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ABSTRACT

ENERGY AND PERFORMANCE-OPTIMIZED SCHEDULING OF
TASKS IN DISTRIBUTED CLOUD AND EDGE COMPUTING

SYSTEMS

by
Haitao Yuan

Infrastructure resources in distributed cloud data centers (CDCs) are shared

by heterogeneous applications in a high-performance and cost-effective way. Edge

computing has emerged as a new paradigm to provide access to computing capacities

in end devices. Yet it suffers from such problems as load imbalance, long scheduling

time, and limited power of its edge nodes. Therefore, intelligent task scheduling in

CDCs and edge nodes is critically important to construct energy-efficient cloud and

edge computing systems. Current approaches cannot smartly minimize the total cost

of CDCs, maximize their profit and improve quality of service (QoS) of tasks because

of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class

of energy and performance-optimized scheduling algorithms built on top of several

intelligent optimization algorithms. This dissertation includes two parts, including

background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11.

1) Background work of this dissertation.

Chapter 3 proposes a spatial task scheduling and resource optimization method

to minimize the total cost of CDCs where bandwidth prices of Internet service

providers, power grid prices, and renewable energy all vary with locations. Chapter 4

presents a geography-aware task scheduling approach by considering spatial variations

in CDCs to maximize the profit of their providers by intelligently scheduling tasks.

Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy

cost by scheduling heterogeneous tasks among CDCs while meeting their delay

constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal

variations of revenue, electricity prices, green energy and prices of public clouds.



2) Contributions of this dissertation.

Chapter 7 proposes a multi-objective optimization method for CDCs to max-

imize their profit, and minimize the average loss possibility of tasks by determining

task allocation among Internet service providers, and task service rates of each

CDC. A simulated annealing-based bi-objective differential evolution algorithm is

proposed to obtain an approximate Pareto optimal set. A knee solution is selected

to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8

formulates a bi-objective constrained optimization problem, and designs a novel

optimization method to cope with energy cost reduction and QoS improvement. It

jointly minimizes both energy cost of CDCs, and average response time of all tasks

by intelligently allocating tasks among CDCs and changing task service rate of each

CDC. Chapter 9 formulates a constrained bi-objective optimization problem for

joint optimization of revenue and energy cost of CDCs. It is solved with an improved

multi-objective evolutionary algorithm based on decomposition. It determines a

high-quality trade-off between revenue maximization and energy cost minimization

by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay

constraints. Chapter 10 proposes a simulated annealing-based bees algorithm

to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling

algorithm is designed to minimize energy cost of CDCs by allocating tasks among

multiple green clouds, and specifies running speeds of their servers. Chapter

11 proposes a profit-maximized collaborative computation offloading and resource

allocation algorithm to maximize the profit of systems and guarantee that response

time limits of tasks are met in cloud-edge computing systems. A single-objective

constrained optimization problem is solved by a proposed simulated annealing-based

migrating birds optimization. This dissertation evaluates these algorithms, models

and software with real-life data and proves that they improve scheduling precision

and cost-effectiveness of distributed cloud and edge computing systems.
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∆̂1
τ,c,n

Intermediate notation for using perspective function
properties of ∆1

τ,c,n

∆2
τ,c,n

Reciprocal of normalized variance of arrival process for
application n in CDC c in time slot τ

∆̂2
τ,c,n

Intermediate notation for using perspective function
properties of ∆2

τ,c,n

∆3
τ,c

Difference between revenue and energy cost for CDC c in
time slot τ

∆3
τ,c,n

Difference between revenue and energy cost for application
n in CDC c in time slot τ

∆4 Difference between peak and idle power of each server

∆4
n

Difference between peak and idle power of each server for
application n

∆4
c,n

Difference between peak and idle power of each server for
application n in CDC c

∆5 Sum of each server’s idle power, and one consumed by
non-computing facilities

∆5
n

Sum of each server’s idle power, and one consumed by
non-computing facilities for application n

∆5
c,n

Sum of each server’s idle power, and one consumed by
non-computing facilities for application n in CDC c
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∆6
c,n Lost rate of tasks for application n in CDC c

∆6
τ,c,n

Lost rate of tasks for application n in CDC c in time
slot τ

∆̂6
τ,c,n

Intermediate notation for using perspective function
properties of ∆6

τ,c,n

∆7
τ,c,n

Standard normal distribution function for application n
in CDC c in time slot τ

∆8
τ,c,n

Ratio of Gaussian process variance and arrival rate of
application n in CDC c in time slot τ

∆9
τ,c,n Normalized variance of λc,nτ

∆10 Intermediate notation for proving convexity of optimization
problem

∆11
τ,c,n

Task queue length of application n in CDC c in time
slot τ

∆12,c,n
τ

Possibility that there are no tasks in queue of application
n in CDC c in time slot τ

∆13
τ Average task loss possibility in time slot τ

∆14
τ,c,q

Intermediate notation for obtaining response time of task
q in CDC c in time slot τ

∆15 Transformed objective function

∆16
τ,c,n

Intermediate notation for obtaining response time of
application n in CDC c in time slot τ

∆17
τ Possibility that there are no tasks in queue in time slot τ

∆18
τ Task queue length in time slot τ

∆19(t) Revenue or penalty of a task given its actual response
time

εnτ
Penalty cost of each rejected task of application n in time
slot τ

Γτ,c,n
Probability function autocovariance for task arriving rate
of application n in CDC c in time slot τ

0
γ1 Positive constant
0
γ2 Positive constant
0
γ3,c Constant for CDC c

0
γ4,c Constant for CDC c

0
γ5,c Constant for CDC c

0
γ6 Empirically derived correction constant
0
γ7,c,n Constant
0
γ8,c,n Constant for each server of application n in CDC c
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0
γ9,c,n Constant for each server of application n in CDC c

(x)ג Objective function in single-objective optimization

~q Processing speed of node q

}̂1 Maximum amount of CPU resources in each node

}̂2 Maximum amount of memory resources in each node

}̂3 Maximum amount of bandwidth resources in each node

κqτ Load level of node q in time slot τ

κ̄τ
Average load level of all nodes in edge computing in time
slot τ

+

λ`,n
Accumulated arriving rate of tasks of application n in time
slot `

+

λ`,c,n
Accumulated task arriving rate of application n in CDC c
in time slot `

λτ Task arriving rate in time slot τ

λ́τ Arriving rate of tasks executed in CDC in time slot τ

λ̃cτ Task arriving rate of CDC c in time slot τ

λc,nτ Task arriving rate of application n in CDC c in time slot τ

λc,qτ Task arriving rate at server q in CDC c in time slot τ

λnτ Task arriving rate of application n in time slot τ

λ†,nτ
Arriving rate of remaining tasks of application n in time
slot τ

λk,c,nτ
Task arriving rate of application n delivered to CDC c
through ISP k in time slot τ

λnτ+b Task arriving rate of application n in time slot τ+b

λc,nτ+b
Task arriving rate of application n in CDC c in time
slot τ+b

λ†,c,nτ+b
Arriving rate of remaining tasks of application n in CDC
c in time slot τ+b

+

λτ,n
Accumulated arriving rate of tasks of application n in time
slot τ

f Penalty of all constraints

µτ Task service rate of CDC servers in time slot τ

µnτ Task service rate of application n in time slot τ
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µc,nτ Task service rate of application n in CDC c in time slot τ

µc,nτ+b
Task service rate of application n in CDC c in time slot
τ+b

∇n Revenue of each task of application n

∇n
τ Revenue of each task of application n in time slot τ

∇n
τ+b Revenue of each task of application n in time slot τ+b

νv,nτ
Price of VMs for application n in public cloud v in time
slot τ

νv,nτ+b
Price of VMs for application n in public cloud v in time
slot τ+b

ωc Loading capacitance in CDC c

ωnc
Loading capacitance of each server of application n in
CDC c

Ω̆ External archive (EA)

|Ω̆| Number of individuals in Ω̆

Ωc,n
τ Variation coefficient of tc,nτ


c,qτ Variation coefficient of tc,qτ

∂̂ Upper limit of execution cost of each task executed in
edge computing

Φ̌ Idle power of each server in CDC

Φ̂ Peak power of each server in CDC

Φ̂n Peak power of each server for application n

Φ̌n Idle power of each server for application n

Φ̌c
n Idle power of each server of application n in CDC c

Φ̂c
n Peak power of each server of application n in CDC c

φ1 Wind-to-electricity conversion rate of CDC

φ1c Wind-to-electricity conversion rate of CDC c

φ2 On-site air density in CDC

φ2c On-site air density in CDC c

φ3 Rotor area of wind turbines in CDC

φ3c Rotor area of wind turbines in CDC c
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φτ,4c Wind speed of CDC c in time slot τ

φτ+b,4c Wind speed of CDC c in time slot τ+b

Φ̌c
q Power consumed by each idle server q in CDC c

ψ1 Solar-irradiance-to-electricity conversion rate of CDC

ψ1c Solar-irradiance-to-electricity conversion rate of CDC c

ψ2c Active irradiance area of solar panels in CDC c

ψτ,3c Solar irradiance of CDC c in time slot τ

ψτ+b,3c Solar irradiance of CDC c in time slot τ+b

ψ2 Active irradiance area of solar panels in CDC

	c
Coefficient of converting clock frequency to supply voltage
for servers in CDC c

Ψn
c

Coefficient of converting clock frequency to supply voltage
for servers of application n in CDC c

ρc,nτ
Utilization of each server of application n in CDC c in
time slot τ

ρc,qτ Utilization of server q in CDC c in time slot τ

ρ‡τ Utilization of each server in CDC in time slot τ

σ̆c,n Variance of rnc

στ,c,n
Variance of Gaussian process for tasks of application n in
CDC c

σ̆c,q Variance of rqc

σ̂τ,c,n Variance of ðc,nτ

σ̃τ,c,n Variance of tc,nτ

σ̂τ,c,q Variance of ðc,qτ

σ̃τ,c,q Variance of tc,qτ

Θ Intermediate notation for proving convexity of optimization
problem

θi1 Velocity of individual i

θi,g1 Velocity of individual i in iteration g

θ0
2 Initial temperature

θg2 Current temperature in iteration g
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θ3 Temperature cooling rate

θ4 Number of grids in any dimension of the space

θ̌5 Minimum value vector of elements

θ̌d5 Minimum value of the d-th element in θ̌5

θ̂5 Maximum value vector of elements

θ̂d5 Maximum value of the d-th element in θ̂5

θ̂ι6 Maximum value of objective function ι

θ̌ι6 Minimum value of objective function ι

θ7 Crossover possibility

θ̂7 Maximum crossover possibility

θ̌7 Minimum crossover possibility

θ8 Mutation possibility

θ̂8 Maximum mutation possibility

θ̌8 Minimum mutation possibility

θA1,i Entropy of candidate i in EA in SADE

θA2,i Sparsity degree of candidate i in EA in SADE

θA3,i
Distance of candidate i to its lower adjacent one in EA in
SADE

θA4,i,ι
Lower adjacent one of candidate i in EA along objective ι
in SADE

θA5 Diversity of the Pareto-optimal front in SADE

θB1,i Frequency of bat i in SBA

θ̌B1 Minimum frequency in SBA

θ̂B1 Maximum frequency in SBA

θB2,i Pulse rate of bat i in SBA

θB2,i,g Pulse rate of bat i at iteration g in SBA

θB2,i Initial pulse rate of bat i in SBA

θ̌B2 Minimum pulse rate in SBA
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θ̂B2 Maximum pulse rate in SBA

θB3 Increase rate of pulse rate in SBA

θB4,i Loudness of bat i in SBA

θB4,i,g Loudness of bat i at iteration g in SBA

θ̌B4 Minimum loudness in SBA

θ̄B4,g Average loudness of all bats at iteration g in SBA

θ̂B4 Maximum loudness in SBA

θB5 Loudness reduction rate in SBA

θB6,i Adaptation value of bat i in SBA

θD1 Scaling factor in SBDE

θD2 Positive constant in SBDE

θD3,ι Range of objective function ι in SBDE

θ̌D4,ι
Lower bound of grid region for objective function ι in
SBDE

θ̂D4,ι
Higher bound of grid region for objective function ι in
SBDE

θM1,i Neighboring area of individual i in IMEAD

θM2,i
Intermediate notation for selecting a new individual from
θM1,i in IMEAD

θM3 Variance vector in IMEAD

θM4 Binary vector in IMEAD

θM5
Intermediate notation for producing a new solution
around a new individual in IMEAD

θM6
Vector of the best objective function values obtained in
IMEAD

θM6,ι
The best value of objective function ι obtained in
IMEAD

θM7,i
Weight vector of objective functions of individual i in
IMEAD

θM7,i,ι Weight of objective function ι of individual i in IMEAD

θM8,i Crowded distance of individual i in IMEAD

θ́M9,i Next individual neighboring to individual i in IMEAD

θ̀M9,i
Previous individual neighboring to individual i in
IMEAD
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θ̌P1
Coefficient of individual acceleration reflecting influence
of x̌i in GSPSO

θ̂P1
Coefficient of social acceleration reflecting influence
of x̂ in GSPSO

θP2 Superior acceleration coefficient in GSPSO

θP3 Maximum velocity of particles in GSPSO

θP4
Percentage of particles with the same fitness values in
GSPSO

θ̂P4 Specified maximum percentage in GSPSO

θP5 Inertia weight in GSPSO

θ̌P5 Lower bound of inertia weight w in GSPSO

θ̂P5 Upper bound of inertia weight w in GSPSO

θS1 Neighborhood radius of
o

N τ,c,n in BAS

θ́S1,c,n Neighborhood radius of λc,nτ in BAS

θ̃S1,c,n Neighborhood radius of %c,nτ in BAS

θS2 Reduction rate of neighborhood radius in BAS

4n
τ Energy cost of each task of application n in time slot τ

υτ
Total transmission time of input/output data to/from
CDC through MBS

Υ Υ=maxn∈{1,2,···,N}(Bn)

ε̂ Specified maximum load balance level

ετ
Load balance level of all nodes in edge computing in time
slot τ

κ0
1 Weight constant

κ0
2 Weight constant

κ0
3 Weight constant

ϕ1,q
τ Utilization of CPU resources of node q in time slot τ

ϕ2,q
τ Utilization of memory resources of node q in time slot τ

ϕ3,q
τ Utilization of bandwidth resources of node q in time slot τ

%̂c Maximum running speed of each server in CDC c

%̂nc
Maximum running speed of each server of application n
in CDC c
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%c,nτ
Running speed of each server of application n in CDC c in
time slot τ

%c,qτ Running speed of server q in CDC c in time slot τ

ςs1 Number of CPU resources of task s

ςs2 Number of memory resources of task s

ςs3 Number of bandwidth resources of task s

ϑc Activity factor in CDC c

ϑnc Activity factor of each server of application n in CDC c

Λg
i Difference between xgi and x̀gi

ζn Size of each task of application n

Bn Delay bound of application n

bkτ Unit bandwidth price of ISP k in time slot τ

B̂k Bandwidth limit of ISP k

Ê Maximum amount of energy in CDC

Eτ Total energy consumed in time slot τ

Êc Maximum amount of energy in CDC c

Ẽτ Wind energy produced in time slot τ
◦
Eτ Solar energy produced in time slot τ

Ec
τ Total energy consumed by CDC c in time slot τ

Ẽτ,c Wind energy consumed by CDC c in time slot τ
◦
Eτ,c Solar energy produced by CDC c in time slot τ
+

Eτ,c Total green energy consumed by CDC c in time slot τ

Ec,n
τ

Total energy consumed by application n in CDC c in time
slot τ

Eτ+b Total energy consumed in time slot τ+b
◦
Eτ+b Solar energy produced in time slot τ+b

Ẽτ+b Wind energy produced in time slot τ+b

Ec
τ+b Total energy consumed by CDC c in time slot τ+b
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◦
Eτ+b,c Solar energy produced by CDC c in time slot τ+b

Ẽτ+b,c Wind energy produced by CDC c in time slot τ+b

f1 Total revenue of tasks

f c,∗1 Revenue of tasks of all applications in CDC c

f ∗,n1 Revenue of tasks of application n in all CDCs

f ∗,n1,τ
Revenue of tasks of application n in all CDCs in time slot
τ

f ∗,n1,τ+b
Revenue of tasks of application n in all CDCs in time slot
τ+b

f2 Total cost of CDC provider

f̃2 Augmented objective function of f2

f21
ISP bandwidth cost of data transmission among users and
CDCs

f22 Energy cost of tasks of all applications

f̃22 Augmented objective function of f22

f c,∗22 Energy cost of CDC c

f23 Execution cost of all tasks in edge computing

f s,q23
Execution cost of task s executed in node q in edge
computing

f̃ι Augmented objective function ι (ι∈{1, 2, . . . ,
o

M})

F̄ Average fitness value for all individuals

Fi Fitness of individual i

F̃i Absolute value of difference between F i and F̄

F́i New fitness for individual i

F1 Profit of CDC provider

F̃1 Augmented objective function of F1

F2 Task loss possibility of CDC

F̃2 Augmented objective function of F2

g Current iteration number

ĝ Total number of iterations
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gl(x) Inequality constraint z (1≤l≤N 6=)

hm(x) Equality constraint y (1≤m≤N=)
•
i Elitist individual with the minimum Euclidean distance

from individual i
←→
i, j

Euclidean distance between individual i and elitist
individual j in Ω̂

L Length of each time slot

Ḿ Number of fittest sites in BSA

M̄ Number of recruited bees for each non-elite site in BSA

M̌ Number of recruited bees for each elite site in BSA

M̀ Number of elite sites in BSA

M̃ Number of neighbor solutions for each solution
o

M Number of objective functions

M0 Number of unused neighbor solutions of current solution
in SMBO

N̂ Maximum number of servers in CDC
•
N Number of tasks processed by each switched-on server per

time in the CDC layer

NA Number of applications

N̂c Number of heterogeneous servers in CDC c

NC Number of CDCs

N̂c,n Maximum number of servers for application n in CDC c
•
Nc,n

Number of tasks executed by each switched-on server for
application n in each minute in CDC c

ND Number of decision variables

N̂‡ Maximum number of tasks executed by CDC
#

N `,v,n
Number of tasks of application n scheduled to public cloud
v in time slot `

N= Number of equality constraints
∞
N Large positive constant

NK Number of ISPs

N̂n Number of servers for application n
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•
Nn

Number of tasks executed by each switched-on server for
application n in each minute

N−n
Maximum number of tasks dropped at task queue of
application n

N 6= Number of inequality constraints

Ns Size of task s (MIPS/second)

N ∗ Total number of time slots
o

N τ,c Number of switched-on servers in CDC c in time slot τ
o

N τ,c,n
Number of switched-on servers for application n in CDC c
in time slot τ

�
Nτ,n Number of tasks of application n executed by time slot τ
o

N τ,n
Number of switched-on servers of application n in time
slot τ

�
Nτ,c,n

Accumulated number of executed tasks of application n
in CDC c by time slot τ

+

Nτ,c,n
Accumulated number of arriving tasks of application n
in CDC c by time slot τ

o

N τ+b,c,n
Number of switched-on servers of application n in CDC c
in time slot τ+b

N †τ
Number of tasks scheduled to nodes in edge computing in
time slot τ

+

Nτ,n
Accumulated number of arriving tasks of application n
in all CDCs by time slot τ

o

N τ+b,n
Number of switched-on servers of application n in time
slot τ+b

N q
τ

Maximum number of tasks that can be executed by node q
in edge computing in time slot τ

#

N τ,v,n
Number of tasks of application n scheduled to public cloud
v in time slot τ

N V Number of public clouds

N0 Number of heterogeneous nodes in edge computing

pτ Price of power grid in time slot τ

pτ+b Price of power grid in time slot τ+b

P̃τ Total power consumption in time slot τ

pcτ Price of power grid of CDC c in time slot τ

P c
τ Total power consumption of CDC c in time slot τ
◦
P τ,c Solar power consumed by CDC c in time slot τ

P c,n
τ

Power consumed by each server of application n in CDC c
in time slot τ
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Pc,qτ Power consumed by server q in CDC c in time slot τ

pcτ+b Price of power grid in CDC c in time slot τ+b

Pτ+b Total power consumption in time slot τ+b

P̃τ,c Wind power consumed by CDC c in time slot τ

Q̂n Capacity limit of task queue of application n

Q̂c
n Capacity limit of task queue of application n in CDC c

rnc Size of each task of application n in CDC c

r̄nc Mean of rnc

r̄qc Mean of rqc

rqc Size of each task scheduled to server q in CDC c

t Response time of each task

tc,nτ
Running time of each task of application n in CDC c in
time slot τ

tc,qτ
Running time of each task on server q in CDC c in time
slot τ

t̄c,nτ Mean of tc,nτ

t̄c,qτ Mean of tc,qτ

T̂ † Response time limit of tasks executed in edge computing

T̂ ‡ Response time limit of tasks executed in CDC

T̂n Response time limit of application n

Tτ Response time of each task in time slot τ

T̃τ Augmented objective function of Tτ

T cτ Response time of tasks in CDC c

T c,nτ
Interarrival time for each server of application n in CDC
c in time slot τ

T̄ c,nτ Mean of T c,nτ

T c,nτ
Response time of tasks of application n in CDC c in time
slot τ

Tc,qτ Response time of tasks in server q in CDC c in time slot τ

Tc,qτ Interarrival time for server q in CDC c in time slot τ
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T̄c,qτ Mean of Tc,qτ

T†τ
Maximum response time of tasks executed in edge
computing in time slot τ

T ‡τ Response time of each task executed in CDC in time slot τ

T s,qτ Execution time of task s on node q in edge computing

u Server CPU utilization

unτ CPU utilization in time slot τ

uc,nτ
CPU utilization of servers of application n in CDC c in
time slot τ

uc,nτ+b
CPU utilization of servers of application n in CDC c in
time slot τ+b

Uc,qτ Supply voltage of server q in CDC c

U c,n
τ

Supply voltage of each server of application n in CDC c in
time slot τ

w1–w24 A random number or vector

W c,n
τ

Waiting time of tasks of application n in each server in
CDC c

Wc,q
τ Waiting time of tasks in server q in CDC c

x Vector of decision variables
∗
x Optimal position/solution finally produced

x̂ Globally optimal position/solution of current population

x̃B Alternative optimal position/solution in SBA

xBi
Position/solution from previous positions/solutions of
individual i in SBA

•
xg Position/solution of the optimal individual in iteration g

xi Position/solution of each individual i

x̌i Locally optimal position/solution of individual i
0
xi,d Initial value of decision variable d of individual i

xi,d Value of the d-th element of individual i

xgi,d Value of the d-th element of xgi

x̀gi,d Value of the d-th element of x̀gi,d

x́gi,d Value of the d-th element of x́gi
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x́gi
Position/solution of a new candidate for individual i in
iteration g

xgi Position/solution of individual i in iteration g

x̀gi Position/solution of a new mutant individual for xgi

x1
i

Position/solution of a new individual for individual i after
crossover operation

x́Pi
Position/solution of a superior particle corresponding to
particle i in GSPSO

x̆Pi Position/solution of an offspring of particle i in GSPSO

X Population

|X| Size of population
∗
X Set of the best individuals obtained

ys,qτ
Binary variable denoting whether task s is scheduled to
node q in time slot τ

zv,nτ
Binary variable denoting whether tasks of application n
are scheduled to public cloud v in time slot τ
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CHAPTER 1

INTRODUCTION

Cloud computing and edge computing are emerging as two primary computing

paradiams that are researched, developed and deployed by enterprises, governments,

and academic institutes in recent years [1, 2, 3, 4]. By supporting a pay-as-you-go

service model, cloud computing removes initial capital, maintenance and software

licensing cost. In addition, it has greatly changed the way information technology

infrastructure is provided to satisfy various business needs by enabling on-demand

infrastructure provisioning [5, 6]. It is implemented in green cloud data centers

(CDCs) that manage a great number of large-scale infrastructures [7] typically

including millions of servers and cooling facilities [8]. The infrastructure resources in

CDCs are shared to concurrently support multiple applications that flexibly deliver

services to users around the world.

An increasing number of users deploy their delay-constrained applications, e.g.,

search engine, scientific computing, distributed file systems, big data processing, deep

learning [9, 10] and high-performance computing in data centers. This significantly

increases the amount of energy consumed by large-scale data centers. Recent data

shows that the energy consumed by data centers in U.S. is roughly 78 billion KWH in

2017, and it accounts for about 2.9% of the total energy consumed in U.S. [11]. In the

U.S., CDCs are expected to consume 101.3 billion KWH annually by 2020, equivalent

to the output of 50 large power plants. In 2 or 3 years, about 95% of urban data

centers would experience total or partial outages that incur annual cost of roughly

2 million U.S$ per infrastructure [12]. Thus, the energy optimization has become

a major concern in their server provisioning and cooling systems. To provide high

availability and low latency, each application is usually deployed in multiple CDCs
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located in different geographical locations [13]. In addition, considering performance

and cost, each CDC is connected to multiple Internet service providers (ISPs) that

transmit gigantic data among distributed CDCs and millions of users [14]. It is shown

that ISP bandwidth and energy cost account for a majority of a CDC provider’s

operational expense [15].

1.1 Cloud Computing

There have been studies from both industries and academia on energy optimization

problems [16]. Users’ tasks must first traverse through the wide-area network

including multiple ISPs before they can reach back-end CDCs. For example, Google’s

wide-area network delivers multiple applications, e.g., video, search and mail, to

global users [17]. CDCs also need to pay money to ISPs due to users’ tasks and

response data transmitted among users and CDCs [18]. Currently, typical CDCs

transmit more than a petabyte data each day, and therefore, they suffer from huge

ISP bandwidth cost [19]. In addition, the bandwidth price of each ISP is determined

by a service-level agreement (SLA) [20] specified between users and a CDC provider,

and therefore, bandwidth prices of some ISPs are much more expensive than others.

However, existing studies do not consider the diversity in bandwidth prices of ISPs,

and therefore, may lead to high cost. In addition, CDCs are usually located in

different sites where the prices of power grid also exhibit spatial diversity [21]. The

wind speed, solar irradiance, on-site air density, the maximum available energy, and

the number of servers in each CDC all vary with geographical locations [22]–[24].

Thus, it becomes a big challenge to minimize the total cost of a CDC provider in a

market where ISP bandwidth prices, power grid prices, and availability of renewable

green energy all show their spatial diversity.

Similar to the work [25], this dissertation work investigates task scheduling of

multiple long-delay applications whose delay bound constraints are relatively long,
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e.g., high-performance simulation and large-scale data analysis. During the delay

bound constraints of tasks, such factors as prices of power grid, solar irradiance

and wind speed change with time [25]. In addition, each application is deployed

in distributed green CDCs [26] to improve availability and robustness. Thus, tasks of

each application can be independently executed within each CDC. Similarly, prices

of power grid and availability of renewable energy in CDCs located in different

geographical sites have spatial variations, i.e., they vary with locations. CDCs always

aim to schedule tasks in the most cost-effective way while meeting their delay bound

constraints [27]. However, spatial and temporal variations make it highly challenging

and essential to minimize energy cost of CDC providers by smartly scheduling tasks

of heterogeneous applications among multiple CDCs while satisfying delay bound

constraints of all tasks.

In addition, in 2017, over 80% of energy in U.S. was produced by burning

nonrenewable fossil fuel, e.g., coal, petroleum and natural gas. This brings the

irreversible harm and pollution to the global environment. In addition, the pressure

from governments worldwide is also increasing for reducing carbon footprints that

significantly affect the global climate change. For example, Japan establishes the

data center council to reduce the soaring energy consumption of data centers [28].

Therefore, a growing number of CDCs, e.g., Microsoft, Google, Amazon, Alibaba and

Apple [29], install renewable energy facilities to reduce the environmental pollution

caused by the usage of fossil fuel, and migrate to greener CDCs [30]. Current CDCs

are mainly powered by three energy sources, i.e., power grid, solar energy and wind

energy, and they aim to reduce the brown energy consumption by using renewable

devices [31]. The aperiodic arrival of tasks makes it difficult to accurately predict task

arriving rate of each application [32]. Thus, it is impossible to execute all tasks of

each application with limited resources of each CDC at peak time. For example, when

Apple’s new iPhones are released, more than two million pre-orders are sent to its
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data centers in the first 24 hours, and the Apple Store in some areas is unresponsive

[33]. The response time of the CDC may be long and application crash may happen

at peak time. Thus, a hybrid cloud scheme is increasingly deployed by CDC to handle

peak tasks by outsourcing some tasks to public clouds. Virtual machines (VMs) are

created to support applications in public clouds and the operation cost of CDC can be

reduced. Currently, more than 82% of companies choose hybrid CDC to deploy their

applications [33]. In hybrid CDC, a private CDC provider (called the CDC for short)

needs to pay the execution cost of VMs due to the tasks scheduled to public clouds.

Within delay bound constraints of long-delay applications, several factors in the CDC

and public clouds show temporal variations [21]. Specifically, revenue, prices of power

grid, solar irradiance, and wind speed in the CDC all vary with time. Besides, prices

of VMs in public clouds also vary with time. Thus, the temporal variations in the

factors make it challenging to schedule tasks of each application among the CDC and

public clouds in a cost-effective way while meeting their delay bound constraints.

The dramatic growth in the number of arriving tasks significantly brings the

energy cost of billions of dollars to their providers [28]. Besides the economic concern,

the carbon footprint is significantly increasing and it is expected to exceed the airline

industry emissions by 2020. According to the work in [34], CDCs consumed about

2.2% of total U.S. electricity consumption, and originated more than 43 million tons of

CO2 annually. Each large-scale green cloud usually needs as much energy as 25,000

households on average. Therefore, a growing number of enterprises install green

energy infrastructure and build CDCs [35] to improve their energy efficiency. Several

methods, e.g., disk management, and dynamic voltage and frequency scaling [36],

have been proposed to realize them. There are two types of ways to decrease the

energy cost: turning off computing servers or decreasing tasks’ performance. It is

beneficial to reduce the energy consumption for CDCs. Yet it may not maximize

the profit of providers and often deteriorates quality of service (QoS) requirements of
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tasks. The reason is that applications and their data are increasing so quickly that

the running of higher-performance servers requires more energy to efficiently execute

users’ tasks. According to the items in SLAs [37] signed between users and providers,

the execution of tasks of each application contributes revenue to CDC providers.

Therefore, the reduction of energy consumption might deteriorate QoS of tasks of

users. Any QoS violations can significantly bring the penalty to a CDC provider

because users have strict performance requirements of their applications, and then

increase its total cost or decrease its profit. Consequently, the profit of providers, and

QoS of tasks need to be jointly considered and optimized by intelligently scheduling

tasks and allocating infrastructure resources.

1.2 Edge Computing

With the fast development of information and communication technologies, smart

mobile devices (SMDs) have been gaining enormous attention with current mobile

technologies, e.g., smart phones, wearable devices , tablets and IoTs [38, 39, 40] as they

enable convenient communications almost anywhere and anytime. SMDs accelerate

the emergence of Internet of Things (IoTs) and drastically trigger a big revolution

and rapid development of computationally intensive mobile applications [41, 42],

e.g., autonomous driving, interactive online games, speech/face recognition, aug-

mented/assisted/virtual reality, social networking, traffic management, path planning

and health monitoring. The imbalance and gap between resource-constrained devices

and complex compute-intensive applications is increasingly becoming a bottleneck

for enabling user-specified quality of experience, and therefore, may hinder the

development of mobile applications [43]. Supported by embedded sensors and

on-device cameras, mobile applications evolve with several new features, e.g., face

recognition, interactive online gaming and navigation, are increasingly developed. In

addition, the era of IoTs is predicted to produce an dramatic amount of raw data
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from IoT devices. The data contains important and valuable insights through big

data analysis. However, its analysis needs extremely intensive data computation that

exceeds the processing, storage as well as battery energy capacities of IoT devices

[44, 45], and it leads to significant delay if the computation is pushed to the CDCs.

In traditional remote cloud computing systems, public clouds, e.g., Google

Cloud Platform, Microsoft Azure, and Amazon Web Services [46] are adopted, and

therefore, incur long latency because of data exchange among them and SMDs with

constrained resources in wide area networks. Consequently, it is highly needed to

extend services of cloud computing to locations where data is produced, i.e., the

network edge [47]. To solve this problem, mobile edge computing (MEC) provides

cloud computing functions and enables a promising computation paradigm. It

migrates the computation, storage, and servicing capabilities to the network edge, and

pulls SMDs out of heavy computation tasks by deploying applications locally with

short distance in a distributed manner. [48]. Figure 1.1 illustrates a typical multi-layer

edge computing architecture. It has several benefits including high bandwidth,

location awareness, real time radio network information, etc. Therefore, it is able

to significantly decrease latency, reduce congestion of data transmission and prolong

the lifetime of battery of SMDs by intelligently and cost-effectively offloading part

or all of compute-intensive latency-critical tasks from ubiquitous IoT devices/SMDs

to physically close MEC servers. It is viewed as one of key technologies for the

fifth generation (5G) networks by the European 5G Infrastructure Public Private

Partnership. Therefore, a growing number of recent studies have been proposed from

both academia [49] and industries [50] to take advantage of MEC features to decrease

traffic overhead of real-life various industrial applications and execute users’ intensive

workload through offloading.

On the other hand, though computation offloading can effectively utilize

powerful computational resources at cloud servers, it is still difficult to guarantee
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Figure 1.1 Multi-layer edge computing architecture.

the computation performance for traditional battery-powered devices due to limited

battery energy for task offloading. For example, mobile applications have to be

terminated and the battery energy of SMDs runs out. It might possibly be solved

by regularly recharging the batteries or adopting larger batteries. However, hardware

cost is increased if larger batteries are installed at SMDs, and it is not desirable. In

addition, frequently recharging batteries might be impossible in some application

scenarios, e.g., in wireless sensor networks and IoTs for surveillance because the

devices are usually difficult-to-reach. Thus, the increasing amount of energy

consumption of IoTs brings a strong need for novel computation offloading methods

dedicated for distributed cloud and edge computing systems with battery-powered

devices. It is challenging to execute them in SMDs that own limited computation
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resources and battery capacities. It is shown that CDCs, e.g., Amazon Elastic

Compute Cloud (Amazon EC2), and Microsoft Azure, provide new distributed

computing to efficiently tackle the limitation of battery and processing capabilities by

offloading part or all computation-intensive tasks to CDCs for execution [51]. In 2019,

over 70% of calculations have been completed in CDCs. The applications send their

tasks to remote CDCs that typically have rich computation resources, high security

and huge storage [52, 53]. However, CDCs are usually far away from SMDs, and this

leads to unacceptable transmission delay and economic cost for utilizing resources in

CDCs [54], and affects real-time performance of latency-sensitive applications.

To tackle the shortcomings of CDCs, edge computing is an emerging architecture

for the network edge, and it provides agile and pervasive resources to IoT applications

with strict latency need at anytime and anywhere [55]. The need for real-time and

scalable data analysis in IoT devices is a major driving power for edge computing

where data is generated and processed in the network edge in many applications of

smart city, smart home, surveillance networks, connected vehicles, industrial IoT,

etc. Compared with powerful computing platforms in CDCs, edge computing enables

higher computing agility and lower latency. It is shown that about 40% of IoT-

produced data is stored and processed in the edge of a network [56]. Local computing

in the edge greatly reduces the response time because waiting or communication delay

between the edge and CDCs is avoided. Yet, the limits of energy, computation, and

storage resources of nodes in IoT devices restrict the number of tasks of resource-

hungry applications locally computed in the edge. Therefore, it is unlikely to execute

all tasks in nodes in edge computing (i.e., local computing), and some of them have to

be offloaded to CDCs to avoid energy depletion and the overall system performance

[57]. Thus, it is critically important to rationally schedule all tasks between CDC

and edge computing layers, and maximize the profit of distributed cloud and edge
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computing systems while ensuring that user-specific response time limits of tasks are

well met.

1.3 Organization of This Dissertation

This dissertation work focuses on these challenging problems, and aims to propose

several intelligent optimization methods to solve them. It is worth noting that

Chapters 3–6 are the background work of this dissertation. The major contributions

of this dissertation include Chapters 7–11.

1) Chapter 3 in the background work provides a Spatial Task Scheduling and
Resource Optimization (STSRO) method to minimize the total cost of a CDC
provider by exploiting the spatial diversity of ISP bandwidth and energy cost
while strictly meeting delay bound constraints of tasks of all applications.
This dissertation work incorporates the spatial diversity in above factors
into a constrained optimization problem, and solves it with the proposed
simulated-annealing-based bat algorithm to offer a real-time near-optimal
solution. It jointly specifies the optimal allocation of all arriving tasks among
multiple ISPs, and determines the optimal setting of each server in each CDC.
It considers the variations of many factors including power grid price, wind
speed, solar irradiance and on-site air density, and can intelligently schedule all
arriving tasks to CDCs within their delay bound constraints.

2) Chapter 4 in the background work provides a geography-aware task scheduling
(GATS) approach to achieve the profit maximization for CDC providers.
Specifically, Chapter 4 adopts an accurate queue model, i.e., G/D/1 to analyze
the performance of each CDC. The arriving process of tasks is modeled by
a random process with the general probability distribution. GATS jointly
investigates and utilizes spatial differences of several factors including ISP
bandwidth prices, the prices of grid, solar irradiance, active irradiance area of
solar panels, wind speed, on-site air density, rotor area of wind turbines, and the
maximum available number of servers in each CDC. This Chapter incorporates
spatial differences into a constrained optimization problem that is proven to be
a typical convex optimization one. Then, it is directly solved with the interior
point method to offer the optimal task scheduling strategy that maximizes the
profit of CDC providers by jointly and optimally determining the allocation of
tasks of all applications among multiple ISPs and task service rates of servers
in each CDC.

3) Chapter 5 in the background work minimizes energy cost for a CDC provider
by jointly investigating spatial and temporal variations in prices of power grid
and availability of renewable energy while meeting delay bound constraints
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of all tasks strictly. In Chapter 5, an energy cost minimization problem is
formulated and solved with a hybrid meta-heuristic algorithm named Genetic
Simulated-annealing-based Particle Swarm Optimization (GSPSO). GSPSO
combines genetic operations of genetic algorithm [58], Metropolis acceptance
rule of simulated annealing [59], and social learning of particle swarm opti-
mization [60]. According to the solution obtained by GSPSO, the proposed
spatio-temporal task scheduling (STTS) method can jointly determine the
optimal split of all tasks among CDCs, and also specify the optimal setting
of servers in each CDC in each time slot within tasks’ delay bound constraints.

4) Chapter 6 in the background work proposes a temporal task scheduling (TTS)
algorithm in the hybrid CDC to consider the temporal variations in prices
of power grid, revenue and green energy in the CDC, and prices of VMs in
public clouds within tasks’ delay bound constraints. Specifically, the profit
maximization problem of the hybrid CDC is formulated and solved with GSPSO
that is proposed to increase both efficiency and global search accuracy. All tasks
of each application are smartly executed in the CDC and public clouds such that
tasks’ delay bound constraints are strictly met.

5) Chapter 7 in this dissertation proposes a simulated-annealing-based bi-objective
differential evolution algorithm to obtain an approximate Pareto optimal set
for the formulated bi-objective optimization problem. Then, the minimal
Manhattan distance is adopted to determine a knee solution that specifies
Pareto optimal task service rates and task split among ISPs for CDCs in each
time slot. In this way, a Profit and QoS-optimized Task Scheduling (PQTS)
method is proposed to maximize the profit of a CDC provider, and minimize
the average task loss possibility of all applications in CDCs by properly splitting
users’ tasks among multiple ISPs, and adjusting task service rates of each CDC.

6) Chapter 8 in this dissertation formulates the joint optimization of energy cost
and QoS as a bi-objective constrained optimization problem where a G/G/1
queuing model is used to analyze the performance of each switched-on server.
The problem is solved by a Simulated-annealing-based Adaptive Differential
Evolution (SADE) algorithm to jointly minimize both energy cost and tasks’
response time. The minimal Manhattan distance method is adopted to obtain
a knee from a close-to-Pareto-optimal set for good tradeoff between energy cost
minimization and QoS maximization.

7) Chapter 9 in this dissertation proposes an Improved Multi-objective Evolutionary
Algorithm based on Decomposition (IMEAD) to achieve energy cost mini-
mization and revenue maximization of CDCs. It cost-effectively executes all
tasks while meeting their delay constraints. In each time slot, a constrained
bi-objective optimization problem for the tradeoff between maximizing the
revenue and minimizing CDCs’ energy cost is formulated and solved by IMEAD
to achieve a high-quality balance of these two objectives.
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8) Chapter 10 in this dissertation adopts a G/G/1 queuing system, which is the
most general model, to analyze the performance of servers in CDCs. The
execution time and interarrival time of each task have arbitrary probability
distributions. Based on it, the spatial variations are integrated into a
single-objective constrained optimization problem, which is further solved by
a proposed Bat Algorithm based on Simulated annealing to find a real-time
close-to-optimal solution. In this way, a Fine-grained Spatial Task Scheduling
(FSTS) algorithm is proposed to minimize the energy cost of a CDC provider by
optimally allocating tasks of heterogeneous applications among multiple CDCs,
and specifying the running speed of each server and the number of switched-on
servers in each green cloud while strictly meeting response time limits of tasks
of all applications.

9) Chapter 11 in this dissertation focuses on a 3-layer architecture. It consists of
terminal, edge computing, and CDC layers. This chapter aims to maximize
the profit of the system provider by smartly scheduling arriving tasks between
CDC and edge computing layers while strictly guaranteeing their response time
limits. More specifically, given tasks scheduled to execute in a CDC layer, this
chapter explicitly specifies the task service rate of a CDC server in each time slot
by using a proposed Simulated-annealing-based Migrating Birds Optimization
(SMBO). In addition, given tasks scheduled to an edge computing layer, this
chapter explicitly specifies the selected node for each task in each time slot. In
this way, this chapter proposes a more fine-grained mechanism to obtain the
optimal scheduling strategy for arriving tasks. Specifically, it jointly considers
CPU, memory, and bandwidth resource limits, load balance requirements of all
nodes, and different processing capacities of heterogeneous nodes in the edge
computing layer. In addition, it jointly considers the maximum amount of
energy, maximum number of available servers, and task queue stability of servers
in the CDC layer. By jointly considering the above-mentioned factors, this
chapter proposes a profit-maximized collaborative computation offloading and
resource allocation algorithm. The system profit is maximized while response
time limits of tasks are strictly met.

Extensive experiments with real-life data, e.g., prices of power grid, solar

irradiance, wind speed, and tasks in Google cluster, are conducted to evaluate

STSRO, GATS, STTS, TTS, PQTS, SADE, IMEAD, FSTS and SMBO algorithms.

Experimental results demonstrate that they outperform several typical benchmark

scheduling algorithms.

The rest of this dissertation is organized as follows. Chapter 2 discusses the

related studies, and the contributions of this dissertation are comparatively pointed

out. Chapters 3–6 show the background work of this dissertation. Chapters 7–
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11 present the major contributions of this dissertation. Chapter 12 concludes this

dissertation, and points out the future work.
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CHAPTER 2

RELATED WORK

This chapter discusses related studies, and the contributions of this dissertation are

comparatively pointed out.

2.1 Task Scheduling

A growing number of studies focus on the task scheduling problem in CDCs in

recent years [61]–[73]. Shah-Mansour et al. [61] formulate a utility maximization

problem that considers delay, prices of cloud services and the energy consumption,

and produces the optimal scheduling for mobile users’ tasks. In addition, the optimal

pricing strategy is determined for the cloud provider. It effectively balances the

tradeoff between delay and the energy consumption. On the contrary, the scheduling

method in this study is coarse-grained because it cannot determine the optimal setting

of each server in each CDC. Maqsood et al. [62] present multiple algorithms to

jointly realize data allocation and task scheduling in a unified way. Besides, a feasible

system model for Network-on-Chip architectures is proposed to effectively capture the

energy consumption by considering caches, processing cores, and the Network-on-Chip

subsystem. Nevertheless, it only considers the optimization of energy consumption in

data centers. Nir et al. [63] propose an energy and cost-aware task scheduling model

that allows mobile devices to schedule some tasks to cloud resources. Its optimal

solution can significantly reduce the total cost of the cloud provider but it does not

consider the energy produced by renewable sources. Chen and Chang [64] propose

a cloud framework to realize user-oriented energy optimization for retail electricity

providers. A linear programming model is designed to minimize the multiperiod

global cost and stabilize the renewable energy consumption for enhanced integration.
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However, it does not consider the spatial diversity of renewable energy sources during

delay bound constraints of tasks of multiple applications.

