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ABSTRACT 

THE APPLICATION OF STEREOLITHOGRAPHY TO 
THE CREATION OF MOLECULAR MODELS OF AMILORIDE 

AND ITS ANALOGUES 

by 
Thomas John Busanic 

Stereolithography, a process by which a computer-guided 

Ultraviolet (UV) laser is applied onto a liquid monomer 

resin to form a solid polymer, was used to create solid 

models of amiloride and two of its analogues. The Cartesian 

coordinates used as input for the orientation of each atom 

in a molecule were calculated using ab initio molecular 

orbital theory. Since the structures of the molecules are 

calculated in this fashion, they represent a more accurate 

representation of the molecules than that provided by 

standard molecular modeling kits. 

The original purpose of this work was to assist a blind 

chemist in appreciating the structure of amiloride and two 

of its analogues. The models not only serve blind 

individuals, but also serve as a communication link between 

blind and sighted individuals. The models also have the 

potential to be used as learning aides to blind and sighted 

students at the high school and college level. 
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CHAPTER 1 

INTRODUCTION 

1.1 The History of Stereolithography 

Stereolithography is a technology that links computer 

graphics to the rapid fabrication of a solid object. 

Developed and patented by physicist Charles W. Hull(1), 

stereolithography converts model files created using 

computer aided design (CAD) programs into a three-

dimensional solid part. The part is constructed via 

polymerization from a photosensitive monomer (resin). A 

schematic drawing of an SLA can be seen below in Figure 1. 

Figure 1 The basic stereolithography apparatus (SLA)(1). 

The stereolithography apparatus used to build the 

molecular models was the SLA-250 from 3D Systems (2) of 

1 



facing 2 

3D Systems 
Figure 2 Photograph of the SLA-250(2). 
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Valencia, California. A picture of the SLA-250 can be seen 

in Figure 2 on the facing page. This SLA consists of a 7.8 

gallon vat equipped with an elevator table(3). The vat 

contains the resin used to create the model. The SLA also 

consists of a helium/cadmium UV laser. 

The SLA builds models through photopolymerization. When 

the laser beam is applied to the monomeric resin (which is a 

liquid), the resin polymerizes. Once the resin polymerizes, 

it solidifies. The laser beam cures the resin along the xy-

plane of the model. After each xy-plane is cured by the 

laser, the laser is directed along the z-axis to begin 

curing the next xy-plane (or slice). The elevator is then 

lowered to expose subsequent lavers of resin to the laser. 

Since parts made using stereolithographv are created 

layer by layer, temporary supports are needed to ensure that 

the part does not collapse during the fabrication process. 

This support can also be created via CAD programs. 

The fumes generated by the liquid resin are 

carcinogenic. Because of this health hazard, the SLA must 

have sufficient ventilation. Once the SLA has completed 

building the entire part, isopropyl alcohol is used to clean 

off the resin of the support of the part. The part is then 

placed in an ultraviolet oven to further cure the resin to 

ensure that the model contains no liquid resin. Once the 

photopolymer is solidified, it cannot be converted back to 

liquid form. 
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1.2 The Importance of Amiloride and 
Amiloride Analogues 

Amiloride, 1, is the generic name of 

3,5-diamino-6-chloro-N-(diaminomethylene)pyrazine carboxamide(4). In biological 

systems, amiloride is protonated. The site of protonation 

has been determined to be at the imino nitrogen(5), as shown 

below. 

Prior to the discovery of amiloride and other 

pyrazinoylguanidines, diuretics caused an increase in 

potassium ion secretion(6). This effect causes hypokalemia, 

which can result in a variety of adverse clinical 

manifestations including cardiac disturbances, anorexia, 

muscle weakness, and lethargy (7). This deficiency prompted 

the search for potassium ion-sparing diuretics to use as 

companion drugs with the potassium ion-losing agents. 

Pyrazinoylguanidines were chemically novel being: 1) 

member of an uncommon heterocyclic class, pyrazine; 2) a 

rare, stable acylquanidine (guanidines are usually labile); 

and 3) a base (most diuretics are acidic or neutral 
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compounds)(7). Amiloride emerged as the optimal member of 

the pyrazinoylguanidine series, having a nearly ideal 

balance of diuretic, saluretic, and antikaliuretic 

properties. 

