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EFFECTS OF ERGONOMIC WORKSITE CHANGES ON RISKS FOR 
CUMULATIVE TRAUMA DISORDERS OF THE UPPER BODY 

IN AN ASSEMBLY AND PRESS OPERATION JOB 

by 
David B. Mahone 

Cumulative trauma of the upper body is associated with a variety of individual and 

job factors. An effort to optimize the human-hardware interface to minimize cumulative 

trauma is favored. Workers in a set of jobs had complained about hand/wrist and shoulder 

discomfort. One job was selected for testing alternate machine controls and worksite 

layout. Electromyography was used to test muscle activity, and photogoniometry was 

used to measure posture. 

For the group of ten worker-subjects, statistically significant decreases in hand/wrist 

and shoulder muscle activity were found. A marginal, but significant increase in neck 

muscle activity was also found. When one subject was excluded, improvements were 

unchanged and the increase in neck muscle activity was not significant for three of four 

types of analysis of variance. While statistical improvement was identified, the question of 

clinical significance cannot be answered at this time. 
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CHAPTER 1 

INTRODUCTION  

Occupational cumulative trauma disorders (CTDs) - or repetitive motion disorders - are a 

growing problem in American industry. Such disorders constituted slightly greater than 60% 

of all occupational illnesses in 1991 according to the Bureau of Labor Statistics (BLS), 

exceeding all other categories of occupational illness. The BLS category "disorders due to 

repeated trauma" also included noise induced hearing loss, making meaningful interpretation 

of the data difficult. Brogmus and Marko (1992) report that upper body CTDs constituted 

only 3.5% of all workers compensation costs in 1991. This can be contrasted with the impact 

that back injuries have on workers compensation costs, with 31.2% (NCCI, 1992) of all 

compensation costs going for back injuries. 

Nevertheless, many manufacturing and service industry companies have clearly 

experienced substantial losses when workers have been affected by upper body CTDs. Some 

industries appear to be more commonly affected. Meat packers have seen an estimated 

28.8% of all compensation costs go to upper body CTDs, while knit goods or hosiery 

manufacturers have seen 18.3% of compensation costs go to upper body CTDs (Brogmus and 

Marko, 1992). Such cost estimates include insured costs only. In addition to insured costs, 

uninsured or indirect losses include reduced productivity and morale, loss of valued workers, 

poor product quality, increased absenteeism and turnover, and reduced systems reliability, 

among other costs. 

1 
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A wide range of industries or jobs have been significantly affected. In one survey, 

64.5% of supermarket checkout workers who used scanners reported symptoms of carpal 

tunnel syndrome (Margolis and Kraus, 1987). Brogmus and Marko (1990) report that after 

meat packers, hardware manufacturers, electrical apparatus manufacturing, clothing/textiles, 

electrical power or transmission equipment manufacturers, paper bag manufacturers, and 

computer/office machine manufacturers, among others, are substantially affected by CTDs. 

A common theme among affected industries is the reliance on hand work. 

Included in the list of affected industries are manufacturers of electric and electronic 

components including switches, controls, and circuit breakers. Workers in electrical and 

electronics manufacturing primarily engage in intensive hand work, often performing short-

cycle repetitive tasks, sometimes with forceful or sustained exertions, and often in awkward 

postures. 

	

The objective of this study is to test the effects of specific physical changes at a 

worksite in the electrical apparatus industry on CTD risks. The selected job is a repetitive 

assembly and press operation task in which parts are assembled and inserted to a press 

machine, then press controls are activated and the completed part is removed. Measures of 

CTD risks to workers using the existing workstation will be compared to the same measures 

taken after the workstation has been redesigned in accordance with ergonomic principles. 

Since direct measures of CTD risks are not currently available, secondary measures 

are utilized to assess risks for upper body CTDs. Surface electromyography (EMG) is 

utilized to assess muscular activity and thus the force or work required to complete the job. 
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Force level is generally acknowledged in the literature as an important contributor to 

risk for upper body CTDs (Armstrong and Chaffin, 1979; Silverstein, Fine, and Armstrong, 

1987, Armstrong et al. 1987a). 

Posture of the hand/wrist is also acknowledged as an important contributor to risk for 

upper body CTDs (Armstrong and Chaffin, 1979; Tichauer, 1966). Work sampling - by 

placing selected body postures into predefined posture categories - is to be utilized as a 

measure of postural stress over time. 

While force, posture, repetitiveness and other factors are generally recognized as 

work-related factors which can increase the risks for upper body CTDs, a need to document 

successful application of ergonomic improvements in specific worksites exists. General design 

guidelines can be gleaned from such empirical applications where successful. 

However, personal factors such as age, gender, obesity, handedness, and medical 

condition, among others, have also been correlated with increased risk of upper body CTD 

(Nathan, Keniston, Myers, and Meadows, 1992). Some controversy currently exists as to 

whether or not such disorders are caused by repetitive and/or forceful work versus non-work 

related causes. 

The following literature review explores the current controversy regarding upper body 

CTDs and provides an overview of research findings to date. 



CHAPTER 2 

LITERATURE SURVEY 

2.1 Work and Upper Body Cumulative Trauma Disorders 

Silverstein, Fine, and Armstrong (1987) discovered a significantly higher proportion of 652 

industrial workers in high force, high repetitive jobs were affected by carpal tunnel syndrome 

compared to workers in low force, low repetitive jobs. Armstrong et al. (1987) in a related 

study, found the prevalence of hand and wrist tendinitis to be 29 times greater in persons who 

perform high force, high repetitive jobs than persons performing low force, low repetitive 

jobs. Except for gender, none of the examined non-occupational factors were significantly 

associated with prevalence of disorders. The authors speculate that a large proportion of 

women in a clinical series may reflect more the social and reporting differences between males 

and females than an inherent difference in risk.  

Additionally, the researchers found significant differences in time spent in wrist 

flexion, ulnar deviation, pinching, and flexion with pinching between males and females, and 

suggest that this may explain, at least in part, the significant difference found for gender. 

Interestingly, the researchers found no significant difference in postural variables between 

persons affected with tendinitis and those unaffected by tendinitis, suggesting that perhaps 

repetition and force were important to development of tendonitis, but that posture may be of 

lesser importance. 

4 
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2.2 Non-Work Factors and Upper Body CTDs  

Nathan et al. (1992) pursued a longitudinal study of carpal tunnel syndrome in industry over 

a five year period. These researchers found strong positive correlations between weight and 

body mass index and electrodiagnostic indicators of carpal tunnel syndrome risk. The study 

also found that age, wrist depth/width ratio, hand dominance, and exercise level were 

associated with electrodiagnostic indicators of carpal tunnel syndrome, while occupational 

hand use, duration of employment, or industry were not associated with electrodiagnostic 

indicators of carpal tunnel syndrome. Obesity was associated with an increased prevalence 

of carpal tunnel syndrome. 

Similarly, no relatedness between sensory nerve conduction velocity and work factors 

(e.g., hand use, length of employment) was found in a survey of 471 industrial workers from 

27 occupations conducted by Nathan, Meadows, and Doyle (1988). This negative finding 

was emphasized by the authors who noted that the prevalence and severity of sensory 

impairment among the diverse occupational classes were comparable, suggesting that carpal 

tunnel syndrome is not related to occupational hand activity. 

In a study of poultry processing workers, Schotland et al. (1991) found no association 

between length of employment and sensory latencies for men or the left hands of women, but 

a "small" association between length of employment and the sensory latencies for the right 

hands of women was found. This association was statistically significant. The authors 

acknowledged that the disorder tends to be more prevalent among women in their right hand, 

but suggest that any such association between work and CTS appears to be a weak one - 

based on their findngs. 
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2. 3 Work Factors Versus Personal Factors 

The  mixed and confusing findings regarding cumulative trauma disorders have generated 

considerable controversy and debate. Two opposing groups have developed, with those who 

believe work factors are primary causal factors for CTDs in one camp, and those who believe 

that work factors cannot be primary causal factors for CTDs in the other camp. A few studies 

have produced results which place their authors firmly in the middle of this debate, such as 

Cannon et al. (1981) who found strong associations between CTS and vibratory hand-tool 

use among aircraft assembly workers, but also a strong association between CTS and 

gynecological surgery (i.e., hysterectomy and oophorectomy). 

The debate perhaps reached its zenith when Norton Hadler attacked the findings of 

Armstrong et al. (1987) in an editorial published in the Journal of Occupational Medicine in 

1990, calling the concept of cumulative trauma "iatrogenic", i.e, the result of diagnosis or 

treatment. Hadler questioned the data and analyses upon which the researchers had based 

their conclusion that CTDs are much more prevalent among workers in high-force, high-

repetition job categories. He implied that the sample used may not be representative of 

industry in general because of plant and subject selection, and emphasized the finding that 

force category was not found to be related to CTDs for body areas other than the hand. 

Silverstein and Fine answered Hadler's statements in an editorial in the Journal of 

Occupational Medicine in 1991, acknowledging that CTDs have multi-factorial causes, but 

stating that their sample was indeed representative. The authors could find no reason to 

believe that the seven selected plants were grossly unrepresentative of all plants that would 

have met the study criteria. They noted that force categories used in the study were based 
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solely on hand forces, so they had not been surprised at the finding of no association between 

hand force and non-hand CTDs. The authors asserted that there exists considerable support 

for the CTD concept within clinical reports and laboratory and epidemiological studies. 

Stock (1991) examined all of the available evidence she could find regarding work-

relatedness of CTDs of the neck and upper limbs, reviewing 49 relevant studies. Of these 49, 

only three met the a priori criteria she determined for inclusion in a meta-analysis. The rest 

were rejected due to design inadequacies, study type, inadequate metric of exposure, or other 

relevant criteria. The three selected studies included epidemiological findings of Silverstein 

et al. (1986, 1987), a study by Nathan (1988), and an earlier study by Luopajarvi et al. (1979) 

in Finland. All three studies were cross-sectional. Stock (1991) found that the Silverstein 

study (1986, 1987) was best, consistently outranking the other two in various individual 

quality of research criteria. The Nathan study (1988) was found to be poorest, with serious 

flaws in the measure of exposure, occupational hand use. All three studies found a 

statistically significant relationship between exposure and at least one of the relevant 

outcomes. The strongest associations were found by both Luopajarvi et al. (1979) and 

Silverstein et al. (1986, 1987) between ergonomic related exposures and hand and wrist 

tendon and tendon sheath disorders, including flexor and extensor tendinitis, tenosynovitis, 

DeQuervain's, and trigger finger. 

Luopajarvi et al. (1979) also found a significantly increased prevalence of shoulder 

disorders among exposed workers, while the Silverstein study did not find a significant 

association between exposure and shoulder disorders in the highest exposure group (high-

force, high-repetition) but did find a significant association between exposure and shoulder 
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disorders for workers in the high-force, low-repetition jobs. Recall however, that Silverstein 

et al. (1986, 1987) based their exposure categories on hand force, not on shoulder force, so 

this finding is not surprising. 

Both Silverstein et al. (1986, 1987) and Nathan et al. (1988) found statistically significant 

increases in carpal tunnel syndrome in the highest exposure groups, with the Silverstein et al. 

data showing an odds ratio of 15.5, with a 95% confidence interval of 1.7 to 141.5, The 

Nathan et al. data (1988) show an odds ratio of 4.0, with a 95% confidence interval of 1.5 

to 11.0. The authors of the Nathan study claim that their findings do not show a significant 

difference in bilateral slowing of nerve conduction among exposure groups with the statistical 

tests they used. Stock (1991) reanalyzed the Nathan et al. data (1988) and found statistically 

significant differences between exposure groups in spite of the authors' assertions. Stock 

reminds her readers that the Nathan methods for measuring exposure were seriously flawed, 

and that consequently the best estimates of the relationship of exposure to disease comes from 

the Silverstein data. Stock concluded that the available results "demonstrate a strong  

relationship between exposure and hand/wrist tendon disorders and carpal tunnel syndrome". 

Stock further concluded that ''the strength of the associations between exposure and tendon 

disorders of the hand and wrist and carpal tunnel syndrome is quite high". The adjusted odds 

ratio that Silverstein et at (1986, 1987) found was 31.7 for hand and wrist tendinitis, and 15.5 

for carpal tunnel syndrome. 

In October 1993 at the National Safety Council Congress in Chicago, Nathan presented 

updated findings of his research team. This time he admitted that work factors were found 

to be a risk for carpal tunnel syndrome, but stating that work was only a minor risk factor and 
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not as predictive as individual variables such as age or body mass index. In the same session, 

epidemiologist Thomas Hales of the National Institute of Occupational Safety and Health 

(NIOSH) answered Dr. Nathan's assertions by demonstrating that if Nathan's data are 

reanalyzed, a clear dose-response relationship is indeed found in with regard to carpal tunnel 

syndrome based on nerve conduction velocity testing. Hales points out that much of the 

variance in the Nathan data, up to 85%, was not explained by any factor, and may eventually 

be explained in other study scenarios by work factors. 

2.4 Assessment of Occupational Factors 

A risk factor identified as "posture" might also be identified as "static exertion", and therefore 

be included with a general category of "force". Similarly, repeated "postures" or "exertions" 

might also be identified as "repetition". Such semantic distinctions often confuse the analysis 

and documentation of work-related CTD risk factors. Perhaps it is coincidences of these 

primary occupational factors which are more of interest than any effort to separate and 

analyze individually the various risk components. With this in mind, the following discussion 

examines the various work-related factors in greater detail. 

2.4.1 Task Repetitiveness and CTDs 

Tichauer (1966) noted the repetitiveness of a ratchet screw driving task, at 5000 exertions 

per day, and associated this with stress on the forearm and hand in industry. Silverstein et al. 

(1987) strongly associated the coincidence of a high-force and high- repetition task category 

with incidence of carpal tunnel syndrome. Contributors to the manual Cumulative Trauma 



10 

Disorders, edited by Putz-Anderson (1988), cite several references as documentation of an 

association between cumulative trauma disorders and repetitive jobs or tasks. 

One study, Smutz et al. (1992), examined the effect of low-force high-repetition 

manual activities on risks for carpal tunnel syndrome using animal and human cadaver tests, 

and concluded that tendinitis and tenosynovitis associated with low-force repetitive tasks is 

not the result of "cumulative strain" of the finger flexor tendons. The researchers suggest that 

a mechanism other than cumulative strain must be responsible for any tendon damage which 

occurs. One such possibility offered by the authors is that of mechanical wear and fraying or 

abrasion of the tendon. No indications of damage or wear were identifiable in the animal 

specimens after 729,000 task cycles over a period of three weeks. This finding adds weight 

to the notion that low force repetitive jobs (e.g., VDT data entry, small parts assembly) do 

not present significant risks over relatively short time periods, but may require weeks, months, 

or even years for tendon damage to develop and manifest.  

