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Figure 4.4 FTIR spectra of (a) MWCNT, (b) f-MWCNT, and (c) Fe-MWCNT. 

 

4.3.2 Arsenic Removal and its Kinetics   

The arsenic removal capacity of Fe-MWCNT was compared to those of the original 

multiwall carbon nanotubes (MWCNT) and functionalized multiwall carbon nanotubes 

(f-MWCNT). The adsorption capacity for arsenic shown by Fe-MWCNT for both As(III) 

and As(V) (1723 µg g
-1

 and 189 µg g
-1

, respectively) was much higher than the values 

obtained for MWCNT (10 µg g
-1

 and 23 µg g
-1

, respectively) and f-MWCNT (3 µg g
-1

 

and 9 µg g
-1

, respectively).  The adsorption capacity for As(III) and As(V) using Fe-

MWCNT was also found to be higher than that for iron coated sand (Thirunavukkarasu et 

al., 2003, Gupta et al., 2005), ferrihydrite, and hardened paste of Portland cement (Kundu 
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                                                    (4.5) 

 

where qm (μg/g) is the maximum sorption capacity for monolayer coverage of the 

adsorbent, Ce (μg/L) is the equilibrium concentration of arsenic and the Langmuir 

constant b (L/μg) is indirectly related to the enthalpy of adsorption. The linearized form 

of the Freundlich isotherm involves a plot of log qe and log Ce with n and log kf being the 

slope and y-intercept, respectively. 

 

                                                        (4.6) 

 

The Freundlich constants kf and 1/n measure the adsorption capacity and intensity, 

respectively. The bond energy increases proportionally with surface density for n<1 and 

vice a versa for n>1.   

The Langmuir isotherm parameters presented in Table 4.2 indicate a high 

maximum sorption capacity for monolayer adsorption (qm) for the adsorbent in the 

removal of As(III). The adsorption of As(III) and As(V) fit both the Langmuir and 

Freundlich equations; however, the coefficient of determination (R
2
) value for the 

Freundlich model in both instances were higher than that of the Langmuir equation.  

Hence the Freundlich isotherm model effectively explained the removal of As(III) and 

As(V) by the adsorbent with coefficient of determination (R
2
) values of 0.9907 and 

0.9997, respectively.  
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Table 4.2. Adsorption Isotherm Parameters for the Removal of As(III) and As(V) by Fe-

MWCNT      

 Langmuir Freundlich 

 qm (μg g
-1

) b (L μg
-1

) R
2
 kf (L μg

-1
) n R

2
 

As(III) 1723 0.013 0.9899 21.89 1.181 0.9907 

As(V) 189 0.373 0.9900 50.83 1.946 0.9997 
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Figure 4.6 (a) Kinetic and (b) equilibrium data at pH 4 for As(III) and As(V) adsorption 

by Fe-MWCNT.  

 

The Freundlich constants log kf and n were obtained from the y-intercept and 

slope, respectively. The constants kf  (mg g
-1

) and 1/n  provide a measure of adsorption 

capacity and intensity, respectively are presented in Table 4.2. The bond energy increases 

proportionally with surface density for n<1 and vice a versa for n>1 (Freundlich, 1906). 

The adsorption capacity for the adsorbent in As(V) removal was much higher than 

As(III) as was the intensity. The Freundlich isotherm model effectively explained the 

removal of As(V) by the adsorbent with a coefficient of determination of 0.9995. The 

value of the constant 1/n (0 – 1) is also indicative of the heterogeneity of the adsorbent 
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surface, with 1/n closer to 0 implying a heterogeneous surface. The kinetic and 

equilibrium data at pH 4 for As(III) and As(V) adsorption are shown in Figure 4.6.   

 

4.3.4 Effect of Temperature on Arsenic Removal 

The effect of temperature on arsenic removal efficiency was investigated at pH 4, 1 g L
-1

 

adsorbent dose, 180 rpm agitation, and 1 hr and 12 hrs equilibration time for As(V) and 

As(III), respectively. The temperature was varied from 28°C to 40°C. It was found that 

Arsenic removal efficiency was fairly constant over the temperature range. A plot of 

arsenic removal versus temperature is presented in Figure 4.7. A study using Fe
3+

- 

impregnated granular activated carbon (GAC) reported a decrease in arsenic As(III) and 

As(V) removal efficiency with increasing temperature from (30 to 60) °C (Mondal et al., 

2007) but the decrease did not seem substantial. 
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Figure 4.7 Arsenic removal efficiency as a function of temperature. 
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4.4 Conclusions 

The iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid was effective as a 

sorbent material for arsenic removal from water. Controlled assembly of iron oxide was 

possible and the MWCNT served as an effective support for the oxide. The kinetics of 