Canali et al. [65] propose an allocation model for virtual elements and aim to

minimize the energy consumption of a software-defined cloud data center. Besides,

the energy consumption is modeled by incorporating virtual elements’ computing

costs on physical servers, migrating costs across servers, and data transferring costs

between virtual elements. On the other hand, the proposed method can be only

applied to a single data center. Chen et al. [66] present a streaming workflow

scheduling algorithm that considers characteristics of streaming workflow and the

price diversity of geo-distributed data centers. It aims to minimize the total cost

for streaming big data processing provided that the latency requirement is strictly

met. Nevertheless, it ignores the spatial diversity of ISP bandwidth prices, power

grid prices, and availability of renewable green energy. The work [67] designs a

novel task scheduling algorithm to reduce network cost and completion time of

big data processing tasks across geo-distributed data centers. It is implemented in

Apache Spark, and both indices are reduced by a substantial margin. The work [68]

investigates a joint energy management problem for electric vehicles of employees

and geo-distributed data centers. A total cost minimization problem of a data

center provider is formulated as a large-scale convex optimization one, and solved

by a distributed algorithm. The data center workload scheduling and electric vehicle

charging under the specified power constraints are jointly realized.

In addition, Wu et al. [69] design a method to schedule multicast-oriented

tasks in data center networks with different topologies. Lyapunov optimization is

adopted to propose a distributed online method to maximize the time-average profit

with local information. In addition, a destination grouping mechanism is designed to

solve the scalability problem and significantly reduce the number of queues in data

center networks. Ismail and Materwala [70] classify and evaluate 13 task scheduling
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algorithms with the unified environment and setup to achieve their objective

comparison in terms of the energy consumed by the cloud infrastructure. The

workload is carefully chosen to typify cloud IoT applications, e.g., wide area power

grid measurement systems, connected vehicles, and smart meter infrastructures.

Varshney and Simmhan [71] design AutoBoT, which is a collection of task scheduling

methods for bag of tasks with strict deadlines on virtual machines, to reduce the

monetary cost. It uniquely decreases costs by using preemptible spot-priced virtual

machines, which are cheaper but unreliable and time-variant. Timely completion is

guaranteed by considering many factors including checkpointing, migration, pricing,

and the number of virtual machines. Kumar et al. [72] present a green energy-aware

task scheduling and classification method by using the container technology for the

sustainability of data centers. It transfers arriving tasks from multiple devices to the

data center with enough amount of green available energy. Then, a green energy-based

container consolidation and host specification method is further proposed. Hsieh et al.

[73] design a job allocation scheduler to balance utilization of resources. It classifies

different jobs and assigns them to CPU-bound and I/O-bound queues. It increases

the actual performance of Hadoop and the usage of nodes in heterogeneous computing

infrastructure. The inaccurate slot settings are detected by adding two parameters,

and a dynamic allocation method is further designed for jobs.

Different from above studies, Chapter 3 in this dissertation aims to minimize

the total cost of a CDC provider by jointly exploiting the spatial diversity of ISP

bandwidth prices, power grid prices, and availability of renewable green energy while

strictly meeting delay bound constraints of tasks of all applications. It jointly

determines the optimal allocation of all tasks among multiple available ISPs, and

specifies the optimal setting of each server in each CDC in each time slot. Chapter

9 in this dissertation designs an IMEAD algorithm to achieve the energy cost

minimization and the revenue maximization of CDCs. All tasks of three applications
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are cost-effectively and smartly scheduled to execute in different CDCs within their

delay bound limits.

2.2 Green Data Center

Recently, an increasing number of existing studies have been proposed to adopt green

renewable energy in large-scale data centers in recent years [74]–[86]. Nguyen and

Cheriet [74] design an environment-aware method for virtual slices to cope with the

intermittence of renewable energy. A virtual slice allocation problem that considers

renewable energy availability, VM locations, and network capacity is designed and

solved to effectively reduce the environmental footprint. Qiu et al. [75] propose

a genetic-based algorithm for chip multiprocessors with phase-change memory in

green clouds. It realizes the tradeoff of the memory usage efficiency and the total

execution time by scheduling tasks to cores. However, it aims to reduce the energy

consumption by only optimizing the memory usage, and it ignores the adoption of

green energy. Deng et al. [76] propose an online algorithm to achieve the eco-aware

energy optimization and load scheduling for distributed data centers. A stochastic

optimization problem is obtained and tackled with the Lyapunov optimization theory.

Then, an online control algorithm is proposed to achieve the minimization of the

eco-aware energy cost of data centers while meeting tasks’ performance requirement.

It focuses on the long-term time average of the eco-aware power cost. The work

[77] proposes a green energy management method that explicitly and implicitly

integrates renewable energy in clouds. The concept of green energy virtualization

is introduced to address the uncertainty issue in availability of green energy. Two

threshold parameters are introduced in SLAs and a greenSLA algorithm is proposed

to establish green SLA without causing higher cost.

The work [78] proposes two energy-efficient and computation-efficient embed-

ding algorithms to embed a virtual data center in a green and robust way. Different
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network topologies and scales are adopted to evaluate the proposed algorithms with

respect to the acceptance ratio, long-term revenue, and energy consumption of a

cloud service provider. Khosravi et al. [79] design the total energy cost as a relation

between the energy consumption and the overhead energy. Then, several efficient

virtual machine placement methods are proposed to evaluate their actual performance

and determine the parameters that have the greatest impact on the brown and green

energy consumption, cost and carbon footprint. Tripathi et al. [80] investigate several

key parameters about carbon footprint and energy cost, and propose multiple virtual

machine placement methods to increase the usage of renewable energy. Total energy

cost is formulated as a function of the energy required by servers and overhead

energy. It helps providers decrease the reliance on the power grid energy that is

typically produced from the burning of fossil fuels. In addition, Anastasopoulos

et al. [81] develop a service provisioning method according to stochastic linear

programming. They adopt dimensionality reduction methods including Lagrangian

relaxation and sample average approximation to tackle the computational complexity.

The provisioning method realizes fast convergence and decreases the CO2 emissions

by about 60% for different tasks.

In addition, Cheng et al. [82] propose a dynamic power-sensitive resource

provisioning method for heterogeneous workloads in data centers totally powered

by green energy. It aims to maximize the system throughput and reduce the system

energy consumption in terms of renewable power supply. It is realized to efficiently

search the optimal resource allocation strategy with a simulated annealing algorithm

combined with fuzzy performance modeling. Rahmani et al. [83] propose a model to

obtain high-quality configurations for microgrid in enterprise-scale green data centers.

An optimization model is presented for considering greenhouse gas emissions and

costs of all components of a microgrid system. The costs of capital, operational, and

degradation are obtained according to the 20-year running of the system. A real data
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center with a specified load demand is used to demonstrate that the model produces

high-quality microgrid configurations for tradeoffs of sustainability and cost. Wu

et al. [84] design two solution algorithms by using multi-objective optimization, to

realize a good tradeoff between cost and brown energy consumption in cloud networks

under both data center placement and data center addition scenarios. They give via

simulations how to select the optimal number of data centers and their sites over two

cases based on USNET and NSFNET topologies. Yang et al. [85] design a green cloud

data center framework that uses the artificial intelligence techniques. A scheduling

control engine and an smart refrigerating one are put forward to decrease energy

consumption. A green cloud data center platform is built to achieve the scheduling

control engine and evaluate the framework feasibility. Experimental results show that

it achieves a high-energy-efficiency and low-power-consumption data center operation.

Zhang et al. [86] consider a green energy-aware inter-data-center virtual machine

migration problem in elastic infrastructure, and formulate it as an integer linear

program. It aims to minimize the brown energy cost consumed by data centers.

CVX and Gurobi are adopted to address the challenging problem for small-scale

networks, and several heuristic algorithms are proposed to obtain the optimal solution

of large-scale networks.

Different from above studies, Chapter 3 in this dissertation jointly considers

the spatial diversity of CDCs’ many factors including power grid prices, wind speed,

solar irradiance, on-site air density, the maximum available energy and the number of

servers in each CDC. Then, it smartly schedules all tasks of each application to CDCs

located in multiple geographical locations within their delay bound constraints. In

addition, above studies ignore the temporal variations of green energy within tasks’

delay bound constraints. Chapter 6 in this dissertation considers applications whose

delay bound constraints are relatively long, e.g., 15–30 minutes, and aims to achieve

the profit maximization or energy cost minimization of a CDC provider. Chapter
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9 in this dissertation jointly optimizes providers’ revenue and their energy cost. It

formulates a constrained bi-objective optimization problem, and solves it by IMEAD

for the optimal tradeoff between these two objectives. It jointly takes advantages of

the spatial differences in CDCs provided that delay constraints of tasks of applications

are met.

2.3 Profit Maximization

The cloud computing community has proposed several methods to achieve the profit

maximization for a CDC provider [87]–[97]. Mei et al. [87] design a cloud broker and

specify prices of its virtual machines while maximizing its profit and reducing costs

for users. They formulate the virtual machine pricing and multiserver configuration

as a constrained profit maximization problem. A heuristic method based on bisection

search and partial derivative is proposed to solve it. The close-to-optimal solutions are

obtained to greatly reduce the user cost. Ma et al. [88] investigate dynamic admissions

of delay-sensitive tasks with function chain constraints in a distributed cloud, and aim

to maximize the profit of a service provider. A dynamic profit maximization problem

is formulated and an online heuristic algorithm is designed to solve it. In addition,

the offline version of this problem is formulated as NP-hard and a solution of integer

linear programming is given. Zhang et al. [89] propose polynomial time and truthful

auctions to maximize social welfare and/or the profit of a cloud provider. The Fenchel

duality is adopted in their primal-dual framework and gives more structures for convex

optimization problems than Lagrangian duality. Based on it, a framework of online

primal-dual optimization for allocation of virtual machines is proposed to maximize

the social welfare. Wan et al. [90] formulate a problem of dynamic server pricing

in which a data center provider specifies prices of servers according to the resource

demand. Then, a reactive pricing algorithm is proposed to dynamically adjust prices

of servers in response to changes of states. The close-to-optimal profit is achieved by
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considering green energy, battery levels and spot power prices. Theoretical analysis

is provided and real-world trace-driven simulations prove it is robust compared with

exogenous environment variations.

In addition, Wang et al. [91] investigate an interaction system of a smart power

grid with a cloud computing system and distributed photovoltaic power generation.

They jointly optimize the dispatch and routing of service requests in the cloud with the

power flow analysis of power grid. The near-optimal strategies of two players, i.e., a

power grid controller and a cloud controller, in Stackelberg game are designed by using

simulated annealing and convex optimization techniques. Ren et al. [92] consider a

wireless cloud system where a service provider manages a data center and provides

its cloud services to users at dynamic prices. Then, scheduling of delay-tolerant

batch services and pricing strategies are jointly optimized for the long-term profit

maximization of the service provider. A provably-efficient algorithm is proposed to

realize dynamic scheduling and pricing in an arbitrarily random environment. A

close-to-optimal average profit is produced while the length of a job queue is bounded.

Patel et al. [93] present a generalized framework for network flow-based resource

allocation that jointly minimizes energy and maximizes profit. This framework models

the profit maximization under three different SLAs of clients. Based on it, optimal

resource allocations are derived by considering resource heterogeneity and varying

server utilization while SLAs are met. Hammoud et al. [94] propose a maximin game

theoretical model to assist a broker that is responsible for managing and creating cloud

federations. The obtained solution achieves the detection maximization of malicious

providers, and improves the profit of cloud providers and quality of service of the

cloud federations.

Besides, Deng et al. [95] design a system model for a cloud provider to

dynamically increase the scale of distributed data centers. It can deploy more VMs

of cloud users and effectively decrease the bandwidth cost. An optimization problem
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is formulated for the cloud provider to achieve the profit maximization, and further

solved in different conditions. Their simulation results prove that the proposed model

and algorithms effectively increase both the total revenue and users’ satisfaction, and

decrease requests’ average latency. Wu et al. [96] investigate the problem of cloud

service continuity and they consider a profit of maintaining the continuity of a service.

An optimization problem is first formulated to achieve the total profit maximization

subject to energy constraints. To solve it, two approximation algorithms are designed

for two practical cases including one with enough servers and another with limited

servers. The two algorithms are further combined to realize both good average

performance and worst-case performance. Benbrahim et al. [97] maximize net profits

and minimize penalties of cloud services with placement of VMs. The placement

optimization of virtual machines is formulated as a mixed integer non-linear program,

which is NP-hard, and a heuristic method is proposed to optimize their net profits

and overall penalties.

Different from these studies, Chapter 9 in this dissertation aims to simultane-

ously maximize the revenue of CDC providers, and minimize its energy cost. The

revenue and cost tradeoff solution aims to achieve a high-quality balance between the

revenue of CDC providers and its cost. A novel bi-objective optimization algorithm

named IMEAD is proposed to realize it, and intelligently schedules all tasks to

different CDCs within their delay bound limits.

2.4 Hybrid Cloud

A growing number of emerging studies investigate task scheduling in a hybrid cloud in

recent years [98]–[109]. Mao et al. [98] propose an algorithm to schedule MapReduce

tasks, and meet the deadline and cost constraints in a hybrid cloud. It maximizes

the resource efficiency of a private cloud and minimizes the execution cost of public

clouds such that job execution time is within its constraint. Zuo et al. [99] present
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a resource allocation method where some tasks are outsourced to public clouds when

resources of an IaaS provider are not sufficient to meet tasks’ performance demand.

The profit maximization problem of the IaaS provider is formulated as an integer

program and solved by a self-adaptive method. Different from above studies, this

dissertation work aims to maximize profit by investigating the temporal variations

of many factors including VM prices of public clouds and the revenue of the hybrid

CDC. Vasile et al. [100] propose a resource-aware scheduling approach for workflows

and batch jobs. Resources are divided into groups with hierarchical clustering. A

scheduling algorithm is proposed for each group to dynamically provision resources

for heterogeneous computing-intensive and I/O-intensive applications. Genez et al.

[101] aim to evaluate the effect of imprecise bandwidth information in inter-cloud

links on the scheduling of workflows. They propose a method to tackle imprecise

bandwidth information and its impact on the estimates of cost and makespan. The

proposed method chooses a deflating factor on the available bandwidth as the input to

the workflow scheduler. Simulation results demonstrate that it increases the number

of solutions whose makespans are shorter than the specified deadline, and decreases

the underestimations of cost and makespan.

In addition, Zhu et al. [102] consider a workflow scheduling problem in a hybrid

cloud system where tasks are stochastic, compute-intensive, dependent, deadline-

constrained and scheduled on distributed and elastic cloud resources. They propose an

iterated heuristic framework to execute jobs, and explore three optimization objectives

including usage time, utilization and number of VMs. Then, they propose two job

collecting mechanisms and develop two timetabling approaches. Prasad et al. [103]

design an algorithm to solve the procurement problem of multiple resources in hybrid

clouds. Users in cloud submit their needs, and vendors send bids including QoS, price

and their resource sets. The algorithm is scalable given that there are a great number

of more continually increasing cloud vendors. Hwang et al. [104] propose a model
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to solve the migration challenges that convert one resource into the same or another

one in hybrid clouds. The problem is formulated as a constraint satisfaction one.

The server components are iteratively decomposed and servers are consolidated. A

mapping algorithm is proposed to match computing resources with network ones for

ensuring network affinity. Lu et al. [105] aim to maximize an profit of a multimedia

cloud service provider by scheduling multimedia services to distributed users in a

hybrid cloud. A service provisioning model is designed to provision resources in the

hybrid cloud. A Lyapunov optimization method is adopted to maximize the profit

of the cloud provider, and an online algorithm is proposed to provision the hybrid

cloud in a distributed way. An ε-persistent method is applied to bound the worst-case

latency of provisioned requests.

Besides, Charrada et al. [106] investigate the deployment of applications by

considering the placement selection of their components between a private cloud and

public clouds. An efficient algorithm is proposed to deploy service-based applications

that can be architecture-based and behavior-based compositions of services in a

hybrid cloud. Qiu et al. [107] employ a Lyapunov optimization method, and a

dynamic control algorithm is proposed to smartly place contents and schedule requests

in a hybrid cloud distributed in multiple data centers. It minimizes the overall

operational cost while meeting request response time limits. Rigorous analysis is

provided to prove that it well bounds response times within a specified QoS target,

and guarantees that the cost is also bounded within a constant gap. Li et al [108]

aim to optimize the operational cost for a hybrid cloud provider by theoretically

analyzing the optimization problem by using a framework of Lyapunov optimization.

A dynamic and online provisioning algorithm is proposed, and it tackles real-life

challenges without priori renting price information of public clouds and the probability

distribution of requests. A set of real-life data is used to prove that it effectively

decreases the operational cost. Zhang et al. [109] design a two-stage task scheduling
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framework and propose efficient algorithms to enhance the service quality of clouds.

According to the historical information of task scheduling, an optimal number of

VMs with different resource attributes are created in advance. Then, according to

the complexity of tasks, the optimal set of VMs are selected from the created ones to

execute tasks. Based on the two-stage strategy, efficient task scheduling algorithms

are further presented.

Different from above studies, Chapter 6 in this dissertation specifies the number

of tasks executed in public clouds and task service rates of the CDC within tasks’

delay bound constraints. Then, all tasks are smartly executed in the CDC and public

clouds while tasks’ delay bound constraints are strictly met.

2.5 Application Behavior Analysis

Recently, an increasing number of studies analyze the application behavior analysis

and model the performance of applications in CDCs to achieve the QoS modeling

[23, 24, 76], [110]–[125]. The work [23] adopts a G/D/1 queue to characterize the

distribution of workload among geographically distributed green data centers. Then,

an optimization problem is formulated as a convex optimization one, and solved to

maximize the profit of data center providers by optimally distributing workload among

multiple data centers. The work [24] proposes a convex optimization-based strategy

to maximize the profit of green data centers. It uses a G/D/1 queueing model to

calculate the probability that the waiting time of a task is larger than its specified

deadline. It considers SLAs between users and data centers, availability of renewable

energy generation at each data center and stochastic characteristics of workload. In

[110], servers in each rack are modeled as anM/M/m queuing system and their actual

average latency is calculated accordingly. Then, an adaptive power control algorithm

is proposed to investigate the correlation between computer room air conditioners

and the power consumption of servers. The work [111] adopts an M/M/n queuing
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model to calculate the average delay of each active server for data centers. Then, a

mixed-integer nonlinear programming problem is solved to realize the optimal energy

cost management and load balancing for data centers while meeting users’ SLAs. In

the work in [112], the average response time at each server in a cloud is calculated

according to an M/M/c queuing system, and then the average response time of all

users is obtained. A profit optimization problem is next formulated accordingly for

the cloud provider.

In addition, Cao et al. [113] regard a multiserver system as an M/M/m

queueing model based on which an optimal multiserver configuration problem

is formulated and solved analytically to realize profit maximization in a cloud

environment. They consider two power consumption and server speed models, and

derive a probability density function of waiting time for each new task. Bi et al. [114]

establish a hybrid queueing model based on the combination ofM/M/1 andM/M/m

queueing models. Then, a non-linear constrained optimization problem is formulated,

and solved with a hybrid meta-heuristic algorithm to maximize the profit of cloud

providers provided that clients’ performance requirements are met. Furthermore, the

number of VMs for each tier of multi-tier web applications is determined to improve

the performance of applications and reduce the energy cost of resources. Mei et

al. [115] treat a service system as an M/M/m queueing model based on which

performance indicators that affect the profit of the proposed double resource renting

scheme are designed and analyzed. The double renting scheme can greatly reduce the

waste of resources while meeting QoS of all tasks in clouds. Their results demonstrate

that it guarantees the service quality of all tasks, and achieves more profit.

Nevertheless, the above studies can only ensure that the average delay of all

arriving tasks is within their delay bound constraints. Yet the long tail effect exists in

the delay distribution of arriving tasks in realistic data centers [116]. It indicates that

the actual delay of some arriving tasks might not meet their delay bound constraints.
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Chapter 5 in this dissertation distinguishes from these studies in that STTS-scheduled

tasks strictly meet delay bound constraints of tasks. In addition, these above studies

handle QoS of tasks by using constraints in their formulated optimization problems.

However, it is more advantageous to consider the QoS optimization as an objective

than a constraint as this can give more choices to decision makers. Hence, different

from above-mentioned studies, Chapter 7 in this dissertation aims to jointly maximize

the profit of CDC providers, and QoS of tasks of all applications.

In addition, Bi et al. [117] compute task arriving rates according to internal

and external workload for multiple resource-intensive applications. They develop a

probabilistic queueing model to cope with non-steady states in a smart controller.

Then, computing and storage resource consumption in a virtualized CDC is mini-

mized. El Kafhali and Salah [118] propose a stochastic model according to queuing

theory to analyze the performance. Data center platforms are modeled as an open

queuing system for their QoS analysis. Then, the number of needed instances of

VMs is estimated and used to meet specified QoS requirements. Satpathy et al.

[119] propose a queueing model to schedule and manage a set of VM requests. This

queueing model makes it easy to realize, analyze and validate complex systems like

clouds. Its queueing structure is designed as a single-queue-single-service facility by

using an M/M/1 queue. VM requests are executed with a First-Come-First-Serve

(FCFS) manner and forwarded to data centers for placement. Then, a multi-objective

VM placement method is designed to decrease the resource and power consumption

at data centers. Ponraj [120] adds tasks into a priority-based probability queuing

model, and schedules them into a suitable VM. Specifically, anM/G/1 queuing model

is adopted to derive the waiting time of tasks. Then, a VM placement algorithm is

proposed to reduce completion time and processing cost by considering resources,

QoS metrics and VM status. It provides a solution to minimize the completion time

of overall jobs in both dynamic and static workloads.
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Besides, Darzanos et al. [121] model virtualized infrastructure of each cloud

service provider (CSP) as an M /M /1 queueing system. Based on it, revenue

and cost functions for each CSP are derived. Then, task forwarding-based and

capacity sharing-based federation methods are designed, and the joint business and

the reward-driven modes are proposed to benefit both CSPs and customers. Li et al.

[122] propose a parallel virtual queue model to buffer tasks of the same type into a

separate queue. Three parallel policies including buffering, offloading and resource

allocation are designed to improve task completion ratio, resource allocation balance

and throughput. Fang et al. [123] treat a public CSP as an M /M /1 queueing system

and study the pricing effect of CSP on the equilibrium behaviors of independent

cloud users in a monopoly cloud market. Two pricing mechanisms are proposed to

maximize both social welfare and revenue. Besides, a cloud broker is also modeled as

an M /M /l queueing system with infinite capacity, and a price-based resource access

control method is designed. They also analyze how their pricing mechanism affects

equilibrium behaviors of cloud users, and the social-optimal and revenue-optimal

pricing strategies in view of this CSP. Santhi et al. [124] adopt two connected queues

including M [X]/M /1 and M /M /1 models for a cloud architecture in a healthcare

system. Then, the FCFS discipline is adopted, and the waiting time and the number

of patients of different classes in both queues are obtained. Fang et al. [125] analyze

the performance of each rack and servers on it by modeling it as an M /M /n queueing

system. Then, a constrained nonlinear optimal control problem is formulated to

minimize energy consumed by a cloud system while QoS and thermal constraints of

each device are met. The simulation results demonstrate that it achieves significant

energy saving while guaranteeing throughput of a data center.

Unlike these methods, Chapters 8 and 10 in this dissertation adopt the most

general model, i.e., a G/G/1 queue, to analyze the performance of each switched-on

server. In the model, both execution time and interarrival time of each task follow

45



arbitrary probability distributions. Different from them, Chapter 8 formulates a

bi-objective constrained optimization problem and solves it by the proposed SADE

to obtain a good tradeoff between energy cost minimization and QoS maximization.

Based on the G/G/1 queue model, FSTS is proposed in Chapter 10 to specify a

running speed of each server and the number of switched-on servers in each data

center at different locations. In addition, these existing studies design performance

needs as constraints in their optimization problems. Therefore, performance or QoS

needs are only satisfied to the minimum extent in their methods.

2.6 Energy Management in CDCs

Recently, more and more studies are conducted to realize efficient energy management

in CDCs [126]–[141]. Yu et al. [126] investigate an energy management problem for

multiple microgrids of data centers. They aim to achieve the long-term operational

cost minimization by considering uncertainties in prices of power grid, renewable

energy and arriving workloads. They design a real-time and distributed algorithm to

solve their proposed problem. Fang et al. [127] propose a two-time-scale approach

to minimize the energy consumed by high-performance-computing CDCs through

dynamic processor frequency scaling, cooling supplement and task assignment. Then,

the energy minimization problem is solved in a two-time-scale manner. The processor

frequency and task assignment are optimized in a steady thermal environment,

and the cooling supplement is optimized in a dynamic one. Rong et al. [128]

propose a comprehensive set of mechanisms to minimize the environmental impact

and maximize the efficiency of data centers by considering cost reduction, energy

consumption and environment protection. They also show the future energy-saving

trends for data centers. Vasudevan et al. [129] formulate the assignment of

applications to VMs as a problem of profile-driven optimization under different

constraints, and solve it by a genetic algorithm. They improve a penalty-based genetic
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algorithm by applying the longest cloudlet, the fastest processor and a procedure for

repairing infeasible solutions. Finally, they develop a scalable method for application

assignment to realize the tradeoff between resource utilization and energy efficiency.

In addition, Hu et al. [130] consider several geo-distributed data centers that

are powered by both energy storage and fuel cells. An online algorithm is designed to

minimize the gap between energy demand and supply by joint workload scheduling

and energy management. The output of fuel cells is managed and workloads are

migrated among data centers. Kaur et al. [131] apply software defined data centers

to decrease energy utilization levels. A multiobjective optimization problem is

formulated to derive the optimal resource allocation for applications, and a suboptimal

method based on the first fit decreasing algorithm is proposed to reduce energy

consumption with negligible violations of QoS. Hogade et al. [134] give several

workload management methods to minimize the energy cost for geo-distributed data

centers. They consider many factors including co-location interference, data center

cooling power, time-of-use electricity pricing, net metering, renewable energy and

distribution models of peak demand pricing. Canali et al. [135] propose a method to

minimize the energy consumption in a software-defined CDC by efficiently allocating

virtual elements. The energy consumption is modeled by investigating computing,

migrating and data transferring costs. Three different strategies are proposed to save

energy without a significant growth in solution complexity.

Besides, Yadav et al. [136] propose three adaptive energy-aware algorithms

based on robust regression models to minimize SLA violations and energy con-

sumption. Experiments based on real workload traces prove that these algorithms

effectively decrease energy consumption while keeping the specified performance levels

in a CDC. Hu et al. [137] aim to mitigate the limited load by adjusting both energy

demand and supply with joint energy management and workload scheduling. They

investigate multiple distributed data centers that are powered by both energy storage

47



and fuel cells. An online algorithm is proposed to the gap minimization between

energy demand and supply by simultaneously migrating workloads and optimizing

fuel cells output among data centers. Al-Dulaimi et al. [138] develop cloud radio

access network solutions and algorithms for computing the optimal network mapping

solution and backup topology while interfacing requests from inactive or low-flow

femtocells are denied. Then, a graph-coloring method is proposed to label new

fronthaul femtocell clusters by using power as a performance metric. Simulation

results are given to show the efficient performance of obtained solutions in large-scale

networks. Chen et al. [141] formulate the resource allocation as a robust optimization

problem with the objective of minimizing the worst-case net cost. It is further

converted into a convex program, which is solved in a distributed manner with a

dual decomposition method for constructing sustainable and energy-efficient data

centers. It jointly exploits the spatio-temporal variations of workload demand, local

temperature, energy prices and the availability of renewable power. It performs better

than several state-of-the-art allocation methods with extensive numerical experiments

according to real-life data.

Different from the above-mentioned studies, Chapter 8 in this dissertation aims

to jointly minimize both the energy cost of a distributed data center provider, and

the task response time of all tasks. It intelligently and jointly splits all arriving

tasks among data centers, and specifies the number of switched-on servers and the

running speed of each server in each data center. In addition, different from these

studies, Chapter 10 in this dissertation aims to minimize the energy cost of a data

center provider by investigating the spatial variations of several factors, which include

CPU utilization of servers, running speed limit of each server, peak and idle power of

each server, power usage effectiveness, maximum available energy and servers, price

of power grid, and task queue stability in each CDC. Then, it proposes FSTS to

smartly consume power grid, wind and solar energy by optimally allocating tasks of
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heterogeneous applications among multiple data centers, and specifying the running

speed of each server and the number of switched-on servers in each CDC provided

that response time limits of tasks of all applications are strictly met.

2.7 Resource Optimization Methods in Clouds

In recent years, resource optimization methods have attracted a growing amount of at-

tention [142]–[153]. Lyu et al. [142] develop a semidistributed and heuristic offloading

decision algorithm to jointly optimize the offloading, computation and communication

resources for system utility maximization. The formulated problem is reduced to a

submodular maximization one, and further decomposed into two subproblems. The

first one is tackled with convex and quasiconvex optimization, and the second one is

tackled with submodular set function optimization. Li et al. [143] address the problem

of virtual network function placement by investigating service function chain requests

of users. It is formulated as an integer linear programming problem for minimizing

the number of physical machines, and solved by a two-stage heuristic method, which

includes a correlation-based greedy algorithm and an adjustment one for requests of

virtual network functions. Li et al. [144] jointly optimize resource optimization and

congestion control to realize the energy efficiency-guaranteed tradeoff between delay

performance and throughput in heterogeneous cloud radio access networks. Their

formulated stochastic optimization problem is transformed into three subproblems

solved in parallel. Luna et al. [145] design a decentralized probabilistic method to

optimize performance of cloud services. They consider an Infrastructure-as-a-service

framework in which users can configure virtual resources dynamically to meet specific

computational needs. It supports performance metrics of the cloud and security

metrics by using cryptographic algorithms for data storage.

In addition, Mireslami et al. [146] propose a runtime-friendly and cost-effective

algorithm to minimize the cost of deployment while guaranteeing QoS performance

49



needs. It provides an optimal option, from users’ point of view, to deploy Web

applications in a cloud environment. A multi-objective optimization algorithm is

proposed to simultaneously minimize cost and maximize QoS performance. Zhou

et al. [147] develop a declarative optimization engine to provision resources

for scientific workflows in distributed clouds. It allows users to describe their

workflow optimization objectives and constraints of specific problems. A probabilistic

optimization method is proposed to evaluate their formulated problems to tackle the

cloud dynamics. The power of GPUs is leveraged to accelerate the solution search in

a timely and fast way. Chou et al. [148] propose a dynamic power-saving resource

allocation method to improve energy efficiency by using a particle swarm optimization

algorithm. It investigates the energy consumed by physical and virtual machines, and

improves the energy efficiency ratio of an air conditioner. The least squares regression

mechanism is adopted to predict resource utilization for provisioning VMs. Domanal

et al. [149] propose a hybrid bio-inspired algorithm for resource management and task

scheduling in a cloud environment. It efficiently schedules tasks to virtual machines

with an improved particle swarm optimization algorithm. Then, demanded resources

including CPU and memory are allocated and managed accordingly for improving

reliability and decreasing the average response time.

Besides, Alrawahi et al. [150] investigate the challenging QoS satisfaction when

resources in cloud of things are traded and resource allocation is performed. A

QoS model is designed to address the problem by optimizing five QoS objectives

including energy consumption, resource cost, fault tolerance, response time and

resource coverage. Jiao et al. [151] consider a dynamic resource allocation problem for

service provisioning in distributed multi-tier clouds, and develop an online algorithm

that constructs a series of regularized subproblems, which are solved at corresponding

time slots. Two predictive control algorithms are designed to inherit theoretical

assurance of the online algorithm, and improve practical performance. Li et al.
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[152] formulate the resource reservation and allocation with uncertain needs of mobile

users as a robust optimization model. Then, a robust joint resource reservation and

allocation algorithm in mobile cloud computing is designed to achieve the optimal

provisioning of radio resources and VM resources. Qiu et al. [153] design a correlated

modeling method by using a Bayesian method, Laplace-Stieltjes transform, and

semi-Markov models to analyze reliability performance and energy correlations for

cloud applications. A recursive method is presented by using a check-pointing fault

recovery mechanism, and can jointly optimize energy consumption and service time

for running a cloud application. Finally, a derivation method is presented to specify

Pareto optimal solutions, which are further evaluated with illustrative examples.

Different from these studies, Chapter 10 in this dissertation formulates an

energy minimization problem as a single-objective constrained optimization one, and

solves it with a newly proposed Simulated-annealing-based Bat Algorithm (SBA).

SBA combines the Metropolis acceptance criterion of SA into BA, and performs the

SA-based selection and the disruptive selection to ensure its high convergence speed

and solution accuracy.

2.8 Computation Offloading in Edge Computing

The computation offloading is of great importance in edge computing, and has been

attracting a growing amount of attention in recent years [57], [154]–[165]. Zhao

et al. [57] propose a collaborative computation offloading method that offloads

application services to automobiles in vehicular networks, and optimizes resource

allocation for MEC and cloud computing. A distributed algorithm for computation

offloading and resource allocation is designed to obtain the optimal solution. The

computation time and system utility for computation-intensive tasks are improved

effectively. Liu et al. [154] design a price-based distributed approach to schedule

users’ offloaded computation tasks. They formulate a Stackelberg game to analyze the
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interaction between users and the edge cloud. The prices are set by the edge cloud to

achieve revenue maximization by considering its finite computation capacity. Then,

each user separately makes its own offloading decision to realize the minimization

of latency and payment. Based on the network information of the edge cloud,

differentiated and uniform pricing algorithms are developed and implemented in

a distributed way. Wei et al. [155] model computation offloading as a Markov

decision process (MDP), and reinforcement learning algorithms are used to obtain

the optimal offloading decision. A polynomial value function approximation approach

is developed to accelerate the learning process. Then, an after-state reinforcement

learning mechanism for MDP is designed to obtain the optimal offloading strategy for

real MEC systems. Guo and Liu [157] adopt hybrid fiber-wireless (FiWi) networks

to support the coexistence of multiaccess edge computing and a centralized cloud.

An architecture is presented to adopt the FiWi access networks. The problem of

collaborative computation offloading among cloud and MEC is investigated. Then,

approximation game-theoretic collaborative computation offloading strategies are

proposed. Their strategies achieve higher performance and availability than existing

MEC offloading methods.

In addition, Ning et al. [158] formulate a single user computation offloading

problem with unlimited MEC resources, and it is solved by a branch and bound

algorithm. Then, they formulate a multiuser computation offloading problem as a

mixed integer linear programming one by investigating resource competition among

mobile users. A heuristic iterative resource allocation algorithm for MEC is designed

to dynamically obtain the offloading strategy. Bi and Zhang [159] aim to maximize

the weighted sum computation rate of all wireless devices by jointly optimizing the

computing mode selection and the allocation of system transmission time. Then, a

joint optimization approach based on the alternating direction method of multipliers

decomposition mechanism is proposed and it achieves slower growth of computational
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complexity as the size of networks increases. Lei et al. [160] design a joint

multiuser scheduling and computation offloading algorithm in an edge computing

system to minimize the average weighted sum of power consumption and delay

under stochastic traffic arrival. A dynamic optimization problem is formulated

into an infinite-horizon and continuous-time MDP model. An approximate dynamic

programming method is proposed to deal with the problem of curse of dimensionality.

Yu et al. [161] investigate a scenario where mobile users offload their computation

tasks to the network edge, and share the computed results among them. They design

a fine-grained optimal collaborative offloading strategy with caching-enhancements

to achieve the execution delay minimization at the mobile terminal side. An optimal

offloading with a caching enhancement scheme is proposed for femto-cloud and MEC

scenarios, respectively.

Besides, Chen et al. [162] design an online peer offloading framework for

small-cell base stations (SBSs) by adopting a Lyapunov method. It aims to maximize

the long-term performance of system while keeping energy consumption below a

long-term constraint of each SBS. They formulate a peer offloading game among SBSs

and analyze its efficiency loss and equilibrium. The performance of edge computing

is dramatically improved with decentralized peer offloading among SBSs. Dinh et al.

[163] investigate a multi-edge-node multi-user computation offloading problem, which

is formulated as a non-cooperative exact potential game. In addition, a model-free

reinforcement learning offloading method for unknown channel state information is

proposed to help mobile users learn their long-term offloading policies to maximize

their long-term payoffs. Hong et al. [164] investigate communication-routing and

computation-offloading problems to minimize energy consumption and computation

time of each task. The joint problem is formulated as a potential game where

devices in industrial IoTs specify their computation-offloading policies. Then, a

cooperative-messaging multi-hop method is proposed and two QoS-aware distributed
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algorithms are developed to realize the Nash equilibrium. Their simulation results

prove that the proposed algorithms provide high performance gain for IoTs in different

scenarios and high scalability when the device size grows. Wei et al. [165] consider a

multi-user computation offloading problem for mobile cloud computing in a dynamic

environment. Mobile users are inactive or active dynamically, and their wireless

channels to offload computation change randomly. An offloading decision process is

formulated as a stochastic game for mobile users in a dynamic environment because

each user selfishly makes its computation offloading decision. A multi-agent stochastic

algorithm is proposed to achieve the Nash equilibrium with an analytically derived

convergence rate. Although recent studies consider the computation offloading for

edge computing, they fail to achieve the joint optimization of computation offloading

and resource allocation in CDC.

Different from these studies, Chapter 11 in this dissertation jointly optimizes

the computation offloading between CDC and edge computing layers, and resource

allocation in the edge computing layer for latency sensitive tasks. The resources

include CPU, memory, and bandwidth at the edge computing layer and servers in the

CDC layer.

2.9 Performance Optimization in Edge Computing

In edge computing, performance optimization is an important yet challenging topic,

which involves evaluating performance and deciding where to execute users’ tasks and

how to allocate computing resources [166]–[177]. Responsiveness of tasks is important

because applications are usually real-time. Tao et al. [166] analyze the energy

efficiency and performance guarantee of MEC. An energy minimizing optimization

problem is formulated and solved by using Karush-Kuhn-Tucker conditions for better

performance of tasks and lower energy consumption. A request offloading scheme is

designed by specifying bandwidth capacity and energy consumption at each time slot.
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Zhu et al. [167] design a solution for quality and latency optimized task scheduling

in vehicular fog computing. The task allocation across mobile and stationary fog

nodes is formulated as a bi-objective optimization problem by considering constraints

on quality loss, service latency and fog capacity. An event-triggered dynamic task

allocation method is proposed by applying binary particle swarm optimization and

linear programming-based optimization to achieve a tradeoff between quality loss and

service latency. Ren et al. [168] formulate a joint computation and communication

resource allocation problem to minimize the average latency of all mobile devices. A

closed-form optimal task allocation policy is derived in terms of normalized cloud

computation and backhaul communication capacities. In addition, the original

problem is further transformed into an equivalent convex optimization one and solved

by a convex optimization technique to obtain the optimal computation resource

allocation. Han et al. [169] consider a two-tier network in which helpers with caching

resources are deployed in a coverage area of base stations. The caching optimization

problems are formulated and their convexity properties are given. In this way, the

optimal caching policy is obtained by a low-complexity algorithm. Simulation results

prove the proposed policy achieves a significant performance gain over an existing

policy for video on demand services.

In addition, Mehrabi et al. [170] design a heuristic-based and low-complexity

mechanism with minimum requirement for parameter tuning in multi-access edge

computing environments. Its optimized solution is studied against two typical client-

based solutions including buffer-based adaptation and rate-based adaptation. It aims

to prove the solution efficiency and quantify benefits brought by network-assisted

adaptation over client-based approaches. Wang et al. [171] propose a framework for

a performance-power tradeoff of mobile service providers by jointly scheduling network

resources in a cloud radio access network and computation resources in mobile edge

cloud computing. A resource scheduling problem is formulated as a stochastic one
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and an optimization framework is designed with an extended Lyapunov method for

guaranteeing low congestion and high system stability. Hu and Li [172] formulate

a transmitting power allocation problem for energy consumption minimization of

mobile users. It is solved by a subgradient-based noncooperative game model and a

quasiconvex technique. A joint resource scheduling and request offloading problem is

modeled as a mixed-integer nonlinear program for the response delay minimization

of requests. It is transformed into a double decision-making problem solved by an

improved fast and elitist multiobjective genetic algorithm. Ren et al. [173] formulate

a joint computation and communication resource allocation problem for the weighted-

sum latency minimization of all mobile devices. Then, an optimal closed-form task

allocation policy is obtained as a function of the cloud computation and the backhaul

communication capacities by adopting the convex optimization. Simulation results

show that the proposed collaborative scheme achieves much better delay performance

than traditional schemes.

Besides, Wu et al. [174] aim to improve code offloading on edge devices by

focusing on maximizing the capability of CPU computation, and minimizing cross-

device I/O and interdomain data transfer cost. The efficient and in-depth analysis

of both extra system burden and performance optimization is conducted. Then,

a distributed and fast code offloading method for edge devices is implemented to

offload user-specified binary codes across heterogeneous instruction set architectures.

It improves the system performance, and decreases burdens on data transfer and

I/O latency. Ouyang et al. [175] investigate a service performance optimization

problem with a long-term cost constraint in the mobile edge. To address unpredictable

mobility of users, Lyapunov optimization is applied to decompose the optimization

problem into several real-time optimization subproblems that do not need priori user

mobility information. An approximation algorithm is designed to obtain a close-

to-optimal solution based on Markov approximation. Tao et al. [176] consider an
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energy efficiency optimization problem with a guaranteed performance constraint in

MEC. Karush-Kuhn-Tucker conditions are applied to solve it, and a request offloading

method is presented for achieving less energy consumption with higher performance

of tasks. The offloading method is determined by bandwidth capacity and energy

consumption. Chen et al. [177] model the optimal computation offloading as a MDP,

and aim to maximize the long-term utility performance. The offloading decision is

made according to energy and task queue states, and channel qualities between base

stations and mobile users. Then, to avoid the high dimensionality curse in a state

space, a deep Q-network-based strategic algorithm is proposed to achieve computation

offloading without the priori information of network dynamics.

Compared with existing studies, Chapter 11 in this dissertation aims to improve

the system performance by proposing a smart offloading algorithm. It considers two

offloading destinations (nodes in edge and servers in CDC), and provides a fine-grained

model for response time of tasks executed in edge and CDC by jointly splitting tasks

among nodes in edge, and specifying the task service rate of servers in CDC.

2.10 Energy Optimization in Edge Computing

Optimizing energy consumption is one of the most challenging problems in edge

computing because its nodes are typically equipped with limited battery energy

[178]–[189]. Xu et al. [178] investigate a multiuser MEC system with a constraint

of task latency. Users can reduce energy consumption by partially or completely

offloading their tasks to an server for MEC while meeting a latency constraint. They

formulate the joint optimization of data compression, computation offloading and

resource allocation as a problem with constraints of latency and MEC computation

capacity. The problem is then transformed into a convex one solved by convex

optimization. Li et al. [179] incorporate MEC into virtualized cellular networks

with machine-to-machine communications to optimize computing resource allocation
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and reduce energy consumption. They formulate a random access process as partially

observable MDP to minimize energy consumption and execution time of the system.

Zhang et al. [180] consider a power consumption problem in a multiuser MEC system

with energy harvesting devices. A problem of power consumption minimization with

constraints of QoS and battery stability is formulated as a stochastic optimization

program. An online algorithm based on Lyapunov optimization is designed to

solve the problem. It only needs current states of users. A distributed algorithm

is proposed by using an alternating direction approach of multipliers to decrease

the computational complexity. Zhang et al. [181] present an dynamic and online

task scheduling method to consider a tradeoff between execution delay and energy

consumption for a MEC system with energy harvesting capability. An energy

consumption and execution delay minimization problem with buffer queue stability

and battery level constraints is formulated. A Lyapunov optimization approach

is adopted to obtain the optimal scheduling of CPU-cycle frequencies and data

transmission power for mobile devices.

In addition, Cui et al. [182] investigate a tradeoff between the latency and

energy consumption to meet user needs of different IoT applications. A constrained

multiobjective optimization problem is formalized and solved to find the optimal

solutions with the improved fast and elitist nondominated sorting genetic algorithm

including problem-specific genetic operators and an encoding scheme. Ji et al. [183]

investigate a power consumption problem in a multiuser MEC system with energy

harvesting devices. The power consumption minimization problem is formulated as a

stochastic optimization program. A Lyapunov optimization-based online algorithm is

designed to solve it. In addition, a distributed algorithm is proposed to reduce system

computational complexity with an alternating direction method of multipliers. Sun et

al. [184] develop an energy-aware mobility management method to optimize the delay

due to both radio access and computation under a long-term energy consumption
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constraint of users. It is derived based on multi-armed bandit and Lyapunov

optimization theories, and it well tackles the imperfect state information of the system

in an online manner. Zhou et al. [185] consider a problem of energy-efficient workload

offloading and develop a distributed low-complexity method by using a consensus

alternating direction method of multipliers. The problem incorporates many local

variables for each user equipment, and it is transformed into a general consensus

one with separable constraints and objectives. The consensus problem is further

decomposed into several subproblems distributed across users’ equipments and solved

in a simultaneous manner. Simulation results prove that the energy consumption is

reduced significantly by their proposed algorithm.

