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ABSTRACT 

Coordination of 
Time-Overcurrent Relays for 

High-Speed Power Line Protection 

by 
Nicos Charalambous 

A properly coordinated protection system is essential to ensure that an electricity 

distribution network can operate within its requirements, regarding the safety of a power 

system. Automatic operation is necessary to isolate faults on a power system in a 

minimum time. The study of time coordination of relays suggests improved ways of power 

line protection. The protection must be sensitive enough to operate when a fault occurs 

under minimum fault conditions, yet be stable enough not to operate when its associated 

equipment is carrying the maximum rated current, which may be a short-time value. A 

power system is used as an example of time coordination of distance relays that are 

responsible for clearing any possible faults. The communication of the protection relays is 

associated with the backup protection which is responsible for covering the failure of the 

main protection system. In addition, the reliability of the power system is improved by 

establishing the right relay communication and settings. 
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CHAPTER ONE 

INTRODUCTION TO PROTECTION OF POWER LINES 

Modern power systems have created needs that led to the expansion of the protection area 

which is one of the most important fields in Power Engineering. In the protection area, 

line protection has become complicated. In this study, 1 will examine the coordination of 

time-overcurrent relays for phase and ground faults in order to help coordinate the 

operation of the primary and the backup protection systems. Cyprus Power System will be 

used for examination and study. Cyprus has a relatively small power system, however, the 

transmission voltage level reaches up to 132 kV. In addition, there is going to be a study 

for better "relay communication", using new techniques, in order to minimize the number 

of failures of the circuit breakers. In other words, the reliability of the power system will 

also be emphasized. The main aim is to maximize the instantaneous coverage of line 

sections independent of system and fault-level variations and ensure high-speed line 

protection. 

1.1 Line classification 

Since we have various voltage levels in a power system, we have to classify the lines 

which connect all parts and equipment in the power system. A basic power system is 

associated with the following three words: Generation, transmission and distribution. 

Generation is made in low voltage levels and then the voltage is stepped up for 

transmission. The final step, the distribution is made after stepping down the voltage in the 



substations. According to the IEEE Power Engineering Society and Industrial Application 

Society, there are the following voltage categories: 

(I) 34.5kV and below 	Industrial-distribution 

(II) 34.5 to 138 kV Sub-transmission 

(III) II5 kV and up Transmission 

The last class is usually divided into three other classes: 

(I) 115 kV to 230 kV 	high voltage (HV) 

(II) 345 kV to 765 kV 	extra high voltage (EHV) 

(III) 1000 kV and above 	ultra high voltage (UHV) 

1.2 Radial and loop 

In addition, the transmission lines are also classified into two other categories: Radial lines 

or feeders and loop type lines. Feeders or radial lines supply power usually to 

nonsynchronous loads. In this case, the fault is supplied from the source, without any 

other fault current from all other terminals. On the other hand, loop circuits are those 

where for line faults, fault current is supplied from all terminals. 

1.3 Protecting zones 

In a power system, it is wise to separate the system into zones. As a result, we can assign 

separate protection schemes of the whole power system for easier coordination. Figure 

1.1 shows a classic example of zones of protection. 
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Figure 1.1 Zones of protection are shown by the dashed lines. 

The boundary of each zone defines a portion of the power system such that for a 

fault anywhere within that zone, the protection system responsible for that zone takes 

action to isolate everything within that zone from the rest of the system. We notice that in 

each zone there are two circuit breakers and one or more power system components such 

as generators and transformers (not shown). In addition, the zones should always overlap. 

This overlap is necessary in order to cover the entire power system in terms of protection. 

1.4 Protection coordination 

The line protection is extending into adjacent lines and equipment such as, buses, 

transformers, motors. etc. Likewise, equipment protection overlaps into the lines. As a 

result the settings must be appropriate in order to ensure that the protection does not 

operate for faults in this overlapping area until the primary relays assigned to that area 

have had the opportunity to clear the fault. The process of setting is called coordination or 

selectivity. Phase and ground fault relays must coordinated. The phase relays are set 

according to the three-phase fault data and maximum short time load or transient inrush. 
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The ground relays are set according to the single phase to ground fault data and the 

maximum zero sequence load unbalance. In addition, fuses are involved in the 

coordination process, since they provide phase and ground fault protection. However, 

they receive only the line currents and the ground relays operate on 3I0  currents. In 

general, fuses are applied to radial systems where the line current is equal to 3I0  

Nevertheless, fuses cannot be applied to loop systems where the faulted phase current is 

not equal to 3I0  . Eventually, the coordination of relays and fuses becomes more 

complicated where the ground relays are set more sensitively. If we have ground relays 

being coordinated without the fuses, then we are dealing with a normal situation. If we 

include the fuses in the coordination process, then we require to raise the ground relay 

setting to that essentially equivalent to the phase relays. 

1.5 Primary and backup 

As I said before, our aim is to set the protection to operate as fast as possible for faults in 

the primary zone, yet delay enough for faults in the backup area. All power systems 

contain many subsystems and each subsystem and component is responsible for the 

removal of a fault. The primary protection systems are considered the systems that are 

primarily responsible for the removal of the fault as soon as possible while the losses are 

kept at minimum. However, sometimes the system's primary protection components fail to 

operate, and we have the so called backup protection which is responsible to cover the 

primary system's failure and clear the fault. The following example will illustrate the 

operation of the backup protection. 
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Figure 1.2 Basic backup protection system. 

In figure I.2 we have a basic protection scheme where backup protection is involved. 

Assume we have a fault at point Flt. Circuit breakers C and D must open in order to 

protect line 2-3. This is the primary protection system. Suppose the primary protection 

system at bus 2 has failed to operate. This failure must be recognized from the rest of the 

protection system in order to clear the fault at point Flt. The circuit breakers A, E and H 

must be tripped and the protection systems at buses 1, 4 and 6 must provide a backup 

protection for the primary protection system at bus 2 for line 2-3. In addition, the backup 

protection is a primary protection for line sections 1-2, 4-2 and 6-2. The operation of a 

remote backup system removes a far greater portion of the power system from service 

than does the operation of the primary protection system. The service to any loads that 

may be connected at buses 1, 4, and 6 may be affected, and there will be no service to 

bus 2. Moreover, the backup system must allow a sufficient time for the primary 

protection system to function normally. The backup system is made slower-acting by 

inserting a delay between the maximum time for fault clearing by the primary system, 

and the fastest possible response of the backup system. The inserted delay is called 
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coordination time delay. Moreover, this is the time solution to the protection problem. In 

addition to the time solution, there is the so called communication solution. 

Figure 1.3 Communication is established between the distance relays, when an internal or external fault 
is occurred. 

In figure 1.3 we have a communication example of the distance relays. In case of 

an internal fault (Flt-1) or an external fault (Flt-2), the relays at bus 1 indicate the 

direction of the power flow or the relative phase angle information whether the fault is 

external or internal. This information is communicated through channel to the relays at 

bus I. Similarly, the relays at bus I communicate with the relays at bus 2. (ctl, ct2, ct3 

and ct4 are current transformers). If the fault is in the primary zone (Flt-1), then both 

relays at 1 and 2 operate together at high speed. The communication process can be done 

through fiber optics cables which is a temporary technology in the communication area. 

The communication solution is part of the pilot relaying, a topic that I will examine in 

the next sections. 
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1.6 Types of relays 

In this section, we are going to examine some of the basic types of relays that are used 

for the protection of the power lines. The distance relay is the main relay that we have to 

consider in our protection applications. The distance relays are mainly used for primary 

and backup protection on transmission and subtransmission lines where there is 

high-speed relaying and the voltage is above 34.5 kV. 

The distance relay has its principle of operation based on the ohmic relays that 

use voltage and current inputs to provide an output signal if there is a fault within a 

certain distance from the relay. The distance is calculated according to a signal that is 

proportional to the voltage-to-current ratio that is the impedance, or according to a signal 

that is proportional to the imaginary component of the voltage-to-current ratio that is the 

reactance, or according to a signal that is proportional to the current-to-voltage ratio that 

is the admittance to the fault. One of the major advantages of the distance relay is that it 

responds to the system's impedance instead of the magnitude of the current. Therefore, 

the distance relay has a fixed distance reach. 

A common type of distance relays is the electromechanical-distance relay that 

utilizes an induction cup in order to achieve operating times of I-I.5 cycles. Another 

type is the static distance relay that utilizes an operating time of 0.25-0.5 cycles. The 

characteristics of the distance relays can be shown in terms of two variables, R and X or 

sometimes in terms of Z and 0. (R is the resistance, X is the reactance, Z is the 

impedance and 0 is the angle by which current lags voltage). R-X diagrams can show the 

relay characteristics and the line impedance, helping us to analyze the protection scheme. 

We have to mention that regions of positive R and X represent impedance in a defined 
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tripping direction and the regions of negative R and X represent the nontripping direction. 

Some figures are shown to understand the essence of the R-X diagrams. 

