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ABSTRACT 

A Theoretical Study of the Semiconductor Laser 
Structures with Lateral Discontinuity 

in the Optical Cavity 

by 
Yi Cai 

A theoretical study of the semiconductor laser structures with lateral 

discontinuity in the optical resonant cavity is presented in this thesis. Specifically, 

the lateral discontinuity is referred to the lateral expansion structure newly 

invented for increasing the power output of semiconductor lasers while keeping 

single mode operation. 

In the first part of the thesis (Chapter 2 and Chapter 3), an explicit 

expression for calculating the lateral discontinuity problems is formulated by the 

incorporation of mode-matching method. Our approach is based on the mode 

expansion theory developed for lossless micro-wave and optical fiber waveguides, 

but the effect of gain in active laser media is discussed. Direct numerical 

evaluation to various discontinuities problems in semiconductor laser stripes are 

feasible, as long as the discontinuity lies entirely in a surface perpendicular to the 

direction of propagation. 

The second part of the thesis is devoted to applications of the theoretical 

approach. A computer program written in Fortran-5.0 is used to calculate the 

efficiency of lateral expansion laser structure. Graphs of the electric field patterns 

are produced by a program written in programming language C. 
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CHAPTER 1 

INTRODUCTION 

Recent advances in optical communications have simulated the sustained studies 

of semiconductor laser. Among them, the high power and single mode laser 

structures have been extensively investigated because they directly affect the 

performance of optical communication systems. 

Up to date, a wide range of semiconductor structures has been studied. A 

practical high power single mode laser device is expected. But the conflict 

between obtaining high power output and keeping single mode operation is not yet 

solved. One of the important limiting factors to make a high power laser is the 

thermal stress exerted by the optical beam on the two mirrors of the semiconductor 

laser resonant cavity. To avoid this stress from damaging the mirrors, a larger light 

spot is required, so that the stress can be distributed on a wider area. A wide laser 

stripe may have a large light spot, but higher order transverse modes exist in this 

case. This is the dilemma: on one hand the high power output needs wide stripes, 

while on the other hand the single mode operation requires narrow ones. The 

research presented in this thesis is dedicated to solve the problem using lateral 

expansion structure invented and patented by Dr. Eugene I. Gorden. 

The lateral expansion laser structure has not yet been experimentally tested. 

There are many controversies in this topic, perhaps partially because of the over 

simplified description given in the patent. No analytical or numerical data 

indicated the efficiency of this structure. 

In this thesis, a general method is presented to treat transverse discontinuity 

problems in metal or dielectric waveguides and cavities. This numerical method is 
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based on the well-established mode matching method, which is developed for 

treating transverse discontinuities in a passive waveguide. The effects of active 

laser media, in addition to passive waveguide media, are discussed. We have 

developed a practical theoretical description and calculation approach dealing with 

semiconductor laser structure with a variable complex shaped stripe. 

The second purpose of this thesis is to apply the model of calculation to a 

practical device structure. As a special case, the efficiency of the lateral expansion 

laser structure is demonstrated. The numerical results are presented and discussed 

in the second half of this thesis. 

In my view, just as molecular beam epitaxy (MBE) technology enables a 

variety of quantum well or superlattice structure to be grown, electron beam 

lithography and other advanced technology enables countless choices in the shape 

of each semiconductor layer to be grown. There is no reason to keep the shape of 

the semiconductor laser stripe uniformly rectangular. Variation of the stripe shape 

may show interesting and technologically important new properties. A simple 

theory along with an accurate and practical mathematical approach plays an 

important role. 



CHAPTER 2 

TYPICAL SEMICONDUCTOR LASER 
AND LATERAL EXPANSION LASER STRUCTURE 

2.1 Typical Semiconductor Laser Structure 

2.1.1 Introduction to Laser 

The word LASER is an acronym for light amplification by stimulated emission of 

radiation, which sums up the operation of an important electronics, as well as 

optical device. The effort of creating a useful laser system involves the techniques 

of solid state (or gaseous) electronics, and the transmission and detection of laser 

signal make use of a broad range of electronics. 

There are two kinds of radiation emissions, spontaneous emission and 

stimulated emission. The process of stimulated emission occurs randomly. The rate 

at which electrons fall from an upper level of energy E2 to a lower level E1  is at 

every instant proportional to the number of electrons remaining in E2 (the 

population of E7 ). If conditions are right, stimulated emission can make the decay 

time much shorter. The stimulus is provided by the presence of photons of the 

proper wavelength (Fig 2.1). The electron is induced to drop in energy from E7  to 

E1, contributing a photon whose wave is in phase with the radiation field. If this 

process continues and Other electrons are stimulated to emit photons in the same 

fashion, a large radiation field can build up. That is how the laser operates and why 

its light is coherent. 

The rate of stimulated emission is proportional to the instantaneous number 

of electrons in the upper level n2  and to the energy density of the stimulating field 

p(v12). B71  is the proportionality factor. The rate at which the electrons in E1  

absorb photons should also be proportional to p(v12) and the electron population in 
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E1, namely the a proportionality factor as B12.  Introducing still another coefficient 

A21, we can write the rate of spontaneous emission as A2 in?. For steady state the 

two emission rates must balance the rate of absorption to maintain constant 

populations n1 and n2 (Figure 2.2). 

Figure 2.1 Stimulated transition of an electron from an upper state to a lower state, 
with accompanying photon emission 

where B21 = B12 according to quantum mechanics (principle of detailed balance). 

At thermal equilibrium, the contribution of stimulated emission is negligible. 

The way to enhance the stimulated emission is to have a very large photon field 

energy density p(v 12). In the laser, this is encouraged by providing an optical 

resonant cavity in which the photon density can build up to a large value through 

multiple internal reflections at certain frequencies (v). 

Similarly, to obtain more stimulated emission than absorption we must have 

n2 > n 1: 
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Figure 2.2 Balance of absorption and emission in steady state: 
(a) Stimulated emission; (b) Absorption; (c) Spontaneous emission 

This is a quite unnatural situation, called population inversion. 

In summary, two fundamental requirements must be met to get lasing, an 

optical resonant cavity and population inversion. 

2.1.2 Semiconductor Lasers 

The laser became an important part of semiconductor device technology in 1962 

when the first p-n junction lasers were built in GaAs (infrared) and GaAsP 

(visible). These devices differ from the solid, gas, and liquid lasers in several 

important respects. Junction lasers are remarkably small (typically on the order of 

0.1 x 0.1 x 0.3 mm), they exhibit high efficiency, and the laser output is easily 

modulated by controlling junction current. Semiconductor lasers operate at low 

pumping power compared, for example. with ruby or CO2 laser. They compete 

with He-Ne lasers in power output. Thus the function of the semiconductor laser is 
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to provide a portable and easily controlled source of coherent radiation. 

Semiconductor lasers are particularly suitable for fiber optic communication 

systems. 

The junction of the laser is formed between degenerate materials. The bands 

under forward bias are as shown in Figure 2.3. If the bias (and thus the current) is 

large enough, electrons and holes are injected into and across the transition region 

in considerable concentrations. As a result, the junction region is far from being 

depleted of carriers. The region contains large concentration of electrons within the 

conduction band and a large concentration of holes within the valence band. If 

these population densities are high enough, a condition of population inversion 

results, and the region about the junction over which it occurs is called an 

inversion region. 

To build a p-n junction laser, we need to form a junction in a highly doped, 

direct semiconductor (GaAs, for example), construct a resonant cavity in the 

proper geometrical relationship to the junction, and make contact to the junction in 

a mounting which allows for efficient heat transfer. Beginning with a degenerate 

n-type sample, a heavily doped p region is formed on one side, for example by 

diffusing Zn into the n-type GaAs. At this point we have a large area planar p-n 

junction. Next, grooves are cut or etched along the length of the sample, leaving a 

series of long p regions isolated from each other. These p-n junctions can be cut or 

broken apart and then cleaved into devices of the desired length. At this point in 

the fabrication process, the very important requirement of a resonant cavity must 

be considered. It is necessary that the front and back faces be flat and parallel. This 

can be accomplished by cleaving. If the sample has been oriented so that the long 

junctions are perpendicular to a crystal plane of the material, it is possible to 

cleave the sample along this plane into laser devices, letting the crystal structure 

itself provides the parallel mirrors. The device is then mounted on a suitable 
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header, and contact is made to the p region. Various techniques are used to provide 

adequate heat sinking of the device for large forward current levels. 

Figure 2.3 Band diagram of a p-n junction laser under forward bias. 
(Region between dashed lines indicates inversion region.) 

The above mentioned device is called homojunction laser. To obtain more 

efficient lasers, the active GaAs layer can be sandwiched between two AlGaAs 

layers Figure 2.4. This double-heterojunction structure improves the confinement 

of injected carriers to the active region. Furthermore, the change in refractive index 

at the GaAs-AlGaAs boundaries helps to confine the generated light waves. In the 

double-heterojunction laser shown in Figure 2.4b the injected current is restricted 

to a narrow stripe along the lasing direction, to reduce the total current required to 

drive the device. This type of laser was a major step forward in the development of 

laser for fiber-optic communications. 
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Figure 2.4 A double-heterojunction laser structure: 
(a) Multiple layers used to confine injected carriers and provide waveguide for 
light; 
(b) A stripe geometry designed to restrict the current injection to a narrow stripe 
along the lasing direction. 

Figure 2.5 Schematic cross section of buried heterostructure index guided laser 
structure 
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In continual efforts to improve semiconductor laser performance, very 

complex structures requiring imaginative use of epitaxial growth have been 

employed. The graded index separate confinement heterostructure (GRINSCH), 

distributed feedback and buried heterostructure, as shown in Figure 2.5, lasers are 

invented. 

2.2 The Limitation of typical laser structures 

The initial application for semiconductor lasers was in fiber optical 

communications that required a single stable laser beam corresponding to lowest 

order mode operation. More recently, there has been an ever increasing demand for 

single mode lasers that can emit at significantly higher powers. Such devices could 

be used in optical recording, high speed printing, data distribution systems, analog 

signal transmission, long distance optical communication systems at high bit rates, 

and as pumps for solid state lasers. For all of these applications, it is desirable to 

have a high power laser that stable and reliably produces a single well-defined 

beam, i.e., lowest order mode output. 

The most important type of semiconductor diode laser is the double hetero-

structure (DH), as described in the previous section. The index of refraction of 

active layer is larger than the index of refraction of the surrounding cladding 

layers. Thus, the emitted radiation is transversely confined in a one dimensional 

dielectric waveguide formed by the two cladding layers and the active layer. For 

state of the art devices with active layers thinner than about 0.3 micrometers, the 

dielectric waveguide is such that only the fundamental transverse mode is 

supported on the direction perpendicular to the plane of the layers comprising the 

laser. 

While the light is guided in the lowest order mode in the vertically 

transverse direction, such is not normally the case in the lateral direction (i.e., in 
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the plane of the layers). If a wide stripe contact is used to inject the pumping 

current, the optical output exhibits unstable, multimode and filamentary behavior, 

such as was the case with early diode lasers. The light versus current characteristic 

is highly nonlinear. The unstable filamentary behavior is exaggerated as one goes 

to higher and higher powers. Thus, such wide stripe structures, although they can 

produce the desired high power, have heretofore proven unsuitable for use in the 

typical applications contemplated for high power diode lasers, which applications 

require a single, stable, lowest order mode optical beam. However, they have 

found use where the requirement is simply infrared illumination. 

Various techniques have been developed to provide for lateral confinement 

of emitted radiation, so as to achieve stable and reliable laser operation in the 

fundamental lateral mode. The simplest technique involves use of a narrow stripe 

contact on the upper surface of the laser. If the electric contact is shaped into a 

narrow stripe (less than 8µm wide) running the length of the diode between the 

facets, the profile of the injected carriers established a weak waveguide that 

provides a type of current dependent guiding commonly referred to as gain 

guiding. However, these, structures exhibit strongly unstable multiple beam 

behavior at high powers and a non-linear light output versus current behavior 

known as kinking. 

By introducing dielectric waveguide structures in the lateral direction as well 

as the vertically transverse direction, one gets index guided lasers. Using index 

guiding techniques and thin active layers, it is possible to produce a laser that 

supports only the fundamental transverse mode. Such lasers, having a two 

dimensional waveguide structure, emit a single mode, spatially coherent beam of 

light whose intensity profile at the facet is a bell-shaped surface. The output power 

is highly linear with current. 
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One type of index-guided laser is known as Buried Hetero-structure. In this 

structure a stripe-shaped relatively high index active region (e.g. GaAs) is 

surrounded vertically and laterally in transverse direction by lower index of 

refraction material (e.g. AlGaAs). Proper choice of dimensions assures lowest 

order mode operation. Other index guided structures, such as ridge guided 

structure, are also used. 

However, the output power of such index guided laser formed using the 

AlGaAs-GaAs material system is limited by damage to the partially reflecting end 

facets of the diode laser. If an AlGaAs diode emits continuous wave optical power 

densities in excess of 6 to 9 mW per square micrometer of emitting area at the 

facet, the internal laser power density becomes so high that chemical reactions 

occur at the partially reflective end facets from which the light emerges. Stress is 

created and the end facet regions gradually darken, absorbing light, and the laser 

performance degrades. The output power also exhibits rapid time variations 

associated with the dynamics of the absorption process. 

In addition, laser light is absorbed because of the nonradiative 

recombination of carriers at the end facets, where the boundary of the 

semiconductor material has a high density of surface states. At high optical power 

densities (20-25 mW per square micrometer) heavy radiation absorption at the 

facets introduces a thermal runaway process, which causes the mirrors to melt, 

thus causing catastrophic failure of the diode laser. The output power limits 

imposed by the gradual or catastrophic failure of the laser end facets have 

heretofore been extended by any of three known techniques. 