Besides, Pu et al. [186] develop a hybrid edge computing framework to

augment vehicle resources for large-scale vehicular crowdsensing applications. It

adopts cooperative vehicles and a VM pool of an edge cloud controlled by an

application manager. A multitask and multivehicle offloading problem is formulated

to minimize the energy consumed by network-wide vehicles that serve heteroge-

neous applications, and reconcile both vehicle incentives and application deadlines.

Then, a knapsack-based resource allocation method for a VM pool, and a graph

transformation-based workload assignment policy are proposed. Nan et al. [187]

employ dual energy sources to support fog nodes where solar power provides primary

energy and grid power serves as the backup supply. An analytic framework is proposed

to incorporate green energy to support the operation of fog computing-based systems.

A Lyapunov optimization-based algorithm is proposed to trade off average response

time and energy cost in IoTs. Dong et al. [188] develop a cooperative fog computing

system to offload workload on an entire fog layer by forwarding data. Then, a joint

optimization problem is formulated to trade off quality of experience and energy

in a fairness-enabled fog computing process. Its convexity is given and a fairness

cooperation algorithm is designed to find the optimal fairness cooperation strategy
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of all fog nodes. Zhou et al. [189] investigate a problem of energy-efficient workload

offloading in vehicular networks. To solve it, a low-complexity distributed method is

designed by using a consensus alternating direction approach of multipliers. Several

local variables are incorporated for each user equipment, and the original problem is

converted into an equivalent consensus problem with multiple objectives and different

constraints. Then, the consensus problem is decomposed into many subproblems,

which are solved simultaneously.

Different from these studies, Chapter 11 in this dissertation provides a

higher-accuracy and fine-grained energy model. It jointly considers CPU, memory,

and bandwidth resource limits, load balance requirements of all nodes, and different

processing capacities of heterogeneous nodes in the edge computing layer. In addition,

it jointly considers key parameters of CPU utilization, task service rate of CDC

servers, task arriving rate, power usage effectiveness, peak and idle power of each

server, price of power grid, maximum amount of energy, maximum number of available

servers and task queue stability in the CDC layer.
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CHAPTER 3

SPATIAL TASK SCHEDULING FOR COST MINIMIZATION IN
DISTRIBUTED GREEN CLOUD DATA CENTERS

This chapter presents the proposed Spatial Task Scheduling and Resource Optimization

(STSRO) algorithm, and it is organized as follows. Section 3.1 presents the motivation

and system architecture of cloud data centers (CDCs). Based on the architecture of

CDCs, Section 3.2 formulates a cost minimization problem for the CDC provider.

Section 3.3 describes the proposed Simulated-annealing-based Bat Algorithm (SBA)

algorithm to solve the problem and to develop STSRO to minimize the total cost

of the CDC provider. Trace-driven experiments with real-life data are conducted to

evaluate the proposed STSRO in Section 3.4. Section 3.5 concludes this chapter.

3.1 Motivation and System Architecture

This section presents the system architecture of CDCs illustrated in Figure 3.1. A

typical cloud provider manages multiple CDCs in different locations, and provides

different types of applications to global users. Each CDC typically hosts a server

cluster consisting of a huge number of servers that range from several hundreds

to several thousands. In addition, to guarantee the response time, robustness and

availability, multiple available ISPs that transfer data among CDCs and users are

designed to connect to each CDC. In addition, similar to the work in [18], it is

assumed that replicas, e.g., programs and data, for each application have been copied

and distributed across all CDCs. Thus, applications and their data are consistent

with each other, and therefore, tasks of each application can be independently

executed within each CDC. Besides, it is assumed that servers of each application are

homogeneous while servers of different applications are heterogeneous in hardware.

In Figure 3.1, users around the world send their various tasks to CDCs through

multiple types of electronic devices, e.g., smart phones, computers, servers and
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laptops. CDCs run as follows. In each CDC, users’ tasks are executed based on the

First-Come-First-Serve (FCFS) policy [190]. Tasks of each application are enqueued

into their corresponding FCFS queue. The information about all queues is sent

to Task Scheduler. Besides, each CDC can obtain electricity from multiple power

sources (power grid, solar and wind energy suppliers) and periodically transmit the

information to Task Scheduler. The information includes prices of power grid, wind

speed, solar irradiance, on-site air density, peak (idle) power of each server, etc. Based

on above information, Task Scheduler executes STSRO to jointly specify the optimal

allocation of all arriving tasks among multiple available ISPs, and determine the

optimal setting of each server in each CDC. Then, the setting information of servers

is adopted to configure them in each CDC.

3.2 Problem Formulation

Based on the architecture of CDCs, the cost minimization problem is formulated. The

objective is to minimize the total cost of a CDC provider denoted by f2. f2 consists
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of two parts that are f21 and f22, respectively. Here f21 denotes ISP bandwidth cost

of transmitting data between users and CDCs, and f22 denotes CDCs’ energy cost

brought by the execution of tasks scheduled to CDCs in time slot τ .

f2=f21+f22 (3.1)

f21 is calculated as:

f21=
NK∑
k=1

bkτ
NC∑

c=1

NA∑
n=1

(
λk,c,nτ ζnL

)
 (3.2)

In equation (3.2), L denotes the length of each time slot,NK denotes the number

of available ISPs, NC denotes the number of CDCs, and NA denotes the number of

applications deployed in each CDC. Besides, bkτ denotes the unit bandwidth price of

ISP k in time slot τ , λk,c,nτ denotes the arriving rate of tasks of application n delivered

to CDC c through ISP k in time slot τ , and ζn denotes the average size of each task

of application n.

f22 is calculated as:

f22=
NC∑
c=1

pcτ
(
max

(
Ec
τ−

◦
Eτ,c−Ẽτ,c, 0

)) (3.3)

In equation (3.3), pcτ denotes the price of power grid produced by thermal power

generation in CDC c in time slot τ . µc,nτ denotes the service rate of tasks of application

n in CDC c in time slot τ .

There are many existing studies that adopt an M/M/1 queueing system to

evaluate the performance of each server of each application in existing data centers

[110]. Thus, similarly, servers of application n in each CDC are modeled as an

M/M/1/Q̂c
n/∞ queueing system. Ec

τ denotes the total energy consumed by the

execution of tasks of all applications in CDC c in time slot τ . Therefore, Ec
τ is

calculated by (3.4).
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In equation (3.4), λc,nτ denotes the arriving rate of tasks of application n in

CDC c in time slot τ . δc,nτ denotes the loss possibility of tasks of application n in

time slot τ .
•
Nc,n denotes the number of tasks executed by each switched-on server

for application n per minute in CDC c. Φ̌c
n and Φ̂c

n denote the idle and peak power of

each server for application n in CDC c, respectively. αc denotes the value of power

usage effectiveness of CDC c. Q̂c
n denotes the capacity of the task queue of each server

for application n in CDC c, and it is the maximum number of tasks that all servers

of application n can execute.

Ec
τ=

NA∑
n=1

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

 (3.4)

where

∆5
c,n=Φ̌c

n+ (αc−1) Φ̂c
n

∆4
c,n=Φ̂c

n−Φ̌c
n

δc,nτ =
1− ρc,nτ

1− (ρc,nτ )Q̂cn+1
(ρc,nτ )Q̂

c
n

ρc,nτ =
λc,nτ
µc,nτ

◦
Eτ,c denotes the solar energy consumed by tasks of all applications in CDC c in

time slot τ . Following the work in [191],
◦
Eτ,c is calculated as:

◦
Eτ,c=ψ1cψ2cψτ,3cL (3.5)

where ψ1c denotes the conversion rate of solar irradiance to electricity in CDC c, ψ2c

denotes the active irradiance area of solar panels in CDC c, and ψτ,3c denotes the

solar irradiance in CDC c in time slot τ .

Ẽτ,c denotes the wind energy consumed by the execution of tasks of all

applications in CDC c in time slot τ . Following the work in [191], Ẽτ,c is calculated
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as:

Ẽτ,c=
1

2
φ1cφ2cφ3c

(
φτ,4c

)3
L (3.6)

where φ1c denotes the conversion rate of wind to electricity in CDC c, φ2c denotes the

on-site air density in CDC c, φ3c denotes the rotor area of wind turbines in CDC c,

and φτ,4c denotes the wind speed in time slot τ in CDC c.

Let B̂k denote the bandwidth capacity limit of ISP k. The total bandwidth

allocated to all tasks that are transmitted through ISP k must be less than or equal

to B̂k in time slot τ , i.e.,
NC∑
c=1

NA∑
n=1

(
λk,c,nτ ζn

)
≤B̂k (3.7)

Let N̂c,n denote the number of servers for application n in CDC c. The number

of switched-on servers for application n in CDC c is µc,nτ
•
Nc,n

in time slot τ . Then,

µc,nτ
•
Nc,n
≤N̂c,n (3.8)

Let Êc denote the amount of maximum available energy in CDC c. The amount

of energy consumed by the execution of tasks of all applications in CDC c must be

less than or equal to Êc in time slot τ . Therefore,

NA∑
n=1

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

≤Êc (3.9)

In time slot τ , to guarantee the stability of the task queue of application n in

CDC c, λc,nτ must be less than or equal to µc,nτ . Therefore,

λc,nτ =
NK∑
k=1

λk,c,nτ <µc,nτ (3.10)
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In time slot τ , the sum of λk,c,nτ must be equal to the arriving rate of tasks of

application n, λnτ . Therefore,

λnτ=
NC∑
c=1

λc,nτ =
NC∑
c=1

NK∑
k=1

λk,c,nτ (3.11)

Let T̂n denote the response time constraint of tasks of application n. In time

slot τ , the average response time of tasks of application n in CDC c cannot exceed

its constraint T̂n.
∆11
τ,c,n

µc,nτ
(

1−∆12,c,n
τ

)≤T̂n (3.12)

where

∆11
τ,c,n=

ρc,nτ
1− ρc,nτ

−

(
Q̂c
n + 1

)
(ρc,nτ )Q̂

c
n+1

1−
(
ρc,nτ
)Q̂cn+1

∆12,c,n
τ =

1− ρc,nτ
1−

(
ρc,nτ
)Q̂cn+1

ρc,nτ =
λc,nτ
µc,nτ

Based on equations (3.1)–(3.12), the cost minimization problem for CDCs is

given as:

Min {f2}

subject to

NC∑
c=1

NA∑
n=1

(
λk,c,nτ ζn

)
≤B̂k (3.13)

µc,nτ
•
Nc,n
≤N̂c,n (3.14)

NA∑
n=1

(
∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

)
≤Êc (3.15)

λc,nτ =
NK∑
k=1

λk,c,nτ <µc,nτ (3.16)
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λnτ=
NC∑
c=1

λc,nτ =
NC∑
c=1

NK∑
k=1

λk,c,nτ (3.17)

∆11
τ,c,n

µc,nτ (1−∆12,c,n
τ )

≤T̂n (3.18)

λk,c,nτ ≥0, µc,nτ >0(1≤k≤NK , 1≤c≤NC , 1≤n≤NA) (3.19)

Constraint (3.19) specifies the valid ranges of decision variables including λk,c,nτ

and µc,nτ . It is also assumed that time slot-related parameters, e.g., pcτ , bkτ , ψτ,3c

and φτ,4c are already well predicted with existing prediction algorithms, e.g., stacked

autoencoder deep neural network [192]–[196], at the beginning of each time slot τ .

The method to solve the constrained optimization problem is described in Section 3.3,

and its optimal solution jointly specifies the optimal allocation of all arriving tasks

of each application among multiple ISPs, and determines the optimal setting of each

server in each CDC. In this way, the cost of a CDC provider is minimized while delay

bound constraints of all tasks of each application are strictly met.

3.3 Simulated-annealing-based Bat Algorithm

f2 in the constrained optimization problem is nonlinear with respect to continuous

decision variables. Thus, it is a constrained nonlinear program [197]. This section

adopts a penalty function method [198] to transform it into an unconstrained

nonlinear program.

Min
λk,c,nτ ,µc,nτ

{
f̃2=

∞
Nf+f2

}
(3.20)

where f̃2 denotes the augmented objective function,
∞
N is a large positive constant,

and f denotes the penalty of the violation of all constraints. Let x denote the vector

of decision variables including λk,c,nτ and µc,nτ . Let 0
γ1 and

0
γ2 be two positive constants.

f is obtained as:

f=
N 6=∑
l=1

(max{0,−gl(x)})
0
γ1+

N=∑
m=1

∣∣hm(x)
∣∣0γ2 (3.21)
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In equation (3.21), each inequality constraint l (1≤l≤N 6=) is transformed

into gl(x)≥0. If it is not violated, its penalty is 0; otherwise, its penalty is

(max{0,−gl(x)})
0
γ1 . Each equality constraint m (1≤m≤N=) is transformed into

hm(x)=0. If it is not violated, its penalty is 0; otherwise, its penalty is
∣∣hm(x)

∣∣0γ2 . In

this way, an unconstrained problem is obtained. There are several typical algorithms,

e.g., conjugate gradient method [199] and sequential quadratic programming [200] to

solve it. However, they usually depend on first-order or second-order derivatives of

f̃2, and therefore, they are only suitable for specific optimization problems with these

mathematical structures [201]. In addition, their optimization processes are complex

and therefore, the quality of their final solutions is not satisfying.

Meta-heuristic algorithms have several advantages, e.g., robustness, wide

applicability and easy implementation. Thus, they have been commonly applied

to solve different types of complex optimization problems. Each meta-heuristic

algorithm has its own pros and cons [202, 203]. As a typical example, SA has been

proven to be effective in solving continuous and discrete constrained optimization

problems. Its Metropolis acceptance rule allows some moves that worsen the objective

function value in order to escape from local optima. It has been demonstrated that

SA is able to finally obtain global optima by careful selection of the temperature

cooling rate. Its main disadvantage is that its convergence process can be very slow

[202]. Besides, bat algorithm (BA) is commonly applied due to its many advantages,

e.g., quick convergence. It may easily trap into local optima in its exploration and

exploitation processes [202]. Thus, its final solutions are usually low-quality when it is

applied to solve large-scale optimization problems with high-dimension search spaces.

To improve the efficiency and global search accuracy of BA, this section adopts a

hybrid meta-heuristic algorithm named Simulated-annealing-based Bat Algorithm

(SBA) by combining SA’s Metropolis acceptance rule into BA. In this way, the
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diversity of solutions is increased to improve BA’s performance, thereby yielding its

excellent variant. The pseudo codes of SBA are given in Algorithm 1.

The details of Algorithm 1 are described here. Line 1 initializes positions and

velocities of all bats. Let xgi and θi,g1 denote the position and velocity of bat i in

iteration g. xgi and θ
i,g
1 are ND-dimension vectors that include decision variables. The

first NK∗NC∗NA elements of each vector store λk,c,nτ . The next NC∗NA elements of

each vector store µc,nτ . Therefore, ND=NC∗NA(NK+1). Line 2 initializes frequency

θB1,i, pulse rate θB2,i and loudness θB4,i of bat i. Here, θB1,i∈[θ̌B1 , θ̂
B
1 ], θB2,i∈[θ̌B2 , θ̂

B
2 ], and

θB4,i∈[θ̌B4 , θ̄
B
4,g]. Line 3 calculates the fitness value of each position, and stores the

optimal position in
∗
x. Line 4 sets the initial temperature θ0

2. Let ĝ denote the

maximum number of iterations. Let |X| denote the number of bats. Let θB6,i denote the

adaptation value of position xi of bat i. Line 7 calculates θB6,i in current temperature

θg2 based on (3.22). Let θg2 denote the current temperature in iteration t. Line 8

determines an alternative optimal position x̃B selected from positions of all bats with

a roulette strategy [204].

xi=
exp

−
(
f̃2(xi)−f̃2(

∗
x)

)
θ
g
2

|X|∑
i=1

exp

−
(
f̃2(xi)−f̃2(

∗
x)

)
θ
g
2

(3.22)

Line 8 adjusts frequencies and updates positions and velocities of all bats based

on equations (3.23)–(3.25).

θB1,i=θ̌
B
1 +

(
θ̂B1 − θ̌B1

)
w1 (3.23)

where w1 denotes a random number drawn from a uniform distribution.

θi,g+1
1 =θi,g1 +

(
xgi − x̃B

)
θB1,i (3.24)

xg+1
i =xgi + θi,g+1

1 (3.25)
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Line 10 calculates the new fitness value of bat i. Lines 11–14 choose a position

(xBi ) from the best positions for bat i, and produce a new position (x1
i ) around it

with random walk if rand>θB2,i is met.

x1
i=xBi + w2θ̄

B
4,g (3.26)

where w2(w2∈[−1, 1]) is a random number, and θ̄B4,g=
1
|X|
∑|X|

i=1 θ
B
4,i,g is the average

loudness of all bats at iteration g.

Lines 15–18 accept the new solution for bat i, increase θB2,i and decrease θB4,i

based on equation (3.27) if rand<θB4,i and f̃2(xi)<f̃2(
∗
x).

θB4,i,g+1=θB5 θ
B
4,i,g, θ

B
2,i,g+1=θB2,i[1− exp−θ

B
3 g] (3.27)

Line 19 ranks bats and determines the current optimal position
∗
x. Finally, the

best position of all bats,
∗
x, is output as the final solution.

3.4 Performance Evaluation

The following experiments evaluate STSRO with real-life data. STSRO is coded and

implemented with MATLAB 2017, and it runs on a computer with an Intel Xeon

E5-2699AV4 CPU at 2.4 GHz and a 32-GB DDR4 memory.

3.4.1 Parameter Setting

This section adopts realistic tasks of three applications in Google cluster1 for one day

on May 10, 2011. Figure 3.2 shows task arriving rates of three applications (types 1,

2 and 3) that are sampled every 5 minutes. This section adopts realistic power grid

prices for one day on May 10, 2011 in capital region of New York, U.S.2.

Here, NK=3, NC=3 and NA=3. Based on the work in [24], the parameter

setting of energy sources including power grid, wind energy and solar energy is shown

1https://github.com/google/cluster-data (accessed on May 6, 2019).
2http://www.nyiso.com/public/index.jsp (accessed on May 10, 2019).
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Algorithm 1 SBA (Simulated-annealing-based Bat Algorithm)
1: Initialize positions and velocities of all bats
2: Initialize frequency θB1,i, pulse rate θB2,i and loudness θB4,i of bat i
3: Calculate the fitness value of each position, and store the optimal position in

∗
x

4: Set the initial temperature θ0
2

5: g ← 1
6: while g≤ĝ do
7: Calculate θB6,i of bat i in current temperature θg2 based on equation (3.22)
8: Determine x̃B from positions of all bats with the roulette strategy
9: Adjust frequencies, positions and velocities based on equations (3.23)–(3.25)

10: Calculate the new fitness value of bat i
11: if rand>θB2,i then
12: Choose a position from the best positions for bat i
13: Produce a new position around it with random walk based on equation (3.26)
14: end if
15: if rand<θB4,i && f̃2(xi)<f̃2(

∗
x) then

16: Accept the new solution for bat i with SA’s Metropolis acceptance rule
17: Increase θB2,i and decrease θB4,i based on equation (3.27)
18: end if
19: Rank bats and determine currently optimal position x∗
20: θg+1

2 ← θg2θ3

21: g ← g+1
22: end while
23: Output the best position of all bats,

∗
x

Table 3.1 Parameter Setting of Energy Sources

Power grid Wind energy Solar energy
αc Êc (WH) φ1c φ3c (m2) φ2c (kg/m3) ψ1c ψ2c (m2)

c=1 1.2 1.7×108 0.3 25000 1.225 0.2 15000
c=2 1.4 2.25×108 0.375 31250 1.5313 0.25 18750
c=3 1.6 1×108 0.45 37500 1.8375 0.3 22500
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Figure 3.2 Task arriving rates of three applications.
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Figure 3.3 Solar irradiance of three CDCs.
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Figure 3.4 Wind speed of three CDCs.

Table 3.2 Parameter Setting of Three CDCs-Part 1.
•
N (tasks/second) Φ̌c

n (W) Φ̂c
n (W)

n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
c=1 0.15 0.3 0.6 200 100 50 400 200 100
c=2 0.15 0.3 0.6 250 125 62.5 500 250 125
c=3 0.15 0.3 0.6 300 150 75 600 300 150

Table 3.3 Parameter Setting of Three CDCs-Part 2

Q̂c
n N̂c,n

n=1 n=2 n=3 n=1 n=2 n=3
c=1 50 55 60 1200 1500 1800
c=2 55 60 65 1000 1250 1500
c=3 65 70 75 1200 1500 1800

in Table 3.1. This chapter collects data about solar irradiance3 and wind speed4 for

one day on May 10, 2011. The solar irradiance and the wind speed in three CDCs

are shown in Figures 3.3 and 3.4.

3http://www.nrel.gov/midc/srrl_bms/ (accessed on May 10, 2019).
4http://www.nrel.gov/midc/nwtc_m2/ (accessed on May 10, 2019).
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In addition,
•
N, Φ̌c

n, Φ̂c
n, Q̂c

n and N̂c,n are set and given in Tables 3.2 and 3.3.

According to the existing study [18], the bandwidth prices of three ISPs are set and

shown in Figure 3.5. The power grid prices of three CDCs are shown in Figure 3.6.

According to the work in [31], B̂1=4×106 (Mbps), B̂2=5×106 (Mbps) and B̂3=6×106

(Mbps). In addition, ζ1=8 (Mb), ζ2=5 (Mb), ζ3=2 (Mb), T̂1=0.15 (Second), T̂2=0.2

(Second) and T̂3=0.25 (Second).
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Figure 3.5 Bandwidth prices of three ISPs.

0 50 100 150 200 250
Time slot number

0

2

4

6

E
le

ct
ric

ity
 p

ric
e 

($
/W

H
) 10-3

CDC 1 CDC 2 CDC 3

Figure 3.6 Electricity prices of three CDCs.

It is worth noting that many meta-heuristic algorithms are sensitive to the

setting of their parameters. Therefore, based on the parameter setting in previous

studies [202], the parameter setting of SBA is determined and shown as follows.

θ̌B1 =0, θ̂B1 =100, θ̌B2 =0, θ̂B2 =1, θ̌B4 =1 and θ̂B4 =100. In addition, ĝ=50, w1∈(0, 1),

θB4,i,g=θ
B
3 =0.9, θ0

2=1012, ĝ=103 and θ3=0.975. Besides,
∞
N=1020 and 0

γ1=
0
γ2=2.
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Figure 3.7 Occupied bandwidth of three ISPs.

3.4.2 Experimental Results

The occupied bandwidth of three ISPs connecting to CDCs is considered. As is shown

in Figure 3.5, bandwidth prices of three ISPs are different from each other. Figure

3.7 illustrates that the occupied bandwidth of each ISP differs significantly because

of the variations in bandwidth prices of ISPs. The reason is that STSRO aims to

minimize the total cost of a CDC provider by specifying the optimal allocation of

all arriving tasks among multiple ISPs. It is observed that the number of tasks that

traverse through ISP 1 is the largest while the number of tasks that traverse ISP 3

is the smallest among three ISPs. The result is consistent with bandwidth prices of

three ISPs, i.e., ISP 1’s bandwidth price is the smallest while ISP 3’s bandwidth price

is the largest.

0 50 100 150 200 250
Time slot number

0

0.5

1

1.5

2

2.5

E
ne

rg
y 

(W
H

)

108

CDC 1 CDC 2 CDC 3

Figure 3.8 Consumption of energy produced by thermal power generation.

The consumption of energy produced by thermal power generation in three

CDCs is shown in Figure 3.8. As is shown in Figure 3.6, power grid prices of three
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CDCs are also different from each other. Figure 3.8 shows that the consumption

of energy produced by thermal power generation in three CDCs varies due to the

differences in power grid prices of three CDCs. Similarly, the reason is that STSRO

aims to minimize the total cost of a CDC provider by determining the optimal setting

of each server in each CDC. It is shown that the consumption of energy produced by

thermal power generation in CDC 3 is the largest while that in CDC 1 is the smallest

among three CDCs. The result is consistent with power grid prices of three CDCs,

i.e., CDC 3’s power grid price is the smallest while that of CDC 1 is the largest.

To show the performance of SBA, this chapter compares it with two typical

meta-heuristic algorithms including SA and BA. The reasons of choosing them for

comparison are described as follows. It is demonstrated that SA can converge to a

global optimum in theory by careful design of the cooling rate of temperature because

it can smartly escape from a local optimum. Thus, the comparison between SBA and

SA can demonstrate the accuracy of SBA’s final solution. In addition, it is also shown

that BA’s convergence speed is quick [202]. Thus, the comparison between SBA and

BA can demonstrate SBA’s convergence speed.
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Figure 3.9 Comparison of execution time.

Figure 3.9 shows the comparison of the execution time of SBA, BA and SA.

It is shown that the average execution time of SA is 7.13 seconds that is 4.27 times

larger than that of SBA, 1.67 seconds, and 39.61 times larger than that of BA, 0.18

seconds. In addition, though BA’s execution time is the smallest, this is caused by
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its fast trap into a local optimum. Figure 3.10 presents the total cost comparison of

each iteration of SBA, BA and SA in time slot 50. Here each iteration in SBA means

Lines 7–21 in Algorithm 1. The iterations of BA and SA have similar meaning as

that of SBA. Figure 3.11 shows the penalty in each iteration in each time slot, which

is calculated based on equation (3.21).
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Figure 3.10 Total cost of each iteration in time slot 50.
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Figure 3.11 Penalty of each iteration.

It is shown that BA converges after the least number of iterations compared

to SBA and SA. Nevertheless, Figure 3.11 illustrates that the penalty of BA’s final

solution is extremely large (about 4×106). This result shows that its final solution

cannot satisfy all the constraints in the formulated optimization problem. BA’s final

solution is the worst due to its quick trap into a local optimum. SA requires about

766 iterations to converge to its final solution, and the total cost of its final solution

is $263.31. SBA only requires 241 iterations to converge to its final solution, and

its corresponding final total cost is $232.26. SBA decreases the total cost of a CDC
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provider by $31.05 in much fewer iterations than SA. Figure 3.11 presents that the

penalty of SBA’s final solution is 0. It means that SBA can obtain a high-quality

solution meeting all the constraints in the formulated problem. Therefore, Figures

3.9–3.11 show that the adoption of SA’s Metropolis acceptance rule in SBA can

increase the diversity of solutions, and improve the efficiency and global search

accuracy of BA.

To demonstrate the effectiveness of STSRO, it is compared with two typical

intelligent optimization approaches [31, 76] in terms of the total cost and throughput

of the CDC provider.

1) Method A1, similar to the cheap-electricity-first scheduling in [76], schedules
tasks to CDCs according to the order of their power grid prices. The CDC with
the least power grid price executes the largest number of tasks while the one
with the highest power grid price executes the least number of tasks.

2) Method A2, similar to renewable energy-first scheduling in [31], schedules tasks
to CDCs according to the order of their amount of renewable energy. The CDC
with the largest amount of renewable energy executes the largest number of
tasks while the one with the least amount executes the least number of tasks.

Figure 3.12 compares STSRO with A1 and A2 in terms of the throughput of each

application, which is the number of its tasks scheduled in time slot τ . For example,

it is observed in Figure 3.12(a) that the throughput of STSRO is larger than those of

A1 and A2 in each time slot for application 1. For type 1 application, the throughput

of STSRO is larger than those of A1 and A2 by 52.94% and 52.11% on average,

respectively. The reason is that the bandwidth capacity of each ISP, the number of

available servers for each application and the maximum amount of available energy in

each CDC are all limited in each time slot. Therefore, some arriving tasks are refused

and not executed to CDCs when using A1 or A2. Thus, Figure 3.12(a) shows that

the throughput of CDCs is drastically increased with STSRO. Therefore, Figure 3.8

demonstrates the effectiveness of the proposed STSRO.
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Figure 3.12 Throughput of STSRO, A1, and A2.
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Figure 3.13 Total cost of STSRO, A1, and A2.
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What’s more, with A1 and A2, an average allocation policy is adopted by ISPs

[31, 76]. It means that all tasks are evenly allocated among multiple ISPs. Figure

3.13 illustrates the total cost of STSRO, A1 and A2, respectively. To guarantee the

execution performance of tasks, the penalty cost is usually specified in an SLA for

task refusal [205, 206]. It is determined after the negotiation between users and a

CDC provider, and all refused tasks bring the penalty to a CDC provider. Let ϑnτ

denote the penalty paid by their provider if a task of application n is refused in time

slot τ . ϑnτ in SLAs is typically larger than the maximum cost caused by the execution

of each task of application n among CDCs in time slot τ . It motivates the CDC

provider to strictly meet the delay bound constraints of all tasks. The total cost

in time slot τ is obtained by calculating the sum of the cost brought by executed

tasks in CDCs, and the penalty due to refused tasks in time slot τ . It is shown in

Figure 3.13 that compared with A1 and A2, the total cost of STSRO can be reduced

by 30.58% and 30.82% on average, respectively. The reason is that STSRO smartly

schedules tasks among ISPs and CDCs by jointly considering the spatial diversity in

bandwidth prices of ISPs, power grid prices and the availability of renewable green

energy in CDCs. Then, the throughput of the CDC provider is drastically increased

and its total cost is reduced provided that delay bound constraints of all tasks of each

application are strictly met.

3.5 Summary

Cloud data centers (CDCs) need a huge amount of bandwidth and energy to execute

multiple applications. Existing studies investigate the energy cost minimization

problem in CDCs. The spatial diversity of bandwidth prices of Internet service

providers, power grid prices and the availability of renewable green energy brings an

opportunity to minimize the total cost of a CDC provider. A nonlinear optimization

problem is formulated and solved by the proposed simulated-annealing-based bat

algorithm. In this way, this chapter proposes a Spatial Task Scheduling and Resource
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Optimization (STSRO) method to minimize the total cost of the CDC provider

by exploiting such spatial diversity in CDCs. STSRO can cost-effectively schedule

all arriving tasks of heterogeneous applications while strictly meeting their delay

bound constraints. Experimental results demonstrate that it drastically increases

the throughput and reduces the total cost of the CDC provider in comparison with

two recent scheduling methods provided that delay bound constraints of all tasks are

strictly met.
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CHAPTER 4

GEOGRAPHY-AWARE TASK SCHEDULING FOR PROFIT
MAXIMIZATION IN DISTRIBUTED GREEN DATA CENTERS

This chapter presents the details of the proposed Geography-Aware Task Scheduling

(GATS) algorithm, and it is organized as follows. A profit maximization problem

for cloud data centers (CDCs) is formulated in Section 4.1. Section 4.2 proposes an

optimization framework to solve the problem and to realize GATS that maximizes

the total profit of a CDC provider. Section 4.3 provides the performance evaluation

and results by using real-life data. Section 4.5 concludes this chapter.

4.1 Problem Formulation

Based on the architecture in the system architecture of CDCs illustrated in Figure

3.1, this section gives the formulation of the profit maximization problem for a CDC

provider. Section 4.2 presents the proposed optimization framework to solve this

problem. In this way, GATS can maximize the profit of the CDC provider in each

time slot while guaranteeing arriving tasks of each application to be smartly executed

and scheduled within their delay bound constraints.

The profit maximization problem is formulated as follows. For clarity, this

section first gives the following several assumptions. Similar to existing studies [21,

76], it is assumed that time-related parameters do not vary within each time slot, and

only vary among different time slots. The notations adopted throughout this chapter

are explained as follows. Let NA denote the number of applications deployed in each

CDC. Let L denote the length of each time slot. Let λc,nτ and µc,nτ denote the task

arriving rate and service rate of application n in CDC c in time slot τ , respectively.

δc,nτ denotes the loss possibility of tasks of application n in time slot τ in CDC c.

Similar to the work in [23, 24], servers of application n in a CDC are modeled as
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a G/D/1 queueing system. Therefore, tasks of application n in CDC c arrive in a

Gaussian process, and δc,nτ is obtained as:

δc,nτ =∆1
τ,c,nexp

− 1
2
Min
τ≥1

∆2
τ,c,n (4.1)

where

∆1
τ,c,n=

1

λc,nτ
√

2πστ,c,n
e

(µ
c,n
τ −λc,nτ )2

2(στ,c,n)2

∫ ∞
µc,nτ

(t− µc,nτ ) exp
− (t−λc,nτ )2

2(στ,c,n)2 dt (4.2)

and for each τ≥1,

∆2
τ,c,n=

(
T̂nµ

c,n
τ +τ (µc,nτ −λc,nτ )

)2

τΓτ,c,n(0)+2
τ−1∑
l=1

(τ − l)Γτ,c,n(l)

(4.3)

Here, Γτ,c,n(l) denotes the autocovariance of the probability function of the

task arriving rate of application n in CDC c, and Γτ,c,n(0)=(στ,c,n)2. στ,c,n denotes

the variance of Gaussian process corresponding to tasks of application n in CDC c.

Besides, T̂n denotes the response time limit of tasks of application n. Let ∇n
τ denote

the payment brought by each task of application n in time slot τ . In addition, to

provide the performance assurance for users’ tasks, a service level agreement (SLA)

is usually signed between a CDC provider and users. In addition, let εnτ denote the

penalty paid by the provider brought by the refusal of each task of application n in

time slot τ . Let f c,∗1 denote CDC c’s revenue brought by tasks of all applications in

time slot τ . Then,

f c,∗1 =
NA∑
n=1

(
(1−δc,nτ )∇n

τλ
c,n
τ L−δc,nτ εnτλ

c,n
τ L

)
(4.4)

Let f1 denote the total revenue of the CDC provider brought by tasks of all

applications in time slot τ . Then, f1 is calculated as:

f1=
NC∑
c=1

f c,∗1 (4.5)
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Let f2 denote the total cost of the CDC provider in time slot τ . f2 consists of

two major parts that are f21 and f22, respectively. f21 denotes the Internet service

provider (ISP) bandwidth cost of the CDC provider caused by data transmission

among CDCs and users in time slot τ . f22 denotes the energy cost of the CDC

provider brought by all tasks of all applications scheduled to execute in CDCs in time

slot τ . Let NK denote the number of available ISPs. Then,

f2=f21+f22 (4.6)

where

f21=
NK∑
k=1

bkτ
NC∑

c=1

NA∑
n=1

(
λk,c,nτ ζnL

)
 (4.7)

In equation (4.7), NK denotes the number of ISPs connecting to multiple CDCs.

Besides, the unit bandwidth price of ISP k in time slot τ is denoted by bkτ . The

average size of application n’s tasks is denoted by ζn. In addition, the arriving rate

of application n’s tasks that are transmitted to CDC c through ISP k in time slot τ

is λk,c,nτ .

f22 is obtained as:

f22=
NC∑
c=1

pcτ
(
max

(
Ec
τ−

◦
Eτ,c−Ẽτ,c, 0

))
=
NC∑
c=1

max

(
pcτ

(
Ec
τ−

◦
Eτ,c−Ẽτ,c

)
, 0

)
=
NC∑
c=1

(max(pcτ (
NA∑
n=1

(
∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L)−
◦
Eτ,c−Ẽτ,c), 0)) (4.8)

In equation (4.8), pcτ denotes the price of power grid produced by the thermal

energy in CDC c in time slot τ . Ec,n
τ denotes the total energy consumed by the

execution of tasks of application n in CDC c in time slot τ . Ec
τ denotes the total
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energy consumed by the execution of tasks of all applications in CDC c in time slot

τ . Then, Ec
τ is obtained as:

Ec
τ=

NA∑
n=1

Ec,n
τ =

NA∑
n=1

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

 (4.9)

where

∆5
c,n=Φ̌c

n+ (αc−1) Φ̂c
n

∆4
c,n=Φ̂c

n−Φ̌c
n

In equation (4.9),
•
Nc,n denotes the number of application n’s tasks processed

by each switched-on server in one minute in CDC c, and αc denotes the power usage

effectiveness value [24] of CDC c. Φ̂c
n and Φ̌c

n denote the peak and idle power of each

server of application n in CDC c, respectively.

Let
◦
Eτ,c and Ẽτ,c denote the solar and wind energy consumed by tasks of all

applications in CDC c in time slot τ , respectively. Similar to Chapter 3,
◦
Eτ,c and Ẽτ,c

are calculated with equations (3.5) and (3.6) in the green energy model introduced

in Section 3.2, respectively.

Similar to the work in [24], it is assumed that the number of arriving tasks is

typically large and the available amount of solar and wind energy is not sufficient to

power all servers in CDCs. Then,

Ec
τ≥

◦
Eτ,c+Ẽτ,c (4.10)

Therefore, f22 is further obtained as:

f22=
NC∑
c=1

(
pcτ

(
Ec
τ−

◦
Eτ,c−Ẽτ,c

))
=
NC∑
c=1

(
pcτ

(
Ec
τ−

◦
Eτ,c−Ẽτ,c

))

=
NC∑
c=1

pcτ
NA∑

n=1

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

− ◦Eτ,c−Ẽτ,c


 (4.11)
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Let F1 denote the profit of the CDC provider in each time slot. F1 is obtained

by calculating the difference between f1 and f2, i.e.,

F1=f1 − f2=
NC∑
c=1

f c,∗1 − f21 − f22 (4.12)

According to (4.11), F1 is obtained as follows.

F1=
NC∑
c=1

f c,∗1 −
NC∑
c=1

(
pcτ

(
Ec
τ−

◦
Eτ,c−Ẽτ,c

))
− f22

=
NC∑
c=1

(
f c,∗1 − pcτ

(
Ec
τ−

◦
Eτ,c−Ẽτ,c

))
− f22 (4.13)

The objective of the problem is to maximize F1, i.e.,

Max
λk,c,nτ , µc,nτ


NC∑
c=1

(
f c,∗1 − pcτ

(
Ec
τ−

◦
Eτ,c−Ẽτ,c

))
− f22


In addition, B̂k denotes the bandwidth limit of ISP k. Therefore, the total

bandwidth occupied by tasks of all applications that are scheduled to transmit

through ISP k cannot exceed B̂k in each time slot τ . Then,

NC∑
c=1

NA∑
n=1

(
λk,c,nτ ζn

)
≤B̂k (4.14)

Let N̂c,n denote the number of available servers for application n in CDC c.

Thus, the number of switched-on servers of application n in CDC c in time slot τ

must satisfy:
µc,nτ
•
Nc,n
≤N̂c,n (4.15)

Besides, to provide the stability assurance for a task queue of application n in

CDC c in time slot τ , λc,nτ is obtained as:

λc,nτ =
NK∑
k=1

λk,c,nτ <µc,nτ (4.16)
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Moreover, in each time slot τ , the sum of λk,c,nτ should be equal to the task

arriving rate of application n, λnτ , i.e.,

λnτ=
NC∑
c=1

λc,nτ =
NC∑
c=1

NK∑
k=1

λk,c,nτ (4.17)

Finally, the average number of tasks dropped at each task queue of application

n is λc,nτ δc,nτ , and it must not exceed its limit, N−n , specified in typical SLAs:

λc,nτ δc,nτ ≤N−n (4.18)

4.2 Optimization Framework

To maximize the profit of the CDC provider, the split of tasks of all applications

among multiple ISPs and task service rates of servers in each CDC are jointly

optimized and updated within each time slot. Therefore, the following constrained

optimization problem is designed and solved at the beginning of each time slot.

Based on the constraints (4.10)–(4.18), the profit maximization problem for the CDC

provider is formulated as follows.

Max
λk,c,nτ , µc,nτ


NC∑
c=1

(
f c,∗1 − pcτ

(
Ec
τ−

◦
Eτ,c−Ẽτ,c

))
− f22


subject to

NC∑
c=1

NA∑
n=1

(
λk,c,nτ ζn

)
≤B̂k (4.19)

µc,nτ
•
Nc,n
≤N̂c,n (4.20)

NA∑
n=1

(
∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

)
≥
◦
Eτ,c+Ẽτ,c (4.21)

λc,nτ =
NK∑
k=1

λk,c,nτ <µc,nτ (4.22)

λnτ=
NC∑
c=1

λc,nτ =
NC∑
c=1

NK∑
k=1

λk,c,nτ (4.23)

λc,nτ δc,nτ ≤N−n (4.24)

λk,c,nτ ≥0, µc,nτ >0(1≤k≤NK , 1≤c≤NC , 1≤n≤NA) (4.25)
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Therefore, the problem is a typical convex optimization one, as is proven in the

Appendix. Thus, it can be directly solved by efficient optimization methods, e.g., the

interior point method.

Theorem 1: The formulated optimization problem is a convex optimization

problem if

∇n
τ+εnτ−

pcτ∆
4
c,n

•
Nc,n

>0, ∀c, n (4.26)

4.3 Performance Evaluation

This section evaluates GATS by the trace-driven simulation with realistic data. The

trace-driven simulation has been commonly and widely used to conduct research

in CDCs. Besides, this section adopts the publicly available real-world benchmark

workload traces from Google production systems to show the significance of GATS.

The workload trace contains data from a cluster of nearly 12.5k machines for a period

of 29 days in May 2011. The trace is reliable and widely used in many existing studies

in their experiments. Similar to this chapter, many recent studies in top conferences

and journals [23, 24, 31, 76] also adopt the public trace to evaluate their methods.

Thus, this chapter also chooses it and finds it works well in evaluating GATS. In

addition, the simulation is based on the system model, which is widely adopted and

deployed in many production data centers, and is also utilized by many existing

studies like [23, 24, 31, 76]. The following simulation experiments demonstrate their

effectiveness of GATS with realistic trace data from Google cluster1. Here GATS

is implemented and coded in MATLAB 2017, and it is executed in a server with a

32-GB DDR4 memory and an Intel Xeon E7-8893 v4 processor at 3.20 GHz.

4.3.1 Parameter Setting

The simulation experiments adopt the public realistic tasks corresponding to three

typical types of applications (types 1–3) in Google cluster over 24-h-long period on

1https://github.com/google/cluster-data (accessed on May 6, 2019).
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May 10, 2011. The task arriving rates are calculated every 5 minutes (i.e., L=5

minutes). It is worth noting that the length of each time slot is important for GATS.

If the length is too small, e.g., 5 seconds, because many parameters, e.g., prices of

power grid and green energy do not dramatically vary within such a short time, the

profit of the CDC provider cannot be largely increased. On the other hand, if the

length is too large, e.g., 30 minutes, it needs one time slot to update several time-

related parameters, e.g., task arriving rates, in the formulated optimization problem.

This means that GATS needs to wait for one time slot time (30 minutes) before its

execution, but this is obviously unrealistic for most of existing applications in CDCs.

Thus, similar to the work in [76], the length of each time slot in the simulation

experiments is set to 5 minutes. In addition, the real-life prices of power grid over

24-h-long period on the same day in capital area of New York state, U.S.2 are adopted.

Besides, this chapter adops public data about wind speed3 and solar irradiance4 over

24-h-long period on May 10, 2011.

This section considers that three ISPs transmit data between users and three

CDCs where three applications run, i.e., NA=3, NC=3 andNK=3. It is worth noting

that more ISPs, applications and CDCs can be considered but the simulation results

are similar and do not affect the performance comparison. According to the work in

[24], the setting of parameters about energy including power grid, solar energy and

wind energy is presented in Table 4.1. The power ratings of wind and solar energy

are set to 9×108 (W) and 1.65×108 (W), respectively.

According to the work in [31], ζ1=8 (Mb), ζ2=5 (Mb), ζ3=2 (Mb), B̂1=4×106

(Mbps), B̂2=5×106 (Mbps) and B̂3=6×106 (Mbps). Besides, according to the work in

[207], the execution time of each task of three applications is obtained according to the

uniform distribution over the time slot of (0,L). According to the work in [25, 207],

2http://www.nyiso.com/public/index.jsp (accessed on May 10, 2019).
3http://www.nrel.gov/midc/nwtc_m2/ (accessed on May 10, 2019).
4http://www.nrel.gov/midc/srrl_bms/ (accessed on May 10, 2019).
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Table 4.1 Parameter Setting of Energy

Power grid Solar energy Wind energy
αc ψ1c ψ2c (m2) φ1 φ3c (m2) φ2c (kg/m3)

c=1 1.6 0.3 22500 0.45 37500 1.838
c=2 1.4 0.25 18750 0.375 31250 1.531
c=3 1.2 0.2 15000 0.3 25000 1.225

Table 4.2 Parameter Setting of Three CDCs
•
Nc,n (tasks/second) Φ̌c

n (W) Φ̂c
n (W) N̂c,n

n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
c=1 0.15 0.3 0.6 300 150 75 600 300 150 1200 1500 1800
c=2 0.15 0.3 0.6 250 125 62.5 500 250 125 1000 1250 1500
c=3 0.15 0.3 0.6 200 100 50 400 200 100 1200 1500 1800

the execution prices of tasks per unit time in each time slot are set and obtained

according to the uniform distribution over the ranges of (0.24,0.48), (0.16,0.32), and

(0.08,0.16), respectively. In this way, ∇n
τ is calculated.

