
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Winter 1-31-1994

A hybrid low bit-rate video codec using subbands and statistical A hybrid low bit-rate video codec using subbands and statistical

modeling modeling

Ferhat Cakrak
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Cakrak, Ferhat, "A hybrid low bit-rate video codec using subbands and statistical modeling" (1994).
Theses. 1598.
https://digitalcommons.njit.edu/theses/1598

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1598?utm_source=digitalcommons.njit.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A Hybrid Low Bit-rate Video Codec Using
Subbands and Statistical Modeling

by
Ferhat Cakrak

A hybrid low bit-rate video codes using subbands and statistical modeling is

proposed in this thesis. The redundancy within adjacent video frames is exploited by

motion estimation and compensation. The Motion Compensated Frame Difference

(MCFD) signals are decomposed into 7 subbands using 2-D dyadic tree structure

and separable filters. Some of the subband signals are statistically modeled by

using the 2-D AR(1) technique. The model parameters provide a representation

of these subbands at the receiver side with a. certain level of error. The remaining

subbands are compressed employing a classical waveform coding technique, namely

vector quantization (VQ).

It is shown that the statistical modeling is a viable representation approach for

low-correlated subbands of MCFD signal.The subbands with higher correlation are

better represented with waveform coding techniques.

A HYBRID LOW BIT-RATE VIDEO CODEC USING
SUBBANDS AND STATISTICAL MODELING

by
Ferhat Cakrak

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1994

APPROVAL PAGE

A HYBRID LOW BIT-RATE VIDEO CODEC USING
SUBBANDS AND STATISTICAL MODELING

Ferhat Cakrak

Dr. Ali N. Akansu, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Nirwan Ansari, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Zoran Siveski, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL...SKETCH

Author: Ferhat Cakrak

Degree: Master of Science in Electrical Engineering

Date: January 1994

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1994

• Bachelor of Science in Electrical Engineering,
Technical University of Istanbul; Istanbul, Turkey, 1989

Major: Electrical Engineering

iv

This thesis is dedicated to my family

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. A. N. Akansu for his valuable

contribution, advice, patience and understanding. I also appreciate his support and

encouragement during the entire research period.

I am very grateful to Dr. Nirwan Ansari and Dr. Zoran Siveski for their effort

and time in reviewing this work.

I also would like to thank the members of the Center for Communications and

Signal Processing Research at New Jersey Institute of Technology and to all my

friends for their help and support.

vi

TABLE OF CONTENTS

Chapter 	 Page

INTRODUCTION 	

2 MOTION COMPENSATED VIDEO CODING 	 3

2.1 Introduction 	3

2.2 Block Matching Algorithm (DMA) 	5

2.3 The Motion Compensated Frame Difference Signal (MCFD) 	8

3 STATISTICAL MODEL BASED IMAGE CODING TECHNIQUES . . . 	 10

3.1 Introduction 	 10

3.2 Autoregressive (AR) Process 	 10

3.3 	First-order Autoregressive AR(1) Process 	 12

3.4 First-Order Correlation Models for Images 	 14

3.4.]. First-Order Autoregressive AR(1) Source Model for Images . . 	 15

4 THEORY OF SUBBAND SIGNAL ANALYSIS AND FILTER BANKS . 	 18

4.1 	Introduction 	 1.8

4.2 Main Building Blocks in Subband Analysis 	 18

4.2.1 Downsamlers and Upsamplers 	 18

4.2.2 Anti-aliasing Filters . 	 20

	

4.2.3 Interpolation Filters 21

4.3 Two Channel Perfect Reconstruction Quadrature Mirror Filter (PR--QMF)

	

Banks 21

4.4. M-Band Tree Decomposition 	 25

4.5 Two Dimensional Separable Case 	 26

o VECTOR. QUANTIZATION IN SUBBANDS 	 31

5.1 Introduction 	 31

5.2 Vector Quantization 	 31

5.3 Codebook Design 	 32

vii

Chapter 	 Page

5.3.1 The LGB Algorithm 	 33

5.4 Vector Quantization In Subbands 	 34

5.4.1 The Adaptive Vector Quantization Based on the Motion Vectors 34

5.4.2 Vector Quantization for the AR(1) Model Parameters 	 36

6 EXPERIMENTAL STUDIES 	 37

6.1 Subband Decomposition of the MCFD Signals 	 37

6.2 Statistical Modeling In Subbands 	 37

6.3 Quantization 	 38

7 CONCLUSIONS AND DISCUSSIONS 	 49

APPENDIX A Simulation Program for the 7 Band Dyadic Tree Structure . 	 50

REFERENCES 	 109

viii

LIST OF FIGURES

Figure 	 Page

2.1 	Block Diagram of Motion Compensated Video Sequence Coding Structure. 4

2.2 	Block matching motion estimation 	6

2.3 Frame by frame variation of the correlation coefficients for the test
sequence "CINDY" 	 8

2.4 	Frame by frame variation of variances for the test sequence "CINDY" . 	9

3.1 Filter Model of AR(N) Process 	 11

3.2 Filter Model of AR(1.) Process 	 13

3.3 	Frame by frame variation of variances for the LH band of the test sequence
"CINDY' 	 17

4.1 	Block diagrams for downsampler and upsampler 	 19

4.2 Downsampling with M=2 	 20

4.3 Upsampling with M=2 	 21

4.4 	Frequency domain representation of the Upsampling by 2, with the input

	

signal (top) and the upsampled signal (bottom) 22

4.5 Frequency domain representation of the downsampling by 2, with the
input signal (top) and the downsampled signal (bottom). 	 23

4.6 	Interpolation and decimation filters 	 24

4.7 The two-channel QMF bank 	 25

4.8 4 band regular tree decomposition. 	 26

4..9 7 band dyadic tree decomposition. 	 28

4.1.0 4 band regular tree decomposition and reconstruction of a 2-D signal
x(m,n). 	 29

4.11 7 band dyadic tree decomposition and reconstruction of a 2-D signal
x(m,n) using 2-I) separable filters 	 30

5.1 	Illustration of clusters and the vector quantization for two-dimensional
space. 	 32

5.2 2-D subbands used in video codes 	 35

ix

Figure 	 Page

6.1 Frequency responses of the 8 tap separable low-pass and high-pass filters. 38

6.2 	Frame by frame variation of the average SNRpp values in (1D3 for the test
sequence "CINDY" 	 39

6.3 Frame by frame variation of the first order entropy values for the test
sequence "CINDY" 	 41

6.4 	Frame by frame variation of the average SNRpp values in dB for the test

	

sequence "TOPGUN" 42

6.5 Frame by frame variation of the first order entropy values for the test

	

sequence "'TOPGUN" 43

6.6 	25th frame of the test sequence "CINDY" 	 44

6.7 The direct difference between the frames 25 and 26 of test sequence
"CINDY" 	 45

6.8 26th frames of the test sequence "CINDY", the original (top) and coded
(bottom) (SNRpp = 34.1, bpp = 0.24) 	 46

6.9 	26th MCFD frames of "CINDY", the original (top) and coded (bottom)
(SNRpp = 34.1, bpp = 0.24.) 	 47

6.10 LH band of the 26th MCFD frames of "CINDY", the original (top) and
statistically modeled (bottom). 	 48

CHAPTER 1

INTRODUCTION

Interest, in digital image processing ha.s significantly increased over the past two

decades. Advances in signal and image processing techniques allow sophisticated

image processing algorithms to be realized in real time at a reasonable cost. However,

the storage capacity and bandwidth of available communication channels have always

been two major limitations. Since the amount of data in images is immense the

compression of data has been of a great interest. Hence, there have been several

image compression techniques proposed in the literature and the problem is still

being actively pursued.

In video transmission and storage applications, one mostly has to deal with

the images of moving objects. The motion occurring in such a multi-frame sequence

is due to translation and rotation of objects with respect to the camera or moving

camera and moving object case[1].

In video frames, we encounter the redundancy in temporal and spatial

dimensions among the adjacent frames. A satisfactory data compression technique

should not only remove temporal and spatial redundancies but also give a good

visual perspective for a. certain level of image quality [1.]. The more visual quality

we car► sacrifice, the lower the bit-rate we need to transmit or to store a.n image.

There are several video coding tecbniques which provide satisfactory performance

for compression. Most of these techniques employ transform coding of motion

prediction error which is also known as the motion compensated frame difference

(MCFD) signal. The MCPD signal has been studied by several researchers and it

is still being studied extensively in order to achieve better compression and visual

performance. The statistical model based and subband coding techniques are the

ones combined in the proposed codec structure of this thesis.

1

2

In model based image coding, an image or some regions of an image are statis-

tically modeled and the model parameters are used for the representation. At the

transmitter, the the statistical model parameters are estimated by analyzing the

image. Then, these parameters are quantized and sent to receiver side. At the

receiver side, the image is reconstructed using quantized model parameters. Although

the modeling of speech is useful and works well, the modeling of images has not been

satisfactory. Therefore, model-based image coding technique is still at the research

stage and more needs to be done[3].

Subband coding, one of the most powerful waveform coding techniques, has

found its applications in speech and image processing. To compress the data, the

signal is divided into a set of uncorrelated frequency bands and subband signals are

encoded after an optimal bit allocation.

In this thesis, the MCFD signal is studied by using subband coding and

statistical modeling in subbands.

Chapter 2 deals with the motion compensated video coding and the statistical

evaluation of MCFD signals. In Chapter 3, autoregressive source models and AR(1)

modeling are studied. Chapter 4 deals with the theory of subband signal analysis and

filter banks. In Chapter 5, vector quantization in subbands is covered. In Chapter

6, the experimental results are presented. The conclusions are given in Chapter 7.

CHAPTER 2

MOTION COMPENSATED VIDEO CODING

2.1 Introduction

In this chapter, the general idea behind the motion compensated video coding

technique is given. The algorithms used for prediction are classified and explained

briefly. In Section 2.2, the theory of block matching algorithms is given in detail.

Section 2.3 deals with the statistical features of motion compensated frame difference

(MCFD) signals.

Any good video coding technique should remove not only the temporal but

the spatial redundancies. To eliminate redundancy in a video sequence, interframe

predictive coding, one of the most powerful video coding techniques, is widely used.

In a typical interframe coding process, the present video frame is predicted based on

frame to frame motion and the previous frame. The prediction error, MCFD, along

with motion information is transmitted. At the receiver side, the MCFD signals are

decoded and added to the motion based prediction of the frame. The main feature

in this coding technique is to predict the current frame based on the previous one.

The better prediction gives the smaller error signal and the smaller transmission bit

rate [2].

The video scenes usually contain moving objects. The motion in a typical video

sequence is due to the rotation and translation of the objects. The current frame

Fk is predicted by using the previous frame Fk-1 and frame to frame motion. This

process is called motion compensation, and the difference between the current frame

and its motion compensated prediction is called motion compensated frame difference

(MCFD) signal. Block diagram of motion compensated video coding technique is

given in Figure 2.1.

3

4

Figure 2.1 Block Diagram of Motion Compensated Video Sequence Coding
Structure.

To predict the current frame by using the previous frame, there are several

motion estimation algorithms proposed in the literature. Most common algorithms

used in practice are as follows:

• Block Matching Algorithm

• Pel (pixel) Recursive Algorithm

• Knowledge Based Algorithm

First two algorithms use the 21) information of the successive video frames.

The block matching algorithm tries to estimate the displacement, vectors by means

of comparing the gray levels of adjacent. video frames in block fashion. On the

other hand, pel recursive algorithm uses the coded neighbour pixels to predict the

5

displacement of each pixel[2]. These two algorithms are based on the following

assumptions:

• The motion of the moving objects is only translation.

• Intensity (illumination) is the same in spatial and temporal dimensions.

• Masking between objects and uncovered background is neglected.

The knowledge based algorithm employs the 3-D motion constraints. Although

this algorithm is quite popular in model based coding, it is not quite practical due

to the computational load and complexity of the algorithm.

2.2 Block Matching Algorithm (BMA)

In the current technology, block matching algorithms are widely used due to the their

simplicity and effectiveness. The block matching algorithm (BMA) divides an image

into fixed or variable size rectangular blocks, and assumes that each block can he

represented by a displacement vector D = (dx ,dy) as shown in Figure 2.2. In order

to maintain the validity of the assumption, block sizes are kept small, such as 8x8 or

16x16[2].

In this study, the motion compensation is based on the block matching

algorithm, which can be implemented by using fixed or variable size blocks. In our

approach, each video frame is divided into 8x8, fixed size, blocks. Each 8x8 block in

current frame is compared with all possible blocks within a certain search region in

the previous frame. The best matching block is found by the following procedure.

The motion detector compares each pixel of a predefined image block in the

present frame K, with the corresponding pixel values of the previous frame K — 1.

If the condition given by Eq. 2.1 is satisfied, which means difference is above the

predetermined threshold value, then the pixel m., n of block i,j in frame K is assumed

moving. For an 8x8 block, if the number of moving pixels is above the predetermined

6

Figure 2.2 Block matching motion estimation.

threshold value N0 as given in Eq.2.2, then that block is assumed moving.

[number of moving pixels in an 8x8 block] ≥ N0 	(2.2)

T0 and N0 are the predefined threshold values for each pixel and each 8x8 block

respectively. These values can be adjusted depending on the application. In this

study, To = 3, N0 = 10, have been found suitable values for the experimental video

sequences. If the block has a motion, then motion estimation and compensation

procedure is performed.

The BMA tries to find the best match for each 8x8 block belonging to the

present frame K, using a predefined search region in the previous video frame.

Predefined search region size has been taken as (8 + 2p)x(8 + 2p) and fixed. It is

assumed that the maximum displacement between two 8x8 blocks in two consecutive

video frames is Ŧp pixels in two dimensions. For a video conferencing environment

p = 6 is used. There are (2p + 1)x(2p + 1) different blocks in search region in which

each block is a candidate to be the correct displacement.