As(III) and As(V) removal was explained by the pseudo-second order rate equation and 

their adsorption by the Langmuir and Freundlich models.  It is conceivable that MWCNT 

with appropriate surface modification can provide a platform for developing potentially 

useful environmental remediation tools. 
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CHAPTER 5 

ADSORPTION OF ARSENIC ON MULTIWALL CARBON NANOTUBE–

ZIRCONIA NANOHYBRID FOR POTENTIAL DRINKING WATER 

PURIFICATION 

 

Zirconium oxides/hydroxides have been extensively investigated as adsorbents for the 

removal of cationic and anionic pollutants from water.  They have been shown to be 

effective in the removal of dyes, fluoride, uranium (IV), phosphate, mercury, and 

selenium (Zheng et al., 2009).   While iron oxides represent some of the most common 

sorbents for As removal (Mohan and Pittman Jr, 2007, Liu et al., 2012), the potential for 

using zirconium based compounds is also being investigated. Preliminary investigations 

using zirconium loaded materials such as activated charcoal, porous resin, chelating resin 

with lysine-Na and orange waste, have shown promising results for As removal (Zheng et 

al., 2009). In general, for use as an environmental adsorbent, zirconium needs to be 

impregnated or loaded on a support because it has poor physical properties and moreover 

this also lowers the overall cost of this expensive material. Therefore, the development of 

effective support materials is of utmost importance.  

Effective arsenic removal with iron oxide coated MWCNT has been previously 

reported as discussed in Chapter 4 (Mishra and Ramaprabhu, 2010, Addo Ntim and 

Mitra, 2011). Here the iron oxides were protonated forming OH2
+
 groups on the 

adsorbent surface at low pH values, and the arsenic species were removed by covalent 

ligand exchange. Zirconia coated multiwall carbon nanotubes synthesized in our 

laboratory have shown excellent efficiency for fluoride removal from water with sorption 

capacity significantly higher than other conventional sorbents (Ramamurthy et al., 2011). 
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It is anticipated that Zirconium oxide supported on MWCNT may remove arsenic species 

through a synergistic combination of chemisorption and physisorption.  

The objective here was to study the adsorption capacity of a MWCNT–Zirconia 

nanohybrid in the removal of arsenite and arsenate from water to meet drinking water 

standards. 

 

5.1 Synthesis and Characterization of MWCNT-ZrO2 

The MWCNT was functionalized in a Microwave Accelerated Reaction System (Mode: 

CEM Mars) fitted with internal temperature and pressure controls according to an 

experimental procedures detailed in Section 4.1. This product (f-MWCNT) was used in 

the subsequent synthesis of the MWCNT-ZrO2 composite.  

The MWCNT-ZrO2 hybrid was synthesized by dispersing a weighed amount of 

the f-MWCNT in 0.008M ZrOCl2 (Anand et al., 2011). The reaction was carried out in a 

Microwave Accelerated Reaction System (Mode: CEM Mars) fitted with internal 

temperature and pressure controls at 150
 o

C for 1 hr.  The product was vacuum filtered 

through a 10 μm membrane filter paper and thoroughly washed with DI water until all the 

unreacted ZrOCl2·8H2O was removed. The resultant product was dried in a vacuum oven 

at 80 
o
C for 12 hrs. 

The MWCNT-ZrO2 was characterized using a scanning electron microscope 

(SEM) fitted with an Energy Dispersive X-ray spectrometer (EDS), Thermogravimetric 

analysis (TGA), X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy 

(FTIR) and BET surface area. SEM Data was collected on a LEO 1530 VP Scanning 

Electron Microscopy equipped with an energy-dispersive X-ray analyzer, which was used 
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in collecting EDS data. TGA was performed using a Pyris 1 TGA from Perkin-Elmer Inc 

from 30 °C to 900 °C under a flow of air at 10 mL min
-1

, at a heating rate of 10 °C per 

min. X-ray diffraction (XRD) was performed on a Philips X’Pert PW30 0-MPD 

(Netherlands) diffractometer using Cu Kα radiation  (λ = 1.5406 Å) at 25 °C. FTIR 

measurements were carried out in purified KBr pellets using a Perkin-Elmer (Spectrum 

One) instrument. Specific surface area, micropore volume, and average pore radius were 

measured using Quantachrome NOVA 3000 series (Model N32-11) High Speed Gas 

Sorption Analyzer at 77.40 K. Before each experiment, the samples were heated at 200°C 

and degassed at this temperature until constant vacuum for four hours. pH of Point of 

Zero Charge (pHpzc) was determined based on a previously published procedure (Chen 

et al., 2007a). 