Additionally, an SLA is typically specified between the CDC provider and users

to guarantee the performance of tasks, and it defines the penalty cost of a refused

task of each application [205]. Therefore, the penalty cost is brought to the CDC

provider due to the refused tasks. In typical SLAs, εnτ is larger than revenue brought

by each task of application n in time slot τ . Here, εnτ=1.5×∇n
τ . According to the

work in [23, 24], N−1 =2, N−2 =8, and N−3 =16. In addition, according to the work in

[24],
•
Nc,n, Φ̌c

n, Φ̂c
n, Q̂n and N̂c,n are set in Table 4.2.

4.3.2 Experimental Results

Figure 4.1 illustrates the occupied bandwidth of three ISPs. It shows that each ISP’s

occupied bandwidth differs from each other and this is caused by the differences in

bandwidth prices of three ISPs presented in Figure 3.5. This is because GATS aims

to maximize the profit of the CDC provider by determining the optimal split of tasks

of all applications among multiple available ISPs. It is shown in Figure 4.1 that

the number of tasks of all applications that are scheduled to transmit through ISP

1 is the greatest while the number of tasks of all applications that are scheduled to
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Figure 4.1 Occupied bandwidth of three ISPs.

transmit through ISP 3 is the least among three ISPs. The experimental result keeps

consistent with bandwidth prices of three ISPs, i.e., the bandwidth price of ISP 3 is

the greatest while that of ISP 1 is the least.

Figure 4.2 shows the number of switched-on servers in each CDC. It is observed

that the number of switched-on servers for each type in three CDCs is less than or

equal to its corresponding limit. Besides, it is observed that the number of switched-on

servers for the same application in three CDCs varies a lot. For instance, the number

of switched-on servers for type 2 in CDC 1 is much greater than that for type 2 in

CDCs 2 and 3. This reason is explained as follows. The available amount of renewable

energy including solar irradiance and wind speed in CDC 1 is the largest among three

CDCs. In addition, the price of power grid of CDC 1 is the least among three CDCs.

Similarly, the number of switched-on servers for type 2 in CDC 3 is much less than

that for type 2 in CDC 2. The reason is that the available amount of renewable

energy in CDC 3 is less than that in CDC 2, and the price of power grid of CDC 3 is

larger than that in CDC 2.

To prove the effectiveness of the proposed GATS, this section further compares

it with two typical task scheduling methods [31, 76] in terms of the throughput and

profit of the CDC provider.

1) A1, like a cheap-electricity-first task scheduling method proposed in [76],
schedules tasks of all applications to CDCs based on the ascending order of
prices of power grid. It means that the CDC with the highest price of power
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Figure 4.2 Number of switched-on servers in each CDC.

grid receives the smallest number of tasks while the CDC with the lowest price
of power grid receives the most tasks.

2) A2, like a green energy-first task scheduling method in [31], schedules tasks
of all applications to CDCs based on the descending order of the amount of
green energy. It means that the CDC with the smallest amount of green energy
receives the smallest number of tasks while the CDC with the largest amount
of green energy receives the most tasks.
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Figure 4.3 Throughput of GATS, A1 and A2.

Figure 4.3 presents the comparison of GATS with A1 and A2 in terms of the

throughput that is the number of tasks of all applications scheduled to three CDCs

in each time slot. It is shown that the throughput of GATS is higher than those of

A1 and A2 in each time slot for all applications. For example, for type 3 application,

GATS’s throughput is higher than those of A1 and A2 by 50.54% and 49.19% on

average, respectively. This is because the available amount of green energy, ISP
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bandwidth capacity and the number of servers for all applications in each CDC are

all constrained. Consequently, some tasks have to be rejected by CDCs in A1 and A2,

and this result demonstrates that CDCs’ throughput is very significantly increased

by using GATS.
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Figure 4.4 Total profit of GATS, A1 and A2.

In addition, the typical average allocation mechanism is used by ISPs in A1 and

A2, and it means that tasks of all applications are equally scheduled among multiple

available ISPs. Figure 4.4 shows the total profit of GATS, A1, and A2, respectively.

In order to guarantee the performance of tasks of each application, an SLA is usually

signed among users and the CDC provider to specify the penalty brought to the CDC

provider if a task of each application n is rejected by the CDCs in time slot τ [77].

In order to motivate the CDC provider to strictly satisfy delay bound constraints of

tasks of all applications, the penalty in SLAs is usually greater than the maximum

profit brought by the execution of each task in CDCs in time slot. In Figure 4.4, the

total profit in time slot τ is obtained by calculating the difference between the profit of

tasks executed in CDCs and the penalty brought by the rejected tasks in time slot τ .

Figure 4.4 shows that compared to A1 and A2, the total profit of GATS is increased

by 33.74% and 33.93% on average, respectively. This is because GATS intelligently

schedules more tasks among multiple available ISPs and CDCs by jointly investigating

and using spatial diversity in prices of power grid of CDCs, ISP bandwidth prices and

the availability of green energy in CDCs.
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4.4 Appendix

To demonstrate the convexity of the formulated optimization problem, this section

needs to prove the following three points [208]:

1) The objective function, i.e., f1−f2, is concave.

2) The equality constraints are affine.

3) The inequality constraints are convex.

4.4.1 Proof of Objective Function

As pcτ ,
◦
Eτ,c, and Ẽτ,c are given parameters whose values are known at the beginning

of each time slot. Therefore,

∆3
τ,c=f

c,∗
1 − pcτEc

τ

=
NA∑
n=1

(
(1−δc,nτ )∇n

τλ
c,n
τ L−δc,nτ εnτλ

c,n
τ L

)
− pcτEc

τ

=
NA∑
n=1

((
(1−δc,nτ )∇n

τλ
c,n
τ L−δc,nτ εnτλ

c,n
τ L

)
− pcτEnc

τ

)
=
NA∑
n=1

∆3
τ,c,n (4.27)

where

∆3
τ,c,n=((1−δc,nτ )∇n

τλ
c,n
τ L−δc,nτ εnτλ

c,n
τ L)− pcτ

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

=λc,nτ L(∇n
τ −

pcτ∆
4
c,n

•
Nc,n

)−
pcτ∆

5
c,nµ

c,n
τ L

•
Nc,n

−δc,nτ λc,nτ L(∇n
τ+εnτ−

pcτ∆
4
c,n

•
Nc,n

) (4.28)

It is worth noting that λc,nτ L(∇n
τ −

pcτ∆4
c,n

•
Nc,n

) and −pcτ∆5
c,nµ

c,n
τ L

•
Nc,n

are concave with

respect to λc,nτ and µc,nτ , respectively. Therefore, based on Theorem 1, the objective

function, i.e., f1−f2, is concave if the following function is convex,

∆6
c,n=λc,nτ δc,nτ

=λc,nτ ∆1
τ,c,nexp

− 1
2
Min
τ≥1

∆2
τ,c,n (4.29)
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Besides, as exp−x is non-increasing with respect to a given variable x, the

following function has to be convex.

∆6
c,n=Max

τ≥1

(
λc,nτ ∆1

τ,c,nexp
− 1

2
∆2
τ,c,n

)
(4.30)

The max function preserves the convexity [208], and therefore, ∆6
c,n is convex if

the following function,

∆6
τ,c,n=λc,nτ ∆1

τ,c,nexp
− 1

2
∆2
τ,c,n (4.31)

is convex.

Let t=rστ,c,n+λc,nτ . Therefore,∫ ∞
µc,nτ

(t− µc,nτ ) exp
− (t−λc,nτ )2

2(στ,c,n)2 dt

=στ,c,n

∫ ∞
µ
c,n
τ −λc,nτ
στ,c,n

(rχc,nτ + λc,nτ − µc,nτ ) exp−
r2

2 dr

=στ,c,n

∫ ∞
µ
c,n
τ −λc,nτ
στ,c,n

rστ,c,nexp
− r

2

2 dr +

∫ ∞
µ
c,n
τ −λc,nτ
στ,c,n

(λc,nτ − µc,nτ ) exp−
r2

2 dr


=στ,c,n

[−στ,c,nexp− r22 ]∞
µ
c,n
τ −λc,nτ
στ,c,n

+

∫ ∞
µ
c,n
τ −λc,nτ
στ,c,n

(λc,nτ − µc,nτ ) exp−
r2

2 dr


=(στ,c,n)2

exp− (µ
c,n
τ −λc,nτ )2

2(στ,c,n)2 +

∫ ∞
µ
c,n
τ −λc,nτ
στ,c,n

(λc,nτ − µc,nτ )

στ,c,n
exp−

r2

2 dr
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√
2π (λc,nτ − µc,nτ )
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µ
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στ,c,n

1√
2π
exp−

r2

2 dr


=(στ,c,n)2[exp

− (µ
c,n
τ −λc,nτ )2

2(στ,c,n)2 +

√
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(1−∆7

τ,c,n(
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στ,c,n

))] (4.32)
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In equation (4.32), ∆7
τ,c,n denotes the function of standard normal distribution.

Therefore, based on equation (4.32), ∆1
τ,c,n can be rewritten as:

∆1
τ,c,n=

στ,c,n

λc,nτ
√

2π

1 + exp
(µ
c,n
τ −λc,nτ )2

2(στ,c,n)2

∫ ∞
µ
c,n
τ −λc,nτ
στ,c,n

(λc,nτ − µc,nτ )

στ,c,n
exp−

r2

2 dr


=

στ,c,n

λc,nτ
√

2π

1− (µc,nτ − λc,nτ )

στ,c,n
exp

(µ
c,n
τ −λc,nτ )2

2(στ,c,n)2

∫ ∞
µ
c,n
τ −λc,nτ
στ,c,n

exp−
r2

2 dr

 (4.33)

Let ∆8
τ,c,n=στ,c,n

λc,nτ
. Then, equation (4.33) can be written as:

∆1
τ,c,n=

∆8
τ,c,n√
2π

1− 1

∆8
τ,c,n

(
µc,nτ
λc,nτ
−1

)
exp

(
µ
c,n
τ
λ
c,n
τ
−1

)2

2(∆8
τ,c,n)

2
∫ ∞

1

∆8
τ,c,n

(
µ
c,n
τ
λ
c,n
τ
−1

) exp− r22 dr
 (4.34)

Similarly, ∆2
τ,c,n can be written as:

∆2
τ,c,n=

(
T̂n

µc,nτ
λc,nτ

+τ
(
µc,nτ
λc,nτ
−1
))2

τ Γτ,c,n(0)

(λc,nτ )2 +2
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=
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(
T̂n
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+τ
(
µc,nτ
λc,nτ
−1
))2

τ
(

∆8
τ,c,n

)2

+2
τ−1∑̀
=1

(τ − `)Γτ,c,n(`)

(λc,nτ )2

=

(
T̂n

µc,nτ
λc,nτ

+τ
(
µc,nτ
λc,nτ
−1
))2

∆9
τ,c,n

(4.35)

where ∆9
τ,c,n=τ

(
∆8
τ,c,n

)2

+2
τ−1∑̀
=1

(τ − `)Γτ,c,n(`)

(λc,nτ )2 .

Then, based on equations (4.31), (4.34) and (4.35), it is worth noting that ∆6
τ,c,n

is the perspective function of the function (4.36) that is obtained by replacing µc,nτ
λc,nτ

with µc,nτ in equations (4.34) and (4.35). Then, (4.36) is obtained as:

∆̂6
τ,c,n=∆̂1

τ,c,nexp
− 1

2
∆̂2
τ,c,n (4.36)

∆̂1
τ,c,n=

∆8
τ,c,n√
2π

1− 1

∆8
τ,c,n

(µc,nτ −1) exp

(µc,nτ −1)
2

2(∆8
τ,c,n)

2
∫ ∞

1

∆8
τ,c,n

(µc,nτ −1)
exp−

r2

2 dr

 (4.37)
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∆̂2
τ,c,n=

(
T̂nµ

c,n
τ +τ (µc,nτ −1)

)2

∆9
τ,c,n

=

((
T̂n+τ

)
(µc,nτ −1) +T̂n

)2

∆9
τ,c,n

(4.38)

According to the work in [208], ∆6
τ,c,n is convex if ∆̂6

τ,c,n is convex. Therefore,

the convexity of ∆̂6
τ,c,n has to be proven. Based on the work in [208], ∆̂6

τ,c,n is convex

if (∆̂6
τ,c,n)

′′≥0 holds. For simplicity, β is defined as:

β=
1

∆8
τ,c,n

(µc,nτ −1) (4.39)

Therefore,

∆̂6
τ,c,n (β) =∆̂1

τ,c,n(β)exp−
1
2

∆̂2
τ,c,n(β) (4.40)

where
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1− βexp

β2
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β

exp−
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2 dr

]
(4.41)

∆̂2
τ,c,n(β)=

((
T̂n+τ

)
∆8
τ,c,nβ+T̂n

)2

∆9
τ,c,n

(4.42)

Therefore, (∆̂6
τ,c,n(β))

′ is calculated as:

(∆̂6
τ,c,n(β))

′
=(∆̂1
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′
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2
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(4.43)

Then, (∆̂6
τ,c,n(β))

′′ is calculated as:

(∆̂6
τ,c,n(β))

′′
=exp−

1
2

∆̂2
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′′ − (∆̂1

τ,c,n(β))
′
(∆̂2

τ,c,n(β))
′
+

1
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] (4.44)
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(∆̂1
τ,c,n(β))

′ is obtained as:

(∆̂1
τ,c,n(β))

′
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∆8
τ,c,n√
2π

[
−exp

β2

2 (1 + β2)
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Based on equations (4.37), the following equation is obtained.
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exp−
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2 dr=
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Thus, (∆̂1
τ,c,n(β))

′ can be rewritten as:
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Based on equations (4.41) and (4.47), (∆̂1
τ,c,n(β))

′′ can be rewritten as:
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Then, (∆̂6
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′′ is calculated as:
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)
] (4.49)

Besides, according to the definition of the autocovariance function [209],

Γτ,c,n(`)≤Γτ,c,n(0)=(στ,c,n)2. Therefore,2

∆9
τ,c,n=τ

(
∆8
τ,c,n

)2

+2
τ−1∑
`=1

(τ − `)Γτ,c,n(l)

(λc,nτ )2

≤τ
(

∆8
τ,c,n

)2

+2
τ−1∑
`=1

(τ − `)Γτ,c,n(0)

(λc,nτ )2

≤τ
(

∆8
τ,c,n

)2

+2
τ−1∑
`=1

(τ − `)(στ,c,n)2

(λc,nτ )2

≤τ
(

∆8
τ,c,n

)2

+2
τ−1∑
`=1

(τ − `)
(

∆8
τ,c,n

)2

≤τ
(

∆8
τ,c,n

)2

+2
(

∆8
τ,c,n

)2
τ−1∑
`=1

(τ − `)

≤τ
(

∆8
τ,c,n

)2

+
(

∆8
τ,c,n

)2

τ(τ − 1) (4.50)

≤τ 2
(

∆8
τ,c,n

)2

(4.51)

Therefore,

τ
(

∆8
τ,c,n

)2

≤∆9
τ,c,n≤τ 2

(
∆8
τ,c,n

)2

(4.52)
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In addition, based on equation (4.42), (∆̂2
τ,c,n(β))

′ and (∆̂2
τ,c,n(β))

′′ can be

calculated as:

(∆̂2
τ,c,n(β))

′
=

(((
T̂n+τ

)
∆8
τ,c,nβ+T̂n

)2
)′

∆9
τ,c,n

=

2

((
T̂n+τ

)
∆8
τ,c,nβ+T̂n

)(
T̂n+τ

)
∆8
τ,c,n

∆9
τ,c,n

(4.53)

(∆̂2
τ,c,n(β))

′′
=

2

((
T̂n+τ

)
∆8
τ,c,nβ+T̂n

)(
T̂n+τ

)2 (
∆8
τ,c,n

)2

∆9
τ,c,n

(4.54)

Therefore,(
(∆̂2

τ,c,n(β))
′
)2

4
−

(∆̂2
τ,c,n(β))

′′

2

=−

(
T̂n+τ

)2 (
∆8
τ,c,n

)2

∆9
τ,c,n

+

((
T̂n+τ

)
∆8
τ,c,nβ+T̂n

)2 (
T̂n+τ

)2 (
∆8
τ,c,n

)2

(
∆9
τ,c,n

)2 (4.55)

=
1

∆9
τ,c,n

(
T̂n+τ

)2 (
∆8
τ,c,n

)2
[

1

∆9
τ,c,n

((
T̂n+τ

)
∆8
τ,c,nβ+T̂n

)2

− 1

]

>
1

∆9
τ,c,n

(
T̂n+τ

)2 (
∆8
τ,c,n

)2
[

1

∆9
τ,c,n

(
T̂n+τ

)2 (
∆8
τ,c,n

)2

v2 − 1

]

≥ 1

∆9
τ,c,n

(
T̂n+τ

)2 (
∆8
τ,c,n

)2


(
T̂n+τ

)2

β2

τ 2
− 1


>

1

∆9
τ,c,n

(
T̂n+τ

)2 (
∆8
τ,c,n

)2 (
β2 − 1

)
≥

(
T̂n+τ

)2

τ 2

(
β2 − 1

)
>β2 − 1 (4.56)
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According to the lower and upper bounds pointed in [210], the following equation

is obtained.
2

β +
√
β2 + 4

≤exp
β2

2

∫ ∞
β

exp
−r2

2 dr≤ 2

β +
√
β2 + 8

π

(4.57)

Therefore,

0<
∆8
τ,c,n√
2π

1− 2β

β+
√
β2+ 8

π

≤∆̂1
τ,c,n(β)≤

∆8
τ,c,n√
2π

[
1− 2β

β+
√
β2+4

]
(4.58)

∆8
τ,c,n√

2π∆̂1
τ,c,n(β)

≥

(
β +

√
β2 + 4

)2

4
=

2β2 + 4 + 2β
√
β2 + 4

4
>=

4β2 + 4

4
=β2 + 1 (4.59)

Then, following (4.49), (4.56), and (4.58), the following equation is obtained.

(∆̂6
τ,c,n (β))

′′
>
exp−

1
2

∆̂2
τ,c,n(β)∆̂1

τ,c,n(β)

β
[β3 − (∆̂2

τ,c,n(β))
′
(β2 + 1)

+β(3 + (β2 − 1)) +
(
β2 + 1

) (
(∆̂2

τ,c,n(β))
′ − β

)
]

=
exp−

1
2

∆̂2
τ,c,n(β)∆̂1

τ,c,n(β)

β

(
β3 + β

)
=exp−

1
2

∆̂2
τ,c,n(β)∆̂1

τ,c,n(β)
(
β2 + 1

)
≥0 (4.60)

Consequently, ∆̂6
τ,c,n is convex, and therefore, ∆6

τ,c,n and ∆6
c,n are convex. Then,

the objective function, i.e., f1−f2, is concave.

4.4.2 Proof of Constraints

It is worth noting that constraint (4.23) is affine with respect to λc,nτ . What’s more, it

is worth noting that constraints (4.19), (4.20), (4.22), (4.23) and (4.25) are all linear.

Therefore, the convexity of constraints (4.21) and (4.24) has to be proven.
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First, the convexity of constraint (4.21) has to be proven as follows. It is

transformed into the following form.

◦
Eτ,c+Ẽτ,c +

NA∑
n=1

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1−δc,nτ )

•
Nc,n

L

≤0 (4.61)

According to equation (4.29), λc,nτ δc,nτ is convex, and therefore, constraint (4.21)

is convex. Similarly, constraint (4.24) is also convex. Therefore, the proof is complete

and the formulated optimization problem is convex.

4.5 Summary

Cloud data centers (CDCs) need a huge amount of bandwidth and energy cost to

execute multiple applications. Several existing studies investigate and utilize a profit

maximization problem in CDCs. Nevertheless, spatial variations of Internet service

provider (ISP) bandwidth prices, availability of green energy, prices of power grid, and

revenue brought by the execution of tasks bring a big challenge and opportunity for

engineers to maximize the total profit of the CDC provider. This chapter formulates

the problem as a convex optimization one and uses an interior point method to solve

it. The resulting geography-aware task scheduling approach can maximize the total

profit of the CDC provider by jointly and optimally determining the allocation of

tasks of all applications among multiple ISPs and task service rates of servers in

CDCs. It intelligently schedules the tasks of all applications in comparison with two

typical task scheduling methods. Real-life data-driven simulation results show that

it increases the total profit and throughput of the CDC provider compared to two

typical state-of-the-art task scheduling approaches.
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CHAPTER 5

SPATIO-TEMPORAL TASK SCHEDULING FOR HETEROGENEOUS
DELAY-TOLERANT APPLICATIONS IN CDCS

This chapter presents the details of the proposed Spatio-Temporal Task Scheduling

(STTS) algorithm, and it is organized as follows. Section 5.1 describes the architecture

of cloud data centers (CDCs). Section 5.2 formulates an energy cost minimization

problem for a CDC provider. The proposed STTS method is presented in Section 5.3.

Section 5.4 introduces the details of a Genetic Simulated-annealing-based Particle

Swarm Optimization (GSPSO) algorithm. Section 5.5 presents the experimental

results by using real-life data. Section 5.6 concludes this chapter.

5.1 Architecture of CDCs

A CDC provider manages multiple CDCs located in different geographical locations

and provides heterogeneous applications to global users. Figure 5.1 illustrates a CDC

architecture. Each CDC usually manages a server cluster consisting of a great number

of servers ranging from several hundreds to several thousands. Besides, to guarantee

availability, robustness and response time, each application is deployed in multiple

available CDCs. Similar to the work in [110], replicas including data and programs for

each application are copied and shared across all CDCs. Therefore, each application

and its data are strictly consistent with each other, and this means that tasks can be

independently executed within each CDC.

Users’ tasks are sent through multiple devices, e.g., smart phones, computers,

laptops and servers. Component Classifier classifies tasks according to the types of

their applications and specifies the arriving rate of each application’s tasks. Then,

arriving tasks of the same application are enqueued into a separate First-Come-First-

Served (FCFS) queue. Figure 5.1 shows that the information of each FCFS queue
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Figure 5.1 Architecture of CDCs.

is transmitted to Task Scheduler that is the focus of this chapter. STTS runs in it,

and periodically determines the optimal strategy that schedules all arriving tasks to

CDCs while strictly meeting their delay bound constraints.

As is shown in Figure 5.1, each CDC obtains energy from three types of energy

suppliers, i.e., power grid, solar panels and wind turbines. Their information includes

prices of power grid, conversion rate of wind to electricity, density of on-site air, rotor

area of wind turbines, wind speed, active irradiance area of solar panels, conversion

rate of solar irradiance to electricity, solar irradiance, etc. It is periodically obtained

and transmitted to Task scheduler.

The energy cost minimization problem for a CDC provider is formulated as

a nonlinear constrained optimization one in Section 5.2. It is solved by GSPSO in

each iteration of STTS. According to the final solution of GSPSO, STTS intends to

minimize energy cost of a CDC provider while strictly meeting tasks’ delay bound

constraints for their tasks. Based on the scheduling strategy, Task Scheduler jointly

specifies the optimal split of all arriving tasks among CDCs, and determines the

optimal setting of servers in each CDC in each time slot. Then, each server in each

CDC is configured accordingly.
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5.2 Problem Formulation

Based on the architecture in Figure 5.1, this section formulates the energy cost

minimization problem for the CDC provider. Similar to the work in [21, 117], each

CDC is modeled as a discrete-time system that evolves with time slots. Nowadays, a

growing number of high-performance servers are widely deployed in large-scale data

centers. Hence, similar to the work in [21], it is reasonable to assume that each task

can completely finish its execution in a single time slot.

5.2.1 Delay Bound Constraint

Let λc,nτ+b denote the task arriving rate of application n in CDC c in τ+b (0≤b≤Bn).

Let µc,nτ+b denote the service rate of servers of application n in CDC c in time slot τ+b.

NA denotes the number of applications in each CDC. Let Υ=maxn∈{1,2,···,NA}(Bn).

The task service rate of each application n denotes the rate at which its tasks are

scheduled to execute in CDCs and removed from its own FCFS queue in each time

slot. Let
+

Nτ,c,n denote the number of tasks of application n in CDC c that have arrived

at the start of each time slot τ .
+

λ`,c,n (1≤`≤τ) denotes the accumulated task arriving

rate of application n in CDC c in `. δc,n` denotes the loss possibility of application

n’s tasks in CDC c in time slot `. Let L denote the length of each time slot. Let
�
Nτ,c,n denote the accumulated number of scheduled tasks of application n in CDC c

by time slot τ . Then,
+

Nτ,c,n and
�
Nτ,c,n are obtained as:

+

Nτ,c,n=
τ∑
`=1

λc,n` L (5.1)

�
Nτ,c,n=

τ∑
`=1

(
+

λ`,c,n(1− δc,n` )L

)
(5.2)

λ†,c,nτ+b denotes the remaining task arriving rate of application n in CDC c in τ+b.

To meet application n’s delay bound constraint, all its tasks in τ−Bn or before must

be scheduled to CDCs. Let λc,nτ+b denote the task arriving rate of application n in
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CDC c in τ+b. Therefore, λ†,c,n` =0 (`≤τ−Bn−1). Then,

+

λτ+b,c,n=λc,nτ+b+
τ+b−1∑

`=τ+b−Bn

λ†,c,n` (5.3)

Similar to the work in [110], this chapter models application n’s servers in CDC

c as an M/M/1/Q̂c
n/∞ queueing system. Let Q̂c

n denote the capacity limit of the

task queue of application n in CDC c, and it is the maximum number of tasks that

application n’s servers in CDC c can execute. Then,

δc,nτ+b=



1−
+
λτ+b,c,n

µ
c,n
τ+b

1−

+
λτ+b,c,n

µ
c,n
τ+b

Q̂cn+1

(
+
λτ+b,c,n

µc,nτ+b

)Q̂cn

µc,nτ+b>0,

1 µc,nτ+b=0.

(5.4)

To guarantee the stability of the task queue of application n in CDC c,
+

λτ+b,c,n

must be less than its task service rate in time slot τ+b, i.e.,

+

λτ+b,c,n<µ
c,n
τ+b, 0≤b≤Bn (5.5)

Let λnτ+b denote the task arriving rate of application n in time slot τ+b. In this

slot, the sum of task arriving rates of application n in CDCs must be equal to its task

arriving rate. NC denotes the number of CDCs. Then,

λnτ+b=
NC∑
c=1

λc,nτ+b, 0≤b≤Bn (5.6)

It is worth noting that tasks of application n in CDC cmust have been scheduled

to execute in CDCs within their delay bound Bn. This means that all tasks of

application n in CDC c that arrive in time slot τ+b must have been scheduled from

τ+b to τ+b+Bn. Therefore, all tasks of application n in CDC c in time slot τ+b−Bn
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or before must have been executed by time slot τ+b. Then,

+

Nτ−Bn−1,c,n+
τ−Bn+b∑
`=τ−Bn

(
λc,n` L

)
≤
�
Nτ−1,c,n+

τ+b∑
`=τ

(
+

λ`,c,n
(
1− δc,n`

)
L

)
, 0≤b≤Bn (5.7)

In constraint (5.7), it is worth noting that in time slot τ+b,
+

λ`,c,n (τ+b+1≤`≤τ+

b+Bn) can be well predicted by many existing prediction algorithms, e.g., stacked

auto-encoder [211] and deep neural networks [212]. Nevertheless, they are not the

focus of this chapter and therefore, at the start of time slot τ+b,
+

λ`,c,n is set to λc,n` ,

i.e.,
+

λ`,c,n=λc,n` (τ+b+1≤`≤τ+b+Bn).

In addition,
+

Nτ,c,n is the sum of
+

Nτ−Bn−1,c,n and
∑τ

`=τ−Bn

(
λc,n` L

)
. Then,

+

Nτ,c,n

is obtained as follows.

+

Nτ,c,n=
+

Nτ−Bn−1,c,n+
τ∑

`=τ−Bn

(
λc,n` L

)
(5.8)

The delay bound constraint of tasks of application n in CDC c that arrive in

time slot τ is strictly met if they are scheduled to execute in CDCs from τ to τ+Bn.

At the start of time slot τ , the number of tasks of application n in CDC c scheduled

in τ+b (0≤b≤Bn) is
+

λτ+b,c,n(1− δc,nτ+b)L. Then, the number of tasks of application n

in CDC c executed by τ+Bn is obtained as:

�
Nτ+Bn,c,n=

�
Nτ−1,c,n+

τ+Bn∑
`=τ

(
+

λ`,c,n(1− δc,n` )L

)

Thus, due to conservation of application n’s tasks,
+

Nτ,c,n should equal
�
Nτ+Bn,c,n,

i.e.,
+

Nτ,c,n=
�
Nτ+Bn,c,n. Then,

+

Nτ−Bn−1,c,n+
τ∑

`=τ−Bn

(
λc,n` L

)
=
�
Nτ−1,c,n+

τ+Bn∑
`=τ

(
+

λ`,c,n(1− δc,n` )L

)
(5.9)

Therefore, constraints (5.7) and (5.9) can ensure that delay bound constraints

of tasks of all applications must be met.
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5.2.2 Power Consumption Model

Then, the power consumption model adopted in CDCs is introduced here. Similar

to the work in [110], it is assumed that servers of each application are homogeneous,

and the energy consumed by servers of the same application is identical. Let
•
Nc,n

denote the number of tasks of application n executed by each of its switched-on

servers in each minute in CDC c.
o

N τ+b,c,n denotes the number of switched-on servers

of application n in CDC c in time slot τ+b. Then,
o

N τ+b,c,n is obtained as:

o

N τ+b,c,n=
µc,nτ+b
•
Nc,n

(5.10)

Let N̂c,n denote the maximum available number of servers of application n in

CDC c. Then,
o

N τ+b,c,n needs to be less than or equal to N̂c,n, i.e.,

o

N τ+b,c,n≤N̂c,n, 0≤b≤Bn (5.11)

Then, the total energy consumption of CDCs by calculating the sum of the

energy consumed by all servers of all applications and the energy consumed by

facilities, e.g., lighting and cooling, is obtained. Let Φ̂c
n denote the peak power of

a server of application n in CDC c. Let Φ̌c
n denote the idle power of a server of

application n in CDC c. Let αc denote the power usage effectiveness (PUE) of CDC

c. PUE is an important metric to evaluate the energy efficiency of data centers [213].

It is calculated as the ratio of energy consumed by a CDC to the total energy of its

servers. Currently, the value of PUE is typically 1.2–2.0 for most large-scale existing

commercial data centers.

In addition, let uc,nτ+b denote the average CPU utilization of servers of application

n in CDC c in time slot τ+b. Therefore, following the work in [24], the total power

consumption of CDCs in time slot τ+b is obtained as:

Pτ+b=
NC∑
c=1

NA∑
n=1

(
o

N τ+b,c,n(Φ̌c
n+(αc−1)Φ̂c

n+(Φ̂c
n−Φ̌c

n)uc,nτ+b)) (5.12)
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The number of tasks executed by each switched-on server of application n in

time slot τ+b is obtained as:

L
(
1−δc,nτ+b

) +

λτ+b,c,n

o

N τ+b,c,n

(5.13)

Besides, the busy period of each switched-on server of application n in CDC c

in time slot τ+b is
L(1−δc,nτ+b)

+
λτ+b,c,n

•
Nc,n

o
Nτ+b,c,n

minutes. Then, uc,nτ+b is obtained as:

unτ+b=
L
(
1−δc,nτ+b

) +

λτ+b,c,n

•
Nc,n

o

N τ+b,c,n

(5.14)

Ec
τ+b denotes the total energy consumed by the execution of tasks of all

applications in CDC c in time slot τ+b. Based on equations (5.10), (5.12), and

(5.14) Ec
τ+b (0≤b≤Υ) is obtained as:

Ec
τ+b=

NA∑
n=1

∆5
c,nµ

c,n
τ+b+∆4

c,n

+

λτ+b,c,n(1− δc,nτ+b)
•
Nc,n

L

 (5.15)

where

∆5
c,n , Φ̌c

n+(αc−1)Φ̂c
n

∆4
c,n , Φ̂c

n−Φ̌c
n

Let Êc denote the maximum amount of energy in CDC c in each time slot.

Therefore, the total energy consumed by CDC c in time slot τ+b (0≤b≤Υ) cannot

exceed Êc, i.e.,
NA∑
n=1

∆5
c,nµ

c,n
τ+b+∆4

c,n

+

λτ+b,c,n(1− δc,nτ+b)
•
Nc,n

L

≤Êc (5.16)

Typically, different types of green energy facilities, e.g., wind turbines and solar

panels, are installed in CDCs. This chapter focuses on two types of renewable energy
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including solar and wind energy. The use of green energy can decrease the power

grid energy consumption of CDCs, and reduce its detrimental effect to the global

environment. Similar to the work in [76], the length of each time slot is small enough

and it is reasonable to assume that the wind and solar energy stay the same within

each time slot. Let
◦
Eτ+b,c denote the amount of solar energy produced by solar panels

in CDC c in time slot τ+b. Let Ẽτ+b,c denote the amount of wind energy produced

by wind turbines in CDC c in time slot τ+b. Similar to Chapter 3,
◦
Eτ+b,c and Ẽτ+b,c

are calculated with equations (3.5) and (3.6) in the green energy model introduced

in Section 3.2, respectively.

5.2.3 Constrained Optimization Problem

Let f22 denote the cost of power grid energy consumed by the execution of tasks of

all applications in CDCs from time slots τ to τ+Γ. Then, f22 is calculated as:

f22= Min
λc,nτ+b,µ

c,n
τ+b


Υ∑
b=0

NC∑
c=1

pcτ+b

(
max

(
Ec
τ+b −

◦
Eτ+b,c − Ẽτ+b,c, 0

))

 (5.17)

pcτ+b (0≤b≤Υ) is the price of power grid in CDC c in time slot τ+b. Ec
τ+b

(0≤b≤Υ) denotes the total amount of energy consumed by the execution of tasks of

all applications in CDC c in time slot τ+b. It is assumed that the prices of power

grid differ from a time slot to another but keep the same in each time slot. The

amount of grid energy consumed by CDCs in time slot τ+b is obtained as max(Ec
τ+b−

◦
Eτ+b,c − Ẽτ+b,c, 0). The objective in the nonlinear constrained optimization model is

to minimize f22. Thus, the energy cost minimization problem is formulated as:

Min
λc,nτ+b,µ

c,n
τ+b

{f22}

subject to

o

N τ+b,c,n≤N̂c,n (5.18)
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NA∑
n=1

∆5
c,nµ

c,n
τ+b+∆4

c,n

+

λτ+b,c,n(1− δc,nτ+b)
•
Nc,n

L

≤Êc (5.19)

+

Nτ−Bn−1,c,n+
τ−Bn+b∑
`=τ−Bn

(
λc,n` L

)
≤
�
Nτ−1,c,n+

τ+b∑
`=τ

(
+

λ`,c,n
(
1− δc,n`

)
L

)
(5.20)

+

Nτ−Bn−1,c,n+
τ∑

`=τ−Bn

(
λc,n` L

)
=
�
Nτ−1,c,n+

τ+Bn∑
`=τ

(
+

λ`,c,n(1− δc,n` )L

)
(5.21)

+

λτ+b,c,n<µ
c,n
τ+b (5.22)

λnτ+b=
NC∑
c=1

λc,nτ+b (5.23)

µc,nτ+b≥0, λc,nτ+b≥0, 0≤b≤Bn (5.24)

µc,nτ+b=0, λc,nτ+b=0, Bn<b≤Υ (5.25)

Constraints (5.24) and (5.25) give valid ranges of decision variables including

λc,nτ+b and µ
c,n
τ+b. Let φτ+b,4c and ψτ+b,3c denote the wind speed and the solar irradiance

of CDC c in time slot τ+b. In addition, similar to the work in [76], it is assumed

that time-related parameters, e.g., pcτ+b, φτ+b,4c and ψτ+b,3c can be well predicted by

using typical prediction algorithms, e.g., deep neural networks, at the beginning of

each time slot τ+b. Then, the algorithm that solves the energy cost minimization

problem is presented in Section 5.4. The final decision variables transformed by the

optimal solution to the energy cost minimization problem determine the optimal task

scheduling among CDCs in each time slot. In this way, the energy cost of the CDC

provider is minimized while delay bound constraints of tasks of all applications are

strictly met.

5.3 Spatio-Temporal Task Scheduling

It is worth noting that the objective function in the energy cost minimization problem

is nonlinear in terms of λc,nτ+b and µc,nτ+b. Therefore, it is a constrained nonlinear
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programming problem. There are many complex constraints and this section uses

a penalty function method [214] to transform each constraint into its corresponding

penalty. In this way, the energy cost minimization problem is transformed into an

unconstrained optimization one that is much easier to solve. Let x denote the vector

of decision variables including λc,nτ+b and µ
c,n
τ+b. Then,

Min
x

{
f̃22=

∞
Nf+f22

}
(5.26)

In equation (5.26), f̃22 denotes the augmented objective function and
∞
N is a

large positive integer. Let f denote the penalty of all constraints if they are violated

and it is obtained as:

f=
N 6=∑
l=1

(max{0,−gl(x)})
0
γ1+

N=∑
m=1

∣∣hm(x)
∣∣0γ2 (5.27)

In equation (5.27), 0
γ1 and 0

γ2 are two positive constants. Each equality

constraint m(1≤m≤N) is transformed into hm(x)=0. If it is met, its penalty is 0;

otherwise, its penalty is
∣∣hm(x)

∣∣0γ2 . Similarly, each inequality constraint l(1≤l≤N 6=)

is transformed into gl(x)≥0. If it is met, its penalty is 0; otherwise, its penalty

is (max{0,−gl(x)})
0
γ1 . For example, constraint (6.25) is first transformed into

N̂c,n−
o

N τ+b,c,n≥0 (0≤b≤Υ), and its penalty is (max{0,−(N̂c,n−
o

N τ+b,c,n)})
0
γ1 . Then,

the unconstrained optimization problem is obtained and it is solved by using the

proposed GSPSO presented in Section 5.4.

Algorithm 2 shows the pseudo codes of STTS. Line 1 initializes λc,nτ (Υ−Bn≤τ≤Υ−1),
+

NΥ−Bn−1,c,n and
�
NΥ−1,c,n with 0. Line 2 initializes λ†,c,nτ and

+

λτ,c,n (Υ≤τ≤N ∗) with

λc,nτ . N ∗ denotes the total number of time slots.
+

λτ,c,n is calculated according

to equation (5.3). Line 6 obtains decision variables including λc,nτ+b and µc,nτ+b by

solving the unconstrained optimization problem with GSPSO. Lines 7–9 schedule

(
+

λτ,c,n(1−δc,nτ )L) tasks to CDCs. λ†,c,n` (τ−Bn≤`≤τ) is updated in Lines 10–20. Lines

8–9 update
+

Nτ−Bn,c,n and
�
Nτ,c,n.

112



Algorithm 2 STTS (Spatio-Temporal Task Scheduling)

1: Initialize λc,nτ (Υ−Bn≤τ≤Υ−1),
+

NΥ−Bn−1,c,n and
�
NΥ−1,c,n with 0

2: Initialize λ†,c,nτ and
+

λτ,c,n (Υ≤τ≤N ∗) with λc,nτ
3: τ ← Υ
4: while τ≤N ∗ do
5: Calculate

+

λτ,c,n based on equation (5.3).
6: Solve the unconstrained optimization problem to obtain λc,nτ , µc,nτ via GSPSO

7: Schedule (
+

λτ,c,n(1− δc,nτ )L) tasks to CDCs

8:
+

Nτ−Bn,c,n ←
+

Nτ−Bn−1,c,n+λc,nτ−BnL

9:
�
Nτ,c,n ←

�
Nτ−1,c,n+(

+

λτ,c,n(1− δc,nτ )L)

10: temp = (
+

λτ,c,n(1− δc,nτ )L)
11: for `← τ−Bn to τ do
12: if λ†,c,n` L <= temp then
13: temp← temp− λ†,c,n` L

14: λ†,c,n` ← 0
15: else
16: λ†,c,n` ← λ†,c,n` − temp

L
17: temp← 0
18: break
19: end if
20: end for
21: τ ← τ + 1
22: end while

5.4 Genetic Simulated-annealing-based Particle Swarm Optimization

Currently, there are several existing exact and deterministic algorithms, e.g., fuzzy

adaptive dynamic programming [215] and conjugate gradient descent [216], to solve

the formulated unconstrained optimization problem. Nevertheless, they usually

depend on specific structures of objective functions, e.g., those having the first-order

or second-order derivatives. In addition, the search space increases exponentially

with the problem size, and therefore, the quality of their final solutions is usually

unsatisfying when they are adopted to solve these problems.

Many researchers adopt meta-heuristic optimization algorithms [217] due to

their advantages including wide applicability, robustness, easy implementation, good

exploitation and exploration ability, and fast speed. They can prevent disadvantages
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of these deterministic algorithms and have been commonly applied to solve many

complicated problems. On the contrary, each meta-heuristic algorithm has its

advantages and disadvantages [218]–[220] . For example, particle swarm optimization

(PSO) is commonly used to solve optimization problems because of its quick

convergence [219]. Nevertheless, it usually traps into locally optimal solutions when

it is applied and adopted to solve problems with high-dimension solution spaces [218].

Besides, simulated annealing (SA) is widely adopted to solve different problems. Its

Metropolis acceptance rule enables moves that worsen the objective function value.

Consequently, SA can escape from local optima and finally converge to global one by

specifying a suitable temperature cooling rate. On the other hand, its convergence

process is very slow [220]. In addition, the genetic operations of genetic algorithm

(GA) can increase the diversity of particles in PSO, and improve both efficiency and

accuracy of global search. This chapter proposes a hybrid meta-heuristic algorithm

named GSPSO that incorporates genetic operations of GA and the Metropolis

acceptance rule of SA into the PSO.

Particles in PSO update velocities and positions according to learning experi-

ences of individuals and the current swarm. The size of the swarm is denoted by |X|.

θi1 and xi denote the velocity and position of particle i (i=1, 2, . . ., |X|). Each position

is designed as a ND-dimension vector. The first NA∗NC∗(Υ+1) elements of each

vector store λc,nτ+b (0≤b≤Υ). The next NA∗NC∗(Υ+1) elements of each vector store

µc,nτ+b (0≤b≤Υ). The last element of each vector stores the value of f̃22. Consequently,

ND=2∗NA∗NC∗(Υ+1)+1. x̌i denotes the locally optimal position of particle i. The

globally optimal position of the current swarm is denoted by x̂. Specifically, θi1 and

xi are updated as follows.

θi1=θP5 ·θi1 + θ̌P1 w9 (x̌i − xi) + θ̂P1 w10 (x̂− xi) (5.28)

xi=xi+θ
i
1 (5.29)
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w9 and w10 denote two random numbers that are uniformly produced in the

range of (0, 1). θ̌P1 and θ̂P1 denote coefficients of individual and social acceleration

reflecting the influence of x̌i and x̂, respectively. However, PSO is easy to trap

into locally optimal solutions and it leads to premature convergence. Besides, the

optimization process oscillates when x̌i and x̂ vary greatly. Genetic operations of GA

can breed superior particles and improve their global search ability [58].

Therefore, let x́Pi denote the position of a superior particle corresponding to

particle i and it guides the optimization process of particles in PSO. x́Pi is the

combination of x̌i and x̂, i.e.,

x́Pi =
θ̌P1 w9x̌i+θ̂

P
1 w10x̂

θ̌P1 w9+θ̂P1 w10

(5.30)

Let ω denote the inertia weight. Then, θi1 and xi of particle i are updated as:

θi1=ω·θi1 + θP2 ∗w11

(
x́Pi − xi

)
(5.31)

xi=xi+θ
i
1 (5.32)

In equation (5.31), θP2 denotes the superior acceleration coefficient, and w11

denotes a vector, each element of which is a random number uniformly produced in

(0, 1). Besides, x̌i and x̂ are coded with binary encoding where their velocities and

positions are coded as a string of binary bits [221]. Let θ7 and θ8 denote the crossover

rate and the mutation rate, respectively. The single point crossover operation is

implemented on x̌i and x̂ to obtain the offspring x̆Pi for particle i with a probability

w23. Then, the mutation operation is performed on each bit of x̆Pi with a small

probability w24. In this way, the early trapping into locally optimal solutions can be

avoided. Then, the selection operation is performed to determine whether x̆Pi or x́Pi

is selected to guide the optimization process of particle i.

