of authors have used the LWT approach and have developed models

that include a number of the thermal effects listed above [7,33,118,119,124,127,135].

Notably, many models assume that heat is lost primarily at the surface of the film

rather than through the metal-substrate interface [7,102,119], which alters the model

significantly compared with those that neglect such free-surface heat loss. Others

consider heat loss through the substrate to be the primary cooling mechanism, but

use a simplified thermal model, which omits in-plane diffusion [33,124,135]. The best

model depends on the situation of interest, and on which effects are determined to

be dominate or be negligible.

Due to the short length scales, an alternate approach to LWT is to use Molecular

Dynamics (MD) simulations. These simulations use inter-atomic potentials, which

are well-documented for metals, to describe the forces that one metallic particle has

on another. A number of authors have taken this approach to model dewetting

in liquid metals. Previous work by Nguyen et al. [97] presents MD simulations of

liquid metal rings and shows that the behavior is consistent with LWT. The work by

Fowlkes et al. [40], for example, shows simulations of liquid filaments deposited on

graphite substrates. There, the filaments were exposed to instabilities on the surface

and dispersion relations were obtained via Fourier analysis. MD simulations have

also been used to extract various information, such as diffusion coefficients [20] and
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wettability [48], which may be useful to those that use continuum modeling. MD

simulations are computationally expensive, however: experimental size geometries

may contain millions of atoms; and furthermore, in order to generate data, averages

must be taken over many simulations. Nonetheless, with appropriate resources, MD

can potentially provide some important details that continuum theory cannot.

The approach that we take here in this dissertation is twofold. We focus first on

single metal configurations using continuum theory. In particular, we utilize LWT to

derive an asymptotically consistent thermal model, and investigate various thermal

effects on the evolution of the liquid metal films. The second component of the thesis

deals with multi-metal configurations. In particular, we consider the NiAg alloy,

which is immiscible at sufficiently low temperatures. For this topic, we focus on the

competition between chemical instabilities that occur due to phase separation and

the classical Rayleigh-Plateau (RP) instability that arises due to surface tension in

free-standing liquid jets. This work on alloys was done in part at Oak Ridge National

Laboratory, initiated by a Summer internship funded by the Department of Energy

(DOE) Office of Science Graduate Student Research Program (SCGSR), which is

administered by the Oak Ridge Institute for Science and Education, for the DOE,

under contract number DE-SC0014664.

1.2 Overview and Structure

The rest of the dissertation is organized as follows. In Chapter 2, we focus on films

deposited on thin substrates. In Section 2.3, we formulate a general mathematical

model by introducing appropriate scales, the corresponding dimensionless system,

and relevant dimensionless parameter groups. We present three different models

of heat conduction: a full diffusion model (F), a 1D diffusion model (1D), and an

asymptotic model (A); and we summarize the derivation of the thin film evolution

equation (the fluid mechanical model used throughout our continuum modeling work
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for the single-metal configurations), accomplished using LWT and accounting for the

possibility of temperature dependence of material parameters. Section 2.4 contains

our main results. In Section 2.4.1, we perform linear stability analysis (LSA) on the

film evolution equation to understand the circumstances under which disturbances

to the liquid film lead to instabilities, and to predict the manner of film breakup.

In Section 2.4.2, we summarize the conditions under which our simulations are

carried out, and in Section 2.4.3, we display results comparing the three models

for heat conduction. In Section 2.4.4, we restrict attention to the asymptotic

model for heat conduction and study how temperature dependence of both viscosity

and surface tension influence the results. We find that temperature dependence

of the viscosity has the most significant effect on the instability development,

while temperature-induced variation of surface tension plays only a minor role.

Furthermore, in the physically-relevant regime, allowing viscosity to vary with

temperature produces films that dewet fully in the liquid phase, while if viscosity

is fixed at its melting temperature value the dewetting occurs much closer to the

solidification time, which may result in only partial drop formation. We conclude in

Section 2.5 with a brief summary and discussion. The material presented in Chapter 2

is published in the Journal of Fluid Mechanics [3].

In Chapter 3, we focus on films deposited on thick substrates and investigate

the role that the substrate has on the heating and evolution of the film, in both two

and three spatial dimensions. In Section 3.3, we extend the thermal model developed

in Chapter 2 to include substrates that are thick and whose thermal conductivity may

vary with temperature. The main results for this chapter are given in Section 3.4.

In Section 3.4.2, we investigate the role of substrate thickness, substrate heat loss,

and nonlinear thermal conductivity effects in the heating of non-deformable flat films.

Section 3.4.3 then considers the evolution of 2D films and the dependence on substrate

thickness and heat loss. 3D evolving films are studied in Section 3.4.4 and conclusions

4



are drawn in Section 3.5. The material presented in Chapter 3 is being prepared for

publication and the 3D numerical codes therein can be found online at Github [2].