Amiloride and amiloride analogues possess a broad range 

of unique activity in biological systems by acting in the 

blocking of Na+/H+ exchangers, Na+/Ca2+ exchangers, and Na+ 

channels. 

The Na+/H+ exchanger contributes in a major way to the 

total economy of the cell through intracellular pH 

homeostasis, cell volume regulation, and solute uptake(8,9). 

The activity of a large number of pyrazinoylguanidine 

analogues has been systematically evaluated in several cell 

types. Although absolute values for inhibition constants 

vary from cell to cell, the rank order of potency of most 

analogues relative to amiloride is remarkably constant(7). 

From the studies conducted by Simchowitz and coworkers(7) on 

amiloride and its analogues, several key points were made: 

1) The unsubstituted guanidino moiety is required to 

preserve activity. 

2) Substitution of the 6-chloro group by bromo or iodo 

groups result in increases in potency. However, substitution 

of the 6-chloro group by a fluoro group or hydrogen leads to 

a tenfold decrease in potency. Iodo groups are larger and 

more lipophilic than the chloro group, attributes which help 

to anchor the drug more firmly to the hydrophobic residues 

of the transport protein. 
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3) Substitution at the 5-amino nitrogen atom produce 

the greatest enhancement of activity. Replacement of one of 

the 5-amino hydrogens by ethyl, butyl, hexyl, or phenyl 

groups results in increases in drug potency. Replacement of 

both hydrogen atoms by alkyl groups results in even greater 

drug potency. This effect reaches a maximum when the number 

of carbons substituted on the 5-amino nitrogen reaches six 

carbons. 

Most cells possess a Na+/Ca2+ exchange mechanism that, 

in excitable tissues such as nerve and muscle, helps 

maintain a low cytosolic Ca2+ level under steady-state 

conditions(10,11). This exchange system also influences cell 

growth and function in cell types such as murine 

erythroleukemia cells(12) and human neutrophils(13,14). 

Unlike the Na+/H+ exchange mechanism, substitution at the 

guanidino group enhances the activity of Na+/Ca2+ exchange. 

Amiloride has been shown to be a potent inhibitor of 

Na+ transport in a variety of cellular and epithelial 

transport systems(15-18). Analysis of the activities of 

Na+ channel blocking of various amiloride analogues done by 

Cuthbert and Fanelli(19) reveal three major regions of 

interest: First, as was the case with Na+/Ca2+ exchange, 

substitution of large hydrophobic groups on one of the 

terminal guanidino nitrogen atoms dramatically enhances the 

activity of the blocking of Na+ channels. Second, in 

contrast to Na+/H+ exchange, an unsubstituted 5-amino group 

is essential for inhibition of the Na+ channel(18-21). 
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Finally, optimal activity is observed when a chlorine atom 

occupies the 6-position of the pyrazine ring(18-19,21). 

Analysis of the activities of Na+ channel blocking in 

frog epithelia were conducted by Li et ai.(21,22). These 

studies included both ring substitution and side-chain 

modifications. Results of these studies are shown below in 

Table 1. 

Table 1 Structure-activity relationships for amiloride and 
various analogues, calculated by Li et al(21,22). 

analogue 

substituent on 
pyrazine ring 

Position position 
5 	6 

kon  
(s-1µM) 

koff 
(s-1) 

block 
time 
(ms) 

1 NH2 Cl 13.17±0.25 3.93±0.19 255 

2 NH2 Br 14.19±1.09 5.58±0.92 179 

3 NH.) I 11.43±0.90 17.41±0.40 57 

4 NH2 F 13.54±0.65 32.20±1.57 31 

5 NH2 H 14.47±0.68 176.25±17.73 6 

6 H Cl 3.32+0.44 10.89±1.35 92 

7 Cl Cl 5.16±0.46 151.10±16.48 7 

extended 
side-chain 

18 -0- 1.22±0.07 20.67±3.72 48 

19 -NH- 2.16±0.11 3.41±0.55 293 

As can be seen from Table 1, substitution of the 

position-6 chlorine by either bromine, 2, fluorine, 4, or 

hydrogen, 5, raises the value of the on-rate constant, kon. 

