
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 1995

An investigation into artificial intelligence based generative An investigation into artificial intelligence based generative

computer process planning computer process planning

William Tereshkovich
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Manufacturing Commons

Recommended Citation Recommended Citation
Tereshkovich, William, "An investigation into artificial intelligence based generative computer process
planning" (1995). Theses. 1586.
https://digitalcommons.njit.edu/theses/1586

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=digitalcommons.njit.edu%2Ftheses%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1586?utm_source=digitalcommons.njit.edu%2Ftheses%2F1586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A INVESTIGATION INTO ARTIFICIAL INTELLIGENCE
BASED GENERATIVE COMPUTER PROCESS PLANNING

by
William Tereshkovich

The process planning function can be further optimized

with the introduction of an intelligent software package

such as an Artificial Intelligence based Generative Computer

Process Planning System. An AI based CAPP system, also

categorized as an expert system, provides the vital link

between design and manufacture, a "bridge" of knowledge in

the information chain of manufacturing engineering. With the

increasing role of computers in the process planning

function, planning has become easier, faster, and more

efficient.

This thesis provides an explanation of the process

planning function and how artificial intelligence will

improve it. Topics in AI techniques and procedures,

knowledge engineering, Computer Aided Design, and Group

Technology (GT) are discussed. Utilizing the topics

presented, a complete interactive software system is

presented to illustrate the flexibility of an AI based CAPP

system.

A INVESTIGATION INTO ARTIFICIAL INTELLIGENCE BASED
GENERATIVE COMPUTER PROCESS PLANNING

by
William Tereshkovich

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Manufacturing Systems Engineering

Manufacturing Engineering Division

May 1995

APPROVAL PAGE

A INVESTIGATION INTO ARTIFICIAL INTELLIGENCE BASED
GENERATIVE COMPUTER PROCESS PLANNING

William Tereshkovich

Thesis Advisor 	Date
Professor, Department of Manufacturing
Engineering Technology, NJIT Dr.

 Samir Billatos Committee Member 	 Date
Professor of Manufacturing Engineering and
Director of Manufacturing Engineering, NJIT

 Dr. Nouri'Levy, Co m m ittee Member 	 Date
Associate Professor, Department of Mechanical
and Industrial Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: William Tereshkovich

Degree: Master of Science in Manufacturing
Systems Engineering

Date: May 1995

Undergraduate and Graduate Education:

• Master of Science in Manufacturing Systems Engineering
New Jersey Institute of Technology, Newark, NJ, 1995

• Bachelor of Science in Engineering Technology
New Jersey Institute of Technology, Newark, NJ, 1994

• Associate in Applied Science
Brookdale Community College, Lincroft, NJ, 1992

Major: Manufacturing Systems Engineering

iv

This thesis is dedicated to my parents, William

and Eleanor Tereshkovich, and to my uncle, Roy Pautz, who

have supported and encouraged my academic endeavors in every

possible way and have been an inspiration for me in pursuing

my goals and dreams as a graduate student.

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his

thesis advisor, Professor Steve Kotefski of the

Manufacturing Engineering Technology Department at the New

Jersey Institute of Technology for his timely and expert

assistance, guidance and encouragement, friendship and

support, during this research.

Special thanks to Dr. Samir Billatos and Dr. Nouri Levy

for serving as members of the thesis committee.

The author would also like to thank James and Velma Emmi

of the EMMI Foundation for financial assistance during this

research.

vi

TABLE OF CONTENTS

chapter 	 Page

1 THE PROCESS PLANNING FUNCTION 	 1

1.1 Traditional/Manual Process Planning 	 3

1.1.1 Disadvantages of Manual Process Planning 	 5

1.2 Automated Process Planning 	 7

1.2.1 Variant Computer Process Planning 	 8

1.2.1.1 Establishment of a Coding Scheme 	 10

1.2.1.2 Search Procedure for Variant Systems 	10

1.2.1.3 The Formation of Part Families 	 11

1.2.1.4 Development of Standard Plans 	 12

1.2.1.5 Retrieval and Modification 	 12

1.2.2 Generative Computer Process Planning 	 13

1.2.2.1 Part Descriptions 	 13

1.2.2.2 Coding Methods 	 13

1.2.2.3 Language Methods 	 15

1.2.2.4 Sequencing 	 15

1.2.2.5 Tooling Database 	 15

1.2.2.6 Generation of a Report 	 15

1.2.2.7 Specifications of a Generative Computer
Process Planning System 	 16

1.2.2.8 Benefits of a Generative Computer Process
Planning System 	 18

2 KNOWLEDGE ENGINEERING IN GENERATIVE COMPUTER PROCESS
PLANNING 	 20

2.1 Knowledge Defined 	 21

2.2 Knowledge Representation 	 21

2.2.1 Declarative Knowledge 	 21

vii

TABLE OP CONTENTS
(Continued)

Chapter 	 Page

2.2.1.1 Semantic Networks 	 22

2.2.1.2 Frames 	 22

2.2.1.3 Production Rules 	 23

2.2.2 Procedural Knowledge 	24

2.3 Information Versus Knowledge 	 24

2.4 Knowledge Applied to Artificial Intelligence
Systems 	 25

2.5 Knowledge Representation Schemes 	 26

3 ARTIFICIAL INTELLIGENCE AND GENERATIVE COMPUTER PROCESS
PLANNING 	 30

3.1 Types of Computing 	 31

3.1.1 Conventional Computing 	 31

3.1.2 Artificial Intelligence Computing 	 33

3.1.2.1 Use of Heuristics 	 37

3.1.2.2 Logic Reasoning 	 38

3.1.2.3 Search Techniques-Decision Trees 	 38

3.2 Artificial Intelligence and Process Planning 	40

3.3 Expert Generative Computer Process Planning
Systems 	 41

3.3.1 Generative Computer Process Planning Functions 	44

3.3.2 Definition of an Expert, a CAPP
Relationship 	 45

3.3.3 Manufacturing Expert Systems 	 46

3.3.3.1 Manufacturing Robotics, Kinematics and
Design 	 47

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.4 Benefits of Expert Generative Computer Processing
Systems 	 47

3.5 Expert Systems, a Survey 	 49

4 GROUP TECHNOLOGY FOR AI PROCESS PLANNING SYSTEMS 	53

4.1 Classification and Coding 	 54

4.1.1 Principles and Structures of Classification and
Coding 	 55

4.1.2 Classification and Coding Systems 	 58

4.1.3 Benefits of Classification and Coding 	 62

4.2 Part Families 	 63

4.3 Production Flow Analysis 	 64

4.4 Design Retrieval and Group Technology 	 65

4.4.1 Benefits of Design Retrieval 	 66

5 CAD/CAM AND GENERATIVE COMPUTER PROCESS PLANNING 	68

5.1 CAD/CAM Evolution 	 69

5.2 CAD Fundamentals 	 70

5.3 CAD and Finite Element Analysis 	 74

5.4 The CAD/CAM Database 	 75

5.5 CAD/CAM with CAPP Improving Productivity 	 76

5.5.1 Engineering Drawing 	 76

5.5.2 Other Forms of Documentation 	 77

5.5.3 Engineering Design and Calculation 	 77

5.5.4 Engineering Cost Estimation 	 77

5.5.5 Production Order 	 77

5.5.6 Manufacturing 	 78

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.5.7 Production Scheduling 	 78

5.5.8 Labor 	 78

5.5.9 Response to Changing Market Conditions 	 78

5.6 Reasons for Integrating CAD/CAM with AI Based
Generative Computer Process Planning 	 79

6 SOFTWARE DESIGNED FOR THESIS 	 81

6.1 Operation of the Thesis Software 	 82

7 LINKING THESIS SOFTWARE TO OTHER MANUFACTURING
FUNCTIONS 	 90

7.1 Importing DXF Files into AutoCAD 12 	 92

7.2 Stereo-Lithography 	 93

7.2.1 Generating Stereo-lithography (.STL) Files from
Imported DXF Files 	 94

7.3 SLA Processes 	 97

7.4 From Thesis Software to CAM 	 97

7.5 Machining with Thesis Software Designs 	 100

7.6 Inspecting Thesis Software Designs with a CMM 	101

8 CONCLUSION 	 102

APPENDIX A, AICAPP.CPP SOURCE CODE 	 103

APPENDIX B, AICAPP.CPP GENERATED DESIGNS 	 196

APPENDIX C, OPTION "A" DXF CODE 	 204

REFERENCES 	 213

LIST OF FIGURES

Figure 	 Page

1 Variant Process Planning 	 9

2 Generative Process Planning.......14

3 Conventional Computer Processing 	 32

4 Artificial Intelligence Based Processing 	 34

5 Generic Areas of Artificial Intelligence 	 36

6 Elements of an Expert Generative Computer Process Planning
System 	 42

7 A Typical CAD System 	 73

8 Square Geometry Mode Screen 	 84

9 Full Screen -Generated Square Straight Line
Development 	 86

10 Option 9 -Generated Square Straight Line Development
with Form 	 87

11 Linking Thesis Software to other Manufacturing
Functions 	 91

xi

CHAPTER 1

THE PROCESS PLANNING FUNCTION

One of the most widely used manufacturing techniques in

industry today is process planning. The process planning

function represents the vital link between design and

manufacture, a "bridge" of knowledge in the information

chain of manufacturing engineering. It involves the

preparation and documentation of the minimum manufacturing

sequences to be completed by work centers, and describes

specific designs and cycle times of resource usage for a

product to be manufactured. In addition, process planning

(as with the planning of operations layouts and numerical

control systems) often utilizes detailed information for a

specific purpose. Therefore, process planning could be

described as the preparation of manufacturing instructions,

sequences, and engineering drawings required for production.

The process plan for a particular work-part is not

unique since there is usually more than one way of

manufacturing it. A process plan simply details the sequence

of operations to produce a work-part. Different process

plans may also be required for different lot sizes. The

process plan usually consists of several sections. These

sections include general information, operation sequences,

and assembly instructions.

1

2

The first section contains general information that

defines the work-part, its version, and any other special

conditions relating to its production. For example,

engineering drawings describing the work-part or the lot

size for which the plan was developed.

The second section of the process plan is made up of the

sequences defining the operations required for manufacture.

The final section of the process plan is only required

if the work-part is to be unloaded from one machine and

loaded onto another for further processing. The third

section may also be made up of assembly instructions or

special machining instructions.

Without process planning, there can be no performance

analysis and control, no effective production scheduling,

and overall, no design for manufacture. The preparation of a

process plan is the translation of engineering requirements

(contained 	in 	engineering 	drawings 	and 	design

specifications) into detailed technical manufacturing

requirements of material labor, design for manufacture, and

equipment. The process plan carries information that is

traditionally recorded and distributed to other activities

within an organization using laborious technical and

clerical techniques. These laborious and time consuming

techniques are usually applied by professional process

planners within an organization. Upon the use of process

plans, receiving departments have to manipulate the data as

input into their own systems, thus the process planning

3

function requires highly skilled planners and a large amount

of costly time.

Automating the process planning function is an obvious

alternative to alleviate the amount of time and experience

it requires.

1.1 Traditional/Manual Process Planning

Traditionally, the process planning function has been

carried out by specialized technicians with exceptional

knowledge in manufacturing techniques, machine design

capability, company machinery and equipment, and level of

plant skills among workers. Manual process planning involves

the visualization and analysis of production sequences and

alternative operations. Clerical techniques such as drafting

and calculation also play an important role. To be

effective, process planners must utilize various types of

aids to achieve the lowest unit cost consistent with all

engineering requirements. Personally acquired manufacturing

logic must be applied manually when data is received from

all engineering specifications. This is usually dependent

upon the process planners ability to recall past experiences

and current planning techniques to apply knowledge

efficiently and effectively.

Standard data is applied by process planners to

describe cost comparison of alternative methods and

operations to arrive at target manufacturing deadlines. The

standards may be information relating to estimates based on

4

past data through to complex manufacturing standards for

both design and processes.

With manual process planning, the process planner is

faced with considerable decision making, data retrieval, and

calculation during the planning cycle. Valuable time is

wasted due to laborious standard clerical techniques. Costly

errors can also occur when design data is interpreted

incorrectly.

Manual process planning involves a time consuming

routine in document preparation. A process planner must

first study and evaluate the overall geometry of a work-

part. This information will be utilized to classify the part

in order to determine the proper production sequence. The

planner must then study the engineering drawing to identify

all the production features. The production features will be

used to determine the best raw material shape. Finally, the

planner must be able to identify the datum surfaces, off the

engineering drawing, and use the information to determine

setups. With this data collected, the planners sequence

could be to:

O Determine the work-centers to be used in a particular

operation.

® Determine a rough sequence of operations for production.

• Determine if any modification is to be made with the

operations sequence.

® Select tooling.

O Select fixtures, jigs, etc.

5

. Determine the cutting parameters for each operation.

O Provide a process plan in finished form.

The time spent during the process planning cycle can be

broken down into percentages. The percentages illustrate the

time a standard set of plans may take by an experienced

planner. The percentage of time to prepare a set of process

plans is:

O Fifteen percent for technical decision making and

planning strategy.

O Forty percent for data retrieval and calculation.

O Forty-five percent for text and other document

preparation. This constitutes engineering drawing, bill

of materials, production planning, etc.

These percentages are typical across all types of

engineering organizations, from batch production to high

production volume. The percentages also indicate that

traditional process planners are continually attempting to

create and update manufacturing information. Although a

planner may be able to make quick decisions, data retrieval,

document preparation, and calculation, manual process

planning is time consuming and is usually prone to error.

This presents the planner with considerable communication

problems within the organization.

1.1.1 Disadvantages of Manual Process Planning

Most of the disadvantages stemming from the traditional

approach are caused primarily from the very high dependence

6

upon technical and clerical activities. The activities

include both preparation of the process plans to planning

the engineers need to interact with related activities. This

is compounded by the lack of communication between planning

departments. More specifically, the main disadvantages of

manual process planning include:

G Manufacturing logic is individual - meaning it usually

resides in the process planners mind. This has a

percentage of error.

6 The individual process logic has to be recalled and re-

processed for every plan. This becomes a laborious and

time consuming process that is often relied on by

guess-work.

O The process plan results are usually incomplete and

inconsistent, resulting in a high margin of error.

O There is a extension of pre-production leads times due

to data retrieval and update.

O The estimation for new products or processes are suspect

until proven correct.

O Manufacturing skills are locked in clerical planning

routines rather than used on methods of improvement and

cost reduction programs.

O Supervision and other operatives have little respect for

the targets set by the process plans due to

inconsistency and inaccuracy.

O The process planning information is often out of date.

The entire planning cycle is subject to frequent

7

information updates such as engineering changes to

product design, alternative materials and processes,

improved manufacturing processes, and changes to

quantities.

With manual process planning, there is a present

structure that can only operate with highly skilled planners

which have superior skills as an operator and a "up to date"

knowledge of manufacturing design and processes.

The efficient and effective way to process the design

and planning activities is through automation. Using an

artificial intelligence (AI) based expert system, planning

activities will become more accurate and timely. Engineering

data can be quickly retrieved and updated. Data storage will

become easier and communication will be optimized.

1.2 Automated Process Planning

Automated process planning can be broadly categorized as

being variant or generative. These two approaches are used

for the design of expert systems and utilize computer

processing abilities. The generic term, computer assisted

process planning (CAPP), is also used to describe automated

process planning. Automated process planning systems do not

require the planner to have expert knowledge of

manufacturing design and processes. CAPP systems use pre-

programmed engineering knowledge, utilizing artificial

intelligence, to automatically generate accurate and

8

effective process plans from the preliminary data that is

given.

1.2.1 Variant Computer Process Planning

A variant process planning system could be referred to as a

data retrieval system. With this approach, a set of standard

plans is established and maintained for a particular work-

piece. Expert knowledge is pre-programmed into a computer

system using a database to store all information. The

information may be retrieved and updated to accommodate

design changes, manufacturing changes, or new developments

in technology, (See figure 1 on page 9). Retrieval of

information is maintained using a classification and coding

scheme as used in group technology (GT). The general

specifications for data modification and retrieval are:

O Establishment of a coding scheme using group

technology concepts.

e The formation of part families using group

technology concepts.

 The development of standard process plans.

Process plans are generally designed to a

specific operation.

O The retrieval and modification of standard

process plans for new work-parts.

In order to utilize these specifications, some basic

functional modules are required in the development of a

variant CAPP system.

9

Figure 1. Variant Process Planning

10

1.2.1.1 Establishment of a Coding Scheme

A major step in developing a variant CAPP system is to

select and establish a coding scheme. The selection relies

heavily on the product that the company manufactures. The

coding scheme could either be unique or general.

1.2.1.2 Search Procedure for Variant Systems

The main function of a variant CAPP system is to retrieve

process plans for similar components to be put into

production. In doing this, a search procedure must take

place where parts can be identified in relation to a

particular family. When the part family is located, the

process plan can be easily retrieved.

A family matrix search may be used to match entered code

with information in the systems database. Family matrices

are also known as masks. When the entered code passes

through a mask, a particular family is identified. A search

procedure as described by Chang, Tien-Chen, Wysk, A. Richard

and Hsu-Pin Wang, for variant systems can be evaluated as

the following:

Let Cj be a value of code position j for the given

component.

® Pln is a pointer for family matrix 1, which links to the

next family matrix.

O Pls is a pointer for family matrix 1, which links to the

directory of the standard plan.

• Plij is the content of family matrix 1; when it equals

, end step; otherwise, next j.

11

one, code position j is allowed to have the value i.

With having all the variables defined, standard process

plans may be located using the following algorithm.

Step 1. For all, do step 2. End stop.

Step 2. For j = 1 to J, do step 3; end, goto step 5.

Step 3. i = Cj; if Plij <> 0, end step; otherwise,

Step 4. 1 = Pin; goto step 2.

Step 5. Standard process plan found; Pls is the

pointer to the standard process plan. End

search process.

Another way to perform a matrix search, let C*j equal a

range of values instead of just a single value. The

algorithm above can then be changed in step 3. Step 3 will

look like this:

1.2.1.3 The Formation of Part Families

Collecting similar parts by geometry, surface features, or

fabrication process similarities is the backbone of variant

process planning. This insures the proper formation of a

part family. Since all similar parts are assigned to a

specific part family, a database may be used to store all

necessary information by utilizing a random access data

structure, thus creating a variant system for retrieving

data for a process plan.

General Methods for forming part families include:

12

O Production flow analysis.

O Cluster analysis.

• Machine loading analysis.

1.2.1.4 Development of Standard Plans

A standard plan in a part family is a collection of common

operations used to fabricate work-parts belonging to a

particular part family. The capabilities of generating,

retrieving, and updating standard plans are the basic

requirements of a variant CAPP system.

in order to make a variant CAPP system functional, part

data for a standard plan should be retrievable in several

ways. These include:

O The part data may be retrieved using part codes and

specifications, part numbers, and part family numbers.

e A cross reference module used to obtain members in

tabular format.

O A relational database structure.

1.2.1.5 Retrieval and Modification

Since variant process planning is primarily a

retrieval/update method, there is the need to design a

procedure through which the system planner can retrieve

fixed data and modify it for a standard work-part. This type

of design should be informative, useful, and user-friendly.

13

1.2.2 Generative Computer Process Planning

Generative computer process planning is a system designed to

automatically synthesize process information to create

design specifications and process plans for a new component.

Decision logic and optimization are encoded into the system

to create a type of artificial intelligence. Using all data

that is entered, a generative system will produce a complete

process plan beginning with design data, in the form of an

engineering drawing, to the requirements of the

manufacturing process. A generative system also requires

detailed mathematical techniques for the combinational

programming aspects, (See figure 2 on page 14).

1.2.2.1 Part Descriptions

A central requirement for a generative CAPP system is a part

description. Geometry, dimensioning, and surface quality

requirements are to be defined by the planner. The entered

data will be stored into memory, where it will be processed

and utilized to generate useful process information.

1.2.2.2 Coding Methods

As with variant systems, some generative systems utilize

coding methods for part description. Various group

technology concepts are used to create a database where

information can be stored and retrieved.

14

Figure 2. Generative Process Planning

15

1.2.2.3 Language Methods

Most generative systems utilize a specially designed

language syntax to describe components and specifications.

For this type of system, the syntax and semantics of

commands are defined within a database structure in order

for a component description to be given by the planner.

Language methods are a preferred alternative to group

technology.

1.2.2.4 Sequencing

Sequencing plays a vital role in generative CAPP systems

since expert knowledge is programmed as a decision tree. An

IF-THEN sequence usually simulates the decision process,

thus sequencing routines can simulate an expert decision.

1.2.2.5 Tooling Database

A generative system generally contains a database of tooling

specifications, such as jigs, fixtures, and clamping

devices. The database can either be utilized by the operator

or the program itself. Machine tools, used to complete a

particular operation, must also be encoded into a generative

system.

1.2.2.6 Generation of a Report

A main requirement of any CAPP system is the generation of a

process plan in hard copy format. The generated report must

be legible and easy to understand to manufacturing

16

personnel. The report should be informative, containing all

the basic data such as part identification, machining

operations, machine identification, and tooling. Another

basic requirement of a report generator is the generation of

an engineering drawing. The drawing will represent the

design specifications that are required and can be created

using a plotter or a laser printer.

1.2.2.7 Specifications of a Generative Computer
Process Planning System

Considering the importance of the process planning function,

there has been little research in the way of integrating

artificial intelligence with process planning. However, in

recent years, the utilization of generative CAPP systems has

been growing. A particular system could include an expert

system being designed to produce process plans for

cylindrical components. The system also processes the size

of the sequencing and machining operations. An example of

the amount of sequences this type of computer system must

make could be:

A component to be manufactured consists of X number of

independent and different features such as surface

texture, holes, and fillets. Each of these features

may be machined in any sequence and each may be

machined on any of Y machines. The total number of

different sequencing possibilities, defined by Z, for

manufacturing the component can be given by:

17

The different number of possibilities equals the

number of different features factorial multiplied by

the number of machines to the power of different

machines. Thus, for a simple part of 8 holes which is

to be manufactured in a shop with 6 drill presses,

there will be (40320)(68) or 6.7 x 1010 alternatives.

In utilizing particular specifications for a generative

system, decision alternatives such as the previous example

must be taken into consideration. Since today's computers

can provide quick and accurate processing, utilizing

computer processing is almost a must to calculate the best

alternative.

A generative expert system should be designed to allow

the operator to enter specific data requirements into a

computer without having to program it. The major objectives

in designing a generative expert system would be to:

® Free the process planner from time consuming clerical

activities such as calculation, report generation, and

engineering drawing.

O Use the existing company data. Previous data once used

in design or processing may be utilized and updated

within a generative system.

O Perform all calculations. The generative system should

be pre-programmed with all the necessary formulas in

order to generate the best possible solution.

® Be applicable to all types of engineering.

18

O Generate user defined documentation and data files.

This would include a graphical representation of a

particular geometry, process sheets, or the

combination of both. The files must be retrievable for

updating.

e Be capable of extension or update by engineers, to

reflect changing products.

® Have the ability to interface with other manufacturing

systems. This requires that the system can output

design files and other data to computer aided design

(CAD) systems, computer aided manufacturing (CAM)

systems, etc.

The generative method of computer process planning

involves the generation of unique plans for a particular

process or design. Using this method does not require

storage of standard routines and information (as with

variant systems). Instead, new plans are generated and

tested automatically for feasibility, and then the best

alternative is chosen by the expert system's design criteria

(such as geometric coding and decision tree logic).

1.2.2.8 Benefits of a Generative Computer Process
Planning System

The objective of a generative computer process planning

system is to improve the output level of an organization by

simplifying the planning and design process. The major

benefits of this type of system include:

19

O Releases an engineer from clerical routines and methods

such as calculation and documentation.

O Improves the consistency in development of operation

times over a wide product range. Designs become more

accurate and process plans become more efficient.

O Provides the speed of response to engineering changes.

Since files are stored in the system, retrieval and

update can easily be accomplished.

e Provides acceptability of planned targets. Since plans

are more accurate, planned manufacturing deadlines can

be achieved.

® Makes accurate responses and decisions.

O Reduces pre-production lead times. This is due to the

ability of data storage and retrieval. Updating a

current design to meet future requirements provides

quick pre-production lead times.

® Provides easy access planning data. Data may be used by

simply accessing the systems database. If there is a

need, the expert data can be used for manual process

planning.

CHAPTER 2

KNOWLEDGE ENGINEERING IN GENERATIVE
COMPUTER PROCESS PLANNING

There is an extensive amount of knowledge relating to the

planning of manufacturing processes that one must utilize in

order to make a CAPP system successful. The extraction,

classification, refinement, and formalization of information

is known as knowledge engineering. Knowledge engineering is

not only faced with the extraction of relevant knowledge

from the expert, but involves applying the knowledge into

practical form.

In the case of an AI based CAPP system, knowledge must

be extracted from the expert, such as a engineer or a

process planner. The knowledge must be relevant to a

particular subject and must convey problem solving

techniques. The extracted knowledge is to be encoded into a

program where expert simulation occurs.

Knowledge bases are developed by extracting the rules

and procedures human experts use in solving problems.

Knowledge bases are usually broken down into a IF-THEN

format since the program will make pattern matches to solve

problems. Because knowledge bases are separate entities from

inference engines (decision-making algorithms), the

knowledge contained in the knowledge base is easy to modify.

Just as in a spreadsheet, where numbers can be changed

20

21

independently, expert system knowledge bases can be changed

just as easily. Changes within the knowledge base simply

updates and deletes rules in any order.

2.1 Knowledge Defined

A definition of knowledge could be, as described Frenzel

(11), an understanding of a particular field of interest

that has been obtained through experience and education.

Knowledge is made up of ideas concepts, facts and figures.

Knowledge implies learning, awareness, and familiarity with

one or more subjects. Knowledge is the key to solving basic

to complex problems.

