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identical LDs, [2] and [3] have nearly the same performance. The blue curve shows the

probability of error when designing the system with ηk = P0/P1 (Chair and Varshney

[1]). The green curve shows the probability of error by using majority voting (“k out

of n” rule with k = n/2).

Figure 2.3 Probabilities of error by majority voting (2.1.1), designing the system
with fixed ηk [1] (2.1.2), designing the system simultaneously [2] (2.1.3), and designing
the system exhaustively [3] (2.1.4).

In Figure 2.3, the green curve shows the probability of error for majority voting,

the blue curve shows the probability error using the Chair and Varshney’s method

(fixed local detection). The red curve shows the probability of error using the Hoballah

and Varshney’s method (designing the whole system “simultaneously”). The black

curve shows the probability of error using the method by Acharya et al. [3] (exhaustive

search for every pair of the (finite) possible ηk and η0).

Figure 2.4 shows the ROC curves of the parallel decentralized binary fusion

architecture with several different designs. The designs that use feedback are shown

at their second time step (in other words the previous global decision was fed back
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once into the system). The blue graph and the brown graph show the ROC curve by

designing the system with fixed ηk (Chair and Varshney [1]) (ηk=0.5 in the system

shown by the blue curve, ηk=P0/P1 in the system shown by the brown curve). The

black graph shows the ROC curve by designing the whole system simultaneously

(Hoballah and Varshney [2]). The cyan graph shows the ROC curve by the design of

Acharya et al. [3]. The pink graph shows the ROC curve by designing the system

with fixed ηk and feedback (ηk=0.5) (Kam et al. [4]). The red graph shows the ROC

curve by designing the whole system simultaneously with feedback (Alhakeem and

Varshney [5]). The green curve shows the ROC curve by designing the system with

the greedy scheme of Dong and Kam [6].

As Figure 2.3 shows, the blue graph, showing the probability of error by the

design with fixed ηk (Chair and Varshney [1]), lies above the black graph (probability

of error by the design of Acharya et al. [3]) and the red graph (probability of

error by the design of Hoballah and Varshney [2]). However, the computational

complexity of the design with fixed ηk (Chair and Varshney [1]) is much lower than

the computational complexity of the design of Acharya et al. [3] and the design of

Hoballah and Varshney [2].

As Figure 2.4 shows, the introduction of feedback improves the performance of

the system (compare the design with feedback by Alhakeem and Varshney [5] to the

corresponding design without feedback by Hoballah and Varshney [2], and compare

the design with fixed ηk and feedback by Kam et al. [4] to the corresponding design

with fixed ηk and no feedback by Chair and Varshney [1]). The curves showing

the performance by the design that attempt global optimality lie above the curves

corresponding to other designs (compare the design with feedback that attempt global

optimality [5] to the corresponding design with feedback by using a greedy scheme [6],

and to the corresponding design with fixed ηk and feedback [4]; compare the design
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without feedback that attempt global optimality [2] to the corresponding design with

fixed ηk and no feedback [1]).

The graph showing the performance of the design by Acharya et al. [3] and the

graph showing the performance of the design by Hoballah and Varshney [2] almost

overlap in Figures 2.3 and 2.4. Still, the computation complexity of the “exhaustive”

design (Acharya et al. [3]) is simpler than the computational complexity of the

“simultaneous” design (Hoballah and Varshney [2]). However, the “exhaustive”

design (Acharya et al. [3]) becomes computationally inefficient when applied to a

system with non-identical LDs.

Figure 2.4 ROC curves by seven different designs, t = 2.
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CHAPTER 3

DETECTION STRATEGY FOR PARALLEL DECENTRALIZED
BINARY DECISION FUSION ARCHITECTURE

Design approaches for parallel decentralized binary decision fusion architectures are

reviewed. The concept of dependent randomization in the design is explained and

illustrated.

3.1 Deterministic Strategy

A detection strategy is deterministic if each LD uses a single deterministic local

decision rule and the DFC uses a single deterministic global decision rule. The

operating point of the system A = (PA
f , P

A
d ) is determined by the deterministic

strategy γA = {γA0 , . . . , γAn }. The corresponding operating point of the kth LD in

the system, determined by γAk , is (PA
fk, P

A
dk).