However, the off-rate constant, koff, for analogues 2, 4, 

and 5 are also greater than that of amiloride, 1. Since the 
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block time is simply the inverse of koff, a lower koff value 

corresponds to a greater block time. Substitution of the 

position-6 chlorine by iodine, 3, has the effect of 

decreasing the kon and increasing the koff, thus making it a 

weaker Na+ channel blocker than amiloride. 

Substitution of the position-5 amino group by hydrogen, 

6, or chlorine, 7, reduces the kon  and increases the koff 

relative to amiloride, making both analogues weaker Na+ 

channel blockers than amiloride. This seems unusual in the 

case of analogue 7 since there are electronegative 

substituents at positions 5 and 6 of the pyrazine ring. Li 

et al.(21) have suggested that the electron-donating amino 

group at position 5 of amiloride stabilizes the complex by 

increasing the electron density of the ligand with respect 

to analogue 7. 

Extending the side chain of amiloride by inserting an 

oxygen, 18, or secondary amino group, 19, between the 

carbonyl carbon and the imino nitrogen has the effect of 

reducing the kon  with respect to amiloride. The koff for 

analogue 18 is greater than that of amiloride, making it a 

weaker Na+ channel blocker than amiloride. The koff for 

analogue 19 is smaller than that of amiloride, which 

corresponds to a longer block time. 

C.A. Venanzi and W.J. Skawinski, in unpublished 

results, determined that analogues 18 and 19 are non-planar 

molecules, unlike analogues 1-7. Due to the fact that 

analogues 18 and 19 are non-planar molecules, these two 



analogues are of interest. The protonated forms of analogues 

18 and 19 can be seen below. 

1.3 How SLA Can Assist Both 
Blind Chemists and Sighted Chemists 

Creating models using stereolithography is a novel approach 

to the building of molecular models. These models may assist 

both blind and sighted chemists. These models were made to 

represent molecules with calculated, rather than average, 

bond lengths, bond angles, and atom size. Additional work is 

being done to encode properties of atoms such as atom type 

or electrostatic potential onto the surface of the model by 

extruding letters or dots from the surface of the model. 

SLA models haye the potential to allow blind scientists 

and blind students to gain access to complex visual 

information through tactile sense. Thus, SLA models serve 

blind individuals in two ways. First, SLA models can provide 

blind scientists with a useful tool that enables them to 
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obtain more information about a given molecule. Second, SLA 

models can be used as instructional aids to provide blind 

students with a better understanding of chemical structure. 

SLA models can assist sighted scientists. These models 

have the potential to allow sighted scientist to communicate 

with blind colleagues more easily. SLA models can also give 

the sighted scientist a more realistic chemical model than 

that of a molecular model set. Such molecular model sets 

come with standard bond lengths, bond angles, and atom 

sizes, which may not be appropriate for molecules such as 

amiloride. The standard hand-held molecular models do not 

incorporate realistic torsional barriers and cannot be used 

to identify the low energy conformers of complicated 

structures, such as analogues 18 and 19. In addition, the 

modeling kits cannot accurately represent structures such as 

transition states of reactions. The advantage of 

stereolithography is that it can be used to produce accurate 

solid models of molecular structures calculated from ab 

initio quantum chemistry and other techniques. 

Molecular models created using stereolithography can 

also provide blind and sighted scientists with additional 

information about a given molecule. Properties encoded on 

the surface of a model can give a three-dimensional 

perspective of a given property. In addition, complementary 

shapes of molecules can be made. This complementary shape 

can represent the steric and electrostatic aspects of the 

binding site of a given molecule. In the case of amiloride, 
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where the molecular structure of the ion channel is unknown, 

it is important to use the properties of the analogues to 

input information about the complementary binding site. 

SLA models of molecules can be used as instructional 

tools for high school and college chemistry students. These 

models can provide the student with a view of molecular 

structure that is more realistic than that of a standard 

molecular modeling kit. 