2.2 Knowledge Representation

There are two forms of knowledge that can be broken down and

put into a knowledge base. They are declarative knowledge

and procedural knowledge. Most artificial intelligence

systems will contain both.

2.2.1 Declarative Knowledge

Declarative knowledge is primarily a statement of fact about

a certain thing. Declarative knowledge permits the statement

of information, deduction of relationships, and the

classification of objects. Group technology concepts

utilizes declarative knowledge for classification of

manufactured parts. In expert systems, declarative knowledge

22

representation schemes include semantic networks, frames and

production rules.

2.2.1.1 Semantic Networks

The use of a semantic network is one of the most basic

methods to represent knowledge. A semantic network consists

of graphically depicting the relationships between objects,

events, concepts, situations or actions by a directed

graphical representation consisting of nodes and labeled

edges. A simple semantic network may look like:

MACAW 	 >WINGS

(HAS-PART)

Where MACAW and WINGS are nodes representing sets or

concepts and HAS-PART is the name of the link specifying

their relationship.

Semantic networks are primarily used to illustrate

relationships utilizing declarative knowledge. It is

primarily a representation of world aspects by naming and

referring objects in a given domain and describing the

relationship between them.

2.2.1.2 Frames

A declarative knowledge representation scheme known as a

frame is used to describe, in detail, information about a

particular object. Frames usually involve the gathering of

well known or generalized data. This data is collected and

can be placed in discrete elements known as slots. The

23

slots, which describes attributes of an object, can be

subdivided into facets where a description of the attribute

may be given.

A frame "system" is mainly composed of interrelated

frames that are required to represent a specific domain. It

relies heavily on the concept of inheritance between one

frame to another.

2.2.1.3 Production Rules

In expert systems, a common way of representing heuristic

knowledge is with production rules. The rules usually

consist of two to three part statements that contain a small

increment of knowledge.

The format of a production rule usually is written as an

IF-THEN statement or an OR statement. IF usually refers to a

situation and THEN refers to an action or a conclusion. OR

represents an alternative. A few examples of a rule format

are as follows:

1. IF it starts getting dark,

THEN turn on the light.

2. IF the cube is hard,

AND is cold,

AND used to be in the form of water,

THEN it is an ice cube.

3. IF the test is tomorrow,

OR the test is the next day,

THEN I will study tonight.

24

The major benefits of rules in this type of format is that

knowledge is represented in a compact way. Production rules

can be easily updated or deleted from an expert system,

therefore, changes in a system can be made quickly.

Production systems will provide a model for encoding

human expertise in the form of rules and designing pattern-

driven search algorithms. Artificial intelligence systems

will utilize production rules as a potential model for

solving specific problems. This is an ideal method for

computer aided process planning systems.

2.2.2 Procedural Knowledge

Procedural knowledge provides a way to apply declarative

knowledge. Procedural knowledge recommends what to do and

how to do it. A step by step sequence on how to build a

computer or instructions for building a model airplane are

examples of procedural knowledge. In expert systems,

procedural knowledge is represented as scripts and

production rules.

2.3 Information Versus Knowledge

There is a major difference between information and

knowledge. Information is based primarily on facts and

figures in that raw data has not been interpreted.

Information can be in the form of equations, engineering

drawings, and random data.

25

Knowledge, on the other hand, is an understanding of

information based on analysis and application. Raw data is

interpreted and put into useful form.

The difference between knowledge and information is not

always obvious. Knowledge involves a wider range than

information. Knowledge not only includes information but

includes skills, perception, imagination, intuition, and

common sense due to experience. It is the sum of perceptive

processes organized in such a way that conclusion. and

solutions may be drawn.

2.4 Knowledge Applied to Artificial
Intelligence Systems

Knowledge for an expert system can be obtained from textbook

type information. Knowledge used in expert systems can be a

fact or a figure and is usually obtained directly from an

expert. The type of knowledge incorporated into an expert

system could be a policy and procedures manual, a set

structure of equations, or a given data base that can be

retrieved or updated.

However, in most applications, the kind of knowledge

that is best applied to expert systems is heuristic

knowledge. Heuristic knowledge is practical real-world

understanding. It includes all the strategies and techniques

that an expert might use to solve a particular problem.

Heuristic knowledge is not textbook oriented, rather it is

knowledge that has been obtained through years of experience

26

and exposure to a wide variety of problems. Through

heuristic knowledge techniques, an expert can quickly solve

problems since there is a set format of procedures.

Programmed into an expert system, these procedures and

techniques can be utilized to solve a variety of problems.

The knowledge format can be automatically applied through

given data to simulate the decision making process.

In developing a manufacturing expert system, heuristic

knowledge is encoded into a program where it is applied to

everyday problems. Encoding is the "packaging" of heuristic

knowledge to be used during system operation. The encoded

knowledge becomes expert information for a computer to work

with. Information such as spreadsheets, data bases, process

formulas, and mathematics, are required if the system is to

perform "number crunching".

2.5 Knowledge Representation Schemes

In manufacturing, information to be encoded into a knowledge

base is usually difficult by using simple structures like

arrays or sets of numbers. Representation schemes such as

First Order Logic, Semantic Networks, and Frames can be used

to represent statements and to indicate how to carry out a

variety of actions, such as information retrieval,

computation, etc.

First Order Logic involves the relationship between

assumptions and conclusions. First Order Logic sentences can

27

be expressed as a collection of clauses. Clauses may be

defined as an expression in the following form:

Dj, 	Dn <-- Cj,, Co, 	n,o >=0

where Cj,, Co are conditions of the clause and

Dj, 	Dn are alternative conclusions of the clause.

Both conditions and conclusions, called atoms, are

expressions of the form:

Z(dj,, d1)

where Z is a 1-argument predicate symbol and dj,, d1

are terms.

A term is a variable that is an expression of the form:

g(dj,, dm)

where g is a m-argument function symbol and dj, 	dm

are terms.

	

If a clause contains the variables yj, 	yl, then it can

be concluded as the following statement:

for all yj, 	y1

Dj or or Dn if Cj and and Co

if 0=0, then the clause can conclude that:

for all yj, 	y1

or or Dn D3

if n=0, then the clause can conclude that:

for no yj, 	y1 Cj

 • and and Co

Using the First Order Logic as defined above, manufacturing

schemes can be developed. A few examples of applying this

type of knowledge representation scheme could include:

28

MACH-OP(M3, OP5), meaning that machine three can

perform operation five.

IDLE(M3, t3), meaning that machine three is idle at time

three.

JOB-LAST-OP(OP3, J5), meaning that operation three is

the last operation to be performed

on job five.

Semantic Networks, sometimes are known as structured

objects because the major emphasis is on the structure of

the representation, also plays a vital role in knowledge

representation. A semantic network is a graph whose nodes

represent individual objects within a system, as explained

earlier. Directed arcs, connecting the nodes, represent

binary relationships.

The semantic network representation of knowledge is

better known as a graphical sequence of events. An example

of this could be:

a 	 >b

X

This is a graphical representation of:

X(a, b)

Frames, on the other hand, is a generalization of a

property list which provides a structured representation of

application in a given domain. A frame provides a mechanism

that guides description movement and allows for

specification of procedures for computing purposes.

29

In manufacturing, frames are usually applied to job shop

scheduling and project management. In the production

planning context, frames represent knowledge about jobs,

tasks, and resources, such as machines, tools, pallets, etc.

CHAPTER 3

ARTIFICIAL INTELLIGENCE AND GENERATIVE
COMPUTER PROCESS PLANNING

Artificial intelligence is a broad field of computing that

involves making computers duplicate the human decision

making process. Artificial intelligence could be described

as a collection of techniques that allow a computer system

to mimic the human thinking process. An AI computer system

is a tool to be utilized in solving simple to complex

problems. This is an attempt to make machines do specific

tasks that require some level of intelligence. Artificial

intelligence is simply a useful tool that can be used to

make computers more efficient and productive, which in turn

makes human jobs more efficient and productive.

The ability to duplicate the human thinking process is

desirable since decisions can be made accurately and

effectively and in a more timely fashion. Many manual

manufacturing operations can be performed faster and more

efficient with the use of AI systems. Artificial

intelligence takes process planning a step further, the

result is a better equipped computer system that can be

applied to many different scenarios.

30

31

3.1 Types Of Computing

The two basic forms of computing are conventional and

artificially intelligent. Both represent programming

techniques that require expert knowledge, but process the

knowledge in a very different way.

3.1.1 Conventional Computing

In conventional computing, a step-by-step list of

instructions, called an algorithm, is given to the computer

to perform a particular operation, (See figure 3 on page

32). Conventional computing tends to share two basic ideas.

These are:

O The application programmer will develop a step-by-step

numbered sequence algorithm in order to solve a problem.

® The data required in conventional computing execution is

stored in a data base. Data can then be called by the

program as it is needed when each step is executed.

Conventional software relies on a conventional language such

as COBOL, FORTRAN, and PASCAL, however, the C++ language is

a conventional language being used in the development of

artificial intelligence based systems.

Conventional software programs, as described by Frenzel,

processes data within nine parameters. These are:

O To store data. The data may be a fact, figure, or

formula.

o To retrieve data from files. This is accomplished by

coding schemes within a database or file location. The

32

Figure 3. Conventional Computer Processing

33

data will be retrieved as much as the application

program needs it.

• The translation of data from one form to another. An

example is utilizing raw data, in numerical form, and

translating it to text.

• Sorting data to obtain the desired file.

• To edit data, so files may be updated or deleted.

• The ability for decision making using IF-THEN production

rules.

• To monitor specific events such as calculation, data

input, and data output.

• The control over internal and external devices such as

printers, disk drives, machine tools, and robotics.

To solve a particular problem with conventional computing,

the programmer must first analyze the problem and realize

how to encode it into the computer. An incremental

procedure, using a specific computer language, is usually

taken that will produce binary code into the computer's main

memory. When the program is executed, it should follow the

exact sequence of events that were specified.

3.1.2 Artificial Intelligence Computing

AI computing, as compared to conventional computing, is

quite different. AI involves the simulation of the human

decision process and, in a way, it mimics the way humans

think, (See figure 4 on page 34).

34

Figure 4. Artificial Intelligence Based Processing

35

Artificial intelligence computing can be broken down

into six general areas, (See figure 5 on page 36). These

areas include:

• Natural Language/Speech Recognition: This area of AI

study concentrates on hardware/software development that

enables humans to interact using spoken commands. This

is better known as speech recognition. Speech

recognition research involves the differentiation of

similar sounding words with different meanings, such as

write, Wright, and right.

® Robotics: This is an area of artificial intelligence

computing that uses a combination of techniques to

develop intelligent robots that can see, move, and

manipulate objects on their own in response to changing

environmental conditions. An example would include robot

vision. Robot vision is usually held to inspection

tasks.

• Expert Systems: The most commercially successful area

of artificial intelligence, expert systems utilize

artificial intelligence concepts to enable computers to

function in decision roles as advisors that provide

decision making ability.

® Other areas of AI computing include exploratory

programming and enhanced human interfaces. Exploratory

programming deals with computers programming themselves.

Enhanced human interfaces involves utilizing artificial

intelligence in the design of user-friendly human

36

Figure 5. Generic Areas of Artificial Intelligence

37

interfaces, such as input/output devices.

AI based systems use a pattern matching approach. If

sufficient information is provided, the system may not

arrive at the conclusion or solution. Instead of following a

data sequence or algorithm, AI computing involves the use of

heuristics, logic reasoning, and search techniques. AI based

systems use this type of pattern matching approach.

3.1.2.1 Use Of Heuristics

As mentioned earlier, heuristics is knowledge that is

practical and known. It is "real world", meaning it contains

all the tricks of the trade that has been developed through

experience.

Heuristics could also be applied to a search technique,

in that the search process is made faster and more

efficient. It is a way of focusing on only a percentage of a

search tree that will provide the optimal solution.

There are two basic types of heuristics used in

artificial intelligence systems. These include general-

purpose heuristics and domain-specific heuristics.

0 General-purpose heuristics are used in search techniques

that limit the depth of searching in a network of

branches. This is generally known as a depth-bound

search technique.

 Domain-specific heuristics are applicable to certain

types of problems, such as limiting a search to a small

subset of knowledge within a branch or group.

38

3.1.2.2 Logic Reasoning

Most AI systems apply deductive reasoning to provide an

optimal solution to a particular problem. AI programs

usually contain a collection of logical facts in their

databases that can be deleted or updated. Given data

supplied by an operator, the AI program will use logical

theorems to prove or dis-prove a particular assumption.

Consider the following example:

 ALL TIRES ARE ROUND:

A--->B (A: TIRES, B: ARE ROUND).

0 IF AN OBJECT IS ROUND THEN IT CAN ROLL:

(C: TIRES CAN ROLL).

This form of logical reasoning, called a transitivity

relationship, concludes that all tires are round and

therefore they can roll.

In AI systems, logical reasoning is typically a multi

step process. The reasoning represented as rules and

principles may be used to derive conclusions about a

particular subject.

3.1.2.3 Search Techniques - Decision Trees

The heart of most AI systems is the ability to search for

the most feasible solution. Utilization of a information

tree, or search tree, is the most common technique. This

starts at a root node with children following each node. The

number of nodes increases exponentially with the number of

levels and with the number of alternate choices at each

39

search level. Two common forms of search techniques are

known as backtracking and graph searching.

In backtracking, a point of return is selected when a

rule is applied. Should any difficulty occur during

processing, the program can revert back to the return point

and another rule can be applied.

In graph searching, two basic procedures which are

extensively used, include blind searching and informed

searching.

Blind searching involves a control procedure ignoring

problem related information to guide the search. In a way,

blind searching is a random way to access information.

Informed strategy is quite different. It involves

restricting the search with problem related knowledge.

Searching is broken down into a tree where information

can be evaluated. The terms used in a simple tree search, as

described by Soundar R. T. Kumara, Rangasami L. Kashyap, and

Allen L. Soyster, include:

O Root Node: The starting state or initial configuration,

which represents the beginning of the search tree, since

a tree only has one root.

® Leaf Node: A node of the tree which does not have

any children (successors).

o Goal Node: The node which represents the configuration

satisfying the goal state or solution.

® Branch: The link that connects any two nodes (i and j)

together; node j is generated by applying an operator or

40

rule k to the node i.

• Expansion: A node i is said to be expanded if an

operator(s) is(are) applied to it and its successors are

generated.

• Termination: The process of stopping the search

procedure, normally when the goal is reached.

• Level: The root node in a tree is said to be at a depth

level 0. Any other node's depth is given by LEVEL =

level of its parent node 	1.

3.2 Artificial Intelligence and Process
Planning

A productive computer process planning system must contain

enormous amounts of expert information for it to be useful.

The information programmed into a process planning system

must be relative to a particular operation and should be

factual about manufacturing operations. The process planning

system should be flexible since facts and rules, contained

in the database, have to be updated or deleted. Updating

into the AI system is very important in a manufacturing

scenario since technology is continuously changing and

improving. The ability to update database information and to

be flexible is an important requirement because the system

must change with the technology.

In a traditional CAPP system, manufacturing knowledge is

encoded line by line into the program's statements. Any

modification to these statements would result in rewriting

41

the entire program. In other words, the traditional CAPP

system cannot update the information unless it is re-

encoded into the program. The rigidity of this type of

system endangers the ability for linking information from

one design package to another. In particular, linking

drawing files from a CAPP system to a CAD (computer aided

design) system, which is an important factor in integrating

CAD/CAM.

An expert system, such as generative computer process

planning, will store information so it is possible to add,

delete, and modify facts about manufacturing concepts. They

optimize the production process by helping to identify

critical parameters in order to solve a particular problem.

3.3 Expert Generative Computer Process Planning Systems

A commercially successful branch of artificial intelligence,

expert GCPP systems are an attempt to capture the heuristics

used by experts to solve problems through computer

programming. These types of systems attempt to utilize

expert knowledge and apply it to manufacturing scenarios,

(See figure 6 on page 42). Design of an expert system

requires an enormous amount of expert knowledge. The process

of extracting information and encoding it into a program is

known as knowledge engineering. As explained earlier,

knowledge engineering refers to the process of transferring

an experts knowledge to the algorithms of an expert system.

42

Figure 6. Elements of an Expert Generative Computer
Processing System

43

Expert GCPP systems are designed as computer programs

that have the ability to search for pre-programmed data, and

to utilize the data to process the optimal solution for the

given problem.

Generative computer process planning will create a

process plan automatically for a specified type of

component. The system will synthesize process information

that is given by the user. With decision logic and

optimization formulas encoded into the system, human input

is reduced. A generative CAPP system will produce a complete

process plan, from design data through a particular

engineering drawing to providing manufacturing processes

that are required. The software that is presented later in

the thesis is designed using these principles. Generative

systems are usually designed by identifying component

characteristics first. The characteristics may include

features, dimensions and tolerances, surface quality, and

other specifications. An ideal situation, which was encoded

into the thesis software, is the design of an interface

between a generative CAPP system and a CAD system. All

design characteristics is to be interpreted and processed in

the CAPP system, and additional design and editing may be

done by utilizing a CAD database. This may be done by

placing design data into a common file exchange format.

Formats that are being used by today's CAD software includes

a DXF file format (Data Exchange Format) and IGES (Initial

Graphics Exchange Specification)

44

Operation and sequencing is one component that is

essential to AI based generative systems. Once component

characteristics are input into the system, manipulation and

calculation is necessary to generate routing and operating

information.

With generated engineering drawings and process

information, encoding report generation functions into the

system is essential.

3.3.1 Generative Computer Process Planning Functions

Artificial intelligence based GCPP involves the application

of computers to assist the standard process planning

function. In its most basic form, the system will reduce the

time and effort required to prepare process plans and will

increase the accuracy of each design and plan. With the

advancement of such a system, a major function is to provide

a automated interface to a CAD and CAM system. This will

allow complete integration within the manufacturing system.

Key research functionality areas of computer assisted

process planning includes the development and understanding

of transformation rules that humans may apply to the

planning process, CAPP representation to CAD representation,

CAD representation to CAM representation, and CAM

representation to the development of a functional work-

piece. The complete functionality of a generative based

system, as described by Hsu-Pin Wang and Jian-kang Li,

would include:

45

. Design input and output, such as the generation of

engineering drawings and the ability to input/output

them into another system.

® Material selection.

o Process selection.

O Machine and tool selection.

• Intermediate surface determination.

® Fixture selection.

® Machining parameter selection.

® Cost/time estimation.

® Plan preparation.

• Numerical Code (NC) image generation.

3.3.2 Definition of an Expert, a CAPP Relationship

An expert is a professional who has a masterful knowledge of

a particular field. This "field" of knowledge is usually

acquired through formal and informal learning experiences.

This could include on-the-job experiences, advanced

education, and the ability to solving complex problems. The

expert is the person who can solve the problem quickly and

decisively.

A collection of the experts knowledge may be formulated

into computer software to accomplish similar problem solving

ability. In a sense, the computer system becomes the expert,

a machine to solve a particular problem quickly and

decisively with no errors. A general idea is simply a

46

software copy of the expert, in a particular field, that can

be called upon at any given time.

3.3.3 Manufacturing Expert Systems

A primary goal in manufacturing is to produce high quality

goods and services at the lowest cost. With this in mind,

manufacturing expert systems improve productivity by making

the process planning function easier, thus high quality

goods and services may be provided with the least amount of

effort.

Using an expert system to improve productivity begins

with the design and setup of production lines capable of

maximum output. Utilizing the ability for maximum output can

be determined by the expert system with the given processing

parameters. In existing manufacturing processes, expert

systems can optimize the production process by identifying

critical parameters in the proper order of importance.

Manufacturing expert systems aid manufacturing engineers to

evaluate alternative operations and processes. This helps

improve production planning, process planning, and product

design. Manufacturing expert systems will also assist the

manufacturing manager in understanding and improving lead

time, inventory control, and material handling.

Most of today's manufacturing expert systems are

designed for specialized operations. Operations such as

product design, process planning, and design for

manufacture. Theses types of manufacturing systems are also

47

designed for solving problems with plant productivity and

plant layout.

3.3.3.1 Manufacturing Robotics, Kinematics and
Design

A basic problem of robot kinematics is the movement from a

desired chartering position and orientation to moving back

of the joint angles required in the movement. A solution to

this problem can be acquired with programming knowledge of

straight line motion into an expert system. For a robotic

arm, the forward function which moves the joint angles of

the end-effector is nonlinear and transcendental.

Designing an expert system for solving problems with

robot kinematics could prove extremely useful in the

manufacturing industry. Manufacturing operations such as

spray painting, spot welding, and cutting may be optimized

for accuracy and repeatability as well as tool path

configuration optimization. Such a manufacturing expert

system could be designed to explore the space required for

possible robot configurations and searching for designs

which satisfy input criteria, such as work-space shape and

size.

3.4 Benefits of Expert Generative Computer Processing
Systems

The use of expert systems will increase productivity and

reduce cost. The benefits of using an expert system includes

the increase in productivity, a reduction in cost, the

48

ability to store and update valuable information, and the

improvement in communication and understanding.

O Implementing the use of an expert system will increase

productivity. The major benefit of an expert system is

that valuable information can be generated quickly and

accurately, thus productivity will be increased. The

expert knowledge can be instantly accessed using a

computer, therefore a particular job will be completed

in a short amount of time. Time savings will result in

higher productivity since the expert system permits the

operator to accomplish more work in the same amount of

time.

® Expert systems will reduce cost. Cost reduction will

result since complex problems can be solved in a short

amount of time. The expert system also avoids making

costly mistakes and bad decisions, decisions that can

lead to waste. Expert systems will reduce cost, but at

the same time, will improve the quality of manufacturing

operations.

O Storage and retrieval of valuable information is

accomplished with an expert system. Valuable

manufacturing information can be retrieved and updated

to further develop a design. Media such as floppy disks,

hard disks, and printing devices provide storage and

retrieval ability.

® Expert systems will improve communication and

understanding between departments within a organization.

49

Information is clearly and accurately conveyed through

networks, thus supplying important data to engineers,

managers, and operators.

3.5 Expert Systems, a Survey

The following is a brief survey of expert systems to

illustrate how they are applied to specific problems. They

include:

• DENDRAL, the first expert system developed at Stanford

University, was designed to determine the structure of

unknown chemical compounds on the basis of mass

spectrographic data.

• XCON, eXpert CONfigurer of VAX systems, (originally

called R1) was developed by the Digital Equipment

Corporation (DEC). It was designed to process a

customer order, dealing with VAX computer systems, and

to select the boards, slots, and cables required to

produce a working computer system which meets customer

specifications.

• PROSPECTOR, an expert system that was designed to

predict the locations of ore deposits based on detailed

geological data at a particular site.

O DELTA/CATS-1, An expert system used by General Electric

to diagnose faults in diesel locomotives. The system

prompts the user to supply instrument values and test

conditions, then suggests alternative solutions for

repair.

50

• MYCIN, designed to aid the medical profession in the

diagnosis of blood diseases. The system was developed by

Stanford University researchers using knowledge

extracted from Stanford physicians.

® INTERNIST-I, similar to MYCIN, this generative type

system is used for medical diagnosis for internal

medicine.

O GARI, developed in France, was the first artificial

intelligence CAPP system. GARI utilizes production rules

for its knowledge representation and to generate process

plans from the model of a part. Geometrical and

technological data information is encoded within the

program. The model will describe the part in terms of

entities, such as holes, grooves, notches, and faces.

• TOM - Technostructure of Machining, written in PASCAL,

was developed at the University of Tokyo in Japan.

TOM is a production rule based CAPP system that

translates design data from the COMPAC CAD system using

the IGES (Initial Graphics Exchange Specification).

The software that was developed for this thesis is

similar to the TOM system.

• SIPP - Semi-Intelligent Process Planner, written in

PROLOG, is a artificial intelligence based CAPP system

for the creation of metal parts using chip metal removal

methods. As defined earlier, SIPP uses frames as its

knowledge representation scheme.

• Turbo-CAPP, developed using PROLOG, is a knowledge based

51

CAPP system that is capable of extracting and

interpreting surface features from a CAD database and

will perform intelligent reasoning for process planning.

• CAPE, Computer Aided Parts Estimating system, is a

knowledge based system that generates, evaluates, and

prices auto-part manufacturing plans, and provides

current operation benefits.

 DEPICT, Digitized Expert Pictures, an expert system that

was developed to assist IBM's memory and logic chip

manufacturing facility. DEPICT collects and retrieves

images as well as data to speed analysis and the

identification of semiconductor defects.

e Virtual Geometry Environment - VGE, is a knowledge-based

system that advises users on engineering and

manufacturing applications.

O KLUE, Knowledge Legacy of the Unavailable Expert, is an

expert system tool that provides an integrated system

for development, maintenance, and operation of a

diagnostic expert system in a manufacturing environment.

• TOLTEC, a system equipped with basic learning

capability. TOLTEC will generate output in the form of

operations and their sequences.

All the expert systems illustrated are useful in the

following ways:

O debugging

® design

O diagnosis

52

O instruction

O interpretation

• monitoring

• prediction

O planning

® repair

Each system in the survey does not come equipped with a

complete set of manufacturing procedures and knowledge. Most

of the systems focus on only a small portion of the issues

that are presented in process planning, design, etc.

CHAPTER 4

GROUP TECHNOLOGY FOR AI PROCESS
PLANNING SYSTEMS

Group technology is an important topic since it is a main

ingredient in computer process planning and other

manufacturing activities. With the development of Group

Technology (GT) in 1958 by S.P. Mitrofanov, a Russian

engineer, parts can be classified and grouped into families.

A popular form of production is known as batch

manufacturing. Batch manufacturing requires that part

specifications be grouped together in order for efficient

production to take place. A major approach to maximizing

production in batch manufacturing is called Group

Technology. Group Technology also plays a vital role in

computer assisted process planning for batch manufacturing.