7

A comprehensive search algorithm scans all the candidate search points in the

search area for the best, match. The best match is found by minimizing the distortion

measurement, like mean square error (MSE), or by maximizing a correlation feature,

like the cross-correlation function, of the two blocks [2]. In Practice there are several

fast search algorithms. Independent orthogonal search algorithm, a computationally

efficient search algorithm, is used in this study [1].

Number of thresholded absolute difference (NT AD) given in Eq.(2.3) is

employed as the objective function.

and 	is the search region for block BKij(m,n). The best match is found by

minimizing NT AD(k,l). The parameter value T1 = 3 is found the best for the video

sequences used in this study.

After determining the best match, the image block BKij is predicted as BKij based

on the corresponding 8x8 block in the previous video frame FK-1. This process is

repeated for all the blocks and the prediction of the current frame f̂K is obtained as

seen in Figure 2.1.

The prediction error, which is basically the difference signal between the

original frame and its prediction, is encoded and transmitted to the receiver side

along with the motion information to reconstruct the current frame FK. The

prediction error which is also called motion compensated frame difference (MCFD)K

signal is given in Eq.(2.4) for the MX N video image sequences.

8

Figure 2.3 Frame by frame variation of the correlation coefficients for the test
sequence "CINDY"

2.3 The Motion Compensated Frame Difference Signal (MCFD)

Although the motion information of the motion compensated video coding technique

has to be encoded lossless, the MCFD signal may be encoded by using any entropy

reduction technique.Transform coding, hybrid coding, and some other source coding

techniques have been used to encode the MCFD signals.

It is well known that the performance of the transform coding decreases signif-

icantly for the low correlated signal sources sucb as MCFD signals. Therefore,

transform coding is not a good choice for this kind of signals[1]. For the video test

sequence "CINDY", frame by frame variation of the average first order horizontal

and vertical correlation coefficients are given in Figure 2.3. It is seen from the figure

that MCFD signals are low correlated.

9

Figure 2.4 Frame by frame variation of variances for the test sequence "CINDY"

The variance of the MCFD signals for first forty frames of the test sequence

are displayed in Figure 2.4. It is seen that variance of the motion compensated frame

difference signal for the first forty frames of the test sequence "CINDY" is just about

25% of the direct frame to frame difference signal.

There are several contributors to the prediction error (MCFD) signal. All types

of motion is approximated by translation. Additionally, using the encoded version

of previous frame for prediction brings the effects of the quantization noise into the

progress.Furthermore, the threshold values used, T0, T1,N0, are not global optimum

values. Last, no abrupt scene change is included in this study. Hence,the effects of

abrupt scene changes are not seen here.

CHAPTER 3

STATISTICAL MODEL BASED IMAGE CODING TECHNIQUES

3.1 Introduction

It is highly desirable to define signal sources by a. set, of statistical parameters. These

parameters are used in transmission and storage applications for modeling of source

characteristics. The main objective here is to use as few parameters as possible to

represent a signal source, keeping certain level of signal quality for a given application.

As mentioned earlier in Chapter 1, in statistical model based image coding, an image

or a portion of it is statistically modeled and model parameters are quantized and

sent to the receiver side to reconstruct the image. Although the statistical modeling

works well in speech coding applications, it does not give satisfactory results in still

frame image coding applications. Therefore, it is still an active research area. and

more needs to be done.

Autoregressive modeling is widely used in 1-D applications like linear predictive

coding (LPC) of speech. Although its performance is not satisfactory for 2-D appli-

cations, like still frame image modeling, it is a reasonable technique to represent

MCFD signals. Hence, it can be used for modeling of the MCFD signals, i.e., by

employing the subband coding technique some frequency bands of the MCFD signal

can be statistically modeled.

In this chapter, Section 3.2 covers autoregressive (AR) processes. In Section

3.3, first-order autoregressive, AR(1), process is studied. In Section 3.4, AR(1)

modeling technique for images and the statistics of test images are presented.

3.2 Autoregressive (AR) Process

An autoregressive (AR) process is generated by passing the white noise η(n.)

innovations through an all-pole filter. A wide-sense zero-mean white noise process

10

11

Figure 3.1 Filter Model of AR(N) Process

and its spectrum are defined as;

where σ2N is the variance of a zero mean, wide-sense stationary white noise sequence.

Its autocorrelation sequence is given as

is the kronecker delta function. For any shift m. there is no correlation between the

samples of the white noise process and it ha.s a flat power spectral density function

as seen in Eq.(3.1.).

Filter used in this process is called all-pole since it has N multiple zeros at z=0

as seen in Eq.(3.3),

12

The difference equation generating the AR process {x(n)} is given by

The process {x(n)} is called AR(N) or Nth order Markov process. {bi} are the

correlation coefficients. The filter model realizing an AR(N) process is given in

Figure 3.1.

The impulse response of an all-pole filter is in infinite duration. However,

the autocorrelation function (acf) can be calculated recursively for the given set

of prediction coefficients 	; i. = 1,2,...., N. This is clone by multiplying x(n) in

Eq.(3.4) with x(n — in) and taking the expectations of both sides. Here, we should

note that the white noise innovations η(n) are uncorrelated with its past outputs by

definition. As a result, we have the following equations

where E[.] donates expectation and

where o is the signal power. The recursive relation of autocorrelation sequence is

given as

The all-pole model leads to N unknowns and N linear equations. These equations

can be solved by using Levinson algorithm or the Cholesky decomposition[4][5].

3.3 First-order Autoregressive AR(1) Process

The first-order Markov or AR(1) process, with zero mean, is obtained easily from

Eq.(3.4) with N=1 and b► = p. Thus, we have the difference equation of AR(1)

source model in time as

13

Figure 3.2 Filter Model of AR(1) Process

where p is the first order correlation or prediction coefficient and {η (n)} is the white

noise sequence as given in Eqs.(3.1) and (3.2). The corresponding first-order filter

function is found as

with the frequency response

and the unit sample response

The filter diagram for the first-order autoregressive process is given in Figure

3.2 where b1 denotes the first-order correlation or prediction coefficient.

The autocorrelation function of an AR(1) signal is found as

The signal variance is expressed as

14

where σ2N, is the noise variance.

The power spectral density (psd) of an A R(1) process is given by

The process generated by Eq.(3.8) is stationary if the filter is stable. Therefore,

|p| < 1 and

Otherwise, a non-stationary process results.

The AR(1) source model is a good analytical tool in a variety of applications,

such as speech and statistical model based signal representation.

3.4 First-Order Correlation Models for Images

A random field in which the mean is independent of spatial coordinates and the

autocorrelation function is translation-invariant is called homogeneous. Properties

of an homogeneous field is described by

A homogeneous random field is white-sense stationary with the following power

spectral density and autocorrelation function descriptions;

If all the values of Rxx(m,n) are zero in both spatial directions except Rxx(0, 0),

a white noise process results. The autocorrelation function of a. white noise process

is defined by

15

The process has a. flat power spectral density (psd) function as given in Eq.(3.21).

The correlation models in two dimensional sources are divided into two groups;

separable and non-separable correlation models[4]. Experimental studies have

indicated that natural objects are better represented by non-separable correlation

models[5]. On the other hand, artificial images are better represented by the

separable correlation models. In this study, separable correlation model is employed.

Hence, we are only concentrated on 2-D AR(1) modeling. More information about

2-D correlation models can be found in references [4] and [5].

3.4.1 First-Order Autoregressive AR(1) Source Model for Images

An important autocorrelation model in two dimensions is the first-order autore-

gressive AR(1) source model which has the autocorrelation function

and variance

where m and n are spatial shifts in horizontal and vertical directions, and ph and

pv are the corresponding first-order horizontal and vertical correlation coefficients,

respectively. The correlation model in Eq.(3.22) is called separable because it can

be expressed as the product of two one-dimensional autocorrelations. One can verify

that

16

A 2-D AR(1) signal can be expressed by the difference equation

where {η(m,n)} is the zero mean, white noise array with the variance σ2N. The

transfer function of 2-D AR(1) filter in Z-domain is given as

Although the real-world images are not stationary, they can be assumed

stationary over a small region. By using this assumption, statistical parameters

namely ph„ pv ,o and µ(m, n) of each region can be estimated, and these parameters

can be used for image representation.

In this thesis, the first-order autoregressive source model is used for the

statistical modeling of the MCFD frame in the subbands.

First, the MCFD signal is decomposed into a set of frequency bands (4 and 7

band 2-D filter banks) and then, some of the subband signals are modeled by using

AR(1) technique. The following steps are performed for each subband.

The MCFD subband frame is divided into fixed size blocks, i.e., 8x8, 4x4, and

for each block, the mean is calculated and subtracted from the respective block.

Then, the statistical model parameters, namely ph , pv and σ2x, are estimated for each

zero mean block. These 4 parameters are quantized and encoded for transmission. At

the receiver side, these parameters are used to reconstruct the corresponding image

blocks by using Eq.(3.25). The white noise array η(m,n) is generated by using the

respective local block variances with zero mean. The relationship between local block

variances and white noise array variances is given in Eq.(3.23).

After reconstructing each statistically modeled, zero mean, block, mean is

added to each respective block to recover the statistically modeled MCFD subband

frame.

17

It is obvious that even in the case of perfect quantization, original signal can

not be recovered. Modeling brings some error clue to stationarity assumption. Frame

by frame average variances of the LH band before and after AR(1) modeling is given

in Figure 3.3 for the first forty frames of the test sequence "CINDY" for 4x4 block

size.

Figure 3.3 Frame by frame variation of variances for the LI-I band of the test
sequence "CINDY'

CHAPTER 4

THEORY OF SUBBAND SIGNAL ANALYSIS AND FILTER BANKS

4.1 Introduction

In recent years, subband coding has been widely used for image and video coding

applications. To compress the data, the signal is decomposed into a set of uncor-

related frequency bands and each of these subband signals are encoded for trans-

mission after the optimal bit allocation. At the receiver side these encoded subband

signals are decoded to reconstruct the signal.

In general, a subband system can be decomposed into two parts, analysis and

synthesis. The analysis part of a subband system consists of anti-aliasing subband

filters and downsamplers. The synthesis part consists of upsamplers and interpolation

filters.

In this chapter, section 4.2 deals with the main building blocks of a subband

system, i.e., downsamplers, upsamplers , anti-aliasing and interpolation filters. The

two channel perfect reconstruction quadrature mirror filter (PR-QMF) banks are

studied in section 4.3. In section 4.4, M-hand tree decomposition is covered along

with 4 and 7 band filter banks. Section 4.5 deals with the two dimensional separable

filter case which is used in this study.

4.2 Main Building Blocks in Subband Analysis

In this section, main building blocks, i.e., downsamplers, upsamplers, anti-aliasing

and interpolation filters, are studied along with their frequency domain characteri-

zations.

4.2.1 Downsamlers and Upsamplers

Figure 4.1 shows the block diagrams of a downsampler and upsampler. The input-

output relation of a downsampler with rate M is given by[6]

18

19

Figure 4.1 Block diagrams for downsampler and upsampler.

Eq.(4.1) shows that the output at time n is equal to the input at time Mn. As a

result, only the input samples with the sample numbers equal to multiples of M are

retained. The sampling rate reduction process is illustrated in Figure 4.2 for M = 2

case.

The input—output relation of an M—fold upsampler is given by

Eq.(4.2) indicates that the output y(n) is obtained by inserting M — 1 zeros between

adjacent samples of x(n). This process is shown in Figure 4.3 for M = 2.

Although the downsamplers and upsamplers make the system time varying,

they are linear systems.

The transform domain description of the upsampler is given by

where z = ejw. The stretching effect of upsampling in time domain corresponds to a

compression in frequency domain as shown in Figure 4.4 for M = 2. As seen from the

figure, Y(ejw) has M —1 images of the basic spectrum.Consequently, the upsampler

causes an imaging effect.

20

Figure 4.2 Downsampling with M=2.

The transform domain description of the idownsampler is given by

= e-2πj/M where IV 	 For M = 2, this equation becomes

As seen above, a downsampler causes compression in time and brings the stretching

effect in frequency domain as shown in Figure 4.5 for M = 2. Figure 4.5 also shows

that spectrum of the the original signal after downsampler contains the 27r—shifted

versions of the original spectrum. As a consequence, aliasing effect is observed.

4.2.2 Anti-aliasing Filters

To avoid the aliasing effect of downsampling operation, the downsampler is preceded

by a band limiting filter which is called anti—aliasing or decimation filter. For

example, a low-pass filter with the stopband edge ws = 	can serve as such a

filter for the signal downsamlecl by M as seen in Figure 4.6.

21

Figure 4.3 Upsampling with M=2.

4.2.3 Interpolation Filters

To eliminate the imaging effects at the output of the upsampler, it is followed by

an interpolation filter. The low—pass filter in figure 4.6, again, may serve as an

interpolation filter.

4.3 Two Channel Perfect Reconstruction Quadrature Mirror Filter
(PR—QMF) Banks

Consider the two channel QMF structure given in Figure 4.7. Based on the Eqs.(4.3)

and (4.5), we can express x̂ (Z) as[7]

22

Figure 4.4 Frequency domain representation of the Upsampling by 2, with the input
signal (top) and the upsampled signal (bottom).

The second term in Eq.(4.6) represents the effects of imaging and aliasing. These

terms can be eliminated simply by choosing the synthesis filters to be

When the abasing effect is eliminated, the QMF bank becomes a time-invariant

system with the transfer function

Ideally, T(Z) is desired to be a delay, i.e., T(Z) = Z-n0, so that the reconstructed

signal is a delayed version of x (n). Unfortunately, T(Z) is not a delay in general and

it represents a distortion overall transfer function. One can express T(Z) in the form

of

23

Figure 4.5 Frequency domain representation of the downsampling by 2, with the
input signal (top) and the downsampled signal (bottom).

where |T(ejw)| and arg[T(ejw)] represent amplitude and phase distortions, respec-

tively. If |T(ejw)| is constant for all w, then there is no amplitude distortion. Also,

if T(Z) is a linear phase FIR function, then arg[T(ejw)] = kw, and there is no phase

distortion. As a result, T(Z) becomes a delay, i.e., T(Z) = C 	so that x(n),

reconstructed signal, is a delayed version of x(n), i.e., x(n) = cx(n — n0)[7].