CHAPTER 2 

ELECTROSTATIC POTENTIAL MAPS OF 
AMILORIDE AND ITS ANALOGUES 

2.1 Minimum Energy Conformation Calculations 
of Amiloride and its Analogues 

The data used as input to the computer-aided design program 

were calculated by thesis advisor Carol A. Venanzi and 

postdoctoral research associate William J. Skawinski. The 

calculations were done via ab initio quantum chemistry, a 

quantum mechanics method used to determine the structure, 

energy, and other physical properties of a molecule(23). Two 

types of basis sets, comprised of Gaussian functions, were 

used in the calculation of amiloride and analogues 18 and 

19. 

For computational facility, the geometry of atomic 

orbitals are defined by linear combinations of primitive 

Gaussian functions. These linear combinations constitute a 

basis set. The first basis set used to calculate the optimal 

geometry of amiloride and analogues 18 and 19 was the 3-21G* 

basis set, in which a complete set of six second-order 

Gaussian primitives was added to two basis functions 

allocated to describe each valence electron orbital. The 

second basis set used was the 6-31G*. This basis set is 

constructed by the addition of a set of six second-order (d-

type) Gaussian primitives to the 6-31G basis set, which 

comprises inner shell functions each written in terms of six 

11 
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Gaussian functions and two valence shell functions 

represented by three and one primitiye Gaussians, 

respectively(23). 

The minimum energy conformers of analogues 18 and 19 

were obtained by optimizing the geometry of the molecule for 

various increments in two torsional angles: HNOC and NOCO 

for analogue 18, HNNC and NNCO for analogue 19. 

2.2 Electrostatic Potential Calculations 
of Amiloride and Analogues 18 and 19 

The molecular electrostatic potential (MEP) represents the 

energy of interaction between a positive point charge and 

the nuclei and electrons of a molecule. The electrostatic 

potential at a point r→  is giyen, in atomic units, by 

where ZA  is the charge on nucleus A 

R→A  is the location of nucleus A 

p(r-4) is the electronic density function 

The two terms on the right of Equation 1 correspond, 

respectively, to the nuclear and electronic contributions to 

the potential(24). 

MEP calculations of various amiloride analogues with 

pyrazine ring modifications previously were done by Venanzi 

et al.(5,25,26). Analysis of the MEP maps of the model 

encounter complexes of these analogues with the formate ion 
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indicated four points. First, a stable Ma+ channel blocking 

complex is formed with analogues that have a localized 

minimum off the 6-position of the pyrazine ring. Second, the 

stability of the blocking complex is directly related to the 

depth of the minimum. Third, substitution at position 5 of 

the pyrazine ring affects not only the depth but also the 

location of the minimum off position 6. Finally, steric 

factors may influence the optimal binding of the 6-position 

ligand to the ion channel. From these studies, a 

pharmocophore was defined for amiloride(26,27) in which the 

distance between the proton donors of the guanidinium group 

and the distinctive MEP minimum off the 6-position of the 

pyrazine ring was considered to be an important feature. 

Subsequent solvation studies of amiloride(28,29) supported 

the pharmocophore hypothesis. 

Once the minimum energy conformation calculations for 

amiloride and analogues 18 and 19 were completed, the single 

point energy and the electrostatic potentials of each 

analogue were calculated. The basis set used for these 

calculations was the STO-3G basis set(27). As in previous 

work, a formate ion was used to mimic an acidic amino acid 

that forms an encounter complex with each of the analogues. 

This encounter complex represents the complex formed when 

the analogue interacts with a negative ion channel. The 

formate ion was chosen because it is simple in structure and 

the exact geometry of the encounter complex is still 

unknown. The formate ion was positioned to be coplanar with 
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the guanidino group of each analogue. Each of the two 

oxygens of the formate ion were positioned equidistant from 

the each of the two hydrogens of the positive ion channel of 

the guanidino group. The MEP maps of amiloride and analogues 

18 and 19 were calculated using the molecular modeling 

program SPARTAN(30), created by Wavefunction, Inc., Irvine, 

CA. The Cartesian coordinates of amiloride and analogues 18 

and 19 were imported into the SPARTAN program. Single point 

energy calculations were done on each analogue. Next, the 

electrostatic potential was calculated for each analogue. 