Group technology is a manufacturing concept where

similar parts and components are identified and "grouped"

together to form a family. Group Technology concepts will

take full advantage of part similarities in manufacturing

and design. All part families must posses similar design and

manufacturing characteristics in order for coding and

classification to take place, hence, the processing of each

family member would also be similar.

Parts coding and classification is a major element in

Group Technology. It is concerned with identifying the

53

54

similarities among parts and relating these similarities to

a coding system. The two major types of part families

include:

O Design attributes; such as geometric size and shape, as

well as surface features and chemical composition.

® Manufacturing attributes; The sequence of processing

steps required to make the part is also a topic in

classifying elements into families.

The topics of part families and classification and coding

will be fully explained in the next two sections.

4.1 Classification and Coding

Classification and coding represents the heart of Group

Technology. It represents the identification of the

similarities among parts and the relation of the

similarities to a coding system. Classification and coding

systems do allow for certain differences with design and

manufacturing schemes but is primarily concerned with

producing a coding system. The coding system is designed to

facilitate retrieval of part specifications such as design

and manufacturing operations. Coding, which is a group

technology technique, can be used to describe a part without

in-depth detail. Coding and classification for a components

representation may be broken down into four factors. These

are:

O The total amount of components, such as rotational,

prismatic, deep drawn, etc.

55

O The detail the code should represent.

O The type of code structure, such as hybrid,

hierarchical, or chain.

O The digital representation, such as binary, octal,

decimal, etc.

Coding, according to Chang, Tien-Chien, Wysk, A. Richard and

Hsu-Pin Wang, (7) can be defined as a function of H that

maps components from a population space P into a coded space

C. A certain code can be defined (for component i) as:

Completeness can be defined as:

With a coding system in place, a generative or variant CAPP

system will be able to retrieve the required data for use

and update.

4.1.1 Principles and Structures of Classification and Coding

Classification is a term that means to sort or place parts

into groups that contain similar features. A code can be

used, either in numerical form or letter form, as a means to

identify a particular classification.

There are many classification and coding principles that

are used in today's process planning systems that utilize

Group Technology. Two main principles, according to Hsu-Pin

Wang and Jian-kang Li, includes Similarity and Fuzzy

Classification. Similarity involves grouping "like" parts

together for ease of operation. In this case, a sample that

56

consists of n parts and is composed of p features can be

represented by a vector:

The n parts under consideration can bee seen as n points in

a p-dimensional Euclidean space. The similarity of the two

parts can be measured by the distance d(Xi, Xj) between two

points in the Euclidean space.

In order to improve part formation, principles in Fuzzy

Classification may be used. As an example, suppose that n

parts are to be grouped into C families. The traditional way

to classify the parts would be to set up a binary matrix

such as:

Where Uij = (l, the jth part), (0, otherwise).

In the Fuzzy Classification system Uij is not restricted to

binary numbers only. The Fuzzy Classification matrix can be

illustrated as:

57

Each production flow can be represented by a reference

pattern, Vi. In equation form:

Where,

The distance between part j and reference pattern i is:

and the weighted sum of squares of the distances from part j

to all C reference patterns is:

The total weighted sum of squares of the distances from all

parts to all reference patterns is:

58

A procedure for utilizing fuzzy classification is given

as:

a. Define an initial classification matrix U0 satisfying

equations 7, 8, 9.

b. Compute Vi by minimizing the total distance of the

sum.

c. Compute the new classification matrix U.

In general, Fuzzy Classification systems provide optimal

grouping, resulting in a more precise classification of

parts.

4.1.2 Classification and Coding Systems

Generative computer process planning relies heavily on

classification and coding. Design and manufacturing are two

major topics of classification and coding systems, where

both are concerned with part grouping. Parts classification

falls into three areas. These areas are:

• Classification of part design attributes. Design

attributes such as surface texture, tolerances,

dimensions, material composition, length to diameter

ratio, and internal/external shape all fall into this

category.

O Classification of part manufacturing attributes. Design

attributes such as fixtures required, cutting tools,

production time, surface finish, type of process, batch

size, and operation sequences fall into this category.

® Classification of both design and manufacturing

59

attributes. This type of overlapping classification

system is concerned with the combination of both design

and manufacturing specifications.

Utilization of numerical digits, arranged in sequence, code

a work-part's manufacturing and design attributes. Three

major forms of coding include:

 Hierarchical coding. This form of coding involves the

interpretation of each symbol depending on the value of

the proceeding symbol. Hierarchical coding is also known

as monocoding. One advantage of a hierarchical structure

is that it can represent a large amount of information

with very few code positions. A disadvantage of

hierarchical coding is that it is sometimes difficult to

develop because of all the branches in the hierarchy

that must be defined. For a coding system with N digits

and M attributes for each digit, the number of possible

combination of codes is given as:

 Chain coding. This form of coding relies on each symbol,

in sequence, being fixed. That is, it does not depend on

the proceeding symbol. Chain coding, also called

polycoding, is much easier to construct and use. The

disadvantage of using chain coding is that it cannot

be as detailed as hierarchical coding with the same

number of coding digits. The number of possible codes

60

the system may generate is given as:

0 Hybrid coding. Hybrid coding is a cross between chain

coding and hierarchical coding. An illustration includes

the number of digits of monocodes Nn and chain codes Nc

and the number of combinations in the system is given

as:

Five major coding and classification systems utilized in the

design of a generative computer processing system includes

the Opitz, MultiClass, Vuoso-Praha, KK-3, and DCLASS

classification systems.

One of the first classification and coding schemes was

developed by H. Opitz of the University of Aachen in West

Germany. This system was originally developed for the

classification and coding of mechanical parts.

The Opitz coding system utilizes a total of nine digits.

The digits can be further expanded by adding an additional

four digits. The Opitz system is in the form:

12345 6789 ABCD

The nine digits represent both manufacturing and design

data, the first five, known as "form code" represent the

design specifications of the part. The following four

digits, known as supplementary code, represent the

manufacturing aspects of the part. Secondary code, in the

61

form of an extra four digits, are intended to code the

production operation.

The MultiClass classification and coding system is a

commercial product offered by the Organization for

Industrial Research (OIR). The major benefit of using the

MultiClass system is that it allows for the customization of

the classification and coding scheme.

The MultiClass system can consist up to thirty digits,

which are divided into two areas. The first area is a fixed

system provided by the Organization for Industrial Research.

The second area is reserved for the user defined

classification and coding system, which is useful in

customizing an organizations particular needs.

The Vuoso-Praha classification system utilizes a four

digit system that labels a part by Kind, Class, Group, and

Material. The Vuoso-Praha system is primarily used for rough

part classification so as to identify the type of department

that would produce the part.

The KK-3 classification system is a general purpose

system for machining parts. It was developed by the Japan

Society for the Promotion of Machine Industry (JSPMI).

The KK-3 system, based on a 21 digit decimal system,

provides classification to metal cutting and grinding

components. The major benefit of the KK-3 system is that

more information can be represented, as compared to other

classification and coding systems.

62

The DCLASS classification and coding system is a tree

structured system that was designed to be a decision making

classification system. The DCLASS system will generate codes

for components, materials, processes, machines, and tools.

For components, an eight digit code is used:

Digits 1 - 3 	Basic shape

Digit 4 	 Form feature

Digit 5 	 Size

Digit 6 	 Precision

Digits 7 & 8 	Material

In the DCLASS system, conditions are represented as branches

where a code can be found at the junction of each branch.

Multiple passes of the decision tree allow a complete code

to be found.

4.1.3 Benefits of Classification and Coding

The major benefits of a well designed classification and

coding system for use in a CAPP system is as follows:

O Classification and coding facilitates the formation of

part families and machine cells.

• It permits for quick retrieval of manufacturing

information such as design specifications, engineering

drawings, and process plans.

• Design duplication is reduced since information is kept

in a similar data structure with an individual coding

scheme.

• Reliable work-piece statistics are provided with the

63

encoded information.

O Accurate estimation of machine tool requirements, speeds

and feeds, and logical machine loading is facilitated.

O It permits rationalization of tooling setups, reduction

of setup time, and the reduction of production

throughput time.

O Process planning, production planning, and scheduling

procedures are made easier and more effective.

O Cost estimation and facilities cost accounting

procedures are improved.

e Better machine tool utilization and better use of tools,

fixtures, and labor is provided.

® Most importantly, classification and coding facilitates

numerical control programming.

4.2 Part Families

A part family is a collection of parts which are similar in

geometric size or similar in the processing steps required

for manufacture. The parts within the family may be

different, but share the same characteristics.

The advantages of collecting similar parts into families

are enormous. Machine tools can be arranged so that parts

can be machined in the same family, design specifications

can be grouped together, etc. By classifying parts into

families, higher production will result.

64

Arranging parts into families can prove to be a

difficult and time consuming effort. There are three general

methods that aid this process. These methods include:

O A visual inspection of the part. This involves

classifying parts by visually inspecting the work-part

for specific geometries and surface features. Similar

parts will be placed in the same part family.

O Examination of design and production data. This method

involves the examination of individual design and

manufacturing attributes of each individual part.

Sampling procedures may be utilized to establish a

particular part family.

O Production flow analysis or PFA. This method relies on

the information contained on route sheets rather than

engineering drawings/design specifications. Production

flow analysis is used to analyze the operation sequence

and machine routing for the parts produced. Obtaining

this data will result in the specifications required for

a part family.

4.3 Production Flow Analysis

A technique for identifying part families is known as

production flow analysis. Although the data used in the

analysis is obtained from production route sheets, PEA will

analyze the operations sequence, resulting in grouping for

parts with similar routings. An advantage of using PFA is

that manufacturing information is used instead of design

65

data. This results in similar process routing for parts with

different geometries.

The PFA procedure, as stated by Mikell P. Groover, is

organized in the following steps:

• The first step in production flow analysis is to collect

and study all relevant data. Data collected will be used

to determine the population. Using route sheets, further

data such as part numbers and operation sequences, will

be needed.

® The second step is to utilize the information from the

process sheets to arrange all the work-parts into groups

or families. This is done by finding the similarities of

the parts process routings.

O The third step is to present the data collected

graphically in a PFA chart. The PFA chart is simply a

plot of the process codes.

e The final step in production flow analysis is to place

all similar data, obtained from the PFA chart, into

groups.

4.4 Design Retrieval and Group Technology

Design retrieval allows engineers to locate data about

existing designs. Using group technology concepts, designs

and design data can be updated or stored within a CAPP

system. A design retrieval system plays a vital role in

process planning and group technology.

66

The four components of a design retrieval system

include:

O A classification and coding system.

e A base of existing designs and equations.

• A database linking existing designs to the

classification and coding system.

. A user interface to allow the user to locate similar

designs.

A database management system (DBMS) is a effective tool for

implementing design retrieval within a CAPP system. A

classification and coding scheme will identify the key

design attributes that is required for searching a database.

The database will relate the attributes with the design data

such as solid models, engineering analysis, and process

plans.

4.4.1 Benefits of Design Retrieval

If a design is reused and updated, it is beneficial to

optimize the design itself along with the process plan for

manufacturing it. An organization with an effective design

retrieval system can produce a product with less design

effort by retrieving a design and modifying it instead of

creating a new design. This provides cost savings. Other

benefits of this system include:

O Design retrieval provides corporate management with

greater strategic flexibility.

♦ A product can be designed with less effort at a lower

cost.

O Design retrieval will dramatically reduce the product

development cycle.

• Provides a more tailored product by modifying the

original design.

® Design retrieval allows an organization to provide a

broader range of product options.

67

CHAPTER 5

CAD/CAM AND GENERATIVE COMPUTER
PROCESS PLANNING

Computer aided design (CAD) and computer aided manufacturing

(CAM) are two separate entities that can be combined to form

CAD/CAM systems. Integrating a CAD/CAM system with an expert

system, such as artificial intelligence based generative

computer process planning, can be extremely useful, in that,

the best of both elements can work together to solve a

common problem.

Computer aided design primarily is concerned with the

analysis and optimization of a particular design. Drafting

and other functions, such as finite element analysis

(FEA) and animation, are usually utilized with this system.

On the other hand, Computer aided manufacturing focuses

on design for manufacture. CAM is primarily used for

production scheduling, inventory control, computer numerical

code generation, and other manufacturing concerns.

The major benefit of combining CAD with CAM is that a

particular design can be developed and the manufacturing

process can be controlled from start to finish. A CAD/CAM

system allows for the complete production of a product, from

design to manufacture using one or more computer systems,

resulting in increased productivity and planning

effectiveness.

68

69

5.1 CAD/CAM Evolution

Initially, CAD systems were primarily drafting stations that

produced engineering drawings and other documents. These

systems were linked to computer controlled plotters to

produce a hard copy of the drawing. The early CAD systems

were later linked to graphic displays, such as a CRT, where

geometric modeling could be achieved. Two and three

dimensional objects could be manipulated and analyzed with

complex graphical techniques.

Today, these same systems are based upon interactive

graphics, that not only provide engineering drawings, but

provide a wide array of tools. These tools usually consist

of finite element analysis, three dimensional modeling,

real-time simulation, and various kinematic techniques.

Kinematic analysis combined with a CAD system allows the

motion of mechanisms to be studied in "real-time". Real time

referring to graphical simulation at normal time conditions.

The simulation could also be sped up to analyze the design

at a future period in time.

Along with the development of CAD systems, CAM systems

were also being developed to meet manufacturing needs. These

systems were primarily designed to generate computer

numerical control (CNC) code. Manual CNC programming is

proven to a laborious and time consuming effort that

sometimes results in costly errors. The early CAM systems

also had limited production planning features.

70

The integration of CAD/CAM systems with A CAPP system

allows for the geometric modeling and analysis of a work-

piece with the preparation of CNC code and process planning

for manufacturing. The major benefit of CAD/CAM systems is

that the system allows the engineer to go from an initial

concept to a finished work-piece with one computer system.

Integrating CAD/CAM with AI based CAPP systems contain three

basic concepts: These are:

e Design and manufacturing data can be transferred

automatically between different modules and user groups

within one system. Shorter production time is obtained

resulting in higher productivity and fewer costly

mistakes.

O There is a standard entry to any part of the system. The

system is controlled by an executive program in order

for data flow between modules to be properly controlled.

The benefit here is multiple design stations may be

placed throughout the organization, such as a having

workstations in a design office and on the shop floor.

O All modules are designed with a common interface. This

includes software design such as pull down menus and a

user-friendly environment.

5.2 CAD Fundamentals

Computer aided design involves design, development, and

analysis of a product. CAD can be categorized as a rapid

prototyping device that allows storage and retrieval of a

71

particular design. It is a system designed for users who are

skilled with computer hardware and software, in systems

analysis and methodology.

The functions of CAD may be grouped together into four

distinct categories. These include:

O Geometric modeling and design.

• Engineering analysis.

® Kinematics.

O Drafting.

Geometric modeling and design involves the use of three

dimensional models, usually a wire mesh, to analyze a

particular design. Although three-dimensional wire frames

may be adequate to represent the solid nature of an object,

it sometimes requires further development. A solution,

usually built in the CAD system or provided by "add-on"

modules, is a geometric modeling and shading module that

contains elementary building blocks of elementary solid

shapes. Theses shapes are better known as primitives.

AutoCAD's Advanced Modeling Extension (AME) module provides

this function. CAD geometric modeling can be closely tied to

numerical control code generation of a CAM system.

Sculptured surfaces on three-dimensional CAD models can be

linked with CAM capabilities. An example would include

importing an AutoCAD drawing file into a SmartCAM system.

The SmartCAM system will then be able to generate NC code

with the imported drawing file.

72

Engineering analysis and kinematics is another area of

CAD. For example, today's CAD systems can move into

analysis, calculation of weight, volume, surface area,

moment of inertia, and center of gravity. This is possible

on any type of geometric model. The CAD system is also

capable of generating the finite element model of the wire

frame representation.

Drafting and forms of animation are very important

elements of CAD systems. Computerized drafting allows for

the documentation of a particular design. It allows for easy

update and retrieval of files and reduces drawing production

time. Following geometric modeling and drafting, three-

dimensional animation is possible. This type of analysis

allows the engineer to be sure that the moving element does

not impact on other parts of the structure.

The CAD design station configuration usually is broken

up into parts, (See figure 7 on page 73). They consist of a

central processing unit (CPU), a graphics display unit

(CRT), input devices such as a keyboard, digitizer, or

mouse, general output devices such as disk drives, and hard

copy output devices such as printers and plotters.

Today's CAD systems can be categorized as one of four

types of interactive graphics systems. These include:

® Local I/O systems. These systems provide the

input and output devices locally.

O Intelligent terminal systems. This type of system

provides the controllers for the input and output

73

Figure 7. A Typical CAD System

74

themselves. They contain I/O processing facilities for

providing I/O timing. They also contain a special

microprocessor for executing device driver routines and

small portions of application software.

0 Intelligent satellite systems. Intelligent satellite

systems provide the local holding of all the systems

routines and all of the application program. This

provides for quick processing.

 Local stand-alone systems. The local-stand alone system

is primarily used for an intelligent satellite. This

provides local processing power, storage, and hard copy

capability.

5.3 CAD and Finite Element Analysis

Finite element techniques are widely utilized for the

analysis of static, dynamic, and thermal stressing of

structures. Using a CAD system to analyze finite elements of

a structure has considerable advantages over manual methods.

The advantages include the graphical representation of

element connections and position, and the ability to change

a wire mesh instantly. This is beneficial because the best

mesh arrangement can be determined to solve a particular

design problem.

75

5.4 The CAD/CAM Database

CAD/CAM systems are primarily designed to control various

manufacturing activities, such as production planning,

analysis and synthesis, and product design. Utilizing such

features requires an enormous database filled with expert

knowledge in manufacturing and design. The database

requirements for these types of abilities include:

O Various forms of engineering data, such as engineering

drawings, and machine data. Machine data such as

fixtures, tooling, and jigs, must be managed by the

CAD/CAM system. CAD/CAM systems must also manage design

analysis data, process organization, and bills of

materials.

• The CAD/CAM database must be extremely large. This is

necessary since engineering drawings, shape

descriptions, and design data require large amounts of

memory.

O The CAD/CAM operator must not have to keep required

syntax that may be needed at a later time. The required

information must be stored in the database to provide

easy retrieval and update.

O Tentative and iterative design processes must be

supported.

O Until an actual design is carried out, some parts of

data structures in the CAD/CAM application fields may be

unable to be defined.

O Management of an integrated CAD/CAM database by a

76

distributed database management mechanism must be taken

into account.

0 A dynamic data structure control mechanism must be taken

into consideration. This provides the capability for

engineers to define the data structure at any time.

5.5 CAD/CAM with CAPP Improving Productivity

Using a CAD/CAM with a AI based CAPP system provides

numerous benefits. Combining each system will improve

productivity by providing automatic design and analysis,

quick data retrieval, and various other functions. The

complete design and manufacturing planning process is

automated from start to finish. This allows for more

accurate and efficient designs resulting in cost savings.

5.5.1 Engineering Drawing

Engineering drawings with recurring features and documents,

that are frequently updated, are efficiently completed with

a CAD system. Initial designs may be imported from a CAPP

system using the Data Exchange Format. Retrieval is

automatic, so there is no wait to locate a set of documents.

Updating is easy since a portion of the document can be

edited. Once the change is made, the document can be saved

in the system.

77

5.5.2 Other Forms of Documentation

Bills of materials and technical illustrations are quickly

produced from data that is entered into the system and from

data that is located in the system's database. This provides

a quick and effective way to organize data into a single

document.

5.5.3 Engineering Design and Calculation

Calculations of arc, volume, weight, deformation, thermal

flux, and so on are easily performed by the computer. CAD

systems can either perform these calculations separately or

together with design specifications. With having the CAD

system perform engineering calculations, design time is

saved, therefore more work can be performed in the same

amount of time.

5.5.4 Engineering Cost Estimation

The ability of CAD systems to store and retrieve graphical

and text data can be put to good use by engineering

estimators. The CAD system can be utilized in this way by

accessing a particular data file and extracting all the

data.

5.5.5 Production Order

Valuable production time can be optimized by combining order

entry with a CAD system. Major savings may result in this

78

area where an order is tied to a specific engineering

drawing.

5.5.6 Manufacturing

CAD/CAM software can generate numerical control (NC) code

for entry into a CNC controller unit. Manual NC programming

is proved to be a laborious and time consuming task and is

also prone to costly mistakes. NC code generation with a CAM

system greatly reduces the effort necessary to get a design

into production.

5.5.7 Production Scheduling

Utilizing CAD/CAM's tools will improve production scheduling

and shop load because of standardization of operation

sequences, tooling, and machine tool selection.

5.5.8 Labor

CAD/CAM will provide a reduction in labor cost. The cost

reduction results from automatic processing of manufacturing

data, process plan requirements, and other forms of paper

work.

5.5.9 Response to Changing Market Conditions

CAD/CAM systems provide the power for quick response to

changing market conditions and demands because of product

changes and improvements in the market. This can be made

without costly down-time. A particular engineering design

79

can be called up automatically, where changes can be made

easily to satisfy the future market requirements.

5.6 Reasons for Integrating CAD/CAM with AI Based Generative
Computer Process Planning

There are many reasons for integrating CAD/CAM with Al based

generative computer process planning. The primary reason is

to increase productivity by automating design. Other reasons

include:

O Introduction to new technology for improvement, which

should be a goal to any organization.

O To accommodate the changing market requirements in order

to stay competitive.

O Completing a design in a more efficient way.

O Having the desire to integrate the design function with

the process planning function.

O Utilizing the speed of response with a CAD/CAM system.

In order for a company to be competitive, it must utilize

its resources to the fullest extent. Design, which is a

highly iterative process, is reviewed, modified, and

reviewed again at every stage of the design process. This

process becomes laborious and time consuming. Engineers and

designers should expect to have expert systems integrated

with CAD/CAM systems. Data exchange files between a CAPP

system and a CAD/CAM system is one alternative. This will

allow for much needed information, from the CAPP system, to

be imported into the CAD/CAM system, resulting in not having

80

to manually enter geometry or model attribute data into the

system.

CHAPTER 6

SOFTWARE DESIGNED FOR THESIS

The software designed for this thesis was written and

compiled using a Borland Turbo C++ compiler. The main

objective was to design a generative computer process

planning system (expert system), utilizing topics in

artificial intelligence, that would generate graphical

straight line developments from three-dimensional geometric

shapes. In turn, the straight line developments could be

used for automatic packaging design and process planning.

The software is also designed to interface with various CAD

systems, to print graphics, and to print process forms, (See

source code in appendix A).

To generate the ability to interface with outside CAD

software, the thesis software was designed to output a DXF

(Data Exchange Format) file. This allows for all point

coordinates of the straight line development to be put into

a file where it can be regenerated and further processed

using a CAD database. Standard DXF information provides the

graphics setup where generated point coordinates will give

the locations of the polylines.

Graphics printing ability is very important to convey

the engineering drawing into a hard copy format. The thesis

software was designed to perform a raster scan of the screen

coordinates (Video Graphics Array, 640 x 480 pixels). Data

81

82

is sent from the raster scan to a printer, preferably a

laserjet, where it will be printed in a portrait, landscape,

or greyscale format. All data and entered information will

be printed directly from the screen in order to provide a

process plan.

Printing formal process plans was considered and encoded

into the thesis software. As process data is entered by the

operator, it is stored into memory where it can be utilized

for processing. By calling this data and combining it with a

process plan, a simple printing function was programmed to

output the finished process plan.

6.1 Operation of the Thesis Software

The thesis software can be activated by entering:

DRIVE: NAME OF FILE.extension

example: a: AIGCPP.EXE

NOTE: The graphics developed for this thesis software was

programmed in a VGA format, therefore it will only

operate using a VGA equipped computer. Printing

functions are only available on laserjet printers

using a 100, 150, and 300 DPI mode.

When the introduction screen appears, press any key to

activate the main menu.

The main menu consists of three separate windows. Window

#1 provides the geometry that is available. It consists of

three-dimensional shapes (cylinder, square, wedge) which

represent a folded straight line development. Window #2 is

83

where the user may interface with the system. A prompt for

selecting a particular geometry is situated at the top of

the window. The prompt may activate three modes. These are:

O Square geometry mode. This mode sets all data to be

processed using only the square geometry code, (See

figure 8 on page 84).

• Cylindrical geometry mode. This mode sets all data to be

processed using only the cylindrical geometry code, (See

appendix B).

O Triangular geometry mode. This mode sets all data to be

processed using only the triangular geometry code, (See

appendix B).

All entered dimensions and process data will be processed

according to the mode selected. Window #3 provides menu

options enabling the user to "jump" around in the program.

Window #3 consists of sixteen options. These options are:

Option 1: Provides the user to exit the program at any

point. Once the option is activated, the

graphics mode is terminated and the active

drive command prompt will appear

Option 2: A function that clears the menu screen when new

dimensions are needed. This is an important

function since data input mistakes may occur,

therefore it will provide a way of eliminating

all input data.

Option 3: Provides on-line help to guide the user in

software operation.

84

Figure 8. Square Geometry Mode Screen

85

Option 4: A function that will print the graphics screen

using a raster scan. Option 4 provides a hard

copy of the raw data and straight line

developments which can be used as a raw process

plan.

Option 5: Provides a full screen straight line

development of the selected geometry. (See

figure 9 on page 86 and appendix B)

Option 6: A function that will output a DXF file, to a

disk destination, of the square geometry.

Option 7: A function that will output a DXF file, to a

disk destination, of the cylindrical geometry.

Option 8: A function that will output a DXF file, to a

disk destination, of the triangular geometry.

(See appendix C for sample DXF output and

appendix B for AutoCAD rendering).

Option 9: Provides a new menu screen where process

planning information can be entered. This

function also provides a 1/4 scale

representation of the straight line development

to accompany the process information, (See

figure 10 on page 87 and appendix B).

Option 10: A function to provide a second process plan

from the selected geometry.

Option 11: A function to provide a third process plan from

the selected geometry.