Smith and Barnwell[8] have shown first time that amplitude and phase

distortions can be eliminated simultaneously by choosing

24

Figure 4.6 Interpolation and decimation filters.

where (N — 1) is odd and N is the order of 111(Z). Thus, we have

Therefore, the perfect reconstruction requirement reduces to finding an 11(Z) =

H0(Z) so that

The perfect reconstruction requirement in time is expressed as[5]

where p(2n) is the autocorrelation function.

25

Figure 4.7 The two-channel QMF bank.

In summary, we have the perfect reconstruction conditions for the 2 band

PR-QMF banks as follows;

and

4.4 M-Band Tree Decomposition

Once a given signal x(t) is sampled at fs and split into two subband signals, XL(n)

and XH(n), each of these subband signals can be further decomposed into more than

2 subbands in the same manner as the initial signal x(n). Four subband signals, thus

are obtained after reduction of the sampling rate to L/4. The spectrum of each of

these subbands, XLL(n), X LH (n), XHL(n) and Xi-m(77.), represents the subspectrum

of x(n) in the corresponding subban.d. This decomposition-reconstruction structure

can be repeated p times yielding a p-stage hierarchical tree decomposition. The initial

26

Figure 4.8 4 band regular tree decomposition.

signal is thus decomposed into M=2P subbands. The subband tree decomposition

technique is shown in Figure 4.8 for 4-band regular tree and in Figure 4.9 for 7-band

dyadic tree decomposition[9].

4.5 Two Dimensional Separable Case

The two dimensional (2-D) filter hank is a direct extension of 1-D filter bank in

separable filter case. In the separable case, the alters used can be expressed as the

product of two one-dimensional filters as given in Eq.(4.16).

The separability feature of the filter provides an alternative method of imple-

mentation of 2D-QMF banks. Figure 4.10 shows a four band analysis/ synthesis

filter bank structure. As shown, the structure consists of a set of one dimensional

filters which operate separately along the rows and the columns of the input signal.

.27.:

It can be shown that the use of such filters will result an alias-free reconstruction of

the input signal at the receiver side[10].

The decomposition of input signal can be extended for more than four

subbands, i.e., 7, 10, 13 etc., by repeating the process as explained in section

4.4.

28

Figure 4.9 7 band dyadic tree decomposition.

29

Figure 4.10 4 band regular tree decomposition and reconstruction of a 2-D signal
x(m,n).

30

Figure 4.11 7 band dyadic tree decomposition and reconstruction of a 2-D signal
x(m,n) using 2-D separable filters

CHAPTER 5

VECTOR QUANTIZATION IN SUBBANDS

5.1 Introduction

Many different coding techniques can be used for the encoding of the subband signals.

In this study, vector quantization is used to independently encode the subband

signals.

In this chapter, the concentration is given to vector quantization and its appli-

cations in subbands. Section 5.2 covers the general concept of vector quantization.

In section 5.3, codebook design and the LGB algorithm[11] is covered. Section 5.4

deals with the vector quantization in subbands.

5.2 Vector Quantization

Vector quantization, also known as block quantization, is a direct extension of scalar

quantization. The basic principle here is to map an N-dimensional input vector x

onto another N-dimensional vector y, i.e.,

where VCS(.) is the vector quantization operator. Reconstruction vector, yi, takes its

value from one of the finite set of vectors

The set Y is referred as the codebook containing the L code-vectors. For an L-length

codebook the bits per code vector is given by

The vector quantization procedure can be described as follows. First, the N-

dimensional vector x is constructed from the input signal. Next, the best fitting code

31

32

Figure 5.1 Illustration of clusters and the vector quantization for two-dimensional
space.

vector yi minimizing the distortion measure is searched in the codebook . This can

be expressed as

where d(x, y) represents the distortion measure or distance measure between the

vectors x and y. The vector quantization process is shown in Figure 5.1 where

two-dimensional space is divided into cells. The shape of each cell is uniquely

determined by the location of the code vectors and the distortion measure.

5.3 Codebook Design

A codebook of size L divides the N-dimensional space into cells {Ci}, i = 1, 	L

associating each cell Ci a code vector yi . The vector quantizer assigns the code vector

yi to the vector x if x falls into Ci. The optimal quantizer is found by minimizing

the distortion over all possible L-level quantizers. The overall average distortion of

33

a vector quantizer is defined as[12]

where P(x E Ci) is the probability that x lies inside Ci and, p(x) is the multi-

dimensional probability density function (pdf) of x. The integral is taken over all

components of x. However, in practice the pdf is usually unknown. In that case we

use a training set, consisting of a large number of vectors Vn, n = 1,2,, M. The

codebook is designed using an iterative algorithm known as the K-means algorithm.

Since this algorithm was first proposed by Linde, Gray and Buzo it is called as the

LGB algorithm[11].

5.3.1 The LGB Algorithm

The basic steps of LGB algorithm is implemented as follows[11]:

• 1. Initialization: Iteration index is set to m=0. An initial codebook size L

with the codebook vectors y0i 	1,....,M is chosen.

• 2. Clustering: The training vectors Vn,i = 1,....,M are classified into the

clusters Ci by using the nearest neighbor rule.

• 3. Updating: New codebook vector ym+1i is calculated for each cell Cmi by

calculating the centroid of the training vectors classified to that cell:

where Mi is the number of training vectors classified to cell C.

• 4. Stop: New average distortion is calculated and if the distortion is below

the predetermined threshold then the iteration is stopped. Otherwise iteration

index is increased by 1 and the clustering operation is performed.

34

There are several ways to choose the initial codebook for the LGB algorithm.

In our approach, we used splitting technique which works as follows. The initial

coclebook contains only one vector which is the centroid of all training sequence.

The second codebook with codebook size L=2 is created by adding and subtracting

a perturbance (a splitting vector) to the initial codebook. After optimizing this

codebook, the splitting technique is repeated for larger size codebooks, i.e., L=4, 8,

16,...,512 etc. In our experiment L=5]2 is found as tbe optimal codebook size with

respect to overall distortion and, iteration is stopped.

5.4 Vector Quantization In Subbands

As explained earlier in section 5.3, the 1.,C:D3 algorithm is used in this study to generate

the codebooks. First, the MCFD signal is decomposed into 7 band using dyadic tree

structure. After studying the subband signals, some of the subbands arc found

insignificient and entirely discarded. The remaining subbands excluding LH band

are adaptively vector quantized based on the motion vectors[13]. The LH band is

statistically modeled and the model parameters are vector quantized.

The 2-D 7 band dyadic tree structure, given in Figure 4.11, is used in this study.

The filter used is the 8-tap separable filter[14]. After discarding the insignificiant

bands, namely 	HL and HH bands, the remaining bands are treated as follows.

5.4.1 The Adaptive Vector Quantization Based on the Motion Vectors

In this study, we employed adaptive vector quantization based on the block motion

vectors (MBAVQ) to quantize LLLL, LLLH and LLHL bands as suggested in Ref

[13).

In our approach, the motion compensation is based on block matching

algorithm using brute-force method. The block size is set to 8x8 and the maximum

displacement in two directions, horizontally and vertically, is set to Ŧ6 pixels.

35

Figure 5.2 2-D subbands used in video codec

Each 8x8 block in full frame resolution corresponds to a 4x4 block in 4

subbands. Since the LL band is further decomposed into 4 subbands as seen in

Figure 5.2, each 4x4 block in LL band corresponds to a 2x2 block in these subbands.

The 4x4 and 2x2 blocks correspond to a block motion vector of size 8x8 in full frame

resolution. In his thesis, Mutlag stated that there is a relation between motion vector

magnitude and the MCFD variance of the corresponding block[13]. In general, large

magnitude motion vectors represent high variance blocks in the MCFD signal while

blocks with small motion vectors have small variances. By using this relation the

codebooks are created depending on the motion vector magnitude. The magnitude

of motion vector m is given by

.where i and j are the horizontal and vertical displacements respectively. The block

motion vectors are classified into 3 groups depending on their motion magnitudes:

• Group 1: m =̂1 or 2

• Group 2: m =̂3 or 4

36

• Group 3: m̂=5 or 6.

Codebooks are generated using the subblocks corresponding to these groups. As a

result, 9 codebooks are generated for the LLLL, LLLH and LLHL bands using the

LGB algorithm.

For the LLLL band, the codebook contains 512 vectors in which each vector is

in dimension 4. For the LLLH and LIAM bands the codebook size is 512 and each

codeword is in dimension 16. For the latter case, 4 motion vectors are averaged and

these motion vectors are used to create the codebooks.

5.4.2 Vector Quantization for the AR(1) Model Parameters

As mentioned earlier, the LH band is AR(1) modeled and model parameters are

vector quantized and encoded for transmission. The model parameters, ph , pv, σ2,

and η, are vector quantized as follows: for means and variances two 256 length

codebooks in which each codeword is in dimension 16 are generated. For the

prediction coefficients, the coclebook size is set to 512 where each codeword is also

in dimension 16.

In conclusion, 12 codebooks are generated to vector quantize the subbands and

model parameters.

CHAPTER 6

EXPERIMENTAL STUDIES

The performance of the proposed low bit-rate hybrid subband codec was simulated.

The first forty frames of monochrome video test sequences CINDY, MONO, DUO,

QUARTET and TOPGUN are used. The video frames are 512x400 pixel size except

240x352 for TOPGUN sequence, and 8 bits/pixel.

Simulations are carried out in the following manner. First, the MCFD signals

are split into 7 subbands using 2-D dyadic tree structure and separable 8-tap

filters[14]. Next, the statistical modeling of some subband signals are studied. The

last step, the quantization, is carried out after modeling those subbands.

6.1 	Subband Decomposition of the MCFD Signals

In this study, 7 band 2-D dyadic tree structure is employed for decomposition of the

MCFD signal. This analysis/ synthesis subband tree structure is given in Figure

4.11. The filters employed are 8-tap separable filters. The frequency response of

these filters are given in Figure 6.1. After studying the subband signals, LLHH, HL,

MI bands are found insignificiant and completely discarded.

6.2 Statistical Modeling In Subbands

The remaining subbands are studied for statistical modeling using 2-D AR(1)

technique. The LH band is statistically modeled. The model parameters are

quantized and sent to the receiver side for the reconstruction of LH band. The

modeling procedure was explained in detail in Chapters 3 and 5.

Frame by frame variation of subband variances for LH band before and after

2-D AR(1) modeling of the test sequence "CINDY" was displayed in Figure 3.3. As

37

3.8

Figure 6.1 Frequency responses of the 8 tap separable low-pass and high-pass filters.

seen from the figure, modeling brings some error, but this error can he tolerated for

the low bit-rate coding applications.

6.3 Quantization

Vector quantization is used to encode the subbands. The Motion Based Adaptive

Vector Quantization (MBAVQ) is used for the subbands which are not modeled.

Codebooks are generated using the LGB algorithm. For the statistically modeled

LH band, the model parameters for each 4x4 blocks are quantized using the classical

VQ algorithm. The more information about quantization was given in chapter 5.

The peak-to-peak signal to noise ratio is used as the objective performance

criterion and defined as

39

Figure 6.2 Frame by frame variation of the average SNRpp values in dB for the test
sequence "CINDY".

where the denominator term is the mean square coding error.

Frame by frame variation of peak-to peak SNR values before and after quanti-

zation for the test sequence "CINDY" is given in Figure 6.2 along with the average

SN Rpp(dB) values for the first forty frames. Figure 6.2 also shows the S N Rpp(dB)

values for the 10 band case which is used for comparison.

The total bit-rate for the proposed hybrid video codec can be expressed as

where

• BM= average bits/pixel for motion information.

• BSB= average bits/pixel for the subband signals which are not modeled.

• BAR(1)=average bits/pixel for the AR.(1) modeled subbands.

40

The measure of information is expressed by the entropy. The first order entropy

is defined as

where p(i) is the probability of the source symbol i. The frame by frame variation of

entropy values for the first forty frames of test sequence "CINDY" is given in Figure

6.3 along with the average entropy values.

The performance of the proposed algorithm was also tested for the video

sequences which are not a part of the training sequence. "TOPGUN" which is not a

part of training sequence, gave the superior SNR results for the proposed algorithm

compared to the other algorithms used for comparison. Figures 6.4 and 6.5 display

the S N Rpp(dB) and entropy values of the tested 100 frames of the video sequence

"TOPGUN". These figures also show the performance of the algorithms used for

comparison.

25th and 26th frames of the test sequence "CINDY" are given in Figures 6.6 -

6.10 along with the MCFD frames for coded and original cases.

41

Figure 6.3 Frame by frame variation of the first order entropy values for the test
sequence "CINDY".

42

Figure 6.4 Frame by frame variation of the average SNRpp values in dB for the test
sequence "TOPGUN".

43

Figure 6.5 Frame by frame variation of the first order entropy values for the test
sequence "TOPGUN".

44

Figure 6.6 25tb frame of the test sequence "CINDY"

45

Figure 6.7 The direct difference between the frames 25 and 26 of test sequence
"CINDY"

46

Figure 6.8 26th frames of the test sequence "CINDY", the original (top) and coded
(bottom) (SNRpp = 34.1, bpp = 0.24)

Figure 6.9 26th MCFD frames of "CINDY", the original (top) and coded (bottom)
(SNRpp = 34.1, bpp = 0.24).

47

Figure 6.10 LH band of the 26th MCFD frames of "CINDY", the original (top)
and statistically modeled (bottom).

48

CHAPTER 7

CONCLUSIONS AND DISCUSSIONS

A hybrid low bit-rate video codec is proposed in this study. The proposed technique

achieves a good objective and visual performance at the low bit-rates B<0.30

bits/pixel with the SNRpp 30-36 dB range.