First, the size of the lasing spot can be increased both perpendiculars to and 

parallel to the plane of the junction, to spread the emitted power over a wider area, 

thus allowing operation at higher power before the emitting facets are gradually 

degraded or catastrophically damaged. Vertical transverse spreading is limited in a 
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double heterojunction because a thin active layer is needed to achieve fundamental 

transverse mode behavior and there are practical limits, such as lifetime of the 

carriers, how thin the layer can be, etc. The thickness also affects the threshold 

current of the diode. Furthermore, while lateral spreading may lead to substantially 

increased power, it may also lead to the appearance of higher order modes. Thus, 

merely increasing the area of the laser spot, for example, by increasing the width 

of the active region in a stripe shaped structure will not lead to the achievement of 

a high power laser diode that operates in the fundamental lateral mode. 

The second technique for boosting the power capability of a diode laser is to 

apply an anti-reflection coating to the front facet and a reflection coating to the 

back facet of the laser to increase the ratio of the laser's emitted power to internal 

power. This technique has limited value since in a typical laser the internal power 

is transmitted through the facets, even without an AR coating. 

A third technique for increasing the power output of a laser is to prevent the 

mirror region from absorbing laser light or experiencing non-radiative 

recombination. Such structure is known as non-absorbing mirror or NAM 

structures. These are effective in increasing the catastrophic damage limit but are 

less efficient than conventional lasers. 

The aforementioned structures have proved to be of limited usefulness in 

achieving reliable fundamental transverse and fundamental lateral mode behavior 

at high power. 

A new structure, the so-called lateral expansion laser, is suggested, although 

not yet tested. It is expected to provide a high power semiconductor diode laser by 

increasing the lateral size of the laser spot while at the same time avoiding higher 

order lateral modes. 
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2.3 The Improvements in Lateral Expansion 
Laser Structure 

The lateral expansion laser diode is a stepped stripe double heterojun.ction laser 

that operates in the fundamental transverse mode. The wide portions of the stripe 

help to alleviate thermal stress, while the narrow portion of the stripe defines 

single mode operation. Vertically, fundamental transverse mode behavior is 

achieved by means of a conventional double heterostructure with a thin active 

layer. Fundamental lateral mode behavior in the wide stripe structure is achieved 

by suppressing the higher order lateral modes. Mode suppression is achieved by 

selectively increasing the loss of the higher order lateral modes. 

Figure 2.6 and Figure 2.7 show the embodiments of the lateral expansion 

structure. For purpose of clarity, the drawings have not been drawn to scale. 

Figure 2.6 Lateral Expansion Structure 
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Figure 2.7 Lateral Expansion Structure (two ends expansion) 

There are several structures that may be used to achieve fundamental lateral 

mode behavior in a wide stripe double heterojunction laser. One such structure 

utilizes the mode dependent coupling loss that occurs when a wide laterally wave-

guided active region is formed longitudinally adjacent and contiguous with a 

narrow laterally wave-guided active region. The wide wave-guided region is 

normally wide enough to support higher order lateral modes while the narrow 

wave-guided region can support only the fundamental lateral mode. However, the 

coupling between the narrow fundamental and wide multimode wave-guided 

region is such that the coupling loss increases with increasing mode number of the 

multimode guide. The lowest order later mode has the smallest coupling loss and 

thus the lowest threshold current for lasing. Consequently, stable operation in the 

fundamental lateral mode is achieved in the wide waveguide. In other words, the 

wide waveguide region provides the high output power while the narrow region 
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provides the mode selectivity. Illustratively, the wide and narrow waveguide 

regions may be formed as ridged guided structures, with a wide ridge region 

defining the wide waveguide and a contiguous longitudinally adjacent narrow 

ridge defining the narrow waveguide. 

According to the previous study done by Gorden, the suppression of higher 

order lateral modes as a result of coupling wide and narrow waveguide regions 

may be understood as follows. The power reflectivity at the interface between the 

wide and narrow waveguide is 

where Rm is the effective reflectivity at the non-faceted end of the wide 

waveguide, R is the reflectivity at the facet, Cmp  is the coupling coefficient for the 

mth order lateral mode of the wide waveguide to the fundamental mode of the 

narrow waveguide and G is the net gain of the active layer inside the narrow and 

wide waveguides. Note that this gain may be larger than or smaller than 1, in order 

to get any kind of lasing operation at all. Cmp is given by the following equation: 

where W1 is the width of the wide waveguide, and W2 is the width of the narrow 

waveguide. 

The equations indicate that the effective reflectivity goes down sharply as the 

mode number goes up and that the coupling loss is least for the m=0 order mode. 

Accordingly, the wide waveguide portion of the laser operates stably in 

fundamental lateral mode. 
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Note that only a symmetrical mode of the wide waveguide can couple to the 

symmetrical mode of the narrow guide since the narrow waveguide is centered on 

the wide waveguide, i.e., both waveguides share the same longitudinal axis. 

Accordingly, centering the narrow waveguide on the wide waveguide is desirable 

for providing mode selectivity. 

Thus, a wide stripe double heterojunction laser has been disclosed which 

operates in the lowest order lateral mode. Problems relating to gradual degradation 

or catastrophic failure of the end facets or heating resulting from high current 

density, have been alleviated because the area of the lasing spot has been increased 

while at the same time higher order lateral modes have been suppressed. 

Another structure for achieving fundamental lateral mode operation 

comprises a laterally wave-guided active region normally wide enough to support 

higher order lateral modes that are coupled to an even wider longitudinally 

adjacent optically active region without lateral waveguiding means. This second 

region is terminated by a facet. Light propagating from the guided region to the 

unguided region diffracts out into the unguided region and, after reflection off the 

end facet of the laser, does not couple perceptively back into the guided region. 

Since the higher order lateral modes diffract more, they experience greater loss. 

The lowest order mode suffers the least loss, thus enabling the guided region to 

operate stably in the lowest order lateral mode. 

In both of the aforementioned structures, the lowest order lateral mode has 

the lowest current threshold for lasing since it has the lowest loss. When the laser 

is turned on, the circulating power for the lowest order mode grows more rapidly 

than the circulating power for the higher order modes and saturates the gain. 

effectively blocking oscillation in the higher order modes, even though the current 

may exceed the threshold for oscillation in the high order modes. 



l7 

Lowest order lateral mode operation may also be achieved in a wide stripe 

structure when distributed feedback is used. In this case, facet reflection is 

eliminated and the distributed feedback can operate only for the lowest order 

lateral mode. 



CHAPTER 3 

COMPUTATIONAL MODEL 
AND CALCULATION METHOD 

The efficiency of the lateral expansion structure described in Chapter 2 is not 

transparent. The size of the light spot at the mirrors are not easy to be determined, 

because of the stripe discontinuities are involved. The discontinuity introduces the 

non linearity. Waves of each mode incident on the discontinuity junction not only 

is partially reflected and transmitted but also excites other modes. Some of them 

are propagating modes, while the others can be evanescent modes. 

This problem can not be solved as simply as solving boundary condition 

problem in a uniform waveguide. A model-matching method introduced in this 

chapter is used to treat the discontinuities encountered in this structure. 

Figure 3.1 Rectangular metallic waveguide 
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3.1 Transverse Mode Functions 

In the model-matching method, transverse electric and magnetic fields at the 

discontinuity plane are expanded in terms of normal modes of the two waveguides. 

It is necessary to know the mode functions in both waveguides. 

The method has been tested first in rectangular metallic waveguides. The 

coordinates are as show in Figure 3.1. For a TM (transverse magnetic) mode 

solution, Ex  and Ey are expressed in terms of Ez  in the form of a gradient function 

where y is propagation coefficient; co is angular frequency; µ is permeability; and c 

is permittivity. 

The longitudinal electric field Ez  must satisfy the equation 

The boundary condition is that the tangential electric field shall vanish on the 

conductor. 

The solutions in a rectangular waveguide of dimension a by b for the TM 

modes are as follows: 
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where ᵦ  is also propagation constant, jβ   = y ; a and b are dimensions of the 

waveguide on x and y directions respectively. The integers, m and n, are mode 

numbers. 

The propagation constant y must be imaginary for a propagating wave, and 

must be real for a attenuated wave. The cut-off frequency is given by 

where v=1/(µɛ)-1/2  is the velocity of plane waves in the unbounded medium. 

Similarly, the solutions in a rectangular waveguide for the TE modes are as 

follows: 
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In the laser case, the thickness b is very thin compared with width a and 

wavelength L The eigen number n must be zero, if not the wave will be strongly 

attenuated. This can be seen readily from the following relations: 

If b is very small, the quantity in the brackets can become negative for any non 

zero n. 

So, when dealing with dielectric waveguide case, y direction is trivial. The 

fields do not depend on y coordinate, when n is zero. The problem can be 

simplified as a dielectric slab guide. The dimensions are shown in Figure 3.2. 

Moreover, as mentioned at the end of the last chapter, only symmetric modes 

count, due the characteristics of the structure. 

Figure 3.2 Dielectric slab geometry 

This problem can be solved exactly, with no approximation in the wave 

equation for the vector potential. One can use solutions to the vector wave 
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equations of the electric field and magnetic field inside and outside the slab and 

matches the boundary conditions on the slab surface. 

The symmetric solutions of dielectric slab guide for the TE modes are as 

follows: 

where αx is propagation constant in x direction. Taking advantage of symmetry, 

we need to match the boundary conditions only at x = d. Continuity of Ey/Hz  at x = 

d gives 

We further have from the wave equation 

Combining these two equations, we find the determinantal equation 



As shown in Figure 3.3, the dispersion diagram, the dependence of the propagation 

constant 3 on frequency, is found by constructing an intersection of the functions 

tan kxd and αx / kx  for each frequency and mode and then evaluating ᵦ  from the 

above equations. For decreasing ω, x / kx  moves toward the origin and 

intersections are lost, except for the intersection with the first branch of the tangent 

function. This corresponds to the dominant mode, m = 0, with no cutoff. All higher 

order modes have a cutoff; they are not guided below a certain critical frequency, 

the cutoff frequency. 

Figure 3.3 Graphical solution of the determinantal equation. 
(Construction for TM modes shown dashed) 

The symmetric solutions of dielectric slab guide for the TM modes are as 

follow: 
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Again we may construct a graphical solution to the transcendental equation: 

as shown by dashed curves in Figure 3.3. 

3.2 Computational Model 

Discontinuity problems in surface waveguides have been studied for many years, 

partly because of their relevance to the design of dielectric rod antennas. More 

recently, developments in the field of integrated optics and fiber optics have 

caused renewed interest in the behavior of a junction between two surface 

waveguides, as shown in Figure 3.4a. Such waveguides may have either circular or 

planar geometry and the central core is surrounded by a finite cladding of lower 

permittivity, as shown in Figure 3.4b. If the geometry is planar, and both two cores 

of the waveguide are made with the same material, and both claddings are made 

with the same materials, as shown in Figure 3.4c, the model apparently represents 

the discontinuity junction encountered in the lateral expansion laser stripes. 



25 

Figure 3.4 Discontinuities in surface waveguides 
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The analysis is simplified conderably if the dielectrics have infinite extent 

in transverse direction, as shown in Figure 3.4d. Although practical devices have 

finite transverse dimension, there is evidence, according to the previous study done 

by Anderson, Boyd and Mullen, b suggest that above assumption will not 

appreciably influence the excitation coefficients of the several surface waveguide 

modes with mode numbers are not too large. In metal waveguide case, there is no 

such problems, all possible modes can be included easily. 

A different notation for TEmnmode is Hmn mode. As shown in Figure 3.5, 

when a fundamental mode wave incdent on the junction from the left, waves of 

different modes are excited both in the left waveguide and the right one. The non 

linearity, brought by the discontinuity at the junction, is the cause of the excitation 

of all kinds of modes. 

Figure 3.5 Modes excited at the discontinuity junction 

The electromagnetic fields resulting from of the superposition of all the 

transmitted modes at the right side and of all the reflected modes plus incident 

mode at the left side must satisfy the boundary conditions at the junction plane. 

The boundary conditions are as follow: 
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where J is surface current density. In the region where J is zero, as shown in 

Figure 3.6, and under the condition of fundamental mode incident, the boundary 

conditions become: 

Figure 3.6 Boundary conditions in waveguide junction 
(1). Metal waveguide; (2). Dielectric waveguide. 

Although Ey  and Hx. are unknown functions, physically it is clear that they are 

constructed of all the possible waveguide transverse mode functions described in 

the previous section. In other words, Ey  and Hx  can be expanded in terms of 

transverse mode functions. To determine the amplitude or coefficient of each mode 

is the task for the mode matching method introduced in the next section. 
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3.3 Numerical Method for 
the Solution of Waveguide Discontinuity Problems 

A method for the solution of waveguide discontinuity problems using a digital 

computer is described in this section. For the method to be applied, the 

discontinuity must lie entirely in the surface transverse to the direction of 

propagation, and various techniques are described for treating planar discontinuity. 

Examples include a change in waveguide cross section and a change in the cross 

section of dielectric rods. Virtues of the method are simplicity and the ease with 

which discontinuity problems in overmoded waveguides may be treated. 