Silverstein et al. (1987) identified a clear relationship between risks for hand/wrist 

CTDs and force-repetition combination categories. High-force/high-repetition jobs clearly 

offered the greatest risks for CTDs, suggesting that coincidence or combination of repetition 

and forceful exertion greatly increases risks for CTDs, at least for the hands and wrists. 

2.4.2 Working Posture and CTDs 

Less than desirable working postures were linked to increased lost time from work due to 

musculoskeletal illnesses by Westgaard and Aaras (1984) in an industrial study of 

manufacturine workers. For jobs requiring awkward postures, including trunk and shoulder 
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flexion and bent neck postures, the rate of sick leave due to musculoskeletal illnesses was 

correlated with length of employment and was significantly greater than sick leave rates in 

age-matched controls (general office workers). The researchers also found increasing lost 

time with increasing age. Turnover rates were high for strenuous jobs. As with any such 

epidemiological study, high turnover could introduce a "survivor" bias into the comparisons, 

thereby tending to underestimate the link between jobs factors and musculoskeletal illness. 

In spite of this possibility, the authors clearly identified a relationship between work factors - 

specifically, static awkward postures - and lost time from work due to musculoskeletal illness. 

Results of follow-up studies published by Aaras and Westgaard et al. in 1986, 1987 

and 1988 are summarized by the authors in a chapter of Sauter et al. (1990). These studies 

of female workers utilized actual worksites which were redesigned based on ergonomics 

principles. The series attempted to assess (a) whether or not the introduction of ergonomic 

interventions and principles reduces postural loads and (b) the extent to which reduced 

postural load influences the incidence of musculoskeletal illness. The researchers also 

examined the musculoskeletal injury incidence effects of postural loads when comparing 

different work tasks, and attempted to determine a safe level of work load. The group of jobs 

was light assembly work in a manufacturing environment. Generally, static postural loading 

of the shoulders, neck, and arms could be easily identified within most tasks prior to the 

ergonomic changes. Loads were estimated with EMG, while medical, epidemiological and 

work history data were carefully collected. Studies were conducted over a period of seven 

years for some jobs, four years for others, and up to eight years for still others. 

The results, following ergonomic changes, include a considerable statistically 
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significant reduction in static trapezius load for some jobs, but no significant difference for 

others. There were no significant differences in shoulder flexion angles overall for one 

particular job when comparing old and new workstations. However, workers with high 

values of shoulder flexion in the original job recorded a considerable decrease in those angles 

at the ergonomically enhanced worksites. 

Periods of sick leave due to musculoskeletal illnesses were significantly reduced in 

spite of a longer time of employment by the time the study was completed. The effect of 

ergonomic redesign was also assessed by comparing new employees, who worked only at the 

better workstations, with others in the group. These workers had a much higher probability 

of not taking sick leave due to musculoskeletal illnesses, a difference which was highly 

significant. Further, a clearly identifiable interruption in the increasing incidence of 

musculoskeletal sick leave was found to coincide with the ergonomic interventions. 

The authors also confirmed that improvements were not due to any decrease in 

workload in terms of production demands. In fact, productivity on average was found to be 

higher in the period following the ergonomic improvements compared to the period prior to 

the workstation changes. 

These researchers concluded that health effects of postural workload are influenced 

by (a) the magnitude of the postural angles (b) the distribution of muscle load between 

subgroups of muscles such as flexors and extensors, providing correspondingly reduced 

periods of activity for each group (c) the number and duration of very low postural angles, 

± 5°, + for flexion or - for extension , and (d) the dynamic pattern of work. The general 

conclusion is that static muscle loading should be reduced to a minimum. and that dynamic 
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muscle activity, providing operators variation in posture and movements, is desirable. 

A histogram provided by Westgaard et al, (1986) demonstrate that over the 15 year 

period, clear reductions in long-term sick leave following ergonomic enhancements occurred. 

A separate graph illustrates significant reductions in labor turnover over the same period. 

Note that the reductions coincided with the implementation of ergonomic changes. 

Westgaard et al. (1986) 

Figure 1 - Long term sick leave before/after ergonomic changes shown over a 16 year period 

Figure 2  - Labor turnover over the same 16 year period. A dramatic decrease in turnover 

occurred following ergonomic improvements 
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More recently, Harber et al. (1993) documented evidence that posture per se is a significant 

variable in risk for upper extremity CTD, using a symptoms index among grocery checkers 

to identify increased risk. The researchers found that tasks which involve wrist flexion or 

wrist extension increased the proportion of workers in the highest quartiles of the symptoms 

index. This was also found to be true for trunk or lumbar flexion. The authors did not 

speculate as to why lumbar flexion increased symptoms in the upper extremities. In this 

study, specific motions were directly linked to specific symptoms independent of repetition, 

and indicates that postural loading, including static loading, is a risk factor for CTDs. 

Figure 3  - Motion and symptoms index are shown. The proportion of the population 
reporting in the upper quartiles of the symptoms index increases as motion increases, clearly 
showing the link between posture and symptoms (from Harber et al., 1993). 
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Prior to the documentation by Harber et al. linking postural variables to risks for 

CTDs, the field generally accepted that a relationship exists between hand and wrist postures 

and CTDs of the hand and wrist as summarized by Armstrong et al. (1982). Associations 

include those between carpal tunnel syndrome and repeated wrist flexion or extreme extension 

- particularly in combination with forceful pinching - repeated radial and ulnar deviations of 

the wrist associated with tenosynovitis or DeQuervain's disease, and exertions with a flexed 

wrist or ulnar deviation associated with tenosynovitis of the finger flexor tendons. 

Tichauer and Gage (1977) point out some of the practical aspects of hand/wrist 

posture in relation to task activity, stating that holding and manipulating are mutually 

exclusive movements, and that when the wrist is flexed, the hand cannot grasp a rod firmly. 

The implication for task design is that the predominant action to be performed, holding or 

manipulation, should be determined and facilitated by appropriate ergonomic measures. 

Further, the coincidence of holding and manipulation demands should be avoided. 

2.4.3 Forceful Exertions and CTDs  

At the jobsite, forceful exertions and awkward postures frequently occur in combination. 

Consequently, the relative contributions of the two factors toward increased CTD risk are not 

easily defined or separated. A summary of occupational risk factors and hand/wrist CTDs by 

Armstrong et al. (1982) includes coincidences of force, posture, and repetition. Silverstein 

et al. (1987) perhaps offers the most distinct evidence of the contribution toward CTD risks 

made by forceful exertions since the study utilized high and low force-repetition combination 

categories. 
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Tichauer and Gage (1977) noted that force or thrust direction can interact with the 

probability of musculoskeletal illnesses. For example, a movement demanding strong pull and 

simultaneous counterclockwise rotation of the right hand should be avoided, since such a 

movement is mutually incompatible for the biceps. This is due to the fact that the biceps is 

both a flexor of the forearm and an outward rotator of the wrist. Perhaps both force 

magnitude and direction are important factors in determining the probability of a CTD. 

2.4.4 Mechanical Stresses  and CTDs 

Tichauer and Gage (1977) provide ample discussion of the role of contact stresses in CTD 

development, along with some important implications for ergonomic hand-tool design. 

Assumptions that mechanical stress or deformation of the tissue contribute substantially to 

ischemia and peripheral median nerve compression were tested and confirmed by Szabo and 

Gelberman (1987). The results showed a rapid decline in sensory amplitude action potentials 

and an increase in sensory latency when direct pressure is applied to the palmar aspect of the 

wrist over the carpal tunnel. The implications for risk of carpal tunnel syndrome are clear. 

Contact stresses to other body areas or tissues are also known to contribute to CTDs, 

including effects of hard or sharp edged tools on the fingers in the development of stenosing 

tenosynovitis crepitans, or "trigger finger" (Putz-Anderson, 1988). 

2.4.5 Temperature and CTDs 

Cooler temperatures increase the probability of CTDs to the upper limbs, probably due  to 

decreased bloodflow to the extremities, and can accentuate possible neurological symptoms. 
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There is some evidence (Georgitis, 1978) that extreme cooling may directly produce 

tendinitis. 

2.4.6 Vibration Exposure and CTDs 

Cannon et al. (1981) associated hand-tool vibration with CTDs, including impact tools, power 

tools, buffers and grinders, and others. Wasserman et al. (1991) examined hand-arm vibration 

syndrome among miners exposed to jackleg-type drills over a period of time. The researchers 

found that the median latency to symptoms of tingling, numbness, and blanching was 4.5 

years. Radwin et al. (1987) found that vibration influences the manner in which workers hold 

and use their handtools. Distinguishing the effects of vibration on workers using vibratory 

handtools or grasping vibrating parts from effects of forceful or repeated exertions is difficult. 

2.5 Assessment of Individual Factors 

2.5.1 Anthropometric Dimensions and CTDs 

Several studies have examined the possibility that wrist dimensions have an influence on 

predisposition for carpal tunnel syndrome. Gordon et al. (1988) found that 24% of subjects 

with wrist ratios (division of the anteroposterior wrist dimension by the mediolateral 

dimension) of less than 0.70 had abnormal electrodiagnostic studies compared to 74% of 

subjects with wrist ratios greater than or equal to 0.70. The authors suggest that wrist ratio 

determination could be useful in job placement efforts. However, Bleeker (1987) examined 

the carpal canal size with computerized tomography and found that wrist circumference was 
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not a reliable predictor of the smallest carpal canal area. The researcher could find no 

anthropometric measurements that could be used to determine carpal canal size. However, 

Bleeker's findings did suggest that a subgroup of the general population may contain a risk 

factor, a small carpal canal, which is associated with development of CTS in the workplace 

when their hands are exposed to the appropriate ergonomic stresses. 

Fernandez et al. (1989) examined several factors, including wrist anthropometry, and 

attempted to correlate these with incidence of CTS but were unable to do so, finding no 

significant correlations with anthropometric dimensions of the wrist. The researchers did find 

significant differences in strength, range of motion, and task performance criteria. 

Interestingly, those who have encountered negative findings regarding correlation of 

carpal tunnel syndrome and wrist dimensions have examined individual wrist dimensions, not 

the ratio of two wrist dimensions. Nathan et al. (1992) found that wrist depth/width ratio 

explained 13% of the of the variance in a longitudinal study of the etiology of carpal tunnel 

syndrome, a significant but marginal finding. 

Studies to date of anthropometric dimensions as predictors of CTDs have almost 

exclusively focused on carpal tunnel syndrome, and ignored a host of other common CTDs. 

There is at least one possible exception.  

Australian researchers (Green and Briggs, 1989) examined several non-wrist 

anthropometric dimensions in a cross sectional study and found that hip width and seat 

breadth correlated with "overuse" injuries, while other dimensions, such as stature, thigh 

clearance, and resting elbow height, did not correlate with overuse injuries. Unfortunately, 

the researchers did not specify their method of defining an "overuse" injury except to note 
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that those designated as "sufferers" experienced, within one week prior to the study, 

symptoms previously associated with overuse injury. 

2.5.2 Body Mass And CTDs  

Nathan et al (1992) found that body mass index (BMI) defined as weight/height, explained 

53.7% of the variance in a stepwise regression analysis of maximum sensory nerve conduction 

latency of the median nerve. The BMI explained a greater proportion of the variance than any 

other factor. Green and Briggs (1989) found that a greater proportion of female individuals 

who were overweight were affected by CTDs compared to those not overweight. Tsai et al. 

(1992) found that persons who are overweight are more likely to affected by both low-back 

and non low-back musculoskeletal disorders. 

Figure 4  - Body-mass index and electrodiagnostic indications of CTDs. The proportion of 
population with slowing determined through sensory nerve conduction velocity testing is 
shown (Nathan et al. 1992). 
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2.5.3 Gender and CTDs  

Analysis of worker's compensation claims in Canada revealed that female machining and 

fabricating workers experience nine times the number of cumulative trauma claims and eleven 

times the number of lost days from work than the average worker in Ontario (Krammer, 

1992). Males in the same occupations, however, had only twice the Ontario rates of CTDs, 

indicating a strong gender effect on claims. While a similar relative difference was discovered 

among clerical workers, the CTD rate for clerical occupations was below the average for all 

occupations. Therefore, a job or occupation effect was also discovered. The author points 

out that the findings may be due to inherent differences between males and females, to females 

being more often placed in highly repetitive jobs, or to some combination of these.  

Green and Briggs (1989) found significant interaction between CTD prevalence and 

anthropometric dimensions only among females. Among males, no significant interaction of 

body dimensions and CTD prevalence was found. 

In a large cross-sectional study, Tsai et al. (1992) found that women were more likely 

to experience both low-back and non low-back occupationally related disorders compared to 

men, but the differences were not statistically significant. 

In a large workers compensation claims study, Tanaka et al. (1988) found the overall 

CTD case rate per 10,000 workers was 4. 1 for females, and 2.3 for males. Armstrong et al. 

(1987b) reports that the increased risk associated with gender differences is substantially less 

than the increased risk associated with job characteristics. 
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Figure 5 - Gender and CTDs. Females tend to be more affected compared to males (Tanaka 
et al., 1988). 

2.5.4 Smoking and CTDs 

A large cross-sectional study of more than 10,000 workers at Shell Oil company 

manufacturing facilities (Tsai et al., 1992) found that a significantly greater proportion of 

smokers versus non-smokers are affected by both low-back and non low-back 

musculoskeletal disorders. The researchers also found that overweight persons were 

significantly more likely to be affected by such disorders. 

2.5.5 Age and CTDs 

Westgaard and Aaras (1984) documented a connection between increasing age and  increasing 

lost time from work due to musculoskeletal illnesses. The researchers also  found that 
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musculoskeletal illness increased with increasing length of employment. Nathan et al. (1992) 

found age to be correlated with slowing of sensory conduction of the median nerve, a possible 

indicator of propensity for carpal tunnel syndrome. Tanaka et al. (1988) reported the case 

rate for upper body CTDs is highest for women aged 36-45 years old, and for men at ages 

26-35, based on a large workers compensation claims study. These data suggest that age 

does influence susceptibility For CTDs, but that the relationship is not linear, but modal. 

Figure 6 - Age and CTDs. A bimodal relationship was found by Tanaka et al. (1988). 
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2.5.6 Psychological Factors and CTDs  

One group of researchers, Fernandez et al. (1989), examined personality traits of individuals 

diagnosed with carpal tunnel syndrome citing the Sixteen Personality Factor Questionnaire 

or 16PF by Cattell, Eber, and Tatsuoaka. The researchers determined that one personality 

factor seems to be associated with CTS: high scores on a continuum scale to measure "free-

floating anxiety". Anchor points on this scale, low to high, are "tranquil" versus "frustrated", 

respectively. The authors, citing a summary of numerous sources, point out that high scores 

of free-floating anxiety have been consistently related to high frequencies of general physical 

illness, specifically including rheumatoid arthritis, hypertension, diabetes, and asthma, among 

others. 