It is well known that the training sequence dependency of vector quantization

is a very important problem. Furthermore, the modeling approach used introduces

some error due to stationarity assumption. In spite of these drawbacks, the statistical

modeling is a viable approach for the low-correlated MCFD signal subbands and,

the study to improve and develop better modeling techniques is an open field. In

conclusion, the future work is to find better modeling approaches to have better

performance and visual quality for low bit-rate video coding applications.

49

APPENDIX A

Simulation Program for the 7 Band Dyadic Tree Structure

c SOURCE CODE FOR THE PROPOSED ADAPTIVE SUBBAND VIDEO CODING WITH
c MOTION COMPENSATION using MBAVQ
c 	nx 	Row size of the picture
c 	ny 	Column size of the picture
c 	frame? Previous Frame
c 	frame2 Current Frame
c 	pics 	Search frame from the previous frame
c 	recon Prediction of the current frame with motion compensation
c 	ibs 	Block size (8 is used)
c 	ip 	Assumed maximum displacement (Max of 6)
c 	frm2msk ibs*ibs size mask of the current frame to be
c 	 motion compensated
c 	frm1msk ibs*ibs size mask of the previous frame in the
c 	 same geometrical position (used for motion detection)
c 	err? 	Motion Compensated Frame Difference Signal
c 	searg 	Search Region (ibs+ip)*(ibs+ip)
c 	mask 	Same as frm2msk

parameter(nx=400,ny=512)
integer motionv(50,64),ifld
common /motionv/ motionv
common /ifld/ ifld
common /ifl/ ifl
real outimg(400,512)

real framel(nx,ny),frame2(nx,ny),pics(416,528)
real recon2(nx,ny),frmlmsk(8,8),frm2msk(8,8),errl(nx,ny)

real recon3(400,512), errtemp(400,512)
integer ifrml(nx,ny),ifrm2(nx,ny)
real dirdif(400,512)

real b1v1(512,4),b1v2(512,4),b1v3(512,4)
real b2v1(512,16),b2v2(512,16),b2v3(512,16)
real b3v1(512,16),b3v2(512,16),b3v3(512,16)

real b4v1(256,16),b4v2(256,16),b4v3(512,16),b4v4(512,16)

common /entropyl/entropyl
common /entropy2/entropy2

50

51

common /entropy3/entropy3
common/arbitrate/arbitrate

common /vqcodebookl/ blvl,blv2,blv3

common /vqcodebook2/ b2v1,b2v2,b2v3

common /vqcodebook3/ b3v1,b3v2,b3v3

common /vqcodebook4/ b4v1,b4v2,b4v3,b4v4

character*1 pim(nx,ny)

character*1 pim1(nx,ny)
integer mcvector(50,64)

common /AAA/ searg(24,24),mask(8,8)

print*, 'READING CODEBOOKS'

open (15,file='B1NEW/b1v1.12')

do 10 1=1,512

read(15,*) (blvl(i,j),j=1,4)

10 	continue

close(15)

open (16,file=)B1NEW/blv2.34')

do 11 i=1,512
read(16,*) (b1v2(i,j),j=1,4)

11 	continue

close(16)

open (17,file='B1NEW/blv3.56')

do 12 1=1,512
read(17,*) (b1v3(i,j),j=1,4)

12 	continue
close(17)

open (20,file='QUANTIZER/b2v1.12')

do 1110 i=1,512

read(20,*) (b2v1(i,j),j=1,16)

1110 	continue

close(20)

open (21,file='QUANTIZER/b2v2.34')

do 1111 i=1,512

read(21,*) (b2v2(i,j),j=1,16)

1111 	continue
close(21)

open (22,file='QUANTIZER/b2v3.56')

do 1112 i=1,512
read(22,*) (b2v3(i,j),j=1,16)

1112 	continue
close(22)

open (23,file='QUANTIZER/b3v1.12')
do 1113 i=1,512

read(23,*) (b3v1(i,j),j=1,16)
1113 	continue

close(23)

open (24,file='QUANTIZER/b3v2.34')
do 1114 i=1,512
read(24,*) (b3v2(i,j),j=1,16)

1114 	continue
close(24)

open (25,file='QUANTIZER/b3v3.56')

do 1115 i=1,512
read(25,*) (b3v3(i,j),j=1,16)

1115 	continue
close(25)
open (26,file='QUANTIZER/b4v4.mn')
do 1116 i=1,256
read(26,*) (b4v1(i,j),j=1,16)

1116 	continue
close(26)

open (27,file='QUANTIZER/b4v4.var')

do 1117 i=1,256
read(27,*) (b4v2(i,j),j=1,16)

1117 	continue
close(27)

open (28,file='QUANTIZER/b4v4.rh')
do 1118 i=1,512
read(28,*) (b4v3(i,j),j=1,16)

1118 	continue
close(28)

52

open (29,file='QUANTIZER/b4v4.rv')
do 1119 i=1,512
read(29,*) (b4v4(i,j),j=1,16)

1119 	continue

close(29)
print*, 'CODEBOOKS ARE READ'

c mfld: final field to be read
c ifld: starting field number

mfld =34
ifld =33

call read_frm(ifld,pim)
if1=0

c************************************

c Frame One is read into frame1 array
c*************************************

do 100 i=1,nx
do 100 j=1,ny
ifrml(i,j)=ichar(pim(i,j))
if(ifrml(i,j).11.0) ifrml(i,j)=256+ifrml(i,j
framel(i,j)=float(ifrml(i,j))

	

100 	continue

c call write_in_frm(ifld,frame1)
c call write_out_frm(ifld,framel)

write(35,*) 'Original Image'

c The loop to process mfld number
c 	of frames begins here

	

6000 	ifld = ifld+1
ifl=ifl+1
write(*,*) 'Frame Number = 	ifld,ifl

write(35,*) 'Frame Number =',ifld

call read_frm(ifld,pim1)

c************************************

c Current frame is read into frame2
c**************************************

53

54

do 110 i=1,nx
do 110 j=1,ny
ifrm2(i,j)=ichar(pim1(1,j))

if(ifrm2(i,j).1t.0) ifrm2(i,j)=256+ifrm2(i,j)

frame2(i,j)=float(ifrm2(i,j))
110 	continue

c 	call write_in_frm(ifld,frame2)

c********************************

c Auto-Correlation, Mean, Variance
c are calculated in
c the subroutine autocor
c********************************

c 	print *,'Frame k'
write(35,*) 'Frame k'
call autocor(frame1,nx,ny)

c 	print *,'Frame k+1'
write(35,*) 'Frame K+1'
call autocor(frame2,nx,ny)

do 2000 i=1,400
do 2000 j=1,512
dirdif(i,j)=frame2(i,j)-frame1(i,j)

2000 	continue

c 	write(35,*) 'Direct Difference Frame'

call autocor2(dirdif,nx,ny)

c ip: displacement
ip=6

c ibs: the mask block size
ibs=8

c imthd: Enter 1 for Brute-force method and 2 for Orthogonal src
imthd=1

c imdetect: Enter 1 if motion-detection is required'
imdetect=1

c************************************

c Search Array pics is Initialized

c************************************

do 101 i=1,nx+2*ip

do 101 j=1,ny+2*ip

pics(i,j)=0.0

101 continue
c***

c Search Array is generated from the previous frame.

c Borders are filled with first(or last) ip

c rows(or clums) of the previous frame
c**

do 155 i=1,nx

do 155 j=1,ny

pics(i+ip,j+ip)=framel(i,j)

155 continue

do 111 i=1,ip

do 111 j=1,ny

pics(i,j)=frame1(i,j)

pics(i+nx+ip,j)=framel(i+nx-ip,j)

111 	continue

do 112 i=1,nx

do 112 j=1,ip

pics(i,j)=frame1(i,j)

pics(i,j+ny+ip)=framel(i,j+ny-ip)

112 	continue
c***

c Prediction of the Current frame is Initialized

c***

do 240 i4=1,nx

do 240 j4=1,ny

recon2(i4,j4)=0.0

240 	continue

c***

c The current frame is devided into 8*8 blocks and

c motion compensated. mcount keeps count of number

c 	of moving blocks.
c***

55

mcount=0
do 200 i=1,nx/ibs

do 200 j=1,ny/ibs
iact=(i-1)*ibs+1

jact=(j-1)*ibs+1
if (imdetect .eq. 1) then

do 401 k=1,ibs
do 401 1=1,ibs

frmlmsk(k,l)=framel(iact-l+k,jact-1+1)
frm2msk(k,1)=frame2(iact-1+k,jact-1+1)
401 continue
c**

c 	First the motion is detected
c**

call motiondetect(frm1msk,frm2msk,ibs,indx)

if (indx .eq. 1) then
mcount=mcount+1
do 410 i1=1,ibs+ip*2

do 410 j1=1,ibs+ip*2
searg(i1,j1)=pics(i1+iact-l+ip-ip,j1+jact-l+ip-ip)
410 	continue

do 420 i2=1,ibs
do 420 j2=1,ibs
mask(i2,j2)=frame2(iact-1+i2,jact-1+j2)

420 continue

if motion is detected, it is estimated and predicted

call matct(ip,ibs,imthd,n,nn,Num)
motionv(i,j)=max(abs(n-7),abs(nn-7))
mcvector(i,j)=Num
do 430 i3=1,ibs
do 430 j3=1,ibs
recon2(iact-1+i3,jact-1+j3)=pics(iact+ip-1+(n-ip)-1+i3,

+ jact+ip-1+(nn-ip)-1+j3)
430 	continue

else
motionv(i,j)=0

56

mcvector(i,j)=0
c 	write(55,*) mcvector(i,j)

do 402 k1=1,ibs
do 402 11=1,ibs

recon2(iact-1+k1,jact-1+11)=framel(iact-1+kl,jact-1+11)
402 	continue

endif

else

do 210 i1=1,ibs+ip*2
do 210 j1=1,ibs+ip*2

searg(il,j1)=pics(i1+iact-1+ip-ip,j1+jact-1+ip-ip)
210 	continue

do 220 i2=1,ibs
do 220 j2=1,ibs
mask(i2,j2)=frame2(iact-1+i2,jact-1+j2)

220 	continue

call matct(ip,ibs,imthd,n,nn,Num)

do 230 i3=1,ibs
do 230 j3=1,ibs

recon2(iact-1+i3,jact-1+j3)=pics(iact+ip-1+(n-ip)-1+i3,
+ jact+ip-1+(nn-ip)-1+j3)

230 	continue
endif
c 	write(55,*) motionv(i,j)

200 continue

MCFD signal is generated
c****************************

do 650 i=1,400
do 650 j=1,512

650 	recon3(i,j)=0.0

do 700 i=1,400
do 700 j=1,512

57

58

	

700 	recon3(i,j)=recon2(i,j)

do 599 i=2,nx-1
do 600 j=2,ny-1

recon3(i,j)=(1.0/16.0)*(recon2(i-1,j-1)+2.0*recon2(i-1,j)

# 	+ recon2(i-1,j+1)+2.0*recon2(i,j-1)+4.0*recon2(i,j)

# 	+2.0*recon2(i,j+1)+recon2(i+1,j-1)+2.0*recon2(i+1,j)

# 	+recon2(i+1,j+1))

	

600 	 continue

	

599 	 continue

do 300 i=1,nx

do 300 j=1,ny

err=(err+abs(frame2(i,j)-recon3(i,j)))

errl(i,j)=frame2(i,j)-recon3(i,j)

	

300 	continue
print *,'the value of err=',err

write(35,*) 'the value of err=',err

if (imdetect .eq. 1) then

print *,'Number of blocks motion detected = 	mcount

write(35,*)'Number of blocks motion detected =',mcount

endif

print *,'Error Signal'

write(35,*) 'Error Signal'

call autocor(errl,nx,ny)

print *,'Predicted singal'
write(35,*) 'Predicted signal'

call autocor(recon2,nx,ny)

do 350 i = 1,nx

do 350 j = 1,ny

errtemp(i,j) = errl(i,j)

outimg(i,j)=0.0

	

350 	 continue

call bitrates2(mcvector,entropy,50,64)

c 	call writeimgs(err1,400,512,'diff25')

*****CODING OF MCFD SIGNAL IS CARRIED OUT HERE******

**********7-BAND FILTER BANK IS CALLED************

59

call subband(err1,outimg,400,512)

print *,'Error Signal after the vector quantization'
write(35,*)'Error Signal after the vector quantization'
call autocorl(outimg,nx,ny)
vecmean = 0.0
vecvar = 0.0
do 351 i = 1,nx
do 351 j = 1,ny
vecmean = vecmean + (errtemp(i,j) - outimg(i,j))
vecvar = vecvar + (errtemp(i,j) - outimg(i,j))**2

351 	continue
vecmean = vecmean/(nx*ny)
vecvar = vecvar/(nx*ny) - vecmean**2

write(35,*) 'Variance of quantization error',vecvar

**

Quantized MCFD signal is added to the motion compensated
prediction of the current frame and put into frame1 and
this becomes the previous frame for the next current frame

xmse = 0.0

do 1000 i=1,nx
do 1000 j=1,ny
framel(i,j)=recon3(i,j)+outimg(i,j)
xmse = xmse + (frame2(i,j)-frame1(i,j))**2

1000 	continue

call write_out_fr(frame1)
c 	call write_out_frm(ifld,frame1)

xmse = xmse/(nx*ny)
snr = 10*log10(255**2/xnse)
write(*,*) 'SNR = ',snr
write(35,*) 'SNR = ',snr
write(100,*) ifld ,snr

write(*,*) 'Mean Square Error after Vector
+ Quantization=',xmse

write(36,*) ifld,xmse
write(*,*) 'mean square error=',xmse

tbit1111=entropy1/(400*512)
tbitlllh=entropy2/(400*512)

tbitllhl=entropy3/(400*512)
tbitlh=arbitrate/(400*512)

xmbitrate = entropy/64.0
tbitsub= (entropy1+entropy2+entropy3+arbitrate)/(400*512)
tbitrate=xmbitrate+tbitsub
write(200,*) xmbitrate

write(201,*) tbitsub
write(35,*) 'total bitrate=',tbitrate
write(202,*) tbitrate
write(*,*) 'total bitrate=',tbitrate

**

*if all the frames are not processed go back

if(ifld.lt.mfld) go to 6000
stop

end

* subroutine matct

subroutine matct(ip,ibs,imthd,n,nn,Num)

common /AAA/ searg(24,24),mask(8,8)
real test(13,13)

do 50 i=1,2*ip+1
do 50 j=1,2*ip+1
test(i,j)=0.0
do 50 ii=1,ibs
do 50 jj=1,ibs
test(i,j)=abs(mask(ii,jj)-searg(i+ii-1,j+jj-1))+test(i,j)

50 	continue

60

c Brute force technique

if (imthd .eq. 1) then
tmin=1.0e20
do 100 i=1,2*ip+1
do 100 k=1,2*ip+1

if(test(i,k) .lt. train) then
tmin=test(i,k)

n=i
nn=k

endif
100 continue

else

call ortho(test,ip,ibs,icent,jcent)

n=icent
nn=jcent

endif

c

c Generates anumber between 1 & 169, The number idicates
c the motion information
c

Num=(n-1)*(ip*2+1)+nn
c 	write(*,*) Num,n,nn

return
end

subroutine ortho(test,ip,ibs,icent,jcent)
**

* Independent Orthognal Search Technique *
**

real test(ip*2+1,ip*2+1)

icent=ip+1
jcent=ip+1 l=ip/2.+.5

istep=0

61

10 if ((test(icent,jcent) .lt. test(icent,jcent-l)) .and.