115



Specifically, if f̃22(x̆Pi )≤f̃22(x́Pi ), x̆Pi is selected as a superior particle correspond-

ing to particle i; otherwise, x́Pi is selected as the superior particle. Thus, a superior

particle is obtained for each particle. Let xgi and xg+1
i denote particle i’s positions in

iterations g and g+1. Then, xg+1
i is updated as:

θi1=ω·θi1 + θP2 ·w11·
(
x́Pi − xgi

)
(5.33)

xg+1
i =xgi+θ

i
1 (5.34)

If f̃22(xg+1
i )≤f̃22(xgi ), xg+1

i is accepted; otherwise, it is conditionally accepted if

exp

 f̃22(x
g
i )−f̃22(x

g+1
i )

θ
g
2


>w12 (5.35)

where w12 denotes a random number uniformly distributed in (0,1) and θg2 denotes

the temperature in iteration g.

Initialize positions and velocities of particles

Output globally optimal position

Update particles' velocities

Update particles' positions according to SA's 

Metropolis acceptance rule

Ternimation condition
No

Perform GA's crossover, mutation and selection

Yes

Figure 5.2 Flowchart of GSPSO.
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A hybrid optimization algorithm called Genetic Simulated-annealing-based

Particle Swarm Optimization (GSPSO) is proposed. It integrates advantages of SA,

PSO and GA. It adopts genetic operations of GA on x̌i and x̂ to generate superior

particles, and updates particles’ positions with the Metropolis acceptance rule of SA.

Thus, GSPSO improves the search quality of PSO.

Algorithm 3 describes the pseudo codes of GSPSO and its flowchart is shown

in Figure 5.2. Velocities and positions of particles in PSO are randomly initialized

in Line 1. Velocities of particles are limited to [−θP3 , θP3 ]. The fitness value of each

particle is calculated according to f̃22 in the problem (5.26) in Line 2. Let x̂ denote

the globally optimal position of the swarm. Let x̌i denote a locally optimal position of

particle i. Line 3 updates x̂ and x̌i. The parameters related to GA, PSO and SA are

initialized in Line 4. The total number of iterations is denoted by ĝ. Let θP4 denote

the percentage of particles with identical fitness values. Let θ̂P4 denote the specified

maximum percentage. Line 6 shows that the while loop terminates if ĝ is exceeded,

or θP4 >θ̂P4 . Line 7 conducts GA’s classical crossover on x̌i and x̂.

The obtained offspring x̆Pi undergoes GA’s classical mutation with a bounded

probability in Line 8. Then, the classical selection of GA is conducted to determine

whether x̆Pi or x́Pi is chosen in Line 9. Line 10 updates velocities of particles and

Line 11 updates their positions according to the Metropolis acceptance rule of SA.

Lines 12–13 calculate fitness values of particles, and update x̌i and x̂ accordingly. In

addition, θ0
2 denotes the initial temperature and θ3 denotes the temperature cooling

rate. Line 14 decreases temperature by θ3. Let θ̌P5 and θ̂P5 denote lower and upper

bounds of inertia weight θP5 , respectively. In addition, θP5 is decreased linearly from

θ̂P5 to θ̌P5 in Line 15. Then, Line 16 updates θP4 . Line 19 outputs x̂ and transforms it

into decision variables including λc,nτ+b and µc,nτ+b (0≤b≤Υ, 1≤n≤NA, 1≤c≤NC). To

discuss the overhead of STTS, the complexity analysis of Algorithms 2 and 3 is given

as follows.
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Algorithm 3 GSPSO (Genetic Simulated-annealing-based PSO)
1: Initialize positions and velocities of particles
2: Calculate the fitness value f̃22 of each particle
3: Update x̌i and x̂
4: Initialize parameters related to GA, PSO and SA
5: g ← 1
6: while θP4 ≤θ̂P4 and g≤ĝ do
7: Perform GA’s classical crossover on x̌i and x̂
8: Perform GA’s classical mutation on offspring x̆Pi
9: Perform GA’s classical selection

10: Update velocity of each particle
11: Update position of each particle according to Metropolis acceptance rule of SA
12: Calculate fitness value f̃22 of each particle
13: Update x̌i and x̂
14: Decrease temperature by θ3

15: Decrease θP5 linearly from θ̂P5 to θ̌P5
16: Update θP4
17: g ← g + 1
18: end while
19: Output x̂

In Algorithm 3, most of the execution overhead is caused by the while loop.

In the worst case, the while loop stops after ĝ iterations. As is shown in Lines

7–17, the time complexity of each iteration is O(|X|ND). In addition, it is worth

noting that ND=2∗NA∗NC∗(Υ+1)+1, and the time complexity of each iteration is

O(|X|NANCΥ). Thus, the time complexity of Algorithm 3 is O(ĝ|X|NANCΥ). Most

of the execution overhead in Algorithm 2 is caused by its while loop where N ∗−Υ+1

iterations are executed and the overhead of each iteration is determined by GSPSO

in Line 6. Besides, N ∗ is typically much greater than Υ. Consequently, the time

complexity of Algorithm 2 is O(N ∗ĝ|X|NANCΥ).

Then, the assumptions of STTS are discussed. Similar to the work in [21, 222],

this chapter considers a simpler situation where it is assumed that each task can

be executed independently in each CDC and its execution does not rely on other

tasks. In a real-life and more complex situation, e.g., Hadoop MapReduce, each

task belongs to a single job and a job consists of multiple tasks. The execution of

each task is associated with other tasks. Thus, the execution of each job depends
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on correlations among its tasks, and each job can be treated as a typical workflow

where a job is partitioned into multiple tasks. There are many existing workflow

scheduling algorithms that are proposed recently to tackle the scheduling of jobs in

clouds [102, 223]. However, it has to be left out because this is beyond the scope of

this chapter.

This chapter chooses delay bound constraints and throughput of tasks as the

main quality of service (QoS) parameters that are widely utilized in the existing

studies [21, 76, 110, 222, 224]. There are other important QoS parameters,

e.g., resource utilization, availability, security, reliability and data integrity [109].

Nevertheless, this chapter focuses on how to minimize energy cost by determining

a task scheduling strategy, and future research would further consider other QoS

parameters. What’s more, similar to the work in [21, 76, 110, 222, 224], it is assumed

that tasks of the same application have the same priority and they can only be

executed by their corresponding cluster of servers. Thus, though tasks of different

applications have diverse priorities, they are executed on separate clusters of servers.

Similar to the work in [21, 76, 110, 222, 224], it is also assumed that all tasks of each

application are scheduled to CDCs in a non-preemptive manner.

5.5 Performance Evaluation

This section evaluates STTS with real-life data, i.e., arriving tasks in Google cluster1,

prices of grid, wind and solar energy. STTS is coded and implemented in MATLAB

2017 and it is executed in a computer with an Intel Xeon E-2124G processor at

4.50 GHz and a 32-GB DDR4 memory. This section adopts real-life tasks of three

heterogeneous delay-tolerant applications executed in Google cluster for a whole day

on May 10, 2011.

1https://github.com/google/cluster-data (accessed on May 6, 2019).
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5.5.1 Parameter Setting

This chapter calculates task arriving rates of three applications (types 1, 2 and 3)

that are sampled every 5 minutes, i.e., NA=3 and L=5 minutes. Following the work

in [21], this chapter sets delay bound constraints of three applications to 3, 4 and

5 time slots, i.e., B1=3, B2=4 and B3=5. This chapter considers three CDCs, i.e.,

NC=3, and uses real-life power grid prices on the same day in capital region of New

York, U.S.2 to simulate power grid prices of three CDCs.

Table 5.1 Parameter Setting of Three Energy Sources

Power grid Wind energy Solar energy
αc Êc (WH) φ1c φ3c (m2) φ2c (kg/m3) ψ1c ψ2c (m2)

c=1 1.2 7.2×108 0.45 37500 1.8375 0.3 22500
c=2 1.4 4.5×108 0.375 31250 1.5313 0.25 18750
c=3 1.6 3.6×108 0.3 25000 1.225 0.2 15000

According to the work in [31, 76], the parameter setting of three energy sources

is shown in Table 5.1. According to the work in [24], parameters in the power

consumption model are set in Tables 5.2 and 5.3. Besides, this chapter adopts real-life

data of solar irradiance3 and wind speed4 on the same day. It is worth noting that

most of typical meta-heuristic algorithms are sensitive to their parameter setting.

Thus, based on existing studies [24, 25, 76], a series of experiments are conducted to

investigate the optimal parameter setting for GSPSO.

The minimization of energy cost in each iteration is considered for GSPSO. The

energy cost of the CDC provider continues to decrease as iterations proceed, and the

optimal number of iterations is 200. Further increasing the number of iterations from

200 cannot continue to reduce the energy cost, but increases the execution time of

GSPSO. Similarly, the optimal balance between the diversity of solutions and the

energy cost is achieved when the size of the swarm is 100.

2http://www.nyiso.com/public/index.jsp (accessed on May 10, 2019).
3http://www.nrel.gov/midc/srrl_bms/ (accessed on May 10, 2019).
4http://www.nrel.gov/midc/nwtc_m2/ (accessed on May 10, 2019).
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Table 5.2 Parameter Setting in Power Consumption Model-Part 1

Φ̌c
n (W) Φ̂c

n (W) N̂c,n

n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
c=1 200 100 50 400 200 100 12000 15000 18000
c=2 250 125 62.5 500 250 125 10000 12500 15000
c=3 300 150 75 600 300 150 8000 10000 12000

Table 5.3 Parameter Setting in Power Consumption Model-Part 2

Q̂c
n

•
Nc,n (tasks/second)

n=1 n=2 n=3 n=1 n=2 n=3
c=1 18.75 37.5 75 0.075 0.15 0.3
c=2 15.625 31.25 62.5 0.0625 0.125 0.25
c=3 12.5 25 50 0.05 0.1 0.2

In addition, the energy cost is high when the crossover rate is very low, and

therefore, GSPSO tends to converge to a locally optimal solution. The energy cost

is continuously decreasing by increasing the crossover rate, and the optimal crossover

rate of 0.6 is selected for GSPSO. The energy cost increases when the crossover

rate is further increased from 0.6 due to the early stagnation of solutions leading

to sub-optimal energy cost. Besides, the close-to-optimal energy cost is achieved

by GSPSO when the mutation rate is set to 0.1%. There is some divergence when

the mutation rate is less than 0.1%, and it leads to a sub-optimal solution. Higher

diversity in the solution is achieved when the mutation rate is larger than 0.1%, but

it makes GSPSO difficult to converge to the final close-to-optimal solution.

In the above process, the optimal values of crossover and mutation rates are

obtained by evaluating the performance of GSPSO while all other parameters, e.g.,

the size of the swarm, the number of iterations and weight θP5 , are kept as constants.

Then, the size of the swarm and the number of iterations are set similarly. Other

parameters of GSPSO are specified in a similar way. The final values of the parameters

for GSPSO are set as: θ̌P5 =0.4, θ̂P5 =0.95, θ̂P4 =95%, θ̌P1 =θ̂P1 =0.5, θ3=0.975, θ0
2=1030,

ĝ=200, |X|=100, θ7=0.6 and θ8=0.1%. In addition,
∞
N=1020 and 0

γ1=
0
γ2=2.
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5.5.2 Experimental Results

To demonstrate GSPSO’s performance, this section compares it with three typical

meta-heuristic algorithms including SA, PSO and bat algorithm (BA). The reasons of

choosing them are explained as follows. SA can converge to globally optimal solutions

in theory through suitable temperature cooling rate because it can escape from locally

optimal solutions [220]. Consequently, the comparison between GSPSO and SA can

demonstrate the precision of GSPSO’s final solution. In addition, the convergence

speeds of PSO and BA are fast [218]. Thus, the comparison among GSPSO, PSO

and BA can prove GSPSO’s convergence speed.

Figure 5.3 shows the comparison of execution time among GSPSO, BA, PSO

and SA. It is shown that the average execution time of SA is 7.48 (seconds), which

is 4.18, 10.39 and 22 times larger than that of GSPSO, 1.79 (seconds), that of BA,

0.72 (seconds) and that of PSO, 0.34 (seconds), respectively. In addition, it is worth

noting that the execution time of BA and PSO is much less than those of SA and

GSPSO. This is because BA and PSO are easy to quickly trap into locally optimal

solutions. Figure 5.4 shows the comparison of energy cost in each iteration of GSPSO,

BA, PSO and SA in time slot 50. Here an iteration in GSPSO denotes Lines 7–17

in Algorithm 3. Similar to GSPSO, iterations of BA, PSO and SA have the same

meaning. Besides, Figure 5.5 shows the corresponding penalty calculated according to

(3.21) in each iteration in time slot 50. Figure 5.5 shows that PSO and BA converge

after 225 and 250 iterations, respectively. The penalty of final solutions of PSO and

BA is 4.22×106 and 3.98×106, respectively. It demonstrates that PSO and BA cannot

find final solutions that meet all constraints in the energy cost minimization problem.

Consequently, their solutions are not satisfying due to their quick convergence to

locally optimal solutions.

Besides, SA converges to its final solution after 850 iterations, and the energy

cost of its final solution is 19.04 and 11.43 times less than those of PSO and BA,
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Figure 5.3 Comparison of execution time.

respectively, but still larger than that of GSPSO. GSPSO converges to its final solution

after 300 iterations, and the energy cost of its final solution is $5941.06. Therefore,

GSPSO decreases the energy cost by $694.05 in much fewer iterations than SA. In

addition, it is shown in Figure 5.5 that the penalty of the final solution of GSPSO

is 0. It demonstrates that GSPSO is able to obtain a satisfying solution meeting all

constraints. Therefore, Figures 5.4–5.5 prove that GSPSO increases the search speed

and precision, and brings less energy cost for the CDC provider by integrating SA’s

Metropolis acceptance rule and GA’s genetic operations into PSO.
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Figure 5.4 Energy cost of each iteration in time slot 50.

Figure 5.6 illustrates the cumulative scheduled tasks (CSTs) and the cumulative

arriving tasks (CATs) for each application. It is illustrated that all arriving tasks

of each application are scheduled and executed to CDCs within their delay bound

constraints. For example, Figure 5.6(b) shows that the number of CATs of type 2

application in time slot 155 is equal to that of CSTs in time slot 159. This means that
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Figure 5.5 Penalty of each iteration in time slot 50.

tasks of type 2 application arriving in time slot 155 or before are all scheduled and

executed to CDCs by time slot 159. Consequently, it demonstrates that the proposed

STTS strictly meets delay bound constraints of tasks of each application.

5.5.3 Results of Comparison

To demonstrate STTS’s performance, it is compared with four typical scheduling

methods [31, 76, 99] in terms of energy cost and throughput of the CDC provider.

1) M1. Similar to a green energy-first scheduling approach in [31], schedules all
tasks to CDCs in the time slot when the total amount of renewable energy is
the maximum within tasks’ delay bound constraints.

2) M2. Similar to a cheap-electricity-first scheduling approach in [76], schedules
all tasks to CDCs in the time slot when the power grid price is the minimum
within tasks’ delay bound constraints.

3) M3 [99]. It ignores the temporal differences in power grid prices, wind speed
and solar irradiance. All tasks are directly scheduled to CDCs in their arriving
time slot.

4) Spatio-temporal load balancing (STLB) [222]. It investigates both temporal
and spatial variations of power grid prices to schedule tasks to CDCs. A task
of application n arriving in current time slot τ is scheduled to one CDC during
the next Bn+1 time slots beginning from τ .

The parameters of M1–M3 and STLB are set in the same way as those of

GSPSO are set in Section 5.5. Figures 5.7–5.9 compare STTS with M1–M3 and

STLB in terms of the cumulative throughput obtained by calculating the sum of

the number of tasks executed from τ to τ+Bn. For example, in each time slot τ , the
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Figure 5.6 CATs and CSTs of each application.

cumulative throughput of type 3 application is obtained by calculating the sum of the

number of tasks executed from τ to τ+5. In addition, it is shown that the cumulative

throughput of each application with STTS is higher than those with M1–M3 and

STLB. For example, the cumulative throughput of type 1 application with STTS is

higher than those with M1–M3 and STLB by 73.01%, 73.94%, 50.74% and 14.92% on

average, respectively. The reason is that the maximum amount of energy in each CDC

125



0 50 100 150 200 250
Time slot number

0

2

4

6

8

C
um

ul
at

iv
e 

th
ro

ug
hp

ut

104

STTS M1 M2 M3 STLB

Figure 5.7 Cumulative throughput comparison of type 1 application.
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Figure 5.8 Cumulative throughput comparison of type 2 application.
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Figure 5.9 Cumulative throughput comparison of type 3 application.

in each time slot is constrained. Therefore, some tasks of each application have to be

rejected and not executed in CDCs in M1–M3. STLB ignores spatial and temporal

variations of solar and wind energy and fails to consider the differences of energy

consumption of servers in different CDCs. Therefore, Figures 5.7–5.9 illustrate that

STTS effectively increases the cumulative throughput of CDCs.
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Figure 5.10 Energy cost of STTS, M1–M3 and STLB.

Figure 5.10 illustrates the energy cost of STTS, M1–M3 and STLB, respectively.

Typically, the penalty cost is predefined in SLAs [20] for rejected tasks. It is signed

between users and the CDC provider, and each rejected task causes the penalty for

the latter. Let εnτ denote the penalty cost brought by the rejection of each task of

application n in time slot τ . To guarantee their performance, εnτ is typically higher

than the maximum energy cost caused by each task of application n from τ to τ+Bn.

4n
τ denotes the energy cost caused by each task of application n in time slot τ . Thus,

εnτ=maxb∈{0,1,...,Bn}(4n
τ+b). Similar to Figure 3.12, energy cost in time slot τ is defined

as the sum of energy cost of executed tasks, and the penalty caused by rejected tasks

from τ to τ+Γ. It is shown in Figure 5.10 that compared with M1–M3 and STLB, the

energy cost of STTS is decreased by 43.27%, 38.54%, 36.96% and 12.64% on average,

respectively. This is because STTS intelligently schedules more tasks to CDCs by

jointly investigating the spatio-temporal variations in prices of power grid, and the

total amount of wind and solar energy in CDCs during the allowed delay of tasks.

5.6 Summary

Types and number of delay-tolerant applications in cloud data centers (CDCs)

increase significantly. The dramatic growth of arriving tasks increases the amount

of energy consumed by execution of tasks in CDCs. Spatial and temporal variations

in prices of power grid and availability of green energy in CDCs bring a challenge

of how to cost-effectively schedule all arriving tasks of multiple applications among
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CDCs. This chapter proposes a Spatio-Temporal Task Scheduling (STTS) method

that exploits such spatial and temporal variations. STTS can smartly schedule all

tasks of applications to CDCs while strictly meeting tasks’ delay bound constraints. In

each iteration of STTS, energy cost for a CDC provider is formulated and solved with

a hybrid meta-heuristic algorithm named genetic simulated-annealing-based particle

swarm optimization. Extensive trace-driven experimental results demonstrate that it

achieves higher throughput and lower energy cost for the CDC provider in comparison

with several recent scheduling approaches while meeting delay bound constraints of

all tasks of heterogeneous applications.
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CHAPTER 6

TEMPORAL TASK SCHEDULING OF MULTIPLE
DELAY-CONSTRAINED APPLICATIONS IN HYBRID CLOUD

DATA CENTER

This chapter presents the details of the proposed Temporal Task Scheduling (TTS)

algorithm, and it is organized as follows. A hybrid cloud data center (CDC)

architecture is presented in Section 6.1. Based on a hybrid CDC architecture, a

task scheduling problem that aims to maximize the total profit of the hybrid CDC

is formulated in Section 6.2. The proposed TTS algorithm is presented in Section

6.3. The experimental results and their analysis based on real-life data are shown in

Section 6.4. Section 6.5 concludes this chapter.

6.1 Hybrid CDC Architecture

A data center provider owns a CDC and executes some tasks to public clouds when its

resources are limited or the use of virtual machines (VMs) in public clouds is cheaper.

The hybrid CDC architecture is presented in Figure 6.1. Users’ tasks are sent to

the hybrid CDC through multiple devices, e.g., computers, smart phones, laptops

and servers. Then, arriving tasks are classified and enqueued into FCFS queues

according to their application types. Then, task arriving rates of all applications

are set. Let NA denote the number of applications. In Figure 6.1, µnτ and
+

λτ,n

(1≤n≤NA) denote the task service rate and the accumulated task arriving rate of

application n in τ , respectively. This chapter focuses on Task Scheduler where the

TTS algorithm periodically schedules all tasks to the hybrid CDC within their delay

bound constraints.

At the start of each time slot, tasks of each application are dispatched by the

Task Scheduler from their FCFS queues. Task Scheduler schedules tasks based on the

optimal task scheduling strategy produced by TTS. Specifically, TTS first determines
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the optimal task service rate of each server in the CDC. Then, the number of tasks

scheduled to the CDC is obtained as
+

λτ,n(1−δnτ )L, and the number of tasks scheduled

to public clouds is obtained as
∑NC

v=1 z
v,n
τ

#

N τ,v,n. Here, L denotes the length of a time

slot. δnτ denotes the loss possibility of application n’s tasks in τ . NC denotes the

number of public clouds. Besides, if tasks of application n are scheduled to public

cloud v in time slot τ , zv,nτ =1; otherwise, zv,nτ =0.
#

N τ,v,n denotes the number of tasks

of application n scheduled to public cloud v (1≤v≤NC) in time slot τ . At the start of

each time slot, Task Scheduler schedules (
+

λτ,n(1 − δnτ )L+
∑NC

v=1 z
v,n
τ

#

N τ,v,n) tasks and

removes them from their FCFS queues.

CDC

Resource 

Allocator

Task

Scheduler

Server 

Cluster

Users  

tasks

FCFS queue

FCFS queue

FCFS queue

Thermal powerSolar energyWind energy Public cloud N
V

Public cloud 2

Public cloud 1

Public clouds

Figure 6.1 Hybrid CDC architecture.

The CDC obtains power grid energy from three types of sources: power

grid, solar panels and wind turbines. The Task Scheduler periodically collects the

information of power grid, solar panels and wind turbines. Section 6.2 formulates the

task scheduling problem as a constrained Mixed Integer NonLinear Program (MINLP)

[225]. Then, it is solved by a hybrid algorithm called GSPSO, which is described in

Chapter 5, in each iteration of TTS to obtain the scheduling strategy. Based on it,
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TTS is proposed to achieve profit maximization for the hybrid CDC while strictly

meeting delay bound constraints of all tasks. Then, the task service rate for each

application in each time slot is specified by Task Scheduler. Then, Resource Allocator

configures each server in the CDC. It is assumed that servers for the same application

are homogeneous and servers for different applications are heterogeneous with respect

to hardware setting [18].

6.2 Problem Formulation

Based on the hybrid CDC architecture, this section formulates the task scheduling

problem that aims to maximize the total profit of the hybrid CDC. This problem is

formulated as a constrained MINLP and solved by GSPSO.

The modeling of delay bound constraints of each delay-constrained application

is first described. They aim to guarantee that delay bound constraints of tasks of

all applications are strictly met. δnτ is important because it explicitly presents the

mathematical relation between the number of tasks refused and task service rates of

the CDC. Let Bn denote the delay bound constraint of tasks of application n. Based

on it, the number of tasks executed in the CDC and the total revenue of the hybrid

CDC brought by tasks of all applications executed in time slots τ and τ+b (1≤b≤Bn)

is determined. Let Υ=maxn∈{1,2,···,NA}Bn. The total energy consumption of the CDC

in time slot τ or τ+b (1≤b≤Υ) is calculated. Then, the grid energy cost of the CDC

and the execution cost of VMs in public clouds are obtained. In this way, the profit

of the hybrid CDC is obtained. Thus, this equation provides an explicit and more

accurate relation between task service rates and the profit of the hybrid CDC.

Similar to the work in [226], all servers for application n are modeled as an

M/M/1/Q̂n/∞ system. The largest number of tasks that application n’s servers can

execute is denoted by Q̂n. Similar to the work in [117], the hybrid CDC is modeled as a

discrete-time system evolving with time slots. A growing number of high-performance
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servers are deployed in CDCs. Thus, similar to the work in [25], it is reasonable to

assume each task can finish its execution in one single time slot.

This means that before time slot τ passes, application n’s tasks arriving in

time slot τ−Bn or before are all executed in the hybrid CDC. Task arriving rate

of application n in time slot τ is denoted by
+

λτ,n. Task service rates of servers

corresponding to application n in time slots τ and τ+b (1≤b≤Bn) are denoted by

µnτ and µnτ+b, respectively. The task service rate denotes the rate at which tasks of

application n are removed from their FCFS queue and executed in the hybrid CDC

in time slot τ . Then,

δnτ =



1−
+
λτ,n
µnτ

1−

+
λτ,n
µnτ

Q̂n+1

(
+
λτ,n
µnτ

)Q̂n

µnτ>0,

1 µnτ=0.

(6.1)

The number of tasks of application n accumulated before time slot τ+1 is

denoted by
+

Nτ,n. Then,
+

Nτ,n=
τ∑
`=1

+

λ`,nL (6.2)

The number of tasks of application n executed by time slot τ is denoted by
�
Nτ,n.

The number of tasks of application n executed in the CDC in time slot ` (1≤`≤τ)

is
(

+

λ`,n(1− δn` )L

)
. The number of tasks of application n executed in public cloud

v (1≤v≤N V ) in time slot ` (1≤`≤τ) is zv,n`
#

N `,v,n. Then, the number of tasks of

application n executed in all public clouds in time slot ` (1≤`≤τ) is
∑NV

v=1 z
v,n
`

#

N `,v,n.

The remaining arriving rate of application n’s tasks in τ is denoted by λ†,nτ . Thus,
�
Nτ,n is obtained as follows.

�
Nτ,n=

τ∑
`=1

+

λ`,n(1− δn` )L+
NV∑
v=1

zv,n`
#

N `,v,n

 (6.3)
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Thus, all application n’s tasks that arrive in τ−Bn or earlier are executed in

the hybrid CDC before τ passes. Thus, λ†,n` =0 (`≤τ−Bn−1). At the start of time

slot τ , the total remaining arriving rate of application n’s tasks from τ−Bn to τ−1

is
∑τ−1

`=τ−Bn λ
†,n
` . Thus,

+

λτ,n is the sum of λnτ and
∑τ−1

`=τ−Bn λ
†,n
` . Then,

+

λτ,n=λnτ+
τ−1∑

`=τ−Bn

λ†,n` (6.4)

At the start of τ , the number of application n’s tasks arriving in τ−Bn or earlier

is
+

Nτ−Bn−1,n+λnτ−BnL. The number of application n’s tasks executed by τ is the sum

of
�
Nτ−1,n, and the number of application n’s tasks executed in the hybrid CDC in τ ,

i.e., (
+

λτ,n(1− δnτ )L+
∑NV

v=1 z
v,n
τ

#

N τ,v,n). All application n’s tasks arriving in τ have to

be executed in time slots τ to τ+Bn. It means that all application n’s tasks in τ−Bn

or earlier must be executed before τ passes. Then,

+

Nτ−Bn−1,n+λnτ−BnL≤
�
Nτ−1,n+

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n (6.5)

Let
+

λ`,n denote the accumulated arriving rate of application n’s tasks in `

(τ+1≤`≤τ+Bn). Let µn` denote the task service rate of servers of application n in `

(τ+1≤`≤τ+Bn). There are several prediction algorithms, e.g., deep neural networks

[212], to well predict
+

λ`,n. It is assumed that
+

λ`,n is known in advance.

Similarly, at the beginning of time slot τ+b, the number of application n’s

tasks that arrive in τ+b−Bn or earlier is
+

Nτ−Bn−1,n+
∑τ−Bn+b

`=τ−Bn(λn`L). The number

of application n’s tasks scheduled to the hybrid CDC by τ+b is the sum of
�
Nτ−1,n,

and the number of application n’s tasks executed in the hybrid CDC from τ to

τ+b. The number of application n’s tasks executed in hybrid CDC in τ is (
+

λτ,n(1 −

δnτ )L+
∑NV

v=1 z
v,n
τ

#

N τ,v,n). Besides, the number of application n’s tasks executed in the

hybrid CDC in ` (τ+1≤`≤τ+b) is (
+

λ`,n(1− δn` )L+
∑NV

v=1 z
v,n
`

#

N `,v,n. It is worth noting

that all application n’s tasks in τ+b−Bn or earlier have to be executed before τ+b
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passes. Then,

+

Nτ−Bn−1,n+
τ−Bn+b∑
`=τ−Bn

λn`L≤
�
Nτ−1,n+

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n+

τ+b∑
`=τ+1

+

λ`,n(1− δn` )L+
NV∑
v=1

zv,n`
#

N `,v,n

 (6.6)

The number of application n’s tasks from τ − Bn to τ is
∑τ

`=τ−Bn λ
n
`L. At the

start of τ ,
+

Nτ,n is the sum of
+

Nτ−Bn−1,n and
∑τ

`=τ−Bn λ
n
`L. Thus,

+

Nτ,n=
+

Nτ−Bn−1,n+
τ∑

`=τ−Bn

λn`L (6.7)

At the beginning of τ , the number of tasks of application n executed in the

hybrid CDC in τ is (
+

λτ,n(1− δnτ )L+
∑NV

v=1 z
v,n
τ

#

N τ,v,n). Besides, at the beginning of τ ,

the total number of application n’s tasks executed in the hybrid CDC in time slot `

(τ+1≤`≤τ+Bn) is (
+

λ`,n(1 − δn` )L+
∑NV

v=1 z
v,n
`

#

N `,v,n). Thus, in time slot τ , the total

number of application n’s tasks executed before τ+Bn passes is:

�
Nτ+Bn,n=

�
Nτ−1,n+

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n+

τ+Bn∑
`=τ+1

+

λ`,n(1− δn` )L+
NV∑
v=1

zv,n`
#

N `,v,n

 (6.8)

Thus, the conservation of application n’s tasks requires that
+

Nτ,n should equal
�
Nτ+Bn,n, i.e.,

+

Nτ,n=
�
Nτ+Bn,n. Then,

+

Nτ−Bn−1,n+
τ∑

`=τ−Bn

λn`L=
�
Nτ−1,n+

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n+

τ+Bn∑
`=τ+1

+

λ`,n(1− δn` )L+
NV∑
v=1

zv,n`
#

N `,v,n

 (6.9)

Thus, constraints (6.5), (6.6), and (6.9) ensure delay bound constraints of tasks

of all applications are strictly met.
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Then, the power consumption model is introduced. The total amount of energy

consumed in the CDC is the sum of the total amount of energy consumed in servers

and facilities, e.g., cooling and lighting. Similar to the work in [18], it is assumed that

the energy consumed by each server for the same application is identical. The number

of application n’s tasks executed by its switched-on server per minute is denoted by
•
Nn. Besides,

o

N τ,n denotes the number of such servers in τ . The service rate of servers

for application n in τ is denoted by µnτ . Then,

µnτ=
•
Nn

o

N τ,n (6.10)

The total number of application n’s servers is denoted by N̂n.
o

N τ+b,n denotes

the number of switched-on servers for application n in τ+b and it cannot exceed N̂n,

o

N τ+b,n≤N̂n, 0≤b≤Υ (6.11)

The total energy consumption of the hybrid CDC is the sum of the energy

consumed by servers and facilities. The power usage effectiveness (PUE) is a critical

metric to measure energy efficiency of a data center and it is the ratio of the total

energy consumption of the CDC to the total energy consumed by servers. PUE of the

CDC, denoted by α, is 1.2–2.0 [24]. Let Φ̌n and Φ̂n denote the idle and peak power

of each server for application n, respectively. Besides, its average CPU utilization in

τ is denoted by unτ . Thus, based on the work in [24], the total power consumed by

the CDC in τ is obtained as:

P̃τ=
NA∑
n=1

(
o

N τ,n(Φ̌n+(γ−1)Φ̂n+(Φ̂n−Φ̌n)unτ )

)
(6.12)

where δnτ denotes the task loss possibility. The number of tasks that an application

n’s switched-on server executes in τ is calculated as:

L
(
1−δnτ

)+

λτ,n
o

N τ,n

(6.13)
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The busy time of each switched-on server for application n is
L
(

1−δnτ
)+
λτ,n

•
Nn

o
Nτ,n

minutes. unτ is obtained as:

unτ=

(
1−δnτ

)+

λτ,n
•
Nn

o

N τ,n

(6.14)

Let Eτ denote the total energy consumption of the CDC in τ . Based on

equations (6.10), (6.12), and (6.14), it is obtained as:

Eτ=
NA∑
n=1

∆5
nµ

n
τ+∆4

n

+

λτ,n(1− δnτ )
•
Nn

L

 (6.15)

where

∆5
n , Φ̌n+(α−1)Φ̂n (6.16)

∆4
n , Φ̂n−Φ̌n (6.17)

The available amount of energy in the CDC is denoted by Ê. Thus, the total

energy consumed in τ or τ+b (1≤b≤Υ) satisfies:

NA∑
n=1

(
∆5
nµ

n
τ+∆4

n

+
λτ,n(1−δnτ )
•
Nn

L

)
≤Ê (6.18)

NA∑
n=1

(
∆5
nµ

n
τ+b+∆4

n

+
λτ+b,n(1−δnτ+b)
•
Nn

L

)
≤Ê, 1≤b≤Υ (6.19)

Let
◦
Eτ and Ẽτ denote the solar and wind energy consumed by tasks of all

applications in the CDC in time slot τ , respectively. Besides,
◦
Eτ and Ẽτ are obtained

with equations (3.5) and (3.6) in the green energy model introduced in Section 6.2.

Then, the way to calculate the total revenue and the total cost of the hybrid CDC is

introduced, and the total profit of the hybrid CDC is given. Then, based on above

constraints, the task scheduling problem is formulated as a constrained MINLP and

solved by GSPSO.
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Typically, an SLA is signed between the hybrid CDC and cloud users, and it

guarantees the performance for tasks of each application. The revenues corresponding

to the execution of application n’s tasks in τ and τ+b are denoted by f ∗,n1,τ and f ∗,n1,τ+b,

respectively. The number of application n’s tasks executed in the hybrid CDC in

τ is (
+

λτ,n(1 − δnτ )L+
∑NV

v=1 z
v,n
τ

#

N τ,v,n). Let ∇n
τ denote the payment of each task of

application n executed in τ . Then,

ðnτ=

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n

∇n
τ (6.20)

The number of tasks of application n scheduled to execute in the hybrid CDC in

τ+b is (
+

λτ+b,n(1− δnτ+b)L+
∑NV

v=1 z
v,n
τ+b

#

N τ+b,v,n). Let ∇n
τ+b denote the payment of each

task of application n scheduled to execute in time slot τ+b. Then, f ∗,n1,τ+b is obtained

as follows.

f ∗,n1,τ+b=

+

λτ+b,n(1− δnτ+b)L+
NV∑
v=1

zv,nτ+b

#

N τ+b,v,n

∇n
τ+b (6.21)

Let f1 denote the total revenue of the hybrid CDC brought by tasks of all

applications executed from time slots τ to τ+Bn. In this way, f1 is obtained and

calculated as follows.

f1=
NA∑
n=1

∇n
τ+

Bn∑
b=1

∇n
τ+b

 (6.22)

Besides, prices of power grid in τ and τ+b are denoted by pτ and pτ+b,

respectively. Let f2 denote the total cost of the hybrid CDC. f2 includes two

parts that are the grid energy cost of the CDC and the execution cost of VMs

in public clouds. Thus, the amount of grid energy of the hybrid CDC in τ is

max(Eτ−
◦
Eτ−Ẽτ , 0). In addition, the amount of grid energy of the hybrid CDC

in τ+b is max(Eτ+b−
◦
Eτ+b−Ẽτ+b, 0). The grid energy cost of the CDC brought by

tasks of all applications in τ is pτ (max(Eτ−
◦
Eτ−Ẽτ , 0)).
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Similarly, the grid energy cost of the CDC brought by tasks of all applications

in τ+b (1≤b≤Υ) is pτ+b(max(Eτ+b−
◦
Eτ+b−Ẽτ+b, 0)). Besides, if application n’s

tasks are executed in public cloud v in τ+b, zv,nτ+b=1; otherwise, zv,nτ+b=0. The

number of application n’s tasks executed in public cloud v in τ + b is denoted by
#

N τ+b,v,n. The prices of VMs for application n in public cloud v in τ and τ + b

are denoted by νv,nτ and νv,nτ+b, respectively. The average execution time of tasks

of application n executed in public cloud v in τ and τ + b is denoted by iv,nτ

and iv,nτ+b, respectively. Hence, the execution cost of VMs in public clouds in τ is∑NA
n=1

∑NV
v=1(zv,nτ νv,nτ iv,nτ

#

N τ,v,n). Similarly, the execution cost of VMs in public clouds

in τ+b is
∑NA

n=1

∑Bn
b=1(

∑NC
v=1(zv,nτ+bν

v,n
τ+bi

v,n
τ+b

#

N τ+b,v,n)). Then,

f2=

pτ (max(Eτ−
◦
Eτ−Ẽτ , 0))+

NA∑
n=1

NV∑
v=1

(zv,nτ νv,nτ iv,nτ
#

N τ,v,n)


+

Υ∑
b=1

(
pτ+b(max(Eτ+b−

◦
Eτ+b−Ẽτ+b, 0))

)

+
NA∑
n=1

Bn∑
b=1

NC∑
v=1

(zv,nτ+bν
v,n
τ+bi

v,n
τ+b

#

N τ+b,v,n)


(6.23)

Let F1 denote the profit of the hybrid CDC. F1 is the difference between the

total revenue of the hybrid CDC, f1, and the total cost of the hybrid CDC, f2 brought

by tasks of all applications executed in time slots τ to τ+b (1≤b≤Υ). Then,

F1=f1−f2 (6.24)

Then, the profit maximization problem of the hybrid CDC is obtained as:

Max {F1}

subject to

o

N τ+b,n≤N̂n, 0≤b≤Υ (6.25)
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NA∑
n=1

∆5
nµ

n
τ+∆4

n

+

λτ,n(1− δnτ )
•
Nn

L

≤Ê (6.26)

NA∑
n=1

∆5
nµ

n
τ+b+∆4

n

+

λτ+b,n(1− δnτ+b)
•
Nn

L

≤Ê, 1≤b≤Υ (6.27)

+

Nτ−Bn−1,n+λnτ−BnL≤
�
Nτ−1,n+

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n (6.28)

+

Nτ−Bn−1,n+
τ−Bn+b∑
`=τ−Bn

λn`L≤
�
Nτ−1,n+

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n+

+
τ+b∑
`=τ+1

+

λ`,n(1− δn` )L+
NV∑
v=1

zv,n`
#

N `,v,n

 (6.29)

+

Nτ−Bn−1,n+
τ∑

`=τ−Bn

λn`L=
�
Nτ−1,n+

+

λτ,n(1− δnτ )L+
NV∑
v=1

zv,nτ
#

N τ,v,n

+
τ+Bn∑
`=τ+1

+

λ`,n(1− δn` )L+
NV∑
v=1

zv,n`
#

N `,v,n

 (6.30)

NV∑
v=1

zv,nτ ≤1,
NV∑
v=1

zv,nτ+b≤1, 1≤b≤Bn (6.31)

zv,nτ , zv,nτ+b∈{0, 1}, 1≤b≤Bn (6.32)

µnτ≥0, µnτ+b≥0,
#

N τ,v,n≥0,
#

N τ+b,v,n≥0, 1≤b≤Bn (6.33)

µnτ+b=0,
#

N τ+b,v,n=0, zv,nτ+b=0, Bn<b≤Υ (6.34)

The ranges of decision variables are given in constraints (6.33) and (6.34). The

method to solve the formulated problem is presented in Section 6.3.

6.3 Temporal Task Scheduling

This section introduces the details of TTS. At the start of each time slot, TTS

investigates the temporal variations in prices of power grid, revenue, and green energy

in the CDC, and prices of VMs in public clouds within tasks’ delay bound constraints.
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Algorithm 4 TTS (Temporal Task Scheduling)

1: Set λnτ (Υ−Bn≤τ≤Υ−1),
+

Nτ−Bn−1,n and
�
Nτ−1,n to 0

2: Set
+

λτ,n and λ†,nτ (Υ≤τ≤N ∗) to λnτ
3: τ ← k
4: while τ≤N ∗ do
5: Update

+

λτ,n based on equation (6.4).
6: Solve the unconstrained problem with GSPSO

7: Execute (
+

λτ,n(1 − δnτ )L) tasks in the CDC, and schedule zv,nτ
#

N τ,v,n tasks to
public cloud v

8: Update
+

λτ,n and λ†,n` (τ−Bn≤`≤τ)

9:
+

Nτ,n ←
+

Nτ−1,n+(
+

λτ,n(1− δnτ )L+
∑NV

v=1 z
v,n
τ

#

N τ,v,n)

10:
�
Nτ−Bn,n ←

�
Nτ−Bn−1,n+λnτ−BnL

11: τ ← τ + 1
12: end while

Then, it is executed to determine the optimal task schedule that maximizes the profit

of the hybrid CDC such that tasks’ delay bound constraints are strictly met. In

the formulated problem, the objective function is nonlinear with respect to decision

variables. Decision variables zv,nτ and zv,nτ+b are integer variables while µnτ , µnτ+b,
#

N τ,v,n and
#

N τ+b,v,n (1≤b≤Υ, 1≤n≤NA, 1≤v≤N V ) are continuous. Hence, the the

formulated problem is a constrained MINLP. Similar to Section 3.3, this section adopts

a penalty function method to convert the formulated problem into an unconstrained

one. The vector of all decision variables is denoted by x and it consists of zv,nτ , zv,nτ+b,

µnτ , µnτ+b,
#

N τ,v,n and
#

N τ+b,v,n. Thus,

Min
x

{
F̃1=

∞
Nf−F1

}
(6.35)

F̃1 denotes the augmented objective function,
∞
N is a large positive constant and

f is the penalty of all constraints. f is obtained with equation (3.21) in Chapter 3.

The pseudo codes of TTS are shown and explained in Algorithm 4. Line 1

initializes λnτ (Υ−Bn≤τ≤Υ−1),
+

Nτ−Bn−1,n and
�
Nτ−1,n to 0. Line 2 initializes λ†,nτ and

+

λτ,n (Υ≤τ≤N ∗) with λnτ . Let N ∗ denote the total number of time slots.
+

λτ,n is
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updated based on equation (6.4) in Line 5. Line 6 solves the unconstrained problem

with GSPSO to determine µnτ , zv,nτ and
#

N τ,v,n. Line 7 executes (
+

λτ,n(1−δnτ )L) tasks in

the CDC, and schedules zv,nτ
#

N τ,v,n tasks to public cloud v. Then, Lines 9–10 update
+

Nτ,n and
�
Nτ−Bn,n.

It is worth noting that the unconstrained problem is an MINLP. Currently, there

are many existing algorithms including a conjugate gradient method and sequential

quadratic programming to solve it. However, they often depend on derivatives of

objective function F̃1. Therefore, they are only useful when optimization problems

own special mathematical characteristics. Besides, their optimization process is

complicated and solutions are usually low-quality. Meta-heuristic algorithms own

advantages including easy implementation and robustness, and they can avoid

drawbacks of above algorithms. Nevertheless, each meta-heuristic algorithm has its

advantages and disadvantages [60]. Thus, this chapter applies a hybrid algorithm

called GSPSO, which is described in Chapter 5.

In PSO, the position and velocity of each particle are updated according to

learning experiences of its own and the swarm. The size of the swarm is denoted by

|X|. The velocity of particle i (i=1, 2, . . ., |X|) is denoted by θi1. The dimension of

each particle’s position is denoted by ND. µnτ and µnτ+b(1≤b≤Υ) are stored in the first

(Υ+1)∗NA elements of each vector. zv,nτ and zv,nτ+b(1≤b≤Υ) are stored in the next

(Υ+1)∗NA∗NC elements of each vector.
#

N τ,v,n and
#

N τ+b,v,n(1≤b≤Υ) are stored in

the following (Υ+1)∗NA∗NC elements of each vector. The value of F̃1 is stored in the

last element of each vector. Therefore, ND=(Υ+1)∗NA∗(2∗NC+1)+1. At last, the

globally optimal position of the swarm is transformed into decision variables including

µnτ , µnτ+b, zv,nτ , zv,nτ+b,
#

N τ,v,n, and
#

N τ+b,v,n (1≤b≤Υ, 1≤n≤NA, 1≤v≤NC).