Option 12: A function to provide a fourth process plan

86

Figure 9 Full Screen -Generated Square Straight
Line Development

87

Figure 10. Option 9 -Generated Square Straight
Line Development with Form

88

from the selected geometry.

Option 13: Provides a formal process plan of the straight

line development point coordinates.

Option 14: Provides a formal process plan from data

entered in option 9, (See code on page

89).

Option 15: Provides a formal process plan from data

entered in option 10.

Option 16: Provides a formal process plan from data

entered in option 11.

The help menu can also be activated in any module, (See

appendix B).

ABC INC.
NEWARK NJ 07737

PROCESS FORM 1

THE GEOMETRY REQUIRED IS: A

THE LENGTH OF X1 IS: 1.000000 INCHES

THE LENGTH OF X2 IS 	1.000000 INCHES

THE LENGTH OF X3 IS 	1.000000 INCHES

STRAIGHT LINE DEVELOPMENT POINT COORDINATES

POINT 	 X COORD 	 Y COORD

1 	 2.500000 	 0.000000
2 	 2.500000 	 0.500000
3 	 2.500000 	 1.500000
4 	 3.000000 	 1.500000
5 	 3.000000 	 2.500000
6 	 3.500000 	 2.500000
7 	 4.000000 	 2.500000
8 	 4.000000 	 3.500000
9 	 3.500000 	 3.500000
10 	 3.000000 	 3.500000
11 	 3.000000 	 4.500000
12 	 2.500000 	 4.500000
13 	 1.500000 	 4.500000
14 	 1.000000 	 4.500000
15 	 1.000000 	 3.500000
16 	 0.500000 	 3.500000
17 	 0.000000 	 3.500000
18 	 0.000000 	 2.500000
19 	 0.500000 	 2.500000
20 	 1.000000 	 2.500000
21 	 1.000000 	 1.500000
22 	 1.500000 	 1.500000
23 	 1.500000 	 0.500000
24 	 1.500000 	 0.000000
25 	 2.500000 	 0.000000
26 	 2.500000 	 0.500000
27 	 2.500000 	 1.500000

89

Generated Plan of Option "A" Point Coordinates

CHAPTER 7

LINKING THESIS SOFTWARE TO OTHER
MANUFACTURING FUNCTIONS

Linking the thesis software and CAD software, such as

AutoCAD revision 12, to other manufacturing activities will

provide complete flexibility. From start to finish, the

production process can be completely automated, (See figure

11 on page 91).

The sequence of events include:

O Thesis software operation. Enter required values to

generate process plans and engineering drawings. Create

a DXF file to import into AutoCAD 12.

® Utilizing a CAD system (AutoCAD 12). Importing thesis

generated DXF files and Utilizing AutoCAD's AME module

to create .STL files. .SHP files will also be created

using a SmartCAM "add-on" package. These files will be

imported into a SmartCAM system. Another CAM package

that has the ability to directly accept DXF code is

MasterCAM.

• Stereo-Lithography Apparatus. Using the generated .STL

file from AutoCAD to generate a prototype of the design.

This is completed by importing the .STL file into the

SLA controller. A prototype of the design can be

created.

O CAM system. Using the generated .SHP file from the

90

91

Figure 11. Linking Thesis Software to other
Manufacturing Functions

92

AutoCAD add-on module to automatically generate

numerical control code. This is completed by importing

the .SHP file into the SmartCAM system. Also, this is

performed by directly importing the DXF file into a

MasterCAM system.

0 Machine operation. Using the generated NC code and

importing it into a CNC controller where the machine

will create the actual part. A completed design will

result.

Coordinate Measuring Machine (CMM). Checking the parts

tolerances to determine if the part is acceptable and

the process was successful.

The complete process begins with importing DXF files, from

the thesis software, into a CAD system to utilize its

database. This involves entering the required data into the

thesis software and utilizing the DXF options in the options

menu.

7.1 Importing DXF Files into AutoCAD 12

The purpose of importing DXF (Data Exchange Format) files

generated by the thesis software is to further develop the

design and to utilize AutoCAD's database and AME (Advanced

Modeling Extension) module. Once imported into AutoCAD,

straight-line developments may be modified and converted

into .STL (Stereo-Lithography extension) files. Another

important aspect of importing DXF files into AutoCAD is that

.SHP (Shape extension) can be generated with a SmartCAM add-

93

on module. .SHP files can then be imported into a SmartCAM

system where NC code will be generated.

DXF files may be created using the thesis software. This

format allows for a universal code to be understood from one

CAD package to another. Another file format that is

universal is ICES (Initial Graphics Exchange Specification).

By specifying the particular design option, (Options 6, 7,

or 8 in thesis software) a DXF file will be created to a

floppy disk or hard drive. In AutoCAD 12, the DXF FILE-IN

option is under the FILE pull-down menu. To import the file,

simply choose "DXF-IN". At the command prompt, enter the

location and name of the file. AutoCAD will then regenerate

the design that was generated with the thesis software.

7.2 Stereo-Lithography

The SLA, or Stereo-Lithography Apparatus, is a rapid

prototyping device which uses a polymer resin to create part

geometries. Other methods that use polycarbonate, nylon, and

casting wax are available through Selective Laser Sintering

(SLS). The SLA at NJIT is a 3-D systems model 250 that has a

volumetric capacity of a nine inch cube. On the average, the

time that it takes to build a model is four to five hours

(depending on the size of the model). An additional one to

three hours is required to cure the completed model in an

ultraviolet oven. The SLA is the most popular form of rapid

prototyping.

94

7.2.1 Generating Stereo-Lithography (.STL) Files
from Imported Thesis MCP Files

The file format that the SLA controller will accept must

have the .STL file extension. This file format is a common

output of many CAD packages such as PRO-ENGINEER and IDEAS,

but is not so common with AutoCAD 12. The .STL file will

translate the geometry that was developed by a solid modeler

into a mosaic-like surface file. The file is usually

described by triangles (or facets). The facet density must

be high enough to represent the geometric model accurately.

Although not widely used to create .STL files, AutoCAD

revision 12 does support this option through its AME

(Advanced Modeling Extension) module. A set sequence of

steps is required for .STL generation through AutoCAD 12.

The thesis software DXF files may be converted into .STL

files using the AutoCAD database with the AME module. To

import the generated DXF file into AutoCAD, choose FILES,

then IMPORT DXF IN. Once the straight line development is

regenerated, it is ready to be updated with AutoCAD's AME

module. When loaded into the SLA controller, the .STL files

are converted into slice files using software that is pre-

loaded into the system. The software will slice the faceted

geometric model information into Z-layers.

AutoCAD's AME module contains six primitives (a

primitive is the basic building block for geometric shapes)

to work with as a building block. The primitives given are a

cube, wedge, cone, cylinder, sphere, and torus. These basic

95

shapes can be utilized in order be joined and manipulated,

in one of three ways, to produce secondary shapes.

Manipulations include:

O Unions. This joins two primitives so they act as one

object.

• Subtractions. Utilizing one object to cut a shape into

another.

O Intersections. Uses only the intersecting region of two

different objects to define a solid

shape.

The three methods of joining and manipulating solids are

better known as Boolean (Boolean comes from the name George

Boole, a nineteenth century mathematician) operations.

Joined primitives are called composite solids. Composite

solids consist of two or more objects that were joined to

act as one solid.

Through AutoCAD's AME module, primitives to primitives

can be joined, composite solids to primitives, and composite

solids to composite solids. When a particular solid is

created, such as creating a solid from the imported straight

line development DXF file, it must be a wire frame to

generate the .STL file. AutoCAD 12 will not be able to

create the .STL file if it is solid. The following

algorithms are required for .STL generation through

AutoCAD's AME module:

Step 1. Load the AME module by selecting:

/MODEL

96

/SETUP

/DOUBLE PREC

/AUTOLOAD REGION/<AME>

Step 2. Create a wire frame from the imported straight

line development DXF file. This is done by:

/MODEL

/PRIMITIVES

/SELECT A SHAPE

/DIMENSIONS

Step 3. To create the .STL file, at the command prompt,

enter:

/SOLSTLOUT.

This will prompt AutoCAD to acquire a single

solid for .STL output. Two options are given when

SOLSTLOUT is activated. The first option is for

text output. Text output provides a file that

contains a sequence of commands in ASCII format.

The second option is for binary output. The major

advantage of binary output over text output is

that it will reduce the amount of disk space

required. This is useful for writing very large

.STL files to disk. When all parameters are

entered successfully, AutoCAD will prompt a .STL

directory. To output the .STL file, enter the

filename and choose OK.

The .STL file is satisfactory when all triangles satisfy the

vertex to vertex rule with no gaps. The shells of the part

97

should be consistently oriented, should have appropriate

volumes, and should be complete. These elements are the

basic requirements for successful .STL file generation.

7.3 SLA Processes

When the generated .STL files are loaded into the SLA

computer system, pre-loaded software will convert the .STL

file into a slice file. The slice file primarily consists of

triangular model information that contains Z-axis

coordinates and layers (the slices are actually

perpendicular to the Z-axis, which is the direction the

model will be built).

The SLA utilizes a laser beam to solidify a polymer

resin at each layer corresponding to the location of the

actual material of the model. At the elevator platform

begins the initial layer. After the first layer is built, a

second layer is created when the SLA elevator is lowered

into the resin. This process will continue until the model

is completely built.

7.4 From Thesis Software to CAM

By utilizing the DXF option in the thesis software, A DXF

file is created to disk where it can be loaded into AutoCAD

12 for further processing and SmartCAM .SHP file generation

or it can be directly loaded into MasterCAM. The procedure

used to demonstrate the flexibility of the thesis software

was completed on MasterCAM. In MasterCAM, to import a DXF

98

file from the menu options, the following algorithm is as

follows:

/ MAIN MENU

/ FILE

/ CONVERT

/ DXF

/ READ FILE

Once loaded into MasterCAM and the developed design is

displayed on the screen, NC code can be generated. The

procedure for this is:

/TOOLPATHS (Select the toolpath)

/CONTOUR (Contour milling operation)

/SINGLE 	(Select single for each line to be
milled)

/DONE 	(Select DONE after line is selected)

/CONTOUR (Set the construction plane)

/WRITE 	(NCI file creation)

/YES 	(Accept the current toolpath)

/END PROGRAM (Close current operation)

/RUN POST PROCESSOR?..YES

/SPECIFY FILE NAME AND DESTINATION

By utilizing the following algorithm, MasterCAM will

automatically generate the Numerical Control code to be

input into a controller unit, (See code on page 99).

With the SmartCAM system, modeling such as dynamic

graphics of tool and machine motion, is possible. By using a

sequential tool path database, SmartCAM can cut the model,

(PROGRAM NAME - SLD1C)
(DATE, Day-Month-Year - 14-11-94 TIME, Hr:Min - 12:43)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	20-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	20-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)
(TOOL - 00 	DIA. OFF. - 01 	LENGTH - 01 	DIA. - .1250 	2D-CONTOUR)

N100 G00 G40 G49 G80 G90
/ N102 G91 G28 ZO.
/ N104 G28 XO. Y0.
/ N106 G92 X0. YO. 20.
N108 TO MO6
N110 GOO G90 X1. Y4.5 S0000 M5
N112 G43 H1 ZO.
N114 G1 X3.
N116 GO X1. Y3.5
N118 G1 Y4.5
N120 GO X3. Y3.5
N122 G1 Y4.5
N124 GO XO. Y2.5
N126 G1 Y3.5
N128 GO X1. Y1.5
N130 G1 Y2.5
N132 GO X3. Y1.5
N134 G1 Y2.5
N136 GO X4.
N138 G1 Y3.5
N140 GO X1.5 YO.
N142 G1 X2.5
N144 GO X1.5 Y1.5
N146 G1 YO.
N148 GO X2.5 Y1.5
N150 G1 YO.
N152 GO X1. Y1.5
N154 G1 X1.5
N156 GO X3.
N158 G1 X2.5
N160 GO XO. Y2.5
N162 G1 X1.
N164 GO X4.
N166 G1 X3.
N168 GO X4. Y3.5
N170 G1 X3.
N172 GO XO.
N174 G1 X1.
N176 MO5
N178 G91 G28 ZO.
/ N180 G28 XO. YO.
N182 G90
N184 M30

99

Generated NC Code from Imported DXF File

100

in "real-time", on the computer screen. It is dynamic

because if any change is made to the model, it is

immediately updated in the database. This eliminates a

separation of part geometry and tool path.

In generating NC code with SmartCAM, the first step is

to have the completed geometric model loaded into the

system. From this point, enter the process menu where the

MAIN PROCESS menu is available. Two toolboxes exist, these

are ROUGH and CODE. With the CODE option selected, a CODE

dialogue box will appear. The code operations will work on

all unmasked tool property elements in the sequence that was

specified. The SmartCAM system will then generate the NC

code for the model and will estimate the cycle time.

Following the code generation, a report function will

display possible errors.

7.5 Machining with Thesis Software Designs

Once the NC code is generated on the CAM system, CNC

machining can take place. The type of machining required may

be specified by the designer or by the CAPP system. CNC

machining comes in many forms. These include:

• Drill presses.

• Milling machines (vertical spindle and horizontal

spindle).

• Turning machines (horizontal axis and vertical axis).

• Horizontal and vertical boring mills.

• Profiling and contouring mills.

101

O Surface grinders and cylindrical grinders.

O Unconventional machining methods (Waterjet, laser,

etc.).

Each machining method listed can be applied to design

criteria that a CAPP system will provide.

7.6 Inspecting Thesis Software Designs with a CMM

A coordinate measuring machine (CMM) is a device, used in

manufacturing, that measures the surfaces and features of a

work-part. The CMM consists of a contact probe that is

positioned in three-dimensional space. The contact probe is

usually connected to a moving structure where it will

"touch" the work-part to provide measurements. The CMM can

be controlled manually, manual computer-assisted, motorized

computer assisted, or by direct computer control.

Utilizing the CMM will provide a final step in the

manufacture of the developed design provided by the AI based

CAPP system.

CHAPTER 8

CONCLUSION

With the development of Generative Computer Process

Planning, improvement in productivity, design, and planning

is a reality. It provides the ability to go from a

preliminary design to actual manufacture and inspection. The

system will provide complete flexibility while decreasing

costs and production time. This is due to CAPP's ability to

use pre-programmed engineering knowledge, utilizing

artificial intelligence, to automatically generate accurate

and effective process plans from the preliminary data that

is provided. The ability to interface with outside software

packages, such as AutoCAD, MasterCAM, or SmartCAM, is very

desirable since various databases can be utilized to provide

optimal design.

As computer hardware continues to develop and become

more powerful, along with the reduction of hardware costs,

the utilization of CAPP systems will become the preferred

alternative to manual process planning. With recent

developments in artificial intelligence, generative computer

process planning will be used to aid various process

planning functions involving engineering design and

manufacturing processes.

102

APPENDIX A

AICAPP.CPP SOURCE CODE

/* THIS PROGRAM WAS AUTHORED BY WILLIAM TERESHKOVICH DURING
THE FALL 1994 SEMESTER AT THE NEW JERSEY INSTITUE OF
TECHNOLOGY. THIS PROGRAM COMBINES THE USE OF ARTIFICIAL
INTELLIGENCE (AI) WITH A GENERATIVE CAPP SYSTEM TO
PROCESS THREE DIMENSIONAL GEOMETRIC SHAPES INTO STRAIGHT
LINE DEVELOPMENTS. THE PRIMARY FOCUS IS DEVELOP STRAIGHT
LINE GEOMETRY THAT CAN INTERFACE WITH CAD SYSTEMS,
PROVIDE GRAPHICAL REPRESENTATIONS, AND PRODUCE
INTELLIGENT PROCESS PLANNING. */

/* 	 */

#include <stdio.h>
#include <graphics.h>
#include <conio.h>
#include <stdlib.h>
#include <math.h>
#include <CTYPE.H>
#include <string.h>

/* 	 */

void main(void); 	 /* DEFINE GLOBAL VARIABLES */
void initializegr(void); 	/* graphics function */
void introduction(void); 	/* introduction function */
void PromptLine(void); 	/* laser printer function */
void dxfmaker(void); 	 /* autocad dxf function */
void dxfparameter1(void); 	/* autocad dxf function */
void dxfparameter2(void); 	/* autocad dxf function */
void dxfparameter3(void); 	/* autocad dxf function */
void menu1(void); 	 /* general menu function */
void menu2(void); 	 /* interface menu */
void Print_Pause(int); 	/* laserprinter function */
void straightsquare(void); 	/* straight-square function */
void straightcylinder(void); /* straight-cylinder function*/
void straighttriangle(void); /* straight-triangle function*/
void drawsqfull(void); 	/* draw full screen square */

103

104

void exit(void); 	 /* end graphics function */
void drawtrifull(void); 	/* draw full screen tri-shape*/
void drawcylfull(void); 	/* draw full screen cylinder */
void options(void); 	 /* option menu function */
void optionsgr(void); 	/* options graphics function */
void helpmenu(void); 	 /* help function */
void formlprint(void); 	/* form 1 print function */
void form2A(void); 	 /* form2A graphics function */

/* global variables */

int backgrcol, menuoptions, GraphDriver, GraphMode, cx[50],
cy[50];

float x[50], y[50];
char geometry;
float Xl, X2, X3;

#define BEEP printf("\a \n")

/* 	 */

void main(void) 	/* main controller program */
{

initializegr(); /* graphics compatability */
introduction(); /* begin greetings screen */

/* terminiate intro function */

/* 	 */

void initializegr(void) /* inititilize program graphics
for use with BGI files */

/* detect graphics and graphics driver automatically */

int gdriver = DETECT, graphicsl, loadgr;
int backgrcol;

/* begin graphics capability, define all locals */

initgraph(&gdriver, &graphicsl, "");
loadgr = graphresult();
if (loadgr != grOk) 	/* unsucessful graphics */

printf("GRAPHICS INCOMPATABILITY: %s\n",
grapherrormsg(loadgr));

printf("PRESS A KEY TO STOP:");

105

getch();
exit(1);
backgrcol = 0;
setbkcolor(backgrcol);

/* stop and write error message */

setcolor(getmaxcolor());

/* 	 */

void introduction(void) /* begin intro graphics screen */

backgrcol = 8; 	 /* set background */
setbkcolor(backgrcol);
settextstyle(1, 0, 2); 	/* intro screen text */
setcolor(58);
outtextxy(185, 75, "GENERATIVE COMPUTER");
outtextxy(205, 95, 	"PROCESS PLANNING");
settextstyle(0, 0, 1);
setcolor(63);
outtextxy(140, 300, "Utilizing Artificial Intelligence

To Generate");
outtextxy(140, 320, "Straight Line Developments,

Process Plans, ");
outtextxy(140, 340, "And AutoCAD Interfacing");
setcolor(58);
outtextxy(220, 420, "--HIT A KEY TO START--");

setfillstyle(1, 4);
bar(0, 20, 640, 20);
bar(0, 450, 640, 450);

getch(); 	 /* wait for keystroke */
cleardevice();
menul(); 	 /* call menu1 */

	

} 	 /* end intro screen */

	

/* 	 */

void menul(void) 	 /* general menu function */

optionsgr(); 	 /* call graphics function */

backgrcol = 8;
/* background selection */

setbkcolor(backgrcol);
setfillstyle(0, 63);

106

setcolor(63);
setlinestyle(0, 0, 2);
bar3d(30, 70, 105, 140, 17, 1); 	/* 3-D box */
setlinestyle(3, 3, 1);
line(46.0208, 57.9792, 46.0208, 127.9792);
line(30, 140, 46.0208, 127.9792);
line(46.0208, 127.9792, 117.0208, 127.9792);

line(75, 270, 110, 270); 	 /* corner cyl */
line(75, 190, 110, 190);
setlinestyle(0, 0, 1);
ellipse(75, 190, 0, 360, 35, 8); /* draw cylinder */
ellipse(75, 270, 0, 360, 35, 8);
line(40, 190, 40, 270);
line(110, 190, 110, 270);

line(40, 330, 110, 330); 	 /* draw tri-shape */
line(40, 330, 75, 345);
line(75, 345, 110, 330);
line(40, 330, 40, 410);
line(40, 410, 75, 425);
line(75, 425, 110, 410);
line(75, 345, 75, 425);
line(110, 330, 110, 410);
setlinestyle(3, 3, 1);
line(40, 410, 110, 410);

setcolor(62); 	 /* top text */
settextstyle(0, 0, 1);
outtextxy(155, 5, "GENERATIVE COMPUTER PROCESS

PLANNING");
setlinestyle(0, 0, 1); 	 /* partition */
setcolor(4);
setlinestyle(0, 0, 3);

line(0, 14, 640, 14); 	 /* menu partitions */
line(240, 14, 240, 480);
line(530, 14, 530, 480);
line(0, 32, 530, 32);

setcolor(62);
outtextxy(50, 21, "AVAILABILE GEOMETRY");
outtextxy(360, 21, "MAIN");

setcolor(62);
outtextxy(15, 105, "X2"); 	/* box dimensions */
outtextxy(65, 145, "X1");
outtextxy(120, 133, "X3");

outtextxy(115, 190, "X1"); /* cylinder dimensions */
outtextxy(94, 232, "X3");
outtextxy(115, 270, "X2");

107

outtextxy(25, 370, "X1"); 	/* tri-shape dimensions */
outtextxy(50, 343, "X2");
outtextxy(70, 320, "X3");

setcolor(58);
outtextxy(140, 90, "OPTION A"); 	/* option text */
outtextxy(140, 220, "OPTION B");
outtextxy(140, 370, "OPTION C");

setcolor(60); 	 /* option underlining */
setlinestyle(0, 0, 1);
line(138, 103, 205, 103);
line(138, 233, 205, 233);
line(138, 383, 205, 383);

menu2(); 	 /* call menu2 function */

/* close menul */

/* 	 */

void menu2(void) 	 /* open menu2 */

setcolor(62);
outtextxy(265, 50, "GEOMETRY");
setcolor(60);
line(263, 60, 330, 60);
setcolor(62);
window(34, 6, 36, 8);
printf("SELECT REQUIRED GEOMETRY : ");
scanf(" %c", &geometry);

switch(toupper(geometry)) 	/* switch cases */

case 'A': 	 /* case A switch */
window(34, 7, 36, 9);
textcolor(LIGHTCYAN);
printf("SQUARE GEOMETRY MODE");
outtextxy(265, 135, "SQUARE DIMENSIONS");
setcolor(60);
line(263, 145, 400, 145);
setcolor(62);
window(34, 11, 36, 13);

printf (" ENTER X1: "); 	 /* scan enter */
scanf(" %f", &X1);
window(34, 12, 36, 14);
printf("ENTER X2: ");
scanf(" %f", &X2) ;

108

window(34, 13, 36, 15);
printf("ENTER X3: ");
scanf(" %f", &X3);
break;

case 'B': 	 /* case B switch */
window(34, 7, 36, 9);
printf("CYLINDRICAL GEOMETRY MODE");
outtextxy(265, 135, "CYLINDER DIMENSIONS");
setcolor(60);
line(263, 145, 415, 145);
setcolor(62);
window(34, 11, 36, 12);
printf("ENTER X1: "); 	 /* scan enter */
scanf(" %f", &X1);
window(34, 12, 36, 14);
printf("ENTER X2: ");
scanf(" %f", &X2);
window(34, 13, 36, 15);
printf("ENTER X3: ");
scanf(" %f", &X3);
break;

case 'C': 	 /* case C switch */
window(34, 7, 36, 9);
printf("TRIANGULAR GEOMETRY MODE");
outtextxy(265, 135, "TRIANGULAR DIMENSIONS");
setcolor(60);
line(263, 145, 430, 145);
setcolor(62);
window(34, 11, 36, 13);
printf("ENTER X1: "); 	 /* scan enter */
scanf(" %f", &Xi);
window(34, 12, 36, 14);
printf("ENTER X2: ");
scanf(" %f", &X2);
window(34, 13, 36, 15);
printf("ENTER X3: ");
scanf(" %f", &X3);
break;

default: 	 /* default function */

outtextxy(265, 150, "INVALID GEOMETRY
SPECIFICATION...");

outtextxy(265, 170, "PRESS ANY KEY TO CLEAR...");
getch();
cleardevice(); 	 /* clear screen */
menu1(); 	 /* call menu1 function */
break;