 

5.2 Adsorption Studies 

Stock and working solutions of As (III) and As (V) were prepared according to 

procedures detailed in Section 4.2 of Chapter 4. 10 ml of 100μg l
-1

 arsenic solution [As 

(III) and As (V)] was contacted with 0.01 g of the adsorbent in a series of conical flasks 

at pHs ranging between 5 and 8, and samples were collected at 5, 10, 15, 30, and 45 min 

1, 3, 6, 12, 15 and 24 h for kinetic studies. Equilibrium contact time and pH were 

determined to be 6 h and pH 6, respectively. The mass of the adsorbent was varied from 

0.01 to 0.1 g in the isothermal adsorption studies at pH 6 for 6 hours. The arsenic 

solutions and the adsorbents were mixed thoroughly at a speed of 175 rpm on a platform 
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shaker, (Labsystems Wellmix). The mixture was filtered through a 0. 5μm membrane 

syringe filter.  

Residual Arsenic was measured using Agilent 7500 ICP-MS. All standards were 

prepared from multi-element solution 2A, 10 mg/L (Spex Certiprep) with addition of 

internal standard mix (Li6, Ge, Y, In, Tb, Bi). Buffer solution was used for all dilutions. 

Multi-element instrument calibration standard 1, 20 mg/L (Spex Certiprep) was used for 

the verification of calibration.  

 

5.2.1 Effects of Competing Anions 

To determine the effects of co-existing anions on arsenic adsorption, three types of 

oxyanions (CO3
2-

, SO4
2-

 and NO3
-
) were evaluated individually. The experiments were 

conducted at 25 °C and pH 6.0 with initial Arsenic concentration of 100 µg L
-1

.  

Concentration of the oxyanions was controlled at three levels (0.1, 1 and 5 mM). 

 

5.3 Results and Discussion 

5.3.1 Characterization of Adsorbent 

The BET surface area of MWCNT, f-MWCNT and the MWCNT-ZrO2 hybrid were 110 

m
2
g

-1
, 162 m

2
g

-1
 and 152 m

2
g

-1
, respectively. BET surface area increased significantly 

after acid treatment as the value for f-MWCNT was an approximate 40 % higher than 

that of original MWCNT. This increase may be due to defects on the surface of f-

MWCNT as a result of the acid treatment. BET surface area of the MWCNT-ZrO2 hybrid 

was however, not significantly different from f-MWCNT. Zirconia has a relatively small 

surface area which slightly decreased the surface area of the hybrid. The acid 
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functionalization of the carbon nanotubes produced carboxylic groups on the surface 

enhancing zirconia loading. The pH at zero point charge (pHZPC) for MWCNT, f-

MWCNT and the MWCNT-ZrO2 hybrid were 6.8, 3.91 and 9.6, respectively. This is the 

point where the surface charge of the carbon nanotube is independent of the electrolyte 

concentration. Therefore, it is evident that the carboxylic groups on the f-MWCNT had 

been replaced in the MWCNT-ZrO2 hybrid.  

SEM images of f-MWCNT and the MWCNT-ZrO2 hybrid are shown in Figure 

5.1(a, b). The original MWCNTs had diameters in the range of 20-40 nm and the length 

was about 10-30 µm. There was no detectable change in tube morphology after acid 

treatment or zirconia loading, implying minimal damage to the tube structure. It is quite 

evident from Figure 5.1b that the CNT surface was coated with zirconia. 
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Figure 5.1 SEM Images of (a) carboxylated MWCNT, (b) the MWCNT- ZrO2 

Composite, (c) EDS spectra of the MWCNT-ZrO2 Composite.  

 

The EDS data shown in Figure 5.1c confirmed the presence of zirconia on the 

surface of the CNTs. TGA was used to quantify the zirconia loading in the MWCNT as 

shown in Figure 5.2. The resulting weight above 600 °C was attributed to the weight of 

residual metal or metal oxide. The MWCNT-ZrO2 hybrid was found to contain 4.85 % 

zirconia.  

(a) (b) 

(c) 
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Figure 5.2 TGA data for (a) MWCNT, (b) f-MWCNT, and (c) MWCNT-ZrO2. 

 

 

4000 3500 3000 2500 2000 1500 1000

0

1

2

3

 

 

Wavenumber (cm
-1

)

 %
 T

ra
n

s
m

it
ta

n
c
e

(a)

4000 3500 3000 2500 2000 1500 1000

22

23

24

25

26

27

28

 

 

%
 T

ra
n

s
m

it
ta

n
c
e

Wavenumber cm-1

(b)

3422                                                1715      1576     1214

 

4000 3500 3000 2500 2000 1500 1000

16

18

20

22

24

Wavenumber (cm-1
)

%
 T

ra
n

s
m

it
ta

n
c
e

 

 

1701 1576

1219

(c)

 
 

Figure 5.3 FTIR data for (a) MWCNT, (b) f-MWCNT, and (c) MWCNT-ZrO2. 