The MEPs were displayed as slices taken from the volume of 

the electron density of the molecules. The molecular 

electrostatic potential maps of amiloride and analogues 18 

and 19 can be seen in Figures 3-5 in Appendix A. Each MEP 

map is coplanar with the pyrazine ring. The units of the 

electrostatic potentials in Figures 3-5 are kcal/mol. The 

contour lines in Figures 3-5 are separated by 2 kcal/mol. As 

can be seen in Figures 4 and 5, analogues 18 and 19 both 

have localized minima off the 6-position of the pyrazine 

ring. With regards co the MEP maps of analogues 18 and 19 

two observations can be made. First, extending the side 

chain with the insertion of an amino group (19) or an oxygen 

atom (18) increases the size of the local minima off the 6-

and the 1-position of the pyrazine ring. Also, the values of 

the minima decrease in the order 1>19>18. This may be due to 

the fact that the extended chain of 18 and 19 have, 
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respectively, two and one pair of nonbonding electrons which 

may interact with the pyrazine ring. 

In future work, the molecular electrostatic potentials 

of analogues 18 and 19 will be encoded onto molecular models 

created using stereolithography. This can be done by 

extruding numbers to mark the electrostatic potential at a 

specific point. 
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Table 4 3-21G* calculation results for the structure of 
analogue 18, calculated by William J. Skawinski 

Atom 
Symbol 

Radius 
(Angstroms) 

Cartesian Coordinates 
(Angstroms) 

N 1.5 -0.794420 -0.528839 -0.000035 
C 1.85 -0.453204 0.765955 -0.000034 
C 1.85 -1.471319 1.732733 0.000011 
N 1.5 -2.753179 1.345751 0.000052 
C 1.85 -3.067516 0.063725 0.000051 
C 1.85 -2.024085 -0.903839 0.000005 
C 1.85 0.918314 1.125315 -0.000090 
O 1.4 1.436791 2.219506 -0.000099 
N 1.5 -1.243073 3.040464 0.000016 

1.2 -0.316198 3.410203 -0.000013 
1.2 -2.030946 3.653862 0.000049 

N 1.5 -4.347797 -0.272919 0.000092 
H 1.2 -4.656S45 -1.220698 0.000094 
H 1.2 -5.027197 0.459300 0.000123 
Cl 1.8 -2.413460 -2.602790 0.000002 
O 1.4 1.755678 -0.005750 -0.000142 
N 1.5 3.125298 0.368758 -0.000199 
C 1.85 3.955309 -0.657378 0.000031 
N 1.5 5.264S44 -0.432547 0.000294 

1.2 5.640047 0.493411 0.000105 
H 1.2 5.920815 -1.185615 0.000562 
N 1.5 3.463186 -1.878330 -0.000116 
H 1.2 2.467819 -1.999376 -0.000186 
H 1.2 4.046S84 -2.688052 -0.000262 

1.2 3.294978 1.358924 0.000855 
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Table 5 3-21G* calculation results for the structure of 
analogue 19, as calculated by William J. Skawinski 

Atom 
Symbol 

Radius 
(Angstroms) 

Cartesian Coordinates 
(Angstroms) 

N 1.5 -0.953274 -0.630026 -0.158261 
C .85 -0.373837 0.576767 -0.129558 
C 1.85 -1.184473 1.711537 0.032868 
N 1.5 -2.510089 1.567480 0.154983 
C 1.85 -3.060845 0.368270 0.123958 
C 1.85 -2.225630 -0.771918 -0.041313 
C 1.85 1.055105 0.645549 -0.263596 
O 1.4 1.735542 1.659198 -0.258317 
N 1.5 -0.703452 2.949571 0.073647 
H 1.2 0.277136 3.117982 -0.012246 
H 1.2 -1.346517 3.703351 0.191990 
N 1.5 -4.378598 0.272956 0.248785 
H 1.2 -4.860414 -0.599034 0.234353 
H 1.2 -4.901847 1.116010 0.361563 
Cl 1.8 -2.928943 -2.366112 -0.085438 
N 1.5 1.674555 -0.604598 -0.380830 
N 1.5 3.009217 -0.600238 -0.776078 
C 1.85 3.960275 -0.595120 0.160188 
N 1.5 5.222330 -0.423888 -0.203451 
H 1.2 5.477587 -0.258352 -1.155211 
H 1.2 5.966442 -0.436628 0.462824 
N 1.5 3.631503 -0.791822 1.416998 
H 1.2 2.666233 -0.909998 1.652431 
H 1.2 4.306585 -0.801180 2.152241 
H 1.2 3.219094 -0.343480 -1.720000 
H 1.2 1.134478 -1.424914 -0.574784 