(test(icent,jcent) .lt. test(icent,jcent+l))) then
icent=icent

jcent=jcent
else if ((test(icent,jcent-l) .lt. test(icent,jcent)) .and.

(test(icent,jcent-l) .lt. test(icent,jcent+l))) then
icent=icent

jcent=jcent-l
else if ((test(icent,jcent+1) .lt. test(icent,jcent)) .and.

(test(icent,jcent+l) .lt. test(icent,jcent-l))) then
icent=icent

jcent=jcent+1
endif

istep=istep+1

if ((test(icent,jcent) .lt. test(icent-1,jcent)) .and.
(test(icent,jcent) .1t. test(icent+l,jcent))) then

icent=icent
jcent=jcent

else if ((test(icent-l,jcent) .lt. test(icent,jcent)) .and.
(test(icent-1,jcent) .lt. test(icent+l,jcent))) then

icent=icent-l
jcent=jcent

else if ((test(icent+1,jcent) .lt. test(icent,jcent)) .and.
(test(icent+1,jcent) .it. test(icent-l,jcent))) then

icent=icent+1
jcent=jcent

endif

istep=istep+1

if (l .ne. 1) then
1=(1/2.0+.5)
go to 10

endif

return
end

subroutine motiondetect(frmlmsk,frm2msk,ibs,indx)

62

* Subroutine calculates if motion is present in the *
* (ibs*ibs) subblock

real frmlmsk(ibs,ibs),frm2msk(ibs,ibs)

kount=0
do 10 i=1,ibs

do 10 j=1,ibs
thrsh=abs(frm1msk(i,j)-frm2msk(i,j))

if (thrsh .gt. 3) kount=kount+1
10 continue

if (kount .gt. 10) then
indx=1

else
indx=0
endif
c print *,'index',indx
return
end

This Subroutine calculates the prediction coefficients,
*means and variances of each ibx*iby block and forms *
*the AR(1) model of corresponding subband frame

subroutine arl(fror,nx,ny,armod,ibx,iby)
character*1 pimm(200*256)
real fror(1:nx,1:ny)
real 	autoc(12800)
real autocl(12800)
real uframel(-12:212,-12:268)
real rmeanl(3200),fror0(-10:210,-10:266)
real framar1(1:200,1:256)
real rh(3200),rv(3200),var(3200)
real armod(1:200,1:256)
real frorl(-5:205,-5:261)
real mean,sigma
integer hist41(512)
integer hist42(512)
integer hist43(512)
integer hist44(512)
common/arbitrate/arbitrate

63

real yy(1:16)
common /yy/yy

do 13 i=-5 ,205
do 13 j=-5 ,261
fror1(i,j)=0.0

13 	continue

do 44 i=1,3200

rmeanl(i)=0.0
rh(i)=0.0
rv(i)=0.0
var(i)=0.0

44 	continue

c 	write(1,*) ((fror(i,j),j=1,256),i=1,200)

do 39 i=1,200
do 39 j=1,256
frorl(i,j)=fror(i,j)
framarl(i,j)=0.0
armod(i,j)=0.0

39 	continue
**

* IN FOLLOWING LOOP ZERO MEAN FRAME OPTAINED*
**

kk=0
do 10 i=0,nx-ibx,ibx
do 11 j=0,ny-iby,iby
ii=i

J1=3
kk=kk+1
rmn=0.0
do 12 k=ii+1,ii+ibx
do 12 1=jj+1,jj+iby

rmn=rmn+frorl(k,1)
12 	continue

rmean1(kk)=rmn/(ibx*iby)

do 14 m=ii+1,ii+ibx
do 14 n=jj+1,jj+iby

64

fror0(m,n)=fror1(m,n)-rmean1(kk)
14 	continue

11 	continue
10 	continue

do 50 m=-12,nx+12
do 50 n=-12,ny+12
uframe1(m,n)=0.0

50 	continue
mm=0

*IN FOLLOWING LOOP ,ZERO MEAN MCFD FRAME MODELED BY *
*USING THE AR1 MODEL PARAMETERS. FIRST, VARIANCE, 	*
*AUTOCORRELATION , RH,RV OF EACH ibx*iby BLOCKS ARE *
*CALCULATED

do 511 i=0, nx-ibx,ibx
do 512 j=0, ny-iby,iby
ii=i

jj=j
mm=mm+1
rautoc=0.0
do 71 k=ii+1,ii+ibx
autoc(k)=0.0
do 72 l=jj+1, jj+iby-1
autoc(k)=autoc(k)+fror0(k,l)*fror0(k,1+1)

72 	continue
rautoc=rautoc+autoc(k)
71 	continue

rautoc = rautoc/(ibx*iby)

rautoc1=0.0
do 23 l=jj+1, jj+iby
autoc1(l)=0.0
do 24 k=ii+1, ii+ibx-1
autoc1(1)= autoc1(1)+fror0(k,1)*fror0(k+1,l)

24 	continue
rautocl=rautoc1+autoc1(1)

23 	continue

65

66

rautocl = rautoc1/(ibx*iby)

var1=0.0
do 25 k=ii+1, ii+ibx
do 26 l=jj+1, jj+iby
var1=var1+fror0(k,1)*fror0(k,l)

26 	continue
25 	continue

var(mm) = varl/(ibx*iby)
rh(mm) = rautoc/var(mm)
rv(mm)= rautoc1/var(mm)

c 	write(50,*) rh(mm),rv(mm)

512 	continue

511 	continue

* QUANTIZATION OF THE AR1 MODEL PARAMETERS*
* ARE CARIED OUT HERE

print*, 'quantizing ar1 parameters'

call vec_quant4(rmean1,1,hist41,256)
call vbitrates4(hist41,bs1,256)

call vec_quant4(var,2,hist42,256)
call vbitrates4(hist42,bs2,256)

call vec_quant4(rh,3,hist43,512)
call vbitrates4(hist43,bs3,512)

call vec_quant4(rv,4,hist44,512)
call vbitrates4(hist44,bs4,512)

arbitrate=bs1+bs2+bs3+bs4
write(*,*) 'BITRATE FOR AR1=', arbitrate

c 	write(100,*) (hist41(i),i=1,512)

N=16

sigma=1.0
mean=0.0
nu=0
call gauss(N,mean,sigma,iseed)

do 518 i=0, nx-ibx,ibx
do 518 j=0, ny-iby,iby
ii=i

jj=j
nu=nu+1
varno=(1.0-rh(nu)**2)*(1.0-rv(nu)**2)*var(nu)
sigma1=sqrt(varno)

nn=0
do 27 k=ii+1, ii+ibx
do 28 l=jj+1, jj+iby
nn=nn+1
uframel(k,l)=rh(nu)*uframe1(k,l-1)+rv(nu)*uframel(k-1,1)

rh(nu)*rv(nu)*uframel(k-1,1-1)+sigma1*yy(nn)
28 	continue

27 	continue

MEANS ARE ADDED TO THE AR1 MODELED MCFD FRAME

do 29 k=ii+1, ii+ibx
do 30 1=jj+1, jj+iby
framarl(k,1)=uframe1(k,l)+rmeanl(nu) uframel(k,l)=0.0

30 	continue
29 	continue

518 	continue

do 510 i=1,nx
do 510 j=1,ny
armod(i,j)=framar1(i,j)

510 	continue

c 	open(99,file='ard25',access='direct',form='unformatted'

c 	+ ,recl=nx*ny)
c 	do 690 i=1,nx
c 	do 691 j=1,ny
c 	ip=int(armod(i,j))+128
c 	if(ip.gt.255) ip=255

67

c 	if (ip.lt.0) ip=0
c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue
c 	write(99,rec=1) (pimm(j),j=1,nx*ny)
c 	close(99)

write(*,*) 'OKAY'
return
end

* GAUSSIAN NOISE GENERATOR *

subroutine gauss(N,mean,sigma,iseed)
real x(1:16),mean,yy(1:16)
common /yy/yy
do 1 i=1,N
x(i)=gran(mean,sigma,iseed)
yy(i)=x(i)

1 	continue
return
end

**

function gran(mean,sigma,iseed)
real mean
u=0
do 1 i=1,12
u=u+ran(iseed)

1 	continue
gran=sigma*(u-6)+mean

return
end

c***************************************

subroutine write_out_fr(frm)
real frm(400,512)
real frm1(1:512,1:512)
character*1 image(512*512)
common /ifl/ ifl
parameter(nx=400,ny=512)
open(21,file='fr25',access='direct',form=

& 'unformatted',rec1=512*512)

68

do 300 i=0,513
do 300 j=0,513

300 	 frml(i,j)=0.0

do 200 i=1,400

do 200 j=1,512
frm1(i,j)=frm(i,j)

200 	continue

do 599 i=1,nx
do 600 j=1,ny

frml(i,j)=(1.0/16.0)*(frm(i-1,j-1)+2.0*frm(i-1,j)
#+ frm(i-1,j+1)+2.0*frm(i,j-1)+4.0*frm(i,j)

#+2.0*frm(i,j+1)+frm(i+1,j-1)+2.0*frm(i+1,j)
#+frm(i+1,j+1))

600 	 continue

599 	 continue

c 	 do 499 i=3,nx-2
c 	 do 500 j=3,ny-2

c 	frml(i,j) =(1.0/256.0)*((frm(i-2,j-2)+frm(i-2,j+2)

c 	# +frm(i+2,i+2))

c 	# +4.0*(frm(i-2,j-1)+frm(i-2,j+1)+frm(i-1,j-2)

c 	# +frm(i-1,j+2))
c 	# +4.0*(frm(i+1,j-2)+frm(i+1,j+2)+frm(i+2,j-1)

c 	# +frm(i+2,j+1))

c 	# +6.0*(frm(i-2,j)+frm(i,j-2)+frm(i,j+2)

c 	# +frm(i+2,j))
c 	# +16.0*(frm(i-1,j-1)+frm(i-1,j+1)

c 	# +frm(i+1,j-1)+frm(i+1,j+1))

c 	# +24.0*(frm(i-1,j)+frm(i,j-1)+fim(i,j+1)

c 	# +frm(i+1,j))
c 	# +36.0*frm(i,j))+(1./256.)*frm(i+2,j-2)

c500 	continue
c499 	continue

do 10 i=1,512
do 10 j=1,512
ip=int(frm1(i,j)+.5)
if(ip.gt.255) ip=255
if(ip.lt.0) ip=0
if(ip.gt.127) ip=ip-256
image((i-1)*512+j) = char(ip)

10 	continue

69

write(21,rec=ifl)(image(j),j=1,512*512)

close(21)

return
end

subroutine write_out_frm(ifld,frm)
real frm(400,512)
real pic1(1:512,1:512)
character*1 image(512*512)

open(21,file='cindy.out',access='direct',foim=
& 'unformatted',recl=512*512)

do 300 i=0,513
do 300 j=0,513

300 	 pic1(i,j)=0.0

do 200 i=1,400
do 200 j=1,512
picl(i,j)=frm(i,j)

200 	continue

do 599 i=1,nx
do 600 j=1,ny

pic1(i,j)=(1.0/16.0)*(frm(i-1,j-1)+2.0*frm(i-1,j)

frm(i-1,j+1)+2.0*frm(i,j-1)+4.0*frm(i,j)
#+2.0*frm(i,j+1)+frm(i+1,j-1)+2.0*frm(i+1,j)
#+frm(i+1,j+1))

600 	 continue
599 	 continue

do 10 i=1,400
do 10 j=1,512
ip=int(picl(i,j)+.5)
if(ip.gt.255) ip=255
if(ip.lt.0) ip=0
if(ip.gt.127) ip=ip-256

70

image((i-1)*512+j) = char(ip)
10 	continue

write(21,rec=ifld)(image(j),j=1,512*512)

close(21)

return
end

* SUBROUTINE AUTOCOR*

subroutine autocor(frame,nx,ny)
real frame(nx,ny)
real autoc(400),autoc1(512)

rautoc=0.0
do 11 k=1,nx
autoc(k)=0.0
do 12 l=1,ny-1
autoc(k)=autoc(k)+frame(k,l)*frame(k,l+1)