Let's examine the reactance type distance relay. These relays measure the reactive 

component of the system complex impedance. Figure 1.4 shows us the generic reactance 

relay characteristic which appears on the R-X diagram as a straight line parallel to the 

R-axis. 

Figure 1.4 R-X diagram for the generic reactance relay. 

Operation of the generic reactance relay occurs when the reactance from the relay to the 

point of fault, X2, is less than or equal to the reactance X1. The relay responds to any 

reactance in the negative direction and it is also nondirectional. 

The most important relays for line protection, are the time-overcurrent and 

instantaneous overcurrent relays. These are the most commonly used relays and they are 

used as primary and backup protective devices. The time-overcurrent relay is selected to 

give a desired time delay tripping characteristic versus applied current, whereas 

instantaneous overcurrent relays are selected to provide high speed tripping (0.5-2 cycles). 
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The instantaneous overcurrent relays have been used for a long time in the 

protection scheme. The relay operation is based on the electromagnetic attraction and 

induction cylinder type. In recent years, solid-state overcurrent relays have become 

available and their characteristics are very similar to the electromagnetic relays except that 

solid-state relays provide faster reset times. 

Another type of relays that is also very common in the protection, is the induction 

type time-delay overcurrent relay. This relay has its principal based on alternating current 

watt-hour meters and it provides different time-current characteristics, depending on 

differences in electrical and mechanical design. The basic components of the relay are the 

induction disk which is mounted on a rotating shaft There is the moving contact that is 

fastened to the shaft. An electromagnet is also there in order to provide an operating 

torque to the disk. Basically, in order for the smooth operation of design and settings, the 

relay has two adjustments, the pickup current tap and the time dial. The pickup current is 

calculated by a series of discrete taps that are appointed in several current ranges. The 

time dial setting determines the initial position of the moving contact when the coil current 

is less than the tap setting. The setting controls the time necessary for the relay to close its 

contacts. The relay has an inverse time characteristic. Therefore, the relay operates slowly 

on small values of current above the tap setting. However, as the current increases, the 

time of operation decreases as well. If the current continues to increase, the time delay will 

become a constant value due to saturation of the electromagnet. The following graph, in 

figure 1.5, shows us different time-current curves that can be obtained by modifications of 

electromagnetic design. 
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Figure 1.5 Typical curves for overcurrent relays. 

The pilot-wire relays are also very important for the protection of the power lines. 

There are cases where lines should be capable of carrying maximum emergency load 

currents for any period of time and they should be removable from service quickly. The 

pilot-wire relay is capable of providing the right response to a situation like before. The 

pilot- wire relay is a type of differential relay and it operates on the principle of comparing 
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the conditions at the two ends of the line. The relays are being connected to operate if the 

comparison indicates a fault in the line. All the fault information is transmitted through 

terminals over a pilot-wire circuit. However, since the pilot-wire relay is a differential 

relay, the relaying scheme does not provide protection for faults of adjacent section of 

lines and buses. 

Finally, the distance relays are considered to be the most important protective 

devices for power line protection. As I mentioned before, the distance relays measure 

voltage and current, and the ratio is expressed in terms of impedance. This impedance is 

an electrical measure of the distance along a transmission line from the relay location to a 

fault. The measuring element is instantaneous in action, with time delay provided by a 

timer element so that the delay, after operation of a given measuring element, is constant. 

In a typical transmission line application, three measuring elements are provided. The first 

operates only for faults within the primary protection zone of the line and trips the circuit 

breaker without intentional time delay. The second element operates on faults in one 

adjacent or backup protection zone and initiates a tripping after a short time delay. The 

third element is set to include more remote zone and to trip after a longer time delay. The 

distance relays are more preferred in cases where changes in operating conditions cause 

wide variations in magnitudes of fault current, and where load currents may be large 

enough, in comparison with fault currents. In general, there are three main types of 

distance relays. The first one is the impedance-type which is used in phase-fault relaying 

for moderate length lines. The second type is called mho-type and it is used in phase-fault 

relaying for long lines or where severe synchronizing power surges may occur. Finally the 
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third type is called reactance type and it is used in ground-fault relaying and phase-fault 

relaying on very short lines and lines of such physical design that high values of fault arc 

resistance are expected to occur. In addition, the reactance-type relays are used in systems 

where severe synchronizing power surges are not a factor. 

There is no doubt that the system and equipment protective devices guard the 

power system from the threat of damage caused by overcurrents and transient 

overvoltages that can result in equipment loss and system failure. The coordination of the 

protective devices is one of the most important operation during design of a protection 

scheme. During the next chapter we will see how the coordination of the relays works and 

how we can improve their operation. 



CHAPTER TWO 

PROTECTION COORDINATION 

2.1 Coordination scheme 

In this chapter, I will take a closer examination of the protection coordination and analyze 

the loop line setup since Cyprus power system has a loop form. Like every other 

protection scheme, our aim is to set the protection to operate as fast as possible so that we 

can avoid any damage to our systems. Moreover, the protection should be responsible for 

the backup areas, therefore a proper delay for any faults should be inserted. The first thing 

we need to assume is a minimum fault current which should be able to operate all the 

protective devices. On the other hand, we have to consider the other extreme where we 

have maximum fault current during the peak-load periods. There are some cases where we 

have to take into account the possible margins according to the requirements of the relays' 

operation. Nevertheless, coordination is a process that requires trial and error. For 

instance, lines and feeders are to have the right coordination by plotting the time-current 

characteristics on a log paper and shifting the points until the right requirements are met. 

The loop systems require a more complicated procedure since the current in the relays 

being coordinated will be different for the fault. Therefore in such a case, we use 

coordination charts. The following figures shows an example of line protection.  

Figure 2.1 Sections of protection. 
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Figure 2.2 Delay setup. 

Figure 2.3 Coordination with instantaneous overcurrent and inverse time units. 

Figure 2.1 shows the currents that are necessary for setting the relays at point A and 

circuit breaker 2, in order to protect line section AB. Figure 2.2 shows the coordination 

with instantaneous overcurrent and inverse time units. The "delay", that is shown in the 

figure, is the actual time interval between primary and remote backup protective devices. 

That time interval is a delay that is required for the relays at circuit breaker 2, station A, to 

permit breaker 4 relays at station B to clear the faults in line BC. Typical values for the 

delay are in between 0.2 and 0.5 s for electromechanical units. The clearing time for a fault 

is typically 0.033 to 0.133 s. Figure 2.3 shows the coordination with directional distance 

relays. 
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2.2 Loop system 

In a loop system, the fault currents are coming from all terminals. A line could be a feeder 

type for positive and negative sequence but a loop for zero sequence. The circuit may 

have a power source at one end but be grounded at both ends. In addition, a line could be 

a loop type for positive and negative sequence but a feeder type for zero sequence. Since 

we have a multiple fault current sources, the coordination of the loop system is rather 

complicated. Let's take a look at an example of loop system in order to realize the 

protection concept. Figure 2.4 illustrates a loop system. 

Figure 2.4 Loop system setup. 

In figure 2.4, we have a typical loop system where the settings will be made for the phase 

relays. Setting ground relays for the system is similar using phase-to-ground fault data and 

relay pickup values. The taps should be one half or less of the phase relay taps. 
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The directional time-overcurrent relays are being set for the circuit breakers at 1, 

2, 4, 6, 7, 9, and 8. If we take the relays around the loop clockwise, we have the following 

coordination scheme: Relays at 2 must coordinate with relays at 5 and 7. Relays at 7 must 

coordinate with relays at 8 and I2. Finally, relays at 8 must coordinate with relays at 1,2, 

and 3. If we take the relays counterclockwise, with the following coordination scheme: 

Relays at 4 must coordinate with relays at 9 and I. Relays at 9 must coordinate with relays 

at 5 and 6. Relays at 6 must coordinate with relays at 1,3, and 4. We see that the loops are 

not independent with each other. The setting in both are dependent on the settings of the 

relays on other circuits from the several buses. 

Our purpose is to set the relays around the loop. Therefore, we have to determine 

the settings and operating times for these relays. However, if we assume the settings for 

the relays, we make life a little easier. The phase relay at breaker I, should not exceed 

0.06s. We use typical times and 0.06s is an appropriate value to assume. A pilot relay 

could be used on this short line. The relay at breaker 5, is to have a maximum operating 

time 0.24 s, for fault at F4 . The relay at breaker 10, is to have an operating time 0.18 s, 

for fault F7 . Finally, the relay at breaker 3, is to have an operating time 0.2I s , for fault 

FA. The next step is to try to set each relay to operate in less than 0.2 s for the close in 

fault and at least 0.2 plus the delay time interval for the far-bus fault. The protection of the 

remote busses, requires relay operating time greater than 0.2 s and the setting should be 

that maximum time plus the delay interval. We usually assume the delay interval to be 

equal to 0.3 s. We see that the timing of the whole set-up should be made with a very 

careful way. The time dial setting is the most important setting of the overcurrent relays. 
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We have to select the right relay tap in order to have the right coordination of the relays. 