/* close switch cases */

109

window(34, 15, 36, 17); 	/* output dimensions */
printf("X1 = %f IN. VALID...", X1);
window(34, 16, 36, 18);
printf("X2 = %f IN. VALID...", X2);
window(34, 17, 36, 19);
printf("X3 = %f IN. VALID...", X3);

outtextxy(265, 300, "MENU OPTIONS"); /* menu options */
setcolor(60);
line(263, 310, 360, 310);
setcolor(62);
window(34, 21, 36, 23);
printf("MENU OPTION MODE");
window(34, 22, 36, 24);
printf("ENTER MENU OPTIONS");

options(); 	 /* call options function */

/* 	 */

void options(void) 	 /* begin options function */

window(69, 5, 71, 7);
printf("OPT: ");
scanf(" %d", &menuoptions); /* scan options */

switch(menuoptions) 	/* menu options switches */

case 1: 	 /* exit case */
exit();
break;

case 2: 	 /* clear case */
cleardevice();
menu1();
break;

case 3: 	 /* help case */
helpmenu();

break;

case 4: 	 /* print graphics case */
Print Pause(0);

break;

case 5: 	 /* full screen case */

110

if(toupper(geometry)=='A')
straightsquare();
if(toupper(geometry)=='B')
straightcylinder();
if(toupper(geometry)=='C')
straighttriangle();

break;

case 6: 	 /* dxf case 1 */
straightsquare();
dxfmaker();

dxfparameter1();

break;

case 7: 	 /* dxf case 2 */
straightcylinder();
dxfmaker();
dxfparameter2();

break;
/* dxf case 3 */

case 8:
straighttriangle();
dxfmaker();
dxfparameter3();

case 9: 	 /* form 1 case */
if(toupper(geometry)=='A')
straightsquare();
if(toupper(geometry)=='B')
straightcylinder();
if(toupper(geometry)=='C')
straighttriangle();

break;

case 13: 	 /* form1 print case */
if(toupper(geometry)=='A')
straightsquare();
form1print();
if(toupper(geometry)=='B')
straightcylinder();
form1print();
if(toupper(geometry)=='C')
straighttriangle();
form1print();

break;

case 14: 	 /* form 2 case */

111

break; 	 /* open case */

case 15: 	 /* form 3 case */
formlprint(); 	 /* call function */

break; 	 /* open case */

case 16: 	 /* form 4 case */
formlprint(); 	 /* call function */

break;

getch(); 	 /* wait for keystroke */

/* close menu2 */

/* 	 */

void optionsgr(void) 	/* begin optionsgr function */

setcolor(4);
setlinestyle(0, 0, 3);
line(0, 14, 640, 14); 	 /* menu partitions */
line(530, 14, 530, 480);
line(530, 32, 640, 32);
setcolor(62);
outtextxy(539, 21, "MAIN OPTIONS");

setcolor(58); 	 /* option text */
outtextxy(539, 100, "1 - EXIT");
outtextxy(539, 120, "2 - CLEAR");
outtextxy(539, 140, "3 - HELP");
outtextxy(539, 160, "4-PRINT GR");
outtextxy(539, 180, "5 - SLD");
outtextxy(539, 200, "6-OPT-A DXF OUT");
outtextxy(539, 220, "7-OPT-B DXF OUT");
outtextxy(539, 240, "8-OPT-C DXF OUT");
outtextxy(539, 260, "9 - PLAN 1");
outtextxy(539, 280, "10 - PLAN 2");
outtextxy(539, 300, "11 - PLAN 3");
outtextxy(539, 320, "12 - PLAN 4");
outtextxy(539, 340, "13-PRINT P1");
outtextxy(539, 360, "14-PRINT P2");
outtextxy(539, 380, "15-PRINT P3");
outtextxy(539, 400, "16-PRINT P4");

setcolor(63);
outtextxy(539, 40, "MENU OPTIONS"); /* menu options */
setcolor(4);

112

setlinestyle(0, 0, 3);
line(530, 50, 640, 50);
line(530, 85, 640, 85);
setcolor(62);

setlinestyle(0, 0, 0); 	 /* change line form */

}

7* 	 */

void straightsquare(void) 	/* begin straightsq.
function */

{
int c;
double point1x, point1y, point2x, point2y, doubx,

douby;
float maximum, scalor;

/* point array 50 x 50 matrix */

x[0]=1.0/2.0*Xl+X3, x[1]=3.0/2.0*Xl+X3;
x[2]=3.0/2.0*X1+X3; x[3]=3.0/2.0*Xl+X3;
x[4]=3.0/2.0*X1+1.0/2.0*X2+X3;
x[5]=3.0/2.0*X1+1.0/2.0*X2+X3, x[6]=3.0/2.0*X1+2.0*X3;
x[7]=2.0*X1+2.0*X3, x[8]=2.0*X1+2.0*X3;
x[9]=3.0/2.0*X1+2.0*X3, x[10]=3.0/2.0*X1+1.0/2.0*X2+X3;
x[11]=3.0/2.0*X1+1.0/2.0*X2+X3;
x[12]=3.0/2.0*X1+X3, x[13]=1.0/2.0*X1+X3;
x[14]=1.0/2.0*X1-1.0/2.0*X2+X3;
x[15]=1.0/2.0*X1-1.0/2.0*X2+X3;
x[16]=1.0/2.0*X1, x[17]=0.0, x[18]=0.0;
x[19]=1.0/2.0*X1, x[20]=1.0/2.0*X1-1.0/2.0*X2+X3;
x[21]=1.0/2.0*X1-1.0/2.0*X2+X3;
x[22]=1.0/2.0*Xl+X3, x[23]=1.0/2.0*X1+X3;
x[24]=1.0/2.0*Xl+X3, x[25]=1.0/2.0*X1+X3;
x[26]=1.0/2.0*X1+X3, x[27]=3.0/2.0*X1+X3;
x[28]=3.0/2.0*X1+X3, x[29]=1.0/2.0*X1+1.0/2.0*X3;
x[30]=X1+X3, x[31]=3.0/2.0*X1+3.0/2.0*X3, x[32]=X1+X3;

x[33]=X1+X3, x[34]=X1+X3, x[35]=0.0, x[36]=0.0;
x[37]=0.0, x[38]=0.0, x[39]=0.0, x[40]=0.0;
x[41]=0.0, x[42]=0.0, x[43]=0.0, x[44]=0.0, x[45]=0.0;
x[46]=0.0, x[47]=0.0, x[48]=0.0, x[49]=X1+X3;

y[0]=0.0, y[1]-0.0, y[2]=1.0/2.0*X2, y[3]=3.0/2.0*X2;
y[4]=3.0/2.0*X2, y[5]=3.0/2.0*X2+X3;
y[6]=3.0/2.0*X2+X3, y[7]=3.0/2.0*X2+X3;
y[8]=5.0/2.0*X2+X3, y[9]=5.0/2.0*X2+X3;
y[10]=5.0/2.0*X2+X3, y[11]=5.0/2.0*X2+2*X3;
y[12]=5.0/2.0*X2+2*X3, y[13]=5.0/2.0*X2+2*X3;
y[l4]=5.0/2.0*X2+2*X3, y[15]=5.0/2.0*X2+X3;
y[16]=5.0/2.0*X2+X3, y[17]=5.0/2.0*X2+X3;
y[18]=3.0/2.0*X2+X3, y[19]=3.0/2.0*X2+X3;

113

y[20]=3.0/2.0*X2+X3, y[21]=3.0/2.0*X2;
y[22]=3.0/2.0*X2, y[23]=1.0/2.0*X2, y[24]=0.0;

y[25]=3.0/2.0*X2+X3, y[26]=5.0/2.0*X2+X3;
y[27]=3.0/2.0*X2+X3, y[28]=5.0/2.0*X2+X3;
y[29]=2*X2+X3, y[30]=2*X2+X3, y[31]=2*X2+X3;

y[32]=3.0/2.0*X2+1.0/2.0*X3;
y[33]=5.0/2.0*X2+3.0/2.0*X3;
y[34]=X2, y[35]=0.0, y[36]=0.0, y[37]=0.0, y[38]=0.0;
y[39]=0.0, y[40]=0.0, y[41]=0.0, y[42]=0.0, y[43]=0.0;
y[44]=0.0, y[45]=0.0, y[46]=0.0, y[47]=0.0, y[48]=0.0;
y[49]=5.0/4.0*X2+X3;

/* scaling to full screen */

if(menuoptions==5) 	 /* full sld option */

double point3x, point4x;
modf((double) ((2*getmaxx())/3), &point3x);
modf((double) ((2*getmaxy())/3), &point4x);

if((2.0*X1+2.0*X3)>(2.0*X3+(5.0/2.0)*X2))
maximum=(2.0*X1+2.0*X3);

else maximum=(2.0*X3+(5.0/2.0)*X2);

if((2.0*X1+2.0*X3)>(2.0*X3+(5.0/2.0)*X3))
scalor=point3x/maximum;

else scalor=point4x/maximum;

for(c=0;c<=49; c++) 	 /* screen scale */

x[c]=x[c]*scalor;
y[c]=y[c]*scalor;
doubx=(double) x[c];
douby=(double) y[c];

point1x=modf(doubx, &point2x);
pointly=modf(douby, &point2y);

if (point1x>=0.5) cx[c]=(int) point2x+41;
else cx[c]=(int) point2x+40;

if (pointly>=0.5) cy[c]=(int) point2y+41;
else cy[c]=(int) point2y+40;

drawsqfull(); 	 /* call the draw function */

}

if(menuoptions==9) 	 /* form sld if */

114

int backcolor, squareshape[50], d;

/* scaling to corner screen */

double point3x, point4x;

if((2.0*X1+2.0*X3)>(2.0*X3+(5.0/2.0)*X2))
maximum=(2.0*X1+2.0*X3);

else maximum=(2.0*X3+(5.0/2.0)*X2);

scalor=((float)((getmaxx()/3)-20))/maximum;

for(c=0;c<=49; c++)
{
x[c]=x[c]*scalor;
y[c]=y[c]*scalor;
doubx=(double) x[c];
douby=(double) y[c];
pointlx=modf(doubx, &point2x);
pointly=modf(douby, &point2y);

if (point1x>=0.5) cx[c]=(int) point2x+21;
else cx[c]=(int) point2x+20;

if (point1y>=0.5) cy[c]=(int) point2y+21;
else cy[c]=(int) point2y+20;

setlinestyle(0, 0, 0);
cleardevice();
backcolor = 8;
setbkcolor(backcolor);
setcolor(63);

for(d=0;d<=48;d=d+2) squareshape[d]=cx[d/2];
for(d=1;d<=49;d=d+2) squareshape[d]=cy[(d-l)/2];

drawpoly(25, squareshape);

setlinestyle(0, 0, 0); 	 /* draw lines *,
line(cx[20], cy[20], cx[25], cy[25]);
line(cx[15], cy[15], cx[26], cy[26]);
line(cx[27], cy[27], cx[5], cy[5]);
line(cx[28], cy[28], cx[10], cy[10]);
setlinestyle(1, 0, 1);

line(cx[19], cy[19], cx[16], cy[16]);
line(cx[6], cy[6], cx[9], cy[9]);
line(cx[23], cy[23], cx[2], cy[2]);
line(cx[22], cy[22], cx[3], cy[3]);
line(cx[25], cy[25], cx[27], cy[27]);
line(cx[26], cy[26], cx[28], cy[28]);
line(cx[22], cy[22], cx[13], cy[13]);

115

line(cx[3], cy[3], cx[12], cy[12]);

setlinestyle(0, 0, 3);
setcolor(4);
line(220, 14, 220, 480);
line(220, 32, 530, 32);

line(0, 350, 220, 350);
line(0, 365, 220, 365);

setcolor(62);
outtextxy(20, 354, "SQUARE DIMENSIONS");

outtextxy(250, 21, "SQUARE PROCESSING PARAMETERS");
setcolor(63);
outtextxy(12, 340, "STRAIGHT LINE DEVELOPMENT");

setlinestyle(0, 0, 0);

setcolor(58); 	 /* geometry text */
outtextxy(cx[33]-2, cy[33], "S");
outtextxy(cx[34]-2, cy[34], "T");
outtextxy(cx[31], cy[31], "S");
outtextxy(cx[32]-2, cy[32], "S");
outtextxy(cx[29], cy[29], "S");
outtextxy(cx[30]-2, cy[30], "B");

setcolor(62);
outtextxy(200, 5, "PROCESS FORM 1");

optionsgr();
form2A();
options();

/* close case 9 if statement */

/* end straightsq. function */

/* 	 */

void straightcylinder(void) 	/* begin straightcyl.
function */

int c;
double pointlx, pointly, point2x, point2y, doubx,

doubt';
float maximum, scalor;
int p = 3.14;

116

/* 18 x 18 x-y array */

x[0]=0.0, x[1]=2.0/5.0*X1*p, x[2]=4.0/5.0*X1*p;
x[3]=6.0/5.0*X1*p; x[4]=8.0/5.0*X1*p;
x[5]=10.0/5.0*X1*p, x[6]=11.0/5.0*X1*p;
x[7]=11.0/5.0*X1*p, x[8]=10.0/5.0*X1*p;
x[9]=8.0/5.0*X1*p, x[10]=6.0/5.0*X1*p;
x[11]=4.0/5.0*X1*p, x[12]=2.0/5.0*X1*p, x[13]=0.0;
x[14]=0.0, x[15]=2.0/5.0*X1*p;
x[16]=8.0/5.0*X1*p, x[17]=2.0/5.0*X1*p+X1;
x[18]=8.0/5.0*X1*p+X1;

y[0]=0.0, y[1]=0.0, y[2]=0.0, y[3]=0.0, y[4]=0.0;
y[5]=0.0, y[6]=0.0, y[7]=X3, y[8]=X3, y[9]=X3;
y[10]=X3, y[11]=X3, y[12]=X3;
y[13]=X3, y[14]=0.0, y[15]=X1+X3, y[16]=X1+X3;
y[17]=3.0/2.0*X3+X1, y[18]=3.0/2.0*X3+X1;

if(menuoptions==5) 	 /* full sld if */

{

/* scaling to full screen */

double point3x, point4x;
modf((double) ((12*getmaxx())/13), &point3x);
modf((double) ((12*getmaxy())/13), &point4x);

if(((3.0/2.0)*X3+2.0*X1)>((11.0/5.0)*X1*p))
maximum=(3.0/2.0)*X3+2*X1;

else maximum=(11.0/5.0)*X1*p;

if(((3.0/2.0)*X3+2.0*X1)>((11.0/5.0)*X1*p))
scalor=point3x/maximum;

else scalor=point4x/maximum;

for(c=0;c<=18; c++) 	 /* scaling */

x[c]=x[c]*scalor;
y[c]=y[c]*scalor;
doubx=(double) x[c];
douby=(double) y[c];
point1x=modf(doubx, &point2x);
point1y=modf(douby, &point2y);

if (point1x>=0.5) cx[c]=(int) point2x+41;
else cx[c]=(int) point2x+40;

if (point1y>=0.5) cy[c]=(int) point2y+41;

117

else cy[c]=(int) point2y+40;

drawcylfull(); 	 /* call drawcylfunction */

/* end option 5 if */

if(menuoptions==9); 	 /* begin option 9 if */

/* scaling to corner screen */

double point3x, point4x;

if((2.0*X1+2.0*X3)>(2.0*X3+(5.0/2.0)*X2))
maximum=(2.0*X1+2.0*X3);

else maximum=(2.0*X3+(5.0/2.0)*X2);

scalor=((float)((getmaxx()/4)-20))/maximum;

for(c=0;c<=18; c++) 	 /* set scale */

x[c]=x[c]*scalor;
y[c]=y[c]*scalor;
doubx=(double) x[c];
douby=(double) y[c];
pointlx=modf(doubx, &point2x);

point1y=modf(douby, &point2y);

if (point1x>=0.5) cx[c]=(int) point2x+21;
else cx[c]=(int) point2x+20;

if (point1y>=0.5) cy[c]=(int) point2y+21;
else cy[c]=(int) point2y+20;

int backcolor, cylinder[50], d; 	/* color define */
setlinestyle(0, 0, 0);
cleardevice();
backcolor = 8;
setbkcolor(backcolor);
setcolor(63);

for(d=0;d<=28;d=d+2) cylinder[d]=cx[d/2];
for(d=1;d<=29;d=d+2) cylinder[d]=cy[(d-1)/2];

drawpoly(15, cylinder); 	/* draw poly function */

setlinestyle(1, 0, 1); 	 /* draw lines */
line(cx[1], cy[1], cx[12], cy[12]);

118

line(cx[2], cy[2], cx[11], cy[11]);
line(cx[3], cy[3], cx[10], cy[10]);
line(cx[4], cy[4], cx[9], cy[9]);
line(cx[5], cy[5], cx[8], cy[8]);

ellipse(cx[15], cy[15]+50, 0, 360, (cx[17]-cx[15]),
(cx[17]-cx[15]));

ellipse(cx[16], cy[16]+50, 0, 360, (cx[18]-cx[16]),
(cx[18]-cx[16]));

setlinestyle(0, 0, 3); 	 /* set line style */
setcolor(4); 	 /* color */
line(220, 14, 220, 480);
line(220, 32, 530, 32);

line(0, 350, 220, 350);
line(0, 365, 220, 365); 	 /* design text */

setcolor(62);
outtextxy(20, 354, "CYLINDER DIMENSIONS");

outtextxy(250, 21, "CYLDR. PROCESSING PARAMETERS");
setcolor(63);
outtextxy(12, 340, "STRAIGHT LINE DEVELOPMENT");

setlinestyle(0, 0, 0); 	 /* new line style */

setcolor(62); 	 /* change color */
outtextxy(200, 5, "PROCESS FORM 1");

optionsgr(); 	 /* call graphics */
options(); 	 /* call options */

/* close option 9 if */

/* end straightcyl. function */

/* 	 */

void straighttriangle(void) 	/* begin straighttr.
function */

double G=2*asin((double) (X3/(2*X2)));
int c;

119

double point1x, point1y, point2x, point2y, doubx,
douby;

float maximum, scalor;
float D = (sin(G/2.0)/(3.0))*X1;
float E = (cos(G/2.0)/(3.0))*X1;
float F = (cos(G/2.0))*X1;

/* point array 25 x 25 matrix */

x[0]=0.0, x[1]=1.0/2.0*X3, x[2]=1.0/2.0*X3+X2;
x[3]=1.0/2.0*X3+2.0*X2; x[4]=1.0/2.0*X3+2*X2-E;
x[5]=2*X2+X3-D-(cos(G)/3.0)*X1*(sin(G/2.0));
x[6]=2*X2+X3;
x[7]=2*X2+X3+D+(cos(G)/3.0)*X1*(sin(G/2.0));
x[8]=(3.0/2.0)*X3+2*X2+E;
x[9]=(3.0/2.0)*X3+2*X2, x[10] = (3.0/2.0)*X3+2*X2;
x[11]=(3.0/2.0)*X3+2*X2+E;
x[12]=2*X2+X3+D+(cos(G)/3.0)*X1*(sin(G/2.0));
x[13]=2*X2+X3, x[14]=2*X2+X3-D-

(cos(G)/3.0)*X1*(sin(G/2.0));
x[15]=(1.0/2.0)*X3+2*X2-E, x[16]=(1.0/2.0)*X3+2*X2;
x[17]=(1.0/2.0)*X3+X2, x[18]=(1.0/2.0)*X3, x[19]=0.0;
x[20]=0.0, x[21]=0.0, x[22]=0.0, x[23]=0.0, x[24]=0.0;

y[0]=E+F, y[1]=E+F, y[2]=E+F, y[3]=E+F, y[4]=E+F-D;
y[5]=(cos(G)/(3.0))*X1*(cos(G/2.0)), y[6]=E;
y[7]=(cos(G)/(3.0))*X1*(cos(G/2.0)), y[8]=E+F-D;
y[9]=E+F, y[10]=E+F+Xl, y[11]=E+F+X1+D;
y[12]=2*E+2*F+X1-(cos(G)/(3.0))*X1*(cos(G/2.0));
y[13]=E+2*F+X1, y[14]=2*E+2*F+X1-

(cos(G)/(3.0))*X1*(cos(G/2.0));
y[15]=E+F+Xl+D, y[16]=E+F+X1, y[17]=E+F+Xl;

y[18]=E+F+X1, y[19]=E+F+X1, y[20]=E+F, y[21]=0.0;
y[22]=0.0, y[23]=0.0, y[24]=0.0;

if(menuoptions==5) 	 /* option 5 if */

{
/* scaling to full screen */

double point3x, point4x;
modf((double) ((8*getmaxx())/9), &point3x);
modf((double) ((8*getmaxy())/9), &point4x);
float u=2*cos(G/2.0)*((1.0/3.0)*X1+X2)+X1;
float v=(cos(G/2.0)/(3.0))*X1+(3.0/2.0)*X3+2*X2;

if(u > v) maximum = u;
else maximum = v;

if(u > v) scalor=point3x/maximum;

120

else scalor=point4x/maximum;

	

for(c=0;c<=20; c++) 	 /* set scale */

x[c]=x[c]*scalor;
y[c]=y[c]*scalor;
doubx=(double) x[c];
douby=(double) y[c];
point1x=modf(doubx, &point2x);
point1y=modf(douby, &point2y);

if (point1x>=0.5) cx[c]=(int) point2x+41;
else cx[c]=(int) point2x+40;

if (point1y>=0.5) cy[c]=(int) point2y+41;
else cy[c]=(int) point2y+40;

drawtrifull(); 	 /* call drawtrifull function */

/* end option 5 if */

	

if(menuoptions==9) 	 /* begin option 9 if */

/* scaling to corner screen */

double point3x, point4x;

if((2.0*X1+2.0*X3)>(2.0*X3+(5.0/2.0)*X2))
maximum=(2.0*X1+2.0*X3);

else maximum=(2.0*X3+(5.0/2.0)*X2);

scalor=((float)((getmaxx()/3)-20))/maximum;

	

for(c=0;c<=20; c++) 	 /* set scale */

x[c]=x[c]*scalor;
y[c]=y[c]*scalor;
doubx=(double) x[c];
douby=(double) y[c];
point1x=modf(doubx, &point2x);
point1y=modf(douby, &point2y);

if (point1x>=0.5) cx[c]=(int) point2x+21;
else cx[c]=(int) point2x+20;

if (point1y>=0.5) cy[c]=(int) point2y+21;
else cy[c]=(int) point2y+20;

121

int backcolor, trishape[50], d;
setlinestyle(0, 0, 0); 	 /* set line */
cleardevice();
backcolor = 8; 	 /* set color */
setbkcolor(backcolor);
setcolor(63); 	 /* set color */

for(d=0;d<=40;d=d+2) trishape[d]=cx[d/2];
for(d=1;d<=41;d=d+2) trishape[d]=cy[(d-1)/2];

drawpoly(21, trishape); 	 /* draw shape */

setlinestyle(1, 0, 1); 	 /* draw lines */
line(cx[1], cy[1], cx[18], cy[18]);
line(cx[2], cy[2], cx[17], cy[17]);
line(cx[3], cy[3], cx[16], cy[16]);
line(cx[3], cy[3], cx[6], cy[6]);
line(cx[6], cy[6], cx[9], cy[9]);
line(cx[3], cy[3], cx[9], cy[9]);
line(cx[16], cy[16], cx[10], cy[10]);
line(cx[10], cy[10], cx[13], cy[13]);
line(cx[13], cy[13], cx[16], cy[16]);

setlinestyle(0, 0, 3); 	 /* set line */
setcolor(4); 	 /* set color */
line(220, 14, 220, 480);
line(220, 32, 530, 32);

line(0, 350, 220, 350);
line(0, 365, 220, 365);

setcolor(62); 	 /* design text, color */
outtextxy(20, 354, "TRI-SHP. DIMENSIONS");

outtextxy(250, 21, "TRI-SHP. PROCESSING PARAMETERS");
setcolor(63);
outtextxy(12, 340, "STRAIGHT LINE DEVELOPMENT");

setlinestyle(0, 0, 0); 	 /* set line */

setcolor(62);
outtextxy(200, 5, "PROCESS FORM 1");

optionsgr(); 	 /* call graphics */
options() ; 	 /* call options */

/* end option 9 if */

/* end straighttr. function */

122

/* 	 */

void dxfmaker(void) 	/* DXF generator function */

int d;
cleardevice(); 	 /* set up screen */
backgrcol = 8;
setbkcolor(backgrcol); 	/* set color */

setcolor(62);
outtextxy(155, 80, "INITIALIZING SLD1.DXF TO A:

....STANDBY:");
setcolor(60);
setlinestyle(0, 0, 3); 	/* set line */
line(0, 32, 640, 32);

settextstyle(1, 0, 1);
setcolor(62);
outtextxy(100, 9, "DATA EXCHANGE FILE -(DXF) FORMAT

INTERFACE");
settextstyle(0, 0, 0);

FILE *fp; 	 /* filer */

fp = fopen("a:SLD1.DXF", "w"); 	/* opens DXF file
on a: */

fputs(" 0\n", fp) ; 	 /* DXF code */
fputs("SECTION\n", fp);
fputs(" 2\n", fp);
fputs("HEADER\n", fp);
fputs(" 9\n", fp);
fputs("$ACADVER\n", fp);
fputs(" 1\n", fp)
fputs("AC1009\n", fp);
fputs(" 9\n", fp);
fputs("$INSBASE\n", fp); 	 /* DXF code */
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$EXTMIN\n", fp); 	 /* DXF code */
fputs(" 10\n", fp); 	 /* set extents */
fputs("2.0\n", fp);

123

fputs(" 20\n", fp);
fputs("3.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$EXTMAX\n", fp); 	 /* DXF code */
fputs(" 10\n", fp); 	 /* set extents *,
fputs("10.0\n", fp);
fputs(" 20\n", fp);
fputs("9.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$LIMMIN\n", fp); 	 /* DXF code */
fputs(" 10\n", fp); 	 /* set limits */
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$LIMMAX\n", fp); 	 /* DXF code */
fputs(" 10\n", fp) ; 	 /* set limits */
fputs("12.0\n", fp);
fputs(" 20\n", fp);
fputs ('"9.0\n"', fp);
fputs(" 9\n", fp);
fputs("$ORTHOMODE\n", fp); 	/* DXF code */
fputs(" 70\n", fp); 	 /* set ortho */
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$REGENMODE\n", fp); 	/* set regen */
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$FILLMODE\n", fp); 	 /* fill mode */
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$QTEXTMODE\n", fp); 	/* text style */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$MIRRTEXT\n", fp); 	 /* mirror */
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$DRAGMODE\n", fp); 	 /* line drag */
fputs(" 70\n", fp);
fputs(" 	2\n", fp);
fputs(" 9\n", fp);
fputs("$LTSCALE\n", fp); 	 /* scaling */
fputs(" 40\n", fp);
fputs("1.0\n", fp);
fputs(" 9\n", fp);
fputs("$OSMODE\n", fp); 	 /* DXF code */

fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$ATTMODE\n", fp); 	 /* DXF code */
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$TEXTSIZE\n", fp); 	 /* text set */
fputs(" 40\n", fp);
fputs("0.2\n", fp);
fputs(" 9\n", fp);
fputs("$TRACEWID\n", fp) ; 	 /* tracing */
fputs(" 40\n", fp);
fputs("0.05\n", fp);
fputs(" 9\n", fp);
fputs("$TEXTSTYLE\n", fp); 	 /* style */
fputs(" 7\n", fp);
fputs("STANDARD\n", fp);
fputs(" 9\n", fp);
fputs("$CLAYER\n", fp); 	 /* layer */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 9\n", fp);
fputs("$CELTYPE\n", fp);
fputs(" 6\n", fp);
fputs("BYLAYER\n", fp);
fputs(" 9\n", fp);
fputs("$CECOLOR\n", fp); 	 /* color */
fputs(" 62\n", fp);
fputs(" 	256\n", fp);
fputs(" 9\n", fp);
fputs("$DIMSCALE\n", fp) ; 	 /* dim scale */
fputs(" 40\n", fp);
fputs("1.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMASZ\n", fp);
fputs(" 40\n", fp);
fputs("0.18\n", fp);
fputs(" 9\n", fp);
fputs("$DIMEXO\n", fp); 	 /* dimension */
fputs(" 40\n", fp);
fputs("0.0625\n", fp);
fputs(" 9\n", fp);
fputs("$DIMDLI\n", fp); 	 /* dimension */
fputs(" 40\n", fp);
fputs("0.38\n", fp);
fputs(" 9\n", fp);
fputs("$DIMRND\n", fp); 	 /* dimension */
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMDLE\n", fp); 	 /* dimension */
fputs(" 40\n", fp);
fputs("0.0\n", fp);