 

 

The FTIR spectrum (Figure 5.3) confirmed the presence of functional groups in 

MWCNT, f-MWCNT, and MWCNT-ZrO2. The carboxylic stretching frequency in f-

MCWNT occurred at 1715 cm
-1

 (C=O) and 1221cm
-1

 (C–O). The stretching (O–H) 
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vibration occurred at 3424 cm
-1

 in the f-MWCNT spectrum (Figure 5.3b) which was 

clearly absent from the MWCNT spectrum (Figure 5.3a). In all the samples, the peak 

around 1576 cm
-1

 was assigned to the C=C stretching of the carbon skeleton. From the 

MWCNT-ZrO2 (Figure 5.3c) spectrum, it can be seen that the characteristic peaks of the 

carboxyl groups of the MWCNTs shifted from 1715 to 1701 cm
−1

 and the relative 

intensity decreased significantly. The peak at 3440cm
−1

 belonging to the O–H vibration 

of carboxylic acid also disappeared. The disappearance of the peak of O–H vibration of 

carboxylic acid was attributed to the fact that ZrO2 is anchored to the MWCNTs through 

an esterification process forming C–O–Zr bonds, in line with previous observations (Yan 

and Lian, 2005). 

 

 

Figure 5.4 X-ray powder diffraction patterns of (a) MWCNT (b) f-MWCNT, (c) 

MWCNT- ZrO2 hybrid. 
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Figure 5.4 shows the x-ray powder diffraction pattern of MWCNT, f-MWCNT 

and the MWCNT-ZrO2 hybrid. The peak around 30.2° in 2θ in the XRD pattern of the 

MWCNT-ZrO2 hybrid (Figure 5.4c) indicated the presence of zirconia (Yan and Lian, 

2005) which was clearly absent from the diffraction patterns of MWCNT and f-

MWWNT [Figure 5.4(a and b)]. The intense peak around 26° in 2θ in all the XRD 

patterns was due to the MWCNT. 

 

5.3.2 Arsenic Removal by MWCNT-ZrO2 

It was found that no arsenic was adsorbed on the MWCNT and the carboxylated 

MWCNT; however, the MWCNT-ZrO2 hybrid was effective in removing arsenic from 

water. It occurred through a synergistic combination of chemisorption and physisorption 

processes on the Zr immobilized on the MWCNT backbone. Schmidt et al. (2008) have 

reported the surface speciation for Zirconium and arsenate adsorption using the GRFIT 

model, determining that they formed two surface complexes represented by equations 5.1 

and 5.2, with reaction 5.1 being practically negligible (Schmidt et al., 2008). 

 

ZrOH + H3AsO4 ↔ ZrOAsO2(OH)
− 

+ H
+
, logK = − .5,                                                (5.1) 

ZrOH + H3AsO4 ↔ ZrOAsO3
2-

 + 2H
+
, logK = 1.4.                                                       (5.2) 

 

Ion exchange and non-covalent H-bonding interactions may also play a role in the 

arsenic removal process (Ramamurthy et al., 2011). This was somewhat different from 

the iron oxide coated MWCNTs where the former protonated forming OH2
+
 groups on 
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the adsorbent surface at low pH values, and the arsenic species were removed by covalent 

ligand exchange with OH and OH2
+
 functional groups (Addo Ntim and Mitra, 2011). 

  The kinetics of As uptake was investigated by the Lagergren (Lagergren, 1898) 

and Ho and McKay (Ho and McKay, 2000) kinetic models. These kinetic models are 

represented in Chapter 4 by equations 4.3 and 4.4, respectively. Figure 5(a) shows As(III) 

and As(V) removal efficiencies as a function of time at the different pH values. After 10 

mins of contact with the adsorbent over 50% of As (V) was removed as compared to 17% 

of As (III). 99% of As(V) and 92% of  As(III) were removed after 60 minutes of contact. 

Relative to MWCNT-ZrO2 nearly twice the amount of both As(III) and As(V) were 

removed in the presence of Fe-MWCNT (Addo Ntim and Mitra, 2011) after 10 mins of 

contact, with (80-99)% removed after only 30mins of contact. The kinetics of As(III) and 

As(V) adsorption using the MWCNT-ZrO2 was relatively slower compared to that 

observed with iron oxide coated MWCNT (Addo Ntim and Mitra, 2011).  