List of principal symbols 

a 	aMp  = coefficient associate with mth or Mth mode 

when pth mode is excited 

a, a' = widths of rectangular waveguides 

et = transverse-electric-field mode function 

E1  = transverse electric field 

h = transverse-magnetic-field mode function 

H = transverse magnetic field 

m*, M* = maximum values of mode numbers m and M respectively 

P = power associated with ith mode 

R = |R| ejФ  = complex reflection coefficient 

T= |T|  ejΨ = complex transmission coefficient 

7n, 7N = propagation coefficients of nth and Nth modes, respectively 
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3.3.1 Introduction 

In a previous study of discontinuities on shielded surface waveguides, Clarricoats 

and Slinn introduced a computer model-matching method to evaluate the 

transmission and reflection coefficients appropriate to a junction of circular 

dielectric rods. The method has been extended to an open planar-waveguide 

discontinuity, as shown in Figure 3.7b, by Clarricoats and Sharpe. Now it is going 

to be extended further to an optical cavity with active media, i.e. a laser structure. 

The method described enables transverse discontinuity problems to be 

solved. It allows the complex reflection and transmission coefficients to be 

determined for modes incident on and excited at the junction, and, in principle, no 

limit is placed on the number of modes that can be treated. In practice, one seldom 

encounters situations in which more than a few modes can propagate in the 

waveguide that contains the discontinuity, and we have experienced no difficulty, 

as yet, in handling such problems. The method is such that the transverse cross-

section of the waveguide or discontinuity may be chosen quite arbitrarily. 

However, so far we have only applied the method to waveguide and discontinuities 

of regular shape. Treatment of the arbitrary configuration requires the use of finite 

difference method, according to previous studies done by Hannaford, in order to 

obtain first the propagation coefficients and fields of all the significant modes 

incident on or excited at the junction. 

3.3.2 Formulation of Basic Equations 

The method now to be described applies to a metal waveguide junction of the kind 

shown in Figure 3.7a and, with a slight modification mentioned shortly, to those 
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a) change in waveguide cross-section; b) change in dielectric rod cross-section 

c) combination of junctions in a and b; d) dielectric waveguide change in 
cross-section 

Figure 3.7 Transverse discontinuities 
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shown in Figure 3.7b and c. Then, the method can be extended to an open 

dielectric waveguide discontinuity shown in Figure 3.7d. 

In essence, the transverse electric and transverse magnetic fields in the 

discontinuity aperture are expanded in terms of normal modes of the two 

waveguides. Two continuity equations are formed, and these are transformed into 

two sets of simultaneous equations suitable for the computation of the complex 

reflection and transmission coefficients of the normal modes. 

If, in Figure 3.7a, the transverse electric field and transverse magnetic field 

in the aperture, of cross-section S, are E, and H,, respectively, and if etm, and htm, 

etM and htM are corresponding transverse field functions for the mth normal 

modes in the two waveguides, assuming that the incident power is carried only by 

the pth mode in the left-hand waveguide: 

etm  and htm are chosen so that the incident power in the pth mode is given by 

The complex coefficients anpp,app  then corresponds, respectively, to the reflection 

and transmission coefficients of the pth mode, and amp,aMp  corresponds to the 
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transfer coefficients between the incident pth mode and the nth mode in the left-

hand and right-hand waveguides, respectively. These coefficients are rather simply 

related to the elements of the generalized scattering matrix of the junction. We 

transform the equations to a form suitable for computation. Vector postmultiply 

equation 17 by h*tm  and vector premultiply equation 18 by e*tn. Now, for metal 

waveguide, integrate over the aperture S and add to the right-hand side of equation 

17 the term: 

recognizing that this term is identically zero, since the total transverse electric field 

must vanish over the perfectly conducting transverse discontinuity. For the 

dielectric waveguide, all the integrals are over the whole junction plane. By using 

the well-known orthogonality relation stated in equation 21 and 23, equation 17 

and 18 become: 
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If n takes integer values between 1 and co, two infinite sets of equations are 

obtained from which, in principle, all the coefficients a1p,  a2p, 	alp, ... may 

be obtained. In our approach to the solution of the discontinuity problem, the 

infinite series in these equations are truncated after a finite number of terms. Then, 

after evaluation of integrals of the form given in equations. 21-23, the two sets of 

equations may be solved simultaneously using a digital computer. Suppose that in 

the general equation 19 and 20, q terms and R terms, respectively, are taken in the 

infinite series. Equation 19 then defines a system of R terms, and equation 20 

defines a system of q equations that may be combined in matrix form as set out 

below, equation (3.24). 

The elements Pii, P11  and P11  are either pure real or pure imaginary for 

lossless waveguides, which the coefficients amp, amp  are, in general, complex. 

Equation 8 may be subdivided into real and imaginary parts, so that the q + R 

complex coefficients may be evaluated. 

Physically, the truncation process is equivalent to assuming that only those 

evanescent modes up to the qth and Rth, respectively, contribute significantly to 

the stored energy at the discontinuity, a supposition that appears entirely 

reasonable for most practical cases. It was shown that, for a number of the 

discontinuities that have been studied, highly accurate results were obtained when 

only a few evanescent modes were included. 
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This method may also be used to solve discontinuity problems in which the 

wave guide cross-section does not change, but the cross-section of a dielectric rod 

contained therein changes discontinuously in a plane transverse to the direction of 

propagation. A configuration of this kind is depicted in Figure 3.5b. In this case, 

the integrals all extended over the same wave guide cross-section S. When this 

method is used to solve an open dielectric discontinuity problem shown in Figure 

3.5d, the integrals all extend over the infinite whole junction plane. 
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To summarize the method, the aperture field is expanded initially in the 

infinite sets of modes of the surface waveguides, and the transverse fields are 

matched across the junction plane. Assume a transverse-surface-wave mode 

incident from the left of the junction possessing unit amplitude. On application of 

well-known orthogonality conditions, two continuity equations are transformed 

into two infinite sets of equations containing the infinite sets of modal amplitudes 

a„ and am. To obtain an approximation solution to these equations, the series are 

truncated, and, in our study, we have included a total of nine modes on either side 

of the junction. A first step in the calculation of the coefficients is determination of 

the propagation coefficients and transverse fields of the modes, when the 

evaluation of the field integrals follows readily as they can be expressed in a close 

form. 

3.4 Calculation 

3.4.1 Solution of Eigenvalue Equation 

The propagation constant kx  for the dielectric waveguide is the solution of 

eigenvalue equation: 

To find the solution by hand, one can plot the dispersion diagram and find the 

intersections. 

A numerical method is used to get the solutions by computer, called 

midpoint method. Let us begin by considering a general equation of the form: 
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Suppose it is known that this equation must have one and only one solution within 

the interval [x0, xi], and f(x0)<0 and f(x1)>0. If f((x0+x1)/2)>0, the root is now 

confined in a smaller interval [x0, (x0+xl)/2]. Otherwise, if f((x0+x1)/2)>0, the 

root must lies within [(x0+x1)/2, x1/ Then start all over again: find the value of 

f(x) at the midpoint of the interval; let its x value replace the left or the right end of 

the interval according to its sign of f(x). Each time we repeat it, a smaller interval 

results. Till the interval is very small, the mid point of the interval is a good 

approximation of the root. 

In our case the function is: 

where x=kxd. 

There is a root in [0,7t/2], and one root in every it interval after n/2, until cutoff. 

3.4.2 Numerical Integration 

The elements of matrix [ P1 ] and [ P2 ] are results of the following integrals: 



37 

As mentioned before the thickness of the active layer is so thin that only the 

fundamental mode exists. That is the mode number on the vertical direction is 

zero, then h*  y= 0 and etmx  = 0. Hence, 

Moreover, h * tNx  and e1177  are only the funtions of x. Then the surface integral can 

be replaced with a one dimension integral. 

That is the problem of determining the area underneath a curve between two 

given values of the independent variables. Numerical integration method uses 

progressively smaller "panels" of measurable area to divide the area beneath the 

curve. The summation of the areas of these panels then provides an approximation 

of the total area. In the trapezoidal rule method, these panels are topped by 

straight-line secants to the curve, whereas Simpson's method tops each panel with 

a parabolic curve of its own. Both of these methods can be improved with an 

abbreviated Taylor series expansion to compute the error -- a method called end 

correction. 

The method for numerical integration used in this thesis is the Simpson 

method with end correction. Since a parabola can be defined by a minimum of 

three points, we must divide the original area into an even number of panels. Each 

parabola is fitted to the tops of two adjacent panels. In general, we expect 

parabolas to produce a better fit than straight lines. That is, we should need fewer 

panels to obtain satisfactory convergence. The Simpson's rule formula with end 

correction looks like: 
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where 

f(x) is the function; 

f '(x) is the first order derivative of the function; 

is the number of panels; 

integration is evaluated between the region of x=a and x=b; 

The program automatically chooses the proper panel number n, to get results 

with satisfactory precision. 

3.4.3 Simultaneous Equations with Complex Coefficients 

The problem of determining the propagation coefficient for each mode, eventually 

becomes a problem of solving a set of simultaneous equations. 

The technique solving the simultaneous equations used in this thesis is 

called Gauss elimination. With the Gauss method, the original equations are 

manipulated so that the coefficient matrix contains a value of unity at each point 

on the major diagonal and zero at each position below and to the left of the major 

diagonal. 

Two basic types of matrix operations are used in the Gauss elimination 

method: scalar multiplication and addition. Any equation can be multiplied by a 

constant without changing the result. This is equivalent to multiplying one row of 

the coefficient matrix and the corresponding element in the constant vector by the 

same value. Also, any equation can be replaced by the sum of two equations. 

After the coefficient matrix is trianglized, the very last equation can be 

solved since it has only one unknown. And the second last equation has two 

unknowns, but one of them is solved in the last equation. So, by substituting in the 
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solved unknowns in sequence, all the unknowns can be solved. The process is 

called back substitution. 

But in the problem encountered in this thesis, all the elements in the 

simultaneous equations are complex numbers. It can not be treated easily by using 

the method described above. Modification to the method is needed. 

First, n simultaneous equations with complex coefficients are converted into 

2n equations with real coefficients. Then, the resulting equations can be solved by 

one of the methods developed previously in this section. 

Consider a general statement of a set of two equations: 

where the following symbols are used: 

ARk1 = real part of coefficient k, I 

Alk1 = imaginary part of coefficient k, 1 

IR'  = real part of unknown coefficient 1 

II I  = imaginary part of unknown coefficient I 

= real part of constant 1 

VI1 = imaginary part of constant 1 

Multiplication of the terms on the left of the above equations produces groups that 

alternatively include the complex operator j. Separate the real part and imaginary 

part, which is equal respectively. The complete new equations can be summarized 

as equation (3.34). 

Notice that each original coefficient appears twice in the new matrix. It can 

be proved that it is also true for the case of n larger than two. The solution vector 
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for the new set of equations can readily be found by the method of Gauss 

elimination. 

The Gauss elimination method is not suitable for solving very large 

matrices. More and more multiplication and subtraction operations are performed 

as the number of equations increases. The resulting roundoff error can produce a 

meaningless solution. In that case Gauss-Seidel iterative method can be used. But 

in the problem discussed a maximum of 12 modes are considered, it has been 

demonstrated that Gauss elimination can give very precise results. 



CHAPTER 4 

ANALYSIS BY COMPUTER 
SIMULATION METHOD 

In these chapter results obtained by using numerical analysis are presented. The 

matchings of the field pattern at the junction plane are first discussed, since it 

indicates the satisfaction of the boundary conditions at the discontinuity junction. 

The almost perfect matches of the transverse electric fields at the junction indicate 

the the accuracy of this method. The convergence is the next topic. The electric 

field pattern away from the discontinuity junction in the propagation direction is 

also an important topic. It is closely related to the efficiency of the calculation of 

the lateral expansion laser structure. 

The reason that makes the calculation results of dielectric waveguide cases 

less accurate than the metal waveguide case is the neglecting of the radiation 

modes. Only propagating modes are calculated in the dielectric case, because it is 

really complicated to solve the eigen value equation for the propagation constant 

kx, while it is a complex variable. But as cited in the reference, neglecting the 

radiation modes can keep the kx be real. In that case, even in principle, only a finite 

number of propagating modes can be used in the field expansion when using the 

method of mode matching. Since a set of finite number of functions can not form a 

complete set, thus result in the inaccuracy. It is less accurate when the width on 

one side is much larger than the width on the other side of the junction. That is 

when the radiation modes play an important role in matching the field pattern out 

of the narrow waveguide core. 

A lot of discussion is based on the results obtained from metal waveguide 

problems, because of the results are relatively easier to obtain and more accurate. 
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Once a property of the structure is found in the metal waveguide, a comparison is 

made with the dielectric waveguide case. That is because to obtain results for 

dielectric waveguides are very time consuming, and less accurate. On the other 

hand metal waveguide is approximation for dielectric waveguide with very large 

refraction index difference between the cladding and core. 

4.1. Matching the Field Profiles at the Discontinuity Junction 

Figure 4.1 shows the matching of the transverse electric field profiles at the 

junction of metal waveguides. The waveguide width is lum on the incident side, 

and gum on the output side, with only fundamental mode incident. The profile of 

incedent mode is shown in Figure 4.2. 

Figure 4.1 Electric field profiles matching at the junction. 
(a=lum, b=2um, λ=1.68um, 12 mode approximation ) 
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Figure 4.2 Electric field profile of H01 incident on the junction 
b=2um, λ=1.68um, 12 mode approximation) 

from the 1 um waveguide. Wave length is 1.68um. In that case the left side is a 

single mode waveguide. As shown in the figure, a 12 mode approximation made 

very accurate matching of the patterns in the aperture. These indicate the results 

obtained satisfy the boundary transverse electric field continuity condition. The 

transverse magnetic field H1  should also be continuous. As the electric field is 

physically measurable, only electric field is discussed. 

Convergence requires that the more modes are used in the expansion, the 

more accurate result should be. A result obtained from six mode approximation is 

shown in Figure 4.3. Apparently, it is not as accurately matched as the twelve 

mode approximation results. These demonstrate the convergence. 