We get the time dial settings from curves that usually provided by the relay companies. 

Manufacturer's printed time-current curves show the relay operating times for a full range 

of time dial settings and multiples of tap current applied to the relay. Time-overcurrent 

relays are available with many different current ranges and tap settings. The following 

table shows typical tap ranges and settings. 

Table 2.1 Typical Tap Ranges and Settings 

TAP RANGE TAP SETTING 

0.5-2.5 or 0.5-2.0 0.5, 0.6, 0.8, 1.0, 1.2,  1.5, 2.0, 
2.5 

0.5-4.0 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 	1.5, 
2.0, 2.5, 3.0, 4.0 

1.5-6.0 or 2.0-6.0 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 
6.0 

4.0-16.0 or 4.0-12.0 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 
16.0 

1.0-12.0 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 
4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0 

Let's go back to our example in figure 2.4. The coordination process we can draw in one 

diagram, that is figure 2.5. 

Figure 2.5 The coordination process. 
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If we take out the genarators at buses B and C, in order to achieve minimum condition, 

there is no current flow through the breakers 8 and 6 for any far faults. However, this 

changes after the far-bus relays 2 or 4 open and we have line faults from points F2 and F3. 

We have to make sure that the relays can respond to these line faults otherwise they will 

not be possible to be cleared. Our case is what we called a single loop operation. 

However, in real life there are several cases where several separate load areas exist. The 

advantage is that any one line circuit can be removed with service available to all the 

loads. The system in figure 2.4, the relays at breaker 6 do not need to coordinate with the 

relays at 1, 3 and 4 since they do not have current for fault FA. Similarly, relays at 8 do 

not need to coordinate with relays at 1, 3 and 2. The faults at F3 and F4 can be detected 

only after breaker 2 or 4. Load currents into the lines could be zero unless there are other 

line taps. Therefore, we can apply directional instantaneous relays at breakers 6 and 8 and 

we should set them very sensitively and below the line faults. This provides high-speed 

operation for the terminals. 

In reality, we have to give emphasis to the possibilities of various lines that are out 

of service and other possible operating conditions. Therefore, it is wise to set all the relays 

to provide complete backup protection over all the adjacent remote lines. In our example, 

the relays at breaker 2 should be able to provide protection for faults to bus C and at load 

at breaker 5. However, we might not have success to this protection scheme since the 

infeed of fault current by the source at bus B tends to reduce the fault current through 

breaker 2 for faults on line BC and at bus B. 



19 

In addition, there is the case where an instantaneous trip application is necessary 

for a loop system. The fault current could exist between the close-in and far-bus faults and 

instantaneous units should be utilized in order to provide fast protection for faults out on 

the line. For instance, the system in figure 2.4, an instantaneous unit at relays 2 must be set 

to a value which is the maximum far-bus fault current multiplied by a factor greater than 

unity. This gives a sufficient coverage for the line compared to the close-in fault. The 

instantaneous trip units supplement the time-overcurrent protection to provide fast 

operation over part of the line sections. 

However, these units, in some cases offer limited protection for the maximum fault 

condition and none for minimum faults. Therefore, their application becomes marginal 

from a protection point of view. Still, they can provide fast clearing for the heaviest 

close-in faults and for the non-directional type, the total cost increases very little. 

The operating times of the time-over-current relays can be reduced with 

instantaneous units by coordinating at their pickup point rather than at the far bus, 

although, this becomes more difficult where the instantaneous unit reach varies 

considerably from system changes. 

2.3 Phase fault distance protection 

The distance protection for phase fault is applied mostly for lines at 69 kV and above. In 

this case, we are able to have a fixed reach as a function of the protected line impedance, 

something that is advantageous. Moreover, we have the ability to operate for fault 

currents near or less than maximum load current and minimum to no transient overreach. 
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In our protection scheme, first we have to define at least two zones that are necessary for 

primary protection. Both zones have to operate simultaneously, but one zone should be 

delayed by a time delay, the so called CTI, in order to provide coordination. However, it is 

wise to use a third zone in the protection scheme to apply backup protection of the remote 

lines. 

The following method is a common practice in the United States and it utilizes 

separate distance units for the several protection zones. This is in contrast to distance 

relays that use a single distance measuring unit initially set for zone I reach. If we have a 

fault persistence, then we extend the reach by switching to zone 2 after T2 delay, then 

after T3 to zone 3. On one hand, separate units provide the comfort of redundancy since 

for faults in the zone 1 primary reach area, all three distance units will operate. Thus zones 

2 and 3 are backup for failure of the zone 1 unit. On the other hand, the switched types do 

not provide this backup but they are more economical. 

Figure 2.6 Zones and typical settings of distance relays. 

The zones and typical settings are shown in figure 2.6. In this figure we see the zones at 

several locations. Typically, zone 1 is set for 90% of the positive sequence line impedance, 
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zone 2 approximately 50% into the next adjacent line, and zone 3 approximately 25% into 

the adjacent line beyond. Zones 2 and 3 provide backup for all adjacent lines at operating 

times of T2 and T3.  

Figure 2.7 Operating circles of protected zones (R-X diagram). 

In figure 2.7, we have a diagram that shows the operating circles for the three zones at bus 

A, breaker 1 and at bus b, breaker 2, plotted on the R-X diagram. The several lines are 

shown at their respective r+jx positions. The relays operate when the ratio of fault voltage 

to current falls within the circles. Load impedance falls in the areas shown. We have to 

note that the operating circles must be set so as not to operate on any system swings from 

which the system can recover. Such swings occur after a system disturbance, such as 

faults, sudden loss of generation, or load, or from switching operations. 

Zone 1 at each end of the line provides the most desirable protection that is 

simultaneous protection high speed operation for the middle 80% of the line section. This 

can be increased to 100% only with pilot relaying. 



I,3, but the bus A voltage is the drop 

impedance: 

Relay 1 sees the following 
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As far as backup protection is concerned, we have the following typical example 

shown in figure 2.8. 

Figure 2.8 Backup protection example. 

The relays at breaker 1, bus A protecting line AB look into lines BC and BD extending 

from bus B. Let's make the following assumptions: Line BC is short and line BD is long, 

zone 2 set for 50% of line BC will cover only a small percentage of line BD. If we set line 

BD for 50%, it will overreach and will not coordinate with Z2 of line BC unless T2 time is 

increased. However, due to the "infeed effect", the reach will not be as far as indicated. 

Fault current from other lines will cause relays at 1 to under reach. This effect can be seen 

by considering a solid three-phase fault at F. With VF= 0, the relays at 1 receive current 

As a result, if relay 1 is set to a value of the actual impedance of the previous equation, it 

would not see fault F. In other words, relay 1 "under reaches" as a result of the fault 

contributions from other lines connected to bus B. Setting the relays for the apparent 
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impedance value has the danger of overreaching and miscoordination when the infeeds are 

removed or changed by operation. 

2.4 Tapped and multiterminal lines 

The following two figures show illustrate typical distance relay applications for tapped and 

multiterminal lines. 

Figure 2.9 Relay application for tapped lines. 

Figure 2.10 Relay application for multiterminal lines. 
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As we see in figure 2.9, the tap at point B could be a transformer at or near the line, so 

that ZBD  is the impedance from the tap plus the transformer impedance. The tap may serve 

as load, therefore very small amount of current is supplied through it to the line faults, or 

it may tie into a fault source at D. Figure 2.10 shows another illustration of tapped lines. 

In the case of figure 2.9, zone 1 should be set for k times the lowest actual impedance to 

any remote terminal, or for k times the lowest apparent impedance to any remote terminal 

for the case in figure 2.10. k is less than 1, usually 0.9. Zone 2 should be set for a value 

greater than the largest impedance, actual or apparent, to the remote terminals. Moreover, 

the zone timer T2 must be set so as not to cause wrong operation when any terminal is out 

of service to cause the distance unit to overreach. 

However, the previous settings can make primary protection very difficult and 

limited as well. In figure 2.9, let's assume that the tap at point B is very close to point A, 

so nZAC  is small and (1-n)ZAC  is large with ZBD  very small. Then zone 1 at breaker I, bus A 

must be set at 90% of (nZAB+ZBD), which is a very small value compared with (1-n)ZAB. 

Therefore, high-speed coverage of the line is almost negligible. On the other hand, if the 

tap is a load transformer where ZBD  is high relative to ZBC, zone 1 at breakers .1 and 2 can 

be set for 90% of the line to provide good high speed protection. 

If B is a load tap in figure 2.9, with negligible current to line faults, distance relays 

are not applicable at breaker 3, as opening breaker I and 2 terminates the line fault. There 

is trouble detecting the faults, if the impedance to a line fault from bus D is very large and 

approaches infinity. 
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In figure 2.10, current can flow out D terminal for an internal line fault near the C 

bus. Thus distance or directional relays at breaker 3 see the internal fault as external for no 

operation until after breaker 2 has opened. 