Figure 7  - Psychological factors and CTDs. At the bottom of the list, high levels of "free-
floating anxiety" is characteristic of person with CTDs. Note that persons with CTDs were 
also found to possess below average intelligence. 
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Kiesler and Finholt (1988) reviewed the epidemic of repetitive strain injury (RSI) in 

Australia and concluded that the fundamental difficulty is dissatisfaction with the workplace. 

The authors do not suggest that RSI is an iatrogenic phenomenon - a means to promote the 

practice of medicine - or that RSI is a method used by malingerers to defraud their employers. 

The authors instead conclude that workers legitimately have symptoms of RSI, but if the 

work environment were better and jobs more satisfying, RSI symptoms would be less 

important. 

This evidence suggests that intervention efforts which focus strictly on the physical 

aspects of worksites may be inadequate to curtail workers compensation claims for CTDs, 

and that job enlargements, improved work environments, better management of new 

technology in the workplace, and opportunities for advancement are also important 

opportunities for improvements which can be combined with physical worksite enhancements. 

2.5.7 Exercise and CTDs  

Three separate studies have examined the effects of formalized exercise programs on 

propensity for CTDs. Two focused on carpal tunnel syndrome (Williams et al., 1989; Thomas 

et al., 1993) while one examined musculoskeletal symptoms in a more general sense 

(Silverstein et al., 1988). All reached similar conclusions: exercise does not appear to reduce 

the likelihood of CTDs. Silverstein et al. based their findings on subjective postural 

discomfort surveys taken before and after a year long program of exercise in the workplace. 

The researchers found no change in the proportion of subjects with symptoms better, the 

same, or worse after the one year period. Williams et al. used grip strength, Phalen's test 
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results, and liquid crystal thermography to test for changes in propensity for carpal tunnel 

syndrome. The results indicated small, non-significant benefits of exercise. These researchers 

used engineering economic analysis to estimate the payback period on investment into 

exercise programs at eleven years, casting doubt on the economic efficacy of such programs. 

Thomas et al.. utilized motor nerve conduction latencies through the carpal tunnel to measure 

likelihood of CTS, but found no differences between the exercise and no-exercise group. A 

significant increase in grip strength however was noted among the exercise group. 

Hebert (1992) provides a few anecdotal reports of exercise programs which appear 

to have helped to decrease losses. However, the author provides little detail about these 

anecdotes and makes no mention of use of controls for comparison. Hebert cites a 

published 63% reduction in losses in one department at an Ethicon, Inc site following the 

introduction of an exercise program. 

However, upon close inspection of the Ethicon material (Lutz et al., 1987) one finds 

that the reduction in losses occurred in one department over only a three month period, and 

was introduced in the context of a larger ergonomics program that included job design 

changes, medical management, and employee education and training. No controls for 

comparison were apparently utilized. Given the relatively short period (three months) the 

reduction in losses could be merely random fluctuations in injuries or injury reporting, a 

temporary Hawthorne effect, a fluctuation in productivity demands, or any one of dozens of 

other possible variables. As a seller of consulting services to industry on development of 

exercise programs, Hebert's assertions appear to be nothing more than marketing "hype" in 

the guise of scientific evidence. 
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Thompson (1990) found marginal benefits to productivity resulting from an exercise 

break program introduced to workers in a VDT work environment. However, the study 

occurred over only four months before a new incentive pay program was put into effect, 

confounding any subsequent results. The study utilized no controls for comparison, and the 

limited time frame (four months) over which any results were obtainable indicates a strong 

possibility of Hawthorne or other transient effects. 

In summary, exercise programs do not appear to offer significant long term help 

toward reducing CTDs. While there may be psychological benefits to workers associated 

with exercise programs, no convincing evidence of this is currently available. 

2.5.8 Other Individual Factors 

Acute trauma, pregnancy, endocrinological disorders, vitamin B6 deficiency, rheumatoid 

arthritis, gynelogical surgery, oral contraceptives, and alcohol use have all been associated 

with increased risks for CTDs. Armstrong (1990) summarized indications of such personal 

factors in an engineering course training manual. 

While strong evidence supports the contribution of personal factors in some situations, work 

factors clearly play the major role in many other situations. 

2.5.9 The Disorders - Descriptions and Associated Activities 

Cumulative trauma disorders, a collective of slow onset tendon, nerve, and neurovascular 

disorders of the upper or lower extremities, are summarized on the following table with 

associated work activities, as presented by Kroemer (1992). 



TABLE I. (continued) 

Disorder Name" 	 Description 	 Typical Job Activities 
Tendonitis 	 An inflammation of a tendon. Often 	 punch press operations. assembly 
(tendinitis) (T) 	associated with repeated tension. 	 work, wiring, packaging. core 

motion, bending. being in contact with a 	making. use of pliers 
hard surface. vibration. The tendon 
becomes thickened. bumpy. and irregular 
in its surface. Tendon fibers may be 
frayed or torn apart In tendons without 
sheaths. such as within the elbow and 
shoulder. the injured area may calofy 

Tendosynovits 	This disorder occurs to tendons that are 	buffing, grinding, polishing. sanding, 
(tenosynovitis. 	inside synovial sheaths. The sheath 	punch press operation. sawing, 

tendovaginitis) 	swells. Consequently. movement of the 	cutting. surgery. butchering. use 
(T) 	tendon within the sheath is impeded and 	of pliers. -turning" control such as 

painful. The tendon surfaces can become 	on a motorcyde, inserting screws 
irritated. rough, and bumpy. ft the inflammed 	in holes, forceful hand wringing 

sheath presses progressively onto the 
tendon, the condition is called stenosing 
tendosynovitis deQuervain's syndrome 
is a special case occunng in the thumb; 
the trigger finger condition occurs in 
flexors of the fingers. 

Thoracic outlet 	A disorder resulting from compression of 	butting. grinding, polishing, sanding, 
syndrome 	 nerves and blood vessels between 	 overhead assembly, overhead 
(neurovascular 	clavicle and first and second ribs. at the 	welding. overhead painting, 

compression 	brachial plexus. If this neurovascular 	overhead auto repair, typing, 
syndrome. 	 bundle is compressed by the pecloralis 	keying, cashiering, wiring, playing 
cervicobrachial 	minor musde, blood flow to and from the 	musical instruments, surgery. 
disorder, brachial 	arm is reduced. This ischemic condition 	truck dnving, stacking. material 
plexus neuritis. 	makes the arm numb and limits muscular 	handling. postal letter carrying, 

ccstoclavicular 	activities. 	 carrying heavy loads with 
syndrome. 	 • 	 extended arms 
hyperabduction 
syndrome) (V,N) 

Trigger finger or 	A special case of tendosynovitis where the 	operating finger trigger, using hand 
thumb (T) 	 tendon becomes nearly locked so that its 	tools that have sharp edges 

forced movement is not smooth but in a 	pressing into the tissue or whose 
snapping, jerking manner. This is a special 	handles are too far apart for the 
case of stenosing tendosynovitis crepitans, 	user's hand so that the end 
a condition usually found with digit flexors 	segments of the fingers are 
at the A 1 ligament. 	 flexed while the middle seg- 

ments are straight 

Ulnar  nerve 	Results from the entrapment of the ulnar 	playing musical instruments, 
entrapment 	nerve as it passes through the Guyon 	carpentering, bricklaying, use of 
(Guyon tunnel 	tunnel in the wrist. It can occur from 	 pliers. soldenng, hammering 
syndrome) (N) 	prolonged flexion and extension of the 

wrist and repeated pressure on the 	  

hypothenar eminence of the palm. 
•  

White finger 	Stems from insufficient blood supply 	chain sawing, jack hammering. use 
('dead finger,". 	bringing about noticeable blanching; 	 of vibrating tool. sanding, paint 
Raynaud's 	(finger turns cold, numb, and tingles); 	scraping, using tool 100 small for 
syndrome, 	 sensation and oontrol of finger movement 	the hand, often in a cold 
vibrations 	 may be lost. The condition is due to 	 environment 
syndrome) (V) 	closure of the digit's arteries caused by 

vasospasms triggered by vibrations. A 
common cause is continued forceful 
gripping of vibrating tools, particularly in 
a cold environment 

 
Ulnar artery 	Weakening.  of a section of the wall of the 	assembly work 

aneurysm 	 ulnar artery as it passed through the 
Guyon tunnel in the wrist; often from 
pounding o pushing with heel of tie 
hand, The resulting "bubble" presses on 
the ulnar nerve in the Guyon tunnel. 

= nerve ; T tendon;  M muscle; V = vessel disorders. 
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TABLE I. Common Repetitive Strain Iniuries, Primarily to Nerves (N), 
Tendons and   Tendon Sheaths (T), Muscles (M), or Blood Vessels (V) 

Disorder Name A 	 Description 	 Typical Job  Activities  
Carpal tunnel 	The result of compression of the median 	buffing. grinding. polishing, sanding, 

syndrome 	 nerve in the carpal runnel of the wrist. 	assembly work. typing. keying. 
(writer's cramp, 	This tunnel is an opening under the 	 cashioning, playing muscat 
neuritis. median 	carpal ligament on the palmar Side of 	instruments surgery. packing. 
neuntis) (N) 	 the carpel bones. Through this tunnel 	housekeeping cooking. 

pass the median nerve. me finger flexor 	butchering. hand washing. 
tendons, and blood vessels Swelling of 	scrubbing. hammering 
the tendon sheaths reduces the size of 

the opening of the tunnel and pinches 
the median nerve and possibly blood 
vessels The tunnel opening is also 
reduced if the wrist is flexed or extended. 
or ulnarly or radially pivoted 

Cubital tunnel 	Compression of the ulnar nerve below me 	resting forearm near elbow on a 
syndrome IN 	notch of the elbow. Tingling. numbness. 	hard surface and/or sharp edge, 

or pain radiating into ring or little fingers. 	also when reaching over 
obstruction 

deQuervain s 	 A special case of tendosynovitis that 	butting. grinding. polishing. sanding, 
syndrome (or 	occurs in the abductor and extensor 	pushing, pressing. sawing, cutting, 
disease) (T) 	 tendons of the thumb where they share 	surgery, butchering, use of pliers. 

a common sheath. This condition often 	'turning" control such as on a 
results from combined forceful gripping 	motorcycle. inserting screws in 
and hand twisting like in wringing cloths. 	holes. forceful hand wringing 

Epicondylitis (" tennis elbow") Tendons attaching to the epicondyle (the         turning screws. small parts 
elbow") (T) 	 lateral protrusion at the distal end Of the 	assembly, hammering. meat 

humerus bone) become irritated This 	cutting. playing musical 
condition is often the result of imparting 	instruments. playing tennis. 
or jerky throwing motions. repeated 	 pitching bowling 

supinaton and proration of the forearm. 
and forceful wrist extension movements. 
The condition is well known among 
tennis players. pitchers, bowlers. arid 
people hammering. A similar irritation of 
the tendon attachments on the inside of 
the elbow is called medical epicondyIrtis, 
also known as "golfer's elbow.' 

Ganglion (T) 	 A tendon sheath swelling that is filled with 	buffing. grinding, polishing, sanding. 
synovial fluid, or a cystic tumor at tne 	pushing. pressing, sawing cutting. 
tendon sheath, or a joint membrane. The 	paying musical instruments, 
affected area swells up and causes a 	playing tennis. pitching, bowling 

bump under the skin. often on the dorsal 
or radial side of the wrist (Because it 
was in the past occasionally smashed 
by Striking with a Bible or heavy bock, it 
was also called a 'Bible Bump.") 

Neck tension 	An irritation of the levator scapulae and 	belt conveyor assembly, typing. 
syndrome (M) 	trapezius group of muscles of the neck. 	keying, small parts assembly, 

commonly occuring after repeated or 	packing, load carrying in hand 
sustained Overhead work. 	 Of on shoulder 

PToniator (fetes) 	Result of compression of  the median 	soldering, buffing. grinding, 
syndrome (N) 	nerve in the distal third of the forearm, 	polishing, sanding 

often where it passes through the two 
heads of the pronator teres muscle in 
the forearm; common with strenuous 
flexion of elbow and wrist. 

Shoulder tenditis 	This is a shoulder disorder at the rotator 	soldering, Outing, grinding, 
(rotator cuff syn- 	cuff. The cuff consists of lour tendons 	polishing, sanding 
dome or tenants, 	that fuse over the shoulder joint where 
supraspinatus ten- 	they pronate and supinate the arm arid 

dinitis. subacromial 	help to abduct it. The rotator cull tendons 
bursitis, %it:deltoid 	must pass through a small bony passage 
bursitis, partial tear   of between the humerus and the acromon, 
the rotator cuff) M 	with a bursa as cushion. 
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CHAPTER 3 

RESEARCH OBJECTIVES  

As evidenced by the previous overview of current literature regarding CTDs, a variety of 

work and individual factors enter into the causation of such disorders. The degree to 

which each of these factors can be controlled, and by what means, is quite important. 

Jobsite ergonomic variables can be controlled more readily than personal or individual 

factors. Therefore, the objective of this study is to test and confirm if ergonomic 

improvements reduce the probability of CTDs. Since there exists no known direct 

measures for CTD risk, secondary measures are utilized to assess CTD risk. The selected 

secondary measures are muscle electrical activity which reflects the force of exertions over 

time measured by electromyograph (EMG), and postural angles or position ranges over 

time estimated by work sampling. 

In order to prescribe and verify appropriate ergonomic measures for a specific job, 

standard ergonomic principles are applied in retrofitting an existing workstation. A 

workstation at an electronics assembly/manufacturing company, which contains similarities 

to many other related workstations at the same company, has been selected with the 

intention of extrapolating its results to the other workstations. Task requirements for the 

selected job include: small parts assembly, insertion of the assembly into a press machine, 

activation of controls, setting aside the part, and repeating the entire process. 

To summarize, the research objectives of the study are: 

29 
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1) To prescribe ergonomic measures and verify that ergonomic workstation 

improvements significantly reduce secondary measures of cumulative trauma 

disorder risk, and therefore, presumably, the risks for CTDs. Alternatively, to 

confirm that such improvements do not significantly reduce any secondary 

measures of risk, and are therefore not justified economically. 

2) To formulate results, if positive, in such a way as to allow generalization and 

extrapolation of findings to an entire family of essentially similar jobs. This can be 

done by stating clearly stating the general design principles being tested. 

3) To confirm that secondary measures have in fact accurately reflected risks for 

CTDs by utilizing incidence or epidemiological data as these become available.  

The press operation and assembly task first involves placing several individual parts 

together in the proper configuration in the press fixture. The parts include one small 

spring, one hard plastic base with breaker subassembly, and one plastic button. Then the 

press is activated to compress the parts together, with proper tolerances and alignment, 

into a single unit. The result is a circuit breaker and switch which can be reset by pressing 

the button after being "tripped" by specified electrical conditions. These reset breakers are 

used in a variety of systems including both military and civilian aircraft, and many motor 

control applications. 