44 

Figure 4.3 Electric field profiles matching at the junction. 
(a=lum, b=2um, X=1.68um, 6 mode approximation) 

Figure 4.4 Electric field profiles matching at the junction. 
(a=4um, b=5um, X=0.88um, 5 mode approximation) 
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Figure 4.5 Electric field profiles matching at the junction. 
(a=2um, b=4um, λ=0.88um, 3 mode approximation ) 

Similarly, results for dielectric waveguide discontinuity problems are shown 

in Figure 4.4 and Figure 4.5 for fewer modes and shorter wavelengths. Neglecting 

radiation modes made the results less accurate, especially when there is a large 

difference between an and b, as shown in Figure 4.5. The incedent mode profile is 

shown in Figure 4.6. 

4.2. Mode Decomposition 

The field patterns at the discontinuity junction, as shown in Figure 4.1 and Figure 

4.3, are summations of all possible mode components. This is the basis of mode 

expansion. Convergence requires that the components of high order modes are 

gradually vanishing as mode number increases, otherwise there is no reason to 

truncate the mode expansion series. 
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Figure 4.6 Electric field profile of H01 incident on the junction 
(a=4um, b=5um, X=0.88um, 5 mode approximation) 

Figure 4.7 First five symmetric modes' components comparison 
(a=lum, b=2um, X=1.68um, 12 mode approximation) 
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Figure 4.8 First five symmetric modes' components comparison 
(a=lum, b=2um, λ=0.88um, 12 mode approximation) 

Figure 4.7 and Figure 4.8 show the amplitudes of the first five symmetric 

modes on the out put side under two different wavelength wave incidents. The two 

figures are obtained from the same waveguide structure (incident side I um of 

width, output side gum of width, fundamental mode incident only). The only 

difference is the wave length. 

Figure 4.7 shows the result when wave length is 1.68um. In the incident side 

only fundamental mode can propagate, in the output waveguide two modes can 

propagate, but among them only the fundamental mode is a symmetric mode, the 

other one is antisymmetric that can not be excited by the symmetric incident mode. 

This is the circumstance under which the lateral expansion structure is sufficient. It 

is going to be discussed in detail in the next section. 
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Figure 4.8 is obtained by using 0.88um light. In this case, the incident 

waveguide can propagate waves of two modes, among them one is symmetrical. 

The output waveguide can propagate waves of four modes, among them two are 

symmetrical. 

Both Figure 4.7 and Figure 4.8 show the trend of convergence, as can be 

seen the low order modes dominate. 

Although, their mode component looks similar to one another. The situation 

shown in Figure 4.8 is not sufficient in enlarging light spot as the one shown in 

Figure 4.7. This is the topic of the next section. 

4.3 Electric Field Patterns at the Facet 

The modes excited at the junction are classified as two types, propagating modes 

and evanescent modes. The propagate modes do not change their amplitude as they 

propagating in a lossless waveguide, while the evanescent modes exponentially 

decay as they propagate. So as they reach the facet, the field pattern is different 

from that of at the junction. The pattern at the facet is essentially comprised of 

only propagating modes. 

For the time being, we assume there is a anti-reflection coating at the facet, 

so facet reflection is negligible. Precise solution needs to include the reflected 

wave. The reflected wave is partially reflected and partially transmitted by the 

junction when it heads back. But that is not the end of the story, the wave will go 

back and forth infinite times as shown in Figure 4.9. A precise field pattern can be 

obtained by adding up all these waves. 
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Figure 4.9 Wave reflected back and force between junction and facet 

The electric field pattern changes from Figure 4.1 at the junction to Figure 

4.10 at the facet 20um away from the junction. As shown in Figure 4.10, 

fundamental mode dominants in the wide waveguide that can propagate two 

modes. This shows the significance of the lateral expansion structure. The light 

spot is enlarged to twice as big as it is incident, thus thermal stress is distributed on 

a wider area on the facet. This can not be achieved by a simple shaped stripe 2um 

of width, because, in that case, one antisymmetric higher order mode will compete 

with the fundamental mode, resulting in a multimode laser. 

The result for dielectric case is showed in Figure 4.12. 

Figure 4.11 is obtained from Figure 4.3 when it is 20um away from the 

junction. Because the existence of higher order propagating mode in the output 

waveguide, the field patterns remains a sharp peak. The light spot does not spread 

out much. It is constructed by two propagating modes (mode 1 and mode 3). A 

higher order mode (mode 3) has a significant portion in the field pattern at the 

facet. That results in multimode property. Under this circumstance, the lateral 

expansion structure helps nothing. 
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Figure 4.10 	Electric field profiles at facet ten times b 
away from the junction. 
(a=lum, b=2um, λ=1.68um, 12 mode approximation) 

To summarize the above analysis, a narrow stripe, so narrow that only 

propagating mode is the fundamental mode, is needed to confine the laser 

operating on single mode. That is why only fundamental modes are considered 

incident from there. The wide expanded stripe between the facet and junction need 

to be wide so that the light spot can be enlarged. But it can not be too wide. If the 

stripe is wide enough to hold another symmetric mode besides fundamental mode, 

multimode property will exist. It is no problem to make the stripe wide enough to 

hold the first antisymmetric mode besides a symmetric fundamental mode. That 

puts a limit for how wide the lateral expansion can be made. The conclusion is 

obviously general. The dielectric waveguides should also obey the rule. 
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Figure 4.11 Electric field profiles at facet ten times b 
away from the junction. 
(a=lum, b=2um, λ=0.88um, 12 mode approximation) 

Figure 4.12 Electric field profiles at facet ten times b 
away from the junction. 
(a=4um, b=5um, λ=0.88um, 5 mode approximation) 
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Up to now, the gain profile is not included. As presented in the next chapter, 

under certain gain profiles, the above requirement can be overcome. That brings a 

lot of possibilities for device design. 



CHAPTER 5 

CONCLUSION AND SUMMARY 

The analysis of transverse discontinuity problems in waveguides using computer 

simulation, shows that the lateral expansion laser structure has its significance 

under certain circumstances. As studied in this thesis, not only the width of center 

part narrow stripe has a limit in keeping single mode operation, the expanded 

stripe ends also have a limit in width. The wide part can be wide enough to support 

the first antisymmetric mode, but not wide enough to hold another symmetric 

mode beside the fundamental mode. 

The requirement is to make the higher order modes excited at the 

discontinuity junction evanescent modes. They decay as they propagate. So once 

the requirement is satisfied the higher order mode will not be able to reach the 

output facet. 

Figure 5.1 Gain profile 
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Of course the gain for each mode is not the same. If the gain profile is as 

shown in Figure 5.1, for which only the fundamental mode and the first 

antisymmetric mode has gain in the wide stripe, expansion stripes can be wider 

than we just discussed. 

Using the gain profile shown in Figure 5.1, the structure discussed in chapter 

4 emitting 0.88um light, can also achieve the performance of the lateral expansion 

structure as shown in Figure 5.2. 

Figure 5.2 Electric field profiles at facet ten times b away 
from the junction with gain profile as shown in Figure 5.1. 
(a=lum, b=2um, λ=0.88um, 12 mode approximation) 

If the gain profile can be as ideal as shown in Figure 5.3, there is no need for 

lateral expansion. Even wide stripe lasers can operate in a single mode. Of course, 

this gain profile is impractical for current technology. 
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Figure 5.3 Ideal gain profile 

Due to time problems, the radiation mode in dielectric waveguide is not 

included, which made the result for dielectric less accurate. The difficulty is in 

solving the eigenvalue equation of kx, when kx  is complex variable. It can be a 

future work. Moreover, reflections happened within the cavity need to be included 

for more precise result. 



APPENDIX A 

SOURCE CODE FOR SOLUTION OF 
METAL WAVEGUIDE DISCONTINUITY JUNCTION 

program matrix 

c* Purpose: Calculate the matrix elements 
c* 	for mode matching at metal waveguide * 
c* 	junctions 
c******************************************** 

c -- numerical integration by simpson's rule 
c -- variables for integration 

integer out 
double precision sum,resum,imsum,upper,lower,tol 

c 
c -- variables for function calculation 

double precision a,b,u,u0,eps,eps0,lemda 
integer modll,modrl,mod12,modr2,modmax 
complex pll(24,24),prr(24,24),plr(24,24) 

integer pau 
common /inout/ out 
common a,b 

C ************************************************ 

data pi/3.14159265/, tol/1.0d-51 
c  ************************************************ 
C 

call datain(a,b,u,u0,eps,eps0,lemda,modmax) 

out=6 
write(out,*)' simpson"s rule integration' 

do 525 mod11=1,modmax 
do 313 mod12=1,modmax 
if (.not.(modl 1.eq.mod12)) goto 900 

c ************ real part of left ************** 
call simps(lower, upper, tol, sum, 



• a,b,lemda,u,eps,2*mod11-1,2* mod12- 1,1 ) 
resum = sum 

*********** imaginary part of left ******** 
call simps(lower, upper, tol, sum, 
• a,b,lemda,u,eps,2*modl 1 -1,2*mod12-1,2) 
imsum = sum 

pll(modl 1 ,mod12)=cmplx(resum,imsum) 
goto 901 

900 pll(modll,mod12)=cmplx(0.0,0.0) 
901 continue 
c 	read(*,1) pau 
1 	format(i2) 
313 write(out,104) modll,mod12,p11(modll,mod12) 
104 format(/' mod1=,mod2=,rearea=,imarea=',2i3,2g14.7/) 
525 continue 

do 2525 modr1=1,modmax 
do 2313 modr2=1,modmax 
if (.not.(modrl.eq.modr2)) goto 800 

c ************ real part of right ************** 
call simps(lower, upper, tol, sum, 
• a,b,lemda,u,eps,(2*modr1-1),(2*modr2-1),3) 
resum = sum 

*********** imaginary part of right *********** 
call simps(lower, upper, tol, sum, 
• a,b,lemda,u,eps,(2*modr1-1),(2*modr2-1),4) 
imsum = sum 

prr(modrl,modr2)=cmplx(resum,imsum) 

goto 801 

800 prr(modrl,modr2)=cmplx(0.0,0.0) 
801 continue 
c 	read(*,1) pau 
2313 write(out,104) modrl,modr2,prr(modr1 ,modr2) 
2525 continue 
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do 3313 modr2=1,modmax 
c ************ real part of right ************* 

call simps(lower, upper, tol, sum, 
a,b,lemda,u,eps,2*modl 1-1,2*modr2-1,5) 

resum = sum 
c *********** imaginary part of right *********** 

call simps(lower, upper, tol, sum, 
a,b,lemda,u,eps,2*mod11-1,2*modr2-1,6) 

imsum = sum 
c 

plr(modll,modr2)=cmplx(resum,imsum) 

c 	read(*,1) pau 
write(out,104) mod11,modr2,p1r(modll,modr2) 

3313 continue 
3525 continue 
c 

call dataout(pll,prr,plr,modmax,a,b,lemda,eps,u) 

end 

subroutine simps(lower, upper, tol, sum, 
a,b,lemda,u,eps,mod1,mod2,choice) 

c************************************************* 

c*-- numerical integration by simpson's rule * 
c*-- with end correction 
c************************************************* 

c -- variables for integration 
integer out, pieces, i, p2, choice 
double precision x, delta, lower, upper, sum, tol 
double precision endsum, oddsum, sum1, evsum, endcor 

c variables for function calculation 
complex hxmO,hym0,exmO,eym0,beta 
complex dhxm0,dhym0,dexm0,deym0 
complex hxm0a,hym0a,exm0a,eym0a,betaa 
complex dhxm0a,dhym0a,dexm0a,deym0a 
double precision a,b,u,eps,lemda,width1,width2 
integer mod1 ,mod2 

common /inout/ out 
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call wideup(width 1 ,width2,lower,upper,choice,a,b) 

pieces = 2 
delta = (upper - lower) / pieces 
call ehxy(width 1 ,lemda,u,eps,mod 1 ,hxm0,hym0,exm0,eym0, 

lower+delta,beta) 
call ehxy(width2,lemda,u,eps,mod2,hxm0a,hym0a,exm0a,eym0a, 

lower+delta,betaa) 

if ((choice.eq. 1 ).or.(choice.eq.3).or.(choice.eq.5)) 
• oddsum = real(-eym0 * conjg(hxm0a)) 
if ((choice.eq.2).or.(choice.eq.4).or.(choice.eq.6)) 
• oddsum = aimag(-eym0 * conjg(hxm0a)) 

evsum = 0.0 
call ehxy(width 1 ,lemda,u,eps,mod I ,hxm0,hym0,exm0,eym0, 

lower,beta) 
call ehxy(width2,lemda,u,eps,mod2,hxm0a,hym0a,exm0a,eym0a, 

lower,betaa) 

if ((choice.eq. 1 ).or.(choice.eq.3).or.(choice.eq.5)) 
• endsum = real(-eym0 * conjg(hxm0a)) 
if ((choice.eq.2).or.(choice.eq.4).or.(choice.eq.6)) 
• endsum = aimag(-eym0 * conjg(hxm0a)) 

call ehxy(width 1 ,lemda,u,eps,mod 1 ,hxm0,hym0,exm0,eym0, 
upper,beta) 

call ehxy(width2,lemda,u,eps,mod2,hxm0a,hym0a,exm0a,eym0a, 
upper,betaa) 

if ((choice.eq. 1 ).or.(choice.eq.3).or.(choice.eq.5)) 
• endsum = endsum+real(-eym0*conjg(hxm0a)) 
if ((choice.eq.2).or.(choice.eq.4).or.(choice.eq.6)) 
• endsum = endsum+aimag(-eym0*conjg(hxm0a)) 

call dehxy(width 1 ,lemda,u,eps,mod 1 ,dhxm0,dhym0,dexm0, 
deym0,lower,beta) 

call ehxy(width 1 ,lemda,u,eps,mod 1 ,hxm0,hym0,exm0, 
eym0,lower,beta) 

call dehxy(width2,lemda,u,eps,mod2,dhxm0a,dhym0a,dexm0a, 
deym0a,lower,betaa) 
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call ehxy(width2,lemda,u,eps,mod2,hxm0a,hym0a,exm0a, 
eym0a,lower,betaa) 

if ((choice.eq.1 ).or.(choice.eq.3 ).or.(choice.eq.5)) 
• endcor = real(-eym0*conjg(dhxm0a) 