Therefore, protection of tapped and multiterminal lines is more complex and 

requires specific data on the line impedances, location and type of tap or terminal, and 

fault data with current distributions for the various system and operating conditions. Most 

often, except for small transformer load taps, these types of lines are protected best by 

pilot relaying. 



CHAPTER THREE 

RELAY COORDINATION OF CYPRUS POWER SYSTEM 

3.1 Circuit examination 

In this chapter, I am going to examine Cyprus power system which is a small power 

system. The system belongs to the loop category which I examined in chapter two. The 

following figure shows the general system layout. 

Figure 3.1 Cyprus power system in a simplified form. 

Figure 3.I shows the reduced form of the power system since we are interested in a 

general view of the protection. First, I am going to determine the time coordination of the 

relays and then give a better solution for the line protection of the above system. The 

system has to be divided into the protection zones that are easier to work with. We take 

each zone separately. The following figure shows the suggested zones of protection. 
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Figure 3.2 Protection zones and loops of Cyprus power system. 

The power system can be divided into three main loops. However, I am examining 

the two major loops ABCDEFA and ABCGHIJA that are discussed separately. The 

transmission line data could be considered as well as the length of each conductor. Table 

3.1 gives us the necessary information. 

Loop ABCDEFA.  

This loop includes four generator buses: Moni 66(A), Moni 13 (F), Dhekelia 66 (C), and 

Dhekelia I32(D). Actually, these are all the generator buses of the whole power system. 

The coordination has to be made according to typical settings for the phase relays. The 

phase-to-ground fault data and relay pickup values are used to set the ground relays for 



28 

Table 3.1 This table shows the length of the conductors and the per unit impedances on 100MVA base. 

Circuit Length 
(miles) 

RI X1 

Athalassa132-District Office 5.5 2.15E-3 5.32E-3 

Athalassa132-Moni132 36.7 2.04E-2 6.67E-3 

Athalassa132-Dhekelia132 28 4.6E-3 3.215E-2 

Athalassa66-Dhekelia66 21 1.521E-1 1.625E-1 

Athalassa66-Nikitas Tee 27.8 6.875E-2  2.298E-1 

Nikitas Tee-Karvounas 21.9 2.62E-1 3.457E-1 

Karvounas-Polemidia 21 3.154E-1 3.386E-1 

Paphos-Episkopi 29 4.603E-I 4.686E-1 

Episkopi-Kolossi 3.9 3.057E-2 3.054E-2  

Kolossi-Polemidia 3.5 2.403E-2 2.72E-2 

Polemidia-Paphos 35.6 7.67E-2 2.623E-1 

Moni66-Polemidia 14.4 3.085E-2 1.068E-1 

Moni66-New Mari 8.5 1.665E-2 6.245E-2 

Moni66-Pyrgos 2 3.17E-2 3.15E-2 

Pyrgos-Moni Cement 1.1 1.73E-2 1.74E-2 

Pyrgos-Dhekelia66 39.1 6.176E-1 6.315E-1 

Dhekelia132-Larnaca 11.4 6.2E-3 2.08E-2 

Dhekelia 132-Protaras 16.8 8.37E-2 3.13E-2 

the system. The directional time-overcurrent relays have to coordinate in both clockwise 

and counterclockwise ways. 

Loop clockwise: 

• Relays at 21 must coordinate with relays at 19 and 19A. 

• Relays at I9 must coordinate with relays at 15 and I6. 

• Relays at I5 must coordinate with relays at 1I and 9. 

• Relays at 9 must coordinate with relays 6 and 8. 

• Relays at 6 must coordinate with relays at 2 and 4. 
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• Relays at 2 must coordinate with relays at 21, 22, and 23. 

Loop counterclockwise:  

• Relays at 1 must coordinate with relays at 3 and 4. 

• Relays at 3 must coordinate with relays at 7 and 8. 

• Relays at 7 must coordinate with relays at I0 and 1I. 

• Relays at 10 must coordinate with relays at 16 and 17. 

• Relays at 17 must coordinate with relays at 20. 

• Relays at 20 must coordinate with relays at I, 22, and 23. 

3.2 Time coordination technique 

We notice that the loop is not independent since there are other loop circuits 

connected to several buses as well as generator buses. However, we are going to assume 

the operating times for relays that are interfaced with the other loop circuits. In the cases 

where we have short lines we should use relays with operating time not more than 0.06 s. 

For instance, the phase relays breakers at 23, 4 and 16 should have pilot relays with a 0.06 

s operating time. The phase relays breaker at 8 has a maximum operating time 0.26 s, the 

phase relays breaker at 11 has a maximum operating time 0.19 s and the phase relays 

breaker at 22 has a maximum operating time 0.22 s. The operating times are assumed 

according to the complexity of the circuits and the length of the conductors that are 

involved. 	In addition, we have to note that buses A, C, D, and F include 

generator-transformer units and they have fast differential protection. 	However, 

differential protection is a different concept and we only assume the distance protection. 
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The relays' setting should be done in such a way so each relay operates in no more than 

0.2 s for the close-in fault and at least 0.2 plus the CTI interval when there is a far bus 

fault. Let's take breaker 21 as a starting point and start to move clockwise. Buses A and 

F are drawn separately in figure 3.3 for convenience reasons. 

Figure 3.3 Coordination for section AF. 

The currents that are shown in figure 3.3, are the tree phase fault currents. The arrows 

indicate the direction of flow and the second arrow has two values. The first value 

represents the maximum operating current and the second value represents the minimum 

operating current. Here, I have to introduce a very useful graph (figure 3.4) that helps the 

calculation of the time dial setting. 

Calculation of the time dial setting- coordination or not 

First we have to choose the suitable CT' s and a relay tap. The CT's could be 250:5 since 

the maximum load is 200 Amps for the specific line section. Therefore, the maximum load 

is 200/50 = 4 Amps (secondary). The best relay tap selection is the value 6 because it is 
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1.5 times the maximum load and gives a primary fault current pickup of 6X50=300 Amps. 

Figure 3.4 Typical inverse-time-overcurrent relay curves. 

Relay 21 should have an operating time of 0.12 s plus the CTI value which is 0.3 s. 

(0.12+0.3=0.42 s) for fault F3. For a maximum fault F3, a current of 1155.4 Amps goes 

through relay 2I. In order to find the multiple of pickup current we divide the maximum 

current by the primary fault current pickup which is 300 Amps. 1155.4/300 = 3.85 . The 

value of 3.85 in figure 3.4, suggests a time dial setting of 1 and provides an operating time 

of 0.68 s. The value of 0.68 s implies coordination since the minimum operating time 

value is 0.42 s. For a minimum fault current at F3, we have: 1132.8  = 3.78 . According 
300 

to figure 3.4 the value 3.78 and a time dial setting of I imply an operating time of 0.75 s. 

In a similar way, we calculate the remainder operating times for relay 2I. For a maximum 

close-in fault F 1, the operating time is 0.16 s (5765. 
300  3 

 = I9.22). The minimum line-end 

fault F2, the operating time is 0.77s (1131.I  = 3.77 ). 
300 



(See what time dial gives MAX FAULT op-time: 

MIN LINE-END FAULT op-time: 

(implies) 0.75 s MIN FAULT op-time: 

MAX CLOSE-IN FAULT op-time: 

0.77s 

0.51s 
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3.3 Coordination outlines of first loop 

3.3.1 Coordination outline of Moni 66 - Moni 132 (section AF) 

MAX LOAD at secondary = 200/50 = 4 A 

Select MTVC = 6 (4XI.5) → Primary Fault Current Pick-up = 6X50=300 A 

Relay 21 op-time2  for fault F3: 

the immediate next op-time value for MTVC=6) 0.68 s. Coordination: YES.  

Figure 3.5 Coordination for section FE. 

Multiple Tap Value Current 
2 	Abbreviation for operating times 
3 	We choose the right Time Dial according the relay's operating time 
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Let's move to the next line section which shown separately in figure 3.5. The FE line 

section is one of the longest of the power system (36.7 miles). 

Calculation time dial setting - coordination or not 

In this case, we note that the current values are higher than the previous line section. In 

addition, as far as the load is concerned in this line section, the load factor is higher as 

well. The minimum load is 400 Amps. Therefore, we use CT's with a ratio of 450:5. The 

secondary load is 400/90=4.44 Amps and it is wise to select a relay tap value of 6 because 

it provides a safer margin than a lower value. It is 1.35 times the maximum load and the 

primary pickup current is 6X90=540 Amps. Relay 2I, from before, operates at 0.75 s for 

a minimum fault F3. Therefore, relay 19 should operate no more than 0.75-0.3 = 0.45 s 

for fault F3. Relay 16 should have an operating time of 0.22+0.3=0.52 s for fault F5. 

Relay I5 operating time is unknown. The following coordination schematic will give us 

the necessary values for the current coordination problem. 