In Chapter 4, we turn our focus to Ni0.5Ag0.5 alloys and use molecular dynamics

simulations to investigate the demixing process. We give a brief introduction in

Section 4.2. In Section 4.3, we outline the methodology used for the discrete molecular

dynamics simulations. Results are then presented in Section 4.4. Phase-separated

bulk and droplets (exposed to vacuum) are presented and analyzed in Sections 4.4.1

and 4.4.2, respectively. The droplets are then placed on graphite substrates and the

role of wettability is explained in Section 4.4.3. Conclusions are drawn in Section 4.5.

The work presented in Chapter 4 is based on a paper, which is published in the

journal Nanomaterials [4].

In Chapter 5, we examine the competition between demixing and dewetting

with Ni0.5Ag0.5 alloys and the classical Rayleigh-Plateau instability. We begin with a

brief introduction in Section 5.2. In Section 5.3, we present the methodology used for

constructing metallic bulk and templated nanostructures. Rayleigh-Plateau theory

is applied to the templated nanostructures and used to make predictions about the

dewetting procedure in Section 5.4. Section 5.5 contains results that show the process

by which these alloys evolve into droplets and how the procedure is affected by

phase separation. In Section 5.6, we conclude by outlining the importance of phase

separation on the dewetting process. The work of Chapter 5 is based on a paper,

which is published in the Journal of Physical Chemistry, C [5].

In Chapter 6, we revisit the initial goals of the dissertation and explain the

overarching conclusions that may be drawn. We then discuss possible future directions

of research for which the results presented in this thesis could provide a basis.
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CHAPTER 2

ON EFFICIENT ASYMPTOTIC MODELLING OF THIN FILMS ON
THERMALLY CONDUCTIVE SUBSTRATES

2.1 Overview

We consider a free surface thin film placed on a thermally conductive substrate and

exposed to an external heat source in a setup where the heat absorption depends

on the local film thickness. Our focus is on modeling film evolution while the film is

molten. The evolution of the film modifies local heat flow, which in turn may influence

the film surface evolution through thermal variation of the film’s material properties.

Thermal conductivity of the substrate plays an important role in determining the

heat flow and the temperature field in the evolving film and in the substrate itself. In

order to reach a tractable formulation, we use asymptotic analysis to develop a novel

thermal model that is accurate, computationally efficient, and that accounts for the

heat flow in both the in-plane and out-of plane directions. We apply this model to

metal films of nanoscale thickness exposed to heating and melting by laser pulses, a

setup commonly used for self and directed assembly of various metal geometries via

dewetting while the films are in the liquid phase. We find that thermal effects play

an important role, and in particular that the inclusion of temperature dependence in

the metal viscosity modifies the time scale of the evolution significantly. On the other

hand, in the considered setup the Marangoni (thermocapillary) effect turns out to be

insignificant.

2.2 Introduction

The dynamics of thin liquid films is a topic of extensive interest with a number of

applications ranging from biomedical [24, 83] to electronic coatings and nanotech-

nology [147]. The inclusion of thermal effects in thin film dynamics, relevant for
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many applications, is a mathematically challenging problem. To develop a realistic

model one must consider multiple factors, such as the heat supply mechanism(s),

possible dependence of material parameters on temperature, heat loss mechanisms,

and phase changes. When the liquid of interest is placed upon a thermally conductive

substrate, one must also account for the heat flow within the substrate as well as

the interaction between the liquid and the substrate. Numerous models have been

developed to address these complications using continuum theory, which in general

describes both the thermodynamics and fluid dynamics in terms of partial differential

equations (PDEs), derived from first principles. In situations where there is a small

aspect ratio (ratio of typical film thickness to typical lateral length scale of interest),

long-wave theory (LWT) may be used, which effectively enables the fluid dynamics

problem to be reduced to a 4th order PDE for film thickness. LWT has already proved

very valuable in a variety of settings such as liquid crystals, paint coatings, tear-films,

nanotechnology and many others (see [27] for a comprehensive review). Due to the

variety of length and time scales present, the applicability of LWT to the problem of

heat conduction in a thin liquid film is not always clear-cut. Of the issues outlined

above, we highlight the following in this work: (i) the influence of temperature on

film evolution; (ii) heating/cooling mechanisms; and (iii) the application of LWT to

heat conduction.

Various thermal effects that may influence the evolution of the film thickness

have been considered in prior work. For an isothermal nanoscale film the primary

dewetting mechanism is liquid-solid interaction, often modeled by a disjoining

pressure (see [66] for an extended review). For non-isothermal films, gradients in

temperature may give rise to surface tension gradients (thermocapillary or Marangoni

effects), which develop when heating from below [123] and can destabilize the film.

The work of Shklyaev et al. [126] finds novel stability thresholds between monotonic

and oscillatory instabilities (in both cases, in the linear regime the instability grows
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as eωt with <(ω) > 0, but =(ω) is zero in the former case and nonzero in the latter)

that also account for heat losses from the free surface of the film (referred to here

as radiative heat losses). In that work, the film is heated from below via a constant

heat flux from a substrate of much lower thermal conductivity. Batson et al. [10]

perform a stability analysis similar to that in [126], but model the substrate explicitly

rather than as a simple boundary condition. They solve a full heat equation for the

substrate temperature, and find that oscillatory instabilities arise primarily due to

thermal coupling between the film and the substrate. A number of other works have

considered the coupling between the evolution of film and substrate temperatures.