  Ho and Mckay’s pseudo-second kinetic equation was a better fit than the 

Lagergren’s pseudo-first order equation for adsorption of both oxidation states of arsenic 

on MWCNT-ZrO2. The pseudo-second order kinetic parameters at the pH range studied 

are presented in Table 5.1. The R
2
 values for both As (III) and As (V) were close to unity 

implying that their adsorption can best be described by the pseudo-second order kinetic 

model with chemisorption being the rate limiting step. This means that the adsorption rate 

is proportional to the amount of adsorbent and the square of the number of free sites. The 

latter corresponds to the term (qe −qt)
 2

 in the pseudo second order model. 
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Table 5.1 Pseudo-second Order Kinetic Parameters for As(III) and As(V) Adsorption  

 
As (III) 

 
As (V) 

 

pH qe (µg g
-1

) k2 (g (min µg)
-1

) h (µg (g min)
-1

) R
2
 qe (µg g

-1
) k2 (g (min µg)

-1
) h (µg (g min)

-1
) R

2
 

5 95.4 2.5E-04 2.3 0.9987 101.1 1.0E-03 10.5 0.9999 

6 98.6 3.1E-04 3.0 0.9993 100.5 1.3E-03 13.6 1.0000 

7 95.4 4.1E-04 3.7 0.9997 101.1 1.7E-03 16.9 1.0000 

8 97.5 3.6E-04 3.4 0.9999 101.7 7.0E-04 7.2 0.9999 

 

8
4
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The rate of As(V) removal was an order of magnitude faster than that of As(III) as 

shown by the pseudo-second order kinetic parameters in Table 5.,1 as was the removal 

efficiency (Figure 5.5). This was similar to what was observed for arsenic adsorption on 

Fe-MWCNT. The higher removal rate of As(V) relative to As(III) may be due to the rate-

limiting oxidation of As(III) to As(V) catalyzed by surficial carbon compounds preceding 

the adsorption reaction (Schmidt et al., 2008). 
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Figure 5.5 (a) Arsenic removal efficiency as a function of time, (b) Effect of pH on 

As(III) and As(V) adsorption.  

 

The optimum pH for As(V) removal was determined to be 6. The equilibrium 

adsorption qe (μg g
-1

) of both As(V) and As(III)  was found to be fairly constant over the 

pH range studied as presented in Figure 5.5(b).  This was contrary to As(V) removal on 

Fe-MWCNT, where qe was observed to decrease with increasing pH due to interference 

from dominant OH
-
 ions at basic pH. As(III) is dominant in the form of neutral species 

(H3AsO3) below pH 9.22, accounting for the relatively constant As(III) adsorption in both 

instances. This implies that unlike Fe-MWCNT, MWCNT-ZrO2 has the advantage of 

effective arsenic removal over a wide range of pH.  
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5.3.3 Adsorption Isotherms for As(III) and As(V) Removal 

The capacity of arsenic removal by the adsorbent was evaluated with the Langmuir 

(Langmuir, 1916), and Freundlich (Freundlich, 1906) isotherms, represented in Chapter 

4 by equations 4.5 and 4.6, respectively. From the Langmuir isotherm parameters 

presented in Table 5.2, the maximum sorption capacity for monolayer adsorption (qm) for 

the adsorbent in the removal of As(V) was much higher than that of As(III). The 

adsorption capacity, estimated by the Langmuir isotherm model was 2000µg g
-1

 and 

5000µg g
-1

 for As(III) and As(V), respectively. These values were significantly higher 

than the qm values obtained with Fe-MWCNT (Addo Ntim and Mitra, 2011). The 

Langmuir constant, b, the ratio of the adsorption rate constant to the desorption rate 

constant, is an indication of the affinity of the sorbent material toward arsenic (Patnukao 

et al., 2008). The Langmuir b values for arsenic sorption by MWCNT-ZrO2, presented in 

Table 5.2 were approximately an order of magnitude lower than those observed for Fe-

MWCNT (Addo Ntim and Mitra, 2011) in the presence of both As(III) and As(V), 

indicating a higher affinity of Fe-MWCNT for arsenic. This also implies that the rate of 

desorption of adsorbed arsenic species during sorbent regeneration will be higher in the 

case of MWCNT-ZrO2.  

   The adsorption of As(III) and As(V) fit both the Langmuir and Freundlich 

equations with correlation coefficient R
2
 values close to unity, as was observed with Fe-

MWCNT (Addo Ntim and Mitra, 2011). The applicability of the two isotherms to the 

arsenic sorption shows that both monolayer sorption and heterogeneous energetic 

distribution of active sites on the surface of the sorbent are possible.  
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Table 5.2 Adsorption Isotherm Parameters for the Removal of As(III) and As(V) by 

MWCNT- ZrO2 

 

 Langmuir Freundlich 

 qm (μg g
-1

) b (L μg
-1

) R
2
 kf (L μg

-1
) n R

2
 

As(III) 2000 0.0049 1.0000 9.9 1.0204 0.9999 

As(V) 5000 0.038 0.8801 274.09 1.2048 0.9916 
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Figure 5.6 (a) Kinetic, and (b) Equilibrium data at pH 6 for As(III) and As(V) adsorption 

by MWCNT-ZrO2.  