3.3.2 Coordination outline of Moni 132 - Athalassa 132 (section FE) 

MAX LOAD = 400 A 

CT's used: 450:5 

MAX LOAD at secondary = 400/90= 4.44 A 

Select MTVC = 6 (4.44XI.35) Primary Fault Current Pick-up = 6X90=540 A 

Relay 19 op-time for fault F3: 0.75 - 0.3(CTI) = 0.45 s 

Relay 19 op-time for fault F5: 0.5I + 0.3 = 0.81 s. 
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We notice that the maximum close-in fault operating time is less than the operating time 

for relay 16 as far as fault F5 is concerned. Therefore, we do not have coordination. The 

solution is to increase the time dial for relay 21, in order to achieve the right operating 

times. 

The maximum fault operating time for relay 2I, is 0.5 s greater than the operating time for 

relay 21. (Close-in fault). 

The next section is ED which is shown in figure 3.6. The coordination of this 

section is done in a similar way. However, in the actual system we have to consider the 

possibilities with various lines out of service. A complete backup protection is usually 

suggested when real life is involved. In our examples, we assume the basic condition for a 

faulty situation. 

4 	Operating time should not be more than 0.45 s 
5 	Operating time should be at least 0.81 s 
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Figure 3.6 Coordination for section ED. 

3.3.3 Coordination outline of Athalassa 132 - Dhekelia 132 (section ED) 

MAX LOAD = 300 A 

CT's used: 350:5 

MAX LOAD at secondary = 300/70= 4.29 A 

Select MTVC = 6 (4.29XI.40) Primary Fault Current Pick-up = 6X70=420 A 

Relay 15 op-time for fault F3: 0.79 - 0.3(CTI) = 0.49 s 

Relay 15 op-time for fault F5: 0.4± 0.3 = 0.7 s. 

We do not have coordination, since the maximum far-bus operating time is less than the 

required value which should be at least 0.7 s. Therefore, we have to change the time dial 



36 

of relay 19 in order to change the operating times. A time dial setting of 2.5 would have 

the following scheme: 

TDNEW=2.5 (for relay 19) 

MAX CLOSE-IN FAULT op-time: 0.5 s (MTVC=14.78) 

MAX FAULT FAR-BUS op-time: 0.9 s (MTVC=5.52) 

0. 9(MAX FAULT FAR-BUS, RELAY 19) - 0.37 (MAX CLOSE-IN FAULT, RELAY 15) 0. 53 s 

The difference in time satisfies the condition that the relay 15 operating time for fault F3 

should be at least 0.49 s. Relay 19 is 0.53 s above relay I5. Therefore, coordination is 

achieved by setting the time dial to 2.5 for section FE and setting the time dial to 1.5 for 

section ED. The rest of the line sections are outlined as well in the following pages. 
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3.3.4 Coordination outline of Dhekelia 132 - Dhekelia 66 (section DC) 

Figure 3.7 Coordination for section DC. 

MAX LOAD = 200 A 

CT's used: 250:5 

MAX LOAD at secondary = 200/50= 4 A 

Select MTVC = 6 (4X1.5) Primary Fault Current Pick-up = 6X50=300 A 

Relay 9 op-time for fault F7: 0.7 - 0.3(CTI) = 0.4 s 

Relay 9 op-time for fault F9: 0.37+ 0.3 = 0.67 s. 
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3.3.5 Coordination outline of Dhekelia 66 - Pyrgos (section CB) 

Figure 3.8 Coordination for section CB. 

MAX LOAD= 300 A 

CT's used: 350:5 

MAX LOAD at secondary = 300/70= 4.29 A 

Select MTVC = 6 (4.29X1.4) Primary Fault Current Pick-up = 6X70=420 A 

Relay 6 op-time for fault F9: 0.8 - 0.3(CTI) = 0.5 s 

Relay 6 op-time for fault F11: 0.39+ 0.3 = 0.69 s. 
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3.3.6 Coordination outline of Pyrgos - Moni 66 (section BA) 

Figure 3.9 Coordination for section BA. 

MAX LOAD= 350 A 

CT's used: 400:5 

MAX LOAD at secondary = 350/80= 3.38 A 

Select MTVC = 5 (3.38X1.48) Primary Fault Current Pick-up = 5X80=400 A 

Relay 2 op-time for fault F11: 0.92 - 0.3(CTI) = 0.62 s 

Relay 2 op-time for fault F13: 0.49+ 0.3 = 0.79 s. 
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3.4 Coordination outlines of second loop 

Loop ABCGHIJA 

This loop also includes the generator buses which are the same as before. As a result, 

loop ABCDEFA overlaps with loop ABCGHIJA (figure 3.2). Similarly, the coordination 

has to be made according to typical settings for the phase relays. The fault data and relay 

pickup values are used in order set the ground relays for the system. As before, the 

directional time-overcurrent relays have to coordinate in both clockwise and 

counterclockwise ways. 

Loop clockwise:  

• Relays at 22 must coordinate with relays at 31, 33, and 34. 

• Relays at 31 must coordinate with relays at 29. 

• Relays at 29 must coordinate with relays at 27. 

• Relays at 27 must coordinate with relays 25. 

• Relays at 25 must coordinate with relays at 6 and 7. 

• Relays at 6 must coordinate with relays at 2 and 4. 

• Relays at 2 must coordinate with relays at 21, 22, and 23. 

Loop counterclockwise:  

• Relays at 1 must coordinate with relays at 3 and 4. 

• Relays at 3 must coordinate with relays at 7 and 8. 

• Relays at 8 must coordinate with relays at 26. 

• Relays at 26 must coordinate with relays at 28. 

• Relays at 28 must coordinate with relays at 30. 
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• Relays at 30 must coordinate with relays at 32, 33, and 34. 

• Relays at 32 must coordinate with relays at I, 21, and 23. 

The loop is not independent and we have to assume the operating times of the 

relays that are interfaced with the other loop circuits. The operating times are assumed 

according to the complexity of the circuits and the length of the conductors that are 

involved. The relay's setting should be done as before and the relay should operate in no 

more than 0.2 s for the close-in fault and at least 0.2 plus the CTI interval (0.3 s) when 

there is a far bus fault. Starting point is relay 22. The coordination outlines and figures 

are discussed in the following pages. In addition, line sections CB and BA are not 

discussed since they were analyzed in the previous loop. 
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3.5 Coordination outlines of second loop 

3.5.1 Coordination outline of Moni 66 - Polemidia (section AJ) 

Figure 3.10 Coordination for section AJ. 

MAX LOAD = 300 A 

CT's used: 350:5 

MAX LOAD at secondary = 300/70= 4.29 A 

Select MTVC = 6 (4.29XI.40) Primary Fault Current Pick-up = 6X70=420 A 

Relay 22 op-time for fault F1(of previous loop): 0.79 - 0.3(CTI) = 0.49 s 

Relay 22 op-time for fault F1(current loop): 0.4+ 0.3 = 0.7 s. 

We do not have coordination, since the maximum far-bus operating time is less than the 

required value which should be at least 0.7 s. Therefore, we have to change the time dial 
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of relay 2 in order to change the operating times. A time dial setting of 2.5 would have 

the following scheme: 

TDNEW=2.5 (for relay 2) 

MAX CLOSE-IN FAULT op-time: 0.5 s (MTVC=14.78) 

MAX FAULT FAR-BUS op-time: 0.9 s (MTVC=5.52) 

0.9(MAX FAULT FAR-BUS, RELAY 2) - 0 . 37 (MAX CLOSE-IN FAULT, RELAY 22) = 0. 53 s 

The difference in time satisfies the condition that the relay 22 operating time for fault F1I 

should be at least 0.49 s. Relay 2 is 0.53 s above relay 22. Therefore, coordination is 

achieved by setting the time dial to 2.5 for section BA and setting the time dial to 1.5 for 

section AI The rest of the line sections are in the following pages. 



3.5.2 Coordination outline of Polemidia - Karvounas (section JI) 

Figure 3.11 Coordination for seCtion H. 

MAX LOAD = 200 A 

CT's used: 250:5 

MAX LOAD at secondary = 200/50= 4 A 

Select MTVC = 6 (4X1.5) Primary Fault Current Pick-up = 6X50=300 A 

Relay 31 op-time for fault F3: 0.7 - 0.3(CTI) = 0.4 s 

Relay 31 op-time for fault F5: 0.37+ 0.3 = 0.67 s. 
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3.5.3 Coordination outline of Karvounas - Nikitas Tee (section III 

Figure 3.12 Coordination for section IH. 

MAX LOAD = 300 A 

CT's used: 350:5 

MAX LOAD at secondary = 300/70= 4.29 A 

Select MTVC = 6 (4.29X1.4) Primary Fault Current Pick-up = 6X70=420 A 

Relay 29 op-time for fault F5: 0.8 - 0.3(CTI) = 0.5 s 

Relay 29 op-time for fault F7: 0.39+ 0.3 = 0.69 s. 
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3.5.4 Coordination outline of Nikitas Tee - Athalassa 66 (section HG) 

Figure 3.13 Coordination for seCtion HG. 