The complexity of Algorithm 4 is analyzed as follows. According to Chapter 5,

the time complexity of GSPSO is O(ĝ|X|ND). ĝ denotes the total number of iterations

in GSPSO. Similarly, in Algorithm 4, most of the running time is caused by the while
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loop where N ∗−Υ+1 iterations are executed. In Algorithm 4, the time complexity

of each iteration in the while loop is mainly determined by GSPSO in Line 6. In

addition, N ∗ is usually much larger than Υ. Consequently, the time complexity of

Algorithm 4 is O(N ∗ĝ|X|ND).

6.4 Performance Evaluation

This section evaluates TTS with real-life data, e.g., VM prices, prices of power grid,

arriving tasks and green energy data.

6.4.1 Parameter Setting

Similar to the work in [21], delay bound constraints are set to 3, 4 and 5 time

slots, i.e., B1=3, B2=4 and B3=5. Besides, the real-life prices of power grid in

24 hours in New York, U.S. are chosen. According to the work in [24], the parameters

in the power consumption model are set as: Φ̌1=200 (W), Φ̌2=100 (W), Φ̌3=50

(W), Φ̂1=400 (W), Φ̂2=200 (W), Φ̂3=100 (W), Ê=5 (MWH),
•
N1=0.05 tasks/minute,

•
N2=0.1 tasks/minute,

•
N3=0.2 tasks/minute and α=1.2. Based on the work in [31],

N̂1=3×106, N̂2=1.5×106, N̂3=3×106, Q̂1=12, Q̂2=25 and Q̂3=50.

Similar to the work in [21], it is assumed that a single task finishes its execution

in the hybrid CDC in each time slot. Thus, tasks’ execution time for each application

is randomly produced based on the uniform distribution in the range of (0,L). Based

on the work in [99], the prices ($/hour) of tasks executed in the hybrid CDC are

randomly produced based on the uniform distribution in the ranges of [0.24,0.48],

[0.16,0.32] and [0.08,0.16], respectively. In this way, ∇n
τ is obtained.

It is worth noting that many algorithms are sensitive to the parameter setting.

Thus, based on the setting of parameters in existing studies [25, 76, 207], the

parameters are set as follows. ψ1 denotes the solar-irradiance-to-electricity conversion

rate of CDC. ψ2 denotes the active irradiance area of solar panels in CDC. φ1 denotes

the conversion rate of wind to electricity in CDC. φ2 denotes the on-site air density
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Table 6.1 Ranges of VM Prices ($/hour)

Public clouds Small Large Xlarge
1 [0.07,0.08] [0.06,0.07] [0.18,0.20]
2 [0.14,0.16] [0.12,0.14] [0.10,0.12]
3 [0.22,0.24] [0.20,0.22] [0.05,0.06]

in CDC. φ3 denotes the rotor area of wind turbines in CDC. According to the work in

[76], ψ1=0.2, ψ2=1.5∗105 (m2), φ1=0.3, φ2=1.225 (kg/m3) and φ3=2.5∗105 (m2).

The power ratings of wind and solar energy are set to 9∗108 (W) and 1.65∗108

(W), respectively. Based on the work in [25], GSPSO’s parameters in Algorithm

3 in Chapter 5 are set as: θ̂P5 =0.95, θ̌P5 =0.4, w24=0.01%, θ̂P4 =95%, |X|=100, ĝ=200,

θ̌P1 =θ̂P1 =0.5. The acceleration coefficient reflecting the influence of a super particle is

1.5. Besides, θ3=0.975, θ0
2=1030,

∞
N=1020 and 0

γ1=
0
γ2=2.

According to the pricing model in Amazon EC21, three types of VM instances

including Small, Large and Xlarge in commercial public clouds are adopted. Similar to

the work in [207], two most typical types of resources including CPU and memory are

chosen to configure and describe VMs as they are the most important configurations

in selecting a VM instance in public clouds. Specifically, the number of CPUs and

memory of a Small VM instance are 1 and 1.7 GB, respectively. Those of a Large

VM instance are 4 and 7.5 GB, respectively. Those of a Xlarge VM instance are 8

and 15 GB, respectively. In addition, it is assumed that applications 1–3 are executed

in Small, Large and Xlarge VMs, respectively. Each cloud has three types of Small,

Large and Xlarge instances. According to the work in [25], Table 6.1 presents the

price ranges of three VM instances in public clouds.

6.4.2 Experimental Results

Figure 6.2 shows the hybrid CDC’s profit and penalty of the final solution of TTS. It

is observed that the penalty in almost all time slots is nearly zero. It demonstrates

that TTS can converge to the close-to-optimal solution that meets all constraints in

1https://aws.amazon.com/cn/ec2/ (accessed on March 9, 2019).
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the formulated problem. As is shown in (6.35), Figure 6.2 also demonstrates that

TTS can maximize the profit of the hybrid CDC.

0 50 100 150 200 250
Time slot number

0

5000

10000

P
ro

fit
 a

nd
 p

en
al

ty

Profit Penalty

Figure 6.2 Profit and penalty in each time slot.

To demonstrate its performance, GSPSO is compared with PSO and SA. The

reasons of choosing them for comparison are described here. It is demonstrated that

SA is able to finally find global optima in theory by carefully setting the temperature

cooling rate due to the fact that it is able to conditionally escape from local optima.

Consequently, the comparison between them demonstrates the accuracy of GSPSO’s

final solution. In addition, it is shown that the convergence speed of PSO is quick

[60]. The comparison among PSO, SA and GSPSO demonstrates the convergence

speed of GSPSO.
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Figure 6.3 Comparison of execution time.

The execution time comparison of GSPSO, PSO and SA is shown in Figure 6.3.

The average execution time of SA is 19.13 (seconds) and it is larger than that of PSO,

0.70 (seconds), and that of GSPSO, 5.91 (seconds). PSO’s execution time is the least
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because of its quick trap into locally optimal solutions. The profit comparison of

GSPSO, PSO and SA in each iteration of time slot 50 is presented in Figure 6.4. The

meaning of iterations in SA and PSO is similar to that of GSPSO. The evolutionary

curve of penalty calculated according to equation (3.21) is shown in Figure 6.5.
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Figure 6.4 Profit of each iteration in time slot 50.

It is shown that PSO converges and loses its search ability after the least number

of iterations. However, it is shown in Figure 6.5 that the penalty of the final solution

of PSO is large (about 4×104). This shows that PSO’s final solution cannot meet all

constraints in the formulated problem. Thus, the final solution of PSO is the worst.

Besides, SA converges to its final solution after about 165 iterations. The profit of

its final solution is 11.11 times more than that of PSO but less than that of GSPSO.

GSPSO converges to its final solution after 41 iterations and its profit is $5941.06.

GSPSO’s profit is increased by $414.42 in much fewer iterations and much less time

than SA.

In addition, it is shown in Figure 6.5 that the penalty of the final solution of

GSPSO is nearly 0. This result demonstrates that GSPSO converges to a high-quality

solution satisfying all constraints in the formulated problem. Consequently, Figures

6.3–6.5 show that the incorporation of superior particles produced by SA’s Metropolis

acceptance rule and GA’s genetic operations in PSO increases the quality of GSPSO’s

final solution and leads to larger profit for the hybrid CDC.

145



0 50 100 150 200
Iteration number

0

2

4

6

P
en

al
ty

106

GSPSO PSO SA

Figure 6.5 Penalty of each iteration in time slot 50.
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Figure 6.6 Consumption of grid and green energy.

Figure 6.6 illustrates the amount of grid and green energy consumed by the

CDC. Here, Ê=5×107 (MWH) and Figure 6.6 illustrates that the sum of grid and

green energy is less than Ê in each time slot. It is pointed out that TTS prefers to

first adopt wind and solar energy, and then the grid energy purchased from the power

grid. This means that the grid energy is consumed only if the sum of solar and wind

energy is not sufficient to execute all arriving tasks of each application. It is worth

noting that TTS prefers to first adopt wind energy rather than the solar energy when

they are both available. The reason is that the power rating of wind energy is more

than five times larger than solar energy.

Figure 6.7 illustrates the cumulative arriving and remaining tasks of each

application in private CDC and public clouds. For example, Figure 6.7(b) presents

them for application 2 where
+

λτ,2=λ2
τ + λ†,2τ−1+λ†,2τ−2+λ†,2τ−3+λ†,2τ−4. Here, the curve for

time slot τ shows the variation of
+

λτ,2, and those for time slots τ−1, τ−2, τ−3 and
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Figure 6.7 Accumulated and remaining tasks.

τ−4 show the variations of λ†,2τ−1, λ
†,2
τ−2, λ

†,2
τ−3, and λ†,2τ−4, respectively. It is observed

that λ†,2τ−4 is least among λ†,2τ−1, λ
†,2
τ−2, λ

†,2
τ−3, and λ†,2τ−4. The reason is that TTS puts

all arriving tasks of each application into its seperate FCFS queues, and prefers to

schedule earlier-arrived tasks. TTS aims to guarantee that by time slot τ , all tasks

of application 2 in time slot τ−4 or before must have been scheduled to the CDC

and public clouds before time slot τ passes. Tasks that arrive in time slots τ−3, τ−2
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Figure 6.8 CATs and CSTs.

and τ−1 can only be executed when λ†,2τ−4=0. Similarly, tasks that arrive in time

slots τ−2 and τ−1 can only be executed when λ†,2τ−4=0 and λ†,2τ−3=0. Tasks arriving

in time slot τ−1 are executed when all tasks arriving before have been executed, i.e.,

λ†,2τ−4=0, λ†,2τ−3=0 and λ†,2τ−2=0. Then, it is shown that λ†,2τ−1 is larger than λ†,2τ−4, λ
†,2
τ−3

and λ†,2τ−2 in each time slot.

The cumulative scheduled tasks (CSTs) and cumulative arriving tasks (CATs)

for each application are shown in Figure 6.8. It is shown that tasks of all applications
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Figure 6.9 CSTs in the CDC and public clouds.

are scheduled to the CDC and public clouds within their delay bound constraints.

For example, the number of CATs of application 1 in time slot 143 equals that of

CSTs in time slot 140. This means that tasks of application 1 arriving in time slot

140 or before are all scheduled to the CDC and public clouds before time slot 143

passes. Therefore, it demonstrates that TTS strictly meets delay bound constraints

of tasks of all applications.
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Figure 6.9 shows CSTs in the private CDC and public clouds for each application

in each time slot. It is shown that the number of tasks executed in the CDC is much

larger than that of any public cloud. The reason is that the CDC aims to schedule

all in the cost-effective way. TTS tries to execute tasks in the CDC, and therefore,

it maximizes the profit of hybrid CDC. In addition, the number of tasks executed

in different public clouds shows the differences of prices of VMs. For example, it is

shown in Figure 6.9(a) that the number of application 1 tasks executed in public cloud

1 is much larger than those of public clouds 2 and 3 in each time slot. The reason is

that the price of VMs in public cloud 1 is smaller than those of public clouds 2 and 3.

Consequently, the number of tasks of each type executed in three public clouds is the

reflection of the variations in prices of their VMs. It demonstrates that the profit of

the hybrid CDC is maximized by smartly scheduling tasks of all applications among

the private CDC and public clouds.

TTS is further compared with several typical algorithms [31, 76, 99] to

demonstrate its effectiveness with respect to the profit of the hybrid CDC. The

following algorithms are adopted to evaluate TTS.

1) A1. It is based on the cheap-electricity-first scheduling [76] and schedules all
arriving tasks in the selected time slot when the power grid price is minimum
within their corresponding delay bound constraints.

2) A2. It ignores the temporal variations in revenue, prices of public clouds, prices
of power grid, solar irradiance and wind speed [99]. Therefore, all arriving tasks
of each application are immediately and directly executed among the CDC and
public clouds in the time slot when they arrive.

3) A3. It is based on a renewable energy-first scheduling algorithm [31] and
schedules all arriving tasks in the selected time slot in which the total amount
of solar and wind energy is maximum within their delay bound constraints.

A1–A3 schedule arriving tasks in a best-effort manner, since they depend on

the number of arriving tasks, the total number of servers and the amount of energy

in the CDC. Besides, in TTS, the final solution in time slot τ is obtained by solving

P2 given the predicted information over L.

150



Furthermore, the performance of TTS versus A1–A3 is evaluated with respect

to the cumulative total profit. In addition, the reason why the proposed algorithm

outperforms A1–A3 is further explained as follows. Note that the total number of

servers and the maximum amount of available energy in the CDC in any time slot

are fixed and limited. Therefore, some arriving tasks of applications might be refused

by the CDC, and they have to be scheduled to public clouds. Note that the hybrid

CDC has to pay the execution cost of VMs to public clouds due to tasks scheduled

to them, and the execution cost of the CDC is larger than those of public clouds in

each time slot according to the SLA specified between the hybrid CDC and users

[25, 99]. This means A1–A3 have to schedule more tasks to public clouds, and they

bring more execution cost to the hybrid CDC and reduce its profit. Consequently, to

maximize the profit of the hybrid CDC, TTS inclines to schedule more arriving tasks

to the CDC.
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Figure 6.10 Cumulative total profits of TTS, A1–A3.

The cumulative total profits of TTS, and A1–A3 are presented in Figure 6.10.

The cumulative total profit in τ is obtained by calculating the sum of the profit of the

hybrid CDC brought by the tasks executed in time slots τ to τ+Υ. Figure 6.10 shows

that compared with A1–A3, TTS’s cumulative total profit is much higher. This is

because TTS smartly executes tasks among CDC and public clouds by investigating

the temporal variations in prices of power grid, revenue, solar, and wind energy in

the CDC, and prices of public clouds within delay bound constraints of tasks.
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6.5 Summary

An increasing number of companies deploy their delay-constrained applications in

cloud data centers (CDCs). The unprecedented growth of tasks significantly increases

the energy consumption and therefore, a hybrid cloud scheme is growingly chosen to

tackle aperiodicity and uncertainty in tasks. The temporal variations in prices of

power grid, revenue, solar irradiance, wind speed and prices of public clouds bring a

big challenge to cost-effectively execute all tasks among the CDC and public clouds

while strictly satisfying all tasks’ delay bound constraints. This chapter presents a

Temporal Task Scheduling (TTS) algorithm that investigates the temporal variations.

It can smartly schedule all tasks to the CDC and public clouds within delay bound

constraints. Besides, the mathematical relation between task refusal and service rates

is explicitly presented. Then, the profit maximization problem is solved with a novel

hybrid optimization algorithm. Extensive simulation experiments demonstrate that

TTS outperforms several existing scheduling algorithms in terms of profit.
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CHAPTER 7

PROFIT AND QOS-OPTIMIZED TASK SCHEDULING FOR
DISTRIBUTED GREEN DATA CENTERS

This chapter presents the details of the proposed Profit and Quality of service

(QoS)-optimized Task Scheduling (PQTS) algorithm, and it is organized as follows.

Section 7.1 formulates a profit maximization and average task loss possibility

minimization problem for a cloud data center (CDC) provider as a bi-objective opti-

mization problem. The proposed Simulated-annealing-based Bi-objective Differential

Evolution (SBDE) algorithm is described in Section 7.2. According to SBDE, a PQTS

method is proposed to trade off the profit of the CDC provider against the average

task loss possibility of all applications. Then, PQTS is evaluated by using realistic

data, and its experimental results and analysis are shown in Section 7.3. Section 7.4

concludes this chapter.

7.1 Problem Formulation

This section formulates a bi-objective optimization problem for a CDC provider.

Figure 7.1 illustrates a system architecture of CDCs. Users send their tasks through

different types of electronic devices. Then, these tasks are classified by Classifier

according to their types [6, 109, 227]. Tasks of the same application are enqueued

into their separate First-In-First-Out (FIFO) queues. To guarantee the application

availability and QoS [228] of tasks, an application is deployed in multiple CDCs

located in different locations. Then, these tasks are delivered to CDCs through K

ISPs. Each CDC manages a cluster of high-performance servers. It is assumed that

it obtains energy from three types of sources including solar panels, wind turbines

and non-renewable power grid. By exploiting the architecture of CDCs, this chapter

focuses on Task Scheduler that executes the proposed PQTS and specifies the Pareto

153



optimal task service rates and task split among ISPs for CDCs in each time slot to

jointly optimize profit and QoS.
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Figure 7.1 Architecture of CDCs.

7.1.1 Delay Constraint

Let NC denote the number of CDCs. Let NA denote the number of applications.

Similar to the work in [110], this chapter adopts an M/M/1/Q̂c
n/∞ queueing system

to model the performance of servers of application n (1≤n≤NA) in CDC c (1≤c≤NC).

Let Q̂c
n denote the capacity of a task queue corresponding to application n in CDC c.

Let T̂n denote a specified response time constraint of tasks of application n. Let λc,nτ

denote the arriving rate of tasks of application n in CDC c in time slot τ . Let µc,nτ
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denote the service rate of servers corresponding to application n in CDC c in time

slot τ . Let T c,nτ denote the average response time of tasks of application n in CDC

c at time slot τ . According to the work in [110], T c,nτ is obtained with (7.1) and it

needs to be less than or equal to T̂n, i.e.,

T c,nτ =
∆11
τ,c,n

µc,nτ
(

1−∆12,c,n
τ

)≤T̂n (7.1)

where

∆11
τ,c,n=

ρc,nτ
1− ρc,nτ

−

(
Q̂c
n + 1

)
(ρc,nτ )Q̂

c
n+1

1−
(
ρc,nτ
)Q̂cn+1

∆12,c,n
τ =

1− ρc,nτ
1−

(
ρc,nτ
)Q̂cn+1

ρc,nτ =
λc,nτ
µc,nτ

The service rate of tasks of application n means the rate at which tasks are

scheduled to CDCs and removed from their corresponding FCFS queue. Then, the

task loss possibility of application n in CDC c in time slot τ is:

δc,nτ =


1−λ

c,n
τ
µ
c,n
τ

1−
(
λ
c,n
τ
µ
c,n
τ

)Q̂cn+1

(
λc,nτ
µc,nτ

)Q̂cn
µc,nτ >0,

1 µc,nτ =0.

(7.2)

To ensure the task queue stability of application n in CDC c, λc,nτ must be less

than µc,nτ in time slot τ . Let λk,c,nτ denote the arriving rate of tasks of application n

in CDC c delivered through ISP k in time slot τ . Then,

λc,nτ =
NK∑
k=1

λk,c,nτ <µc,nτ (7.3)

Let λnτ denote the task arriving rate of application n in time slot τ . In each time

slot, the sum of arriving rates of tasks of application n delivered through all ISPs to
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all CDCs must equal λnτ , i.e.,

λnτ=
NC∑
c=1

λc,nτ =
NC∑
c=1

NK∑
k=1

λk,c,nτ (7.4)

7.1.2 Energy Consumption Model

The energy consumption model used in CDCs is introduced here. Similar to the work

in [110], it is assumed that the servers corresponding to the same application are

homogeneous, and they consume the same energy. Let
•
Nc,n denote the number of

application n’s tasks executed by each corresponding switched-on server per minute

in CDC c. Let
o

N τ,c,n denote the number of switched-on servers for application n in

CDC c in time slot τ . Thus,
o

N τ,c,n=µc,nτ /
•
Nc,n. Let N̂c,n denote the maximum number

of servers corresponding to application n in CDC c. Then,
o

N τ,c,n must not exceed

N̂c,n, i.e.,
o

N τ,c,n≤N̂c,n (7.5)

Then, the total energy consumed by CDCs is the sum of energy consumption

of all servers and the facilities including cooling and lighting in them. Let Φ̂c
n and Φ̌c

n

denote the peak and idle power of each server of application n in CDC c, respectively.

The power usage effectiveness value of CDC c is denoted by αc, and it is the ratio

of the energy consumption of a CDC to that of its all servers. The power usage

effectiveness is a significant metric to indicate the energy efficiency of a CDC, and its

value is usually 1.2–2.0 for existing data centers [229].

Let L denote the length of each time slot. The number of tasks executed by

each switched-on server corresponding to application n in time slot τ is calculated as:

(1−δc,nτ )λc,nτ L
o

N τ,c,n

(7.6)

The busy period of each switched-on server of application n in CDC c in time

slot τ is (1−δc,nτ )λc,nτ L
•
Nc,n

o
Nτ,c,n

minutes. Let uc,nτ denote the average CPU utilization of servers
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corresponding to application n in CDC c in time slot τ . Then,

unτ=
(1−δc,nτ )λc,nτ
•
Nc,n

o

N τ,c,n

(7.7)

Thus, following the work in [23], the total power of CDC c in time slot τ is

obtained as:

P c
τ=

NA∑
n=1

(
o

N τ,c,n(Φ̌c
n+(αc−1)Φ̂c

n+(Φ̂c
n−Φ̌c

n)uc,nτ )) (7.8)

Let Ec
τ denote the total energy consumed by tasks of all applications in CDC c

in time slot τ . According to equations (7.7) and (7.8),

Ec
τ=

NA∑
n=1

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1− δc,nτ )

•
Nc,n

L

 (7.9)

where

∆5
c,n , Φ̌c

n+(αc−1)Φ̂c
n, ∆4

c,n , Φ̂c
n−Φ̌c

n

Let Êc denote the available amount of the total energy in CDC c. Thus, Ec
τ

must not exceed Êc, i.e.,

Ec
τ=

NA∑
n=1

∆5
c,nµ

c,n
τ +∆4

c,nλ
c,n
τ (1− δc,nτ )

•
Nc,n

L

≤Êc (7.10)

The solar and wind energy models are introduced. Let
◦
Eτ,c denote the amount

of solar energy generated in CDC c in time slot τ . Let Ẽτ,c denote the amount of wind

energy generated in CDC c in time slot τ . Similar to Chapter 3,
◦
Eτ+b,c and Ẽτ+b,c

are calculated with equations (3.5) and (3.6) in the green energy model introduced

in Section 3.2 in Chapter 3, respectively.

7.1.3 Constrained Optimization Problem

Let B̂k denote the bandwidth limit of ISP k. Let ζn denote the average size of each

task of application n. Then, the total bandwidth required by tasks of all applications
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transmitted through ISP k in time slot τ satisfies:
NC∑
c=1

NA∑
n=1

(
λk,c,nτ ζn

)
≤B̂k (7.11)

In real scenarios, users negotiate with current existing CDC providers and

establish a service-level agreement (SLA) [20]. SLA specifies the revenue brought by

tasks if their performance requirements are strictly fulfilled. In addition, the penalty

cost paid by CDC providers is also specified in SLA if its performance requirement

of each task is unmet.

Let ∇n
τ denote the revenue brought by the execution of each task of application

n in time slot τ . Let εnτ denote the penalty cost brought by each rejected task of

application n in time slot τ . The total revenue brought by tasks of application n in

all CDCs in time slot τ is obtained as:

f ∗,n1 =
NC∑
c=1

(
(1− δc,nτ )λc,nτ ∇n

τ − δc,nτ λc,nτ εnτ
)
L (7.12)

Then, the total revenue brought by tasks of all applications in all CDCs in time

slot τ is obtained as:

f1=
NA∑
n=1

f ∗,n1 (7.13)

The total cost of the CDC provider in time slot τ , denoted as f2, consists of

energy cost and ISP bandwidth cost of all tasks. Let f21 denote the ISP bandwidth

cost caused by the transmission of tasks among users and CDCs in time slot τ . Let

f22 denote the energy cost due to all tasks in all CDCs in time slot τ .

f2=f21 + f22 (7.14)

Let bkτ denote the unit bandwidth price of ISP k in time slot τ . Then,

f21=
NK∑
k=1

bkτ
NC∑

c=1

NA∑
n=1

(
λk,c,nτ ζn

)
 (7.15)
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It is assumed that the solar and wind energy are cost-free once they are

purchased and installed in CDCs. The amount of power grid energy consumed by all

tasks is max
(
Ec
τ −

◦
Eτ,c − Ẽτ,c, 0

)
. Let pcτ denote the price of power grid of CDC c

in time slot τ . Thus, f22 is calculated as:

f22=
NC∑
c=1

pcτ
(
max

(
Ec
τ −

◦
Eτ,c − Ẽτ,c, 0

)) (7.16)

Let F1 denote the profit of CDC providers brought by the execution of all tasks.

F1 is calculated as:

F1=f1 − f2 (7.17)

The first objective is to maximize F1, i.e.,

Max
λk,c,nτ ,µc,nτ

{F1} (7.18)

The average task loss possibility in time slot τ is:

∆13
τ =

NC∑
c=1

NA∑
n=1

(δc,nτ )

NC
(7.19)

The second objective is to minimize ∆13
τ , i.e.,

Min
λk,c,nτ ,µc,nτ

{
∆13
τ

}
(7.20)

Then, this chapter formulates a bi-objective optimization problem as:

Max
λk,c,nτ ,µc,nτ

{F1}

Min
λk,c,nτ ,µc,nτ

{
∆13
τ

}
subject to constraints (7.1), (7.3)–(7.5), (7.10), (7.11) and

λk,c,nτ ≥0, µc,nτ ≥0 (7.21)
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Constraint (7.21) specifies ranges of decision variables, i.e., λk,c,nτ and µc,nτ .

There are many prediction algorithms, e.g., radial basis function neural networks

and support vector regression [230]–[232], to well predict time-related parameters,

e.g., pcτ , bkτ , λnτ , ψτ,3c and φτ,4c. Therefore, similar to the work in [23], it is assumed

that they are already known at the start of each time slot τ .

7.2 Simulated-annealing-based Bi-objective Differential Evolution

It is worth noting that F1 and ∆13
τ are nonlinear in terms of λk,c,nτ and µc,nτ .

Consequently, the problem is a constrained nonlinear bi-objective optimization

problem [233]–[235] . Constraints (7.1), (7.3)–(7.5), (7.10) and (7.11) are nonlinear

and complex. Therefore, to well handle them, this section adopts a penalty function

method to transform the problem into its corresponding unconstrained optimization

one given as follows.

Min
λk,c,nτ ,µc,nτ

{
F̃1=

∞
Nf−F1

}
Min

λk,c,nτ ,µc,nτ

{
∆̃13
τ =

∞
Nf+∆13

τ

}
(7.22)

where F̃1 and ∆̃13
τ denote new objective functions,

∞
N denotes a large positive integer

and f denotes the total penalty corresponding to all constraints. Let x denote a

vector including λk,c,nτ and µc,nτ . f is calculated with equation (3.21) in Chapter

3. In this way, the unconstrained optimization problem is obtained and calculated.

Currently, there are many traditional multi-objective optimization algorithms, e.g.,

a weighted sum method, an ε-constraint method and a weighted metric method, to

solve it. Each method has its own advantages and disadvantages. For example, it

is difficult for the weighted sum method to specify its weight vectors to produce a

Pareto-optimal solution in a selected objective space. Nevertheless, it cannot locate

certain Pareto-optimal solutions in a non-convex objective space. An ε-constraint

method is applicable to convex and non-convex optimization problems, but its ε
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vector should be carefully set because it has to be in the valid range of each objective

function. In addition, all these traditional approaches only produce one candidate

solution. It is more desired to produce a set of candidate solutions. Then, the CDC

providers can select their favorite solution from the set.

Thus, different multi-objective optimization algorithms are adopted to realize

it. Though there are many similar algorithms that can be applied, the multi-objective

differential evolutionary (MODE) algorithm has a simple, robust and efficient

structure, and can tackle complex constraints and nonlinear objective functions.

There are only a few parameters that need to be adjusted to obtain final solutions

[236]. In addition, MODE has been validated by many real-life applications, e.g.,

power flow optimization and facial expression recognition.

Consequently, this chapter adopts a Simulated-annealing-based Bi-objective

Differential Evolution (SBDE) algorithm to solve the unconstrained optimization

problem. It is a population-based algorithm for obtaining a limited set of Pareto

optimal solutions. The Pareto dominance in iterations is enhanced and therefore,

quality of solutions is improved. In SBDE, evolutionary operations, e.g., adaptive

mutation, simulated annealing (SA)-based crossover and SA-based selection, are

performed to improve its convergence speed and accuracy. The adaptive elitist archive

update mechanism is used to maintain the diversity of solutions, and an approximate

well-located Pareto front is thus achieved.

Typically, the Pareto optimal set and Pareto front include numerous points.

Numerically and practically, the Pareto front is approximated with a limited number

of points, from which a final representative solution named a knee is selected

among them. The knee is the most acceptable because it means a strategy

where two objectives are traded off but the best overall performance is achieved

[237]. The minimum Manhattan distance [238] is adopted to specify the knee

from an approximate Pareto optimal set. It has several pros including matrix
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computation-enabled efficient implementation, simple selection of the knee and

geometrical representation Consequently, SBDE is widely adopted to solve different

kinds of multi-objective constrained optimization problems. Then, according to the

knee, the final task scheduling strategy is determined to specify the optimal task

service rates and task split among ISPs for each CDC in each time slot.

7.2.1 Population Initialization

The population is randomly initialized according to a uniform distribution within

the feasible search space of decision variables. Let ND denote the number of

decision variables. Let
0
xi,d denote the value of decision variable d of individual i

(i∈{1, 2, . . . , |X|}) in the first generation, and |X| denotes the size of the population.

The population is initialized as:

0
xi,d = θ̌d5 + w13∗

(
θ̂d5−θ̌d5

)
(7.23)

where θ̂d5 and θ̌d5 denote upper and lower bounds of decision variable d, respectively,

and w13 is a random number uniformly distributed in (0,1).

7.2.2 Adaptive Mutation

Let ĝ denote the total number of generations. In the traditional MODE, in each

generation g (g∈{1, 2, . . . , ĝ}), one widely used mutation operation in practice is

known asDE/best/1 due to its fast convergence. It produces a new mutant individual

x̀gi for xgi by perturbing the best individual
•
xg (

•
i 6=w14 6=w15 6=i) searched in current

generation g, with the difference of two other randomly chosen individuals in the

population, xgw14
and xgw15

.

θD1 denotes a scaling factor that controls the perturbation and improves the

convergence. In this chapter, the best individual is denoted by
•
i, and its solution is

denoted by
•
xg. It is described as:

x̀gi =
•
xg + θD1

(
xgw14
−xgw15

)
,
•
i 6=w14 6=w15 6=i (7.24)
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It is worth noting that θD1 in equation (7.24) is a constant. It fails to dynamically

adjust to the evolution of population because it controls the search process with a

constant convergence rate. Thus, this section designs θD1 as a decreasing function

shown as:

θD1 = exp−θ
D
2
g
ĝ (7.25)

where θD2 is a positive constant. Other design of θD1 can be found in [227]. θD1 decreases

as g increases.

Then, as is shown in equation (7.24), the evolution of population can explore

the solution space widely at the start, and quickly at the end. Nevertheless,

if the population traps into local optima, it cannot escape from them. As is

shown in equation (7.24), the best individual,
•
xg, is critically important for a

mutation operation. It is the one with the least value of an objective function for a

single-objective optimization problem. However, the best individual means a group of

Pareto optimal solutions to a multi-objective optimization problem. It is contradictive

to guide individuals to a single solution because the goal is to obtain a set of Pareto

solutions. Therefore, this chapter proposes an adaptive mutation operation to guide

individuals to the Pareto set, and increase the global searching efficiency.

This chapter adopts an external archive (EA) denoted by Ω̆ to keep the Pareto

optimal solutions searched so far. The best individual of a current population is

chosen from Ω̆. Then, this chapter checks whether individual i is in Ω̆. If so, i is

chosen as
•
xg. Otherwise, the elitist individual with the minimum Euclidean distance

from individual i is chosen as
•
xg. Let |Ω̆| denote the maximum size of Ω̆.

←→
i, j denotes

the Euclidean distance between individual i and elitist individual j in Ω̆. Based on

above discussion, the adaptive mutation is implemented as:

x̀gi=


xgi + exp−θ

D
2
g
ĝ
(
xgw14
−xgw15

)
, if xgi∈Ω̆

•
xg + exp−θ

D
2
g
ĝ
(
xgw14
−xgw15

)
, otherwise

(7.26)
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•
i = argj Min

j∈{1,2,...,|Ω̆|}

(
←→
i, j

)
(7.27)

←→
i, j =

√√√√ ND∑
d=1

(
xgi,d−xgj,d

)2

, j∈{1, 2, . . . , |Ω̆|} (7.28)

7.2.3 SA-based Crossover

After an adaptive mutation operation, a crossover operation is implemented to

produce a trial individual X́η
i,d for individual i. It is shown that the population

evolution usually traps into local optima, and it also might cause a premature

problem. To solve it, this chapter adopts the Metropolis acceptance criterion of

SA [59] to improve the diversity of individuals in the population evolution and avoid

its too early convergence.

SA is able to escape from local optima by conditionally accepting some worse

individuals, and finally converge to global optima with high probability. Let M̌ denote

the number of objective functions, and Λg
i the difference between xgi and x̀gi . Then,

Λg
i=|F̃1(xgi )− F̃1(x̀gi )|+|∆̃13

τ (xgi )− ∆̃13
τ (x̀gi )| (7.29)

To improve the population diversity and avoid premature convergence, an SA-

based crossover operation is adopted, i.e.,

x́gi,d=


xgi,d, if exp

−
Λ
g
i
θ
g
2 >w16

xgi,d, otherwise
(7.30)

where w16 is a random number uniformly distributed in (0,1), and θg2 denotes the

current temperature in iteration g (g∈{1, 2, . . . , ĝ}).

7.2.4 SA-based Selection

In each generation, after mutation and crossover operations, an SA-selection is

implemented on each individual to check whether a newly produced trial individual
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x́gi or xgi is selected as xg+1
i in the next generation. Specifically, if x́gi dominates xgi ,

x́gi is accepted. If exp
−

Λ
g
i
θ
g
2 >w16, x́gi is selected; otherwise, xgi is selected.

xg+1
i =


x́gi , if x́gi dominates xgi

x́gi , if exp
−

Λ
g
i
θ
g
2 >w16

xgi , otherwise

(7.31)

7.2.5 Adaptive Elitist Archive Update Mechanism

At the beginning of the evolution of the population, the individual size of Ω̆ is zero.

Then, a current individual is added into Ω̆ directly. If the current individual is

dominated by each elitist individual in Ω̆, it is rejected. Otherwise, if the current

individual dominates an elitist individual in Ω̆, it is added into Ω̆ and this dominated

elitist individual is removed from Ω̆. Besides, if a current individual and elitist

individuals in Ω̆ do not have any dominance relations, it is added into Ω̆ and when the

number of elitist individuals in Ω̆ reaches |Ω̆|, the following adaptive elitist archive

update mechanism is adopted to update elitist individuals in Ω̆. This mechanism is

adopted to keep well-diversified Pareto optimal individuals in each generation, and

help the convergence of population. f̃ι denotes the ιth (ι∈{1, 2, . . . ,
o

M}) objective

function. Let θ̂ι6 and θ̌ι6 denote the maximum and minimum values of the ιth objective

function, i.e., 
θ̌ι6= Min

i∈{1,2,...,|Ω̆|}

(
f̃ι(x

g
i )
)
, ι∈{1, 2, . . . ,

o

M}

θ̂ι6= Max
i∈{1,2,...,|Ω̆|}

(
f̃ι(x

g
i )
)
, ι∈{1, 2, . . . ,

o

M}
(7.32)

Let θD3,ι denote the range of objective function ι, i.e., θD3,ι=θ̂ι6−θ̌ι6. θ̌D4,ι and θ̂D4,ι

denote lower and higher bounds of the grid region for objective function ι, i.e.,
θ̌D4,ι=θ̌

ι
6 − 1

2θ4
θD3,ι

θ̂D4,ι=θ̂
ι
6 + 1

2θ4
θD3,ι

(7.33)
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Algorithm 5 SBDE (Simulated-annealing-based Bi-objective Differential Evolution)
1: Perform the initialization with equation (7.23)
2: g ← 1
3: Ω̆← ∅
4: while g≤ĝ do
5: for i← 1 to |X| do
6: Perform the adaptive mutation with equation (7.26)
7: Perform the SA-based crossover with equation (7.30)
8: Perform the SA-based selection with equation (7.31)
9: end for

10: Change Ω̆ with the adaptive elitist archive update mechanism
11: g ← g+1
12: θg2 ← θg2∗θ3

13: end while
14: Select the knee solution:

∗
x = argxMin

x∈Ω̆
‖[ F̃1(x )−F̃1

min

F̃1
max
−F̃1

min ,
∆̃13
τ (x )−∆̃13

τ

min

∆̃13
τ

max
−∆̃13

τ

min ]− [1, 0]‖1

15: Output
∗
x and its two objectives [F̃1(

∗
x), ∆̃13

τ (
∗
x)]

The objective space specified by individuals in current Ω̆ is separated into θ2
4

hypercubes of equal size, and θ4 denotes the grid number in any dimension of the

space. The number of elitist individuals in each hypercube is calculated, and the

hypercube with the most individuals is recored as the most congested one. Then,

when the number of elitist individuals in current Ω̆ reaches |Ω̆|, the following adaptive

elitist archive update mechanism is invoked.

1) If an individual is within its current objective space, it is put into Ω̆ and added to
its corresponding hypercube. Besides, an elitist individual is removed randomly
from the most congested grid.

2) If an individual is outside the current objective space, it is also put into Ω̆. The
new objective space is then determined, and hypercubes are separated again.
The number of elitist individuals in each hypercube is also obtained again.
Then, an elitist individual is removed randomly from the most congested grid.

The extreme elitist individuals are reserved and not removed from Ω̆. Then, the

size of Ω̆ is fixed and the individual diversity of Ω̆ is increased. Algorithm 5 presents

the pseudo codes of SBDE. Line 1 initializes the population with equation (7.23).

The EA, Ω̆, is initialized with ∅ in Line 3. In each generation g, Line 6 performs

the adaptive mutation for each individual i with equation (7.26). Line 7 performs the
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SA-based crossover for each individual i with equation (7.30). Then, Line 8 performs

the SA-based selection for each individual i with equation (7.31). Line 10 changes

Ω̆ with the adaptive elitist archive update mechanism. Let θ3 denote the cooling

rate of temperature. Line 12 decreases the temperature (θg2) in generation g by θ3.

Line 14 selects the knee solution
∗
x. Finally, Line 15 outputs the knee solution

∗
x

and its two objectives [F̃1(
∗
x), ∆̃13

τ (
∗
x)]. Here, F̃1

min
and F̃1

max
denote the minimum

and maximum values of F̃1(x ) (x∈Ω̆). ∆̃13
τ

min
and ∆̃13

τ

max
denote the minimum and

maximum values of ∆̃13
τ (x ) (x∈Ω̆).

7.3 Performance Evaluation

This section evaluates PQTS by using realistic data including task arriving rates of

three applications sampled every 5 minutes in Google cluster1, prices of power grid2,

bandwidth prices of ISPs, solar irridiance3 and wind speed4 for 24 hours on May 10,

2011 [24].

7.3.1 Parameter Setting
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Figure 7.2 Convergence analysis of SBDE.

This chapter considers three applications, three ISPs and three CDCs, i.e.

NA=3, NK=3 and NC=3. Their parameters including
•
Nc,n, Φ̌c

n, Φ̂c
n, Q̂c

n and N̂c,n are

1https://github.com/google/cluster-data (accessed on May 6, 2019).
2http://www.nyiso.com/public/index.jsp (accessed on May 10, 2019).
3http://www.nrel.gov/midc/srrl_bms/ (accessed on May 10, 2019).
4http://www.nrel.gov/midc/nwtc_m2/ (accessed on May 10, 2019).
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set according to Section 3.4 in Chapter 3. According to the work in [18], B̂1=4×106

(Mbps), B̂2=5×106 (Mbps) and B̂3=6×106 (Mbps). Besides, ζ1=8 (Mb), ζ2=5 (Mb),

ζ3=2 (Mb), T̂1=0.15 (seconds), T̂2=0.2 (seconds) and T̂3=0.25 (seconds). According

to the work in [236], the parameters of SBDE are set as follows. |X|=200, ĝ=200,

|Ω̆|=100, θ0
2=1012, θ3=0.975, θD2 =0.2, θ4=80 and

∞
N=1020.

7.3.2 Experimental Results
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Figure 7.3 Number of switched-on servers in CDC 1.

0 50 100 150 200 250
Time slot number

0

200

400

600

800

1000

N
um

be
r 

of
 p

ow
er

ed
-o

n 
se

rv
er

s

Type 1 Type 2 Type 3

Figure 7.4 Number of switched-on servers in CDC 2.

Figure 7.2 illustrates the convergence analysis in terms of profit and temporary

knee distance of SBDE in time slot 100. Here, the temporary knee distance in each

iteration is calculated as follows. In Algorithm 5, each iteration runs Lines 5–12. Ω̆

is updated with an adaptive elitist archive update mechanism. Therefore, in each

iteration, a temporary knee solution with the minimum knee distance is selected

according to the rule of knee solution selection in Line 14. The temporary knee
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Table 7.1 Convergence Time with Different Scales of Tasks

Scale 1
4

1
2

1 2 4

Convergence time (s) 2.21 3.99 6.77 13.13 25.08

distance in each iteration is obtained accordingly, and shown in Figure 7.2. It is

observed that it reduces as the number of iterations increases. Besides, it is also

shown that the profit increases with the evolution of SBDE. Figure 7.2 illustrates

that the stable values are approached and demonstrates the convergence of SBDE.

Table 7.1 shows the convergence time with different scales of tasks. For example,

if scale is 2, the task arriving rate of application n in time slot τ is doubled and it

becomes 2λnτ . Similarly, if scale is 1
2
, it becomes 1

2
λnτ . Thus, it is shown that the

convergence time increases with the increase of the scales of tasks. Note that similar

to the work in [76], the length of each time slot is 5 minutes, and tasks are scheduled

based on the knee solution
∗
x obtained by SBDE from one time slot to another. Thus,

compared to length of each time slot, the convergence time is negligible and does not

affect the scheduling of tasks.
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Figure 7.5 Number of switched-on servers in CDC 3.

Figures 7.3–7.5 illustrate the number of switched-on servers in three CDCs,

respectively. It is shown that the number of switched-on servers for each application

in three CDCs is less than its corresponding limit. Besides, it is observed that the

number of switched-on servers for each application in three CDCs varies. For example,

the number of switched-on servers for application 2 in CDC 3, is much smaller than
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those in CDCs 1 and 2. The reason is that prices of power grid at CDCs 1 and 2 are

less than that at CDC 3 in each time slot, and more tasks are therefore scheduled

to CDCs 1 and 2. Accordingly, this yields a lower number of switched-on servers in

CDC 3.

7.3.3 Comparison Results

To demonstrate the performance of SBDE, this chapter first compares it with several

state-of-the-art multiobjective evolutionary algorithms including the improved fast

and elitist Non-dominated Sorting Genetic Algorithm (NSGA2) [239], Strength

Pareto Evolutionary Algorithm 2 (SPEA2) [240] and MODE [236]. It is worth

noting that each algorithm obtains its own Pareto front, which consists of a set of

different solutions. Then, the aforementioned minimum Manhattan distance method

is adopted to select a knee solution from the Pareto front of each algorithm. Four

knee solutions are further compared with each other in terms of profit and average

task loss possibility.

Table 7.2 Comparison Among Optimization Algorithms

Algorithms Knee solution
Profit ($) Average task loss possibility

NSGA2 [239] 3316.2 0.004
SPEA2 [240] 3194.9 0.010
MODE [236] 2830.9 0.022
SBDE 3437.5 0.0025

Table 7.2 shows that SBDE performs better than its three peers in terms of

both profit and average task loss possibility. Compared with SBDE, NSGA2 has

3.53% reduction in profit and 37.50% increase in average task loss possibility; SPEA2

has 7.06% reduction in profit and 75.00% increase in average task loss possibility;

and MODE has 17.65% reduction in profit and 88.64% increase in average task loss

possibility. Furthermore, the convergence time of the Pareto optimal front obtained

by SBDE is 6.77 seconds, which is negligible because the length of each time slot
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is 5 minutes. The results are explained as follows. NSGA2, SPEA2 and MODE all

converge to worse Pareto fronts with low diversity of populations. Different from

NSGA2, SPEA2 and MODE, SBDE adopts adaptive mutation, SA-based crossover,

SA-based selection, adaptive elitist archive update mechanism and the minimum

Manhattan distance to improve the diversity of solutions, convergence speed and

accuracy. Thus, the Pareto optimal front obtained by SBDE is distributed more

evenly and diversely than other three algorithms. This means that SBDE provides

more comprehensive candidate solutions. Consequently, the profit of SBDE is the

largest while its average task loss possibility is the lowest among four algorithms.

To demonstrate the performance of PQTS, it is further compared with three

typical task scheduling approaches [241, 242] in terms of the profit and the average

task loss possibility.

1) M1 [241] is electricity-cost-aware distributed task scheduling.

2) M2 [87] is profit maximization approach (PMA).

3) M3 [242] is green task balancing (GTB).