124

125

fputs(" 9\n", fp);
fputs("$DIMEXE\n", fp);
fputs(" 40\n", fp);
fputs("0.18\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTP\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTM\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTXT\n", fp);
fputs(" 40\n", fp);
fputs("0.18\n", fp);
fputs(" 9\n", fp);
fputs("$DIMCEN\n", fp);
fputs(" 40\n", fp);
fputs("0.09\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTSZ\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTOL\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMLIM\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTIH\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTOH\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$DIMSE1\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMSE2\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTAD\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMZIN\n", fp);

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

126

fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMBLK\n", fp);
fputs(" 1\n", fp);
fputs(" 	\n", fp);
fputs(" 9\n", fp);
fputs("$DIMASO\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$DIMSHO\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$DIMPOST\n", fp);
fputs(" 1\n", fp);
fputs(" 	\n", fp);
fputs(" 9\n", fp);
fputs("$DIMAPOST\n", fp);
fputs(" 1\n", fp);
fputs(" 	\n", fp);
fputs(" 9\n", fp);
fputs("$DIMALT\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMALTD\n", fp);
fputs(" 70\n", fp);
fputs(" 	2\n", fp);
fputs(" 9\n", fp);
fputs("$DIMALTF\n", fp);
fputs(" 40\n", fp);
fputs("25.4\n", fp);
fputs(" 9\n", fp);
fputs("$DIMLFAC\n", fp);
fputs(" 40\n", fp);
fputs("1.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTOFL\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTVP\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTIX\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMSOXD\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);

/* dimension */

/* dimension */

/* dimension */

/* dimension */

127

fputs(" 9\n", fp);
fputs("$DIMSAH\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMBLK1\n", fp);
fputs(" 1\n", fp);
fputs(" 	\n", fp);
fputs(" 9\n", fp);
fputs("$DIMBLK2\n", fp);
fputs(" 1\n", fp);
fputs(" 	\n", fp);
fputs(" 9\n", fp);
fputs("$DIMSTYLE\n", fp);
fputs(" 2\n", fp);
fputs("*UNNAMED\n", fp);
fputs(" 9\n", fp);
fputs("$DIMCLRD\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMCLRE\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMCLRT\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMTFAC\n", fp);
fputs(" 40\n", fp);
fputs("1.0\n", fp);
fputs(" 9\n", fp);
fputs("$DIMGAP\n", fp);
fputs(" 40\n", fp);
fputs("0.09\n", fp);
fputs(" 9\n", fp);
fputs("$LUNITS\n", fp);
fputs(" 70\n", fp);
fputs(" 	2\n", fp);
fputs(" 9\n", fp);
fputs("$LUPREC\n", fp);
fputs(" 70\n", fp);
fputs(" 	4\n", fp);
fputs(" 9\n", fp);
fputs("$SKETCHINC\n", fp);
fputs(" 40\n", fp);
fputs("0.1\n", fp);
fputs(" 9\n", fp);
fputs("$FILLETRAD\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$AUNITS\n", fp);

/* dim block */

/* dim block */

/* set style */

/* open */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* dimension */

/* units */

/* fillet */

/* units */

128

fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$AUPREC\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$MENU\n", fp);
fputs(" 1\n", fp);
fputs("acad\n", fp);
fputs(" 9\n", fp);
fputs("$ELEVATION\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$PELEVATION\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$THICKNESS\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$LIMCHECK\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$BLIPMODE\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$CHAMFERA\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$CHAMFERB\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$SKPOLY\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$TDCREATE\n", fp);
fputs(" 40\n", fp);
fputs("2449494.982737152\n",
fputs(" 9\n", fp);
fputs("$TDUPDATE\n", fp);
fputs(" 40\n", fp); fputs("2449494.982737152\n",

fputs(" 9\n", fp);
fputs("$TDINDWG\n", fp);
fputs(" 40\n", fp);
fputs("0.0000000000\n", fp);

/* main menu */

/* elevation */

/* elevation */

/* thickness */

/* limits */

/* chamfer */

/* chamfer */

/* poly line */

/* create */

fp) ;

/* update */

fp) ;

129

fputs(" 9\n", fp);
fputs("$TDUSRTIMER\n", fp);
fputs(" 40\n", fp);
fputs("0.0000000000\n", fp);
fputs(" 9\n", fp);
fputs("$USRTIMER\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$ANGBASE\n", fp);
fputs(" 50\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$ANGDIR\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$PDMODE\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$PDSIZE\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$PL•INEWID\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$COORDS\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$SPLFRAME\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$SPLINETYPE\n", fp);
fputs(" 70\n", fp);
fputs(" 	6\n", fp);
fputs(" 9\n", fp);
fputs("$SPLINESEGS\n", fp);
fputs(" 70\n", fp);
fputs(" 	8\n", fp);
fputs(" 9\n", fp);
fputs("$ATTDIA\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$ATTREQ\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$HANDLING\n", fp);

/* timer */

/* mode */

/* poly line width */

/* coordinates */

/* line */

/* segments */

/* handling */

fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$HANDSEED\n", fp);
fputs(" 5\n", fp)
fputs("0\n", fp);
fputs (" 9\n", fp)
fputs("$SURFTAB1\n", fp);
fputs(" 70\n", fp);
fputs(" 	6\n", fp);
fputs(" 9\n", fp);
fputs("$SURFTAB2\n", fp);
fputs(" 70\n", fp);
fputs(" 	6\n", fp);
fputs(" 9\n", fp);
fputs("$SURFTYPE\n", fp);
fputs(" 70\n", fp);
fputs(" 	6\n", fp);
fputs(" 9\n", fp);
fputs("$SURFU\n", fp);
fputs(" 70\n", fp);
fputs(" 	6\n", fp);
fputs(" 9\n", fp);
fputs("$SURFV\n", fp);
fputs(" 70\n", fp);
fputs(" 	6\n", fp);
fputs(" 9\n", fp);
fputs("$UCSNAME\n", fp);
fputs(" 2\n", fp);
fputs(" 	\n", fp);
fputs(" 9\n", fp);
fputs("$UCSORG\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$UCSXDIR\n", fp);
fputs(" 10\n", fp);
fputs("1.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$UCSYDIR\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("1.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);

130

/* table */

/* table */

/* surface */

/* surface */

/* surface */

/* UCS */

/* UCS */

/* UCS */

/* UCS */

fputs(" 9\n", fp);
fputs("$PUCSNAME\n", fp); 	 /* UCS */
fputs(" 2\n", fp);
fputs(" 	\n", fp);
fputs(" 9\n", fp)
fputs("$PUCSORG\n", fp); 	 /* UCS */
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$PUCSXDIR\n", fp); 	 /* UCS */
fputs(" 10\n", fp);
fputs("1.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$PUCSYDIR\n", fp); 	 /* UCS */
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("1.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$USERI1\n", fp); 	 /* user */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$USERI2\n", fp); 	 /* user */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$USERI3\n", fp); 	 /* user */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$USERI4\n", fp); 	 /* user */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$USERI5\n", fp); 	 /* user */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$USERR1\n", fp); 	 /* user */
fputs(" 40\n", fp);
fputs("0.0\n", fp))
fputs(" 9\n", fp);
fputs("$USERR2\n", fp); 	 /* user */

131

132

fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$USERR3\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$USERR4\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$USERR5\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$WORLDVIEW\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$SHADEDGE\n", fp);
fputs(" 70\n", fp);
fputs(" 	3\n", fp);
fputs(" 9\n", fp);
fputs("$SHADEDIF\n", fp);
fputs(" 70\n", fp);
fputs(" 	70\n", fp);
fputs(" 9\n", fp);
fputs("$TILEMODE\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$MAXACTVP\n", fp);
fputs(" 70\n", fp);
fputs(" 	16\n", fp);
fputs(" 9\n", fp);
fputs("$PINSBASE\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$PLIMCHECK\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("SPEXTMIN\n", fp);
fputs(" 10\n", fp);
fputs("1.000000E+20\n", fp);
fputs(" 20\n", fp);
fputs("1.000000E+20\n", fp);
fputs(" 30\n", fp)
fputs("1.000000E+20\n", fp);

/* user */

/* user */

/* user */

/* view */

/* shading */

/* shading */

/* tile mode */

/* limits */

/* poly ext */

133

fputs(" 9\n", fp);
fputs("$PEXTMAX\n", fp); 	 /* poly ext */
fputs(" 10\n", fp);
fputs("-1.000000E+20\n", fp);
fputs(" 20\n", fp);
fputs("-1.000000E+20\n", fp);
fputs(" 30\n", fp);
fputs("-1.000000E+20\n", fp);
fputs(" 9\n", fp);
fputs("$PLIMMIN\n", fp); 	 /* line min */
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 9\n", fp);
fputs("$PLIMMAX\n", fp); 	 /* line max */
fputs(" 10\n", fp);
fputs("12.0\n", fp);
fputs(" 20\n", fp);
fputs("9.0\n", fp);
fputs(" 9\n", fp);
fputs("$UNITMODE\n", fp); 	 /* units */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$VISRETAIN\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$PLINEGEN\n", fp); 	 /* ploy line gen */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 9\n", fp);
fputs("$PSLTSCALE\n", fp); 	 /* scaling */
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 9\n", fp);
fputs("$TREEDEPTH\n", fp); 	 /* depth */
fputs(" 70\n", fp);
fputs(" 3020\n", fp);
fputs(" 9\n", fp);
fputs("$DWGCODEPAGE\n", fp); 	 /* DWG coding */
fputs(" 3\n", fp);
fputs("ascii\n", fp);
fputs(" 0\n", fp);
fputs("ENDSEC\n", fp); 	 /* end section */
fputs(" 0\n", fp);
fputs("SECTION\n", fp); 	 /* section */
fputs(" 2\n", fp);
fputs("TABLES\n", fp); 	 /* table */
fputs(" 0\n", fp);
fputs("TABLE\n", fp); 	 /* table */
fputs(" 2\n", fp);
fputs("VPORT\n", fp); 	 /* view port */

134

fputs(" 70\n", fp);
fputs(" 	2\n", fp);
fputs(" 0\n", fp);
fputs("VPORT\n", fp); 	 /* view port */
fputs(" 2\n", fp);
fputs("*ACTIVE\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs ("0.0\n'", fp);
fputs(" 11\n", fp);
fputs ("1.0\n"', fp);
fputs(" 21\n", fp);
fputs("1.0\n", fp);
fputs(" 12\n", fp);
fputs("6.243341\n", fp) ; 	 /* view port */
fputs(" 22\n", fp);
fputs("4.5\n", fp);
fputs(" 13\n", fp);
fputs("0.0\n", fp);
fputs(" 23\n", fp);
fputs("0.0\n", fp);
fputs(" 14\n", fp) ; 	 /* view port */
fputs("1.0\n", fp);
fputs(" 24\n", fp);
fputs("1.0\n", fp);
fputs(" 15\n", fp);
fputs("0.0\n", fp);
fputs(" 25\n", fp);
fputs("0.0\n", fp); 	 /* view port */
fputs(" 16\n", fp);
fputs("0.0\n", fp);
fputs(" 26\n", fp);
fputs("0.0\n", fp);
fputs(" 36\n", fp);
fputs("1.0\n", fp) ; 	 /* view port */
fputs(" 17\n", fp);
fputs("0.0\n", fp);
fputs(" 27\n", fp);
fputs("0.0\n", fp);
fputs(" 37\n", fp);
fputs("0.0\n", fp);
fputs(" 40\n", fp);
fputs("9.0\n", fp);
fputs(" 41\n", fp);
fputs("1.387409\n", fp) ; 	 /* view port */
fputs(" 42\n", fp);
fputs("50.0\n", fp);
fputs(" 43\n", fp);
fputs("0.0\n", fp);
fputs(" 44\n", fp)
fputs("0.0\n", fp);

135

fputs(" 50\n", fp);
fputs("0.0\n", fp);
fputs(" 51\n", fp);
(puts ("0.0\n"", fp);
fputs(" 71\n", fp);
fputs(" 	0\n", fp) ; 	 /* view port */
fputs(" 72\n", fp);
fputs(" 	100\n", fp);
fputs(" 73\n", fp);
fputs(" 	1\n", fp);
fputs(" 74\n", fp);
fputs(" 	1\n", fp); 	 /* view port */
fputs(" 75\n", fp);
fputs(" 	0\n", fp);
fputs(" 76\n", fp);
fputs(" 	0\n", fp);
fputs(" 77\n", fp);
fputs(" 	0\n", fp); 	 /* view port */
fputs(" 78\n", fp);
fputs(" 	0\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp);
fputs("TABLE\n", fp) ; 	 /* table */
fputs(" 2\n", fp);
fputs("LTYPE\n", fp) ; 	 /* line */
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 0\n", fp);
fputs("LTYPE\n", fp); 	 /* line */
fputs(" 2\n", fp);
fputs("CONTINUOUS\n", fp); 	 /* C line */
fputs(" 70\n", fp);
fputs(" 	64\n", fp);
fputs(" 3\n", fp);
fputs("Solid line\n", fp); 	 /* S line */
fputs(" 72\n", fp);
fputs(" 	65\n", fp);
fputs(" 73\n", fp);
fputs(" 	0\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp)
fputs("TABLE\n", fp); 	 /* table */
fputs(" 2\n", fp);
fputs("LAYER\n", fp); 	 /* set layer */
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 0\n", fp);
fputs("LAYER\n", fp); 	 /* layer */
fputs(" 	2\n", fp);
fputs("0\n", fp);

136

fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 62\n", fp);
fputs(" 	7\n", fp);
fputs(" 	6\n", fp);
fputs("CONTINUOUS\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp);
fputs("TABLE\n", fp);
fputs(" 2\n", fp);
fputs("STYLE\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 0\n", fp);
fputs("STYLE\n", fp);
fputs(" 2\n", fp);
fputs("STANDARD\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 40\n", fp);
fputs("0.0\n", fp);
fputs(" 41\n", fp);
fputs("1.0\n", fp);
fputs(" 50\n", fp);
fputs("0.0\n", fp);
fputs(" 71\n", fp);
fputs(" 	0\n", fp);
fputs(" 42\n", fp);
fputs("0.2\n", fp);
fputs(" 3\n", fp);
fputs("txt\n", fp);
fputs(" 4\n", fp);
fputs(" 	\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp);
fputs("TABLE\n", fp);
fputs(" 2\n", fp);
fputs("VIEW\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp);
fputs("TABLE\n", fp);
fputs(" 2\n", fp);
fputs("UCS\n", fp);
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp);
fputs("TABLE\n", fp);

/* cont. */

/* table */

/* set style */

/* style */

/* STD. mode */

/* table */

/* V. port */

/* table */

/* set UCS */

/* table */

137

fputs(" 2\n", fp);
fputs("APPID\n", fp);
fputs(" 70\n", fp);
fputs(" 	1\n", fp);
fputs(" 0\n", fp);
fputs("APPID\n", fp);
fputs(" 2\n", fp);
fputs("ACAD\n", fp);
fputs(" 70\n", fp);
fputs(" 	64\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp);
fputs("TABLE\n", fp) ; 	 /* table */
fputs(" 2\n", fp);
fputs("DIMSTYLE\n", fp) ; 	 /* dimension st. */
fputs(" 70\n", fp);
fputs(" 	0\n", fp);
fputs(" 0\n", fp);
fputs("ENDTAB\n", fp);
fputs(" 0\n", fp);
fputs("ENDSEC\n", fp);
fputs(" 0\n", fp);
fputs("SECTION\n", fp) ; 	 /* section */
fputs(" 2\n", fp);
fputs("BLOCKS\n", fp) ; 	 /* 0 block */
fputs(" 0\n", fp);
fputs("ENDSEC\n", fp);
fputs(" 0\n", fp);
fputs("SECTION\n", fp); 	 /* section */
fputs(" 2\n", fp);
fputs("ENTITIES\n", fp); 	 /* dr. Entities */
fputs (" 0\n", fp);

fclose(fp); 	 /* close filer */

/* end dxfmaker function */

/* 	 */

void dxfparameter1(void) 	/* DXF #1 */

outtextxy(155, 100, "DXF VERTEX DATA BEING
GENERATED..... ");

FILE *fp; 	 /* filer */

fp = fopen("a:SLD1.DXF", "a"); 	/* opens DXF file
on a: */

138

fputs("POLYLINE\n", fp); /* outside geometry begin */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[1]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[1]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertext 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end sequence */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp) ; 	 /* poly line */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]) ; 	/* coordinate */

139

fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp)
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[4]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[4]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	 /* poly line */
fputs(" 8\n", fp);
fputs("0\n", fp)
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[4]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[4]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp)
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[5]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[5]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

140

fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	 /* poly line */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[5]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[5]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[7]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[7]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	 /* poly line */
fputs (" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp)
fprintf(fp, "%f\n", x[7]); 	 /* coordinate */

141

fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[7]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[8]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[8]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[8]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[8]);
fputs(" 30\n", fp);
fputs ("0.0\n"', fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[10]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp)
fputs("0\n", fp);

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* poly line *

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

142

fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	 /* poly line */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[10]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[11]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[11]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	 /* poly line */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[11]); 	/* coordinate */

143

fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[11]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[14]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[14]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[14]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[14]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[15]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[15]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* poly line */

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* poly line */

144

fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[15]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[15]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[17]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[17]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("PoLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[17]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[17]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* poly line */

/* vertex 1 */

/* coordinate */

/* coordinate */

145

fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[18]) ; 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[18]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	 /* poly line */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[18]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[18]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[20]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[20]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	 /* poly line */
fputs(" 8\n", fp);
fputs("0\n", fp);

146

fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[20]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[20]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[21]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[21]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[21]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[21]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* poly line */

/* vertex 1 */

/* coordinate */

/* coordinate */

fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[22]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[22]);

147

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* poly line */

fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs
fputs

(" 30\n", fp);
("0.0\n", fp);
(" 0\n", fp);
("SEQEND\n", fp);
(" 8\n", fp)
("0\n", fp);
(" 0\n", fp)
("POLYLINE\n", fp);
(" 	8\n", fp) ;

("0\n", fp);
(" 66\n", fp);

1\n", fp);
(" 10\n", fp) ;
("0.0\n", fp);
(" 20\n", fp) ;
("0.0\n", fp);
(" 30\n", fp) ;

fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[22]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[22]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[24]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[24]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* poly line */

148

fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp)
fprintf(fp, "%f\n", x[24]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[24]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[1]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[1]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	/* outside geometry end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	/* solid inside lines */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[15]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[15]); 	 /* coordinate */
fputs(" 30\n", fp)
fputs("0.0\n", fp);

149

/* vertex 2 */

/* coordinate */

/* coordinate */

fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[26]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[26]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[20]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[20]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[25]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[25]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp)
fputs("0\n", fp);

/* end */

/* solid inside lines */
/* poly line */

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* solid inside lines */
/* poly line */

150

fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[28]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[28]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[10]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[27]);
fputs(" 20\n", fp);
fprintf(fp, ""%f\n", y[27]);
fputs(" 30\n", fp) ;
fputs("0.0\n", fp);

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* solid inside lines */
/* poly line */

/* vertex 1 */

/* coordinate */

/* coordinate */

151

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[5]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[5]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[23]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[23]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[2]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[2]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);

/* fold inside lines */
/* poly line */

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* fold inside lines */
/* poly line */

152

fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[22]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[22]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	/* fold inside lines */
fputs(" 8\n", fp); 	 /* poly line */
fputs ('"0\n"", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	/* coordinate */
fputs(" 30\n", fp)
fputs("0.0\n", fp);

153

fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[12]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[12]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	/* fold inside lines */
fputs(" 8\n", fp); 	 */ poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs (" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[22]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[22]); 	/* coordinate */
fputs(" 30\n", fp);
fputs ("0.0\n'", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[13]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[13]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	/* fold inside lines */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);

fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[26]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[26]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[28]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[28]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[25]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[25]);
fputs(" 30\n", fp)
fputs("0.0\n", fp);

154

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

/* fold inside lines */
/* poly line */

/* vertex 1 */

/* coordinate */

/* coordinate */

155

fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[27]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[27]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp) ; 	/* fold inside lines */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[22]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[22]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	/* fold inside lines */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);

156

fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[16]); 	/* coordinate */
fputs-(" 20\n", fp);
fprintf(fp, "%f\n", y[16]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[19]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[19]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	/* fold inside lines */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[9]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[9]); 	 /* coordinate */
fputs(" 30\n", fp)
fputs("0.0\n", fp);

157

fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[6]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[6]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); 	/* test outside line */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[14]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[14]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[11]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[11]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("ENDSEC\n", fp); 	 /* end section */
fputs(" 0\n", fp);
fputs("EOF\n", fp); 	 /* end of file */

158

fclose(fp); 	 /* close filer */

outtextxy(55, 200, "*** FILE TRANSFER AND DATA
SEQUENCE COMPLETE...PRESS A KEY... ***");

BEEP; 	 /* computer beop */
getch();
cleardevice(); 	 /* clear screen */

menu1(); 	 /* call menu 1 */

/* end dxfparameter1 function */

	

/* 	 */

void dxfparameter2(void)

	

{ 	 /* begin dxfparameter2 function */

outtextxy(155, 100, "DXF VERTEX DATA BEING
GENERATED 	 ");

FILE *fp; 	 /* open filer */

fp = fopen("a:SLD1.DXF", "a"); 	/* adds to DXF file
on a: */

fputs("POLYLINE\n", fp); /* outside geometry begin */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[0]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[0]); 	/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

* solid outside geometry */
/* poly line */

159

fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[6]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[6]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[13]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[13]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[7]);
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[7]);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp);
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /*

/* vertex 1 */

/* coordinate */

/* coordinate */

/* vertex 2 */

/* coordinate */

/* coordinate */

/* end */

solid outside geometry */

160

fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[13]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[13]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[14]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[14]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[7]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[7]); 	/* coordinate */

161

fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[6]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[6]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[12]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[12]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[1]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[1]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */

162

fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[11]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[11]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[2]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[2]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "96f\n", y[10]); 	/* coordinate */

163

fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp)
fputs(" 10\n", fp)
fprintf(fp, "%f\n", x[3]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp) ; /* hidden inside geometry */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs (""0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[9]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[9]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[4]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[4]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */

164

fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[8]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[8]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[5]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[5]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("CIRCLE\n", fp) ; 	 /* circle geometry */
fputs(" 8\n", fp); 	 /* circle */
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[17]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[17]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 40\n", fp);
fprintf(fp, "%f\n", X1);
fputs(" 0\n", fp);
fputs("CIRCLE\n", fp); 	 /* circle geometry */
fputs(" 8\n", fp) ; 	 /* circle */
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[18]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[18]); 	/* coordinate */

165

fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 40\n", fp);
fprintf(fp, "%f\n", X1);
fputs(" 0\n", fp);
fputs("ENDSEC\n", fp); 	 /* end section */
fputs(" 0\n", fp);
fputs("EOF\n", fp); 	 /* end of file */

fclose(fp); 	 /* close filer */

outtextxy(55, 200, "*** FILE TRANSFER AND DATA
SEQUENCE COMPLETE...PRESS A KEY... ***");

BEEP; 	 /* computer beep */
getch();
cleardevice(); 	/* clear screen */

menu1(); 	 /* call menu 1 */

/* end dxfparameter2 function */

/* 	 */

void dxfparameter3(void)

/* begin dxfparameter3 function */

outtextxy(155, 100, "DXF VERTEX DATA BEING
GENERATED 	

FILE *fp; 	 /* open filer */

fp = fopen("a:SLD1.DXF", "a"); 	/* adds to DXF file
on a: */

fputs("POLYLINE\n", fp); /* outside geometry begin */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

166

fputs(" 20\n", fp);
(puts ("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[0]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[0]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1*/
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[19]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[19]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);

167

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[16]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[16]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs (" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[19]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[19]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[20]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[20]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

168

fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[16]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[16]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[15]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[15]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[15]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[15]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);

169

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[14]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[14]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[14]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[14]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[13]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[13]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fg);
fputs("0.0\n", fp);

170

fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[13]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[13]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[12]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[12]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* veretex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[12]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[12]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp)•;
fputs("0\n", fp);

171

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[11]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[11]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[11]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[11]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs (" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[10]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

172

fputs(" 20\n", fp);
(puts ("0.0\n"", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[10]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[9]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[9]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp) ; /* solid outside geometry */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[9]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[9]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);

	

fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);

173

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[8]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[8]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp)
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[8]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[8]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[7]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[7]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

174

fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[7]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[7]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[6]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[6]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[6]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[6]) ; 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);

	

fputs("VERTEX\n", fp) ; 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);