36 

Table 6 6-31G* calculation results for the structure of 
analogue 18, calculated by William J. Skawinski 

Atom 
Symbol 

Radius 
(Angstroms) 

Cartesian Coordinates 
(Angstroms) 

N 1.5 -0.786356 -0.525299 -0.137047 
C 1.85 -0.415595 0.759229 -0.063253 
C 1.85 -1.406530 1.739705 0.103876 
N 1.5 -2.692475 1.375595 0.185665 
C 1.85 -3.036160 0.103339 0.110529 
C 1.85 -2.020029 -0.878345 -0.058892 
C 1.85 0.982717 1.075131 -0.181025 
O 1.4 1.507480 2.147068 -0.141838 
N 1.5 -1.156777 3.043625 0.189796 
H 1.2 -0.231649 3.403019 0.139000 
H 1.2 -1.926051 3.663457 0.307874 
N 1.5 -4.321988 -0.210852 0.196428 
H 1.2 -4.643741 -1.149544 0.146922 
H 1.2 -4.984510 0.522868 0.314623 
Cl 1.8 -2.448406 -2.564804 -0.160855 
O 1.4 1.752200 -0.040266 -0.388743 
N 1.5 3.086745 0.238689 -0.451942 
C 1.85 3.869081 -0.682761 0.103924 
N 1.5 5.165145 -0.432424 0.200354 
H 1.2 5.563068 0.391050 -0.196462 
H 1.2 5.798834 -1.114666 0.554822 
N 1.5 3.354149 -1.823148 0.501810 
H 1.2 2.370407 -1.978517 0.423242 
H 1.2 3.928148 -2.571388 0.822683 
H 1.2 3.290955 1.219879 -0.419908 
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Table 7 6-31G* calculation results for the structure of 
analogue 19, calculated by William J. Skawinski 

Atom 
Symbol 

Radius 
(Angstroms) 

Cartesian Coordinates 
(Angstroms) 

N 1.5 -0.963435 -0.628789 -0.150418 
C 1.35 -0.382394 0.577042 -0.114562 
C 1.85 -1.192538 1.712709 0.044004 
N 1.5 -2.519285 1.570438 0.155452 
C 1.85 -3.071616 0.372152 0.117515 
C 1.85 -2.236880 -0.768966 -0.043716 
C 1.85 1.061949 0.626127 -0.231759 
O 1 .4 1.739414 1.619935 -0.218794 
N 1.5 -0.720406 2.956251 0.092665 
H 1.2 0.253936 3.138663 0.016590 
H 1.2 .366475 3.703746 0.207407 
N 1 .5 -4.391846 0.278981 0.231999 
H 1.2 -4.866546 -0.593323 0.211059 
H 1.2 -4.919613 1.115656 0.342467 
Cl 1.8 -2.942264 -2.361971 -0.096805 
N 1.5 1.694113 -0.621127 -0.330140 
N 1.5 2.994415 -0.593707 -0.769246 
C 1.85 3.977250 -0.588309 0.139601 
N 1.5 209813 -0.329424 -0.258951 
H 1.2 5.416056 -0.123598 -1.211784 
H 1.2 5.976960 -0.339911 0.376275 
N 1.5 3.717250 -0.891456 1.389315 
H 1.2 2.772182 047334 1.667858 
H 1.2 4.433238 -0.937182 2.079810 
H 1.2 3.165106 -0.099873 -1.621543 
H 1.2 1.159365 -1.395510 -0.663341 
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