MAX LOAD = 350 A 

CT's used: 400:5 

MAX LOAD at secondary = 350/80= 3.38 A 

Select MTVC = 5 (3.38X1.48) Primary Fault Current Pick-up = 5X80=400 A 

Relay 27 op-time for fault F7: 0.92 - 0.3(CTI) = 0.62 s 

Relay 27 op-time for fault F9: 0.49+ 0.3 = 0.79 s. 
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3.5.5 Coordination outiline of Athalassa 66 - Dhekelia 66 (section GC) 

Figure 3.14 Coordiantion for section GC. 

MAX LOAD = 400 A 

CT's used: 450:5 

MAX LOAD at secondary = 400/90=4.44 A 

Select MTVC = 6(1.35X4.44) Primary Fault Current Pick-up = 6X90=540 A 

Relay 25 op-time for fault F9: 0.95 - 0.3(CTI) = 0.65 s 

Relay 25 op-time for fault F11: 0.4 + 0.3 = 0.7 s. 



48 

Line sections CB and BA are covered in the first loop. The two loops that were 

analyzed, are the most important loops of the power system. However, the time 

coordination of the relays is not absolutely reliable since there are limitations in the relay 

protection. Therefore, we could have possible failures. The reliabilty concept is discussed 

in the later chapter. In this chapter we saw how adjustments could affect the whole 

coordination of the protection scheme. The relay timing is very sensitive and the time 

calculations have to be made very accurately in order to achive smooth coordination. 



CHAPTER FOUR 

RELAY CONTROL AND IMPROVEMENTS 

The need for a better protection brought advanced technology into the scheme of relay 

protection in order to obtain better system performance and to improve the reliability of 

supplies to customers. In some systems, like Cyprus, electromechanical relays are still in 

use, although in recent years the old systems are replaced by modern solid-state systems. 

Microprocessor-based relays were installed recently and will replace the older types, 

particularly in the more complex protection arrangements like distance protection. 

4.1 Automation of protection network 

The aim of automation is improve the system performance by faster clearance of faults and 

restoration of supplies. Automation of protection can be defined in a various ways. The 

most common in this area, is the use of automatic tap changers and voltage regulators for 

voltage-drop compensation. With conventional distribution network arrangements any 

faulted feeder or line section was traced from the operation of the protection relays, and 

accurate location of the fault was not easy. In this case, the fault indicators are devices 

that help to locate and isolate the faulted section. The fault indicators are very important 

in a power system and their principle of operation is based on indicating the passage of 

fault current. 

The use of microprocessor-based relays is part of sophisticated protection and 

fault-clearing schemes. The microprocessor-based relays are able to measure a number of 

input signals to derive the required operating sequence for the specific fault condition, as 
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well as having built-in self-checking facilities. The use of microprocessor logic-control 

sectionalisers is removing the dependence on staff of the utilities, leading to a quicker 

isolation of faults and restoration of supplies. Telecontrolled disconnectors, distributed 

around the network, are a further extension of automating system operation to reduce 

down time for fault clearance or optimizing network flows to reduce system losses. Using 

suitable computer hardware and programs, network configurations can be automatically 

rearranged on the occurrence of faults to minimize the consequences of further system 

outages. 

The advent of telecommunication channels to individual substations made it 

possible to provide more instruction codes to more equipment, and to receive information 

back on the state of equipment. Thus, a single relatively low-powered transmitter 

operating at a frequency of a few hundred megahertz can provide communication channels 

between local control centers and individual substations, and also between a central 

control point and several local control centers. 

With the two-way facility available, system control and data-acquisition systems, 

known as SCADA, can be set up, where not only can instructions be transmitted to 

specific items of equipment at every telecontrol substation but also many and varied types 

of data can be transmitted to the control center. Circuit-overload and fault data, including 

equipment and protection faults, are instantly transmitted to the control center. The 

necessary action can then be taken in order to isolate faulty equipment or line sections and 

restore the network to a satisfactory configuration. Computer-based SCADA systems 
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make it possible to preprogram various system-control operations to minimize down time 

in the event of a fault. 

4.2 Autoreclosing arrangements 

The automatic recloser was developed by arranging for the source circuit breaker to carry 

out a variable sequence of tripping and closing by suitable relaying. The tripping can 

either by instantaneous, clearing the fault in about 0.2-0.5 s, or be delayed with clearance 

times of tens of seconds. Up to four combinations of instantaneous and delayed tripping 

are usually available, but generally system arrangements are such that only two 

auto-reclosing operations are necessary. Where it is not desirable to install auto-reclosing 

on the source breaker, either because it is not suitable for this duty or because the first 

section of the feeder is underground cable, a high-speed pole-mounted auto-recloser can 

be installed at the beginning of the overhead network. 

The automatic sectionaliser is another important equipment that is very important 

in the coordination scheme. Figure 4.1 shows a simple application of the automatic 

sectionalisers at a section of the Cyprus power system. 

Figure 4.1 Use of autoreclosers and sectionalisers. (R: autoreclosing circuit breaker S1, S2: pole mounting 
automatic sectionalisers). 



52 

Automatic sectionalisers S are provided on a number of spur feeders in order to isolate 

any faulted branch during the dead time of the delayed automatic recloser at the substation 

R. A sectionaliser is not capable of breaking fault current, but may be closed on to a fault. 

It therefore requires a device to count the number of passages of fault current on the 

feeder as the recloser goes through its preset sequence of opening and closing operations. 

After registering a preset number of fault current pulses, the sectionaliser opens within the 

dead time of the recloser, to isolate the faulted section of the line without breaking fault 

current. The whole sequence is shown in figure 4.2. 

Figure 4.2 Time diagram of sectionalisers. (01, 02, 03: circuit breaker opens 
HSR: high speed automatic reclosing 
DR1/DR2: delayed automatiC reclosing) 

The sequence is covering the case of a fault on a spur feeder connected to the main feeder 

by an automatic sectionaliser. For a transient fault, when the recloser restores supplies, 

the sectionaliser sensing devices note that only load current is flowing and return the 

sectionaliser to its normal state. 

Sectionalisers can also be activated by voltage, usually obtained on the source side 

of the unit. Operated in this manner, the device is also suitable for systems where earth 

fault currents are limited. In figure 4.3, we see that if the fault is not cleared following a 

high-speed auto-reclosure on the feeder circuit breaker R, the automatic sectionalisers S I, 

S2, S3 are opened when no voltage is present, as in the sequence of closing and tripping 
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shown in figure 4.4. When the voltage reappears after a delayed reclosure, the 

sectionalisers are closed after the other in sequence, in accordance with their time-delay 

settings. 

Figure 4.3 Voltage-controlled sectionalising arrangement with 20 s time delay setting. 

Figure 4.4 Voltage-controlled sectionalising operating sequence. 

When the sectionaliser immediately upstream of the fault position is closed, in this 

case S2, the circuit breaker at the substation will open if the fault still exists. After a 

further high-speed reclosure all the sectionalisers will be opened again. The sectionaliser 

protecting the fault, S2, is now locked open and all the other sectionalisers are closed in 

sequence to restore supplies now that the faulted section is isolated from the system. 
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For all these sectionaliser operations, the isolated spur is not automatically 

identified at the control center, and this may therefore result in an extended outage time. 

However, the use of fault-passage indicators can assist in locating the faulty section. 

Furthermore, telecontrolled switches can avoid such situations. Such an arrangement is 

also relevant where sectionalisers revert from telecontrolled to automatic operation during 

periods when there is no human presence. 

4.3 Digital Protection 

Digital protection of power life is a new technique that is replacing the distance 

protection. In the case of parallel transmission lines, distance protection encounters some 

problems due to mutual coupling, back feed, in-feed, and poor discrimination between the 

faulty and healthy line especially in the case of faults near the far end bus. The directional 

relays, that are used in distance protection, are operating based on the voltage and 

direction of the current. This type of relays have difficulties of operation in the case of 

series compensated lines where the voltage and current direction may be reversed. 

However, there is the transverse directional protection, that is able to switch off the faulty 

line, can eliminate some of the problems of the simple directional protection. 

Nevertheless, by switching off the power line, could block the whole protection and 

special relays of complicated design is needed in order to ensure the stability of the 

protection. 

The digital technique seems to be a better solution since the protection scheme can 

utilize a single relay at each end in the case of parallel transmission lines. (See figure 4.5) 
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Figure 4.5 Parallel transmission lines, using one relay at each end. 