175

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[5]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[5]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[5]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[5]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[4]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[4]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* solid outside geometry */
fputs(" 8\n", fp) ; 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

176

fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[4]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[4]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[18]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[18]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);

177

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[1]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[1]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[17]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[17]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[2]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[2]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

178

fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[16]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[16]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[16]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[16]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);

179

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[13]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[13]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[13]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[13]) ; 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[10]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp) ; 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

180

fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[16]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[16]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[10]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[10]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);

181

fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[9]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[9]) ; 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);
fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[3]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[3]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp) ; 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[6]); 	 /* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[6]); 	 /* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("POLYLINE\n", fp); /* hidden inside geometry */
fputs(" 8\n", fp); 	 /* poly line */
fputs("0\n", fp);
fputs(" 66\n", fp);
fputs(" 	1\n", fp);
fputs(" 10\n", fp);
fputs("0.0\n", fp);

182

fputs(" 20\n", fp);
fputs("0.0\n", fp);
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 1 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[6]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[6]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("VERTEX\n", fp); 	 /* vertex 2 */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 10\n", fp);
fprintf(fp, "%f\n", x[9]); 	/* coordinate */
fputs(" 20\n", fp);
fprintf(fp, "%f\n", y[9]); 	/* coordinate */
fputs(" 30\n", fp);
fputs("0.0\n", fp);
fputs(" 0\n", fp);
fputs("SEQEND\n", fp); 	 /* end */
fputs(" 8\n", fp);
fputs("0\n", fp);
fputs(" 0\n", fp);
fputs("ENDSEC\n", fp); 	 /* end section */
fputs(" 0\n", fp);
fputs("EOF\n", fp); 	 /* end of file */

fclose(fp); 	 /* close filer */

outtextxy(55, 200, "*** FILE TRANSFER AND DATA
SEQUENCE COMPLETE...PRESS A KEY... ***");

BEEP; 	 /* computer beep */
getch();
cleardevice(); 	/* clear screen */

menu1(); 	 /* call menu 1 function */

/* end dxfparameter3 function */

/* 	 */

183

void PromptLine(char *msg) 	 /* print funct. */
{
int height, MaxX = getmaxx(), MaxY = getmaxy();

setcolor(getmaxcolor());
settextstyle(DEFAULT_FONT, HORIZ_DIR, 1);
settextjustify(CENTER_TEXT, TOP TEXT);
height = textheight("H");
bar(0, MaxY-(height+4), MaxX, MaxY);
rectangle(0, MaxY-(height+4), MaxX, MaxY);
outtextxy(MaxX/2, MaxY-(height+2), msg);

#define PORTRAIT 0 	 /* print types */
#define LANDSCAPE 1
#define GREYSCALE 2
int Negative;

int format(double position)

int width = 6;
if(position < 1000.0) width--;
if(position < 100.0) width--;
if(position < 10.0) width--;
return(width);

int Grey_Scale(int scanline, int palette_entry)

int grey = 0;
if(GraphDriver == CGA && GraphMode != CGAHI)

switch(scanline)

case 0: (if(palette_entry & 1)
grey I= 9;

if(palette_entry & 2)
grey I= 6;
break;

case 1: { if(palette_entry & 1)
grey |= 4;

if(palette_entry & 2)
grey I= 11;

} break;
case 2: { if(palette_entry & 1)

grey I= 2;
if(palette_entry & 2)
grey I= 13;

}

 break;
case 3: (if(palette_entry & 1)

grey I= 9;
if(palette_entry & 2)
grey I= 6;

}

 break;

184

}
else

{

 switch(scanline)

case 0: (if(palette_entry & 4)
grey |= 5;
if(palette_entry & 8)

grey |= 10;
break;

case 1: (if(palette_entry & 1)
grey |= 2;
if(palette_entry & 2)

grey I= 8;
if(palette_entry & 8)

grey |= 5;
} break;

case 2: (if(palette_entry & 4)
grey I= 5;
if(palette_entry & 8)

grey |= 10;
} break;

case 3: { if(palette_entry & 2)
grey I= 2;
if(palette_entry & 8)

grey |= 5;
} break;

if(Negative) grey = 0x0F;
return(grey);

void LT Graphic(int Mode)

int i, j, k, p, q, xasp, yasp,
MaxX = getmaxx() + 1,
MaxY = getmaxy() + 1;
static char graph_ends[] = "\x1B*rB";
static char graph_init[] =

"\x1B\x1B&11H\x1B&10\x1B*p0X\x1B*pOY\x1B*t";
double xprint, yprint, prstep, AspR;
char m, resolution[3];

getaspectratio(&xasp, &yasp);
AspR = (double) xasp / (double) yasp;
setviewport(0, 0, MaxX, MaxY, 0);
switch(Mode)

case PORTRAIT: 	 /* portrait case */

xprint = 690.0;
yprint = 500.0;
strcpy(resolution, "100");
prstep = 7.2 / AspR;
fprintf(stdprn, "%s%sR",

graph_init, resolution);

for(j=0; j<=MaxY; j++)

fprintf(stdprn, "\x1B&a%-*.lfh%-*.lfV",
format(xprint), xprint,
format(yprint), yprint);

yprint += prstep;
fprintf(stdprn, "\x1B*r1A\x1B*b%dw,

MaxX/8);
for(i=0; i<=MaxX/8; i++)

m = 0;
for(k=0; k<8; k++)
{
m <<= 1;
if(getpixel(i*8+k, j)) m++;

fprintf(stdprn, "%c", m);
}
fprintf(stdprn, "%s", graph_ends);

}
} break;
case LANDSCAPE: 	 /* landscape case */

xprint = 1000.0;
yprint = 1000.0;
strcpy(resolution, "75");
prstep = 9.6 * AspR;
fprintf(stdprn, "%s%sR",

graph init, resolution);
for(j=0; j<MaxX; j++)

fprintf(stdprn, "x1B&a%-*.1fh%-*.1fV",
format(xprint), xprint,
format(yprint), yprint);

yprint += prstep;
fprintf(stdprn, "\x1B*r1A\x1B*b%dW",

(int) (MaxY+4) / 8);
for(i=0; i<=MaxY/8; i++)

m = 0;
for(k=0; k<8; k++)

m <<= 1;
if(getpixel(MaxX-j, i*8+k)) m++;

}
fprintf(stdprn, "%c", m);

}
fprintf(stdprn, "%s", graph_ends);
}

} break;
case GREYSCALE: 	 /* greyscale case */

xprint = 1000.0;
yprint = 1000.0;

185

186

strcpy(resolution, "300");
prstep = 2.4 * AspR;
fprintf(stdprn, "%s%sR",

graph_init, resolution);
for(j=0; j<=MaxX; j++)
for(p+0; p<4; p++)

fprintf(stdprn, "\x1B&a%-*.1fh%-*.1fV",
format(xprint), xprint,
format(yprint), yprint);

yprint += prstep;
fprintf(stdprn, "\x1B*r1A\x1B*b%dW",

MaxY/2);
for(i=0; i<=MaxY/2; i++

m = 0;
for(k=0; k<<=1; k++)

m <<= 4;

m

 = Grey_Scale(p,
getpixel(MaxX-j, i*2+k));

}
fprintf(stdprn, "%c", m);
}
fprintf(stdprn, "%s", graph_ends);

} 	} 	}
fprintf(stdprn,

"\x0C\x1B&10\x1B(8U\x1B(splOhl2vsb3T\x1B&11H");

void Print Pause(int Invert)

char Ch;
int Done = 0;
if(Invert) Negative = 1; else Negative = 0;
PromptLine(
"Enter <P>ortrait, <L>andscape, <G>reyscale"
" - any other key to exit ...");
while(!Done)

while(kbhit()) getch();
Ch = getch();
switch(toupper(Ch))

case 'P': LJ Graphic(PORTRAIT); break;
case 'L': ITT Graphic(LANDSCAPE); break;
case 'G': LJ Graphic(GREYSCALE); break;
default: Done++;

}

/* 	 */

void drawsqfull(void) 	/* begin drawsqfull function */

187

int backcolor, square[50], d;
setlinestyle(0, 0, 0);
cleardevice();
backcolor = 8;
setbkcolor(backcolor); 	 /* set colors */
setcolor(63);

for(d=0;d<=48;d=d+2) square[d]=cx[d/2];
for(d=1;d<=49;d=d+2) square[d]=cy[(d-1)/2];

drawpoly(25, square); 	 /* draw lines */
line(cx[20], cy[20], cx[25], cy[25]);
line(cx[15], cy[l5], cx[26], cy[26]);
line(cx[27], cy[27], cx[5], cy[5]);
line(cx[28], cy[28], cx[10], cy[10]);
setlinestyle(1, 0, 1); 	 /* set line */
line(cx[19], cy[19], cx[16], cy[16]);
line(cx[6], cy[6], cx[9], cy[9]);
line(cx[23], cy[231, cx[2], cy[2]);
line(cx[22], cy[22], cx[3], cy[3]);
line(cx[25], cy[25], cx[27], cy[27]);
line(cx[26], cy[26], cx[28], cy[28]);
line(cx[22], cy[22], cx[13], cy[13]);
line(cx[3], cy[3], cx[12], cy[12]);
setlinestyle(0, 0, 0); 	 /* set line */

setcolor(58); 	 /* draw text */
outtextxy(cx[33]-13, cy[33], "SIDE");
outtextxy(cx[34]-10, cy[34], "TOP");
outtextxy(cx[31]-13, cy[31], "SIDE");
outtextxy(cx[32]-13, cy[32], "SIDE");
outtextxy(cx[29]-16, cy[29], "SIDE");
outtextxy(cx[30]-23, cy[30]-10, "BOTTOM");
outtextxy(cx[33]-5, cy[26]-10, "X1");
outtextxy(cx[2]+10, 2*cy[2]-10, "X2");
outtextxy(cx[4]+10, cy[32], "X3");
outtextxy(cx[4]+10, cy[33], "X3");
outtextxy(cx[7]+10, cy[30], "X2");

/* screen text */

setcolor(62);
outtextxy(155, 5, "SQUARE STRAIGHT LINE DEVELOPMENT");

setcolor(63);
outtextxy(65, 465, "FULL SCREEN STRAIGHT - LINE

DEVELOPMENT");

optionsgr(); 	 /* call options graphics */
options(); 	 /* call options */

188

/* end drawsqfull */

/* 	 */

void drawtrifull(void) /* begin drawtrifull function */

int backcolor, trishape[50], d;
setlinestyle(0, 0, 0);
cleardevice();
backcolor = 8;
setbkcolor(backcolor);
setcolor(63); 	 /* set color */

for(d=0;d<=40;d=d+2) trishape[d]=cx[d/2];
for(d=1;d<=41;d=d+2) trishape[d]=cy[(d-1)/2];

drawpoly(21, trishape);

setlinestyle(1, 0, 1); 	 /* draw lines */
line(cx[1], cy[1], cx[18], cy[18]);
line(cx[2], cy[2], cx[17], cy[17]);
line(cx[3], cy[3], cx[16], cy[16]);
line(cx[3], cy[3], cx[6], cy[6]);
line(cx[6], cy[6], cx[9], cy[9]);
line(cx[3], cy[3], cx[9], cy[9]);
line(cx[16], cy[16], cx[10], cy[10]);
line(cx[10], cy[10], cx[13], cy[13]);
line(cx[13], cy[13], cx[16], cy[16]);

setcolor(58); 	 /* draw text */
outtextxy(cx[16]+20, cy[16]-25, "TOP");
outtextxy(cx[3]+20, cy[3]+25, "BOTTOM");
outtextxy(cx[1]+10, cy[1]-10, "SIDE");
outtextxy(cx[2]+10, cy[2]-10, "SIDE");
outtextxy(cx[3]+10, cy[3]-10, "SIDE");
outtextxy(cx[10]-10, cy[10]+5, "X1");
outtextxy(cx[17]+10, cy[17]+5, "X2");
outtextxy(cx[18]+10, cy[18]+5, "X2");
outtextxy(cx[17]+5, cy[17]+10, "X1");

outtextxy(cx[9]-10, cy[9]+10, "X2");

setcolor(62); 	 /* set color */
outtextxy(155, 5, "TRIANGULAR STRAIGHT LINE

DEVELOPMENT");

setcolor(63);
outtextxy(65, 465, "FULL SCREEN STRAIGHT - LINE

DEVELOPMENT");

189

optionsgr(); 	 /* call options graphics */
options(); 	 /* call options function */

/* end drawtrifull function */

/*--- */

void exit(void) 	 /* exit program - graphics */

{

closegraph();
printf("THANK YQU FOR USING THE AI-GCPP SOFTWARE..");

/* end exit function */

/* 	 */

void drawcylfull(void)

{ 	 /* open drawcylfull function */

int backcolor, cylinder[50], d;
setlinestyle(0, 0, 0);
cleardevice();
backcolor = 8;
setbkcolor(backcolor);
setcolor(63); 	 /* set color */

for(d=0;d<=28;d=d+2) cylinder[d]=cx[d/2];
for(d=1;d<=29;d=d+2) cylinder[d]=cy[(d-1)/2];

drawpoly(15, cylinder);

setlinestyle(1, 0, 1); 	 /* draw lines */
line(cx[1], cv[1], cx[12], cy[12]);
line(cx[2], cy[2], cx[11], cy[11]);
line(cx[3], cy[3], cx[10], cy[10]);
line(cx[4], cy[4], cx[9], cy[9]);
line(cx[5], cy[5], cx[8], cy[8]);

ellipse(cx[15], cy[15]+50, 0, 360, (cx[17]-cx[15]),
(cx[17]-cx[15]));

ellipse(cx[16], cy[16]+50, 0, 360, (cx[18]-cx[16]),
(cx[18]-cx[16]));

setcolor(58); 	 /* draw text */

190

outtextxy(cx[17]+5, cy[17], "TOP");
outtextxy(cx[18]+5, cy[18], "BOTTOM");
outtextxy(cx[10]+20, cy[10]+10, "SIDE");
outtextxy(ox[17]+5, cy[17]+15, "Xl");
outtextxy(cx[18]+5, cy[18]+15, "X2");
outtextxy(cx[12]+5, cy[12]+10, "X3");
outtextxy(cx[10]+5, cy[10]+10, "X1");

setcolor(62); 	 /* set color text */
outtextxy(155, 5, "CYLINDRICAL STRAIGHT LINE

DEVELOPMENT");

setcolor(63);
outtextxy(65, 465, "FULL SCREEN STRAIGHT - LINE

DEVELOPMENT");

optionsgr(); 	 /* call options graphics */
options(); 	 /* call options function */

/* close drawcylfull function */

/* 	
*/

void helpmenu(void) 	/* begin helpmenu function */

int backgrcol;
cleardevice();
backgrcol = 8;
setbkcolor(backgrcol); 	 /* set color */

setcolor(62);
outtextxy(230, 5, "-- HELP MENU --");

setcolor(58);
outtextxy(5, 70, "1-EXIT");
setcolor(63);
outtextxy(70, 70, "EXITS THE PROGRAM AND RETURNS TO

DOS");
setcolor(58);
outtextxy(5, 90, "2-CLEAR");
outtextxy(5, 120, "3-HELP");
outtextxy(5, 140, "4-PRINT");
outtextxy(5, 160, "5-SLD");
outtextxy(5, 190, "6-OPT-A DXF QUT");
outtextxy(5, 220, "7-OPT-B DXF QUT");
outtextxy(5, 250, "8-OPT-C DXF QUT");
outtextxy(5, 280, "9-FORM 1");
outtextxy(5, 310, "10-FORM 2");
outtextxy(5, 330, "11-FORM 3");
outtextxy(5, 350, "12-FORM 4");

191

outtextxy(5, 370, "13-PRINT P1");
outtextxy(5, 390, "14-PRINT P2");
outtextxy(5, 410, "15-PRINT P3");
outtextxy(5, 430, "16-PRINT P4");

setcolor(63);
outtextxy(70, 90, "CLEARS ALL PARAMETERS AND REFRESHES

THE MAIN MENU");
outtextxy(70, 100, "FOR NEW DATA ");
outtextxy(70, 120, "PROVIDES GENERAL ON-LINE HELP");
outtextxy(70, 140, "PRINTS THE SCREEN WITH A RASTER

SCAN TO A LASERJET");
outtextxy(70, 160, "PROVIDES A FULL SCREEN VIEW OF THE

STRAIGHT LINE");
outtextxy(70, 170, "DEVELOPMENT");
outtextxy(140, 190, "CREATES A DXF FILE TO DISK OF

OPTION A TO BE");
outtextxy(140, 200, "READ BY STANDARD CAD SOFTWARE");
outtextxy(140, 220, "CREATES A DXF FILE TO DISK OF

OPTION B TO BE");
outtextxy(140, 230, "READ BY STANDARD CAD SOFTWARE");
outtextxy(140, 250, "CREATES A DXF FILE TO DISK OF

OPTION C TO BE");
outtextxy(140, 260, "READ BY STANDARD CAD SOFTWARE");
outtextxy(85, 280, "PROVIDES STRAIGHT LINE

DEVELOPMENTS WITH PROCESS");
outtextxy(85, 290, "FORMS");
outtextxy(85, 310, "PROVIDES PROCESS FORMS");
outtextxy(85, 330, "PROVIDES PROCESS FORMS");
outtextxy(85, 350, "PROVIDES PROCESS FORMS");
outtextxy(105, 370, "PRINTS FORM FOR PLAN 1");
outtextxy(105, 390, "PRINTS FORM FOR PLAN 2");
outtextxy(105, 410, "PRINTS FORM FOR PLAN 3");
outtextxy(105, 430, "PRINTS FORM FOR PLAN 4");

optionsgr(); 	 /* call optionsgr function */
options(); 	 /* call options function */

	

} 	 /* close helpmenu function */

	

/* 	 */

void formlprint(void) 	/* open formlprint function */

int backgrcol;
cleardevice();
backgrcol = 8;
setbkcolor(backgrcol);
setcolor(62);
outtextxy(230, 5, "PRINT FORM 1");

192

setcolor(61);
settextstyle(1, 0, 1);
outtextxy(100, 100, "...PRINTING FORM 1 TO LPT1...");

FILE *fp; 	 /* open filer */

	

fp = fopen("LPT1", "w"); 	 /* open printing */

fputs(" \n", fp);
fputs(" \n", fp);
fputs(" 	 ABC INC.\n", fp);
fputs(" 	 NEWARK NJ 07737\n", fp);
fputs(" \n ", fp);
fputs(" \n", fp);
fputs(" 	 PROCESS FORM 1\n", fp);
fputs(" 	 \n", fp);
fputs(" \n", fp);
fputs("\n", fp);
fprintf(fp, " THE GEOMETRY REQUIRED IS: %c\n",

geometry);
fputs(" \n", fp);
fputs(" 	 \n", fp)
fputs(" \n", fp);
fprintf(fp, "THE LENGTH OF X1 IS: %f INCHES\n", X1);
fputs("\n", fp);
fprintf(fp, "THE LENGTH OF X2 IS 	%f INCHES\n", X2);
fputs("\n", fp);
fprintf(fp, "THE LENGTH OF X3 IS 	%f INCHES\n", X3);
fputs("\n", fp);
fputs(" 	 \n", fp);
fputs(" STRAIGHT LINE DEVELOPMENT POINT

COORDINATES\n", fp);
fputs(" 	 \n", fp);
fputs(" POINT 	X COORD 	 Y COORD\n ", fp);
fputs(" 	 \n", fp);
fprintf(fp, " 	1 	%f 	 %f\n", x[1], y[1]);
fprintf(fp, " 	2 	%f 	 %f\n", x[2], y[2]);
fprintf(fp, " 	3 	%f 	 %f\n", x[3], y[3]);
fprintf(fp, " 	4 	%f 	 %f\n", x[4], y[4]);
fprintf(fp, " 	5 	%f 	 %f\n", x[5], y[5]);
fprintf(fp, " 	6 	%f 	 %f\n", x[6], y[6]);
fprintf(fp, " 	7 	%f 	 %f\n", x[7], y[7]);
fprintf(fp, " 	8 	%f 	 %f\n", x[8], y[8]);
fprintf(fp, " 	9 	%f 	 %f\n", x[9], y[9]);
fprintf(fp, " 	10 %f 	 %f\n", x[10], y[10]);
fprintf(fp, " 	11 %f 	 %f\n", x[11], y[11]);
fprintf(fp, " 	12 %f 	 %f\n", x[12], y[12]);
fprintf(fp, " 	13 %f 	 %f\n", x[13], y[13]);
fprintf(fp, " 	14 %f 	 %f\n", x[14], y[14]);
fprintf(fp, " 	15 %f 	 %f\n", x[15], y[15]);
fprintf(fp, " 	16 %f 	 %f\n", x[16], y[16]);
fprintf(fp, " 	17 %f 	 %f\n", x[17], y[17]);
fprintf(fp, " 	18 %f 	 %f\n", x[18], y[18]);
fprintf(fp, " 	19 %f 	 %f\n", x[19], y[19]);

193

fprintf(fp, " 	20 %f 	 %f\n", x[20], y[20]);
fprintf(fp, " 	21 %f 	 %f\n", x[21], y[21]);
fprintf(fp, " 	22 %f 	 %f\n", x[22], y[22]);
fprintf(fp, " 	23 %f 	 %f\n", x[23], y[23]);
fprintf(fp, " 	24 %f 	 %f\n", x[24], y[24]);
fprintf(fp, " 	25 %f 	 %f\n", x[1], y[1]);
fprintf(fp, " 	26 %f 	 %f\n", x[2], y[2]);
fprintf(fp, " 	27 %f 	 %f\n" x[3], y[3]);

fclose(fp); 	 /* close printing */

fprintf(stdprn,
"\x0C\x1B&1C\x1B(8U\x1B(sp10h12vsb3T\x1B&11H");

outtextxy(100, 200, "...PRINT COMPLETE...");
settextstyle(0, 0, 0);
setcolor(63);
outtextxy(200, 300, "SELECT FROM OPTION MENU");

optionsgr(); 	 /* call optionsgr function */
options(); 	 /* call options function */

/* close formlprint function */

/* 	 */

void form2A(void) 	/* begin form2A function */

char Ti, T2, T3, T4, T5, T6, T7;

window(34, 6, 40, 8); 	 /* terms */
printf("STATE TERM: ");
scanf(" %c", &T1);
window(34, 8, 40, 10);
printf("CONDITION: ");
scanf(" %c", &T2);
window(34, 10, 40, 12};
printf("I. INSPECTION: "); 	/* inspection */
scanf(" %c", &T3);
window(34, 12, 40, 14);
printf("INSPECTION CODE: ");
scanf(" %c", &T4);
window(34, 14, 40, 16);
printf("SHIPPING DESTINATION: "); 	/* destination */
scanf(" %c", &T5);
window(34, 16, 40, 18);
printf("METH. OF TRANSPOR. :");
scanf(" %c", &T6) ;
window(34, 18, 40, 20);

194

printf("LOT SIZING: "); 	 /* lot sizing */
scanf(" %c", &T7);

options(); 	 /* call options function */

if(menuoptions==14) 	/* menu options case */

cleardevice();
backgrcol = 8;
setbkcolor(backgrcol);
setcolor(62);
outtextxy(230, 5, "PRINT FORM 1");
setcolor(61);
settextstyle(1, 0, 1);
outtextxy(100, 100, "...PRINTING FORM 1 TO LPT1...");

FILE *fp; 	 /* filer */

fp = fopen("LPT1", "w"); 	 /* open printing */

fputs(" \n", fp);
fputs(" \n", fp);
fputs(" 	 ABC INC.\n", fp);
fputs(" 	 NEWARK NJ 07737\n", fp);
fputs(" \n ", fp);
fputs(" \n", fp);
fputs(" 	 PROCESS FORM 1\n", fp);
fputs(" 	 \n", fp);
fputs(" \n", fp);
fputs("\n", fp);
fprintf(fp, " THE GEOMETRY REQUIRED IS: %c\n",

geometry);
fputs(" \n", fp);
fputs(" 	 \n", fp);
fputs(" \n", fp);
fprintf(fp, "THE LENGTH OF X1 IS: %f INCHES\n", X1);
fputs("\n", fp)
fprintf(fp, "THE LENGTH OF X2 IS 	%f INCHES\n", X2);
fputs("\n", fp);
fprintf(fp, "THE LENGTH OF X3 IS 	%f INCHES\n", X3);
fputs("\n", fp);
fputs(" 	 \n", fp);
fputs(" 	 BID REQUEST FORM\n", fp);
fputs(" 	 \n", fp);
fprintf(fp, "STATE TERM OF CONDITION: ---- %c\n", Ti);
fprintf(fp, "CONDITION:- 	 %c\n", T2);
fprintf(fp, "INCOMMING INSPECTION: 	 %c\n", T3);
fprintf(fp, "INSPECTION CODE: 	 %c\n", T4);
fprintf(fp, "SHIPPING DESTINATION: 	 %c\n", T5);
fprintf(fp, "METHOD OF TRANSPORTATION: 	 %c\n", T6);
fprintf(fp, "LOT SIZING: 	 %c\n", T7);

195

fclose(fp); 	 /* close printing */

fprintf(stdprn,
"\x0C\x1B&1C\x1B(8U\x1B(splOhl2vsb3T\x1B&11H");

outtextxy(100, 200, "...PRINT COMPLETE...");
settextstyle(0, 0, 0);
setcolor(63);
outtextxy(200, 300, "SELECT FROM OPTION MENU");

optionsgr(); 	 /* call optionsgr function */
options(); 	 /* call options function */

/* close if statement */

/* close form2A function */

/* 	 */

/* END OF CODE 	 */

APPENDIX B

AICAPP.CPP GENERATED DESIGNS

SLD1, DXF IMPORTED INTO AUTOCAD 12

196

197

198

199

200

201

202

203

APPENDIX C

OPTION "A" DXF CODE

0
SECTION

2
HEADER
9

$ACADVER
1

AC1009
9

$INSBASE
10
0.0
20

0.0
30

0.0
9

$EXTMIN
10

2.0
20
3.0
30

0.0
9

$EXTMAX
10
10.0
20

9.0
30
0.0
9

$LIMMIN
10
0.0
20
0.0
9

$LIMMAX
10
12.0
20

9.0
9

$ORTHOMODE 	STANDARD 	 $DIMTM

	