It is shown in [10] that under the assumption that the local observations

y1, . . . , yn are conditionally independent given the hypothesis H0 or H1, for satisfying

a Neyman-Pearson criterion, both γ0 and γk are likelihood ratio tests of the form

u0 = γ0(U) =

 0 Λ(U) < η0

1 Λ(U) ≥ η0,
(3.1)

uk = γk(yk) =

 0 Λ(yk) < ηk

1 Λ(yk) ≥ ηk,
(3.2)

where

Λ(x) =
P (x|H1)

P (x|H0)
. (3.3)
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η0 is the threshold of the global decision rule and ηk is the threshold of the

local decision rule of the kth LD. Under a Neyman-Pearson criterion, η0, η1, . . . ηn are

designed to maximize the probability of detection while keeping the probability of

false alarm not greater than α ∈ (0, 1).

For a parallel decentralized binary decision fusion system with n LDs, the local

decision vector U has 2n possible values, which translates into 22n possible global

decision rules. However, not every global decision rules is eligible for consideration

as a potentially optimal decision rule. According to (3.1), the global decision rule is

a likelihood ratio test and u0 is a non-decreasing function of Λ(U). Thomopoulos et

al. [8] showed that the optimal deterministic global decision rule that satisfies the

Neyman-Pearson criterion (3.1) must be a monotonic fusion rule (per Lemma 1 of [8],

function d). A fusion rule is monotonic if, for every combination of local decisions

U = {u1, . . . , un}, switching one of the local decision from 0 to 1 can only cause the

global decision u0 to switch from u0 = 0 to u0 = 1 and not from u0 = 1 to u0 = 0.

An algorithm that calculates all the monotonic fusion rules of a system with n LDs is

provided in [19]. Since some monotonic fusion rules dominate others (would always

result in better performance than others), the eligible optimal deterministic global

decision rules would be a subset of all the monotonic fusion rules.

The probability of false alarm and the probability of detection of the architecture

shown in Figure 1.1 are:

Pf = Pr(u0 = 1|H0) =
∑

Λ(U)≥η0

P (Λ(U)|H0),

Pd = Pr(u0 = 1|H1) =
∑

Λ(U)≥η0

P (Λ(U)|H1).

(3.4)
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The probability of false alarm and the probability of detection at the kth LD are:

Pfk = Pr(uk = 1|H0) =

∫
yk|Λ(yk)≥ηk

P (yk|H0)dyk,

Pdk = Pr(uk = 1|H0) =

∫
yk|Λ(yk)≥ηk

P (yk|H1)dyk.

(3.5)

When all the local operating points (Pfk, Pdk), k = 1, . . . , n are known, then

(3.4) can be written as ([18, pp. 567–568]):

Pf =
1∑

u1=0

. . .
1∑

un=0

n∏
k=1

P uk
fk (1− Pfk)(1−uk) ×U−1(

n∏
k=1

(
Pdk
Pfk

)uk(
1− Pdk
1− Pfk

)(1−uk) − η0),

Pd =
1∑

u1=0

. . .
1∑

un=0

n∏
k=1

P uk
dk (1− Pdk)(1−uk) ×U−1(

n∏
k=1

(
Pdk
Pfk

)uk(
1− Pdk
1− Pfk

)(1−uk) − η0),

(3.6)

where U−1(.) is the unit step function:

U−1(x) =

 0 x < 0

1 x ≥ 0
. (3.7)

In (3.6), the unit step function provides the global decision u0 for a given local decision

set U = {u1, . . . , un}.

If the local operating points are identical, (Pfk, Pdk) = (pf, pd), k = 1, . . . , n,

the global decision rule (3.1) becomes a “k out of n” rule, which means if k or more

LDs in the system decide ‘1’, then u0 = 1; otherwise, u0 = 0. In this circumstance,
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the probability of false alarm and the probability of detection at the DFC are:

Pf =
n∑
k

(
n

k

)
pfk(1− pf)(n−k)

Pd =
n∑
k

(
n

k

)
pdk(1− pd)(n−k).

(3.8)

There are two cases of finding a deterministic strategy, depending on the local

observation.

3.1.1 Local observations contain no point masses of probability

Hoballah and Varshney [7] studied this case, using a Person-by-Person optimization

(PBPO) approach to synthesize γ0 and γk in (3.1) and (3.2). Acharya et al. [3]

proposed a method for solving for the optimal γ0 and γk simultaneously when the

LDs are identical.