CHAPTER 4 

MATERIALS AND EXPERIMENTAL METHODS 

4.1 Variables  

The experiment was originally to be conducted in three phases: (a) the pilot or test run, (b) 

baseline data collection, and (c) follow-up data collection for the enhanced or improved 

workstation. Due to practical considerations, however, it was easier to build a completely 

new workstation rather than retrofit the old workstation. This provided an opportunity to 

greatly reduce experimental error that would have resulted from an attempt to locate and 

relocate EMG surface electrode positions based on anthropometric landmarks and 

photographs. Instead, the two workstations (old and new) were positioned within a few 

feet of each other, with each fully functional. EMG data were gathered in a single setting 

for each subject without removal of the electrodes. 

Independent variables included the machine fixture height and location, the type 

and location of the press controls, and the angle and layout of parts trays and work-table. 

Dependent variables include electromyograph signal integrated over a part cycle 

time for each of three selected muscle groups, and postural angles classified into ranges or 

intervals through work sampling methods. 

The EMG and postural experiments were conducted independently, with no 

attempt to correlate the two variables. Fixed variables include the workstation 

arrangement for original and enhanced workstation conditions, chair type and height, and 

cycle time per workstation-subject combination for EMG signal integration. 

3l 
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4.2 Subjects 

Twelve subjects were originally selected from the motor controls department CC116 or an 

adjacent department and participated in the pilot aspect of the study. During what was to 

have been the baseline aspect of the study, the same twelve subjects participated. After the 

old and new workstations were prepared, the experiment was actually conducted on ten of 

the original twelve subjects. One half of the data for subject number 3 was inadvertently 

corrupted or lost, so subject 3 was excluded from the analysis, leaving the number of 

subjects actually utilized for the EMG analysis at nine. All nine subjects were female, 

reflecting the overwhelming majority of workers actually doing this job. Ages ranged from 

early twenties to the late fifties. Seniority levels varied widely. All operators had previous 

experience with the press operation job, while most were also experienced in similar jobs 

in the same department. None of the subjects have been exclusively dedicated to this one 

press operation job; all subjects work a variety of jobs within the department, an 

arrangement that is characteristic of this department. 

For the postural analysis, data were collected on four of the original 12 subjects. 

4.3 Force Measurement - Electromyography 

Surface EMG's were measured and recorded using a computer-based EMG monitoring 

system. The data were read and stored in a personal computer for later retrieval and 

analysis. Signals were filtered through a narrow bandpass filter ranging from 100 to 200 

HZ, with 0.25 microvolts input noise, and basic accuracy of plus or minus 3%. 

Signals were integrated over a fixed time period which was set for each operator-

workstation combination based on the mean cycle time per part as estimated during what 
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appeared to be a near steady state condition. Here, "cycle time" is defined as the time to 

complete one part. A review of cycle time data from the pilot and baseline data revealed 

that the data tend to be distributed in lognormal fashion. A best-fit curve was determined 

via use of the SIMAN Output Processor. The Ouput Processor is generally used to find 

best-fit curves for input data to be utilized in a simulation model. The best-fit function 

reveals which distributions are most appropriate for creating a realistic simulation. 

Standard statistical test for goodness-of-fit are utilized. Since the data distribution was 

nearly symmetrical except that the right tail was longer in lognormal fashion, mean cycle 

time was chosen for the EMG period in order to eliminate or reduce a possible source of 

variability by truncating each reading at the mean. 

Pilot and baseline aspects of the study revealed substantial within-subject variation 

for the EMG data based on a sample size of ten cycles per subject during the pilot, and for 

twenty cycles per subject for the baseline. Consequently, during the actual experiment, 

sample size was increased to the extent practical with no attempt to balance the design of 

experiment. Generally, 40 to 60 data points, EMG signals integrated over a cycle, were 

collected for each subject-workstation condition. Sample size varied based on the 

availability of parts and the number of good readings available from those taken. If an 

operator paused to speak to a supervisor or co-worker, that reading was scrapped. 

Similarly, if an operator dropped a part, ran out of parts, or performed fried any unanticipated 

tasks such as reaching for a new parts tray, those readings were scrapped. 
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subj 1 subj 2 subj 4 subj 5 subj 6 subj 7 subj 8 subj 9 subj 

10 

work- data 

 

data data data data data data data data 

station n=53 n=57 n=54 n=40 n=44 n=53 n=48 n=54 n=52 

I (old) 

work- data data data data data data data data data 

station n=56 n=60 n=50 n=53 n=41 n=54 n=54 n=40 n=72 

II 

(new) 

Table 2  Sample sizes for subject and condition for the unbalanced design of experiment 

4.4 Muscle Groups  

Three distinct muscle groups were selected for measurement:  (a) extensor digitorum and 

extensor digiti minimi to represent the activity of the hand/wrist (b) anterior deltoid to 

represent the activity of the shoulder, and (c) upper trapezius to represent the activity of 

the head and neck. 

The job entails dynamic and static flexion and extension of the wrist. A 

convenient muscle group located near the surface, that of wrist extensors, was selected to 

represent wrist activity and to provide for clear EMG readings. 

Figure 8  - Extensor digitorum, muscle group to represent hand/wrist muscle activity 

(from Kendall and McCreary, 1983) 



 

Figure 9  - For the shoulders, the anterior deltoid was selected since this muscle is the 
primary shoulder flexor (from Kendall and McCreary, 1983) 

Figure 10  - For the head and neck, the upper trapezius was selected since the levator 
scapulae is generally too small to provide for accurate electrode placement and reliable 
readings (from Kendall and McCreary, 1983) 
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4.5 Electrode Placement 

Basmajian and DeLuca (1985) recommend that the best location of an electrode is in the 

region halfway between the center of the innervation zone and further tendon of a chosen 

muscle or muscle group. The authors further recommend a standard interdetection 

surface spacing of one centimeter between electrodes. These recommendations were 

followed to the extent practical. Since electrodes were not removed from one workstation 

condition to the next, exact electrode placement was not crucial other than general 

positioning to reflect the muscle activity of interest. 

4.6 Variability 

In Sauter et al. (1990) Aaras et al. conclude that EMG data on static trapezius loads of 

female industrial workers have great variation within groups or between subjects. The 

pilot study here found that signal variation for all three muscle groups was large. For the 

hand/wrist and shoulder muscle groups, data were collected for dynamic tasks which also 

contained static elements, such as when the wand controls were activated by displacing 

them and holding the position for one to two seconds. For the neck or upper trapezius 

muscle, activity was largely static, similar to that noted by Aaras et at, indicating that any 

attempt to pool the data would likely yield very unreliable results unless some normalizing 

technique were applied. Consequently, a within-subjects design was indicated, with no 

expectation of interaction between subjects. In essence, each subject acted as her own 

control. 



37 

4.7 Pilot Results 

During the pilot, a subject was tested in two different sessions using a sample of size ten 

each, in close proximity of time, with the same workstation conditions, and without 

removing the electrodes between sessions. The following data resulted: 

TESTING OF VARIANCES 

critical value (.05) 	F(9.9) = 3.18 	 Subject #5 

SESSION 1 	SESSION 2 

ch. 1 	16.3 	15.1 	F(ch.1) = 5.47 	"signif. 

(2.62) 	(1.12) 

ch. 2 	8.4 	8.9 	F(ch.2) = 2.72 

(2.31) 	(1.4) 

ch. 3 	3.3 	3.0 	F(6.3) = 2.77 

(.30) 	(.18) 

TESTING OF MEANS 

critical value t(.05)  = 1.75 	 df = 16.3 

t(ch.1) = 1.33 	not significant 

t(ch.2) = .585 	not significant 

t(ch.3) = 2.71 	**significant 

Since a significantly different mean value was found for one of the three muscle 

groups (upper trapezius) based on a sample size of ten cycles in each of two sessions with 

identical conditions, it was suspected that average neck muscle activity changed over short 
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4.8 Data Smoothing 

Since the graphed data clearly demonstrate wide variation for two of the three muscle 

groups, the possibility of background noise in the readings was considered. Also, a 

phenomenon often called "crosstalk", was considered. This effect is similar to background 

noise which may be inherent to muscle electrical activity when measured by EMG. 

Crosstalk results from electrical activity from adjacent muscle groups which are not being 

studied. To compensate for this phenomenon, data smoothing techniques were applied to 

the raw EMG data. Two different smoothing methods were utilized. First, a simple 

moving window average method was applied. The window size to the right and to the left 

of a data point was set at two. The second technique, called the "Savitzsky-Golay" filter 

or "least-squares" filter consists of fitting a least squares fourth degree polynomial through 

the data point and several points on either side. The window size was set at three for each 

side since upon graphing the data, this window size appeared to provide a distribution that 

generally looked normal. Details regarding the Savitzsky-Golay method are provided 

elsewhere (Press et al., 1992 ). Example graphs of the raw, smoothed, and Savitzsky-

Golay filtered data for each subject, muscle group and condition are shown in the 

Appendix. 

4.9 Design of Experiment - EMG 

While the data for each muscle group were recorded simultaneously, three separate 

analysis of variance (ANOVA) tests were conducted, one for each muscle group. The 

main effects in the model were the workstation effect, the subject effect, and the 

workstation-subject interaction effects. Although a subject effect was calculated, this was 



40 

of little interest here since significant differences from subject to subject due to the known 

individualistic nature of muscle activity and EMG readings were fully expected. The main 

interest here was the workstation effect and any subject-workstation interaction effects. 

However, by calculating the subject effect the assumptions are clearly confirmed. No 

attempt was made to check for interaction effects from one muscle group to another.  

In addition to three ANOVAs performed on the raw EMG data, three other 

ANOVAs were performed on a smoothed version of the data (moving window average) 

and three more ANOVAs on a smoothed version of the data using a different smoothing 

technique, that of Savitzsky-Golay. 

4.10 Posture Measurement - Work Sampling 

The postural angles of interest, shoulder flexion, head/neck flexion, and wrist angle, are all 

in the sagittal plane. Posture ranges are defined and posture observations or samples are 

placed into one of the predefined ranges or categories. The proportion of a total sample 

which falls into a predefined range is calculated as an estimate of the proportion of time 

spent in a given posture range. This procedure was applied to four of the original twelve 

subjects. The data were collected using a video-camera with sagittal plane view, and the 

Promatek Vision 3000 computerized data collection system. This is essentially a 

computerized photogoniometer system. While work sampling typically relies upon random 

numbers to select sample points in time, the Vision 3000 system allows for posture 

samples to be captured only at regular intervals. Therefore, a systematic sample was 

taken, which in many circumstances is effectively the same as a true or pseudo random 

sample. The interval for systematic sampling here was set for one frame captured every 



41 

90 frames at a pace of 30 frames/second, or one frame every three seconds. Since the 

cycle times for subjects ranged from 7 to 11 seconds/cycle, this systematic sample interval 

was likely to provide samples which behaved very much like a randomly selected sample. 

Both shoulder flexion and head/neck flexion are largely sagittal plane activities and 

could be readily measured using the sagittal view camera angle. However, for the 

hand/wrist, much task activity was observed to occur in the transverse plane, especially at 

activation of the wand-type controls. Therefore, the results of posture sampling for the 

hand/wrist are likely to be less reliable than that of the shoulder or head/neck. In addition, 

worksite constructs partially blocked the camera's view of hand/wrist activity at the point 

of control activation, further limiting validity of the hand/wrist posture sampling. 

4.11 Design of Experiment - Postural Analysis  

For postural analysis, hypothesis tests on proportions per postural classification were 

utilized to check for significant differences by comparing old and new workstation 

conditions for the posture of interest. Each subject acted as their own control. Since 

substantial limitations to the hand/wrist aspect of data collections resulted from the fact 

that a two-dimensional sagittal plane photogoniometer cannot measure postural angles in 

the transverse plane, and since the small number of subjects limited the degrees of freedom 

available, no attempt to run ANOVAs or paired t-tests was made for the postural analysis. 



 

Figure 12  - Photogoniometric angle, wrist flexion 
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Figure 13  - Photogoniometric angle, shoulder flexion 
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Figure 14 - Photogoniometric angle, head/neck flexion 
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4.12 Possible Confounders  

4.12.1 Fatigue Effects  

In order to avoid possible fatigue or ordering effects, the order of workstation 

presentation was balanced throughout data collection. Data were collected on half of the 

subjects working with the old workstation, followed by working with the new 

workstation, while the remaining half worked with the new workstation first, then with 

the old workstation. Since data for subject 3 were lost and only 9 of 10 subjects were 

actually used in the analysis. the design for ordering is not completely balanced. 

However, it was felt that ordering effects, if any, were at most quite minimal, and that the 

minor degree of imbalance in ordering was negligible in a practical sense. 

4.12.2 Learning Effects  

The task is relatively simple, with a learning curve of less than one week needed for an 

experienced worker to achieve maximum proficiency. Each worker was allowed to 

"practice"' the task for a sufficient period on the improved worksite prior to experiment 

data collections to ensure that a plateau on the learning curve had been reached. 

However, for at least one subject who appeared to struggle with the new controls due to 

their altered feel or sensitivity, a learning or forgetting effect appears to have occurred. A 

close review of the video of subject 10 revealed clearly that a forgetting phenomenon had 

occurred and that this subject was re-learning the workstation during data collections, 

often attempting to operate the controls several times before one successful cycling of the 

machine. This circumstance is likely to have increased muscle activity in at least two of 

the muscle groups for subject 10, and to have slowed the average cycle time - which 
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would also increase the integrated signal average. Consequently, the ANOVA analyses 

for the first run included this subject (subject 10). But subsequent analysis excluded this 

subject decreasing the available degrees of freedom. 

4.12.3 Presentation Order Effects  

The possible confounders of fatigue and learning were controlled to the extent practical as 

provided above. Most presentation order effects are the result of either fatigue or 

learning, or both. By balancing the order or sequence in which data were collected, any 

short term learning or forgetting, or fatigue should have been sufficiently randomized 

and/or controlled. 

4.13 Subjective Data Collection  

Subjective data collection sheets inquiring about localized fatigue, pain, or discomfort 

were prepared and presented to each participant. Bipolar rating scales or "visual analog 

scales" were modified from the University of Michigan subjective data collection forms 

provided at their Summer Engineering Conference on Ergonomics in 1990. The 

continuum scales were divided into 16 intervals, and four classifications or categories 

were created as follows: 1-4 (little or no pain, discomfort or fatigue). 5-8 (moderate), 9-12 

(serious). and 13-16 (severe). Paired comparison t-tests on the proportions of subjects in 

each category for each listed body part were conducted. 
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4.14 Workstation Design Changes 

The original workstation utilized wand-type toggle controls suspended above the 

worktable and flat table surfaces on either side of the fixture (see figure 15). Workstation 

improvements included replacement of wand switches or controls with proximity 

activated controls. In addition to changing control type, control location was also 

modified. By changing control type, both the physical interface with the controls was 

altered and the sensitivity of the controls was different. Proximity switches were placed 

flat atop the table while the wand switches had been suspended more than 4.5 " above the 

table surface. In addition to control changes, the fixture and table height were lowered. 