Saeki et al. [118], for example, consider a film/substrate system heated by a laser

and find that the rate of change of film reflectivity R with thickness h, dR/dh, may

promote either stability or instability of the film depending on the sign of dR/dh. The

magnitude of the incident laser energy was earlier shown to influence film thickness

evolution by Oron [101], who showed in particular that increasing the laser energy

can partially inhibit film instability.

Another important effect that may influence film evolution is the dependence

of material parameters, such as density, thermal conductivity, surface tension, heat

capacity and viscosity, on temperature. These relationships are often assumed to

be linear, although a strongly nonlinear Arrhenius-type dependence of viscosity on

temperature may exist. Oron et al. [103] formulated a thin film model in which

viscosity variation is included, and in the later work of Seric et al. [124], it was found

that film evolution is strongly affected by the inclusion of temperature-dependent

viscosity. If temperature variations are sufficiently large, the film may undergo a

phase change (liquefaction or solidification). This has been considered using a variety

of approaches; for example, Trice et al. [135] use a latent heat model to describe such

phase change whereas others, such as Seric et al. [124], assume phase change to be

instantaneous.
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Modelling of heat losses in a liquid film often focuses on the boundary effects,

since viscous dissipation can usually be ignored. Radiative heat losses from the

liquid to the surrounding medium are typically modelled by a Robin type boundary

condition [7,101,118,119,126] whereas the heat loss/gain from the film to the substrate

has been modelled variously by (i) a constant temperature [101,104,118], (ii) constant

flux [7, 126], or (iii) continuity of temperatures and fluxes, known as perfect thermal

contact [33,118,124,135]. The choice of boundary conditions plays an important role

when formulating and solving equations to describe the heat flow.

In many cases an asymptotic approach may be adopted, giving rise to simplified

leading order temperature equation(s). The work of Saeki et al. [118], for example,

includes both radiative heat losses and heat transfer at the liquid-solid interface,

and gives rise to a depth-averaged (z-direction) equation for film temperature, which

retains parametric z-dependence even when radiative heat losses are ignored. In later

work, Saeki et al. [119] developed similar leading order equations for film temperature

when the film is optically transparent. In this case, the film temperature dependence

on z is slaved to the inclusion of radiative heat losses. Trice et al. [135], on the other

hand, conclude that using a z-independent film temperature model is sufficient when

radiative heat losses can be neglected and film-to-substrate heat losses are dominant

(e.g., when there is a high thermal conductivity ratio between the film and substrate).

These previous works demonstrate that boundary conditions play an integral role in

the asymptotic formulation of a model and may facilitate simple models that eliminate

z-dependence (e.g., [126]).

Due to the small aspect ratio of the film, a commonly used “reduced” model for

heat conduction is one that neglects in-plane diffusion altogether [33, 124, 135]. This

model, which we refer to here as (1D), is much simpler than a model that includes

full heat diffusion and is typically justified by arguing that in-plane diffusion occurs

on a much longer time scale than that of out-of-plane diffusion. Alternative simplified
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Figure B.5 Longitudinal slices of resultant nanoparticles at the final frames v) for
(a) Figure 5.4 Ag trough, small amplitude (left), (b) Figure 5.4 Ag trough, large
amplitude (right), (c) Figure 5.4 Ni trough, small amplitude (left), (d) Figure 5.4 Ni
trough, large amplitude (right), (e) Figure 5.4 mixed trough, small amplitude (left),
and (f) Figure 5.4 mixed trough, large amplitude (right). In (a) satellite droplets of
nearly pure Ag are present.

Figure B.6 Longitudinal slices of resultant nanoparticles at the final frames v) for
(a) Figure 5.5 A=3.2 �A (b) Figure 5.5 A=5 �A, and (c) Figure 5.5 A=6 �A. In (a) and
(b) satellite droplets of pure Ag are present.
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B.7 Pure Ni and Ag simulations and Radial Distribution Functions

Figure B.7 Time evolution of straight lines of Ni (a) and Ag (b) at 1400 K. Time
labels (in ps) are placed next to the corresponding lines. The significance of times
i)-v) is similar to Figure 5.3.

Figure B.8 Radial distribution function (rdf), g(r), for the 1400 K cylinder
(black, solid) and bulk (orange, dashed) NiAg structures from ii) of Figure 5.3c and
Figure 5.1b, respectively. Note the rdfs were computed with OVITO [129] and then
normalized based on the number of atoms; as expected the cylinders have lower
amplitude peaks consistent with some surface melting relative to the bulk structure.
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APPENDIX C

SUPPLEMENTARY MATERIALS

Supplementary material related to this dissertation can be found online at https://

drive.google.com/drive/folders/1zrf7h0fdBuw2sTNKqJVPn02BxK8o281E?usp=shar

ing, available as of May 2021.
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