 

  The Freundlich constants kf and n were obtained from the y-intercept and slope, 

respectively. The constants kf (L μg
-1

) and 1/n providing a measure of adsorption capacity 

and intensity, respectively are presented in Table 5.2. The bond energy increases 

proportionally with surface density for n<1 and vice a versa for n>1 (Freundlich, 1906). 

The adsorption capacity for the adsorbent in As(V) removal was much higher than 

As(III) as was the intensity. The value of the constant 1/n (0 – 1) is indicative of the 

heterogeneity of the adsorbent surface, with 1/n closer to 0 implying heterogeneous 

surface. The values the freundlich isotherm parameter 1/n for arsenic adsorption on 

MWCNT-ZrO2 were less than 1 for both As(III) and As(V) as was observed for the 
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adsorption on Fe-MWCNT, indicating favorable adsorption on both sorbents (Patnukao 

et al. 2008). However, the values were closer to zero in the case of Fe-MWCNT than 

MWCNT-ZrO2, implying a more favorable process in the presence of the iron coated 

MWCNTs. This was consistent with the values of Langmuir constant b observed. The 

kinetic and kquilibrium data at pH 6 for As(III) and As(V) adsorption are shown in 

Figure 5.6.  

 

5.3.4 Effect of Competing Anions 

Sulfates, carbonates and nitrates are ionic components often present in many surface and 

subsurface aquatic systems, and have been reported to exert varied levels of influence on 

the adsorption of both arsenate and arsenite depending on pH and concentration of 

anions. In this study, the presence of these anions had negligible effects on the removal of 

As(V) over the concentration range investigated (0.1 mM – 5 mM), as presented in 

Figure 5.7. Contrary to the above observation, the removal efficiency of As(III) 

decreased to various degrees in the presence of these anions. While the decrease in 

As(III) removal efficiency was not statistically significant in the presence of carbonate 

ions, sulfate and nitrate ions showed a statistically significant effect. This was contrary to 

what has been observed in literature for iron-modified sorbents, where the presence of 

sulfate and carbonate had negligible effects on the removal of both As(III) and As(V) at 

various pHs and ionic strengths (Jain and Loeppert, 2000, Meng et al., 2000, Su and Puls, 

2001).  An increase in anion concentration from 1 mM to 5 mM did not result in a 

corresponding larger decrease in removal efficiency, indicating the saturation of sites 
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accessible to the anions. The results suggest that the binding affinity of these anions for 

zirconia was weaker than As(V), but comparable to that of As(III).  

 

 

Figure 5.7 Effects of oxyanions on Arsenic removal by MWCNT-ZrO2 after 24 h at pH 6 

and 25 °C for initial Arsenic concentration of 100 µg/L. (* difference significant at 95% 

confidence level). 

 

5.4 Conclusions 

The MWCNT-ZrO2 was effective as a sorbent material for arsenic removal from drinking 

water. A major advantage of this material is that the sorption capacity was independent of 

pH over the range studied. The kinetics of As (III) and As (V) removal was explained by 

the pseudo-second order rate equation and their adsorption by Langmuir and Freundlich 

models. Although the rate of Arsenic removal by MWCNT-ZrO2 was two to three times 

slower than that for iron coated MWCNTs, the adsorption capacity was nearly two to five 

times higher. While the removal efficiency of As(V) was not affected by the presence of 

competing anions, As(III) removal was reduced by the presence of sulfate and nitrate 

ions. 
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CHAPTER 6 

REGENERATION OF THE MWCNT-METAL OXIDE NANOHYBRIDS AFTER 

ARSENIC REMOVAL 

 

 

Adsorptive removal of arsenic has proven to be one of the most reliable and somewhat 

less expensive methods and therefore, several sorbent materials have been tested for their 

arsenic sorption capacity. One of the main issues raised with adsorption is the cyclability 

of the sorbent material which will reduce the cost of removal and the generation of toxic 

waste. It is therefore, imperative to develop specially designed, tailor-made adsorbents 

for selective removal of arsenic from drinking water especially addressing the issue of 

regeneration.  

Once the sorbent becomes exhausted, the metals must be recovered and the 

sorbent regenerated. Desorption and sorbent regeneration is a critical consideration and 

contributor to process costs and metal(s) recovery in a concentrated form. A successful 

desorption process must restore the sorbent close to its initial properties for effective 

reuse. Desorption can be improved by gaining insight into the metal sorption mechanism. 