12 	continue
rautoc=rautoc+autoc(k)/ny

11 	continue

rautoc1=0.0
do 13 1=1,ny

autoc1(l)=0.0
do 14 k=1,nx-1

autoc1(1)=autoc1(l)+frame(k,1)*frame(k+1,l)

14 	continue
rautocl=rautocl+autoc1(1)/nx

13 	continue

rac=0.0
rmean=0.0
do 23 l=1,ny

do 24 k=1,nx
rac=rac+frame(k,l)*frame(k,l)
rmean=rmean+frame(k,l)

24 	continue

23 	continue

71

rmean=rmean/(nx*ny)
var=rac/(nx*ny)-rmean*rmean

rautoc=rautoc/nx-rmean*rmean
rautoc1=rautoc1/ny-rmean*rmean

write(35,*) 'Mean Variance'
write(35,*) rmean,var

rh=rautoc/var
rv=rautoc1/var

write(35,*) 'Autocor-H,Autocor-V'
write(35,*) rh,ry

return
end

**

* subroutine initial
* This subprogram initialize the main program*
**

subroutine initial
character*80 input_file
common /ina/ input_file

write (*,1)
write (*,3)

read (5,4) input_file

1 	format (' 	')

3 	format (' Enter the name of the file contains
& ',/,'the order of the filtes there coefficients,
& input Image, and output file:')

4 	format(a80)

return
end

c***

subroutine writeimgs(pic,nx,ny,name)

real pic(nx,ny)
character*1 pim(400*512)

character*20 name

72

open(1,file=name,access='direct',
+ form='unformatted',rec1=400*512)

do 20 i=1,nx
do 20 j=1,ny
ip=int(pic(i,j))+128
if(ip.gt.255) ip=255
if(ip.lt.0) ip=0
if(ip.gt.128) ip=ip-256
mm=j+(i-1)*ny
pim(mm)= char(ip)

20 	continue
write(1,rec=1) (pim(j),j=1,nx*ny)
close (1)

return
end

c**

subroutine writeimg(pic,nx,ny,name)
real pic(nx,ny)
character*1 pim(400*512)
character*20 name

open(1,file=name,access='direct',
+ form='unformatted',recl=nx*ny)

do 20 i=1,nx
do 20 j=1,ny
ip=int(pic(i,j))
if(ip.gt.128) ip=ip-256
mm=j+(i-1)*ny
pim(mm)= char(ip)

20 	continue
write(1,rec=1) (pim(j),j=1,nx*ny)
close (1)

return
end

c***

subroutine writeint(c,nx,ny,name)
real c(nx,ny)

character*20 name

73

open(1,file=name)

74

do 10 i=1,nx
write(1,*) (c(i,j),j=1,ny)

10 	continue

close (1)

return
end

**

subroutine writeint1(pic,nx,ny,name)
integer pic(nx,ny)
character*20 name

open(1,file=name)

do 10 i=1,nx
write(1,*) (pic(i,j),j=1,ny)

10 	continue

close (1)

return
end

c ***

subroutine read_frm(ifld,pic)
character*1 pic(400,512)

open(1,file='/images/cindy',access='direct',form=

& 'unformatted',recl=512)

c 	open(1,file='/images/mono',access='direct',form=
c 	& 'unformatted',rec1=512)
c
c 	open(1,file='/images/quartet',access='direct',form=
c 	& 'unformatted',rec1=512)
c
c 	open(1,file='/images/duo',access='direct',form=
c 	& 'unformatted',rec1=512)
c

icod1 = (ifld-1)*400
icod2 = (ifld-1)*400 + 200

do 10 i=1,200
read(1,rec=icodl+i)(pic(2*i-1,j),j=1,512)

read(1,rec=icod2+i)(pic(i*2,j),j=1,512)
10 	continue

close(1)

return
end

subroutine write_in_fim(ifld,pic)
real pic(400,512)
character*1 image(512*512)

open(22,file='cindy.in',access='direct',form=
& 'unformatted',rec1=512*512)

do 10 i=1,400
do 10 j=1,512

ip=int(pic(i,j)+.5)
if(ip.gt.255) ip=255
if(ip.lt.0) ip=0
if(ip.gt.127) ip=ip-256
image((i-1)*512+j) = char(ip)

10 continue

do 20 i=204801,262144
image(i) = char(003)

20 	continue

write(22,rec=ifld)(image(j),j=1,512*512)

close(22)

return
end
**

subroutine write_lfrm(pic,name)
real pic(400,512)
character*1 image(512*400)
character*20 name

75

76

open(22,file=name,access='direct',form=
& 'unformatted',recl=512*400)

do 10 1=1,400
do 10 j=1,512
ip=int(pic(i,j)+.5)
if(ip.gt.255) ip=255
if(ip.lt.0) ip=0
if(ip.gt.127) ip=ip-256
image((i-1)*512+j) = char(ip)

10 continue

c 	write(22,rec=1)(image(j),j=1,512*400)

close(22)

return
end

* SUBROUTINE SUBBAND-7 BAND ANALYSIS AND SYNTHESIS*

* LL-LH-HL-HH Bands used
* Synthesize band signals
* Write out reconstructed imageaa*

subroutine subband(inimg,outimg,nx,ny)

integer raw,col

c 	raw=number of rows of input image
c 	col=number of columns of input image

* CHANGE raw and col values for different sized images*

parameter(raw=400,col=512)

real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20)
character*80 input_file
common /ifl/ ifl
common /ina/ input_file

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2
,ltap3,mtap3,ltap4,mtap4

real inimg(nx,ny)
real a1(200,256),a2(200,256),a3(200,256),a4(200,256)
real outimg(400,512)
real bl(raw/4,col/4),b2(raw/4,col/4)
real b3(raw/4,co1/4),b4(raw/4,co1/4)
real e1(raw/2,co1/2)

c 	input_file='in8'
c 	input_file='in81'

input_file='FILTERS/inmf8'
c 	input_file='insb8'
c 	input_file='inst8'
c 	input_file='inunc8'
c 	input_file='inotf8'
c 	input_file='inofa8'
c 	input_file='inofb8'
c 	input_file='inotaf8'
c 	input_file='inofsa8'
c 	input_file='inofsb8'
c 	input_file='inoffl8'

call readf

write(*,*) 'subband analysis'
call analysis256(inimg,al,a2,a3,a4)

c 	a1:LL
c 	a2:LH
c 	a3:HL
c 	a4:HH

call analysis128(a1,b1,b2,b3,b4)
c 	b1:LLLL
c 	b2:LLLH
c 	b3:LLHL
c 	b4:LLHH

write(*,*) 'synthesis'
call synthesis128(bl,b2,b3,b4,e1)
call synthesis256(e1,a2,a3,a4,outimg,inimg)

return
end

**

* 	SUBROUTINE READ
* 	THIS SUBROUTINE READS THE FILTER COEFFICIENTS *

77

78

**

subroutine readf
real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20)

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2
,ltap3,mtap3,1tap4,mtap4

call openf
write(*,*) 'reading filter coefficients'
read(11,*) ltapl

c 	write(*,*) ltapl
read(11,*) mtapl
do 10 i=ltap1,mtapl

10 	read(11,*) coffl(i)

read(11,*) ltap2
read(11,*) mtap2
do 20 i=ltap2,mtap2

20 	read(11,*) coff2(i)
c

read(11,*) ltap3
read(11,*) mtap3
do 30 i=ltap3,mtap3

30 	read(11,*) coff3(i)
c

read(11,*) ltap4
read(11,*) mtap4
do 40 i=ltap4,mtap4

40 	read(11,*) coff4(i)
c

close (11)

RETURN
END

**
subroutine openf
character*80 input_file
common/ina / input_file
write(*,*) 'Opening input_file'
open (11,file=input_file,status='old')

79

write(*,*) 'file opened'

return

end

subroutine analysis256(inimg,llband,lhband,hlband,hhband)

integer raw,col

parameter(raw=400,co1=512)

real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20)

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2

,ltap3,mtap3,ltap4,mtap4

c these are the four subband

real llband(raw/2,co1/2),lhband(raw/2,col/2)
& ,hlband(raw/2,co1/2),hhband(raw/2,col/2)

c these are the high and low bands

real lband(raw,co1/2),hband(raw,col/2)

c input and output images

real inimg(raw,col)

nx=raw

ny=col

call rfilter(coffl,inimg,lband,nx,ny,ltapl,mtapl)

call rfilter(coff2,inimg,hband,nx,ny,ltap2,mtap2)

ny=ny/2

call cllfilter(coffl,lband,llband,nx,ny,ltapl,mtapl)

80

call clhfilter(coff2,lband,lhband,nx,ny,ltap2,mtap2)

call chlfilter(coff1,hband,hlband,nx,ny,ltapl,mtap1)

call chhfilter(coff2,hband,hhband,nx,ny,ltap2,mtap2)

return
end

**

subroutine analysis128(inimg,llband,lhband,hlband,hhband)

integer raw,col

parameter(raw=200,col=256)

common /ifld/ ifld

integer motionv(50,64),ifld

common /motionv/ motionv

real coffl(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20)

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2

& ,ltap3,mtap3,ltap4,mtap4

c these are the four subband

real llband(raw/2,col/2),Ihband(raw/2,col/2)
& ,hlband(raw/2,col/2),hhband(raw/2,col/2)

c these are the high and low bands

real lband(raw,co1/2),hband(raw,co1/2)

c input and output images

real inimg(raw,col)

nx=raw

ny=col

call rfilter(coffl,inimg,lband,nx,ny,ltapl,mtapl)

call rfilter(coff2,inimg,hband,nx,ny,ltap2,mtap2)

ny=ny/2

call cllllfilter(coff1,1band,llband,nx,ny,ltapl,mtapl)

call clllhfilter(coff2,lband,lhband,nx,ny,ltap2,mtap2)

call cllhlfilter(coff1,hband,hlband,nx,ny,ltap1,mtapl)

call cllhhfilter(coff2,hband,hhband,nx,ny,ltap2,mtap2)

return
end

subroutine rfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap

real a1(raw,col),a2(raw,co1/2),f(-20:20)

do 20 i=1,raw

do 20 j=2,col,2

a2(i,j/2)=0

do 20 k=ltap,mtap
jk=j+k

if(jk.le.0) jk=col+jk

if(jk.gt.col) jk=jk-col

a2(i,j/2)=a2(i,j/2)+al(i,jk)*f(k)

20 	continue

return

end

c 	

subroutine cfilter(f,al,a2,raw,col,ltap,mtap)

integer col,raw,ltap,mtap,jk

real al(raw,col),a2(raw/2,col),f(-20:20)

do 20 i=1,col
do 20 j=2,raw,2

a2(j/2,i)=0

do 20 k=ltap,mtap

jk=j+k

if(jk.le.0) jk=raw+jk

81

if(jk.gt.raw) jk=jk-raw

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k)
20 	continue

return
end

*********** LL FILTER**********************************

subroutine cllfilter(f,al,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
common /ifl/ ifl
real a1(raw,col),a2(raw/2,col),f(-20:20)
character*1 pimm(200*256)
parameter(nx=200,ny=256)

do 20 i=1,col
do 20 j=2,raw,2

a2(j/2,i)=0
do 20 k=ltap,mtap
jk=j+k

if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k)
20 	continue

c 	open(99,file='LL',access='direct',form='unformatted'
c 	+ ,recl=nx*ny)
c 	do 690 i=1,nx
c 	do 691 j=1,ny
c 	ip=int(a2(i,j))+128
c 	if(ip.gt.255) ip=255
c 	if (ip.lt.0) ip=0
c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c 	close(99)

return
end

82

*********** LLLL FILTER*********************************

subroutine cllllfilter(f,al,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
real al(raw,col),a2(100,128),f(-20:20)
common /hist1/ hist1
real hist1(3,512)
common /ifl/ ifl
common /entropy1/entropy1
character*1 pimm(100*128)
parameter(nx=100,ny=128)

do 20 i=1,col
do 20 j=2,raw,2

a2(j/2,i)=0
do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k)
20 	continue

call vec_quan1(a2)

c 	open(99,file='LLLL',access='direct',form='unformatted'
c 	+ ,recl=nx*ny)
c 	do 690 i=1,nx
c 	do 691 j=1,ny
c 	ip=int(a2(i,j))+128
c 	if(ip.gt.255) ip=255
c 	 if (ip.lt.0) ip=0
c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue

c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c 	close(99)

call vbitrates1(hist1,entropy1,3,512)
write(*,*) 'entropy1=',entropyl

return
end

83

*********** LLLH FILTER********************************

subroutine clllhfilter(f,al,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk

real pimmi(12800),pimm2(12800)
real al(raw,col),a2(raw/2,col),f(-20:20)
common /hist2/ hist2
common /entropy2/entropy2
real hist2(3,512)

common /ifl/ ifl
character*1 pimm(100*128)
parameter(nx=100,ny=128)

do 20 i=1,col
do 20 j=2,raw,2

a2(j/2,i)=0
do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk

if(jk.gt.raw) jk=jk-raw

a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k)
20 	continue

call vec_quan2(a2)

c 	open(99,file='LLLH',access='direct',form='unformatted'

c 	+ ,recl=nx*ny)
c 	do 690 i=1,nx
c 	do 691 j=1,ny
c 	ip=int(a2(i,j))+128
c 	if(ip.gt.255) ip=255
c 	if (ip.lt.0) ip=0
c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c 	close(99)

c 	do 1 i=1,100

c 	do 1 j=1,128

84

c 	kk=j+(i-1)*128
pimml(kk)=a2(i,j)
write(60,*) pimml(kk)

c1 	continue
call vbitrates2(hist2,entropy2,3,512)
write(*,*) 'entropy2=',entropy2

return
end

********** LLHL FILTER*******************************

subroutine cllhlfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
real a1(raw,col),a2(raw/2,col),f(-20:20)
common /ifl/ ifl
common /hist3/ hist3
common /entropy3/entropy3
real hist3(3,512)

character*1 pimm(100*128)
parameter(nx=100,ny=128)

do 20 i=1,col
do 20 j=2,raw,2

a2(j/2,i)=0
do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw
a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k)