70 	 9 	 40
1 	 $CLAYER 	 0.0

	

9 	 8 	 9
$REGENMODE 	0 	 $DIMTXT

	

70 	 9 	 40
1 	 $CELTYPE 	 0.18

	

9 	 6 	 9
$FILLMODE 	BYLAYER 	 $DIMCEN

	

70 	 9 	 40
1 	 $CECOLOR 	 0.09

	

9 	 62 	 9
$QTEXTMODE 	 256 	 $DIMTSZ

	

70 	 9 	 40
0 	 $DIMSCALE 	0.0

	

9 	 40 	 9
$MIRRTEXT 	1.0 	 $DIMTOL

	

70 	 9 	 70
1 	 $DIMASZ 	 0

	

9 	 40 	 9
$DRAGMODE 	0.18 	 $DIMLIM

	

70 	 9 	 70
2 	 $DIMEXO 	 0

	

9 	 40 	 9
$LTSCALE 	 0.0625 	 $DIMTIH

	

40 	 9 	 70

	

1.0 	 $DIMDLI 	 1

	

9 	 40 	 9
$OSMODE 	 0.38 	 $DIMTOH

	

70 	 9 	 70
0 	 $DIMRND 	 1

	

9 	 40 	 9
$ATTMODE 	 0.0 	 $DIMSE1

	

70 	 9 	 70
1 	 $DIMDLE 	 0

	

9 	 40 	 9
$TEXTSIZE 	0.0 	 $DIMSE2

	

40 	 9 	 70

	

0.2 	 $DIMEXE 	 0

	

9 	 40 	 9
$TRACEWID 	0.18 	 $DIMTAD

	

40 	 9 	 70
0.05 	 $DIMTP 	 0

	

9 	 40 	 9
$TEXTSTYLE 	0.0 	 $DIMZIN

	

7 	 9 	 70

204

205

O $DIMSAH 	 0 	 0.000000000

	

9 	 70 	 9 	 0
$DIMBLK 	 0 	 $AUPREC 	 9

	

1 	 9 	 70 	 $TDUSRTIMER
$DIMBLK1 	 0 	 40

	

9 	 1 	 9 	 0.000000000
$DIMASO 	 $MENU 	 0

	

70 	 9 	 1 	 9
1 	 $DIMBLK2 	acad 	 $USRTIMER

	

9 	 1 	 9 	 70
$DIMSHO 	 $ELEVATION 	 1

	

70 	 9 	 40 	 9
1 	 $DIMSTYLE 	0.0 	 $ANGBASE

	

9 	 2 	 9 	 50
$DIMPOST 	*UNNAMED 	$PELEVATION 	0.0

	

1 	 9 	 40 	 9
$DIMCLRD 	0.0 	$ANGDIR

	

9 	 70 	 9 	 70
$DIMAPOST 	 0 	 $THICKNESS 	 0

	

1 	 9 	 40 	 9
$DIMCLRE 	0.0 	 $PDMODE

	

9 	 70 	 9 	 70
$DIMALT 	 0 	 $LIMCHECK 	 0

	

70 	 9 	 70 	 9
O $DIMCLRT 	 0 	 $PDSIZE

	

9 	 70 	 9 	 40
$DIMALTD 	 0 	 $BLIPMODE 	0.0

	

70 	 9 	 70 	 9
2 	 $DIMTFAC 	 1 	 $PLINEWID

	

9 	 40 	 9 	 40
$DIMALTF 	1.0 	 $CHAMFERA 	0.0

	

40 	 9 	 40 	 9
25.4 	 $DIMGAP 	 0.0 	 $COORDS

	

9 	 40 	 9 	 70
$DIMLFAC 	0.09 	 $CHAMFERB 	 1

	

40 	 9 	 40 	 9

	

1.0 	 $LUNITS 	 0.0 	 $SPLFRAME

	

9 	 70 	 9 	 70
$DIMTOFL 	 2 	 $SKPOLY 	 0

	

70 	 9 	 70 	 9
O $LUPREC 	 0 	 $SPLINETYPE

	

9 	 70 	 9 	 70
$DIMTVP 	 4 	 $TDCREATE 	 6

	

40 	 9 	 40 	 9

	

0.0 	 $SKETCHINC 	2449494.982 	$SPLINESEGS

	

9 	 40 	 737152 	 70
$DIMTIX 	 0.1 	 9 	 8

	

70 	 9 	 $TDUPDATE 	 9
O $FILLETRAD 	40 	 $ATTDIA

	

9 	 40 	 2449494.982 	70
$DIMSOXD 	0.0 	 737152 	 0

	

70 	 9 	 9 	 9
O $AUNITS 	 $TDINDWG 	$ATTREQ

	

9 	 70 	 40 	 70

206

1 	 1.0 	 0.0 	 20

	

9 	 30 	 9 	 1.000000E+2
$HANDLING 	0.0 	 $USERR2 	 0

	

70 	 9 	 40 	 30
0 	 $PUCSNAME 	0.0 	 1.000000E+2

	

9 	 2 	 9 	 0
$HANDSEED 	 $USERR3 	 9

	

5 	 9 	 40 	 $PEXTMAX
0 	 $PUCSORG 	 0.0 	 10

	

9 	 10 	 9 	 -
$SURFTAB1 	0.0 	 $USERR4 	 1.000000E+2

	

70 	 20 	 40 	 0
6 	 0.0 	 0.0 	 20

	

9 	 30 	 9 	 -
$SURFTAB2 	0.0 	 $USERR5 	 1.000000E+2

	

70 	 9 	 40 	 0
6 	 $PUCSXDIR 	0.0 	 30

	

9 	 10 	 9 	 -
$SURFTYPE 	1.0 	 $WORLDVIEW 	1.000000E+2

	

70 	 20 	 70 	 0
6 	 0.0 	 1 	 9

	

9 	 30 	 9 	 $PLIMMIN
$SURFU 	 0.0 	 $SHADEDGE 	 10

	

70 	 9 	 70 	 0.0
6 	 $PUCSYDIR 	 3 	 20

	

9 	 10 	 9 	 0.0
$SURFV 	 0.0 	 $SHADEDIF 	 9

	

70 	 20 	 70 	 $PLIMMAX
6 	 1.0 	 70 	 10

	

9 	 30 	 9 	 12.0
$UCSNAME 	 0.0 	 $TILEMODE 	 20

	

2 	 9 	 70 	 9.0
$USERI1 	 1 	 9

	

9 	 70 	 9 	 $UNITMODE
$UCSORG 	 0 	 $MAXACTVP 	 70

	

10 	 9 	 70 	 0

	

0.0 	 $USERI2 	 16 	 9

	

20 	 70 	 9 	 $VISRETAIN

	

0.0 	 0 	 $PINSBASE 	 70

	

30 	 9 	 10 	 0

	

0.0 	 $USERI3 	 0.0 	 9

	

9 	 70 	 20 	 $PLINEGEN
$UCSXDIR 	 0 	 0.0 	 70

	

10 	 9 	 30 	 0

	

1.0 	 $USERI4 	 0.0 	 9

	

20 	 70 	 9 	 $PSLTSCALE

	

0.0 	 0 	 $PLIMCHECK 	70

	

30 	 9 	 70 	 1

	

0.0 	 $USERI5 	 0 	 9

	

9 	 70 	 9 	 $TREEDEPTH
$UCSYDIR 	 0 	 $PEXTMIN 	 70

	

10 	 9 	 10 	 3020

	

0.0 	 $USERR1 	 1.000000E+2 	9

	

20 	 40 	 0

$DWGCODEPAG 	27 	 40 	 70
E 	 0.0 	 0.0 	 0

	

3 	 37 	 0 	 0
ascii 	 0.0 	 ENDTAB 	 ENDTAB
O 40 	 0 	 0

ENDSEC 	 9.0 	 TABLE 	 TABLE
O 41 	 2 	 2

SECTION 	 1.387409 	LAYER 	 UCS

	

2 	 42 	 70 	 70
TABLES 	 50.0 	 1 	 0
O 43 	 0 	 0

TABLE 	 0.0 	 LAYER 	 ENDTAB

	

2 	 44 	 2 	 0
VPORT 	 0.0 	 0 	 TABLE

	

70 	 50 	 70 	 2
2 	 0.0 	 0 	 APPID

O 51 	 62 	 70
VPORT 	 0.0 	 7 	 1

	

2 	 71 	 6 	 0
*ACTIVE 	 0 	 CONTINUQUS 	APPID

	

70 	 72 	 0 	 2
0 	 100 	 ENDTAB 	 ACAD

	

10 	 73 	 0 	 70

	

0.0 	 1 	 TABLE 	 64

	

20 	 74 	 2 	 0

	

0.0 	 1 	 STYLE 	 ENDTAB

	

11 	 75 	 70 	 0

	

1.0 	 0 	 1 	 TABLE

	

21 	 76 	 0 	 2

	

1.0 	 0 	 STYLE 	 DIMSTYLE

	

12 	 77 	 2 	 70
6.243341 	 0 	 STANDARD 	 0

	

22 	 78 	 70 	 0

	

4.5 	 0 	 0 	 ENDTAB

	

13 	 0 	 40 	 0

	

0.0 	 ENDTAB 	 0.0 	 ENDSEC

	

23 	 0 	 41 	 0

	

0.0 	 TABLE 	 1.0 	 SECTION

	

14 	 2 	 50 	 2

	

1.0 	 LTYPE 	 0.0 	 BLOCKS

	

24 	 70 	 71 	 0

	

1.0 	 1 	 0 	 ENDSEC

	

15 	 0 	 42 	 0

	

0.0 	 LTYPE 	 0.2 	 SECTION

	

25 	 2 	 3 	 2

	

0.0 	 CONTINUOUS 	txt 	 ENTITIES

	

16 	 70 	 4 	 0

	

0.0 	 64 	 POLYLINE

	

26 	 3 	 0 	 8

	

0.0 	 Solid line 	ENDTAB 	 0

	

36 	 72 	 0 	 66

	

1.0 	 65 	 TABLE 	 1

	

17 	 73 	 2 	 10

	

0.0 	 0 	 VIEW 	 0.0

207

208

	

20 	 10 	 20 	 10

	

0.0 	 3.000000 	 0.0 	 4.000000

	

30 	 20 	 30 	 20

	

0.0 	 1.500000 	 0.0 	 3.500000
O 30 	 0 	 30

VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
2.500000 	 0 	 3.000000 	 0

	

20 	 0 	 20 	 0
0.000000 	 POLYLINE 	 2.500000 	 POLYLINE

	

30 	 8 	 30 	 8

	

0.0 	 0 	 0.0 	 0
O 66 	 0 	 66

VERTEX 	 1 	 VERTEX 	 1

	

8 	 10 	 8 	 10
0 	 0.0 	 0 	 0.0

	

10 	 20 	 10 	 20
2.500000 	 0.0 	 4.000000 	 0.0

	

20 	 30 	 20 	 30
1.500000 	 0.0 	 2.500000 	 0.0

	

30 	 0 	 30 	 0

	

0.0 	 VERTEX 	 0.0 	 VERTEX
O 8 	 0 	 8

SEQEND 	 0 	 SEQEND 	 0

	

8 	 10 	 8 	 10
O 3.000000 	 0 	 4.000000

O 20 	 0 	 20
POLYLINE 	 1.500000 	 POLYLINE 	 3.500000

	

8 	 30 	 8 	 30
O 0.0 	 0 	 0.0

	

66 	 0 	 66 	 0
1 	 VERTEX 	 1 	 VERTEX

	

10 	 8 	 10 	 8
O.0 	 0 	 0.0 	 0

	

20 	 10 	 20 	 10

	

0.0 	 3.000000 	 0.0 	 3.000000

	

30 	 20 	 30 	 20

	

0.0 	 2.500000 	 0.0 	 3.500000
O 30 	 0 	 30

VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
2.500000 	 0 	 4.000000 	 0

	

20 	 0 	 20 	 0
1.500000 	 POLYLINE 	 2.500000 	 POLYLINE

	

30 	 8 	 30 	 8

	

0.0 	 0 	 0.0 	 0
O 66 	 0 	 66

VERTEX 	 1 	 VERTEX 	 1

	

8 	 10 	 8 	 10
O 0.0 	 0 	 0.0

209

	

20 	 10 	 0 	 30

	

0.0 	 1.000000 	 VERTEX 	 0.0

	

30 	 20 	 8 	 0

	

0.0 	 4.500000 	 0 	 SEQEND
O 30 	 10 	 8

VERTEX 	 0.0 	 1.000000 	 0

	

8 	 0 	 20 	 0
O POLYLINE 	 3.500000 	 POLYLINE

	

10 	 8 	 30 	 8
3.000000 	 0 	 0.0 	 0

	

20 	 66 	 0 	 66
3.500000 	 1 	 VERTEX 	 1

	

30 	 10 	 8 	 10

	

0.0 	 0.0 	 0 	 0.0
O 20 	 10 	 20

VERTEX 	 0.0 	 0.000000 	 0.0

	

8 	 30 	 20 	 30
O 0.0 	 3.500000 	 0.0

	

10 	 0 	 30 	 0
3.000000 	 VERTEX 	 0.0 	 VERTEX

	

20 	 8 	 0 	 8
4.500000 	 0 	 SEQEND 	 0

	

30 	 10 	 8 	 10

	

0.0 	 1.000000 	 0 	 0.000000
O 20 	 0 	 20

SEQEND 	 4.500000 	 POLYLINE 	 2.500000

	

8 	 30 	 8 	 30
O 0.0 	 0 	 0.0

O 0 	 66 	 0
POLYLINE 	 VERTEX 	 1 	 VERTEX

	

8 	 8 	 10 	 8
O 0 	 0.0 	 0

	

66 	 10 	 20 	 10
1 	 1.000000 	 0.0 	 1.000000

	

10 	 20 	 30 	 20

	

0.0 	 3.500000 	 0.0 	 2.500000

	

20 	 30 	 0 	 30

	

0.0 	 0.0 	 VERTEX 	 0.0

	

30 	 0 	 8 	 0

	

0.0 	 SEQEND 	 0 	 SEQEND
O 8 	 10 	 8

VERTEX 	 0 	 0.000000 	 0

	

8 	 0 	 20 	 0
O POLYLINE 	 3.500000 	 POLYLINE

	

10 	 8 	 30 	 8
3.000000 	 0 	 0.0 	 0

	

20 	 66 	 0 	 66
4.500000 	 1 	 VERTEX 	 1

	

30 	 10 	 8 	 10

	

0.0 	 0.0 	 0 	 0.0

	

0 	 20 	 10 	 20
VERTEX 	 0.0 	 0.000000 	 0.0

	

8 	 30 	 20 	 30
O 0.0 	 2.500000 	 0.0

210

O 30 	 0 	 30
VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
1.000000 	 0 	 1.500000 	 0

	

20 	 0 	 20 	 0
2.500000 	 POLYLINE 	 0.00000C 	 POLYLINE

	

30 	 8 	 30 	 8

	

0.0 	 0 	 0.0 	 0
O 66 	 0 	 66

VERTEX 	 1 	 VERTEX 	 1

	

8 	 10 	 8 	 10
O 0.0 	 0 	 0.0

	

10 	 20 	 10 	 20
1.000000 	 0.0 	 2.500000 	 0.0

	

20 	 30 	 20 	 30
1.500000 	 0.0 	 0.000000 	 0.0

	

30 	 0 	 30 	 0

	

0.0 	 VERTEX 	 0.0 	 VERTEX
O 8 	 0 	 8

SEQEND 	 0 	 SEQEND 	 0

	

8 	 10 	 8 	 10
O 1.500000 	 0 	 1.000000

O 20 	 0 	 20
POLYLINE 	 1.500000 	 POLYLINE 	 2.500000

	

8 	 30 	 8 	 30
O 0.0 	 0 	 0.0

	

66 	 0 	 66 	 0
1 	 VERTEX 	 1 	 VERTEX

	

10 	 8 	 10 	 8

	

0.0 	 0 	 0.0 	 0

	

20 	 10 	 20 	 10
O.0 	 1.500000 	 0.0 	 1.500000

	

30 	 20 	 30 	 20

	

0.0 	 0.000000 	 0.0 	 2.500000
O 30 	 0 	 30

VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
1.000000 	 0 	 1.000000 	 0

	

20 	 0 	 20 	 0
1.500000 	 POLYLINE 	 3.500000 	 POLYLINE

	

30 	 8 	 30 	 8

	

0.0 	 0 	 0.0 	 0
O 66 	 0 	 66

VERTEX 	 1 	 VERTEX 	 1

	

8 	 10 	 8 	 10
O 0.0 	 0 	 0.0

	

10 	 20 	 10 	 20
1.500000 	 0.0 	 1.500000 	 0.0

	

20 	 30 	 20 	 30
1.500000 	 0.0 	 3.500000 	 0.0

211

O 30 	 0 	 30
VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
2.500000 	 0 	 1.500000 	 0

	

20 	 0 	 20 	 0
3.500000 	 POLYLINE 	 1.50000G 	 POLYLINE

	

30 	 8 	 30 	 8

	

0.0 	 0 	 0.0 	 0
O 66 	 0 	 66

VERTEX 	 1 	 VERTEX 	 1

	

8 	 10 	 8 	 10
O 0.0 	 0 	 0.0

	

10 	 20 	 10 	 20
3.000000 	 0.0 	 2.500000 	 0.0

	

20 	 30 	 20 	 30
3.500000 	 0.0 	 1.500000 	 0.0

	

30 	 0 	 30 	 0

	

0.0 	 VERTEX 	 0.0 	 VERTEX
O 8 	 0 	 8

SEQEND 	 0 	 SEQEND 	 0

	

8 	 10 	 8 	 10
O 1.500000 	 0 	 1.500000

O 20 	 0 	 20
POLYLINE 	 0.500000 	 POLYLINE 	 1.500000

	

8 	 30 	 8 	 30
O 0.0 	 0 	 0.0

	

66 	 0 	 66 	 0
1 	 VERTEX 	 1 	 VERTEX

	

10 	 8 	 10 	 8
O.0 	 0 	 0.0 	 0

	

20 	 10 	 20 	 10

	

0.0 	 2.500000 	 0.0 	 1.500000

	

30 	 20 	 30 	 20

	

0.0 	 0.500000 	 0.0 	 4.500000
O 30 	 0 	 30

VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
2.500000 	 0 	 2.500000 	 0

	

20 	 0 	 20 	 0
2.500000 	 POLYLINE 	 1.500000 	 POLYLINE

	

30 	 8 	 30 	 8

	

0.0 	 0 	 0.0 	 0
O 66 	 0 	 66

VERTEX 	 1 	 VERTEX 	 1

	

8 	 10 	 8 	 10
O 0.0 	 0 	 0.0

	

10 	 20 	 10 	 20
3.000000 	 0.0 	 2.500000 	 0.0

	

20 	 30 	 20 	 30
2.500000 	 0.0 	 4.500000 	 0.0

212

O 30 	 0 	 30
VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
1.500000 	 0 	 0.500000 	 0

	

20 	 0 	 20 	 0
3.500000 	 POLYLINE 	 3.500000 	 POLYLINE

	

30 	 8 	 30 	 8

	

0.0 	 0 	 0.0 	 0
O 66 	 0 	 66

VERTEX 	 1 	 VERTEX 	 1

	

8 	 10 	 8 	 10
O 0.0 	 0 	 0.0

	

10 	 20 	 10 	 20
2.500000 	 0.0 	 0.500000 	 0.0

	

20 	 30 	 20 	 30
3.500000 	 0.0 	 2.500000 	 0.0

	

30 	 0 	 30 	 0

	

0.0 	 VERTEX 	 0.0 	 VERTEX
O 8 	 0 	 8

SEQEND 	 0 	 SEQEND 	 0

	

8 	 10 	 8 	 10
O 1.500000 	 0 	 1.000000

O 20 	 0 	 20
POLYLINE 	 1.500000 	 POLYLINE 	 4.500000

	

8 	 30 	 8 	 30
O 0.0 	 0 	 0.0

	

66 	 0 	 66 	 0
1 	 VERTEX 	 1 	 VERTEX

	

10 	 8 	 10 	 8

	

0.0 	 0 	 0.0 	 0

	

20 	 10 	 20 	 10

	

0.0 	 2.500000 	 0.0 	 3.000000

	

30 	 20 	 30 	 20

	

0.0 	 1.500000 	 0.0 	 4.500000
O 30 	 0 	 30

VERTEX 	 0.0 	 VERTEX 	 0.0

	

8 	 0 	 8 	 0
O SEQEND 	 0 	 SEQEND

	

10 	 8 	 10 	 8
1.500000 	 0 	 3.500000 	 0

	

20 	 0 	 20 	 0
2.500000 	 POLYLINE 	 3.500000 	 ENDSEC

	

30 	 8 	 30 	 0
O.0 	 0 	 0.0 	 EOF

O 66 	 0
VERTEX 	 1 	 VERTEX

	

8 	 10 	 8
O 0.0 	 0

	

10 	 20 	 10
2.500000 	 0.0 	 3.500000

	

20 	 30 	 20
2.500000 	 0.0 	 2.500000

REFERENCES

"AI Aces for Manufacturing." June 1993. Manufacturing
Engineering. 28.

Beerel, Annabel C. 1987. Expert Systems: Strategic
Implications and Applications. New York: John Wiley
and Sons.

Biondo, Samuel J. 1990. Fundamentals Of Expert Systems
Technology: Principles And Concepts. Norwood, New
Jersey: Ablex Publishing Company.

Blake, P.L. 1980. Advanced Manufacturing Technology.
New York: North Holland Publishing Company.

Bray, Olin H. 1988. CIM, Computer Integrated Manufacturing:
The Data Management Strategy. New York: Hamilton Printing
Company.

Brookshear, Glenn J. 1991. Computer Science: An Overview.
3rd ed. Redwood City, California: The Benjamin/Cummings
Publishing Company.

Chang, Tien-Chien, Richard A. Wysk, and Hsu-Pin Wang. 1991.
Computer-Aided Manufacturing. Englewood Cliffs, NJ:
Prentice-Hall.

De, Suranjan. 1988. "Knowledge Representation in
Manufacturing Systems." Expert Systems: Strategies and
Solutions in Manufacturing Design and Planning. Ed.
Andrew Kusiak.Dearborne, Mich: SME Publications
Development Department. 79-105.

"Exercising Expert Systems." October 1993. Manufacturing
Engineering. 27-28.

Foston, Arthur L., Carolena L. Smith, and Tony Au. 1991.
Fundamentals of Computer Integrated Manufacturing.
Englewood Cliffs, NJ: Prentice-Hall.

Frenzel, Louis E. 1987. Understanding Expert Systems.
Indianapolis, Indiana: Howard W. Sams & Company.

Grover, Mikell P. 1980. Automation, Production Systems, and
Computer Integrated Manufacturing. Englewood Cliffs,
NJ: Prentice-Hall.

213

214

REFERENCES
(Continued)

Hart, Anna. 1986. Knowledge Acquisition for Expert Systems.
New York: McGraw-Hill Book Company.

Karel, Gerald, and Martin Kenner. 1991. "Klue: A Diagnostic
Expert System Tool for Manufacturing." Handbook of
Expert Systems in Manufacturing. Ed. Rex Maus and
Jessica Keyes. New York: McGraw-Hill. 300-313.

Krakauer, Jake. 1987. Smart Manufacturing with Artificial
Intelligence. Dearborn, Michigan: Computer and
Automated Systems Association of SME.

Kusiak, Andrew. 1989. "Knowledge-Based Group Technology."
Artificial Intelligence-Manufacturing Theory and
Practice. Ed. Soundar T. Kumara, Kasyap L. Rangasami,
and Allen L. Soyster. Atlanta, Georgia: Industrial
Engineering and Management Press. 259-296.

Logan, Frank A. 1985. "Process Planning-The Vital Link
Between Design and Manufacture." CAPP-Computer Aided
Process Planning. Ed. Joseph Tulkoff. Dearborn, Michigan:
Computer and Automated Systems Association of SME. 18-31.

Milner, D.A., and V.C. Vasiliou. 1987. Computer Aided
Engineering for Manufacture. New York: McGraw-Hill.

Steudel, Harold J. 1985. "Computer Aided Process Planning."
CAPP-Computer Aided Process Planning. Ed. Joseph
Tulkoff. Dearborn, Michigan: Computer and Automated
Systems Association of SME. 3-13.

Wang, Hsu-Pin and Jian-kang Li. 1991. Computer-Aided Process
Planning. New York: Elsevier Science Publishing.

Wang, Hsu-Pin and R.A. Wysk. 1989. "Expert Systems Methods
for Process Planning." Artifical Intelligence-
Manufacturing Theory and Practice. Ed. Soundar T.
Kumara, Kashyap L.Rangasami, and Allen L. Soyster.
Atlanta, Georgia: Industrial Engineering and
Management Press. 535-562.

	An investigation into artificial intelligence based generative computer process planning
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: The Process Planning Function
	Chapter 2: Knowledge Engineering in Generative Computer Process Planning
	Chapter 3: Artificial Intelligence and Generative Computer Process Planning
	Chapter 4: Group Technology for AI Process Planning Systems
	Chapter 5: CAD/CAM and Generative Computer Process Planning
	Chapter 6: Software Designed for Thesis
	Chapter 7: Linking Thesis Software to Other Manufacturing Functions
	Chapter 8: Conclusion
	Appendix A: AICAPP.CPP Source Code
	Appendix B: AICAPP.CPP Generated Designs
	Appendix C: Option "A" DXF Code
	References

	List of Figures