The relative distance between the table surface and the top of the fixture was also 

reduced. The incoming parts tray was angled back toward the worker in order to reduce 

reach requirements to grasp a part. Also, the finished parts tray was modified to 

discourage stacking of trays of finished parts which tended to induce shoulder flexion. 

As an alternative, a small parts tray stand positioned directly on the floor was provided. 

This allowed workers to place finished trays of parts on the stand by working with, not 

against, gravity, and without reaching and shoulder flexion. Finally, the table was 

fashioned to allow the worker to move closer to the fixture. The attached diagrams 

illustrate the proposed and actual workstation changes. Note that the original proposals 

were not fully implemented due to practical problems encountered. Any positive results 

would likely be more dramatic had the changes been more fully implemented. 
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Design axioms or principles which were applied were as follows: 

►the lower the reach target, the better the shoulder posture  

This axiom was suggested by Keyserling et al. (1989) based on computer aided 

postural analyses of the shoulder. Grandjean (1988) offered recommendations for 

standing work height based on a reference line drawn through standing elbow height 

measured from the floor. His recommendations indicate that work should be between 

two and four inches below elbow height. This notion can be extrapolated to seated work 

- at least as far as the shoulder is concerned - and tends to agree with Keyserling et al. 

(1989) placing the work well below elbow height. The likely effect of placing work as 

low as practical is to minimize shoulder flexion in the sagittal plane. A constraint 

regarding lowering work height would logically be at the point where having work any 

lower would tend to induce trunk flexion for either seated or standing work. 

Here, by reducing the table height and the relative distance of the fixture or point of 

activity to the table surface. the effective point of activity for the worker was reduced. A 

recommendable constraint on the underside of the work table is thigh clearance for a 95th 

percentile person, which is reflected in the diagram of proposed workstation changes. 

► work with, not against gravity  

This common-sense axiom was formally stated by Konz in 1990 when he offered 

the guideline to ''use gravity, do not oppose it". However, such a straightforward 

guideline is still routinely violated in actual industrial settings. Here, workers stacked 

trays of completed parts atop the work table until the stack would no longer physically fit 
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the area or until the stack height approached their maximum reach capability. The effect 

was that workers were lifting trays of parts in severe shoulder flexion and otherwise 

awkward postures. By modifying the table surface to discourage stacking of trays atop 

the table and by providing a stacking stand on the floor below the workers' elbow height, 

the undesirable aspect of stacking trays of completed parts was removed. The table 

surface was modified by cutting a tray holder recess into the table. It was difficult to 

stack other trays on top of a tray placed into the recess. The same effect could also be 

accomplished by angling the completed parts tray holder toward the worker in a fashion 

similar that of the incoming parts tray holder on the modified workstation. 

►  avoid static muscle loading  

Konz (1990) stated this axiom as ''avoid static loads and fixed work postures". 

Grandjean (1988) documented the physiological and cardiovascular effects of static 

muscle loading, noting that bloodflow is interrupted with static loads, and that painful 

fatigue develops at a static load of only of 15-20% of maximum voluntary contraction 

(MVC) on a daily basis. In the press operator job, workers were forced to flex the 

shoulders in order to positions the hands at a height of four to six inches above the 

worktable to activate the wand controls. Due to control safety features requiring that the 

two controls be pressed simultaneously and held for some period of time in order to 

activate the machine, a static load to both the shoulders and to the hands/wrists was 

induced. To reduce static loading, the controls were relocated to atop a lowered table 

surface, where the shoulders could merely rest the hands, with support, during control 

activations. To facilitate this change, a different type of control, one with a largely flat, 
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horizontal surface was utilized. In addition, the effectively lower fixture height should 

require less static loading of the shoulders during part insertion to the fixture, and during 

any part positioning at the fixture. 

► keep reaches within the normal range  

Another common-sense rule of thumb for the ergonomist is to design worksites to 

keep reaches within an anthropometrically drawn reach envelope. While static and 

dynamic reach envelopes differ, each has a similar semi-circular shape in each of three 

dimensions. Konz (1990) suggests that a "windshield wiper" shaped reach envelope be 

based on anthropometric dimensions assuming an elbow position moving in an arc as the 

forearm moves, called the Squires curve. Alternatively, Konz suggests that the 

recommended area be based on direct anthropometric estimations of the effective reach 

envelope as offered by Konz. To delineate this area, the incoming parts tray was angled 

toward the worker and the completed parts tray stacking stand was located inside the 

reach envelope below the elbow height. 

► allow operators to work with minimal flexing, extending, or deviating wrist  

Given the preceding discussion of an association between cumulative trauma 

disorders and hand/wrist posture, minimization of extremes of hand/wrist posture is 

justified. Konz (1990) states this axiom as "reduce cumulative trauma disorders". To 

accomplish this, controls were relocated so that the wrist can be held neutral at control 

activation. When using wand controls at the old workstation, operators' wrists were 

ulnarly deviated and fingers extended at control activation. 
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►  provide visual targets at a location that induces a line of sight angle at or near 

the preferred line of sight angle  

Kroemer and Hill (1986) conducted a study which identified the average 

preferred line of sight angle for viewing as 29° below horizontal with a standard deviation 

of 11.6°. The researchers were surprised to learn that the viewing angle tended to be 

much steeper and the visual target much lower than human factors texts had 

recommended to date 1986. Grandjean (1988) pondered the findings but dismissed them 

as having been due to special experimental conditions and relatively short duration. Yet, 

Grandjean (1988) also cites a study by Lehman and Stier which found that seated subjects 

preferred an average line of sight angle of 38° below horizontal. Nevertheless, the 

authors maintained the previously accepted recommendation of a "normal" line of sight at 

10-15° below horizontal. This question is perhaps not yet fully answered, as many 

training programs for VDT operators still recommend a screen height with screen just at 

or below eye level, effectively recommending the older 10-15° line of sight angle. Yet 

when reading, seldom does one find a person holding a book in front of the face on a 

horizontal plane at or just below the eyes - perhaps in part because of the static loading of 

the arms such a position would entail. If the results of the Kroemer and Hill (1986) study 

are correct, a press operator should not only be able to tolerate a lowered fixture or visual 

target, but should actually prefer this arrangement. 
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Figure 15  - A side view of the old workstation prior to any ergonomic changes. 



 

Figure 16  - At the old workstation, operation of the wand controls repeatedly induced 
shoulder flexions with a momentary static load during control activation. 
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Figure 17 - At the old workstation, the wrists were repeatedly flexed with a pinch grip. 

By reducing the effective height of the fixture and small parts trays and measuring 

muscle activity in the upper trapezius, some insight into the question of preferred area of 

visual target should be gained. 

54 
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4.15 Expected Results  

Results are expected to include significantly reduced EMG readings for arm and shoulder 

areas for the prototype workstation compared to the old workstation. The question of 

muscle activity at the upper trapezius due to a changed line of sight angle is uncertain, but 

the results should provide some insight. For a positive outcome, no significant difference 

in head/neck muscle activity is desired. A primary purpose of the experiment is to learn 

whether or not hand/wrist and shoulder muscle activity can be reduced significantly by 

lowering worksite implements without adding significantly to the head/neck muscle load. 

For improved postures, shoulder flexion and wrist flexion in the sagittal plane 

should be significantly reduced, whereas head/neck flexion may not be significantly 

affected. The posture results will be most credible for the shoulder and head/neck 

postures, and much less so for the hand/wrist since much activity of the hand/wrist in the 

press operator job occurs in the transverse plane, and could not be measured by a two 

dimensional photogoniometer. 

A significant reduction in muscle activity is an indication that the probability of 

acute or chronic muscle fatigue has been significantly reduced. Therefore, the risk of 

cumulative trauma as it relates to force of exertion has also been reduced. Such a finding 

would also indicate that operators have been provided a workstation which allows more 

efficiency, allowing them to accomplish the same work in the same time with less effort. 

If postures are significantly improved so that a greater proportion of work time is 

spent in a neutral posture classification. then the risk for CTDs associated with posture 

would have been reduced. 
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Since the originally proposed changes to the worksite could not be fully 

implemented due to practical constraints, any results should be less compelling than they 

might have been had practical constraints not prevented full implementation. If 

significance is achieved in spite of this situation, one may surmise that full ergonomic 

worksite changes have an even greater potential for reduction of CTD risk than measured 

here. 

Symptoms surveys allow operators to indicate their preferences and feelings about 

the workstations. A significant reduction in symptoms would tend to indicate a 

significantly improved workstation. 

4.16 Statistical Analysis  

EMG analyses were conducted using the Statisical Analysis System (SAS) software. The 

following SAS code was utilized to run the analyses: 

data chan1; 
infile 'chan1.dat'; 
input workst $ 7-11 subj $ 31-33 obs 56-65; 

run; 

proc glm data=chan1; 
classes workst subj obs; 
model obs=workst subj workst*subj / ss1 ss2 ss3 ss4; 
means workst subj workst*subj / duncan tukey snk gt2 scheffe; 

run; 

The general linear model (GLM) analysis of variance (ANOVA) was utilized since this 

SAS technique is appropriate for an unbalanced design of experiment, in which the cell 

sizes for each subject and workstation condition were not equal. Four different types of 
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sum of square values (SS I, SS2, SS3, and SS4) were calculated. Type III and type IV 

sum of squares, sometimes referred to as partial sum of squares. are considered by many 

investigators to be the most desirable outputs, according to the SAS/STAT User's Guide 

Volume 2. Type II, type Ill and type IV sum of squares are not dependant on the order of 

effects specified in the model, while type I SS is model-order dependant. For unbalanced 

designs, hypotheses for type I and type II SS are generally functions of the cell counts. 

This is not true for type III and type IV SS. When no cells are missing, type III and type 

IV sum of squares are the same. This feature confirmed that all cells were read and 

utilized by the computer. 

For means tests. Duncan's test (DUNCAN). Tukey's test (TUKEY). Student Newman-

Keul's test (SNK). Scheffe's test (SCHEFFE), and the studentized maximum modulus 

(GT2) were utilized. The GT2 was used since this test is for unequal cell sizes. 



CHAPTER 5 

RESULTS 

5.1 EMG  

Analysis of variance and hypothesis tests on means reveal that hand/wrist muscle activity 

at the new workstation had decreased significantly (.05 level) compared to muscle activity 

for the old workstation. The interaction of workstation and subject was also significant at 

the five percent level. Significance was achieved for the group for both raw and each 

method of smoothed data. A review of the differences between means reveals the general 

nature of the results, with seven of nine of the differences positive. Subject #6 

experienced a dramatic reduction in hand/wrist muscle activity. Significance was 

confirmed using Duncan's means test. Tukey's studentized range test, Student Newman-

Keuls, Scheffe's test, and studentized maximum modulus. All tests agreed. The results 

of the General Linear Model (GLM) ANOVA and means tests appear in Tables 4 and 5. 

Examples of the complete SAS outputs are shown in Appendix D. 

subj 1 subj 2 subj 4 subj S subj 6 subj 7 subj 8 subj 9 sub10 

.1823 .1386 2.445 2.427 15.983 2.761 2.386 -1.892 -4.045 

1 

Table 3  Hand/Wrist - Differences in Mean Muscle Activity (old-new) based on raw data 
for Channel 1. Note that most values are positive, indicating improvement. 
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For the shoulder, the difference from old to new workstation was not significant with 

raw data. However, crosstalk and noise in the raw data could disguise a meaningful 

difference. ANOVAs for each of the smoothed data techniques clearly revealed a 

significant reduction in muscle activity for the shoulder at the five percent level.. 

Significance was confirmed using Duncan's means test, Tukey's studentized range test, 

Student Newman-Keuls, Scheffe's test, and studentized maximum modulus. All tests 

agreed. The results of the General Linear Model (GLM) ANOVA and means tests appear 

in tables 8 and 9. Examples of complete SAS outputs are shown in Appendix D. 

For the upper trapezius muscle, activity significantly increased with the new 

workstation compared to the old workstation (a=.05). This result was true for both raw 

and smoothed data. Significance was confirmed using Duncan's means test, Tukey's 

studentized range test, Student Newman-Keuls, Scheffe's test, and studentized maximum 

modulus. All tests agreed. The results of the General Linear Model (GLM) ANOVA and 

means tests appear in Tables 10-12. Examples of the complete SAS outputs are shown in 

Appendix D. 

Data for each subject were reviewed individually and confidence intervals were 

calculated for each workstation condition and muscle group. These allowed a comparison 

for significance within each subject and muscle group. The results are provided on the 

following bar charts, Figures 18 through 28. Significance is indicated by the bar type. 

Those with different bar types are significantly different (a=.05). Those with the same 

bar type are not significantly different. 
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Figure 18  - An example of EMG results for raw data. Shown are results for subject 
Statistical significance is indicated by bar type. 
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The SAS System General Linear Models Procedure 

Source DF Type I SS Mean Square F Value Pr > F 
WORKST 1 394.518253 394.518253 32.77 0.0001 
SUBJ 8 45335.929816 5666.991227 470.69 0.0001 
WORST*SUBJ 8 2787.011018 348.376377 28.94 0.0001 

Dependent Variable: OBS 

Source DF Type II SS Mean Square F Value Pr > F 
WORKST 1 350.563240 350.563240 29.12 0.0001 
SUBJ 8 45335.929816 5666.991227 470.69 0.0001 
WORST*SUBJ 8 2787.011018 348.376377 28.94 0.0001 

Source DF Type III SS Mean Square F Value Pr > F 
WORKST 1 525.536279 525.536279 43.65 0.0001 
SUBJ 8 45278.906152 5659.863269 470.10 0.0001 
WORST*SUBJ 8 2787.011018 348.376377 28.94 0.0001 

Source DF Type IV SS Mean Square F Value Pr > F 
WORKST 1 525.536279 525.536279 43.65 0.0001 
SUBJ 8 45278.906152 5659.863269 470.10 0.0001 
WORST*SUBJ 8 2787.011018 348.376377 28.94 0.0001 

Table 4 - ANOVA results for the hand/wrist muscle group. Significance was identified 
for all effects. 



Means With The Same Letter Are Not Significantly Different. 

Duncan Grouping 	Mean 	 N 	WORKST 

A 	 22.7730 	455 	100.0 

B 	 21.4680 	472 	200. 

 

Table 5  - Means tests for hand/wrist data revealed that the workstation effect was 
significant improvement. 
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Subject #10 shows increased muscle activity for all three muscle groups. This 

result is not consistent with the other subjects, all of whom show at least one muscle 

group with decreased activity. Consequently, the video of subject #10 was reviewed to 

check for possible confounding factors. The video reveals that subject #10 appears to be 

learning or relearning the new workstation during data collections, occasionally 

attempting to operate the press controls several times before successfully cycling the 

machine. Since the new controls have different sensitivity compared to the older, wand-

type controls, a brief learning curve was known to exist. Perhaps subject #10 either 

never fully learned the job, or a forgetting phenomenon occurred. 