The idea is the following: When the impedance of each circuit of a set of parallel lines is 

equal, the total current is distributed equally among all circuits under normal conditions 

and in the presence of an external fault. In the presence of a fault on one of the parallel 

lines, a larger amount of current from the source passes along the faulty line, while the 

healthy line carries a smaller current. By comparing the magnitudes of currents in the 

corresponding phases, the relay should be able to detect the faulted line correctly. In the 

digital form, the comparison can be made by comparing the magnitudes of the samples of 

current in the corresponding phases. However, this method is valid only in the case of 

permanent faults of any type under the condition that the two lines are identical and are 

fed from both ends. The method still has some problems such as phase shift between the 

currents may cause incorrect selection of samples. The digital approach of line protection 

is being improved by M. Gilany, 0. Malik, and G. Hope, the three professors from the 

University of Calgary. They were able to modify the digital method by adding a new 

sample to the method. The new sample is a quantity proportional to the average of the 

current in each phase which is derived from the magnitude of the samples. They also filter 
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the samples before processing since the high frequencies in the current samples may cause 

errors in the comparison between the two lines. We see that advanced digital signal 

processing is introduced to the power scheme and the older method of coordination of 

distance relays could be eliminated in the long run. The digital approach can provide fast 

tripping times like 4 ms that belongs to the ultra high-speed relay category. 

4.4 Directional comparison protection 

The directional comparison protection is an improved power line protection that has the 

ability to detect high resistance fault, a fast operating time, a wide application range, and 

an improved performance in the presence of distorted waveforms. In addition, this 

protection can withstand heavy circuit loading, it can remain stable against power swings 

and distortion caused by CT saturation. As far as the distance protection is concerned, the 

function of the distance zone is to provide an under-reaching instantaneous protection that 

can be used to trip the line for close-in internal faults without depending on the 

communication link. The communication link in many protection system is very important 

since it is responsible for the operation of the distance relays. If for some reason the 

communication link fails, the protection operation fails as well. 	The directional 

comparison protection offers a way that eliminates the communication link. The zone can 

be time delayed and set to over-reach the remote feeder-end, thus providing back-up 

protection to the whole feeder. 

The operating principle is based on the directional elements that use the fault 

generated changes in the voltage and current signals at the relay location, referred to as 
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Therefore.  

For a reverse fault: 
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the superimposed signals, to determine the direction to a fault. Figure 4.6 shows the 

relationship between the superimposed and the post-fault circuit.  

Figure 4.6 Superimposed and post-fault circuits. 

The fault voltage can be considered to consist of two parts; the unfaulted voltage plus the 

superimposed voltage. Similarly, the fault current consists of the unfaulted current plus 

the superimposed current. 

There is the following relationship between the superimposed voltage and current 

signals. For forward faults, the magnitude and angle of the superimposed current (Air) is 

related to the superimposed voltage (∆vt) by the source impedance behind the relaying 
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Zs is the effective source impedance corresponding to the protected line plus the source at 

the remote line. The polarity change between the forward and reverse faults show that a 

directional measurement exists. The signals required for comparison are the superimposed 

voltage phase delayed by an angle equal to the angle of the source impedance. These 

signals are of opposite polarity for a forward fault and vice a versa for a reverse fault, 

giving a very clear basis for directional discrimination. The magnitude of the source does 

not affect the polarity relationship. For a forward fault ∆vr<ϕ R and ∆ i r  are of opposite 

polarity and for a reverse fault they are of like polarity. This comparison is performed by 

mixing ∆vr<ϕR and Air in accordance with: 

For a forward fault, since the magnitude of the difference term (∆

vr

<-ϕR-∆ir ) is 

greater than that of the sum term (∆

vr

<-ϕ

R

+∆ir ), (S2-S1) is positive. Likewise, for a 

reverse fault (S2-S1) is negative. 

The distance protection is improved by the directional comparison method. As I 

mentioned before, the transmission lines are tripped without the dependence of the 

communication link. The relay incorporates one complete zone of distance protection and 

a switch-onto-fault (SOTF) detector. The SOTF detector is required to provide 

instantaneous protection of the whole line during manual or auto-reclosure of the circuit 

breaker. The distance zone and the SOTF detector are based on a digital version of a 

conventional amplitude comparator and operate when: 



59 

where V is the filtered fault voltage and IZ is the filtered fault current multiplied by the 

reach impedance. 

4.5 Solid state directional protection 

The block diagram that is outlined on figure 4.7, shows the solid state protection layout. 

The main features of the scheme are described below. 

Figure 4.7 Relay block diagram for solid state protection. 
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The input voltage and current signals are converted to electronic signal levels by voltage 

and current transformers housed within the relay. These signals are then filtered by analog 

pre-filters designed to prevent aliasing distortion during digital processing. 	The 

pre-filtered voltage and current signals are sampled at a rate determined by the frequency 

track algorithm. These sampled values are then converted by a 12 bit analog to digital 

converter (A/D) into an equivalent digital number. 	The A/D converter output 

corresponding to an input current of 36.7 Amps peak (1 Amp relay) or an input voltage of 

174 Volts peak is 2048 digital levels. 

The frequency track algorithm adjusts the sample rate in accordance with the 

power system frequency; the relays samples each of the six relay input signals at exactly 50 

samples/power frequency cycle. 

The current filter attenuates high frequency transients in the current signal. The 

voltage filter is designed to phase delay the voltage signal with respect to the filtered 

current signal by the replica source angle. This filter also attenuates the high frequency 

transients generated by the fault; these transients may interfere with the 

directional/distance decision. 

The phase-phase mixing algorithm derives voltage and current signals, formed as 

the difference of the a and b, b and c, a and a phase values respectively. The use of a 

phase-phase signal reduces the effect of mutual coupling on double circuit lines. 

The superimposed signals are extracted by subtracting a one cycle delayed version 

of each signal from its non-delayed signal. When a fault occurs the ∆v and Ai extraction 

filters transmit the difference between the post-fault and pre-fault signals for a period of 
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one cycle after the fault. After this period, the output of an extraction filter is the 

difference between the instantaneous post-fault signal and a one cycle delayed post-fault 

signal. 

There are three independent directional elements corresponding to the three sets of 

phase-phase signals (a-b), (b-c), (c-a). Each directional element processes the appropriate 

set of superimposed filtered voltage and current signals in accordance with the following 

sequence: 

• Step 1: The Av sample is scaled relative to the superimposed voltage setting; the 

scaled ∆v equals the true Av divided by the voltage setting. 

• Step 2: The scaled Av and the Ai samples are mixed to form a composite 

phase-phase sample: 	(S2-S1) = |∆v - ∆i| - |∆v 	+ ∆i| 

• Step 3: If the (S2-S1) sample is positive, it is compared with a positive forward 

threshold (27 digital levels). If the sample value is greater than the threshold, the 

output decision counter is incremented. This threshold was selected to ensure the 

relay will detect all forward faults, causing an rms current change of greater than 0.2 

Amps and an rms voltage change of greater than the voltage threshold, within 0.5 

power frequency cycles. 

• Step 4: If the (S2-SI) sample is negative, it is compared with the negative reverse 

threshold (-18 digital levels). If the sample value is more negative than the 

threshold, the output decision counter is decremented. This threshold was selected 

to ensure the reverse sensitivity is always greater than the forward sensitivity. 
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• Step 5: The previous four steps are performed on each ∆v and ∆ i sample pair at a 

rate of 25 samples/cycle. If the output decision counter reaches +3 or -3 the 

appropriate (a-b), (b-c), (c-a) forward or reverse directional flag is activated. The 

maximum allowable decision count is +8 for a forward fault and -8 for a reverse 

fault. These limits are imposed to ensure the relay can change its decision from 

reverse to forward or vice versa without an unacceptably long delay. 

The function of the phase selector is to evaluate the faulted phases by processing 

the three superimposed phase-phase current signals. A single phase to ground fault is 

detected if two phase to phase signals exceed a threshold, while the third signal does not. 

The faulted phase is the phase involved in the two active signals. For instance, active (a-b) 

and (c-a) signals and an inactive (b-c) signal selects an a-ground fault. The threshold is 

chosen to ensure the phase selector is more sensitive than the directional/distance 

elements, thus all faults that can be detected by the relay are correctly phase selected. In 

general, the function of the phase detector is to direct the trip output of the protection to 

the correct phase. 

The distance protection and the SOTF detector are both implemented using 

three-phase to neutral and three phase to phase amplitude comparison distance elements. 

The scheme logic has the function to control the protection scheme. The relay provides 

several options on the type of protection scheme required by the user, including blocking 

or permissive intertripping schemes. The operating decisions of the three directional 

elements, the phase selector, the six distance elements and the SOTF detector are 

transferred to the scheme logic. 	The scheme logic processes these decisions in 
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conjunction with the communication signal received from the remote relay and sets the 

appropriate trip action. 

Various tests and simulations show that the directional comparison protection 

performs very efficiently. It provides high speed operation with a high degree of security 

against maloperation. In short, the digital techniques are used in order to implement the 

protection, and it is based on the use of superimposed signals. The operation only occurs 

under the influence of the power frequency superimposed signals caused by the fault and it 

is not affected by the high frequency transients that exist immediately after the fault 

occurrence. The relay operating times are about 9 ms which when are used in conjunction 

with fast communication channel, the protection scheme satisfies the requirements of high 

speed fault clearance times. As far as the protection coordination of the power system is 

concerned, the digital protection offer a more reliable way and it eliminates the trouble of 

setting relay taps and timings. Only signal processing is the main tool for the smooth 

operation of the protection system. 