Figures 7.6 and 7.7 show the comparison of profit and average task loss

possibility of PQTS and M1–M3. The average task loss possibility of PQTS is the

lowest and its profit is the highest compared with M1–M3. Its profit is 8.40% higher

and its average task loss possibility is 93.47% lower than M1’s; 11.72% higher and its

average task loss possibility is 93.50% lower than M2’s; and 20.66% higher and its

average task loss possibility is 94.75% lower than M3’s. The reasons are explained

as follows. The profit of M3 is the least because it aims to achieve the energy cost

minimization rather than the profit maximization. In M3, the number of switched-on

servers is minimized provided that it is sufficient to execute all tasks. Thus, M3

achieves larger average task loss possibility and smaller profit. Similarly, M1 aims to

minimize the energy cost of distributed data centers with intelligent load balancing.

M2 aims to maximize the profit of a green data center with convex optimization for
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two cases, with and without behind-the-meter green generators. However, they both

do not consider the bandwidth cost and capacity limits of ISPs, and the availability

of wind and solar energy in CDCs. Consequently, the profits of M1 and M2 are lower

than those of PQTS. M1 and M2 both model QoS as a constraint in its optimization

problem, and therefore, the minimum QoS satisfaction is achieved. Different from

them, PQTS jointly maximizes the profit of CDC providers, and minimizes the

average task loss possibility of all applications. Therefore, it realizes higher profit

and better QoS for CDC providers than M1–M3.
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Figure 7.6 Profit comparison of PQTS and M1–M3.
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Figure 7.7 Average task loss possibility comparison of PQTS and M1–M3.

7.4 Summary

The number of tasks of global users significantly increases the energy cost of cloud

data centers (CDCs). Meanwhile, the dramatic growth of tasks also increases the

revenue of CDC providers, which is closely related to tasks’ quality of service (QoS).

Besides, many factors in different CDCs, e.g., prices of power grid, wind and solar
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energy, exhibit the spatial variations. Consequently, it becomes a big challenge to

jointly maximize the profit of CDC providers, and minimize the average task loss

possibility of all applications. This chapter proposes a Profit and QoS-optimized

Task Scheduling (PQTS) method to achieve a beneficial tradeoff between these

two objectives for both users and CDCs. Specifically, this chapter formulates a

bi-objective optimization problem and solves it with a simulated-annealing-based

bi-objective differential evolution algorithm. The minimum Manhattan distance is

used to specify a knee solution that determines proper task split among ISPs and

task service rates at CDCs in each time slot. Real-life data-based simulations reveal

that the proposed method achieves significantly higher profit and lower average task

loss possibility of all applications than three existing task scheduling algorithms.
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CHAPTER 8

ENERGY-CONSUMPTION AND PERFORMANCE-OPTIMIZED
TASK SCHEDULING IN DISTRIBUTED CLOUD DATA CENTERS

This chapter presents the details of the energy-consumption and performance-

optimized task scheduling method, and it is organized as follows. Section 8.1 gives

the formulation of a bi-objective constrained optimization problem. Section 8.2 gives

the proposed Simulated-annealing-based Adaptive Differential Evolution (SADE).

According to SADE, a close-to-optimal task scheduling strategy is given to trade

off the task response time of all tasks in CDCs, and the energy cost of a CDC

provider. Section 8.3 evaluates the proposed method by using realistic data. Section

8.5 concludes this chapter.

8.1 Problem Formulation

This section gives the formulation of a bi-objective constrained optimization problem.

Figure 8.1 shows the architecture of CDCs. It is assumed that there are NC back-end

data centers in CDCs. Users send their tasks through front-end pervasive devices,

e.g., laptops, smart phones and computers, to CDCs [243]. Users’ arriving tasks are

scheduled in a First-Come-First-Serve (FCFS) way. Task Scheduler executes SADE

periodically and schedules tasks in a queue to jointly minimize both the energy cost

and the task response time of all tasks by intelligently executing all arriving tasks

among CDCs.

8.1.1 Task Response Time Model

This section first gives the model of the task response time of all tasks in CDCs. This

section considers NC heterogeneous CDCs to simultaneously execute tasks. In CDC c

(1≤c≤NC), there are a group of N̂c heterogeneous servers in total. Here, this chapter

adopts a G/G/1 queuing model that is the most general queuing model to analyze the
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Figure 8.1 Architecture of CDCs.

performance of each arbitrary server in a CDC. Specifically, each switched-on server

is analyzed as a G/G/1 queuing system.

Let
o

N τ,c denote the number of the switched-on servers in CDC c in time slot τ .

It is assumed in this chapter that the task execution and interarrival times may have

arbitrary distributions of probability in server q (1≤q≤
o

N τ,c).
o

N τ,c must be less than

or equal to N̂c, i.e.,

0≤
o

N τ,c≤N̂c,
o

N τ,c∈N+ (8.1)

Let σ̂τ,c,q denote the interarrival time for server q in CDC c. σ̂τ,c,q can be any

random variable with the variance σ̂τ,c,q and the mean T̄c,qτ , which are obtained from

analyzing tasks in the realistic Google cluster trace. Let λ̃cτ denote the task arriving

rate of CDC c in time slot τ . Thus, the task arriving rate at server q in CDC c in time

slot τ is obtained as λc,qτ = 1
σ̂τ,c,q

, which is the number of tasks per second in time slot

τ . Let rqc denote the random execution requirement of each task submitted to server

q in CDC c. rqc can have any arbitrary probability distribution with the variance σ̆c,q

and the mean r̄qc . Let %c,qτ denote the running speed of server q in CDC c in time slot

τ . Let %̂c denote the maximum running speed of each server in CDC c. Thus, %c,qτ

must be less than or equal to %̂c, i.e.,

0≤%c,qτ ≤%̂c (8.2)
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In addition, the running speed of server q in CDC c in time slot τ must be large

enough to process its arriving tasks. Specifically, %c,qτ must be larger than or equal to

r̄qc
T̄c,qτ

, i.e.,

%c,qτ >
r̄qc
T̄c,qτ

(8.3)

The running time of each task on server q in CDC c in time slot τ is 
c,qτ =rqc/%
c,q
τ ,

which is measured in second. Its mean, variance and variation coefficient are t̄c,qτ , σ̃τ,c,q

and 
c,qτ , respectively.

t̄c,qτ =
r̄qc
%c,qτ

(8.4)

σ̃τ,c,q=
σ̆c,q(
%c,qτ
)2 (8.5)


c,qτ =
σ̃τ,c,q
t̄c,qτ

(8.6)

Let λτ denote the total task arriving rate in time slot τ . λ̃cτ denotes the task

arriving rate of CDC c in time slot τ . Then, λτ is the sum of task arriving rates of

all CDCs in τ , i.e.,

λτ=
NC∑
c=1

λ̃cτ (8.7)

In this way, the average response time of tasks in CDC c with
o

N τ,c servers is

obtained as follows.

T cτ=
1

λ̃cτ

o
Nτ,c∑
i=1

λc,qτ

(
r̄qc
%c,qτ

+
(
(r̄qc)

2+σ̆c,q
))

∆14
τ,c,q (8.8)

∆14
τ,c,q=

σ̂τ,c,q(%
c,q
τ )2+σ̆c,q

2%c,qτ (T̄c,qτ %
c,q
τ − r̄qc)((T̄c,qτ )2(%c,qτ )2+σ̆c,q)

Then, this chapter adopts the maximum value of the average response time

of tasks in multiple CDCs as the task response time of all tasks in CDCs, which is
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denoted by Tτ . Therefore, Tτ is obtained as follows.

Tτ=Max
c
{T cτ } (8.9)

For clarity, the derivation of (8.8) is given in the Appendix.

8.1.2 Energy Cost Model

Then, this chapter further describes the model of energy cost of CDCs. It is shown

that in a well-designed circuit, the dominant component in CDCs is dynamic power

consumption (measured in Watt). Let Pc,qτ denote the amount of power consumption

of each server q in CDC c in time slot τ . Uc,qτ denotes the supply voltage of each

server q in CDC c and χc,qτ denotes the clock frequency of each server q in CDC c.

In the perfect case, the clock frequency and the supply voltage are related to each

other in such a way that Uc,qτ ∝ (χc,qτ )
0
γ3,c for some constant 0

γ3,c>0 [244]. The processor

running speed %c,qτ is linearly proportional to χc,qτ , i.e., %c,qτ ∝χc,qτ . Therefore, similar

to the work in [36], Uc,qτ =
0
γ4,c (χc,qτ )

0
γ3,c and %c,qτ =

0
γ5,cχ

c,q
τ . Here, 0

γ4,c and 0
γ5,c are two

constants for CDC c. Therefore, the following equation for obtaining the amount of

power consumption is given as follows.

Pc,qτ =ϑcωc (Uc,qτ )2 χc,qτ

=ϑc(
0
γ4,c)

2ωc (χc,qτ )2
0
γ3,c+1

=ϑc(
0
γ4,c)

2ωc
(%c,qτ )2

0
γ3,c+1(

0
γ5,c

)2
0
γ7,c,n+1

=kc (%c,qτ )	c (8.10)

where ϑc denotes the activity factor in CDC c, ωc denotes the loading capacitance in

CDC c. Besides, kc=ϑc(
0
γ4,c)

2ωc/(
0
γ5,c)

2
0
γ7,c,n+1 and 	c=2

0
γ7,c,n+1.

Similar to the work in [22, 113, 245], it is assumed that the servers in each

CDC are homogeneous while those in different CDCs are heterogeneous. Each server
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q with speed %c,qτ consumes the power of Pc,qτ . It is worth noting that each server has

to consume a certain amount of base power when it is idle due to the dissipation

of short-circuit and static power, and other wasted and leakage power [79]. Let Φ̌c
q

denote the amount of power consumed by each idle server q in CDC c. In addition,

let L denote the length of each time slot. Let P c
τ denote the total power consumption

of CDC c in time slot τ . Similar to the work in [24, 246], P c
τ is obtained as follows.

P c
τ=

o
Nτ,c∑
q=1

(
Pc,qτ +Φ̌c

q

)
=

o
Nτ,c∑
q=1

(
kc (%c,qτ )	c +Φ̌c

q

)
(8.11)

Then, the total energy consumption of CDC c in time slot τ is P c
τL, and it

cannot exceed Êc, which denotes the maximum available energy in CDC c, i.e.,

P c
τL<Êc (8.12)

Let pcτ denote the electricity price of CDC c in time slot τ . It is assumed that

this chapter neglects the regulation influence of CDCs on electricity prices. Thus, the

energy cost of CDC c is denoted by f c,∗22 , which is obtained as follows.

f c,∗22 =P c
τLp

c
τ=

o
Nτ,c∑
q=1

(
kc (%c,qτ )	c +Φ̌c

q

)
Lpcτ (8.13)

Then, the energy cost of the CDC provider is denoted by f22, which is obtained

as follows.

f22=
NC∑
c=1

f c,∗22 =
NC∑
c=1

P c
τLp

c
τ=

NC∑
c=1


o
Nτ,c∑
q=1

(
kc (%c,qτ )	c +Φ̌c

q

)
Lpcτ

 (8.14)

8.1.3 Bi-objective Constrained Optimization Problem

The first objective is to minimize Tτ , i.e.,

Min
λ̃cτ ,

o
Nτ,c,%

c,q
τ

{Tτ} (8.15)
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The second objective is to minimize f22, i.e.,

Min
λ̃cτ ,

o
Nτ,c,%

c,q
τ

{f22} (8.16)

Then, according to constraints (8.1), (8.2), (8.3), (8.7) and (8.12), this chapter

formulates a bi-objective optimization problem as:

Min
λ̃cτ ,

o
Nτ,c,%

c,q
τ

{Tτ}

Min
λ̃cτ ,

o
Nτ,c,%

c,q
τ

{f22}

subject to

o

N τ,c≤N̂c (8.17)

%c,qτ ≤%̂c (8.18)

λτ=
NC∑
c=1

λ̃cτ (8.19)

P c
τL<Êc (8.20)

%c,qτ >
r̄qc
T̄c,qτ

(8.21)

o

N τ,c≥0, %c,qτ ≥0, λ̃cτ≥0 (8.22)

λ̃cτ=0, if
o

N τ,c=0 (8.23)

λ̃cτ>0, if
o

N τ,c>0 (8.24)

Constraint (8.22) specifies ranges of decision variables including λ̃cτ ,
o

N τ,c and

%c,qτ . In addition, constraints (8.23) and (8.24) show that if
o

N τ,c=0, λ̃cτ must be 0

because there are no corresponding switched-on servers in CDC c to execute tasks

in time slot τ ; otherwise, if
o

N τ,c>0, λ̃cτ must be greater than 0 because there are

available corresponding switched-on servers in CDC c to execute tasks in time slot

τ . Then, the algorithm proposed to solve this bi-objective constrained optimization

problem is described next.
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8.2 Simulated-annealing-based Adaptive Differential Evolution

It is worth noting that Tτ and f22 in a bi-objective constrained optimization problem

are nonlinear with respect to λ̃cτ ,
o

N τ,c and %c,qτ . Thus, it is a constrained bi-objective

nonlinear optimization problem. To well solve it, this chapter adopts a penalty

function approach to convert it into an unconstrained optimization problem, i.e.,

Min
λ̃cτ ,

o
Nτ,c,%

c,q
τ

{
T̃τ=

∞
Nf+Tτ

}
Min

λ̃cτ ,
o
Nτ,c,%

c,q
τ

{
f̃22=

∞
Nf+f22

}
(8.25)

where T̃τ and f̃22 are two augmented objective functions,
∞
N is a positive constant,

and f is the penalty of all constraints. x is a decision variable vector including λ̃cτ ,
o

N τ,c and %c,qτ . f is obtained with equation (3.21) in Chapter 3.

There are several traditional approaches to transform two objectives into one

objective with linear weights, e.g., weighted sum approach, to solve it. However,

such approach has difficulty in determining weights for two objectives. In addition,

it only gives a single candidate solution and requires multiple executions to produce

Pareto-optimal candidates. It is more beneficial to give them in a single execu-

tion. Thus, several multi-objective evolutionary algorithms, e.g., Strength Pareto

Evolutionary Algorithm (SPEA) [247], ε-constraint approach [248], multi-objective

particle swarm optimization (MOPSO) [249] and the non-dominated sorting genetic

algorithm 2 (NSGA2) [250], are available to jointly optimize multiple objectives

and give Pareto-optimal candidates for decision makers. Each algorithm owns its

advantages and disadvantages. For example, in the ε-constraint approach, the ε vector

is difficult to set as it needs to be in valid ranges of objective functions though it is

applicable to different optimization problems. In addition, the mutation and crossover

operations in NSGA2 are aimless and random, and can have difficulties in producing

high-quality offspring.
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Among them, differential evolution (DE) [251, 252] is a typical population-based

algorithm for multi-objective optimization problems. Compared to other similar

algorithms, DE’s implementation is much easier and its convergence process is faster

[253]. Thus, multi-objective DE (MODE) is widely applied to solve multi-objective

optimization problems. MODE only has a few parameters and efficient population

update. Therefore, it is widely used in many areas, e.g., facial expression recognition

and power flow optimization [254]. Nevertheless, MODE also suffers from a premature

convergence problem.

This chapter proposes a Simulated-annealing-based Adaptive Differential Evolution

(SADE) algorithm to solve the unconstrained optimization problem. SADE includes

SA-based crossover and selection, and adaptive mutation to increase the convergence

accuracy and speed. Besides, an entropy-based crowding distance method is adopted

to produce a high-diversity Pareto-optimal front. Then, a final solution called knee is

chosen from the front with the minimum Manhattan distance, and it represents the

best tradeoff between two objectives.

8.2.1 Individual Encoding

Each individual i includes λ̃cτ ,
o

N τ,c and %c,qτ , and is encoded as:

xi=

[
λ̃1
τ , · · · , λ̃N

C

τ ,
o

N τ,1, · · · ,
o

N τ,NC , %
1,q
τ , · · · , %NC ,qτ

]
(8.26)

8.2.2 Population Initialization

Let |X| denote the population size. Let
0
xi,d denote the initial decision variable d of

individual i∈{1, 2, . . . , |X|}, i.e.,

0
xi,d = θ̌d5 + w19,i∗

(
θ̂d5−θ̌d5

)
(8.27)

where θ̌ and θ̂d5 are lower and upper limits of decision variable d, and w19,i is a number

for individual i randomly obtained in (0,1).
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8.2.3 Adaptive Mutation

The number of generations is denoted by ĝ. Here, the best individual is denoted by
•
i. A new individual x̀gi is produced for xgi as follows.

x̀gi =
•
xg + exp−0.2 g

ĝ
(
xgw20
−xgw21

)
,
•
i 6=w20 6=w21 6=i (8.28)

where
•
xg (

•
i 6=w20 6=w21 6=i) is the best individual in generation g∈{1, 2, . . . , ĝ}, and xgw20

and xgw21
are two random individuals. It is worth noting that w20 is different from

w21, and both of them are different from
•
i.

Furthermore, the adaptive mutation is designed as follows.

x̀gi=


xgi + exp−0.2 g

ĝ
(
xgw20
−xgw21

)
, if xgi∈Ω̆

•
xg + exp−0.2 g

ĝ
(
xgw20
−xgw21

)
, otherwise

(8.29)

•
i = argj Min

j∈{1,2,...,|Ω̆|}

(
←→
i, j

)
(8.30)

←→
i, j =

√√√√ ND∑
d=1

(
xgi,d−xgj,d

)2

, j∈{1, 2, . . . , |Ω̆|} (8.31)

where Ω̆ denotes an external archive (EA) to store the Pareto-optimal candidates, |Ω̆|

denotes the number of individuals in Ω̆, ND denotes the number of decision variables,

and
←→
i, j denotes the distance between i and j∈{1, 2, . . . , |Ω̆|}.

8.2.4 SA-based Crossover

This chapter uses the Metropolis acceptance rule of SA [255] to find global optima

by conditionally choosing worse candidates. The SA-based crossover is conducted as:

x́gi,d=


xgi,d, if exp

−
Λ
g
i
θ
g
2 >w22

xgi,d, otherwise
(8.32)
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Λg
i=

o
M∑
ι=1

|f̃ι(xgi )− f̃ι(x̀
g
i )| (8.33)

where w22 denotes a random number in (0,1), θg2 is the temperature in iteration g, x́gi

denotes a new candidate for i,
o

M denotes the number of objective functions and Λg
i

is the difference between x̀gi and xgi .

8.2.5 SA-based Selection

Then, SA-selection is conducted on each candidate to update xg+1
i , i.e.,

xg+1
i =


x́gi , if x́gi dominates xgi

x́gi , if exp
−

Λ
g
i
θ
g
2 >w22

xgi , otherwise

(8.34)

8.2.6 Entropy-based Crowding Distance Method

To keep elite candidates obtained by SADE, EA is adopted to keep them for the

convergence purpose. When the number of elite candidates in EA exceeds its limit,

this chapter adopts an entropy-based crowding distance method [256] to realize the

truncation of EA for obtaining an evenly distributed Pareto front. The entropy is a

concept to properly evaluate the diversity distribution characteristics of the Pareto

front. Here, this chapter adopts the lower adjacent distance to calculate the entropy

of distribution, which is obtained as follows:

θA1,i=− θA2,ilog(θA2,i) (8.35)

θA2,i=
θA3,i∑|Ω̆|−1

i=1 θA3,i

(8.36)

θA3,i=

o
M∑
ι=1

|f̃ι(xi)− f̃ι(θA4,i,ι)| (8.37)

where θA1,i denotes the entropy of candidate i in EA, θA2,i denotes the sparsity degree

of candidate i in EA, θA3,i denotes the distance of candidate i to its lower adjacent
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candidate in EA, f̃ι denotes the ιth (ι∈{1, 2, . . . ,
o

M}) augmented objective function.

and θA4,i,ι denotes the lower adjacent candidate of candidate i in EA along objective ι.

Then, let θA5 (θA5 ∈[0,1]) denote the diversity of the Pareto-optimal front, and it

is calculated by summing up the entropy of all candidates in EA, i.e.,

θA5 =
1

log2(|Ω̆|−1)

|Ω̆|−1∑
i=1

Ei (8.38)

Note that the Pareto-optimal front is evenly distributed if the entropy of each

candidate in EA is 1. Therefore, the metric of diversity can keep elite candidates

in EA. If the number of elitist candidates in Ω̆ is |Ω̆| and a new candidate is not

dominated by any candidate in EA, it is first put into Ω̆ and the current size of EA is

|Ω̆|+1. Then, the entropy of each candidate in EA is calculated again. The candidate

with the smallest entropy is removed from EA, and there are still |Ω̆| elitist candidates

in EA. Algorithm 6 shows details of SADE. Line 1 conducts initialization with (8.27).

Line 3 initializes Ω̆ with ∅. Line 6 conducts adaptive mutation with (8.29). Line 7

conducts SA-based crossover and selection with (8.32) and (8.34). Line 9 conducts

the entropy-based crowding distance method. Line 11 reduces θg2 by the temperature

cooling rate denoted by θ3. Lines 13 and 14 determine and output knee
∗
x. Here,

T̃τ
min

and T̃τ
max

denote the minimum and maximum values of T̃τ (x ) (x∈Ω̆). f̃22

min

and f̃22

max
denote the minimum and maximum values of f̃22(x ) (x∈Ω̆).

8.3 Performance Evaluation

This chapter uses real-life arriving tasks in Google cluster trace1 to evaluate SADE.

Figure 8.2 illustrates arriving rates of tasks of three applications. Figure 8.3 illustrates

real-life electricity prices in three CDCs2.

The length of each time slot is 300 seconds, i.e., L= 300 seconds. According to

the work in [24], the parameter setting for three CDCs is given in Table 8.1. Figure

1https://github.com/google/cluster-data (accessed on May 6, 2019).
2http://www.energyonline.com/Data/ (accessed on May 6, 2019).
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Algorithm 6 SADE (Simulated-annealing-based Adaptive Differential Evolution)
1: Conduct initialization with (8.27)
2: g ← 1
3: Ω̆← ∅
4: while g≤ĝ do
5: for i← 1 to |X| do
6: Conduct adaptive mutation with (8.29)
7: Conduct SA-based crossover and selection with (8.32) and (8.34)
8: end for
9: Conduct the entropy-based crowding distance method

10: g ← g+1
11: θg2 ← θg2∗θ3

12: end while
13: Determine knee:

∗
x = argxMin

x∈Ω̆
‖[ T̃τ (x )−T̃τ

min

T̃τ
max
−T̃τ

min ,
f̃22(x )−f̃22

min

f̃22
max
−f̃22

min ]− [1, 0]‖1

14: Output
∗
x and its two objectives [T̃τ (

∗
x), f̃22(

∗
x)]
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Figure 8.3 Electricity prices in three CDCs.

8.4 illustrates the arriving rates of tasks allocated to three CDCs, respectively. It is

observed that the number of tasks allocated to CDC 1 is the largest and that allocated

to CDC 3 is the smallest among three CDCs.
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Table 8.1 Energy Parameter Setting

kc 	c Φ̌c
q(W) N̂c %̂c(tasks/second) Êc (WH)

c=1 12.5 1.5 400 140 3.0×104 2×1027

c=2 9.4 2.0 500 150 3.1×104 2.5×1027

c=3 6.4 2.5 500 160 3.2×104 1.25×1027

Figure 8.5 illustrates the number of active servers in three CDCs, respectively.

It is observed that they are all less than their corresponding limits. In addition, the

number of active servers in CDC 1 is the largest and that in CDC 3 is the smallest

among three CDCs. The reason is that CDC 1’s electricity price is the lowest and

that of CDC 3 is the highest in each time slot. Consequently, more tasks are allocated

to CDC 1 and more servers are active than those of CDCs 2 and 3.
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Figure 8.4 Arriving rates of tasks allocated to three CDCs.
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Figure 8.5 Number of active servers in three CDCs.

Figure 8.6 illustrates the convergence result in terms of the task response time

and the energy cost of CDCs with SADE in time slot 1. It is observed that they
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both decrease with iterations, and converge to stable values at the end of iterations

of SADE. This is because the entropy-based crowding distance method increases the

candidate diversity in EA, and finally produces a knee solution.
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Figure 8.6 Convergence analysis of SADE in time slot 1.

To demonstrate the effectiveness of the entropy-based crowding distance

method, this chapter further compares it with the standard EA update [255] and

adaptive EA update [257] of MODE.

1) Standard EA update [255]: the truncation operation of EA is conducted as
follows. If a new candidate dominates some individuals in EA, it replaces a
candidate randomly selected in the most crowded grid.

2) Adaptive EA update [257]: if the number of candidates in EA reaches its limit,
a new candidate is handled as follows. If it is within the objective space, it
is put into a corresponding hypercube, and a random candidate in the most
congested grid is removed. If it is outside the objective space, it is first put into
EA. The new objective space is updated and a random candidate in the most
congested grid is removed.

Figure 8.7 shows the Pareto-optimal front comparison of the entropy-based

crowding distance, adaptive EA update and standard one, respectively. Here, knees

1, 2 and 3 are the knee solutions obtained by them. It is observed that candidates in

the Pareto-optimal front of the entropy-based crowding distance are distributed more

diversely and evenly than its two peers. Its knee outperforms those with its peers. It

demonstrates that the entropy-based crowding distance method cannot only obtain

extreme values of the Pareto-optimal front but also well compromised candidates, and

it provides a reliable way to solve the problem.
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To prove the effectiveness of SADE, this chapter compares it with two typical

bi-objective optimization algorithms, i.e., Multi-Objective Evolutionary Algorithm

based on Decomposition (MOEA/D) [258] and Nondominated Sorting Genetic

Algorithm 2 (NSGA2) [250]. Figure 8.8 shows the comparison of SADE, NSGA2

and MOEA/D in terms of task response time and energy cost of CDCs, respectively

in time slot 1. It is observed that SADE’s Pareto-optimal front is distributed more

diversely than those of NSGA2 and MOEA/D, respectively. In Figure 8.8, EAs of

SADE, NSGA2 and MOEA/D all have 30 non-dominated candidates. The final knee

of SADE outperforms those of NSGA2, and MOEA/D with respect to both energy

cost and task response time.

In addition, extreme points on both upper and lower limits are obtained by

SADE in its Pareto-optimal front. Compared with that of SADE, NSGA2’s knee is

86.05% increase in the energy cost and 65.54% increase in the task response time; and
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MOEA/D’s knee is 49.99% increase in the energy cost and 41.78% increase in the task

response time, respectively. The reasons are described as follows. SADE improves the

evenness and diversity of the Pareto-optimal front by integrating adaptive mutation,

SA-based selection and crossover, and the entropy-based crowding distance method.

Thus, its knee is better than those of NSGA2 and MOEA/D.
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Figures 8.9 and 8.10 illustrate the comparison of the task response time and the

energy cost of SADE, NSGA2, and MOEA/D in each time slot. It is clearly shown

that both of SADE are both smaller than those of NSGA2 and MOEA/D in each

time slot, respectively. In Figure 8.9, compared with NSGA2 and MOEA/D, SADE

reduces the task response time by 58.37% and 63.54% on average, respectively.

In Figure 8.10, compared with NSGA2 and MOEA/D, SADE reduces the

energy cost by 61.69% and 53.43% on average, respectively. This is because the

Pareto-optimal fronts of NSGA2 and MOEA/D are dominated by that of SADE.
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SADE’s solutions are more diversely distributed than those of NSGA2 and MOEA/D.

Consequently, it proves that SADE finds both well traded-off candidate, and extreme

ones in its Pareto-optimal front.

8.4 Appendix

According to the G/G/1 queuing theory, the average waiting time of tasks in server

q in CDC c, Wc,q
τ , is approximately obtained as follows.

Wc,q
τ =

1+(
c,qτ )2

( 1
ρc,qτ

)2+(
c,qτ )2

σ̂τ,c,q+σ̃τ,c,q
2T̄c,qτ (1− ρc,qτ )

(8.39)

tc,qτ denotes the random execution time of a server q in CDC c, and tc,qτ = rqc
%c,qτ

.

ρc,qτ denotes the utilization of server q in CDC c. Since ρc,qτ < 1, 0≤r̄qc < T̄c,qτ %
c,q
τ is

obtained accordingly.

According to (8.39), the following equation is obtained.

Wc,q
τ =

1+(
c,qτ )2

( 1
ρc,qτ

)2+(
c,qτ )2

σ̂τ,c,q+σ̃τ,c,q
2T̄c,qτ (1− ρc,qτ )

=
1+ σ̃τ,c,q

(t̄c,qτ )2

( T̄
c,q
τ

t̄c,qτ
)2+ σ̃τ,c,q

(t̄c,qτ )2

σ̂τ,c,q+σ̃τ,c,q
2T̄c,qτ (1− ρc,qτ )

=
(t̄c,qτ )2+σ̃τ,c,q
(T̄c,qτ )2+σ̃τ,c,q

σ̂τ,c,q+σ̃τ,c,q
2T̄c,qτ (1− ρc,qτ )

(8.40)

Then, the average response time of tasks in server q in CDC c in time slot τ is

denoted by Tc,qτ , and it is obtained as:

Tc,qτ =t̄c,qτ +Wc,q
τ

=t̄c,qτ +
(t̄c,qτ )2+σ̃τ,c,q
(T̄c,qτ )2+σ̃τ,c,q

σ̂τ,c,q+σ̃τ,c,q
2T̄c,qτ (1− ρc,qτ )

=t̄c,qτ +
(t̄c,qτ )2+σ̃τ,c,q
(T̄c,qτ )2+σ̃τ,c,q

σ̂τ,c,q+σ̃τ,c,q
2(T̄c,qτ − t̄c,qτ )

=
r̄qc
%c,qτ

+

(r̄qc )2

%c,qτ
+ σ̆c,q

(%c,qτ )2

(T̄c,qτ )2+ σ̆c,q
(%c,qτ )2

σ̂τ,c,q+
σ̆c,q

(%c,qτ )2

2(T̄c,qτ − r̄qc
%c,qτ

)
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=
r̄qc
%c,qτ

+
(r̄qc)

2+σ̆c,q
(T̄c,qτ )2(%c,qτ )2+σ̆c,q

σ̂τ,c,q(%
c,q
τ )2+σ̆c,q

2%c,qτ (T̄c,qτ %
c,q
τ −r̄qc)

=
r̄qc
%c,qτ

+((r̄qc)
2+σ̆c,q)

σ̂τ,c,q(%
c,q
τ )2+σ̆c,q

2%c,qτ (T̄c,qτ %
c,q
τ − r̄qc)((T̄c,qτ )2(%c,qτ )2+σ̆c,q)

Then, the average response time of tasks in CDC c with
o

N τ,c servers is:

T cτ=
1

λ̃cτ

o
Nτ,c∑
q=1

λc,qτ σ̂τ,c,q (8.41)

It is worth noting that equation (8.8) is equivalent to equation (8.41). Then,

equation (8.8) is derived accordingly.

8.5 Summary

A growing number of large-scale companies own distributed cloud data centers

(CDCs) around the world to provide services to their global users with resource

sharing. Each application is deployed in multiple geographically CDCs for low energy

cost and fast response. Current CDCs face a big challenge of how to jointly decrease

the energy cost of CDCs and improve Quality of Service (QoS). In this chapter,

the joint optimization of energy cost and QoS is formulated as a bi-objective con-

strained optimization problem and solved by a Simulated-annealing-based Adaptive

Differential Evolution (SADE) algorithm to obtain a close-to-Pareto-optimal set. In

this way, this chapter properly allocates arriving tasks among CDCs, and changes

task service rates of each CDC in each time slot. Real-life data-based results prove

that SADE reduces energy cost and response time of tasks compared with several

scheduling peers.
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CHAPTER 9

REVENUE AND ENERGY COST-OPTIMIZED BI-OBJECTIVE TASK
SCHEDULING FOR GREEN CLOUD DATA CENTERS

This chapter presents the details of a proposed revenue and energy cost-optimized

bi-objective task scheduling method, and it is organized as follows. Section

9.1 presents a system model. Section 9.2 formulates the problem. Section 9.3

proposes the details of an Improved Multi-objective Evolutionary Algorithm based

on Decomposition (IMEAD). Section 9.4 presents its performance evaluation results.

Section 9.5 concludes the chapter.

9.1 System Model

This section introduces the proposed system model. Figure 9.1 illustrates the system

architecture of green CDCs. For performance concerns, CDC providers typically

manage several CDCs distributed in multiple geographical places and provide different

applications to users around the world. Similar to the work in [80], it is assumed that

programs and data for all applications are consistent and the same in all CDCs. Users

send their tasks to CDCs with different types of devices, e.g., smart phones, laptops

and computers. Then, tasks are scheduled and executed with a First-Come-First-

Serve (FCFS) policy [259].

The information of task queues is periodically transmitted to a centralized Task

Scheduler. Each CDC is switched by three energy sources including power grid,

wind energy and solar energy. Energy information includes electricity prices, wind

speed and solar irradiance, which are supplied to Task Scheduler. Based on such

information, Task Scheduler executes IMEAD to trade off the revenue maximization

of CDC providers, and its energy cost minimization by smartly executing arriving

tasks among CDCs. It runs IMEAD that takes the advantages of various spatial

differences in CDCs while meeting delay constraints of tasks of applications.
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Figure 9.1 System architecture.

The arriving rates of tasks for different applications can vary from time to time

among CDCs. To improve CDC performance and maximize its profit, this chapter

first develops a system model. The objective is to maximize the revenue and minimize

the cost generated by different types of applications under a time-varying workload

by dynamically tuning the following parameters at the beginning of each control time

slot. Parameters are summarized in Table 9.1.

9.1.1 Task Arriving and Service Rates

Let λc,nτ denote the task arriving rate of application n scheduled to CDC c in time slot

τ , and NC denotes the number of CDCs. Then the task arriving rate of application

n to all CDCs is:

λnτ=
NC∑
c=1

λc,nτ (9.1)

Let µc,nτ denote the rate at which tasks are removed from the queue of application

n and handled by CDC c. The service rate depends on the number of servers that

are switched-on.
o

N τ,c,n denotes the number of switched-on servers of application n in
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Table 9.1 Problem Parameters

Notation Definition

NA Number of applications
NC Number of CDCs
•
Nn

Number of tasks processed by each server for application n
in each minute

o

N τ,c,n
Number of switched-on servers for application n in CDC c
in time slot τ

N̂c Total number of servers in CDC c
λc,nτ Task arriving rate of application n in CDC c in time slot τ
Q̂n Maximum number of tasks processed by each server for application n
L Length of each time slot τ
Φ̌ Idle power of a single server
Φ̂ Peak power when a server is handling a task
α Power usage effectiveness in a CDC
pcτ Price of electricity in CDC c in time slot τ

+

Eτ,c Amount of green energy in CDC c in time slot τ
ψ1c Conversion rate of solar irradiance to electricity in CDC c
ψ2c Active irradiance area of solar panels in CDC c
ψτ,3c Solar irradiance in CDC c in time slot τ
φ1c Conversion rate of wind energy to electricity in CDC c
φ2c On-site air density in CDC c
φ3c Rotor area of wind turbines in CDC c
φτ,4c Wind speed in CDC c in time slot τ

CDC c in time slot τ . Each server of application n can handle
•
Nn tasks per minute.

Therefore, µc,nτ is obtained as:

µc,nτ =
•
Nn

o

N τ,c,n (9.2)

subject to

NA∑
n=1

o

N τ,c,n≤N̂c (9.3)

o

N τ,c,n≥0 (9.4)

µc,nτ ≥0 (9.5)

1≤n≤NA, 1≤c≤NC (9.6)

where NA denotes the number of applications, and N̂c denotes the total number of

available servers in CDC c.

194



As the number of switched-on servers and accordingly the service rate increase,

more tasks can be handled before a deadline in service level agreements (SLAs),

which in turn increases the payments that a CDC receives. On the other hand, it also

increases CDCs’ power consumption and accordingly their energy cost. Therefore,

there is a tradeoff when determining the service rate of CDCs. In time slot τ , to

guarantee the stability of the task queue of application n in CDC c, λc,nτ must be less

than µc,nτ . Therefore,

λc,nτ <µc,nτ (9.7)

9.1.2 Service Level Agreements
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Figure 9.2 SLAs for CDCs.

CDCs cannot process all arriving tasks immediately after they arrive. The

reason is that CDCs only have limited computation capacities, and the practical

tasks have the stochastic nature. Therefore, all kinds of arriving tasks are placed

in different queues until they are handled by any available server. To satisfy the

SLA requirements, the queuing delay or waiting time for different types of arriving

tasks should be limited within a certain range. The exact SLA depends on types of

applications offered by CDCs, e.g., e-commerce and video streaming, and cloud-based

computational tasks. Similar to the work in [117], Figure 9.2 shows three typical SLAs

for CDCs. In Figure 9.2, each SLA is identified by three non-negative parameters

including T̂n, ∇n and εn.
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T̂n denotes the maximum queuing delay that a task can tolerate. ∇n denotes the

revenue that CDCs receive when it handles a single task before deadline T̂n. εn denotes

the penalty that CDCs have to pay to its users each time slot τ it cannot handle a

task before deadline T̂n. For example, in the Gold SLA, T̂1= 500 ms, ∇1=7 × 10−3

dollars and ε1=3.5×10−3 dollars. In the Silver SLA, T̂2= 400 ms, ∇2=5×10−3 dollars

and ε2=2× 10−3 dollars. In the Bronze SLA, T̂3= 300 ms, ∇3=3× 10−3 dollars and

ε3=1× 10−3 dollars.

9.1.3 Energy Consumption

The total amount of energy consumption in a CDC is obtained by adding the total

energy consumption at the servers to the total energy consumption at the cooling

and lighting facilities. For a CDC, power usage effectiveness (PUE) is defined as the

ratio of the CDC’s total energy consumption to the CDC’s energy consumption at

the servers. It is considered as a measure for CDC’s energy efficiency. The lower, the

more efficient. Currently, the PUE value for most enterprise data centers is 2.0 or

more. A few state-of-the art facilities have reached a PUE of 1.2 [24].

To reduce CDC’s energy consumption, the number of switched-on servers should

be dynamically adjusted according to the rate of received tasks. This chapter focuses

on critical machine-level energy consumption, and uses CPU utilization as the main

signal of machine-level activities. Therefore, the energy consumption for a CDC is

modeled such that it is proportional and roughly linear to its utilization. Multiple

studies have shown that CPU utilization is indeed a good estimator for power usage

[260]. The machine-level total energy consumption associated with the CDC is

obtained as [261]:

Ec
τ=

(
o

N τ,c,n(Φ̌+(α−1)Φ̂)+
o

N τ,c,n(Φ̂−Φ̌)u+
0
γ6

)
L (9.8)

where u ∈ [0, 1] denotes the CPU utilization of servers. 0
γ6 denotes an empirically

derived correction constant. Note that in this chapter, 0
γ6 is set to zero, which means
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the empirically derived correction factor is ignored. Φ̂ denotes the peak power when

a server is handling a task. Φ̌ is the idle power of an idle server. Φ̂
Φ̌
denotes the power

elasticity of servers. Higher elasticity means less energy consumption when the server

is idle and not handling any task. α denotes the PUE of a CDC. From (9.8), the

energy consumption at a CDC increases as more active servers at higher utilization.

9.1.4 Renewable Energy Generation

In the system model, the price of electricity is denoted by pcτ . To reduce cost of

electricity, CDCs may be equipped with behind-the-meter renewable generators, e.g.,

wind turbine and solar panel, in addition to being connected to the power grid. Let
+

Eτ,c denote the renewable energy generated by renewable energy generators in CDC

c in time slot τ . The renewable energy
+

Eτ,c includes wind and solar energy.

1) Solar Energy

Let
◦
Eτ,c denote the solar energy consumed by the execution of tasks of all

applications in CDC c in time slot τ . Following the work in [191],
◦
Eτ,c is obtained as:

◦
Eτ,c=ψ1cψ2cIc(τ)T (9.9)

where ψ1c denotes the conversion rate of solar irradiance to electricity in CDC c,

ψ2c denotes the active irradiance area of solar panels, and ψτ,3c denotes the solar

irradiance in CDC c in time slot τ .

2) Wind Energy

Let Ẽτ,c denote the wind energy consumed by the execution of tasks of all

applications in CDC c in time slot τ . Following the work in [191], Ẽτ,c is obtained as:

Ẽτ,c=
1

2
φ1cφ2cφ3c(φτ,4c)

3T (9.10)

where φ1c denotes the conversion rate of wind to electricity in CDC c, φ2c denotes the

on-site air density in CDC c, φ3c denotes the rotor area of wind turbines in CDC c,

and φτ,4c denotes the wind speed in CDC c in time slot τ .
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In this chapter, the amount of power grid energy consumed by CDC c is

calculated as Ec
τ −

+

Eτ,c. If the energy consumption of CDC c is more than local

renewable power generation, i.e., Ec
τ >

+

Eτ,c, Ec
τ −

+

Eτ,c is positive and the power flow

is in the direction from the power grid to CDC c. If Ec
τ=

+

Eτ,c, CDC c operates as

a zero-net energy facility [262]. If Ec
τ <

+

Eτ,c, Ec
τ −

+

Eτ,c is negative and the power

flow is in the direction from CDC c to the power grid. It is worth noting that, in the

system model, it is assumed that the CDC provider does not receive compensation

for the injected power, while CDCs are allowed to inject their excessive renewable

energy into the power grid.

9.2 Problem Formulation

The task arriving rate at a CDC varies over time. To improve CDCs’ performance,

the number of switched-on servers,
o

N τ,c,n, should be adjusted according to the rate

of arriving tasks. When tasks are received at higher rates, more servers need to

be switched-on. A proportional-to-demand portion of servers are switched-on by

monitoring task arriving rates. This results in reducing CDCs’ energy consumption.

Because there is the tear-and-wear cost of switching servers on and off, and the delay

in changing the status of a server cannot be changed instantly, it is rather desired to

be updated by every few minutes. Therefore, this chapter divides the running time

of a CDC into many time slots with the same length of L, e.g., L = 5 minutes. Note

that the number of switched-on servers is updated only at the start of each time slot.

9.2.1 Revenue Modeling

Let f1 denote the total revenue of CDCs in each time slot, and it is calculated as:

f1=
NA∑
n=1

NC∑
c=1

{[(1− δc,nτ )∇n−δc,nτ εn]λc,nτ L} (9.11)

where (1 − δc,nτ )∇nλ
c,n
τ L denotes the total revenue received by CDCs for tasks of

application n that are handled before their SLA deadline. δc,nτ εnλ
c,n
τ L denotes the
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total penalty paid by users for performing tasks of application n that are not handled

before their SLA deadline.

9.2.2 Cost Modeling

The machine-level energy consumption of a CDC is usually determined by unit-time

power usage Eτ . Thus, according to the work in [24], the total energy consumption

of switched-on servers in CDC c is obtained as:

Ec
τ=

NA∑
n=1


(

Φ̌−+(α−1)Φ̂
)
µc,nτ +

(
Φ̂−Φ̌

)
λc,nτ (1− δc,nτ )

•
Nn

 (9.12)

Let pcτ denote the electricity price of CDC c in time slot τ . Let f22 denote the

net energy consumption cost in each time slot τ . It is obtained as:

f22=
NC∑
c=1

{Lpcτ
[
Ec
τ −

+

Eτ,c

]+

} (9.13)

=
NC∑
c=1

{Lpcτmax(Ec
τ −

+

Eτ,c, 0)} (9.14)

In this study, it is assumed that PUE in CDCs is 1.2 by following the work in

[24]. It is worth noting that this chapter focuses on energy management of CDCs,

and the cost model only indicates the cost of electricity. Other cost items can be also

included similarly in the model.

9.2.3 Task Loss Probability

δc,nτ denotes the loss probability of tasks of application n in CDC c in τ . Then,

δc,nτ =



1, µc,nτ = 0

1

Q̂n+1
, λc,nτ =µc,nτ 6=0(

1−
(
λ
c,n
τ
µ
c,n
τ

))(
λ
c,n
τ
µ
c,n
τ

)Q̂n
(

1−
(
λ
c,n
τ
µ
c,n
τ

))Q̂n+1
, λc,nτ <µc,nτ

(9.15)
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subject to

λc,nτ −
1

T̂n
≤µc,nτ (9.16)

where λc,nτ denotes the task arriving rate of application n in CDC c in τ . Q̂n denotes

the maximum number of tasks processed by each server for application n.

Then, this chapter makes further discussion on the assumptions of the proposed

IMEAD. It is assumed that the future information (e.g., wind speed, task arriving

rate, solar irradiance and electricity prices) is available in advance. In real CDCs, the

prediction of such information usually needs some time to obtain the prediction model

by using historical data. However, the recently emerging big data techniques (e.g.,

deep learning-based prediction [263]), and the increasingly deployed high-performance

servers in CDCs [264] will make it possible that the prediction time is negligible.