-deym0*conjg(hxm0a)) 
if ((choice.eq.2).or.(choice.eq.4).or.(choice.eq.6)) 
• endcor = aimag(-eym0*conjg(dhxm0a) 
* -deym0*conjg(hxm0a)) 

call dehxy(widthl,lemda,u,eps,mod1,dhxmO,dhym0,dexm0, 
deym0,upper,beta) 

call ehxy(width 1 ,lemda,u,eps,mod1,hxm0,hym0,exm0, 
eym0,upper,beta) 

call dehxy(width2,1emda,u,eps,mod2,dhxm0a,dhym0a,dexm0a, 
deym0a,upper,betaa) 

call ehxy(width2,1emda,u,eps,mod2,hxm0a,hym0a,exm0a, 
* eym0a,upper,betaa) 

c 
if ((choice.eq.1).or.(choice.eq.3).or.(choice.eq.5)) 
• endcor =endcor-real(-eym0*conjg(dhxm0a) 
* -deymO*conjg(hxm0a)) 
if ((choice.eq.2).or.(choice.eq.4).or.(choice.eq.6)) 
• endcor =endcor-aimag(-eym0*conjg(dhxm0a) 

-deym0*conjg(hxm0a)) 

sum = (endsum + 4.0 * oddsum) * delta / 3.0 

c 	write(out, 101) pieces, sum 
5 	pieces = pieces * 2 

p2 = pieces /2 
sum1 = sum 
delta = (upper - lower) / pieces 
evsum = evsum + oddsum 
oddsum = 0.0 
do 10 i=1, p2 
x = lower + delta * (2.0 * i - 1.0) 
call ehxy(width,lemda,u,eps,mod1, 

hxm0,hym0,exm0,eym0,x,beta) 
call ehxy(width2,lemda,u,eps,mod2, 

hxm0a,hym0a,exm0a,eym0a,x,betaa) 
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if ((choice.eq.1).or.(choice.eq.3).or.(choice.eq.5)) 
• oddsum = oddsum + real(-eym0*conjg(hxm0a)) 

if ((choice.eq.2).or.(choice.eq.4).or.(choice.eq.6)) 
• oddsum = oddsum + aimag(-eym0*conjg(hxm0a)) 

10 continue 
sum = (7.0 * endsum + 16.0 * oddsum + 14.0 * evsum 
* + endcor * delta) * delta / 15.0 

c 	write(out, 101) pieces, sum 
if ( (abs(sum).1e.ld-10).and.(abs(sum1).1e. 1 d-10) 
* .and.(i.gt.16000)) goto 313 
if (abs(sum - sum 1) .gt. abs(tol * sum)) goto 5 
return 

101 format(lx, i7, d14.7) 
313 write(6,522) 
522 format(' Integration >16000 approximation') 

if (i.gt.16000) sum=0.0 
return 
end 

subroutine ehxy(width,lemda,u,eps,mod, 
* hxm0,hym0,exm0,eym0,x,beta) 

C************************************************* 

c* Generate transverse mode function 
C************************************************* 

double precision x,width,lemda,u,eps,fm0,freq,w,v,a,b 
integer mod 
complex hxm0,hym0,exm0,eym0,beta 

common /inout/ out 
common a,b 

c 

v = 1.0 / sqrt( u * eps ) 
fm0 = mod * v / 2.0 / width 
freq = 2.99796d8 / lemda 
w = 2.0 * 3.1415926 * freq 
if ( freq .gt. fm0) beta = cmplx( ( 2.0 * 3.1415926 
* / v * sqrt ( freq * freq - fm0 * fm0 ) ), 0.0 ) 
if ( freq .le. fm0) beta = cmplx( 0.0, ( 2.0 * 3.1425926 



* / v * sqrt ( fm0 * fm0 - freq * freq )) ) 
cccccccccccccccccccccccccccccccccccc 

C 	 C 

C 	 C 

C 	 C 

c 	 p=1 incident only 
c 	 c 

c 	 c 

if ((width.eq.a).and.(.not.(mod.eq.1)) 
* .and.(.not.(a.eq.b))) beta = -1.0 * beta 

ccccccccccccccccccccccccccccccccccccc 
C 

hxm0 = (0.0,1.0) * beta / mod / 3.1415926 
* * width * dsin ( dble(mod) * 3.1415926 
* * (x-0.5*width) / width ) 

C 

hym0 = (0.0,0.0) 

exm0 = (0.0,0.0) 

eym0 = -w * u / beta * hxm0 
return 
end 

c 

subroutine dehxy(width,lemda,u,eps,mod, 
dhxm0,dhym0,dexm0,deym0,x,beta) 

c************************************************* 

c* 	Generate derivative of mode function 
c************************************************* 

double precision x,width,lemda,u,eps,fm0,freq,w,v,a,b 
integer mod 
complex dhxm0,dhym0,dexm0,deym0,beta 

common /inout/ out 
common a,b 
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v = 1.0 / sqrt( u * eps ) 
fm0 = mod * v / 2.0 / width 
freq = 2.99796d8 / lemda 
w = 2.0 * 3.1415926 * freq 
if ( freq .gt. fm0 ) beta = cmplx( ( 2.0 * 3.1415926 
* / v * sqrt ( freq * freq - fm0 * fm0 ) ), 0 ) 
if ( freq .le. fm0 ) beta = cmplx( 0, ( 2.0 * 3.1425926 
* / v * sqrt ( fm0 * fm0 - freq * freq )) ) 

ccccccccccccccccccccccccccccccccccccc 

c 	 p=1 incident only 
c 	 c 

C 	 C 

if ((width.eq.a).andknot.(mod.eq.1)) 
* .and.(.not.(b.eq.a))) beta = -1.0 * beta 

ccccccccccccccccccccccccccccccccccccc 

dhxm0 = (0.0,1.0) * beta * dcos( 
• dble(mod) * 3.1415926 * (x-0.5*width) / width ) 

c 

dhym0 = (0.0,0.0) 

dexm0 = (0.0,0.0) 

deym0 = -w * u / beta * dhxm0 
return 
end 

subroutine datain(a,b,u,u0,eps,eps0,lemda,modmax) 
c************************************************ 

c* 	Input configurations of the structure 	* 
c************************************************ 

c -- variables for function calculation 
double precision a,b,u,u0,eps,eps0,lemda 
integer modmax 
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c 	write(6,205) 
205 format(' Input u:') 
c 	read(*,202) u 

u0 = 4.0 * 3.1415926d-7 
u= 1.0 * u0 

c 	write(6,208) 
208 format(' Input eps:') 
c 	read(*,202) eps 

eps0 = 8.854d-12 
eps = 1.0 * eps0 

write(6,201) 
201 format(' Input strip width at incidence side IN MICRONS:') 

read(*,202) a 
a = a * 1.0d-6 

202 	format(fl 0.0) 
write(6,203) 

203 format(' Input strip width at output side IN MICRONS:') 
read(*,202) b 
b = b * 1.0d-6 
write(6,204) 

204 format(' Input wave length in vacuum IN MICRONs') 
rcad(*,202) lemda 
lemda = lemda * 1.0d-6 

c 
write(6,206) 

206 format(' Input mode number modmax:') 
read(*,207) modmax 

207 format(i2) 

write(6,205) 
write(6,202) u 
write(6,208) 
write(6,202) eps 
write(6,201) 
write(6,202) a*1.0d6 
write(6,203) 
write(6,202) b*1.0d6 
write(6,204) 
write(6,202) lemda*1.0d6 
write(6,206) 
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write(6,207) modmax 
end 

subroutine wideup(width 1 ,width2,lower,upper,choice,a,b) 
c************************************************* 

c* Determine the lower and upper limits 
c* 	for the integration 

c************************************************ 

double precision width 1,width2,lower,upper,a,b,abmin 
integer choice 

abmin = a / 2.0 
if (a.gt.b) abmin = b / 2.0 

c 

if (choice.eq. 1) width 1=a 
if (choice.eq. 1) width2=a 
if (choice.eq. 1) 	lower=-a/2.0 
if (choice.eq. 1) 	upper= a/2.0 

if (choice.eq.2) width 1=a 
if (choice.eq.2) width2=a 
if (choice.eq.2) lower=-a/2.0 
if (choice.eq.2) upper= a/2.0 

if (choice.eq.3) width 1=b 
if (choice.eq.3) width2=b 
if (choice.eq.3) lower=-b/2.0 
if (choice.eq.3) upper= b/2.0 

if (choice.eq.4) width 1=b 
if (choice.eq.4) width2=b 
if (choice.eq.4) lower=-b/2.0 
if (choice.eq.4) upper= b/2.0 

if (choice.eq.5) widthl=a 
if (choice.eq.5) width2=b 
if (choice.eq.5) lower=-abmin 
if (choice.eq.5) upper= abmin 

if (choice.eq.6) width 1=a 
if (choice.eq.6) width2=b 
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if (choice.eq.6) lower=-abmin 
if (choice.eq.6) upper= abmin 

return 
end 

subroutine dataout(pll,prr,plr,modmax,a,b,lemda,eps,u) 
c************************************************ 

c* 	Write the results of matrix element to * 
c* 	a file: pmndata. 
c********************************************* 

integer modmax,i,j 
complex p11(24,24),prr(24,24),plr(24,24) 
double precision a,b,lemda,eps,u 

open(5,file = 'pmndata',status='new',form='formatted') 
write(5,101) modmax 

101 format(lx,i3) 
write(5,103) a,b,lemda,eps,u 

103 	format(1x,5d14.7) 
do 10 i=1,modmax 
do 20 j=1,modmax 
write(5,102) pll(i,j),prr(i,j),plr(i,j) 

20 	continue 
10 continue 
102 	format(1x,6e14.7) 

close(5) 
return 
end 
program solve 

c************************************************* 

c* Solve the simultaneous equations for 
c* 	the coefficients of each mode 
c************************************************* 

c 	fortran program to solve 
c -- simultaneous equations by gauss elimination 

logical error 
integer length, maxr, out 
real a(48,48), y(48), coef(48) 
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integer modmax 
complex p11(24,24),prr(24,24),plr(24,24) 
double precision al,br,lemda,eps,u 

common /inout/ out, maxr 

out = 6 

maxr = 24 

write(out, 101) 
call datain(pll,prr,plr,modmax,al,br,lemda,eps,u) 
call input(a, y, length,pll,prr,plr,modmax) 
if (length .lt. 2) stop 
call gauss(a, y, coef, length, error) 
if (.not.error) call output(a, y, coef, length) 

101 format(' simultaneous solution by gauss elimination') 
end 

c 

subroutine input(a, y, n,pll,prr,plr,modmax) 
c -- get values for n and array a,y 
c 

integer p,n, out, i, j, m, ri, modmax 
real a(48,48), y(48), rea(24,24), ima(24,24), rey(24), imy(24) 

complex pll(24,24),prr(24,24),plr(24,24) 

common /inout/ out, maxr 

c*********************** 

p=1 
c*********************** 

5 	write(out, 105) 
n = modmax * 2 
m = n 
if (n .gt. maxr) goto 5 
if (n .lt. 2) return 
do 99 ri = 1, 2 
if (ri .eq. 1) write(out,991) 
if (ri .eq. 2) write(out,992) 
do 20 i = 1, modmax 
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write(out,101) i 
do 10j = 1, modmax 
write(out,102) j 
if (ri .eq. 2) goto 2 

rea(i,j)=real(plr(j,i)) 
rea(i+modmax,j+modmax)=real(conjg(plr(j,i))) 

rea(i,j+modmax)=real(prr(j,i)) 

rea(i+modmax,D=real(-1.0*conjg(p11(j,i)) 
write(out,444) i,j 

444 	format('now 	',i3,i3) 
a(2*i-1,2*j-1)=rea(i,j) 
a(2*1,2*j)=rea(i,j) 
a(2*(i+modmax)-1,2*(j+modmax)-1) 

=rea((i+modmax),(j+modmax)) 
a(2 * (i+modmax),2 * (j+modmax)) 

=rea((i+modmax),(j+modmax)) 

a(2*i-1,2*(j+modmax)-1)=rea(i,(j+modmax)) 
a(2*i,2*(j+modmax))=rea(i,(j+modmax)) 
a(2*(i+modmax)-1,2*j-1)=rea((i+modmax),j) 
a(2*(i+modmax),2*D=rea((i+modmax),j) 
goto 10 

2 	ima(i,j)=aimag(plr(j,i)) 
ima(i+modmax,j+modmax)=aimag(conjg(plr(j,i))) 

ima(i,j+modmax)=aimag(prr(j,i)) 
ima(i+modmax,j)=aimag(-1.0*conj g(p11(j,i))) 
a(2*i-1,2* j)=-ima(i,j) 

a(2*i,2*j-1)=ima(i,j) 
a(2*(i+modmax)-1,2*(j+modmax)) 

* 	=-ima((i+modmax),(j+modmax)) 
a(2*(i+modmax),2*(j+modmax)-1) 