Most of the arsenic sorption studies in the literature do not discuss desorption or 

regeneration of the spent sorbent. The few studies in literature discussing arsenic 

desorption to regenerate the exhausted sorbent have used eluents, such as sodium 

hydroxide (NaOH)(Cumbal et al., 2003, Guo and Chen, 2005, Kundu and Gupta, 2006), 

hydrogen peroxide (H2O2) and strong acids (HNO3) (Manju et al., 1998, Say et al., 2003), 

with NaOH being the most commonly used. Selection of eluent depends on the arsenic 

adsorption mechanism and nature of the adsorbent. 
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The effective removal of both As(III) and As(V) using metal oxide coated carbon 

nanotubes has recently been reported (Addo Ntim and Mitra, 2011, Addo Ntim and 

Mitra, 2012). Iron oxide coated MWCNT was observed to remove arsenic species by 

covalent ligand exchange where hydroxyl groups on the iron oxide (protonated to form 

OH2
+
 groups on the adsorbent surface at low pH values) were exchanged for negatively 

charged arsenic species (Addo Ntim and Mitra, 2011).  Zirconia coated MWCNT 

nanohybrid (MWCNT-ZrO2) was observed to remove arsenic through a synergistic 

combination of chemisorption and physisorption processes on the ZrO2 immobilized on 

the MWCNT backbone, with Ion exchange and non-covalent H-bonding interactions 

playing a minor role in the arsenic removal process (Addo Ntim and Mitra, 2012).  

The objective of this Chapter was to determine the optimal conditions for sorbent 

regeneration using NaOH by varying pH, concentration of base, volume of base, and 

duration of contact. The arsenic sorption capacity of the regenerated sorbent was also 

investigated. 

 

6.1 Adsorption Studies 

10 ml of 1 mg L
-1

 arsenic solution [As (III) and As (V)] was contacted with 0.04 g of the 

adsorbent in a series of conical flasks at pH 6. The arsenic solutions and the adsorbents 

were mixed thoroughly at a speed of 175 rpm on a platform shaker, (Labsystems 

Wellmix). The mixture was filtered through a 0. 5μm membrane syringe filter after 24 

hrs of contact. The sorbent material was isolated, washed with DI water to remove any 

residual arsenic and dried for regeneration studies.  
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Residual arsenic was measured using Agilent 7500 ICP-MS. All standards were 

prepared from multi-element solution 2A, 10mg/L (Spex Certiprep) with addition of 

internal standard mix (Li6, Ge, Y, In, Tb, Bi). Buffer solution was used for all dilutions. 

Multi-element instrument calibration standard 1, 20 mg/L (Spex Certiprep) was used for 

the verification of calibration. 

 

6.2 Desorption Studies 

The dried sorbent materials from the adsorption studies were investigated for their 

regenerative ability. To investigate the effect of pH, aqueous solutions of HCl and NaOH 

with pH ranging from 4 to 13 was used to desorb the adsorbed arsenic. Typically, 10 mL 

of the solutions were contacted with 0.04 g of the adsorbent for a period of 24 hrs. The 

mixture was then filtered using a 0. 5μm membrane syringe filter and the filtrate was 

analyzed for the presence of As. 

NaOH concentration was varied between (0.001 – 0.5) M to determine the effect 

of concentration on arsenic desorption after 24 hrs of contact. Effect of contact time was 

investigated by varying the time of contact between the sorbent and NaOH at pH 13 from 

(5 – 1440) mins. The effect of 0.1 M NaHCO3 solution was compared with that of 0.1 M 

NaOH solution for the arsenic desorption efficiency by contacting 10 mL of their 

aqueous solutions at 0.1 M concentration with 0.04 g of the sorbent over a period of 24 

hrs. 

The arsenic sorption capacity of the regenerated nanohybrids was investigated by 

contacting 10 ml of 0.1 mg L
-1

 arsenic solution [As (III) and As (V)] at pH 6 with 0.01 g 
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of the regenerated sorbent. The mass of the adsorbent was varied from 0.001 to 0.1 g in 

the isothermal adsorption studies at pH 6 for 6 hours.  

 

6.3 Results and Discussion 

6.3.1 Desorption Kinetics 

The reduced sorption capacities of As(III) and As(V) on CNT-metal oxide nanohybrid at 

alkaline pH is indicative of the fact that adsorbed arsenic species can be desorbed from 

the loaded sorbent material. Therefore, desorption studies were performed using NaOH. 