20 	continue

call vec_quan3(a2)

c 	open(99,file='LLHL',access='direct',form='unformatted'
c 	+ ,recl=nx*ny)

do 690 i=1,nx
c 	do 691 j=1,ny

ip=int(a2(i,j))+128

c 	if(ip.gt.255) ip=255
c 	if (ip.lt.0) ip=0
c 	if(ip.gt.128) ip=ip-255

85

c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c 	close(99)

call vbitrates3(hist3,entropy3,3,512)
write(*,*) 'entropy3=',entropy3

return
end

********** LLHH FILTER******************************

subroutine cllhhfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
real al(raw,col),a2(raw/2,col),f(-20:20)
common /ifl/ ifl
parameter(nx=100,ny=128)

do 20 i=1,col
do 20 j=2,raw,2

a2(j/2,i)=0
do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw

c 	 a2(j/2,i)=a2(j/2,i)+a1(jk,i)*f(k)
a2(j/2,i)=0.0

20 	continue

return
end

*********LH FILTER***********************************

subroutine clhfilter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk

real al(raw,col),a2(raw/2,col),a6(200,256),f(-20:20)
common /ifl/ ifl
character*1 pimm(200*256)

86

parameter(nx=200,ny=256)

do 20 i=1,col
do 20 j=2,raw,2

a2(j/2,i)=0
do 20 k=ltap,mtap

jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw

c 	 a2(j/2,i)=0
a2(j/2,i)=a2(j/2,i)+al(jk,i)*f(k)

20 	continue

c 	open(99,file='LH',access='direct',form='unformatted'
c + ,recl=nx*ny)
c 	do 690 i=1,nx
c 	do 691 j=1,ny
c 	ip=int(a2(i,j))+128
c 	if(ip.gt.255) ip=255
c 	if (ip.lt.0) ip=0
c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c 	 close(99)

call arl(a2,200,256,a6,4,4)
do 35 i=1,200

do 35 j=1,256
a2(i,j)=a6(i,j)

35 	continue

return
end

**********HL FILTER********************************

subroutine chlfilter(f,al,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk
real a1(raw,col),a2(raw/2,col),f(-20:20)
common /ifl/ ifl

character*1 pimm(200*256)
parameter(nx=200,ny=256)

87

do 20 i=1,col

do 20 j=2,raw,2
a2(j/2,i)=0

do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw

c 	 a2(j/2,i)=a2(j/2,0+a1(jk,i)*f(k)
a2(j/2,i)=0.0

20 	continue
c 	call arl(a2,200,256,a7,8,8)
c 	do 35 i=1,200
c 	do 35 j=1,256

c35 	a2(i,j)=a7(i,j)
c 	write(13,*) ((a2(i,j),j=1,256),i=1,200)
c 	open(99,file='HL',access='direct',form='unformatted'
c 	+ ,recl=nx*ny)
c 	do 690 i=1,nx

c 	do 691 j=1,ny
c 	ip=int(a2(i,j))+128
c 	if(ip.gt.255) ip=255
c 	if (ip.t.0) ip=0
c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue
c 	 write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c 	close(99)

return
end

***********HH FILTER*****************************

subroutine chhfilter(f,a1,a2,raw,col,tap,mtap)
integer col,raw,tap,mtap,jk
real al(raw,col),a2(200,256),f(-20:20)
common /ifl/ ifl

real a8(200,256)
character*1 pimm(200*256)
parameter(nx=200,ny=256)

do 20 i=1,col

88

do 20 j=2,raw,2
a2(j/2,i)=0

do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw

c 	 a2(j/2,i)=a2(j/2,1)+a1(jk,i)*f(k)
a2(j/2,i)=0.0

20 	continue
c 	 write(*,*) ifl
c 	call arl(a2,200,256,a8,16,16)
c 	 do 35 i=1,200
c 	 do 35 j=1,256
c35 	a2(i,j)=a8(i,j)

c 	open(99,file='HH',access='direct',form='unformatted'
c 	+ ,recl=nx*ny)
c 	do 690 i=1,nx
c 	do 691 j=1,ny
c 	ip=int(a2(i,j))+128
c 	if(ip.gt.255) ip=255
c 	if (ip.lt.0) ip=0
c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue
c 	write(99,rec=ifl) (pimm(j),j=1,nx*ny)
c 	close(99)

return
end

**

subroutine vec_quanl(pic)
**

c 	pic: picture o be coded (100X128)

real pic(100,128)
integer motionv(50,64)
real tvector(4)

89

common /hist1/ hist1
integer hist1(3,512)
common /motionv/ motionv
real b1v1(512,4),b1v2(512,4),b1v3(512,4)

common /vqcodebook1/ blvl,blv2,blv3

do 191 i=1,3
do 191 j=1,512
hist1(i,j)=0

	

191 	continue

nn=0
do 10 i=1,50
do 10 j=1,64

if(motionv(i,j).ge.5) then
do 20 k=1,2
do 20 l=1,2
tvector(2*(k-1)+l)=pic((i-1)*2+k,(j-1)*2+1)

	

20 	continue
mm=nn+3

else if(motionv(i,j).ge.3) then
do 21 k=1,2
do 21 l=1,2
tvector(2*(k-1)+1)=p1c((i-1)*2+k,(j-1)*2+1)

	

21 	continue
mm=nn+2

else if(motionv(i,j).ge.1) then
do 22 k=1,2
do 22 1=1,2
tvector(2*(k-1)+1)=pic((i-1)*2+k,(j-1)*2+1)

	

22 	continue
mm=nn+1

else
do 33 k=1,2
do 33 l=1,2

pic((i-1)*2+k,(j-1)*2+l)=0.0

	

33 	continue
mm=0

endif

if(mm.eq.1) then

call vquantizer(tvector,b1v1,ivecnum)
hist1(1,ivecnum) = hist1(1,1vecnum)+1

90

else if(mm.eq.2)then
call vquantizer(tvector,b1v2,ivecnum)
hist1(2,ivecnum) = hist1(2,ivecnum)+1

else if(mm.eq.3)then
call vquantizer(tvector,b1v3,ivecnum)
histl(3,ivecnum) = histl(3,ivecnum)+1

endif
if(mm.ne.0) then
do 44 k=1,2
do 44 1=1,2

pic((i-1)*2+k,(j-1)*2+l) = tvector(2*(k-1)+1
44 	continue

endif

10 	continue

return
end

subroutine vec_quan2(pic)

c 	pic: picture to be coded (100X128)

real pic(100,128)
integer motionv(50,64)
integer motionv1(25,32)

real tvector(16)
common /hist2/ hist2
integer hist2(3,512)
common /motionv/ motionv
real b2vl(512,16),b2v2(512,16),b2v3(512,16)
common /vqcodebook2/ b2v1,b2v2,b2v3

do 191 i=1,3
do 191 j=1,512
hist2(i,j)=0

191 	continue

do 50 i=1,25
do 50 j=1,32
notl=0

9.1

do 51 k=i*2-1,2*i
do 51 1=2*j-1,2*j
notl =notl+motionv(k,l)

51 	continue
motionv1(i,j)=(notl/4)

50 	continue

nn=0
do 10 i=1,25
do 10 j=1,32

if(motionvl(i,j).ge.5) then
do 20 k=1,4
do 20 l=1,4
tvector(4*(k-1)+1)=pic((i-1)*4+k,(j-1)*4+1)

20 	continue
mm=nn+3

else if(motionvl(i,j).ge.3) then
do 21 k=1,4
do 21 1=1,4
tvector(4*(k-1)+1)=pic((i-1)*4+k,(j-1)*4+1)

21 	continue
mm=nn+2

else if(motionvl(i,j).ge.1) then
do 22 k=1,4
do 22 l=1,4
tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+1)

22 	continue
mm=nn+1

else
do 33 k=1,4
do 33 1=1,4

pic((i-1)*4+k,(j-1)*4+1)=0.0
33 	continue

mm=0
endif

if(mm.eq.1) then
call vquantizer3(tvector,b2v1,ivecnum)
hist2(1,ivecnum) = hist2(1,ivecnum)+1

else if(mm.eq.2)then
call vquantizer3(tvector,b2v2,ivecnum)

92

hist2(2,ivecnum) = hist2(2,ivecnum)+1

else if(mm.eq.3)then
call vquantizer3(tvector,b2v3,ivecnum)
hist2(3,ivecnum) = hist2(3,ivecnum)+1

endif
if(mm.ne.0) then
do 44 k=1,4
do 44 l=1,4

pic((i-1)*4+k,(j-1)*4+l) = tvector(4*(k-1)+l)
44 	continue

endif

10 	continue

return
end

subroutine vec_quan3(pic)
c 	pic: picture to be coded (100X128)

real pic(100,128)
integer motionv(50,64)
integer motionv1(25,32)

real tvector(16)
common /hist3/ hist3
integer hist3(3,512)
common /motionv/ motionv
real b3v1(512,16),b3v2(512,16),b3v3(512,16)
common /vqcodebook3/ b3v1,b3v2,b3v3

do 191 i=1,3
do 191 j=1,512
hist3(i,j)=0

191 	continue
do 50 i=1,25
do 50 j=1,32
not1=0
do 51 k=i*2-1,2*i
do 51 1=2*j-1,2*j

notl =notl+motionv(k,l)

51 	continue

93

motionv1(i,j)=(notl/4)
50 	continue

nn=0
do 10 i=1,25
do 10 j=1,32

if(motionv1(i,j).ge.5) then
do 20 k=1,4
do 20 l=1,4
tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+l)

20 	continue
mm=nn+3

else if(motionv1(i,j).ge.3) then
do 21 k=1,4
do 21 1=1,4

tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+l)
21 	continue

mm=nn+2
else if(motionv1(i,j).ge.1) then
do 22 k=1,4
do 22 1=1,4
tvector(4*(k-1)+l)=pic((i-1)*4+k,(j-1)*4+l)

22 	continue
mm=nn+1

else
do 33 k=1,4
do 33 1=1,4

pic((i-1)*4+k,(j-1)*4+l)=0.0
33 	continue

mm=0
endif

if(mm.eq.1) then
call vquantizer3(tvector,b3v1,ivecnum)
hist3(1,ivecnum) = hist3(1,ivecnum)+1

else if(mm.eq.2)then
call vquantizer3(tvector,b3v2,ivecnum)
hist3(2,ivecnum) = hist3(2,ivecnum)+1

else if(mm.eq.3)then
call vquantizer3(tvector,b3v3,ivecnum)
hist3(3,ivecnum) = hist3(3,ivecnum)+1

endif

94

95

if(mm.ne.0) then
do 44 k=1,4
do 44 1=1,4

pic((i-1)*4+k,(j-1)*4+1) = tvector(4*(k-1)+l)

44 	continue
endif

10 	continue

return
end

**

subroutine vec_quant4(enimg,n,hist4,L)
real testv(16)
real enimg(3200)
integer hist4(L)
integer ivecnum4
real b4vl(256,16),b4v2(256,16),b4v3(512,16),b4v4(512,16)
common /vqcodebook4/ b4v1,b4v2,b4v3,b4v4

do 17 j=1,L
hist4(j)=0

17 	continue

do 100 i=0,3184,16
k=0

do 150 ii=i+1,i+16
k=k+1
testv(k) = enimg(ii)

150 	 continue

if (n.eq.1) then

call vquant4(testv,b4vl,ivecnum4,L)

else if (n.eq.2) then

call vquant4(testv,b4v2,ivecnum4,L)

else if (n.eq.3) then

call vquant4(testv,b4v3,ivecnum4,L)

else if (n.eq.4) then

call vquant4(testv,b4v4,ivecnum4,L)

endif

hist4(ivecnum4)=hist4(ivecnum4)+1

k1=0
do 170 jj=i+1,i+16

k1=k1+1

enimg(jj) = testv(k1)
170 	continue

100 	continue

return
end

**

subroutine vquantizer(testv,codebook,ivecnu)
c Best Matching of vector

real testv(4)
real codebook(512,4)

rdiff = 1000000.0
ivecnu = 0

do 110 m = 1,512
adiff = 0
do 120 n = 1,4
adiff = adiff + (testv(n) - codebook(m,n))**2

120 	continue
if (adiff .lt. rdiff) then

rdiff = adiff

96

ivecnu = m
endif

110 	continue

do 130 n = 1,4
testv(n) = codebook(ivecnu,n)

130 	continue

return
end

**

subroutine vquantizer3(testv,codebook,ivecnu)
c Best Matching of vector

real testv(16)
real codebook(512,16)

rdiff = 1000000.0
ivecnu = 0

do 110 m = 1,512
adiff = 0
do 120 n = 1,16
adiff = adiff 	(testv(n) - codebook(m,n))**2

120 	continue
if (adiff .lt. rdiff) then

rdiff = adiff
ivecnu = m

endif
110 	continue

do 130 n = 1,16
testv(n) = codebook(ivecnu,n)

130 	continue

return
end

subroutine vquant4(testv,codebook,ivecnu,L)
c Best Matching of vector

real testv(16)
real codebook(L,16)

97

rdiff = 1000000.0
ivecnu = 0

do 110 m = 1,L
adiff = 0
do 120 n = 1,16
adiff = adiff + (testv(n) - codebook(m,n))**2

120 	continue
if (adiff .t. rdiff) then

rdiff = adiff
ivecnu = m

endif
110 	continue

do 130 n = 1,16
testv(n) = codebook(ivecnu,n)

130 	continue

return
end

c this subroutine calculate the entropy of each band
c and find the probability of each code
**

subroutine vbitratesl(ic,bitrate,raw,col)

c 	common /gtotal/ gtotal
integer ic(raw,col),raw,col
real entropy(3),sum(512),pr(512)

gtotal=0
bitrate=0
do 10 m=1,3

total=0
do 20 n=1,512
sum(n)=ic(m,n)
total=total+sum(n)