=ima((i+modmax),(j+modmax)) 
a(2*i-1,2*(j+modmax))=-ima(i,(j+modmax)) 
a(2*i,2*(j+modmax)-1)=ima(i,(j+modmax)) 
a(2*(i+modmax)-1,2*j)=-ima((i+modmax),j) 
a(2*(i+modmax),2* j-1)=ima((i+modmax),j) 

10 continue 
write(out,104) 
if (ri .eq. 2) goto 22 
rey(i)=real(-plr(p,i)) 
rey(i+modmax)=0.0 
if (i.eq.p) rey(i+modmax)=real(-conjg(p11(p,p))) 
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y(2* i-1)=rey(i) 
y(2*(i+modmax)- I )=rey(i+modmax) 
goto 20 

22 	imy(i)=aimag(-plr(p,i)) 
imy(i+modmax)=0.0 
if (i.eq.p) imy(i+modmax)=aimag(-conjg(p11(p,p))) 
y(2 * i)=imy(i) 
y(2*(i+modmax))=imy(i+modmax) 

20 continue 
99 continue 

do 111 i=1,n 
111 write(out,333) (rea(i,j)j=1,n),rey(i) 
do 222 i=1,n 

222 	write(out,333) (ima(i,j),j=1,n),imy(i) 
333 	format(1p7e 12.4) 

n = 2 * n 
return 

991 format(' 	Input real part 	 
992 format(' 	Input imag part 	 
101 format(' equation ', i3/) 
102 format('+',i4,': ' ) 
103 format(f10.0) 
104 format('+ c: ' ) 
105 format(/'+how many equations? ' ) 
106 format(i2) 

end 

subroutine gauss(a, y, coef, ncol, error) 
c************************************************ 

c -- simultaneous solution by gauss elimination * 
************************************************** 

logical error 
integer ncol, i, j, out, n, n1, i 1, k, 1 
real a(48,48), y(48), coef(48) 
real b(48,48), w(48), big, ab, sum, t 
common /inout/ out, maxr 

error = .false. 
n = ncol 
do 20 i = 1 , n 
do 10 j = 1 ,n 
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b(i,j) = a(i,j) 
10 continue 

w(i) = y(i) 
20 continue 

n1 = n - 1 
do 70 i = 1, n1 
big = abs(b(i,i)) 
1=i 

i1=i+ 1 
do 30 j=i1,n 
ab = abs(b(j,i)) 
if (ab .le. big) goto 30 
big = ab 
1=j 

30 continue 
if (big .eq. 0.0) goto 70 
if (1 .eq. i) goto 50 

c -- interchange rows to put largest element on diagonal 
do 40 j=1, n 
call swap(b(1,j), b(i,j)) 

40 continue 
call swap(w(i),w(1)) 

50 continue 
do 60 j= i1, n 
t = b(j,i) / b(i,i) 
do 55 k = i1, n 
b(j,k) = b(j,k) - t * b(i,k) 

55 	continue 
w(j) = w(j) - t * w(i) 

60 continue 
70 continue 

if (b(n,n) .eq. 0.0) goto 99 
coef(n) = w(n) / b(n,n) 
i = n-1 

c -- back substitution 
80 sum = 0 

i1 = i + 1 
do 75 j=i1,n 
sum = sum + b(i,j) * coef(j) 

75 continue 
coef(i) = (w(i)-sum) / b(i,i) 
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i = i-1 
if (i .gt. 0) goto 80 
return 

99 write(out,*)' error--matrix singular' 
return 
end 

subroutine swap(a,b) 
c************************************************* 

c -- interchange two values 
c************************************************ 

real a, b, hold 
c 

hold = a 
a = b 
b = hold 
return 
end 

subroutine output(a, y, coef, n) 
c************************************************* 

c -- Write the answers to a file: yidata. 	* 
c************************************************ 

integer n, out, i, j 
real a(48,48), y(4.8), coef(48),coabs2 
common /inout/ out, maxr 

open(5,file='yidata',status='new',form='formatted') 
ct 	write(5,*)' Matrix elements:' 
ct 	write(5,*)' 	  

do 10 i = 1,n 
write(5, 101) (a(i,j), j =1, n), y(i) 

10 continue 
ct 	write(5,102) 
ct write(5,*)' Solution' 
ct 	write(5,*)' 	 only odd modes are count in case of p=1 
ct 	write(5,*)' 	  
ct 	write(5,*)' real part imag part |a(i,p)|^2' 

do 900 i=1,n/2 
ct 	if (i.eq.1) write(5,*)' Left side:' 
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ct 	if (i.eq.(n/4+1)) write(5,*)' Right side:' 
coabs2=coef(2*i-1)**2.0 + coef(2*i)**2.0 
write(5, 101) coef(2* i-1), coef(2* i), coabs2 

900 continue 
close(5) 
return 

101 	format(1 p3e14.6) 
102 format(/) 

end 
c 

subroutine datain(pll,prr,plr,modniax,a,b,lemda,eps,u) 
C************************************************ 

c* Read in the matrix elements 
C************************************************ 

integer modmax,i,j 
complex p11(24,24),prr(24,24),plr(24,24) 
double precision a,b,lemda,eps,u 

c 

open(4,file = 'pmndata',status='old',form='formatted') 
read(4,101) modmax 

101 	format( 1 x,i3) 
read(4,103) a,b,lemda,eps,u 

103 format(lx,5d14.7) 
do 10 i=1,modmax 

do 20 j=1,modmax 
read(4,102) pll(i,j),prr(i,j),p1r(i,j) 

20 	continue 
10 continue 
102 format(lx,6e14.7) 

close(5) 
c 

write(6,101) modmax 
write(6,103) a,b,lemda,eps,u 
do 110 i=1,modmax 
do 120 j=1,modmax 
write(6,102) pll(i,j),prr(i,j),plr(i,j) 

120 	continue 
110 continue 

end 
program an 

c************************************************* 
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c* Analysis the electric field profile 
c* 	at the metal waveguide junction 
c************************************************* 

integer modmax,i,j,points,numx,numy 
complex p11(24,24),prr(24,24),plr(24,24),cmn(24) 
double precision max,max2,al,b,lemda,eps,u 
double precision imdiv,imet,rediv.reet 

c 

c variables for function calculation 
double precision widl, widr 
double precision wid,x 
integer modl,modr 
complex etr(300),etr(300),hxm0,hym0,exm0,eym0,beta 

integer n, out 
real a(48,48), y(48), coef(48),coabs2(24) 
common /inout/ out, maxr 
common al,b 

open(4,file = 'pmndata',status='old',form='formatted') 
read(4,101) modmax 

101 format(1x,i3) 
read(4,103) al,b,lemda,eps,u 

103 format(1x,5d14.7) 
do 10 i=1,modmax 
do 20 j=1,modmax 
read(4,102) pll(i,j),prr(i,j),plr(i,j) 

20 	continue 
10 continue 
102 format(1x,6e14.7) 

close(5) 

write(6,101) modmax 
write(6,103) al,b,lemda,eps,u 
do 110 i=1,modmax 
do 120 j=1,modmax 

c 	write(6, 102) pll(i,j),prr(i,j),pfr(i,j) 
120 	continue 
110 continue 
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n=4*modmax open(5,file='yidata',status='old',form='formatted') 
do 210 i = 1,n 
read(5, 201) (a(i,j), j = 1, n), y(i) 

210 continue 
do 900 i=1,n/2 

read(5, 201) coef(2*i-1), coef(2*i), coabs2(i) 
900 cmn(i)=cmplx(coef(2*i-1), coef(2*i)) 

close(5) 
c 

c 	write(6,*)' Matrix elements:' 
c 	write(6,*)' 	  

do 310 i = 1,n 
c 	write(6, 201) (a(i,j), j 
310 continue 
c 	write(6,1102) 

write(6,*)' Solution' 
write(6,*)' 	  
write(6,*)' real part imag part 	|a(i,p)|^2' 

write(6,*) ' Left side wave guide:' 
do 1900 i=1,n/2 

if (i.eq.(n/4+1)) write(6,*) ' Right side wave guide:' 
1900 	write(6, 201) cmn(i),coabs2(i) 
201 format(1p3e14.6) 
1102 format(/) 
c 

widl=a1 
widr=b 

c 	write(*,1072) 
c1072 format(' Input point number for analysis: 
c 	read(*,1702) points 
1702 format(i3) 

points=100 

max=0.0 
max2=0 .0 
wid=a1 
if (al.gt.b) wid=b 
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c 	write(6,*) ' x= ,etl= ,etr= 	,imdiv=' 

do 313 i=0,(points-1) 
x=i*wid/(points-1)-wid/2.0 
call ehxy(al,lemda,u,eps,1, 
* hxm0,hym0,exm0,eym0,x,beta) 
etl(i+1)=eym0*((1.0,0.0)+cmn(1)) 
call ehxy(b,lemda,u,eps,1, 
* hxm0,hym0,exm0,eym0,x,beta) 
etr(i+1)=eym0*cmn(1+modmax) 

991 	format( 1 x,1d14.7,4e12.5,2f7.2) 
do 525 modl=2,modmax 

call ehxy(al,lemda,u,eps,2*mod1-1, 
* hxm0,hym0,exm0,eym0,x,beta) 

etl(i+1)=etl(i+1)+eym0*cmn(modl) 
call ehxy(b,lemda,u,eps,2*mod1-1, 

* hxm0,hym0,exm0,eym0,x,beta) 
etr(i+1)=etr(i+1)+eym0*cmn(modl+modmax) 

525 continue 

reet=real(etl(i+1)) 
if (abs(real(etr(i+1))).gt.abs(real(etl(i+1)))) 
* reet=-real(etr(i+1)) 
rediv=0 
if (abs(reet).gt.1e-12) rediv=real(etl(i+1)+etr(i+1))/reet 

imet=aimag(etl(i+1)) 
if (abs(aimag(etr(i+1))).gt.abs(aimag(etl(i+1)))) 
* imet=-aimag(etr(i+1)) 
imdiv=0 
if (abs(imet).gt.1e-12) imdiv=aimag(etl(i+1)+etr(i+1))/imet 

c 

if ((i+1).eq.1) goto 1969 
if ((i+1).eq.points) goto 1969 
if (max. lt.abs(aimag(etl(i+ 1)))) max=abs(aimag(etl(i+1))) 
if (max2.1t.abs(aimag(etr(i+1)))) max2=abs(aimag(etr(i+1))) 
if (max3.1t.abs(real(etl(i+1)))) max3=abs(real(etl(i+1))) 
if (max4.1t.abs(real(etr(i+1)))) max4=abs(real(etr(i+1))) 

1969 continue 
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c 	write(6,991) x,etl(i+1),etr(i+1),rediv,imdiv 
313 continue 
c 

if (max.lt.max2) max=max2 
if (max3.1t.max4) max3=max4 
if (max.1t.1d-10) max=1.0 
if (max3.1t.1d-10) max3=1.0 
if (max.1t.max3) max=max3 
if (max3.1t.max) max3=max 

c 
open(1, file='data1',status='new', form=' formatted') 
open(5,file='data',status='new',form='formatted') 
open(4,file='datax',status='new',form='formatted') 

open(7,file='datarr',status='new',form='formatted') 
open(8,file='datari',status='new',form='formatted') 

open(9,file='datalr',status='new',form='formatted') 
open(10,file='datali',status='new',form='formatted') 
write(5,3333) points 

3333 format(i4) 
do 4444 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(aimag(etl(i)))*400.0/real(max) 
write(5,3333) numx 
write(4,3333) numx 
write(5,3333) numy 
write(10,3333) numy 

4444 continue 
close(10) 
do 5555 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(aimag(etr(i)))*400.0/real(max) 
write(5,3333) numx 
write(5,3333) numy 
write(8,3333) numy 

5555 continue 
close(8) 
do 6666 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(real(etl(i)))*400.0/real(max3) 
write(5,3333) numx 
write(5,3333) numy 
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write(9,3333) numy 
6666 continue 

close(9) 
do 7777 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(real(etr(i)))*400.0/real(max3) 
write(5,3333) numx 
write(5,3333) numy 
write(7,3333) numy 

7777 continue 
close(7) 
do 8888 i=1,points 

numx = (i-1) * 600.0/real(points) 
x=i*wid/(points-1)-wid/2.0 
call ehxy(al,lemda,u,eps,1, 

* 	hxm0,hym0,exm0,eym0,x,beta) 
numy = cabs(eym0)*400.0/real(max) 
write(5,3333) numx 
write(5,3333) numy 
write(1,3333) numy 

8888 continue 
close(1) 
close(5) 

c 
c 

end 
c 
c 

subroutine ehxy(width,lemda,u,eps,mod, 
* 	hxm0,hym0,exm0,eym0,x,beta) 

c************************************************* 

c Generate transverse mode function 	* 
c********************************************** 

double precision x,width,lemda,u,eps,fm0,freq,w,v,a,b 
integer mod 
complex hxm0,hym0,exm0,eym0,beta 

c 
common a,b 

c 
c 

v= 1.0 / sqrt( u * eps ) 
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fm0 = mod * v / 2.0 / width 
freq = 2.99796d8 / lemda 
w = 2.0 * 3.1415926 * freq 
if ( freq .gt. fm0 ) beta = cmplx( ( 2.0 * 3.1415926 
* / v * sqrt ( freq * freq - fm0 * fm0 ) ), 0.0 ) 
if ( freq .1e. fm0 ) beta = cmplx( 0.0, ( 2.0 * 3.1425926 
* / v * sqrt ( fm0 * fm0 - freq * freq )) ) 

ccccccccccccccccccccccccccccccccccccc 

c 	 p=1 incident only 
c 	 c 

if ((width.eq.a).and.(.not.(mod.eq.1)) 
* .and.(.not.(a.eq.b))) beta = -1.0 * beta 

ccccccccccccccccccccccccccccccccccccc 
c 	write(6,*) 'I am here.' 