Experimental desorption data was fitted to both the Lagergren and Ho and Mckay 

kinetics models presented in Chapter 4 as equations 4.3 and 4.4, respectively (Ho and 

McKay, 2000, Lagergren, 1898). Figure 6.1 shows the As(III) and As(V) desorption 

efficiencies as a function of time in NaOH at pH 13. Desorption efficiency was observed 

to increase with increasing time of contact to an equilibrium after 6 hrs. The kinetics of 

As desorption was similar for both MWCNT-ZrO2 and Fe-MWCNT, where As(V) was 

desorbed to a higher efficiency than As(III). Ho and McKay’s pseudo-second kinetic 

equation was a better fit for desorption of both As(III) and As(V) than the Lagergren’s 

pseudo-first order equation. The pseudo-second order kinetic parameters for As(III) and 

As(V) desorption are presented in Table 6.1. The R
2
 values for both As (III) and As (V) 

were close to unity, implying that their desorption can best be described by the pseudo-

second order kinetic model.  

 

 

 



94 

 

Table 6.1 Pseudo-second Order Kinetic Parameters of Arsenic Desorption 

  
q

e
 (µg g

-1
) k

2
 (g (min µg)

-1
) h (µg (g min)

-1
) R

 
 

Fe-MWCNT As(III) 730 6.95E-06 3.70 0.9867 

 
As(V) 855 3.07E-05   .   0.9988 

MWCNT-ZrO
 
 As(III) 8 6  .61E-06 3.15 0.9895 

 
As(V) 7 6 7.3 E-05  0.77 0.9995 
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Figure 6.1 Kinetics of arsenic desorption by (a) Fe-MWCNT and (b) MWCNT-ZrO2. 

 

The optimum pH for As(V) desorption was determined to be 13. Desorption 

efficiency increased with increasing pH for both sorbent materials as presented in Figure 

6.2. The apparent insensitivity of arsenic adsorption on MWCNT-ZrO2 to pH changes 

ranging from 4 to 8 (Addo Ntim and Mitra, 2012) was evident in the low desorption 

efficiency between pH 4 and 10. The desorption efficiencies observed for Fe-MWCNT 

also agreed well with the effect of pH on its arsenic adsorption capacity (Addo Ntim and 

Mitra, 2011). 
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Figure 6.2 Effect of initial pH of desorption medium on the efficiency of arsenic 

desorption from (a) Fe-MWCNT and (b) MWCNT-ZrO2. 

 

The results indicate that the mechanism of arsenic adsorption proceeds by the 

arsenic species being removed from aqueous phase through ligand exchange with OH
-
 

and OH2
+
 groups formed on the nanohybrid surface on contact with water. Desorption, on 

the other hand, involves the attack of OH
-
 ions on the metal-oxygen bond of the metal-

arsenate/arsenite complex leading the release of arsenic species into the liquid phase. 

Therefore, an increase in OH
-
 ion concentration is expected to cause a corresponding 

increase in arsenic desorption efficiency. Data presented in Figure 6.3 show an increase 

in desorption efficiency with increasing NaOH concentration to a 0.1 M equilibrium after 

which an increase in NaOH concentration did not cause any increase in efficiency. This 

concentration was thus noted as the effective NaOH concentration for arsenic desorption 

for both nanohybrid sorbent materials. 

 



96 

 

0.0 0.3 0.6

20

40

60

80

 

 

D
e
s
o
rp

ti
o
n
 E

ff
ic

ie
n
c
y
 (

%
)

NaOH Concentration (M)

 As (III)

 As(V)

(a)

0.0 0.3 0.6

0

30

60

90

 

 

D
e
s
o
rp

ti
o
n
 E

ff
ic

ie
n
c
y
 (

%
)

NaOH Concentration (M)

 As(III)

 As(V)

(b)

 

Figure 6.3 Effect of NaOH concentration on arsenic desorption from (a) Fe-MWCNT 

and (b) MWCNT-ZrO2. 

 

6.3.2 Adsorption Efficiency of the Regenerated Sorbent 

The adsorption efficiency of the used Fe-MWCNT for As(III) and As(V) was observed to 

reduce after the sorbent material was regenerated by 10% and 8%, respectively. The 

adsorption efficiency for MWCNT-ZrO2 was reduced to a much greater extent, 

approximately 25% and 16% for As(III) and As(V), respectively. The reduction in 

sorption capacity was attributed to loss of iron oxide or zirconia from the nanohybrid 

during regeneration. 

 

6.4     Conclusions 

Batch desorption analysis of arsenic species loaded onto CNT-metal oxide nanohybrid 

sorbents indicated that the effective NaOH concentration required for arsenic desorption 

was 0.1 M with an optimal pH of 13. The kinetics of arsenic desorption followed the 

pseudo-second order kinetic model with desorption efficiencies up to 85%. Fe-MWCNT 

was observed to show higher desorption efficiency than MWCNT-ZrO2. The adsorption 

efficiency of the recycled material was slightly reduced with Fe-MWCNT showing better 
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regeneration ability than MWCNT-ZrO2. This shows that the CNT-metal oxide 

nanohybrids have the capacity to remove arsenic from water with the potential for 

cyclable use. 
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