CHAPTER FIVE 

CONCLUSIONS AND SUGGESTIONS 

Protection system coordination is a major problem for utilities since it affects most aspects 

of transmission and distribution and dramatically impacts transmission and distribution 

reliability. The lack of coordination can have far reaching effects, even to the point of grid 

disturbance. Computer technology has evolved such that the coordination process has 

been replicated, and the means for a system-wide, systematic, analytical solution to 

protection system coordination has been achieved. As I implied before, the ultimate 

purpose of protection is to provide power system reliability. It might seem that protection 

of equipment is the purpose of protection systems, but this misses the global picture. It is 

the integrity of the system which is being protected. 

5.1 The nature of protection 

As I mentioned in chapter one, the immediate area or zone of protection provided by a 

protective device is called the primary protection zone. Consideration of the protective 

devices on the system is necessary and this process of addressing protective devices on the 

system is called coordination. There two aspects to it. First, every device should be the 

first to trip for a fault in its primary zone of protection, i.e., the extend of power system 

isolation during a fault should be minimized. Second, protective devices should provide 

system redundancy, i.e., there should be a backup device which operates when the primary 

device fails. The primary device is the device in whose primary protection zone the fault 

occurs. The redundancy-producing primary-backup relationship, often called a device 
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pair, is function of power system topology, protective device characteristics, and 

protection philosophy. 

The primary-backup relationship have become complicated and it is responsible for 

the nature of networks: any protective device in a network may be involved in multiple 

primary-backup relationships. In other words, when a line feeds two others, its protective 

device may serve as backup for the primary devices of each of the other lines. With any 

type of network, chains of primary and backup relationships, or device pairs, may exist 

which result in multiple coordination paths for any device. Typically, one chain of device 

pairs will be critical in determining a device setting, and this chain is called the critical 

coordination path. 

A fault study is part of every effort in protection system coordination. Fault 

conditions have been determined defining the span of fault conditions possible in the 

primary protection zone. Calculation of these fault levels is known as fault analysis and 

includes sorting to determine the relevant faults for primary protection zone settings. 

Nevertheless, the backup protection devices are always present. Analysis of the calculated 

faults is necessary to determine the fault situations critical for coordination and the 

resultant current pairs for each primary-backup relationship. Summarizing then and 

considering proper fault analysis, there are two analytical considerations: 

• Primary zone protection 

• System coordination 

Primary zone protection is a local problem whereas coordination is a system problem. 
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5.2 A suggestive system analysis 

In general, system analysis is defined as a system-wide, systematic, analytical evaluation. 

There is no doubt that the protection coordination is a system condition. Thus, 

coordination must be accomplished on a system-wide basis. The process must be 

systematic since random evaluation is insufficient according to certain analysis 

requirements. For example, automated, comprehensive fault calculation techniques 

provide a consistent approach to fault analysis. The evaluation must be analytical, but the 

explanation is more involved. The following three aspects should be applied during the 

study of a problem: 

• Analytical solution 

• Simulation 

• Probabilistic simulation 

Analytical solution is a deterministic, closed form, complete evaluation. The solution is 

consistent and repeatable, with the same input data providing identical results. Simulation 

is an alternative evaluation method where a model of a complete system is exercised for all 

possible situations. However, there are some certain situations. The system has to be 

implemented as a model and the number of situations must be limited. Simulation is often 

used to evaluate one mode of operation versus another. When the number of simulations 

becomes too large, there is the probabilistic simulation. It is not a closed solution with all 

possibilities analyzed and a large number of occurrences must be involved. Typically, the 
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number of simulations could be very large for a complete test of every situation. 

Therefore, we could use a probabilistic distribution from which we could make some 

certain judgments. However, the results are not deterministic, but rather a probability of 

effect. The coordination problem is not based its solution on simulation and probabilistic 

distribution. The solution requires a deterministic approach that is both system-wide and 

systematic, i.e., systems analysis of protection coordination. 

5.3 Essential Suggestions 

The protection philosophy plays an important role for the overall design of a protection 

scheme. As I said before, the coordination problem is a function of system topology and 

protective device characteristics. Traditionally, coordination is accomplished manually on 

a device-pair-by-device-pair basis for the complete power system. However, power 

systems suffer modifications and changes. The changeability of the power systems creates 

the need for improving the operation of the protection scheme. Some suggestions are the 

following: 

• Topological contingencies of a network 

Day to day operations often include periodic line outages. These occur as a normal part 

of system operation. The line outages are not major system changes, but rather occur in 

the course of power system operation. These contingencies must be considered during 

coordination. Protection settings cannot be such that normal power system operation can 

upset the delicate balance of coordination and negatively impact reliability. 
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• Periodic coordination reviews 

In the long term, power systems do not remain constant; physical changes occur over 

time. As a result, periodic evaluation of the protective system is suggested. Appropriate 

review periods can be set up, for instance, annual reviews could be the more suitable. 

Unless the system is periodically evaluated, the power system may become 

miscoordinated. In addition, the periodic reviews can have side benefits such as the 

training of the protection staff. 

• Power system modification 

Power system modifications are a fact of life. Power system planning monitors the need 

for change and seeks to implement the most cost-effective solution to any future service 

requirements. 	As far as the protection of the power system is concerned, any 

modifications may require recoordination of the protection system or even a change in 

protective device application. Whenever any power modification is considered, there is a 

protection impact immediate to the area of modification, especially the primary zones of 

protection. Regardless of the specifics, protective impact is not evaluated, and protection 

system changes as a path to accommodate whatever power system change is implemented. 

As a result, there are instances of physical miscoordination, i.e., protective devices that 

cannot be coordinated over the relevant range of fault situations. However, the problem 

could be attacked by considering the number of alternatives increases. Given more 

alternatives, greater analysis is necessary to evaluate the protective impact. In addition, 
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the comparison of each alternative with the other could lead to the right protection 

scheme. 

• Protective device optimization 

Protective systems should be periodically evaluated for optimum device applicability. 

Device applicability must be evaluated from a system's point of view. Fault levels can 

change with power system modifications and directionally may be indicated, or an 

impedance relay may offer a better solution to the present device. Similarly, current 

transformers may be subject to saturation, or reclosers may require a higher rating. 

Special analysis should be emphasized in order to optimize a power system. However, 

optimization analysis often have a significant cost and therefore the cost-effectiveness 

factor should be considered as well. 

• Protective devices outages 

Occasionally, in the course of normal power system operation, it becomes necessary to 

outage a piece of protection equipment. This can occur for protective device repair or 

replacement of input sensing devices such as current or voltage transformers. Since 

protection coordination is based on device pairs (a primary and a backup device), any 

outage of a protective device probably disturbs at least two device pairs and at least one 

coordination path. Any device may be part of several device pairs and any device pair may 

be a part of several critical coordination paths. Protective equipment repair is normal; 

some means of accommodating the necessary outages is suggested since protection is 
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essential to the integrity of a power system. In addition, some systematic, analytical 

means of coordination is needed to effect power system integrity. 

• Adaptive relaying of networks 

Adaptive relaying is often discussed in terms of sensitivity and selectivity improvement. 

Increased selectivity and sensitivity could allow greater power to be transmitted over 

current networks. Any application of adaptive relaying to transmission and distribution 

networks must address protection system coordination. Indiscriminate setting changes 

will reduce system reliability. Adaptive relaying can improve selectivity and sensitivity, by 

adjusting settings for temperature and topological changes, but the impact of system 

coordination must be addressed. Any device setting change must occur in the context of 

the entire protection system, which requires real-time systems-analysis of 

protection-coordination capability. Moreover, adaptive relaying affects some 

communication among protective devices of the network. In order to maintain reliability, 

which is the main reason of system protection, adaptive relaying must have a fallback 

setting in case of communication loss. 

5.4 Summary 

Protection coordination is a must for all utilities. The power system of Cyprus is a small 

network and most of the previous suggestions can be applied since the system is 

expanding and being modified. In chapter three, we saw the time coordination of the main 

line sections of the network. Traditional time coordination is not reliable enough. We 
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saw in chapter three that in a case where we do not have time coordination, we have to 

alter the previous relay settings in order to achieve the proper coordination. The time 

curves and relay tap settings are methods that going to be substituted by modern digital 

methods. For instance, the digital directional comparison is a very important method that 

is going to be established by most utilities. Automatic reclosers is an economic way of 

protecting lines but the high speed protection is an unknown term. Microprocessor-based 

relays are the latest items of the protection technology. They provide sophisticated 

protection and fault clearing schemes. In addition, some essential suggestions, that are 

examined in this chapter, are very important for the smooth operation of a protection 

scheme. There is no doubt that protection coordination becomes more complicated in 

order to cover the contemporary needs of a power system. Fortunately, computer 

technology is evolving such that systems analysis of protection coordination is feasible and 

can provide the opportunity to improve power system operational reliability. 
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