Consequently, the ANOVAs were also calculated excluding data for subject #10. 

The results for both hand/wrist and for shoulder muscle groups were unchanged. For the 

upper trapezius/neck a marginal but significant (a=.05) workstation effect, an increase in 

muscle activity, was revealed for type I sum of squares only. For type II SS, type III SS, 

and type IV SS, the workstation effect was not significant. However, workstation-subject 

interaction effects were significant for all types of sum of square ANOVAs. For the type 

I SS workstation effect, the increase in muscle activity was not significant at the one 

percent level (p=0.022). Means tests confirmed significance at the five percent level. The 

results of the General Linear Model (GLM) ANOVA and means tests appear in Tables 11 

and 12. Examples of the complete SAS outputs are shown in Appendix D . 

5.2 Distributions  

Goodness of fit tests were applied to the data to test for normality. The tests were 

conducted via the SIMAN Output Processor. Of fifty distributions tested, normality 
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could not be rejected for 21 at the five percent level using the Chi-Square goodness of fit 

test. A best-fit parameter was identified for each distribution. Examples of the goodness 

of fit and best-fit results appear in Appendix C. 

5.3 Posture  

For the shoulder, flexions less than 40° became a significantly (α =.05) greater proportion 

of the posture sample for two of four workers for which samples were taken. One of the 

operators experienced a significant (α =.05) increase in the proportion of time shoulder 

flexions were greater than 40°. The fourth subject experienced non-significant changes in 

shoulder posture. These results suggest that reduction in shoulder flexions probably 

contributed substantially to the significant (α =.05) decrease in anterior deltoid muscle 

activity as identified by the EMG. 

For neck postures, two of four operators experienced non-significant changes. One 

operator experienced a significant increase in neck flexion equal to or greater than 30°. 

The remaining subject experienced a significant decrease in neck flexions equal to or 

greater than 30°. These mixed results indicate that lowering the visual target does not 

guarantee increased neck flexions of greater than 30°  as one might expect. 

For the hand/wrist, the results include a significant (α =.05) increase in the proportion 

of time spent in sagittal plane flexion greater than 30° for two of four subjects. The 

remaining two subjects experienced non-significant changes. These results must be 

regarded with caution since the two-dimensional photogoniometer only recorded postures 

in the sagittal plane. Much of the band/wrist activity for the press operator job occurred 
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Sub 2 - Old Sub 2 - New Z 	Sub 1 - Old Sub 12 - New    Z 

Flexion > 30° 	.34 	.26 	1.564 	.07 	.19 	2.28* 

Normal 	 .65 	.73 	1.564 	.92 	.80 	2.33* 

Extension > 30° 	0 	 0 	 0 	 0 
n = 139 	n = 146 	 n = 78 	 n = 157 

Sub 3 - Old Sub 3 - New Z 	Sub 8 - Old Sub 8 - New     Z 

Flexion > 30° 	.11 	.12 	.431 	.15 	.39 	-4.315* 

Normal 	 .86 	.87 	.110 	.84 	.58 	-4.315* 

Extension > 30° 	0 	 0 	 .0 	 .017 	-1.5 

	

n = 82 	n = 155 	 n = 138 	n = 112 

Z Critical = 1.96 

Table 13  - An example of posture results. Shown are posture results for the hand/wrist, 
which show mixed results. Since much hand/wrist activity occurred in the transverse 
plane, which was not measured with the 2-D photogoniometer, these results are not 
particularly revealing. 
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in the transverse, rather than sagittal plane. As a consequence, the most valuable and 

reliable posture results are those for the shoulder and neck postures, which were 

overwhelmingly sagittal plane postures. 

5.4 Symptoms  

The following table represents the proportion of subjects responding on symptoms survey 

forms that they experienced pain in the "serious" to "severe" category per body part, or 8--

16 on the visual analog scale. 

neck shoulder  wrist hand finger 

old .10 .20 .30 .20 .20 
workstation  

new 0.0 .10 .10 0.0 .10 
workstation  

Table 16  Symptoms results summary - the proportion of subjects reporting serious to 
severe pain for each body area shown 

While significance cannot be tested, the results appear to reflect that at least some of the 

operators found the new workstation more comfortable compared to the old workstation. 

Full results from the symptoms surveys are found in Appendix B. 

5.5 Discussion  

EMG, posture, and symptom results tend to agree that physical changes to the worksite 

have significantly reduced the risk for cumulative trauma disorders of the hands/wrists 

and shoulders. The risk for neck symptoms was increased due to a greater proportion of 
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time in neck flexions of greater than 40°, or due to increased muscle activity in the upper 

trapezius, or both. However, the finding for both postural angles and muscle activity was 

marginal. There appears to be some tradeoff between reducing the reach target for the 

benefit of the shoulders and hands, and reducing the height of the visual target which may 

impact the line of sight angle and the associated neck posture and/or upper trapezius 

muscle activity. However, any detriment to the neck upper trapezius muscles was not 

dramatic or clear, while the benefit to the hand/wrist muscle activity was. Several 

subjects (#4, #5,# 6, and #7) actually experienced a decrease in muscle activity for the 

upper trapezius. 

The question of line of sight angle and head posture was addressed in a VDT related 

study (Gallimore and Brown, 1993) who found that a viewing device which substantially 

reduced the height of the visual target compared to more common VDT monitor 

placements significantly changed neck posture. However, the postural change could not 

be associated with changes in symptoms of the neck or visual performance. The Hill and 

Kroemer study (1986), which placed the preferred line of sight angle at much lower than 

is commonly practiced in either small parts assembly and/or press operator jobs or VDT 

jobs, is noteworthy in this matter. In the American National Standard for Human Factors 

Engineering of Visual Display Terminal Workstations (ANSI/HFS100, 1988) the Hill and 

Kroemer study is cited, with the recommended range for line of sight angle given at from 

0 to -60° from the horizontal plane of the eyes. The marginal findings here regarding a 

workstation effect on upper trapezius muscle activity, due to lowering the fixture height, 

raise further questions about the preferable or recommendable visual target height when 

this point in space must also be a reach target for the hands. Of course. since the 
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shoulders position the hands. all three muscle groups are affected by the target location. 

Consequently, the problem is one of optimization for each individual, with a goal to 

minimize hand/wrist, shoulder, and upper trapezius muscle activity simultaneously by 

placing the visual/reach target at the optimum location in space for that individual. 

5.6  Conclusions and Recommendations 

Benefits to both hand/wrist and to shoulder muscle activity here were clearly identified as 

a consequence of lowering the fixture, table and parts trays, and controls. In other words, 

both hand/wrist and shoulder muscle activity were reduced by lowering all reach targets 

somewhat. This outcome is in accordance with expectations. The evidence also suggests 

that operators experienced a marginal but significant increase in neck or upper trapezius 

muscle activity, perhaps due to the steeper line of sight angle and greater head flexion 

experienced by some operators when provided with the lowered workstation. However. 

when subject #10 was excluded, the workstation effect for muscle activity was not 

significant for type III and type IV SS ANOVAs for the upper trapezius. A compromise 

between significantly improved outcomes of secondary measures of risk for both 

hand/wrist and for shoulder disorders versus possibly increased upper trapezius muscle 

activity appears reasonable. It is justifiable based on the minimal effect to upper 

trapezius muscles versus clearly identified improvements for both hand/wrist and 

shoulder muscle activity. Employers may find such a compromise to be particularly 

worthwhile for those operations that have historically experienced costly workers 

compensation injury losses for hand/wrist and/or shoulder disorders, but relatively few for 

neck disorders. 
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Consequently. the following recommendations can be offered: 

1) Reduce, to the extent practical. the effective reach target or point of activity for 

fixtures, parts trays, and controls. Thigh clearance under the table determines an 

absolute constraint; but increases to upper trapezius muscle activity due to greater 

head flexion and the need to counter the moment created when the head is tilted 

forward may constitute a constraint for some individuals. 

2) Use controls of a type which allow a neutral wrist posture activation, such as 

the flat surface proximity-type controls utilized here versus the wand-type controls 

which encourage repeated extensions and deviations of the wrists. 

3) Provide all implements or items within a "normal" working area or reach 

envelope, preferring a sequence that works with, not against, gravity. Parts trays 

can be angled toward workers. while finished parts trays can be located on a small 

stand directly on the floor. 

The methodology employed here regarding utilization of integrated EMG signals over 

time in a within-subjects design was useful for revealing workstation effects for 

individuals and for the group as a whole. This was accomplished without the need to 

normalize the readings by strength (proportion of a maximum voluntary contraction). 

Such a change would significantly increase analysis time and effort. and could possibly 

introduce additional artifacts and error sources to the data. Relative increases or 

decreases in muscle activity could still be assessed across workstation conditions. For the 
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practitioner attempting to assess effects of various aspects of workstation design, 

minimizing analysis time and effort is paramount. This method would be especially 

appropriate when a limited number of workstation settings or equipment choices are 

available in a practical sense. These settings could be tested and compared without the 

need to test a wide range of possible settings or choices. By placing old and new 

workstations side by side for testing of subjects in each condition in close proximity of 

time. any error associated with electrode placements or repositioning are avoided. Also, 

by balancing or randomizing the sequence of data collections (old workstation versus 

new), any ordering effects such as learning or fatigue are averaged out and controlled. 

While statistically significant improvements were identified, the threshold at which 

improvements reach clinical significance in the etiology of disorders is not currently 

known. Future research may reveal more information about clinical significance, and will 

probably be accomplished through prospective epidemiological studies. However, for 

employers seeking to utilize the safest job design settings available among a limited 

number of choices, statistically significant improvement is a far better criterion upon 

which to base design decisions than guesses or assumptions, and may well have clinical 

significance for many subjects. 



Appendix A 

Examples of Data Distribution Goodness of Fit Chi-Square Tests  
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========================== ===== ================================ 
BEST FIT SUMMARY 

Data File: sl-c3-n.dat 

Function 	Sq Error 

Lognormal 	0.00971 
Erlang 	 0.0106 
Gamma 	 0.0107 
Beta 	 0.0196 
Weibull 	0.0203 
Normal 	 0.022 
Triangular 	0.0351 
Uniform 	0.122 
Exponential 	0.17 

================================================================= 

Data File: sl-c3-n.dat 

Histogram Range: 5.24 to 10.8 

No. of Data Points = 56 
No. of Intervals = 7 

Min Data Value = 5.7 
Max Data Value = 10.3 

Sample Mean = 7.93 
Sample Std Dev = 0.887 

Distribution Function: Normal 

================================================================= 

 

SIMAN USAGE: NORM(7.93, 0.879) 

Sq Error = 0.022 

Chi Square Test: 
No. of intervals = 4 
Degrees of freedom = 1 
Critical value = 4.46 
Corresponding p-value = 0.0369 

Kolmogorov-Smirnov Test: 
Critical value = 0.098 
Corresponding p-value = > 0.15 

================================================================= 

Int. 	No. of 	 Probability 	 Cumulative 
No. 	Data Pts. 	x 	Density 	 Distribution 

Data Function Data Function 
1 	1 	6.030e+00 0.018 	0.014 	0.018 	0.015 
2 	4 	6.820e+00 0.071 	0.088 	0.089 	0.103 
3 	21 	7.610e+00 0.375 	0.254 	0.464 	0.357 
4 	15 	8.400e+00 0.268 	0.346 	0.732 	0.702 
5 	12 	9.190e+00 0.214 	0.221 	0.946 	0.924 
6 	2 	9.980e+00 0.036 	0.066 	0.982 	0.990_ 
7 	1 	1.077e+01 0.018 	0.009 	1.000 	0.999 
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================================================================================= BEST FIT SUMMARY 

Data File: s2-c2-o.dat 

Function 	Sq Error 

Erlang 	 0.00275 
Gamma 	 0.00303 
Triangular 	0.00433 
Weibull 	0.00473 
Lognormal 	0.00512 
Beta 	 0.00636 
Normal 	 0.0111 
Uniform 	0.0477 
Exponential 	0.0924 ================================================================================= 

Data File: s2-c2-o.dat 

Histogram Range: 16 to 26 

No. 

 of Data Points = 57 
No. of  Intervals = 7 

Min Data Value = 16.6 Max Data Value 
 = 25.1 

Sample Mean = 20.7 
Sample Std Dev = 2.12 

Distribution Function: Normal =================================================================================  

SIMAN USAGE:  NORM (20.7, 2.1) 

Sq Error = 0.0111 

Chi Square Test: 
No. of intervals = 5 
Degrees of freedom = 2 
Critical value = 1.75 
Corresponding p-value = 0.434 

Kolmogorov-Smirnov Test: 
Critical value = 0.0651 
Corresponding p-value = > 0.15 

================================================================================== 
 

Int. 	No. of 	 Probability 	 Cumulative 

	

No. 