hxm0 = (0.0,1.0) * beta / mod / 3.1415926 
* * width * dsin ( dble(mod) * 3.1415926 
* * (x-0.5*width) / width ) 

C 

hym0 = (0.0,0.0) 

exm0 = (0.0,0.0) 
c 

eym0 = -w * u / beta * hxm0 
c 	write(6,*) 'I passed ehxy.' 

return 
end 

program anend 
C************************************************* 

c* Analysis the electric field profile 
c* 	at the metal waveguide facet 
c************************************************* 
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integer modmax,i,j,points,numx,numy 
complex pll(24,24),prr(24,24),plr(24,24),cmn(24) 
double precision max,max2,al,b,lemda,eps,u 
double precision imdiv,imet,rediv,reet 

c -- variables for function calculation 
double precision widl, widr 
double precision wid,x,widmax 
integer modl,modr 
complex et1(300),etr(300),hxm0,hym0,exm0,eym0,beta 

c 
integer n, out 
real a(48,48), y(48), coef(48),coabs2(24) 
common /inout/ out, maxr 
common al,b 

c 
open(4,file = 'pmndata',status='old',form='formatted') 
read(4,101) modmax 

101 	format( 1 x,i3) 
read(4,I03) al,b,lemda,eps,u 

103 	format( 1 x,5d14.7) 
do 10 i=1,modmax 

do 20 j=1,modmax 
read(4,102) pll(i,j),prr(i,j),p1r(i,j) 

20 	continue 
10 continue 
102 format(1x,6e14.7) 

close(5) 
c 

c 	write(6,101) modmax 
c 	write(6,103) al,b,lemda,eps,u 

do 110 i=1,modmax 
do 120 j=1,modmax 

c 	write(6,102) pll(i,j),prr(i,j),plr(i,j) 
120 	continue 
110 continue 
c 
c 

c 

n=4*modmax 
open(5,file='yidata',status='old',form='formatted') 
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do 210 i = 1,n 
read(5, 201) (a(i,j), j =1, n), y(i) 

210 continue 
do 900 i=1,n/2 

read(5, 201) coef(2*i-1), coef(2*i), coabs2(i) 
900 cmn(i)=cmplx(coef(2*i-1), coef(2*i)) 

close(5) 

c 	write(6,*)' Matrix elements:' 
c 	write(6,*)' 	  

do 310 i = 1,n 
c 	write(6, 201) (a(i,j), j 
310 continue 
c 	write(6,1102) 

write(6,*)' Solution' 
write(6,*)' 	  
write(6,*)' real part imag part |a(i,p)|^2' 

write(6,*) ' Left side wave guide:' 
do 1900 i=1,n/2 

if (i.eq.(n/4+1)) write(6,*) ' Right side wave guide:' 
1900 	write(6, 201) cmn(i),coabs2(i) 
201 format(1p3e14.6) 
1102 format(/) 

widl=al 
widr=b 

c 	write(*,1072) 
c1072 format(' Input point number for analysis: 
c 	read(*,1702) points 
1702 format(i3) 

points=100 

max=0 .0 
max2=0.0 
wid=a1 
widmax=b 
if (al.gt.b) wid=b 
if (al.gt.b) widmax=a1 

c 	write(6,*) ' x= ,etl= ,etr= ,rediv= ,imdiv=' 
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do 313 i=0,(points-1) 
x=i*widmax/(points-1)-widmax/2.0 
call ehxy(al,lemda,u,eps,1, 
* hxm0,hym0,exm0,eym0,x,beta) 
etl(i+1)=eym0*((1.0,0.0)+cmn(1)) 

if ((a1.1t.widmax).and.(x.gt.(wid/2.0))) etl(i+1)=0 
if ((a1.1t.widmax).and.(x.1t.(-wid/2.0))) etl(i+1)=0 

call ehxy(b,lemda,u,eps, I , 
* hxm0,hym0,exm0,eym0,x,beta) 
etr(i+1)=eym0*cmn(1+modmax)*sqrt 
* (cexp((0,1)*beta*10.0*b)*conjg(cexp((0,1)*beta*10.0*b))) 

if ((b.1t.widmax).and.(x.gt.(wid/2.0))) etr(i+1)=0 
if ((b.1t.widmax).and.(x.1t.(-wid/2.0))) etr(i+1)=0 

991 format(lx,1d14.7,4e12.5,2f7.2) 
do 525 modl=2,modmax 

call ehxy(al,lemda,u,eps,2*mod1-1, 
* hxm0,hym0,exm0,eym0,x,beta) 

etl(i+ 1)=etl(i+1)+eym0*cmn(modl) 
if ((a1.1t.widmax).and.(x.gt.(wid/2.0))) etl(i+1)=0 
if ((a1.1t.widmax).and.(x.1t.(-wid/2.0))) etl(i+1)=0 
call ehxy(b,lemda,u,eps,2*mod1-1, 

hxm0,hym0,exm0,eym0,x,beta) 
etr(i+1)=etr(i+ I )+eym0*cmn(modl+modmax)*sqrt 

* (cexp((0,1)*beta*10.0*b)*conjg(cexp((0,1)*beta*10.0*b))) 
if ((b. It.widmax).and.(x. gt.(wid/2.0))) etr(i+1)=0 
if ((b.1t.widmax).and.(x.1t.(-wid/2.0))) etr(i+1)=0 

525 continue 
c 

reet=real(etl(i+1)) 
if (abs(real(etr(i+1))).gt.abs(real(etl(i+1)))) 
* reet=-real(etr(i+1)) 
rediv=0 
if (abs(reet).gt.1e-12) rediv=real(etl(i+ 1 )+etr(i+ 1 ))/reet 

c 

imet=aimag(etl(i+1)) 
if (abs(aimag(etr(i+1))).gt.abs(aimag(etl(i+1)))) 
* imet=-aimag(etr(i+ 1 )) 
imdiv=0 
if (abs(imet).gt.1e-12) imdiv=aimag(etl(i+1)+etr(i+1))/imet 
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c 
c 

if ((i+1).eq.1) goto 1969 
if ((i+1).eq.points) goto 1969 
if (max.1t.abs(aimag(etl(i+1)))) max=abs(aimag(etl(i+1))) 
if (max2.1t.abs(aimag(etr(i+1)))) max2=abs(aimag(etr(i+1))) 
if (max3.1t.abs(real(etl(i+1)))) max3=abs(real(etl(i+1))) 
if (max4.1t.abs(real(etr(i+1)))) max4=abs(real(etr(i+1))) 

1969 continue 
c 	write(6,991) x,etl(i+1),etr(i+1),rediv,imdiv 
313 continue 
c 

if (max. It.max2) max=max2 
if (max3.1t.max4) max3=max4 
if (max.1t.1d-10) max=1.0 
if (max3.1t. I d-10) max3=1.0 
if (max.1t.max3) max=max3 
if (max3.1t.max) max3=max 

c 
open(1,fi le='data1',status='new',form=' formatted') 
open(5,file='data',status='new',form=' formatted') 
open(4, file='datax',status='new', form=' formatted') 
open(7,fi le='datare,status='new',form=' formatted') 
open(8,fi le='datari',status='new',form=' formatted') 
open(9, fi le='datalr',status='new', form=' formatted') 
open(10,fi le='datal i',status='new',form=' formatted') 
write(5,3333) points 

3333 format(i4) 
do 4444 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(aimag(etl(i)))*400.0/real(max) 
write(5,3333) numx 
write(4,3333) numx 
write(5,3333) numy 
write(10,3333) numy 

4444 continue 
close(10) 
do 5555 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(aimag(etr(i)))*400 .0/real( max) 
write(5,3333) numx 
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write(5,3333) numy 
write(8,3333) numy 

5555 continue 
close(8) 
do 6666 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(reaketl(i)))*400.0/real(max3) 
write(5,3333) numx 
write(5,3333) numy 
write(9,3333) numy 

6666 continue 
close(9) 
do 7777 i=1,points 

numx = i * 600.0/real(points) 
numy = abs(real(etr(i)))*400.0/real(max3) 
write(5,3333) numx 
write(5,3333) numy 
write(7,3333) numy 

7777 continue 
close(7) 
do 8888 i=1,points 

numx = (i-1) * 600.0/real(points) 
x=(i-1)*widmax/(points-1)-widmax/2.0 
call ehxy(al,lemda,u,eps,1, 

* 	hxm0,hym0,exm0,eym0,x,beta) 
numy = cabs(eym0)*400.0/real(max) 
if ((al.1t.widmax).and.(x.gt.(wid/2.0))) numy =0 
if ((aLlt.widmax).and.(x.lt.(-wid/2.0))) numy =0 
write(5,3333) numx 
write(5,3333) numy 
write(1,3333) numy 

8888 continue 
close(1) 
close(5) 

c 

end 

subroutine ehxy(width,lemda,u,eps,mod, 
hxm0,hym0,exm0,eym0,x,beta) 
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c************************************************* 

c* Generate transverse mode functions 
c********************************** k*  

C 

double precision x,width,lemda,u,eps,fm0,freq,w,v,a,b 
integer mod 
complex hxm0,hym0,exm0,eym0,beta 

common a,b 

c 

v = 1.0 / sqrt( u * eps ) 
fm0 = mod * v / 2.0 / width 
freq = 2.99796d8 / lemda 
w = 2.0 * 3.1415926 * freq 
if( freq .gt. fm0 ) beta = cmplx( ( 2.0 * 3.1415926 
* / v * sqrt ( freq * freq - fm0 * fm0 ) ), 0.0 ) 
if ( freq .1e. fm0 ) beta = cmplx( 0.0, ( 2.0 * 3.1425926 
* / v * sqrt ( fm0 * fm0 - freq * freq )) ) 

ccccccccccccccccccccccccccccccccccccc 
c 	 c 

c 	 c 

c 	 c 

c 	 p=1 incident only 

if ((width.eq.a).and.(.not.(mod.eq.1)) 
* .and.(.not.(a.eq.b))) beta = -1.0 * beta 

ccccccccccccccccccccccccccccccccccccc 
c 	write(6,*) 'I am here.' 

hxm0 = (0.0,1.0) * beta / mod / 3.1415926 
* * width * dsin ( dble(mod) * 3.1415926 
* * (x-0.5*width) / width ) 

C 

hym0 = (0.0,0.0) 

exm0 = (0.0,0.0) 
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eym0 = -w * u / beta * hxm0 
c 	write(6,*) 'I passed ehxy.' 

return 
end 

program aneach 
c************************************************* 

c* Aalysis the first five modes' components of * 
c* 	electric field profile 
c* 	at the metal waveguide junction 
c*********************************************** 

c 
integer modmax,i,j,points,numx,numy 
complex p11(24,24),prr(24,24),plr(24,24),cmn(24) 
double precision max,max2,al,b,lemda,eps,u 
double precision imdiv,imet,rediv,reet 

c 
c -- variables for function calculation 

double precision widl, widr 
double precision wid,x 
integer modl,modr 
complex et1(300),etr(300),hxm0,hym0,exm0,eym0,beta 

integer n, out 
real a(48,48), y(48), coef(48),coabs2(24) 
common /inout/ out, maxr 
common al,b 

open(4,file = 'pmndata',status='old',form='formatted') 
read(4,101) modmax 

101 format(1x,i3) 
read(4,103) al,b,lemda,eps,u 

103 format(1x,5d14.7) 
do 10 i=1,modmax 

do 20 j=1,modmax 
read(4,102) pll(i,j),prr(i,j),plr(i,j) 

20 	continue 
10 continue 
102 format(lx,6e14.7) 

close(5) 
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c 
write(6,101) modmax 
write(6,103) al,b,lemda,eps,u 
do 110 i=1,modmax 
do 120 j=1,modmax 

c 	write(6,102) pll(i,j),prr(i,j),plr(i,j) 
120 	continue 
110 continue 
c 
c 
c 

n=4 * modmax 
open(5,file='yidata',status='old',form='formatted') 
do 210 i = I ,n 
read(5, 201) (a(i,j), j =1, n), y(i) 

210 continue 
do 900 i=1,n/2 

read(5, 201) coef(2*i-1), coef(2*i), coabs2(i) 
900 cmn(i)=cmplx(coef(2*i-1), coef(2*i)) 

close(5) 
c 
c 	write(6,*)' Matrix elements:' 
c 	write(6,*)' 	  

do 310 i = 1 ,n 
c 	write(6, 201) (a(i,j), j =1, n), y(i) 
310 continue 
c 	write(6,1102) 

write(6,*)' Solution' 
write(6,*)' 	' 

write(6,*)' real part imag part 	|a(i,p)|^2' 
write(6,*) ' Left side wave guide:' 

do 1900 i=1,n/2 
if (i.eq.(n/4+1)) write(6,*) ' Right side wave guide:' 

1900 	write(6, 201) cmn(i),coabs2(i) 
201 format(1p3e14.6) 
1102 format(/) 
c 
c 

widl=a1 
widr=b 

c 
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c 	write(*,1072) 
c1072 format(' Input point number for analysis:') 
c 	read(*,1702) points 
1702 format(i3) 

points=100 
c 

max=0.0 
max2=0.0 
wid=al 
if (al.gt.b) wid=b 

c 	write(6,*) ' x= ,etl= ,etr= ,rediv= ,imdiv=' 
c 

do 313 i=0,(points-1) 
x=i*wid/(points-1)-wid/2.0 
call ehxy(al,lemda,u,eps, 1 , 
* hxm0,hym0,exm0,eym0,x,beta) 
etl(i+1)=eym0*((1.0,0.0)+cmn(1)) 
call ehxy(b,lemda,u,eps,1, 
* hxm0,hym0,exm0,eym0,x,beta) 
etr(i+1)=eym0*cmn(1+modmax) 