20 	continue

c

98

entropy(m)=0.0
do 30 n=1,512

pr(n)=sum(n)/total
if(pr(n).gt.0) then

br=pr(n)*xlog2(1.0/pr(n))
entropy(m)=entropy(m)+br

endif
30 	continue

bitrate=bitrate+entropy(m)*total
write(*,*) 'total = ',total
gtotal=gtotal+total

10 	continue

write(*,*) 'gtotal = ',gtotal
write(*,*) 'ventropy = ',(entropy(i),i=1,3)
write(*,*) 'bitrate = 	bitrate

return
end

subroutine vbitrates2(ic,bitrate,raw,col)

integer ic(raw,col),raw,col
real entropy(3),sum(512),pr(512)

gtotal=0
bitrate=0
do 10 m=1,3

total=0
do 20 n=1,512
sum(n)=ic(m,n)
total=total+sum(n)

20 	continue

entropy(m)=0.0
do 30 n=1,512

pr(n)=sum(n)/total
if(pr(n).gt.0) then

br=pr(n)*xlog2(1.0/pr(n))
entropy(m)=entropy(m)+br

99

endif
30 	continue

bitrate=bitrate+entropy(m)*total
write(*,*) 'total = ',total
gtotal=gtotal+total

10 	continue
c 	bitrate=(gtotal/800)*(9./256)

write(*,*) 'gtotal = ',gtotal
write(*,*) 'ventropy = ',(entropy(i),i=1,3)

write(*,*) 'bitrate = 	bitrate
return
end

**

subroutine vbitrates3(ic,bitrate,raw,col)

integer ic(raw,col),raw,col

real entropy(3),sum(512),pr(512)

gtotal=0
bitrate=0
do 10 m=1,3

total=0
do 20 n=1,512
sum(n)=ic(m,n)
total=total+sum(n)

20 	continue

c

entropy(m)=0.0
do 30 n=1,512

pr(n)=sum(n)/total
if(pr(n).gt.0) then

br=pr(n)*xlog2(1.0/pr(n))
entropy(m)=entropy(m)+br

endif

30 	continue

bitrate=bitrate+entropy(m)*total
write(*,*) 'total = ',total

100

gtotal=gtotal=total
10 	continue

c 	bitrate=(gtotal/800)*(9.7256.)

write(*,*) 'gtotal = ',gtotal
write(*,*) 'ventropy = ',(entropy(i),i=1,3)
write(*,*) 'bitrate = 	bitrate
return
end

**

subroutine vbitrates4(ic,bitrate,col)

integer ic(col),col
real entropy,sum(512),pr(512)

bitrate=0

total=0
do 20 n=1,col
sum(n)=ic(n)
total=total+sum(n)

20 	continue

entropy=0.0
do 30 n=1,col

pr(n)=sum(n)/total
if(pr(n).gt.0) then

br=pr(n)*xlog2(1.0/pr(n))
entropy=entropy+br

endif
30 	continue

bitrate=entropy*total

write(*,*) 'entropyarl = ',entropy

write(*,*) 'total = ',total
write(*,*) 'bitrate = 	bitrate

return

101

end

function xlog2(x)
real x
xlog2=alog(x)/alog(2.0)
return
end

**
subroutine bitrates2(ic,entropy,raw,col)

**

integer ic(raw,col),raw,col
real entropy,sum(0:169),pr(0:169)

do 20 n=0,169
sum(n)=0.0

20 	continue
c

do 10 i=1,raw
do 10 j=1,col

k=ic(i,j)
sum(k)=sum(k)+1

10 	continue
entropy=0.0
total=real(raw*col)
do 30 n=0,169

pr(n)=sum(n)/total
if(pr(n).gt.0) then

br=pr(n)*xlog2(1.0/pr(n))
entropy=entropy+br

endif
30 	continue

write(*,*) 'xmentropy = ',entropy

c 	write(*,*) 'pr = ',(pr(i),i=1,169)

return
end

102

**

subroutine ccfilter(f,al,a2,raw,col,ltap,mtap)
integer col,raw,tap,mtap,jk
real al(raw,col),a2(raw,col),f(-20:20)
do 20 i=1,col

do 20 j=1,raw
a2(j,i)=0
do 20 k=ltap,mtap
jk=j+k
if(jk.le.0) jk=raw+jk
if(jk.gt.raw) jk=jk-raw
a2(j,i)=a2(j,i)+al(jk,i)*f(k)

20 	continue
return
end

c 	

subroutine rcfiter(f,a1,a2,raw,col,ltap,mtap)
integer col,raw,ltap,mtap,jk

real al(raw,col),a2(raw,col),f(-20:20)
do 20 i=1,raw

do 20 j=1,col
a2(i,j)=0
do 20 k=tap,mtap
jk=j+k
if(jk.le.0) jk=col+jk
if(jk.gt.col) jk=jk-col
a2(i,j)=a2(i,j)+al(i,jk)*f(k)

20 	continue

return
end

c 	

subroutine cinter(in,out,nraw,ncol)
integer nraw,ncol
real in(nraw,ncol),out(nraw*2,ncol)

do 20 j=1,ncol
do 20 i=1,nraw

out(2*i-1,j)=in(i,j)
out(2*i,j)=0.0

103

104

C 	 out(2*i,j)=in(i,j)
out(2*i-1,j)=0.0

20 	continue
return

end

subroutine rinter(in,out,nraw,ncol)
integer nraw,ncol
real in(nraw,ncol),out(nraw,2*ncol)
do 20 j=1,ncol

do 20 i=1,nraw
out(i,2*j-1)=in(i,j)
out(i,2*j)=0.0

c 	 out(i,2*j)=in(i,j)
c 	 out(i,2*j-1)=0.0
20 	continue

return
end

c 	

subroutine synthesis256(llband,lhband,hlband,hhband,outimg,
inimg)

character*1 pimm(400*512)
real inimg(400,512)
integer raw,col
parameter(raw=400,co1=512)
parameter(nx=400,ny=512)

c input and output images
real outimg(raw,col)

c these are the four subband
real llband(raw/2,co1/2),lhband(raw/2,col/2)

& ,hlband(raw/2,col/2),hhband(raw/2,col/2)

real lli(raw,col/2),lhi(raw,col/2),hli(raw,col/2),

& hhi(raw,col/2),11o(raw,col/2),lho(raw,col/2),hlo(raw,col/2),
& hho(raw,col/2)

105

real li(raw,col/2),lo(raw,col),hi(raw,col/2),

& ho(raw,col)

real limg(raw,col),himg(raw,col)

real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20)

common /a/ coff1,coff2,coff3,coff4,ltap1,mtapl,ltap2,mtap2

,tap3,mtap3,ltap4,mtap4

nraw=raw

ncol=col

call cinter(llband,lli,raw/2,col/2)

call ccfilter(coff4,lli,llo,raw,col/2,ltap4,mtap4)

call cinter(lhband,lhi,raw/2,col/2)

call ccfiter(coff3,lhi,lho,raw,col/2,ltap3,mtap3)

call cinter(hlband,hli,raw/2,col/2)

call ccfiter(coff4,hli,hlo,raw,col/2,tap4,mtap4)

call cinter(hhband,hhi,raw/2,col/2)

call ccfiter(coff3,hhi,hho,raw,col/2,ltap3,mtap3)

c

do 10 i=1,raw

do 10 j=1,col/2

li(i,j)=llo(i,j)+lho(i,j)

c 	 li(i,j)=llo(i,j)

c 	 hi(i,j)=hlo(i,j)+hho(i,j)

c 	 hi(i,j)=hlo(i,j)
hi(i,j)=0.0

10 	continue

call rinter(li,lo,raw,col/2)

call rcfiter(coff4,lo,limg,raw,col,ltap4,mtap4)

call rinter(hi,ho,raw,col/2)

106

call rcfilter(coff3,ho,himg,raw,col,ltap3,mtap3)

do 20 i=1,raw
do 20 j=1,col
outimg(i,j)=limg(i,j)

20 	continue

c 	open(99,file='im',access='direct',form='unformatted'
c 	+ ,recl=nx*ny)
c 	do 690 i=1,nx
c 	do 691 j=1,ny
c 	ip=int(outimg(i,j))+128
c 	if(ip.gt.255) ip=255
c 	if (ip.lt.0) ip=0

c 	if(ip.gt.128) ip=ip-255
c 	kk=j+(i-1)*ny
c 	pimm(kk)=char(ip)
c691 	continue
c690 	continue

c 	write(99,rec=1) (pimm(j),j=1,nx*ny)

c 	close(99)

return
end

* SYNTHESIS FILTER FOR 128*100 IMAGES*

subroutine synthesis128(llband,lhband,hlband,hhband,outimg)

integer raw,col
parameter(raw=200,col=256)

c input and output images
real outimg(raw,col)

c these are the four subband
real llband(raw/2,col/2),lhband(raw/2,col/2)

& ,hlband(raw/2,col/2),hhband(raw/2,col/2)

107

real lli(raw,col/2),lhi(raw,col/2),hli(raw,col/2),

& hhi(raw,col/2),llo(raw,col/2),lho(raw,col/2),hlo(raw,col/2),

& hho(raw,col/2)

real li(raw,col/2),lo(raw,col),hi(raw,col/2),

& ho(raw,col)

real limg(raw,col),himg(raw,col)
real coff1(-20:20),coff2(-20:20),coff3(-20:20),coff4(-20:20)

common /a/ coffl,coff2,coff3,coff4,ltapl,mtapl,ltap2,mtap2

,ltap3,mtap3,tap4,mtap4

c 	

nraw=raw

ncol=col

call cinter(llband,lli,raw/2,col/2)

call ccfiter(coff4,lli,llo,raw,col/2,ltap4,mtap4)

call cinter(lhband,lhi,raw/2,col/2)

call ccfilter(coff3,lhi,lho,raw,col/2,ltap3,mtap3)

call cinter(hlband,hli,raw/2,col/2)
call ccfilter(coff4,hli,hlo,raw,col/2,tap4,mtap4)

call cinter(hhband,hhi,raw/2,col/2)

call ccfilter(coff3,hhi,hho,raw,col/2,tap3,mtap3)

c
do 10 i=1,raw

do 10 j=1,col/2
li(i,j)=llo(i,j)+lho(i,j)

hi(i,j)=hlo(i,j)

10 	continue

call rinter(li,lo,raw,col/2)
call rcfilter(coff4,lo,limg,raw,col,ltap4,mtap4)

call rinter(hi,ho,raw,col/2)

call rcfilter(coff3,ho,himg,raw,col,tap3,mtap3)

do 20 i=1,raw
do 20 j=1,col
outimg(i,j)=1*(limg(i,j)+himg(i,j))

20 	continue

return
end

108

**

REFERENCES

1. M. S. Kadur, " Adaptive Subband Video Coding with Motion Compensation,"
M.Sc. Thesis. NJIT, May 1989.

2. V. Seferidis and M. Chanbari, "Generalized Block Matching Motion
Estimation," SPIE, Visual Communications and Image Processing'92,
vol. 1818, pp.110-119, 1992.

3. Joe S. Lim, Two-Dimensional Signal and Image Processing, Prentice- Hall Inc.,

Englewood Cliffs, NJ, 1990.

4. N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1984.

5. A. N. Aka.nsu and R. A. Haddad, Multiresolution Signal Decomposition;
Transforms, Subbands, and Wavelets, Acedemic Press, Inc., San Diago,
CA, 1992.

6. P. P. Vaidyanathan, "Multirate Digital Filters, Filter Banks, Polyphase
Networks, and Applications: A Tutorial,",Proceedings of the IEEE,
vol. 78, no.1, pp.56-93, January 1990.

7. P. P. Vaidyanathan, " Quadrature Mirror Filter Banks, M-band Extentions and
Perfect-Reconstruction Techniques,IEEE A SSP Magazine,
pp. 4-20, July 1987.

8. M. J. T. Smith and T .P. Barnwell, III,"A Procedure for Designing Exact
Reconstruction Filter Banks for Tree Structured Subband Coders," In.
Proc. IEEE int. conf. Acust., Speech, Signal Processing, pp.27.1..1-27.1.4,
San Diago, CA, March 1984.

9. A. Croisier, D. Esteban and C. Galand,"Perfect Channel Splitting by Use of
Interpolation/Decimation/Tree Decomposition Techniques," Int'l Conf.
On Information Sciences and Systems, Patras, Greece, 1976.

10. H. Gharavi and A. Tabatabai, "Application of Quadrature Mirror Filtering to
the Coding of Monochrome and Color Images," Proceedings of ICASSP,
pp. 2384-2387, Dallas, April 6-9, 1987.

11. Y. Linde, A. Buzo and R.M. Gray, "An Algorithm for Vector Quantizer Design,"
IEEE Trans. on Communications, Vol. COM-28, no.1, pp. 84-85,
January 1985.

1.2. J. Makhoul, S. Roucos and H. Gish, "Vector Quantization in Speech Coding,"
Proc. of the IEEE, vol.73, no.11, pp.1551-1588, Nov 1985.

13. H. M. Mutlag, "A comperative Study of Image Coding Techniques: Filter Banks
vs. Discrete Cosine Transform," M.Sc. Thesis, NJIT, May 1991

109

110

14. J. D. Johnston, "A filter Family Designed for Use in Quadrature Mirror Filter
Banks," Int. Conf. on ASSP, ICASSP, pp. 291-294, Denver, 1980.

	A hybrid low bit-rate video codec using subbands and statistical modeling
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Motion Compensated Video Coding
	Chapter 3: Statistical Model Based Image Coding Techniques
	Chapter 4: Theory of Subband Signal Analysis and Filter Banks
	Chapter 5: Vector Quantization in Subbands
	Chapter 6: Experimental Studies
	Chapter 7: Conclusions and Discussions
	Appendix A: Simulation Program for the 7 Band Dyadic Tree Structure
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