	

Data 

 Pts. 	x 	Density 	 Distribution --------------------------------------------------------------------------------- 

Data Function Data Function 

	

1      1  	1.742e+01 0.018 	0.048 	0.018 	0.060 

	

2     12 	1.885e+01 0.211 	0.131 	0.228 	0.191 

	

3 	14 	2.027e+01 0.246 	0.231 	0.474 	0.422 

	

4 	12 	2.169e+01 0.211 	0.262 	0.684 	0.684 

	

5 	10 	2.311e+01 0.175 	0.192 	0.860 	0.876 

	

6 	5 	2.454e+01 0.088 	0.090 	0.947 	0.966 
	7 	3 	2.596e+01 0.053 	0.027 	1.000 	0.994 
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Data File: s2-c2-n.dat 

Histogram Range: 14 to 27 

No. of Data Points = 60 
No. of Intervals = 7 

Min Data Value = 14.6 
Max Data Value = 27 

Sample Mean = 20.9 
Sample Std Dev = 2.71 

Distribution Function: Erlang 
================================================================================= 

SIMAN USAGE: 14 + ERLA (1.15, 6) 

Sq Error = 0.00653 

Chi Square Test: 
No. of intervals = 5 
Degrees of freedom = 2 
Critical value = 1.5 
Corresponding p-value = 0.479 

Kolmogorov-Smirnov Test: 
Critical value = 0.0613 
Corresponding p-value = > 0.15 ================================================================================= 

Int. 	No. of 	 Probability 	 Cumulative 
No. 	Data Pts. 	x 	Density 	 Distribution 

Data Function Data Function 
1 	1 	1.586e+01 0.017 	0.006 	0.017 	0.006 
2 	4 	1.771e+01 0.067 	0.101 	0.083 	0.108 
3 	15 	1.957e+01 0.250 	0.246 	0.333 	0.354 
4 	18 	2.143e+01 0.300 	0.268 	0.633 	0.622 
5 	12 	2.329e+01 0.200 	0.191 	0.833 	0.813 
6 	4 	2.514e+01 0.067 	0.106 	0.900 	0.919 
7 	6 	2.700e+01 0.100 	0.049 	1.000 	0.968 ================================================================================== 

REST FIT SUMMARY 

Data File: s2-c2-n.dat 

Function 	Sq Error 

Erlang 	 0.00653 
Gamma 	 0.00797 
Weibull 	0.0116 
Normal 	 0.0134 
Triangular 	0.0136 
Lognormal 	0.0139 
Beta 	 0.0226 
Uniform 	0.0688 
Exponential 	0.128 
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Appendix B 

Examples of Raw, Smoothed, and Savitzsky-Golay Filtered Data 

Per Workstation, Muscle Group, Subject  
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raw 

smoothed (moving window average) 
nl = nr = 2 

smoothed (Savitzsky-Golay) 
nl = nr = 3 
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Coon of raw and smoothed data for subject 4, channel I (hand/wrist) for 
the old workstation 

 



raw  

smoothed (moving window average) 
nl = nr = 2  

smoothed (Savitzsky-Golay) 
nl = nr = 3 
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Comparison of raw and smoothed data for subject 4, channel I (hand/wrist) for 
the new workstation 

 



raw 

smoothed (moving window average) 
n1 = nr = 2 

smoothed (Savitzsky-Golay) 

n1 = 

nr = 2 

Comparison  of raw and smoothed data for subject 4, channel 2 (anterior 
deltoid/shoulder) for the old workstation 
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Appendix C 

Symptoms Survey Results  
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ACCOUNT: 	 LOCATION: 	 DATA DISTRIBUTION SUMMARY 
symptoms with old workstation 	0 
ACCOUNT SURVEY DATE: 	 BODY PARTS 	FRON 

December  1993 

NECK 	SHOULDER 	CHEST 
 

RNG FREQ % RNG FREQ % RNG FREQ % 

RIGHT AREA 	4 	8 80 4 7 70 4 9 90 
DATA 	 8 	2 20 8 1 10 8 0 0 
DISTRIBUTION 	12 	0 0 12 2 20 12 1 10 

18 	0 0 16 0 0 18 0 0 

a of Rasp: 	 10 0 20 10 

LEFT AREA 	4 	8 80 4 7 70 4 9 90 
DATA 	 8 	2 20 8 1 10 8 0 0 
DISTRIBUTION 	12 	0 0 12 2 20 12 1 10 

16 	0 0 16 0 0 16 0 0 

0 20 10 

BODY PARTS 	BACK 

NECK 	 SHOULDER 	UPPER BACK 	LOWER BACK 

RNG FREQ RNG FRED % RNG FREQ % RNG FREQ 
 

% 

RIGHT AREA 4 7 70 4 6 60 4 8 80 4 7 70 
DATA 2 20 8 3 30 8 0 0 8 3 30 
DISTRIBUTION 12 1 10 12 1 10 12 1 10 12 0 0 

18 0 0 16 0 0 16 1 10 16 0 0 

# of Reap: 10 10 10 20 0 

LEFT AREA 4 7 70 4 6 80 4 8 4 7 70 
DATA 8 2 20 8 3 30 8 0 0 8 3 30 
DISTRIBUTION 12 1 10 12 1 10 12 1 10 12 0 0 

18 0 0 16 0 0 16 1 10 16 0 0 

10 10 20 0 
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SHEET 

T 

ELBOW WRIST HAND FINGER 

RNG FREQ % RNG FREQ % RNG FREQ % 
 

RNG  FREQ % 

4 9 90 4 5 50 4 6 60 4 8 80 
8 0 0 8 2 20 8 2 20 8 0 0 

12 1 10 12 1 10 12 1 10 12 2 20 
18 0 0 16 2 20 18 1 10 18 0 0 

10 30 20 20 

4 9 90 4 5 50 4 8 60 4 7 70 
8 0 0 8 2 20 8 2 20 8 1 10 

12 1 10 12 1 10 12 1 10 12 2 20 
16 0 0 16 2 20 16 1 10 16 0 0 

10 30 20 20 

ELBOW WRIST HAND FINGER 

RNG FREQ % 

RNG FREQ 

% RNG FREQ % RNG FREQ % 

4 9 90 4 6 80 4 7 70 4 	9 90 
8 0 0 8 1 10 8 1 10 8 	0 0 

12 0 0 12 2 20 12 1 10 12 	1 10 
16 1 10 16 1 10 16 1 10 18 	0 0 

10 30 20 10 

4 9 90 4 8 60 4 7 70 4 	9 90 
8 0 0 8 1 10 8 1 10 8 	0 0 

12 0 0 12 2 20 12 1 10 12 	1 10 
16 1 10 16 1 10 16 1 10 16 	0 0 

10 30 20 10 
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ACCOUNT: 	 LOCATION: 	 DATA DISTRIBUTION SUMMARY 
symptoms with now workstation 	 
ACCOUNT SURVEY DATE: 	 BODY PARTS 	FRON 
december 1993 

NECK SHOULDER CHEST 
 

RNG FREQ % RNG FREQ % RNG FREQ 
 

% 

  

RIGHT AREA 4 8 80 4 7 70 4 9 90 
DATA 8 2 20 8 2 20 8 0 0 
DISTRIBUTION 12 0 0 12 1 10 12 1 10 

18 0 0 16 0 0 16 0 0 

LEFT AREA 4 8 80 4 7 70 4 9 90 
DATA 8 2 20 8 2 20 8 1 10 
DISTRIBUTION 12 0 0 12 1 10 12 0 0 

16 0 0 16 0 0 16 0 0 

800Y PARTS 	BACK 

NECK SHOULDER UPPER BACK LOWER BACK 

RNG FREQ 

% RNG FREO % RNG FREQ % RNG FREQ % 

RIGHT AREA 4 9 90 4 8 80 4 8 BO 4 8 80 
DATA 8 1 10 8 2 20 8 1 10 8 2 20 
DISTRIBUTION 12 0 0 12 0 0 12 1 10 12 0 0 

16 0 0 18 0 0 16 0 0 18 0 0 

LEFT AREA 4 9 90 4 7 70 4 8 80 4 8 80 
DATA 8 1 10 8 2 20 8 1 10 8 2 20 
DISTRIBUTION 12 0 0 12 1 10 12 1 .10 12 0 0 

16 0 0 
16 

0 0 16 0 0 18 0 0 
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SHEET 

T  

ELBOW WRIST HAND FINGER 

RNG FREQ % RNG FREQ % RNG FREQ % 

RNG FREQ 

% 

4 8 80 4 8 80 4 8 80 4 	9 90 
8 2 20 8 1 10 8 2 20 8 	0 0 

12 0 0 12 1 10 12 0 0 12 	1 10 
16 0 0 16 0 0 16 0 0 18 	0 0 

4 9 90 4 8 80 4 8 80 4 	9 90 
8 1 10 8 1 10 8 2 20 8 	0 0 

12 0 0 12 1 10 12 0 0 12 	1 10 
16 0 0 16 0 0 16 0 0 18 	0 0 

ELBOW WRIST 

HAND 

 FINGER 

RNG FREQ % RNG FREQ % 

RNG FREQ 

% RNG FREQ % 

4 10 100 4 8 80 4 9 90 4 10 100 
8 0 0 8 1 10 8 1 10 8 0 0 

12 0 0 12 1 10 12 0 0 12 0 0 
18 0 0 16 0 0 16 0 0 18 0 0 

4 10 100 4 8 80 4 9 90 4 0 
8 0 0 8 1 10 8 1 10 8 0 

12 0 0 12 1 10 12 0 0 12 0 
16 0 0 18 0 0 16 0 0 18  0 
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Appendix D 

Examples of General Linear Model Results 

ANOVAs and Means Tests  
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Figure 19 - EMG results (based on raw data) for subject 2. Statistical significance is 
indicated by bar type. 



• Smoothed Data 
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Figure 20  - EMG results (based on raw data) for subject 4. Statistical significance is 
indicated by bar type. 
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Figure 21  - EMG results (based on raw data) for subject 5. Significant improvement for 
both hand/wrist and shoulder muscles is identified. 
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Figure 22 - EMG results (based on smoothed data) for subject 5. Significant 
improvement is revealed for all three muscle groups. 
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Figure 23 - EMG results (based on raw data) for subject 6. Dramatic improvement for 
the hand/wrist is revealed, but a significant increase in shoulder muscle activity is found. 
Upper trapezius muscle activity also significantly decreased. 
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Figure 24 - EMG  results (based on raw data) for subject 7. Results were mixed, with 
improvements to two of three muscle groups, but an increase for shoulders. 
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Figure 25  - EMG results (based on raw data) for subject 8. Results were mixed, with 
improvements to two of three muscle groups, but an increase for neck muscles. 
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Figure 26  - EMG results (based on raw data) for subject 9. Results were mixed, with 
improvements to two of three muscle groups, but an increase for neck muscles. 
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Figure 27 - EMG  results (based on raw data) for subject 10. Results indicated significant 
detriments to all three muscle groups. This subject was found to be struggling with the 
new controls, due in part to differing control activation sensitivity and to inadequate 
learning time prior to data collections. 



The SAS System General Linear 'models Procedure 

Source DF Type I SS Mean Square F Value Pr > F 

WORKST 1 14.451262 14.451262 2.06 0.1520 
SUBJ 8 593.665234 7421.583154 1055.85 0.0001 
WORST*SUBJ 8 905.824294 113.228037 16.11 0.0001 

Dependent Variable: OBS 

Source DF Type II SS Mean Square F Value Pr > F 
WORKST 1 6.524853 6.524853 0.93 

0.1520 

 
SUBJ 8 59372.665234 7421.583154 1055.85 0.0001 WORST*SUBJ 8 

 905.824294 113.228037 16.11 0.0001 

Source DF Type Ill SS Mean Square F Value Pr > F 
WORKST 1 11.096077 11.096077 1.58  0.1520  
SUBJ 8 59630.705078 7453.838135 1060.44 0.0001 
WORST*SUBJ 8 905.824294 113.228037 16.11 0.0001 

Source DF Type IV SS Mean Square F Value Pr > F 
WORKST 1 11.096077 11.096077 1.58 0.1520 
SUBJ 8 59630.705078 7453.838135 1060.44 0.0001 
WORSTSUBJ 8 905.824294 113.228037 16.11 0.0001     

Table 6 - ANOVA  results for the shoulder based on raw data. No significant difference is 
revealed for the workstation effect. 
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Means With The Same Letter Are Not Significantly Different. 

Duncan Grouping 	Mean 	N 	WORKST 

A 	 13.9352 	455 	100.0 
A 
A 	 13.6859 	476 	200. 

 

Table 7 - Means tests confirms non-significance at the .05 level for the shoulders, based 
on raw data. 
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The SAS System General Linear Models Procedure 

Source DF Type I SS Mean Square F Value Pr > F 

WORKST 1 323.348994 323.348994 79.07 0.0001 
SUBJ 8 48194.156494 6024.269582 1473.07 0.0001 
WORST'SUBJ 8 2347.843174 293.480397 71.76 0.0001 

Dependent Variable: OBS 

Source DF Type II SS Mean Square F Value Pr > F 

WORKST 1 286.267017 286.267017 70.00 0.0001 
SUBJ 8 48194.156494 6024.289582 1473.07 0.0001 WORST*SUBJ 8 2347.843174 293.480397 71.76 0.0001 

Source DF Type III SS Mean Square F Value Pr > F 

WORKST 1 282.314486 282.314488 69.03 0.0001 
SUBJ 8 48395.400992 6049.425124 1479.22 0.0001 
WORST*SUBJ 8 2347.843174 293.480397 71.76 0.0001 

Source DF Type IV SS Mean Square F Value Pr > F 
WORKST 1 282.314486 282.314486 69.03 0.0001 
SUBJ 8 48395.400992 6049.425124 1479.22 0.0001 WORST*SUBJ 

8 2347.843174 293.480397 71.76 0.0001 

Table 8 - ANOVA results for the shoulder based on smoothed data. Smoothing the data 
allowed a significant workstation effect to be clearly revealed. 
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Means With The Same Letter Are Not Significantly Different. 

Duncan Grouping 	Mean 	 N 	WORKST 

A 	 14.7851 	455 	100.0 

B 	 13.6062 	476 	200. 

 

Table 9 - Means tests  for the shoulder based on smoothed data reveal the effect was 
improvement (significantly decreased muscle activity). 
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The SAS System General Linear Models Procedure 

Source OF Type 1 SS Mean Square F Value Pr > F 
WORKST 1 7.8454024 7.8454024 10.93 0.0010 
SUBJ 8 3315.6053226 414.4506653 577.28 0.0001 WORST*SUBJ 

8 180.6358290 22.5794786 31.45 0 0001 

Dependent Variable: OBS 

Source OF Type II SS Mean Square F Value Pr > F 
WORKST 1 6.4536403 6.4536403 8.99 0.0028 
SUBJ 8 3315.6053226 414.4506653 577.28 0.0001 WORST*SUBJ 

8 180 6358290 22.5794786 31.45 0.0001 

Source OF Type III SS Mean Square F Value Pr > F 
WORKST 1 5.1713396 5.1713396 7.20 0.0074 
SUBJ 8 3340.4045257 417.5505657 581.59 0.0001 WORST*SUBJ 

8 180.6358290 22.5794786 31.45 0.0001 
Source OF Type IV SS Mean Square F Value Pr > F 
WORKST 1 5.1713396 5.1713396 7.20 0.0074 SUBJ 8 3340.4045257 417.5505657 581.59 0.0001 WORST*SUBJ 

8 180.6358290 22.5794786 
31.45 0.0001 

Table 10 -  ANOVA results for the upper trapezius based on raw data. The workstation 
effect was  significant. These results include data for problematic subject #10 .  
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The SAS System General Linear Models Procedure 

Source DF Type I SS Mean Square F Value Pr > F 
WORKST 1 4.2038025 4.2038025 5.27  0.0220  

SUBJ 

 
7 

 3155.0125380  450.7160769 564.85 0.0001 WORST*SUBJ 7 166.8711725 23.8387389 29.88 0.0001 

Dependent Variable: OBS 

Source OF Type II SS Mean Square F Value Pr > F 
WORKST 1 1.0540947 1.0540947 1.32 0.2508 
SUBJ 7  3155.0125380 450.7160769 564.85 0.0001 
WORST*SUBJ 7 166.8711725 23.8387389 29.88 0.0001 

Source OF Type III SS Mean Square  F Value Pr > F 
WORKST 1 0.9692291 0.9692291 1.21 0.2707 
SUBJ 7 3166.2529775 452.3218539 566.86 0.0001 
WORST`SUBJ 7 166.8711725 23.8387389 29.88 0.0001 

Source DF Type IV SS Mean Square F Value Pr > F 
WORKST 1 0.9692291 0.9692291 1.21 0.2707 
SUBJ 7 3166.2529775 452.3218539 566.86 0.0001 WORST*SUBJ 

7 166.8711725 23.8387389 29.88 0 0001 

Table 11 - ANOVA results for the upper trapezius excluding data from problematic 

subject #10. Significance on  the workstation effect is revealed for only one of four types 
of SS ANOVAs.  The results indicate a marginal, possibly non-significant effect 
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R·Square 	C.V 	Root MSE 	OBS Mean 

0 882823 	11.94932 	2.5971048 	21 7 34329 

Source 	 DF 	Type I SS 	Mean Square 	F Value 	Pr > F 

WORKST 	1 	329.61349b 	329 613496 	48 87 	0 0001 
SUBJ 	 8 	43419 650571 	5427 456321 	804 67 	0 0001 

WORKST·SUBJ 	8 	2646.572257 	330.821532 	49 05 	0 0001 
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General Linear Models Procedure 

Dependent Variable: OBS 

Source 	 OF 	Type 11 SS 	Mean Square 	F Value 	Pr > F 

WORKST 	 1 	351.365335 	351.365335 	5209 	0.0001 
SUBJ 	 8 	43419.650571 	5427.456321 	804.67 	0.0001 

WORKST·SUBJ 	8 	2646.572257 	330.821532 	49.05 	0.0001 

Source 	 DF 	Type III SS 	Mean Square 	F Value 	Pr > F 

WORKST 	 I 	519.657529 	519 657529 	77 04 	0.0001 
SUBJ 	 8 	43350.724518 	5418.840565 	803.39 	0.0001 
WORKST•SUBJ 	8 	2646.572257 	330.821532 	49.05 	0.0001 

Source 	 DF 	Type IV SS 	Mean Square 	F Value 	Pr > F 

WORKST 	 1 	519.657529 	519.657529 	77.04 	0.0001 
SUBJ 	 8 	43350.724518 	5418.840565 	803.39 	0.0001 
WORKST•SUBJ 	8 	2646.572257 	130.821532 	4905 	0.0001 
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General Linear Models Procedure 

Duncan's Multiple Range Test for variable: OBS 

NOTE: This test controls the type I comparison wise error rate, not 
the  experiment wise error rate 

Alpha= 0.05 	df= 913 	MSE= 6.744953 
WARNING: Cell sizes are sot equal.  