3.1.2 Local observations contain point masses of probability

if the local observations are discrete and finite, the probability distribution of the

local observations contain point masses of probability. In this case a finite set of

local operating points {(Pf1, Pd1), . . . , (Pfn, Pdn)} corresponds to the finite set of local

decision rules {γ1, . . . , γn}. For each combination of a monotonic global fusion rule and

local operating points, the operating point of the system (Pf , Pd) can be calculated by

using (3.6). Then all the operating points of the system can be calculated by running

a search on all the combinations of a monotonic global fusion rule and local operating

points and find the optimal deterministic strategy satisfying the Neyman-Pearson

criterion.
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3.2 The Potential of Randomization of Decision Rules

Since the vector U is finite-dimensional (and binary), Λ(U) in (3.4) has a finite number

of values, each with a corresponding probability of false alarm. The value of U that

corresponds to the highest probability of false alarm β that satisfies β ≤ α may have

a significant gap α− β compared to α.

Figure 3.1 shows the ROC curve of a system with discrete local observations

(this curve comes from the system which will be later introduced in Section 4.1). All

possible operating points of the system are shown as the blue circles. The probability

of false alarm constraint α is shown as the dash line. In this circumstance, the best

operating point is ω3 and P ω3
f < α.

Performance of the architecture of Figure 1.1 under the circumstance such as the

one described in Figure 3.1 can benefit from randomization. Randomization means

that one or more of the decision makers in the system (an LD or the DFC) is selecting

its decision rule (γk or γ0) at each time instant by selecting one rule from a finite set

of decision rules. The kth LD selects a rule from among {γ1
k, . . . , γ

i
k, . . . , γ

N
k }, for

some positive integer N . The rule γik is selected with probability pik and
∑N

i=1 p
i
k = 1.

The DFC selects a rule from among {γ1
0 , . . . , γ

i
0, . . . , γ

M
0 }, where γi0 is selected with

probability pi0 and
∑M

i=1 p
i
0 = 1. Randomization will be considered when the specified

probability of false alarm constraint α is not achievable by a deterministic strategy

(such as in Figure 3.1) or when the deterministic strategy achieves the values of false

alarm constraint α but the system’s ROC curve is not concave.

It is possible that only the DFC employs randomization (e.g., [8][9][20][21])

or that a subset of the of LDs and the DFC employ randomization (independently

or dependently). The term “dependent randomization” is used when both the LDs

and the DFC employ randomization, and when, in addition, their switching between

decision rules is coordinated and synchronized ([10][20][12]).
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Figure 3.1 Deterministic strategy with isolated operating points.

Figure 3.2 Randomization can improve detection performance by ‘connecting’ the
isolated operating points.

One possible design has the system of Figure 1.1 operate at one of two operating

points, A and B. At each time step, one of the two is selected (A with probabilities
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p and B with probability 1− p). “Operation at point A” means that the DFC selects

γA0 and simultaneously each LD (k = 1, 2, . . . , n) selects γAk . “Operation at point B”

means that the DFC selects γB0 and simultaneously each LD (k = 1, 2, . . . , n) selects

γBk . By changing the value of p, the system can effectively operate anywhere along the

line segment that connects A and B (every combinations of (Pf , Pd) along this line

segment is realizable). The operating point generated by the randomized strategy is

denoted as C = (PC
f , P

C
d ), where

PC
f = pPA

f + (1− p)PB
f , (3.9)

PC
d = pPA

d + (1− p)PB
d . (3.10)

Satisfying the constraint on the probability of false alarm requires PC
f ≤ α.

When PC
f = α, the probability of selecting point A, p, is

p =
PB
f − α

PB
f − PA

f

. (3.11)

If γALD = γBLD (γAk = γBk for all k), the randomization occurs only at the DFC. If

γALD 6= γBLD and the selection of operating at point A and point B is coordinated and

synchronized between the LDs and the DFC, then the scheme is known as dependent

randomization.

Figure 3.2 shows how randomization connects the isolated operating points

shown in the ROC curve of Figure 3.1. For example, randomization allows the system

to operate at point C, rather than at ω3, thereby achieving a a higher probability

of detection while not violating the constraint on probability of false alarm. The
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red curve is the ROC curve of the system employing randomization, which consists

of straight line segments connecting all the previously-isolated operating points (the

blue circles). In this example, to achieve the highest probability of detection subject

to Pf ≤ α, A = ω3 and B = ω4 are selected. The operating point C achieved by

randomization is shown as the black circle. PC
f = α = pP ω3

f + (1 − p)P ω4
f while p is

calculated by (3.11).

3.2.1 Randomization at the DFC only

The authors of [8][9][20][21][22] studied strategies requiring that the DFC implement

randomization, when the local decision rules are deterministic (γAk = γBk = γk,∀k).