991 format(1x,1d14.7,4e12.5,2f7.2) 
do 525 modl=2,modmax 
call ehxy(al,lemda,u,eps,2*mod1-1, 

* hxm0,hym0,exm0,eym0,x,beta) 
etl(i+1)=etl(i+1)+eym0*cmn(modl) 
call ehxy(b,lemda,u,eps,2*mod1-1, 

* hxm0,hym0,exm0,eym0,x,beta) 
etr(i+1)=etr(i+1)+eym0*cmn(modl+modmax) 

525 continue 
c 

reet=real(etl(i+ I )) 
if (abs(real(etr(i+1))).gt.abs(real(etl(i+1)))) 
* reet=-real(etr(i+1)) 
rediv=0 
if (abs(reet).gt.1e-12) rediv=real(etl(i+1)+etr(i+1))/reet 

c 
c 

imet=aimag(etl(i+1)) 
if (abs(aimag(etr(i+1))).gt.abs(aimag(etl(i+1)))) 
* imet=-aimag(etr(i+1)) 
imdiv=0 
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if (abs(imet).gt.1e-12) imdiv=aimaig(etl(i+1)+etr(i+1))/imet 

if ((i+1).eq.1) goto 1969 
if ((i+1).eq.points) goto 1969 
if (max.1t.abs(aimag(etl(i+1)))) max=abs(aimag(etl(i+1))) 
if (max2.1t.abs(aimag(etr(i+1)))) max2=abs(aimag(etr(i+1))) 
if (max3.1t.abs(real(etl(i+1)))) max3=abs(real(etl(i+1))) 
if (max4.1t.abs(real(etr(i+1)))) max4=abs(rcal(etr(i+1))) 

1969 continue 
c 	write(6,991) x,etl(i+1),etr(i+1),rediv,imdiv 
313 continue 
c 

if (max.lt.max2) max=max2 
if (max3.1t.max4) max3=max4 
if (max.1t. l d-10) max=1.0 
if (max3.1t.1d-10) max3=1.0 
if (max.lt.max3) max=max3 
if (max3.1t.max) max3=max 

open(1,file='data1',status='new',form='formatted') 
open(2,file='data2',status='new',form='formatted') 
open(3,file='data3',status='new',form='formatted') 

opcn(4,file='data4',status='new',form='formatted') 
open(5,file='data',status='new',form=' formatted') 

open(8,file='datax',status='new',form='formatted') 

open(7,file='data5',status='new',form='formatted') 
write(5,3333) points 

3333 format(i4) 
do 4444 i=1,points 
numx = i * 600.0/real(points) 
x=i*b/(points-1)-b/2.0 
call ehxy(b,lemda,u,eps,9, 

* 	hxm0,hym0,exm0,eym0,x,beta) 
numy = cabs(cmn(5+modmax)*eym0)*400.0/reahmax) 
write(5,3333) numx 
write(5,3333) numy 
write(8,3333) numx 
write(7,3333) numy 

4444 continue 
do 5555 i=1,points 
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numx = i * 600.0/real(points) 
x=i*b/(points-1)-b/2.0 
call ehxy(b,lemda,u,eps,7, 

* hxm0,hym0,exm0,eym0,x,beta) 
numy = cabs(cmn(4+modmax)*eym0)*400.0/real(max)  
write(5,3333) numx 
write(5,3333) numy 
write(4,3333) numy 

5555 continue 
do 6666 i=1,points 
numx = i 600.0/real(points) 
x=i*b/(points-1)-b/2.0 
call ehxy(b,lemda,u,eps,5, 

* hxm0,hym0,exm0,eym0,x,beta) 
numy = cabs(cmn(3+modmax)*eym0)*400.0/real(max) 
write(5,3333) numx 
write(5,3333) numy 
write(3,3333) numy 

6666 continue 
do 7777 i=1,points 

numx = i * 600.0/real(points) 
x=i*b/(points-1)-b/2.0 
call ehxy(b,lemda,u,eps,3, 

* hxm0,hym0,exm0,eym0,x,beta) 
numy = cabs(cmn(2+modmax)*eym0)*400.0/real(max) 
write(5,3333) numx 
write(5,3333) numy 
write(2,3333) numy 

7777 continue 
do 8888 i=1,points 

numx = i * 600.0/real(points) 
x=i*b/(points-1)-b/2.0 
call ehxy(b,lemda,u,eps,1, 

hxm0,hym0,exm0,eym0,x,beta) 
numy = cabs(cmn(1+modmax)*eym0)*400.0/real(max) 
write(5,3333) numx 
write(5,3333) numy 
write(1,3333) numy 

8888 continue 
close(1) 
close(2) 
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close(3) 
close(4) 
close(5) 
close(7) 
close(8) 

C 

C 

end 

C 

subroutine ehxy(width,lemda,u,eps,mod, 
* hxm0,hym0,exm0,eym0,x,beta) 

c************************************************* 

c* Generate the transverse mode functions 	* 
c************************************************* 

C 

double precision x,width,lemda,u,eps,fm0,freq,w,v,a,b 
integer mod 
complex hxm0,hym0,exm0,eym0,beta 

common a,b 
c 
c 

v = 1.0 / sqrt( u * eps ) 
fm0 = mod * v / 2.0 / width 
freq = 2.99796d8 / lemda 
w = 2.0 * 3.1415926 * freq 
if ( freq .gt. fm0 ) beta = cmplx( ( 2.0 * 3.1415926 
* / v * sqrt ( freq * freq - fm0 * fm0 ) ), 0.0 ) 
if ( freq .1e. fm0 ) beta = cmplx( 0.0, ( 2.0 * 3.1425926 
* / v * sqrt ( fm0 * fm0 - freq * freq )) ) 

c 
ccccccccccccccccccccccccccccccccccccc 
c 	 c 

c 	 c 

c 	p=1 incident only 
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if ((width.eq.a).and.(.not.(mod.eq.1)) 
* .and.(.not.(a.eq.b))) beta = -1.0 * beta 

ccccccccccccccccccccccccccccccccccccc 
c 	write(6,*) 'I am here.' 

hxm0 = (0.0,1.0) * beta / mod / 3.1415926 
* * width * dsin ( dble(mod) * 3.1415926 
* * (x-0.5*width) / width ) 

c 
hym0 = (0.0,0.0) 

c 
exm0 = (0.0,0.0) 

c 
eym0 = -w * u / beta * hxm0 

c 	write(6,*) 'I passed ehxy.' 
return 
end 

c 

c************************************************* 

c* 	Purpose: Plot analysis results on the screen 
c* 	(program is writen in C language) 
c************************************************* 

#include <stdio.h> 
#include <math.h> 
#include <graphics.h> 

int driver,mode; 

main() 
{ 
int i,points,numx[311],numy[311]; 
char *u; 
FILE *ifl; 

driver=DETECT; 
initgraph(&driver,&mode,""); 
cleardevice(); 
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ifl=fopen("data","r"); 

setcolor(EGA_LIGHTBLUE); 
fgets(u,10,ifl); 
points=atoi(u); 
printf("%d\n",points); 
fgets(u,10,ifl); 
numx[1]=atoi(u); 
fgets(u,10,ifl); 
numy[1]=atoi(u); 

for (i=2;i<(points+1);i++) 
{ 
fgets(u,10,ifl); 
numx[i]=atoi(u); 
fgets(u,10,ifl); 
numy[i]=atoi(u); 
line(numx[i-1],450-numy[i-1]+1,numx[i],450-numy[i]+1); 

setcolor(EGA_GREEN); 
fgets(u,10,ifl); 
numx[ 1 ]=atoi(u); 
fgets(u,10,ifl); 
numy[ 1 ]=atoi(u); 

for (i=2;i<(points+1);i++) 
{ 
fgets(u,10,ifl); 
numx[i]=atoi(u); 
fgets(u,10,ifl); 
numy[i]=atoi(u); 
line(numx[i-1],450-numy[i-1],numx[i],450-numy[i]); 

setcolor(EGA_LIGHTRED); 
fgets(u,10,ifl); 
numx[1]=atoi(u); 
fgets(u,10,ifl); 
numy[ 1 ]=atoi(u); 

for (i=2;i<(points+1);i++) 
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fgets(u,10,ifl); 
numx[i]=atoi(u); 
fgets(u,10,ifl); 
numy[i]=atoi(u); 
line(numx[i-1],450-numy[i-1]+1,numx[i],450-numy [lit 1);  

}; 

setcolor(EGA_RED); 
fgets(u,10,ifl); 
numx[1]=atoi(u); 
fgets(u,10,ifl); 
numy[1]=atoi(u); 	  

for (i=2;i<(points+1);i++) 
{ 
fgets(u,10,ifl); 
numx[i]=atoi(u); 
fgets(u,10,ifl); 
numy[i]=atoi(u); 
line(numx[i-1],450-numy[i-1],numx[i],450-numy[i]); 

setcolor(EGA_WHITE); 
fgets(u,10,ifl); 
numx[1]=atoi(u); 
fgets(u,10,ifl); 
numy[1]=atoi(u); 

for (i=2;i<(points+1);i++) 
{ 
fgets(u,10,ifl); 
numx[i]=atoi(u); 
fgets(u,10,ifl); 
numy[i]=atoi(u); 
line(numx[i-1],450-numy[i-1],numx[i],450-numy[i]); 
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APPENDIX B 

SOURCE CODE FOR SOLUTION 
DIELECTRIC WAVEGUIDE DISCONTINUITY JUNCTION 

Except for the transverse mode function, as presented below, other parts of the 
program for dielectric waveguide junction are the same as the program for metal 
waveguide junction. 

subroutine ehxy(width,lemda,u,eps,mod, 
* 	hxm0,hym0,exm0,eym0,x,beta) 

c************************************************* 

c* Generate the transverse mode functions 	* 
c************************************************* 

double precision x,width,lemda,u,eps,fm0,freq,w,v,a,b 
double precision AmO,Bm0,kx,epsclad,epscorc 
integer mod,modtreat 
complex hxmO,hym0,exm0,eym0,beta,alphax 

common /inout/ out 
common a,b 

epsclad = eps * 11.4921 
epscore = eps * 13.0321 
freq = 2.99796d8 / lemda 
w = 2.0 * 3.1415926 * freq 
modtreat=sqrt(w*w*u*(width/2.0)*(width/2.0) 

* *(epscore-epsclad))/3.1415926-0.5+0.5+1.0 
c 

kx=0.0 
Am0=1.0 
if (mod.gt.(2*modtreat-1)) Am0 = 0.0 
if (real(mod/2).eq.(real(mod)/2.0)) Am0=0.0 

c 	if (mod.gt.(2*modtreat- 1)) goto 7029 
call root(epscore,epsclad,u,width,lemda,kx,mod) 

beta = csqrt(w*w*u*epscore - kx*kx) 
alphax = csqrt(beta*beta - w*w*u*epsclad) 
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C 

C 

ccccccccccccccccccccccccccccccccccccc 
C 	 C 

C 	 C 

C 	 C 

c 	 p=1 incident only 
C 	 C 

c 	 C 

if ((width.eq.a).and.(.not.(mod.eq.1)) 
* .and.(.not.(b.eq.a))) beta = -1.0 * beta 

ccccccccccccccccccccccccccccccccccccc 
C 

if (x.1t.(-width/2.0)) goto 1 
if (x.gt.(width/2.0)) goto 3 
goto 2 

eym0 =Am0*cexp(alphax*x)/cexp(alphax*(-width)/2.0) 
exm0 = (0.0,0.0) 
hym0 = (0.0,0.0) 
hxm0 = -beta / w / u * eym0 
goto 9 

C 

eym0 = Am0 * cos(kx*x) / cos(kx*width/2.0) 
exm0 = (0.0,0.0) 
hym0 = (0.0,0.0) 
hxm0 = -beta / w / u * eym0 
goto 9 

3 	eym0 = Am0 * cexp(-alphax*x)/cexp(alphax*(-width)/2.0) 
exm0 = (0.0,0.0) 
hym0 = (0.0,0.0) 
hxm0 = -beta / w / u * eym0 

9 return 

7029 eym0= (0.0,0.0) 
exm0 = (0.0,0.0) 
hxm0 = (0.0,0.0) 



hym0 = (0.0,0.0) 
return 

end 

subroutine root(epscore,epsclad,u,width,lemda,kx,mod) 
c************************************************* 

c* Solving eigenvalue equation of propagation constant * 
c************************************************* 

double precision epscore,epsclad,u,width,lemda 
double precision left,right,div,kx,x,y,xmax 
integer mod 

div=1d-5 
w=2.0*3.1415926*3.0e8/lemda 
xmax=2*sqrt(w*w*u*(width/2.0)*(width/2.0)*(epscore-epsclad)) 
left= (real((mod-3)/2.0)+0.5)*3.1415926+1d-8 
right=(real((mod-1)/2.0)+0.5)*3.1415926-1d-8 
if (mod.eq.1) left=0.0+1d-8 
if (mod.eq.1) right=0.5*3.1415926-1d-8 
if (xmax.1t.right) right=xmax 

10 x=(left+right)/2.0 
y=tan(x)-sqrt(xmax*xmax/x/x-1) 
if (y.eq.0.0) kx=x/width 
if (y.eq.0.0) return 
if (y.1t.0.0) left=x 
if (y.gt.0.0) right=x 
if ((right-left).gt.div) goto 10 
kx=x/width 
return 
end 
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