Harmonic Mesa of cell sizes 465.2159  

Number of Means 2   
Critical Range .3383  

Means with the same leder are mot significantly different  

Ounces Grouping 	Mean 	N WORKST  

	A 	22.3442 	454 	100.0  

B 	21.1538 	477 	200.  
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General Linear Models Procedure 

Snidest-Newman-Keuls test for variable: OBS 

NOTE: This test controls the type 1 experiment wise error rue under 

the complete null hypothesis but not under partial null 
hypotheses. 

Alpha= 0 05 	df= 913 	MSE- 6.744953 
WARNING: Cell sizes are not equal. 

Harmonic Mean of cell sizes= 465.2159 

Number of Means 	2 
Critical Range 0.3341962 

Means with the same letter are not significantly different 

SNK Grouping 	Mean 	N WORK-ST 

A 	22.3442 	454 	100.0 

B 	21.1538 	477 	200. 
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General Linear Models Procedure 

Tukey's Studentized Range (HSD) Test for variable: OBS 

NOTE: This test controls the type I experimentwise error rate, but 
generally has a higher type II error rate than REGWQ. 

Alpha= 0.05 	df= 913 	MSE= 6.744953 
Critical Value of Studentized Range= 2.775 

Minimum Significant Differences= 0.3342 
WARNING: Cell sizes are not equal. 

Harmonic Mean of cell User. 465.2159 

Means with the same letter are not significantly different 

Tukey Grouping 	Mean 	N WORKST 

A 	22.3442 	454 	100.0 

B 	21.1538 	477 	200. 
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General Linear Models Procedure 

Studentized Maximium Modulus (GT2) Test for variable: OBS 

NOTE: This test controls the type I experimentwise error rate, but 

generally bee a higher type 11 'nor rate than REGWQ. 

Alpha.. 0.05 df= 913 MSE= 6.744953 
Critical Value of Studentized Maximum Modulus= 1.963 

Minimum= Significant Difference= 0.3342 
WARNING: Cell sizes are not equal. 

Harmonic Mean of cell sizes" 465.2159 



3 	21 	1538 	177 	200 
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General Linear Models Procedure 

Scheffe's test for variable: OBS 

NOTE: This test commis the type 1 experimentwise error we nut 
generally has t higher type ll error rate than REGWF for all 
pairwise comparisons 

Alpha= 0 35 	df= 913 	MSE= 6 744953 
Critical Value of F=3.85166 

Minimum Significant Difference= 0 3342 
WARNING Cell sizes are nut equal. 

Harmonic Mean of cell sizes= 465 2159 

Means with the same later are not significantly different` 

Scheffe Grouping 	Meean 	N WORST 

A 	22.3442 	454 	100.0 

B 	21.1538 	477 	200 
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General Linea Modals Procedure 

Duncan's Multi* Range Test for variable: OBS 

NOTE: This test controls the type I comparisonwise error rata. not 
the experimentwise error rats 

Alpha= 0.05 df= 913 MSE= 6.744953 
WARNING: Cell sizes are tot equal. 

Harmonic Mean of coil sizes= 102.1343 

Number of Means 	2 	3 	4 	5 	6 	7 	8 	9 

Critical Range 	7220 .7592 .7831 .8011 .8163 .8287 .8388 .8472 

Means with the same letter are not significantly different. 

Dunces Grouping 	Mean 	N SUB) 

A 	30.3559 	107 	7 

27.4839 	93 	5. 

B 
B 	27 0541 	91 	8. 
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General Linear Models Procedure 

Duncan Grouping 	Mean 	N SUBJ 

C 	25.0167 	104 	4. 

D 	23.5370 	94 	9. 

D 
D 	23.2500 	124 	10. 

E 	17.8266 	85 	6. 

F 	14.6576 	108 	1.0 

G 	8.3371 	118   2. 
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General Linear Models Procedure 

Student-Newman-Keuls test for variable: OBS 

NOTE: This test controls the type 1 experimeerwise error rate under 
the complete null hypothesis but not under penal null 
hypotheses. 

Alpha= 0.05 	df= 913 	MSE= 6.744953 
WARNING: Cell sizes sizes are not equal. 

Harmonic Mean of cell sizes= 102.1343 

Number of Means 	2 	3 	4 	5 
Critical Range 0.7132521 0.8531617 0.9353815 0.9933363 

Number of Mesas 	6 	7 	8 	9 

Critical Range 	(.0378714 1.0739034 1.1040783 1.1299816 

Means with the same letter us sot significantly different. 
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General Linear Models Procedure 

SNK Grouping 	Mess 	N SUBJ 

A 	30.3559 	107 7. 

8 	27.439 	93 5. 

B 
8 	27.0541 	98 8. 

C 	25.0167 	104 4. 

D 	23.5370 	94 9. 

D 

D 	23.2500 	124 	10. 

E 	17.8266 	85 	6. 

F 	14.6576 	108       1.0 

G 	8.3371 	118       2. 
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General Linear Models Procedure 

Tukey's Studentized Range (HSD) Test for variable: OBS 

NOTE: This test controls the type 1 experimentwise error rue, but 
generally has a higher type II error rate than REGWQ. 

Alpha= 0.05 df= 913 	MSE= 6.744953 
Critical Value of Studentized Range= 4.397 

Minimum Significant Differences 1.13 
WARNING: Cell sizes are not equal. 

Harmonic Mean of cell sizes= 102.1343 

Means with the same letter are not significantly different 

Tukey Grouping 	Mean 	N SUBJ 

A 	30.3559 	107 	7 

B 	27.4839 	93 	5. 
B 
B 	27.0541 	98 	8. 

C 	25.0167 	104 	4. 
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General Linear Models Procedure 

Tukey Grouping 	Mesa 	N SUBJ 

D 	23.5370 	94 9. 
D 
D 	23.2500 	124 	10. 

E 	17.8266 	85 	6. 

F 	14.6576 	108 	1.0 

G 	8.3371 	118 	2. 
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General Linear Models  Procedure 

Studentized Maximums Modulus (GT2) Test for variable: OBS 

NOTE: This test controls the type 1 experimentwise error rats, but 
generally has a higher type II error rase than REGWQ. 

Alpha= 0.03 di 	913 	MSE= 6.744933 
Critical Value of Studentized Maximum Modulus= 3.199 

Minimum Significant Differences= 1.1626 
WARNING: Cell sizes are not equal. 

Harmonic Mesa of cell sizes= 102.1343 
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Means with the same letter are not significantly different 

SMM Grouping 	Mean 	N SUBJ 

A 	30.3559 	107 	7. 

B 	27.4839 	93 	5. 
B 
B 	27 0541 	98 	8. 

C 	25.0167 	104 	4. 
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General Linear Models Procedure 

SMM Grouping 	Mean 	N SUBJ 

D 	23.5370 	94 	9. 
D 
D 	23.2500 	124 	10. 

E 	17.8266 	85 	6. 

F 	14.6576 	108 	1.0 

G 	8.3371 	118 	2. 
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General Linear Models Procedure 

Scheffes test for variable: OBS 

NOTE: This test controls the type I experimentwise error rate but 
generally has a higher type II error rate than REGWF for all 
pairwise comparisons 

Alpha.. 0.05 df= 913 	MSE= 6.744953 
Critical Value of F= 1.94853 

Minimum Significant Difference= 1.4349 
WARNING: Cell sines are not equal. 

Harmonic Mean of cell sizes= 102.1343 

Means with the same leder are sot significantly different. 

Scheffe Grouping 	Mean 	N SUBJ 

A 	30.3559 	107 7. 

B 	27.4839 	93 	5. 
B 
B 	27.0541 	98 	8. 
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General Linear Models Procedure 

Scbeffe Grouping 	Meta 	N SUBJ 

C 	25.0167 	104 	4. 

D 	23 5370 	94 	9. 
D 
D 	23 2500 	124 	10. 

E 	17 8266 	85 	6 

F 	14 6576 	108 	1.0 

G 	8 3371 	118 	2. 

Level of 	Level of              ------------OBS--------------- 
WORKST 	SUBJ 	N 	Mean 	SD 

100.0 	
10 
	52 	14.7923077 	1.96073677 

100.0 	10 	52 	20.8965385 	2.36465716 
The SAS System 	17:00 Friday, Much 4. 1994 41 

General Linear Models Procedure 

Level of 	Level of 	OBS------- 
WORKST 	SUBJ 	N 	Mean 	SD 

100.0 	2. 	57 	8.4385965 	0.91313322 
100.0 	4. 	54 	25.9211111 	2.42709055 
100A 	5 	40 	28.7130000 	4.15068125 
100 0 	6. 	44 	22.2040909 	2.56581309 
100 0 	7. 	53 	32.1000000 	3.62512599 
100.0 	8. 	48 	26 0858333 	2.86439614 
100.0 	9           54 	24 6074074 	2 4t238720 
200. 	10         56 	14.5325000 	1 78949079 
200. 	10         72 	24.9497222 	2.42218384 
200. 	2. 	61 	8 2422951 	0.79605777 200. 
	4           50 	24.0400000 	3.06101224 

200. 	5           53 	26.5562264 	3.98943809 
200. 	6.          41 	13.1287805 	1.88116479 
200.         7.          54 	28.6440741 	2.50428879 

200.         8.          50 	27.9836000 	2.71680692 

200          9. 	40 	22.0920000 	2.44186478 



Appendix E 

Workstation Details  
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CURRENT WORKSTATION 

SIDE VIEW 

 

Figure E-1  The old workstation prior to any changes. 111 



SHOULDER FLEXION 

CURRENT SITUATION: SHOULDERS ARE STATICALLY 

LOADED AND WRISTS FREQUENTLY DEVIATED 

Figure E-2 The shoulders are repeatedly flexed and statically loaded during control 
activation at the old workstation. 
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WRIST FLEXION 

CURRENT SITUATION: GRASPING PARTS INDUCES WRIST 

FLEXION 

 

Figure E-3  The wrists are repeatedly flexed at the old workstation. 
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PROPOSED WORKSTATION 

SIDE VIEW 

Figure E-4 A proposal for reducing the height of workstation, and the relative distance 
from fixture height to table top, compared to the old (existing) workstation. 
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PROPOSED WORKSTATION 

SIDE VIEW 

 

Figure E-5  It was suggested that parts trays be positioned at an angle to help reduce 

reaching and improve posture. 



ACTUAL PROTOTYPE DIMENSIONS 

TOP VIEW 

 

Figure E-6  The dimensions of the prototype did not match the proposed dimensions due 
to some practical limitations. 
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ACTUAL PROTOTYPE DIMENSIONS 

SIDE VIEW 

Figure E-7 Changes to the workstation heights were not nearly as dramatic as has been 
proposed, due to practical limitations in developing the prototype. 
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FURTHER SUGGESTED ENHANCEMENTS 

TOP VIEW 

Figure E-8 Suggestions for further improvements to the workstation layout were offered. 



FURTHER SUGGESTED ENHANCEMENTS 

SIDE VIEW 

 

Figure E-9  A parts tray stand was suggested which could be set directly on the floor. 

1 1 9 

 



Appendix F 

Posture Results 
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Sub 2 - Old Sub 2 - New Z Sub 12 - Old Sub 12 - New Z 
Flexion > 40° .9250 .4730 8.867* .2754 .3734 1.91 

Flexion < 40° .10625 .5269 8.867* .7245 .6265 1.91 
n = 160 n = 167 

n = 164              

n = 163 

Sub 3 - Old Sub 3 - New Z Sub 8 - Old Pub 8 - New Z 
Flexion > 40° .2269 .0295 5.409* .0503 .1962 3.94' 

Flexion < 40° .7730 .9704 5.409* .9469 .8037 3.94' 
n = 163 n = 169           n = 159        n = 158 

Z Critical = 1.96 

Table 14 - Posture results for the shoulder show significant improvement for two of four 
subjects, and significant detriment for one of four subjects. The changes were not 
significant for one of four subjects. 
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Sub 2 - Old 

 

Sub 2 - New 

 

Z 

 

Sub 8 - Old 

 

Sub 8 - New 

 

Z 

 
Flexion 6° - 30° .21 .07 3.634* .03 .03 0 

Flexion > 30° .79 .93 3.634* .96 .97 .00  

n=158 

 

n=164 

 

n=164 

 

n=163 

 

Sub 3 - Old Sub 3 - New  Z Sub 8 - Old  Sub 8 - New Z 

Flexion 6° - 30° .71 .60 2.805* .16 .23 	 1.549 

Flexion > 30° .28 .17 2.376* .& . 76                1.753 
n=161 n=164  n=155  n=152  

Z Critical = 1.96 

Table 15 - Posture results for head/neck flexion. One of four subjects experienced 
significantly increased head/neck flexion., while one showed significant decreases in 
head/neck flexion. Two of four showed no significant difference. 
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