Each local decision rule is of the form (3.2). The DFC selects either γA0 or γB0 at each

time step.

Thomopoulos et al. ([8]) showed that under a Neyman-Pearson criterion, a

desired value of global false alarm α, can always be achieved by a strategy with

randomization at the DFC ([8]). In [9] and [22] examples were presented to show

that a strategy with randomization at the DFC is able to achieve higher probability

of detection than the one achieved by a deterministic detection strategy.

3.2.2 Dependent randomization

In dependent randomization (or “a scheduled test” as it is called in [20]), both the

DFC and the LDs participate in the randomization. At each time step, the system

makes a selection between two deterministic strategies, γA = {γA0 , . . . , γAn } and γB =

{γB0 , . . . , γBn } ([10][20][12]). The system can operate on the line segment connecting

any two operating points realizable by the deterministic strategy. The ROC curve of

the system with dependent randomization is the upper boundary of the convex hull

of all the operating points achieved by the deterministic strategy. In other words,

dependent randomization can make ROC curve of the system concave.
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Dependent randomization requires a coordinated action between the DFC and

the LDs. The DFC and the LDs would switch simultaneously together, back and

forth, between γA0 (for the DFC) and γALD = {γA1 , . . . , γAn } (for the LDs); and γB0 (for

the DFC) and γBLD = {γB1 , . . . , γBn } (for the LDs). This synchronization challenge

is discussed in [10, p. 301][21][12]. Among the means to achieve synchronization

between the DFC and the LDs is the use of identical pseudo-code generators (or

stored sequences of identical pseudo-code) at the DFC and the LDs simultaneously.

Strategy with randomization at the DFC only (Section 3.2.1) can be considered

as a special case of dependent randomization, with γALD = γBLD. Randomization at

the DFC only does not require synchronization between the DFC and the LDs but it

does not necessarily result in a concave team ROC curve.

Table 3.1 summarizes the input and output of three different designs of a parallel

decentralized binary decision fusion system of Figure 1.1.

Table 3.1 Input and Output of Three Different Designs of a Parallel Decentralized
Binary Decision Fusion System of Figure 1.1 under a Neyman-Pearson Criterion

Input for the design

1. The number of local detectors, n

2. The probability of false alarm constraint, α

3. Conditional probability distributions of the local observations, P (yk|H0) and P (yk|H1), k = 1, . . . , n

Output of a design

Deterministic

strategy

1. One global operating point (Pf , Pd)

2. The corresponding local operating points, (Pfk, Pdk), k = 1, . . . , n

Randomization

at the DFC

only

1. Two global operating points A = (PA
f , P

A
d ) and

B = (PB
f , P

B
d )

2. The corresponding local operating points of

A and B: (PA
fk, P

A
dk) and (PB

fk, P
B
dk), k = 1, . . . , n

3. The probability of selecting A, p, calculated by (3.11)

4. The operating point C = (PC
f , P

C
d ), calculated by

(3.9) and (3.10)

The local operating points at A

and B are identical

(PA
fk, P

A
dk) = (PB

fk, P
B
dk), k =

1, . . . , n

Dependent

randomization

The local operating points at A

and B are different

(PA
fk, P

A
dk) 6= (PB

fk, P
B
dk), k =

1, . . . , n
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CHAPTER 4

TWO EXAMPLES OF PARALLEL DECISION FUSION

Two examples, one with two local detectors and one with three local detectors, are

provided throughout the study to illustrate performance of the parallel decentralized

binary decision fusion architecture under different strategies.

4.1 Example 1: A 2-LD System with Continuous Local Observations

A system with two LDs (n = 2) is considered. The local observations are identical

logistic random variables (as done in [20]). The conditional probability distribution

of the local observations are:

P (yk|H0) =
1

4
sech2(

yk
2

),

P (yk|H1) =
1

4
sech2(

yk − 2.5

2
)

(4.1)

The operating point (Pfk, Pdk) of the kth LD (k = 1, 2) can be calculated as:

Pfk =

∫ ∞
τk

1

4s
sech2(

yk
2

)dyk =
1

2
− 1

2
tanh(

τk
2

),

Pdk =

∫ ∞
τk

1

4s
sech2(

yk − 2.5

2
)dyk =

1

2
− 1

2
tanh(

τk − 2.5

2
),

(4.2)

where τk is a function of yk:

τk = yk|Λ(yk)=ηk . (4.3)
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