9.3 Improved Multi-objective Evolutionary Algorithm based on
Decomposition

This section presents the proposed IMEAD to jointly optimize the revenue and cost of

CDC providers. By assigning different types of tasks to multiple CDCs, the revenue

and energy cost of CDC providers are balanced by finding a high-quality Pareto front

[265]–[268] . This chapter considers the following two objectives:

Max
x
{f1}

Min
x
{f22}

subject to (9.1), (9.3)–(9.6), (9.7) and (9.16).

Here, x denotes the vector of all decision variables, i.e., λc,nτ and µc,nτ (n=1, 2,

· · · , NA, c=1, 2, · · · , NC). Thus, x=[λ1,1
τ , · · · , λNA,NCτ , µ1,1

τ , · · · , µNA,NCτ ].

This chapter uses a penalty function method to transform the constrained bi-

objective problem into an unconstrained one. The transformation method is shown

as follows. For clarity, this chapter uses the following single-objective optimization
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problem to show the details of the penalty function method.
Min ,(x)ג

subject to gl(x)≥0, l=1, · · ·,N 6=

hm(x)=0,m=1, · · ·,N=

(9.17)

(9.17) is an objective function with constraints, and it includes both equality

constraints hm(x) and inequality ones gl(x). N 6= denotes the number of inequality

constraints. N= denotes the number of equality constraints. This chapter transforms

the constrained problem into an unconstrained one with an auxiliary function in

(9.18), which is given as follows:

+(x)ג=15∆
∞
Nf

f=
N 6=∑
l=1

(max{0,−gl(x)})
0
γ1+

N=∑
m=1

∣∣hm(x)
∣∣0γ2

(9.18)

where 0
γ1≥1 and 0

γ2≥0, ∆15 is a transformed objective function, (max{0,−gl(x)})
0
γ1

is the penalty for each inequality constraint l, and
∣∣hm(x)

∣∣0γ2 is the penalty for each

equality constraint m.

Then, the constrained optimization problem (9.17) is transformed as:

Min
x

{
+(x)ג

∞
Nf

}
(9.19)

where
∞
N is a large positive constant.

This chapter designs an IMEAD algorithm that includes crossover, mutation

and selection operations. It has several advantages. First, the parameters of its

crossover and mutation operations dynamically change in the convergence process.

The dynamic parameters strengthen the ability of global search and accelerate the

convergence speed. It prevents good genes from being destroyed by mutation, and

introduces new genes into the populations when they fall into the locally optimal

solutions. Second, this chapter uses a decomposition-based Tchebycheff method [269]
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to decompose the problem into a set of single-objective-optimization subproblems.

Third, this chapter adopts a crowded degree evaluation method based on crowded

distance. Based on it, individuals with lower crowded degrees are removed from the

external elite set when the number of individuals exceeds the capacity limit of the

external elite set. Its main operations are shown as follows.

9.3.1 Population Initialization

The population initialization adopts a random initialization method, i.e., random

initialization is performed within the feasible domain of each decision variable. Let

ND denote the number of decision variables. Let |X| denote the number of individuals.

Let xi,d denote the value of decision variable d of individual i (i∈{1, 2, · · · , |X|},

d∈{1, 2, · · · ,ND). The individuals are initialized as follows.

xi,d = θ̌d5 + w4∗(θ̂d5 − θ̌d5) (9.20)

where θ̂d5 and θ̌d5 denote the maximum and minimum values of decision variable d.

w4 denotes a random number generated uniformly from (0,1], i.e., w4∈(0, 1].

9.3.2 Dynamic Crossover and Mutation

This chapter adopts dynamic crossover and mutation parameters to produce a new

population. In the early stage, large crossover and mutation parameters are adopted

to increase the reproduction efficiency and diversity of population. In the late stage,

as the number of iterations increases, small crossover and mutation parameters are

adopted to prevent high-quality genes from being destroyed. Then, better individuals

are kept. The crossover and mutation parameters are updated as:

θ7 = θ̂7 −
(θ̂7 − θ̌7)

(ĝ/g)
(9.21)

θ8 = θ̂8 −
(θ̂8 − pminι )

(ĝ/g)
(9.22)
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where θ7 denotes the crossover possibility, θ̂7 denotes the maximum crossover

possibility, θ̌7 denotes the minimum crossover possibility, θ8 denotes the mutation

possibility, θ̂8 denotes the maximum mutation possibility, θ̌8 denotes the minimum

mutation possibility, q denotes the current iteration number, and ĝ denotes the total

number of iterations.

9.3.3 Crossover Operation

The crossover operation can increase the population diversity for generating new

individuals. Let θM1,i denote the neighboring area of individual i. xw5 and xw6 denote

two random individuals in θM1,i. xw7 denotes an individual randomly selected from

populations X. Let x1
i denote a new individual. Then, x1

i is obtained as:

x1
i=

 w4 ∗ xw5 + (1− w4) ∗ xw6 , w4 < θ7

xw7 , otherwise
(9.23)

9.3.4 Mutation Operation

Mutation operations are equivalent to genetic mutations in biology. In evolutionary

computational patterns, they refer to changes or disturbances to a random factor.

In this chapter, the Gaussian mutation operation is used to increase the

population diversity, which is beneficial to jump out of local extreme points for global

search and avoid the algorithm to fall into local optima. It also improves the search

speed. Gaussian distribution is a class of probability distributions that are important

in mathematics, physics and engineering.

It has significant impact on many aspects of statistics. Gaussian mutation

aims to add a random vector obeying Gaussian distribution to the state of an

individual, and then select individual decision variables according to the given

mutation probability. The mutation operation is obtained as:

θM3 =(θ̂5 − θ̌5)ND (9.24)
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θM5 =min(max(w8(x1
i ,θ

M
3 ), θ̌5), θ̂5) (9.25)

θM4 =rand(1,ND) < θ8 (9.26)

Xnew=θM5 (θM4 ) (9.27)

where θ̌5 denotes the minimum value vector of decision variables, θ̂5 denotes the

maximum value vector of decision variables, θM3 denotes the variance vector, and w8

denotes a random vector generated from the Gaussian distribution.

In addition, (9.25) produces a new solution around x1
i and guarantees that

this solution is between θ̌5 and θ̂5. Besides, (9.26) returns a binary vector θM4 with

the length of ND. In θM4 , if a random number rand(1, d)(1≤d≤ND) is less than

θ8, θM4 (1, d)=1; otherwise, θM4 (1, d)=0. Then, if θM4 (1, d)=1, x1
i (1, d) is updated by

θM5 (1, d); otherwise, x1
i (1, d) is not changed.

9.3.5 Update of Neighboring Solutions

Then, the update of neighboring solutions θM1,i for individual i is introduced here. It

is assumed that there are M̃ individuals in θM1,i. Given individual i, M̃ individuals are

chosen as its neighboring solutions, i.e., θM1,i. For each xj∈θM1,i, based on (9.28), x1
i is

chosen to update xj (xj∈θM1,i), i.e.,

xj = x1
i , if θ

M
2,i(x

1
i |θM7,j,θM6 )≤θM2,i(xj|θM7,j,θM6 ) (9.28)

θM2,i(xj|θM7,j,θM6 ) = max
1≤ι≤

o
M

{
θM7,j,ι|f̃ι(xj)− θM6,ι|

}
(9.29)

where
o

M denotes the number of objective functions, θM7,j,ι (θM7,j,ι∈(0, 1)) denotes the

weight of objective function ι for xj, θM7,j denotes a vector of θM7,j,ι, f̃ι denotes the

ιth (ι∈{1, 2, . . . ,
o

M}) augmented objective function. and θM6 is a vector of the best

objective function values currently obtained. In this way, neighboring solutions θM1,i

for individual i is obtained.
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9.3.6 Crowded Degree Evaluation based on Crowded Distance

To preserve better elite individuals, this chapter uses the external elite set Ω̆ to store

elite individuals. Let |Ω̆| denote the number of individuals in Ω̆. After initializing the

population, the objective function values in the population are calculated, and the

dominant relation of individuals is determined according to the objective function

values. The non-dominated individuals are stored in Ω̆. In each iteration, the

newly generated individual is compared with individuals in Ω̆. If the new individual

dominates an individual in Ω̆, the dominated individual is removed. Otherwise, if the

number of individuals in Ω̆ is less than its specified capacity, the new individual is

directly added to Ω̆.

If it is greater than its capacity, the crowded degree evaluation method based on

crowded distance is adopted to increase the diversity of population and the individuals

with lower crowded degrees are removed and replaced with the newly generated non-

dominated solutions. Specifically, first, the solutions in Ω̆ are sorted according to

their values of each objective function. Then, the maximum (θ̂ι6) and minimum (θ̌ι6)

of objective function ι are obtained. θM8,i denotes the crowded distance of individual i.

The crowding distance is ∞ when θ̂ι6 is equal to θ̌ι6, or the first/last individual in the

Pareto-optimal front occurs. Besides, the sum of distances on each objective function

is calculated as follows:

θM8,i =


∞, if θ̂ι6 − θ̌ι6 = 0 or i = 1 or i = |Ω̆|
o
M∑
ι=1

(
θ́M9,i−θ̀M9,i
θ̂ι6−θ̌ι6

)
, otherwise

(9.30)

where θ́M9,i and θ̀M9,i denote the next and previous individuals neighboring to individual

i according to the ascending ranking of objective function values, respectively.

Based on above operations, IMEAD is described in Algorithm 7. Its details are

described here. Line 1 initializes |X|, M̃ , the initial weight vectors θM7,i and ĝ. Line

2 computes the Euclidean distance between any two weight vectors, and determines
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Algorithm 7 IMEAD (Improved Multi-objective Evolutionary Algorithm based on
Decomposition)

1: Initialize |X|, M̃ , the initial weight vectors θM7,i and ĝ
2: Compute Euclidean distances between any two weight vectors, and determine M̃

for each individual
3: Initialize X and determine θM6
4: Determine non-dominated individuals in X and store them in Ω̆
5: Initialize θ7 and θ8

6: g ← 1
7: for g≤ĝ do
8: Generate a new individual x1

i
9: for i←1 to |X| do

10: Randomly select two individuals w5 and w6 in M̃
11: if rand<θ7 then
12: x1

i←w4 ∗ xw5 + (1− w4) ∗ xw6

13: else
14: x1

i←xw7

15: end if
16: end for
17: Perform Gaussian mutation to produce x1

i with (9.24)–(9.27)
18: Calculate objective function values of x1

i

19: Update θM6
20: Update M̃ for each individual i with (9.28) and (9.29)
21: Update Ω̆
22: end for
23: Output Ω̆

θM1,i for each individual i. Line 3 initializes X and determine θM6 . Line 4 determines

non-dominated individuals in X and stores them in Ω̆. Line 5 initializes θ7 and θ8.

Line 8 generates a new individual x1
i . Lines 9–16 randomly select two individuals w5

and w6 in M̃ , and further perform the crossover operation based on (9.23). Line 17

performs the Gaussian mutation to produce x1
i with (9.24)–(9.27). Line 18 calculates

objective function values of x1
i . Line 19 updates θM6 . Line 20 updates M̃ for each

individual i with (9.28) and (9.29). Line 21 updates Ω̆ and removes all individuals

dominated by x1
i from Ω̆.

Specifically, if the number of individuals in Ω̆ is less than its capacity limit, x1
i

is directly added to Ω̆ if no individuals in Ω̆ dominate x1
i . Otherwise, if the number of

individuals in Ω̆ exceeds its capacity limit, according to the crowded degree evaluation
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method based on crowded distance, an individual with the smallest crowded degree

is selected and removed, and further replaced by x1
i . Finally, Line 23 outputs Ω̆.

9.4 Performance Evaluation

The proposed IMEAD is evaluated with the realistic data. It is realized with

MATLAB R2017b, and executed on a server with 8-GB DDR4 memory and an

Intel(R) Core(TM) i7-6700HQ CPU with 2.6 GHz.

9.4.1 Parameter Setting

This section uses real-life tasks in Google cluster1, solar irradiance and wind speed2

on May 1, 2011. Figure 9.3 illustrates arriving rates of tasks of three applications,

which are sampled every 15 minutes, i.e., L= 15 minutes. Here there are 96 time

slots in total. Figures 9.4 and 9.5 show the solar irradiance and the wind speed in

three CDCs. Figure 9.6 shows the electricity prices in three CDCs. According to the

work in [24], the parameter setting of wind and solar energy is presented in Table

9.2. Besides, similar to the work in [18, 52], the parameter setting of three CDCs is

presented in Table 9.3. In addition, the parameter setting well reflects the real-life

characteristics of real large-scale data centers, e.g., Google and Amazon.
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Figure 9.3 Task arriving rates of three applications.

This chapter chooses three Google CDCs located in Colorado (CDC 1), Texas

(CDC 2) and Oklahoma (CDC 3), respectively. According to the work in [22],

1https://github.com/google/cluster-data (accessed on May 6, 2019).
2https://midcdmz.nrel.gov (accessed on May 6, 2019).
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Figure 9.4 Wind speed of three CDCs.
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Figure 9.5 Solar irradiance of three CDCs.
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Figure 9.6 Electricity prices of three CDCs.

N̂1=N̂2=N̂3=2000, Φ̌=500 (W) and Φ̂=2000 (W). In addition,
•
N1=0.01 (tasks/second),

•
N2=0.03 (tasks/second) and

•
N3=0.05 (tasks/second), respectively.

According to the work in [270, 271], the parameters of IMEAD are set as follows.

The maximum number of iterations is 500, i.e., ĝ=500. The population size is 100,

i.e., |X|=100. θ̂7=1, θ̌7=0.4, θ̂8=0.25 and θ̌8=0.02. In addition, 0
γ1=

0
γ2=2.
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Table 9.2 Parameter Setting of Wind and Solar Energy

Wind energy Solar energy
φ1c φ3c (m2) φ2c (kg/m3) ψ1c ψ2c (m2)

c=1 0.3 2000 1.0 0.2 1400
c=2 0.35 2500 1.25 0.25 1600
c=3 0.4 3000 1.5 0.3 1800

Table 9.3 Parameter Setting of Three CDCs
•
Nn (tasks/second) Q̂n
n=1 n=2 n=3 n=1 n=2 n=3

c=1 0.6 1.8 3.0 50 55 60
c=2 0.6 1.8 3.0 50 55 60
c=3 0.6 1.8 3.0 50 55 60

9.4.2 Experimental Results

To demonstrate the performance of IMEAD, this chapter further compares it with

two widely used dominance-based algorithms including Strength Pareto Evolutionary

Algorithm 2 (SPEA2) and an elitist based Non-dominated Sorting Genetic Algorithm

(NSGA2) [272]. In this chapter, these two algorithms (SPEA2 and NSGA2) are

selected as benchmark algorithms based on the following two reasons. First, they

are currently recognized as fast state-of-the-art algorithms, both of which have

been already improved with respect to efficiency and accuracy on the basis of their

previous versions. Therefore, they are representative and have been used in many

different areas [273, 274]. Second, the proposed IMEAD and these two algorithms

have several similarities. All of them adopt the same initialization, crossover and

mutation technologies to produce new individuals. In addition, all of them adopt the

external elite solution set, and they have similar time complexity. Importantly, the

performance of the proposed IMEAD can be well demonstrated by its comparison

with these two algorithms. Consequently, this chapter selects them as the benchmark

algorithms for comparison. The maximum number of iterations for three algorithms

is set to 500. Their population sizes are 100. The crossover parameters of SPEA2

and NSGA2 are 0.98. The mutation parameters of SPEA2 and NSGA2 are 0.15 and
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0.007, respectively. The setting of the above crossover and mutation parameters is

determined optimally after a series of experiments, and the hardware configuration

and software tool are the same as that of the proposed IMEAD. Three algorithms are

summarized as follows:

1) SPEA2: SPEA2 [273] is widely used because it has several advantages. First, the
fitness value evaluation mechanism of each individual is reasonable. It jointly
considers the information about each individual in the evolutionary population,
the domination in the external elite set, and the Euclidean distance between
each individual and its neighboring individuals. Second, the clustering-based
remove of individuals is simplified in the update process of the external elite
set. Therefore, the distribution of the obtained Pareto front end is diverse.
However, it has several drawbacks. First, the setting of the external elite set
is not reasonable because some dominated individuals are still put into the
external elite set and therefore, the elitism of the external elite set may be
worsened. Second, its local search ability is not satisfying because it cannot
guarantee to search within the neighboring areas of individuals where the
crossover and mutation operations are conducted. Third, the crossover and
mutation parameters are fixed and therefore, high-quality individuals are easy
to be changed due to the mutation in the later stage of population evolution.
Thus it suffers from premature problems when it is adopted to solve complex
optimization problems. The complexity of the fitness calculation of SPEA2
is O((2|X|)2)) + O((2|X|)2log(2|X|)), i.e., O(|X|2log|X|). The complexity of
the selection operation is O((2|X|)2) + O((2|X|)2log(2|X|)) + O((2|X|)2), i.e.,
O(|X|2log|X|). Thus, the complexity of SPEA2 is O(|X|2log|X|).

2) NSGA2: NSGA2 [274] is widely used to solve different kinds of multi-objective
optimization algorithms because it has several advantages. First, it proposes
the concept of crowded distance, and individuals in the Pareto front end are
distributed evenly to increase the diversity of individuals. Second, it adopts a
selection operator generating a mating pool that combines the offspring and
parent populations. However, it has some drawbacks. First, the offspring
and parent populations are ranked together in the next-generation evolutionary
populations. Therefore, the ranking time of the Pareto dominance levels can be
very long. Second, the external elite set is not adopted to keep the currently
obtained non-dominated populations. In addition, the mutation and crossover
parameters do not change and therefore, high-quality individuals cannot be
kept in its optimization process. Thus, some high-quality solutions may be
lost and NSGA2 has the problems of premature convergence. The complexity
of the initial non-dominant sorting of population of NSGA2 is O(

o

M |X|2), and

the complexity of its congestion sorting is O(
o

M |X|2). In the main loop, the

fast non-dominant sorting is O(
o

M((2|X|)2)), i.e., O(
o

M |X|2), the complexity
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Table 9.4 Execution Time with Different Population Sizes

Scale 1/4 1/2 1 2 4
NSGA2 0.2386 0.3840 0.7659 1.8938 4.9410
SPEA2 0.1560 0.2921 0.5070 2.2925 8.2673
IMEAD 0.1119 0.1685 0.3035 0.7018 1.4804
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Figure 9.7 Number of type 1 tasks scheduled to three CDCs with IMEAD.

of its congestion sorting has the complexity of O(
o

M(2|X|)log(2|X|)), i.e.,

O(
o

M |X|log|X|), and the complexity of the elite population is O((2|X|)log(2|X|)),
i.e., O(|X|log|X|). Thus, the complexity of NSGA2 is O(

o

M |X|2).

3) IMEAD: Different from SPEA2 and NSGA2, IMEAD has several advantages.
First, the mutation and crossover parameters are changed dynamically to solve
the problems of premature convergence. In addition, the global search ability
is increased and the convergence speed is also improved. Better individuals are
kept and new genes are imported when the entire population is trapped into local
optima. Second, the Gaussian mutation mechanism is adopted to utilize the
information of the current population to increase the diversity of populations.
Third, a series of subproblems are solved to optimize the whole problem, and
IMEAD has lower computational complexity. Fourth, the external elite set
is adopted and the crowded distance-based congestion evaluation method is
designed to guarantee the diversity of all population. The complexity of the
neighboring solution update of IMEAD is O(|X|M̃), the complexity of the Ω̆

update is O(
o

M2|X|2), i.e., O(
o

M |X|2), and the complexity of the congestion

sorting is O(
o

M |X|log|X|). Thus, the complexity of IMEAD is O(
o

M |X|2).

To further evaluate the performance of IMEAD, the scalability of IMEAD,

SPEA2 and NSGA2 with respect to different population sizes is verified. As is shown

in Table 9.4, IMEAD’s execution time is less than those of SPEA2 and NSGA2 for

each population size. Figures 9.7–9.9 show the number of tasks scheduled to three
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Figure 9.8 Number of type 2 tasks scheduled to three CDCs with IMEAD.
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Figure 9.9 Number of type 3 tasks scheduled to three CDCs with IMEAD.
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Figure 9.10 Number of type 1 tasks scheduled to three CDCs with SPEA2.

CDCs with IMEAD. It is observed in Figure 9.7 that the total number of type 1

tasks scheduled to three CDCs equals the number of arriving type 1 tasks. Similarly,

Figures 9.10–9.15 show the number of tasks scheduled to three CDCs with SPEA2 and

NSGA2, respectively. It is also observed in Figures 9.10–9.15 that the total number

of tasks of types 2 and 3 scheduled to three CDCs equals the number of arriving tasks

of types 2 and 3, respectively.
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Figure 9.11 Number of type 2 tasks scheduled to three CDCs with SPEA2.
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Figure 9.12 Number of type 3 tasks scheduled to three CDCs with SPEA2.
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Figure 9.13 Number of type 1 tasks scheduled to three CDCs with NSGA2.

Figures 9.16–9.18 show the number of switched-on servers in each CDC with

IMEAD. It is observed that the number of switched-on servers in each CDC is less

than or equal to its corresponding total number of available servers. In addition, the

number of switched-on servers in each CDC is consistent with the number of tasks

scheduled to it. As is shown in Figures 9.25–9.27, it is also worth noting that in

time slot 40, the amount of green energy is sufficient to execute all arriving tasks.
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Figure 9.14 Number of type 2 tasks scheduled to three CDCs with NSGA2.
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Figure 9.15 Number of type 3 tasks scheduled to three CDCs with NSGA2.
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Figure 9.16 Number of switched-on servers in CDC 1 with IMEAD.

Therefore, the amount of power grid energy consumed by tasks is zero, and the energy

cost is also zero because the cost of green energy is zero. Figures 9.19–9.24 show that

SPEA2 and NSGA2 also achieve similar results.

Figure 9.28 shows the execution time required by each iteration of IMEAD,

SPEA2 and NSGA2 in each time slot, respectively. It is observed that IMEAD is

much faster than SPEA2 and NSGA2. Figure 9.29 shows the execution time of
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Figure 9.17 Number of switched-on servers in CDC 2 with IMEAD.
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Figure 9.18 Number of switched-on servers in CDC 3 with IMEAD.
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Figure 9.19 Number of switched-on servers in CDC 1 with SPEA2.
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Figure 9.20 Number of switched-on servers in CDC 2 with SPEA2.
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Figure 9.21 Number of switched-on servers in CDC 3 with SPEA2.
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Figure 9.22 Number of switched-on servers in CDC 1 with NSGA2.
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Figure 9.23 Number of switched-on servers in CDC 2 with NSGA2.
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Figure 9.24 Number of switched-on servers in CDC 3 with NSGA2.
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Figure 9.25 Cost of IMEAD.
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Figure 9.26 Cost of NSGA2.
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Figure 9.27 Cost of SPEA2.

IMEAD, SPEA2 and NSGA2, respectively. It is clearly observed that IMEAD is

40.14% and 60.37% faster than SPEA2 and NSGA2, respectively.

Figure 9.30 shows the revenue, cost and profit in each day with IMEAD,

SPEA2 and NSGA2, respectively. It is clearly observed that IMEAD achieves slightly

higher revenue, 8.00% and 6.80% lower cost, than SPEA2 and NSGA2, respectively.

Therefore, it is observed that IMEAD achieves 1.63% and 1.37% higher profit than
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Figure 9.28 Execution time of IMEAD, SPEA2 and NSGA2.
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Figure 9.29 Average execution time of IMEAD, SPEA2 and NSGA2.

SPEA2 and NSGA2, respectively. The reason is that IMEAD prefers to use green

energy and purchases the energy from local power grid only when the amount of wind

and solar energy is not sufficient. The reason is explained as follows. It is assumed

that the cost of green energy is zero after the renewable facilities have been installed

in CDCs for all three algorithms. Thus, the usage of green energy and the cost of

electricity purchased from the power grid directly affect the optimization result of the

energy cost. If the green energy cannot be fully used and tasks of applications cannot

be optimally allocated, the energy cost is higher.

Figure 9.30 shows that IMEAD’s cost is lower and its profit is higher than

those of SPEA2 and NSGA2, respectively. The reason is that IMEAD makes full

use of green energy and provides better scheduling of different tasks. Consequently,

the green energy is consumed sufficiently and the cost of the CDC provider is

reduced accordingly. The tasks of each application are allocated optimally for the
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Figure 9.30 Revenue, cost and profit in one day with IMEAD, SPEA2 and NSGA2.

aim of maximizing the profit, i.e., minimizing the cost and maximizing the revenue.

Specifically, given the finally optimal decision variable x , the rate at which tasks

are removed from the queue of application n and handled by CDC c is set as µc,nτ .

Then, λc,nτ L tasks of application n are scheduled to CDC c. In this way, tasks of each

application are optimally allocated.

9.5 Summary

Green cloud data centers (CDCs) require a great amount of energy to run tasks from

global users. Users’ tasks contribute the revenue to CDC providers. The spatial

differences in many factors, e.g., prices of electricity, availability of renewable power

generation and service level agreements bring a big challenge to jointly optimize

providers’ revenue and their energy cost. A constrained bi-objective optimization

problem is for the first time formulated and solved with an Improved Multiobjective

Evolutionary Algorithm based on Decomposition. The obtained result determines the

optimal tradeoff between maximizing the revenue of CDC providers and minimizing

their energy cost by taking the advantages of various spatial differences in CDCs while

meeting delay constraints of tasks of applications. Real-life data-driven simulation

results prove that it increases the profit of CDC providers and reduces the convergence

time compared with two typical multi-objective optimization algorithms.
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CHAPTER 10

FINE-GRAINED SPATIAL TASK SCHEDULING FOR
HETEROGENEOUS APPLICATIONS IN DISTRIBUTED GREEN

CLOUDS

This chapter presents the details of the proposed Fine-grained Spatial Task Scheduling

(FSTS) algorithm, and it is organized as follows. Section 10.1 introduces the frame-

work of multiple green cloud data centers (CDCs), and formulates a single-objective

constrained optimization problem for FSTS. It adopts a G/G/1 queuing system to

analyze the performance of servers in distributed CDCs. Section 10.2 describes the

proposed Bees Algorithm based on Simulated annealing (BAS) to solve the problem

for obtaining a close-to-optimal solution such that the energy cost is minimized.

Real-life data-driven simulation experiments are conducted to evaluate the proposed

FSTS in Section 10.3. Section 10.4 provides the appendix. Finally, Section 10.5

concludes this chapter.

10.1 Problem Formulation

This section formulates a constrained optimization problem for FSTS. The illustrative

framework of multiple CDCs is similar to Figure 7.1 in Chapter 7. Let NC denote

the number of CDCs. Users’ arriving tasks are sent through electronic devices, e.g.,

smart phones, laptops, computers and servers to NC CDCs, and they are scheduled

by Task Scheduler based on an FCFS manner.

FSTS is periodically executed in Task Scheduler to minimize the energy cost

by intelligently scheduling tasks of each application among multiple centers, and

optimally determining the running speed of each server and the number of switched-on

servers in each CDC. For clarity, main notations in this chapter are summarized in

Tables 10.1 and 10.2.
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Table 10.1 Main Symbols-Part 1

Notations Definition

NC Number of CDCs
NA Number of applications
N̂c,n Number of homogeneous servers for application n in CDC c
o

N τ,c,n
Number of switched-on servers for application n in CDC c in
time slot τ

T c,nτ
Interarrival time for each server of application n in CDC c in
time slot τ

σ̂τ,c,n Variance of T c,nτ

t̄c,nτ Mean of T c,nτ

λc,nτ Task arriving rate of application n in CDC c in time slot τ

rnc
Random size of each task of application n scheduled to each
server in CDC c

σ̆c,n Variance of rnc
r̄nc Mean of rnc
tc,nτ

Running time of each task on a server of application n in
CDC c in time slot τ

%c,nτ
Running speed of each server of application n in CDC c in
time slot τ

t̄c,nτ Variance of tc,nτ
σ̃τ,c,n Mean of tc,nτ
%̂nc

Maximum running speed of each server of application n in
CDC c

λnτ Arriving rate of tasks of application n in time slot τ
λc,nτ Task arriving rate of application n in CDC c in time slot τ

T c,nτ
Response time of tasks of application n in CDC c in
time slot τ

L Time slot length

10.1.1 Task Response Time Model

This chapter presents a task response time model. Let NA denote the number

of applications. In CDC c (1≤c≤NC), there are N̂c,n homogeneous servers for

application n (1≤n≤NA). Let
o

N τ,c,n denote the number of switched-on servers for

application n in CDC c in time slot τ . Thus,
o

N τ,c,n must not exceed N̂c,n, i.e.,

0≤
o

N τ,c,n≤N̂c,n,
o

N τ,c,n∈N+ (10.1)

This chapter uses a G/G/1 queuing model to analyze the performance of each

switched-on server. The execution time and interarrival time of each task have

arbitrary probability distributions in each switched-on server. Let T c,nτ denote the

interarrival time for each server of application n in CDC c in time slot τ . Its variance
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Table 10.2 Main Symbols-Part 2

Notations Definition

T̂n Response time limit of application n
P c,n
τ

Amount of power consumed by each server of application n
in CDC c in time slot τ

U c,n
τ

Supply voltage of each server of application n in CDC c in
time slot τ

χc,nτ
Clock frequency of each server of application n in CDC c in
time slot τ

Φ̌c
n

Amount of power consumption of each idle server of
application n in CDC c

P c
τ Total power consumed by CDC c in time slot τ

Êc Maximum amount of energy in CDC c

P̃τ,c
Amount of wind power consumed by tasks of each
application in CDC c in time slot τ

◦
P τ,c

Amount of solar power consumed by tasks of each
application in CDC c in time slot τ

φ1c Wind-to-electricity conversion rate of CDC c
φ2c On-site air density of CDC c
φ3c Rotor area of wind turbines of CDC c
φτ,4c Wind speed of CDC c in time slot τ
ψτ,3c Solar irradiance of CDC c in time slot τ
ψ2c Active irradiance area of solar panels of CDC c
ψ1c Solar-irradiance-to-electricity conversion rate of CDC c
pcτ Price of power grid of CDC c in time slot τ
Ec
τ Energy cost of CDC c in time slot τ

is σ̂τ,c,n and its mean is T̄ c,nτ . It is worth noting that σ̂τ,c,n and T̄ c,nτ can be set by

analyzing tasks in real-life data, e.g., Google cluster trace data. Let λc,nτ denote the

task arriving rate of application n in CDC c in time slot τ . Thus, λc,nτ is obtained

as λc,nτ = 1
T c,nτ

. Let rnc denote the random size of each task of application n scheduled

to each server in CDC c. The probability distribution of rnc can be arbitrary. The

variance of rnc is σ̆c,n and its mean is r̄nc .

Let tc,nτ denote the running time of each task on a server of application n in

CDC c in time slot τ . Let %c,nτ denote the running speed of each server of application

n in CDC c in time slot τ . Thus, tc,nτ =rnc /%
c,n
τ . Let t̄c,nτ , σ̃τ,c,n and Ωc,n

τ denote the

mean, variance and variation coefficient of tc,nτ , respectively. Then,

t̄c,nτ =
r̄nc
%c,nτ

(10.2)
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σ̃τ,c,n=
σ̆c,n(
%c,nτ
)2 (10.3)

Ωc,n
τ =

√
σ̃τ,c,n

t̄c,nτ
(10.4)

It is assumed that servers in the same CDC are homogeneous while those in

different CDCs are heterogeneous. Let %̂nc denote the maximum running speed of

each server of application n in CDC c. Consequently, %c,nτ needs to be less than or

equal to %̂nc , i.e.,

0≤%c,nτ ≤%̂nc (10.5)

The running speed of each server of application n in CDC c in time slot τ needs

to be large enough to execute the tasks scheduled to that server. Specifically, %c,nτ

cannot be less than r̄nc
T̄ c,nτ

, i.e.,

%c,nτ >
r̄nc
T̄ c,nτ

(10.6)

In addition, the arriving rate of tasks of application n in time slot τ is denoted

by λnτ . Let λc,nτ denote the arriving rate of tasks of application n in CDC c in time

slot τ . Then, λnτ is the sum of task arriving rates of application n in all CDCs in time

slot τ . Therefore, (10.7) is obtained.

λnτ=
NC∑
c=1

λc,nτ (10.7)

Then, let T c,nτ denote the response time of tasks of application n in CDC c with
o

N τ,c,n servers in time slot τ . L denotes the length of each time slot. Consequently,

T c,nτ =
r̄nc
%c,nτ

+
(
(r̄nc )2+σ̆c,n

)
∆16
τ,c,n (10.8)

∆16
τ,c,n=

σ̂τ,c,n(sc,nτ )2+σ̆c,n

2%c,nτ (T̄ c,nτ %c,nτ −r̄nc )
(
(T̄ c,nτ )2(%c,nτ )2+σ̆c,n

)
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where r̄nc = λc,nτ L
o
Nτ,c,n

and T̄ c,nτ =
o
Nτ,c,n

λc,nτ
. σ̆c,n is obtained by calculating the variance of the

data including r1
1, r2

1, · · · , and rN
A

NC . σ̂τ,c,n is obtained by calculating the variance of

the data including T 1,1
τ , T 1,2

τ , · · · , and T NC ,NAτ .

It is worth noting that the derivation of (10.8) is presented in Appendix. Let

T̂n denote the specified response time limit of application n. Then, T c,nτ needs to be

less than or equal to T̂n, i.e.,

T c,nτ ≤T̂n (10.9)

10.1.2 Energy Cost Model

This chapter introduces the energy cost model of CDCs. The power consumption

accounts for a majority of energy cost of CDCs [18]. Let P c,n
τ denote the amount of

power consumed by each server of application n in CDC c in time slot τ . Let U c,n
τ

and χc,nτ denote the supply voltage and clock frequency of each server of application

n in CDC c.

According to the work in [244], U c,n
τ ∝ (χc,nτ )

0
γ9,c,n for a constant 0

γ9,c,n>0 in

the perfect case. In addition, %c,nτ is linearly proportional to χc,nτ , i.e., %c,nτ ∝χc,nτ .

Therefore, similar to the work in [36], U c,n
τ =

0
γ10,c,n (χc,nτ )

0
γ9,c,n and %c,nτ =

0
γ11,c,nχ

c,n
τ .

0
γ10,c,n and

0
γ11,c,n are constants for each server of application n in CDC c. Consequently,

P c,n
τ is obtained as:

P c,n
τ =ϑncω

n
c (U c,n

τ )2 χc,nτ

=ϑnc (
0
γ10,c,n)2ωnc (χc,nτ )2

0
γ9,c,n+1

=ϑnc (
0
γ10,c,n)2ωnc

(%c,nτ )2
0
γ9,c,n+1(

0
γ11,c,n

)2
0
γ9,c,n+1

=knc (%c,nτ )Ψnc (10.10)
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where ϑnc , ωnc , U c,n
τ and χc,nτ denote the activity factor, loading capacitance, supply

voltage, and clock frequency of each server of application n in CDC c. In addition,

knc=ϑnc (
0
γ10,c,n)2ωnc /(

0
γ11,c,n)2

0
γ9,c,n+1 and Ψn

c=2
0
γ9,c,n+1.

Note that each idle server also consumes some amount of power because of the

dissipation of static and short-circuit power, and other leakage and wasted power

[275]. Φ̌c
n denotes the amount of power consumption of each idle server of application

n in CDC c. Besides, P c
τ denotes the total power consumed by CDC c in time slot τ .

Similar to the work in [24, 246], P c
τ is given as:

P c
τ=

NA∑
n=1

P c,n
τ =

NA∑
n=1

(
o

N τ,c,n

(
knc (%c,nτ ) Ψn

c+Φ̌c
n

))
(10.11)

Then, let Êc denote the maximum amount of energy in CDC c. Based on (10.11),

the total energy consumed by CDC c in time slot τ is P c
τL, which must be less than

or equal to Êc, i.e.,

NA∑
n=1

(
o

N τ,c,n

(
knc (%c,nτ ) Ψn

c+Φ̌c
n

))
L<Êc (10.12)

Let P̃τ,c and
◦
P τ,c denote the amount of wind and solar power consumed by tasks

in CDC c in time slot τ , respectively. According to the work in [246],

P̃τ,c=
1

2
φ1cφ2cφ3c

(
φτ,4c

)3 (10.13)

where φ1c, φ2c, φ3c and φτ,4c are the wind-to-electricity conversion rate, on-site air

density, rotor area of wind turbines, and wind speed of CDC c in time slot τ ,

respectively. Similarly, the following equation is obtained.

◦
P τ,c=ψ1cψ2cψτ,3c (10.14)

where ψτ,3c denotes the solar irradiance in time slot τ , ψ2c denotes the active irradiance

area of solar panels, and ψ1c denotes the solar-irradiance-to-electricity conversion rate
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of CDC c. Let pcτ denote the price of power grid of CDC c in time slot τ , and let f c,∗22

denote the energy cost of CDC c. Then,

f c,∗22 =

(
max

(
P c
τ−

◦
P τ,c−P̃τ,c, 0

))
pcτL (10.15)

Then, the energy cost of a CDC provider is obtained as:

f22=
NC∑
c=1

f c,∗22 =
NC∑
c=1

(
max

(
P c
τ−

◦
P τ,c−P̃τ,c, 0

))
pcτL

=
NC∑
c=1

max

NA∑
n=1

(
o

N τ,c,n

(
knc (%c,nτ )Ψn

c+Φ̌c
n

)
)−
◦
P τ,c−P̃τ,c, 0


 pcτL (10.16)

The objective is to minimize f22, i.e.,

Min
o
Nτ,c,n,λ

c,n
τ ,%c,nτ

{f22} (10.17)

Then, according to (10.1), (10.5), (10.6), (10.7), (10.9) and (10.12), the

constrained optimization problem is formulated as:

Min
o
Nτ,c,n,λ

c,n
τ ,%c,nτ

{f22}

subject to

0≤
o

N τ,c,n≤N̂c,n (10.18)

0≤%c,nτ ≤%̂nc (10.19)

%c,nτ >
r̄nc
T̄ c,nτ

(10.20)

λnτ=
NC∑
c=1

λc,nτ (10.21)

T c,nτ ≤T̂n (10.22)
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NA∑
n=1

(
o

N τ,c,n

(
knc (%c,nτ ) Ψn

c+Φ̌c
n

))
L<Êc (10.23)

o

N τ,c,n∈N+, %c,nτ ≥0, λc,nτ ≥0 (10.24)

λc,nτ =0, if
o

N τ,c,n=0 (10.25)

λc,nτ >0, if
o

N τ,c,n>0 (10.26)

Then, its solution algorithm is introduced next.

10.2 Bees Algorithm based on Simulated annealing

f22 is nonlinear with respect to
o

N τ,c,n, λc,nτ , and %c,nτ . Therefore, its optimization

problem is a constrained and nonlinear. Let x denote the vector of decision variables

including
o

N τ,c,n, λc,nτ , and %c,nτ . To effectively solve it, this chapter adopts a penalty

function method to transform it into an unconstrained problem, i.e.,

Min
x

{
f̃22=

∞
Nf+f22

}
(10.27)

In (10.27), f̃22 denotes an augmented objective function and
∞
N a positive

number that is ten times larger than the upper bound of f22. f denotes the penalty

corresponding to all constraints, and it is calculated with (3.21) in Chapter 3.

Currently, there are many classical algorithms, e.g., dynamic programming

[276], Lagrange multiplier [277], Branch and bound [278], and Bucket elimination

[279], to solve it. Nevertheless, they usually need the first-order or second-order

derivatives of the objective functions. They are effective to solve some constrained

optimization problems with certain required mathematical structures [31]. Yet, their

optimization processes are difficult and their final solutions are often unsatisfied.

To tackle such shortcomings, many studies design meta-heuristic algorithms

that obtain near-optimal solutions to the constrained optimization problem in rea-

sonable execution time. They have several advantages including easy implementation,

robustness, handling complex nonlinearities and discontinuities of objective functions.
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In the category of intelligent optimization tools, swarm-based optimization algorithms

(SOAs) are search ones that can efficiently locate relatively good solutions [280]. SOAs

are inspired by methods in nature to provide an effective search towards an optimal

solution. SOAs differ from direct search algorithms, e.g., hill climbing, because SOAs

adopt a population of solutions for each iteration instead of one single solution. These

solutions are updated iteration by iteration, and and output when some termination

conditions are met.

Among SOAs, Bees Algorithm (BeesA) is an optimization one inspired by the

foraging behavior of natural honey bees. It is commonly applied due to its easy

implementation and quick convergence [281]. In BeesA, a colony of honey bees extend

themselves over long distances in different directions. Flower patches with more pollen

or nectar that is collected with less effort should attract more bees, whereas those with

less pollen or nectar attract fewer ones. Scout bees randomly search from one patch to

another, and evaluate different patches. Then, their pollen or nectar is deposited and

they perform a waggle dance in a dance floor. The information including direction

of flower patches, distance from their hive and fitness is communicated through their

waggle dance by exchanging the angle information between sun and patches, duration

and frequency of the dance. Follower bees follow a dancer bee to quickly and efficiently

collect food. The same patch is advertised through the dance for many times when

going to the hive if it is good enough as a food source, and more bees are attracted

to that patch. The flower patches with more nectar or pollen are visited by more

bees. Thus, patches may be visited by more bees, or abandoned depending on the

fitness. BeesA has been applied in many areas, e.g., real-time production scheduling

[282] and intelligent transportation systems [283].

BeesA is very efficient in obtaining high-quality solutions to constrained

optimization problems. However, there are a number of tunable parameters that

need to be figured out. In addition, it is often easy to trap into a local optimum
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in its search process and causes premature convergence. Thus, the quality of its

final solutions is unsatisfied if it is used to solve complicated optimization problems

with large solution spaces. Simulated annealing (SA) is able to escape from a locally

optimal solution by conditionally enabling some moves to worsen solutions by using

its criterion of Metropolis acceptance [284].

It is proven that SA can theoretically obtain a global optimum with high

probability, and it can obtain high-accuracy solutions to different types of discrete

and continuous optimization problems [52]. Nevertheless, its convergence process is

relatively slow in most cases. Thus, this chapter designs a hybrid algorithm named

Bees Algorithm based on Simulated annealing (BAS) to solve the unconstrained

optimization problem by integrating the Metropolis acceptance criterion of SA into

BeesA. Specifically, this chapter performs SA-based selection with to update each elite

or non-elite bee. The other novelty is SA-based selection and the use of disruptive

selection to increase its convergence speed and solution accuracy.

10.2.1 Individual Encoding

Each scout bee (individual) i contains decision variables including
o

N τ,c,n, λc,nτ , and

%c,nτ . Let xi denote the position of each individual i.

xi=

[
o

N τ,1,1, · · ·,
o

N τ,NC ,NA , λ
1,1
τ , · · ·, λNC ,NAτ , %1,1

τ , · · ·, %NC ,NAτ

]
(10.28)

10.2.2 Population Initialization

Let |X| denote the number of scout bees, i.e., the population size. Let
0
xi,d denote the

initial decision variable d of individual i∈{1, 2, . . . , |X|}, i.e.,

0
xi,d = θ̌d5 + w18,i∗

(
θ̂d5−θ̌d5

)
(10.29)

where θ̂d5 and θ̌d5 are upper and lower limits of decision variable d, and w18,i is a

number for individual i randomly produced in the range of (0,1).
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10.2.3 SA-based Selection

This chapter performs SA-based selection to update each elite or non-elite bee. Let

xgi and xg+1
i denote positions of bee i in iterations g and g+1. If f̃22(xgi )≥f̃22(xg+1

i ),

xg+1
i is accepted; otherwise, it is accepted only if

exp

(
f̃22(xgi )−f̃22(xg+1

i )
)

θg2
>w17 (10.30)

where θg2 is the temperature in iteration g and w17 is a random number in (0,1).

10.2.4 Disruptive Selection

Disruptive selection provides more chances to select lower and higher individuals in

the population. To achieve it, the following equations are first defined as:

F̃i=|Fi−F̄| (10.31)

F́i=
F̃i
|X|∑
i=1

F̃i
(10.32)

As is shown in (10.31), a disruptive selection operation alters fitness value (Fi)

for individual i in the population. First, F̃i is defined as the absolute value of the

difference between the fitness (Fi) of individual i, and the average value (F̄) for all

individuals. Second, the new fitness function (F́i) for individual i is calculated via

(10.31) as F̃i∑|X|
i=1 F̃i

. It is observed that the higher and lower-quality individuals are

more preferable. This means that disruptive selection aims to increase the diversity of

individuals in the population by retaining diverse individuals. Then, the population

of |X| scout bees is sorted with disruptive selection in (10.31).

Algorithm 8 shows details of BAS. Line 1 initializes |X| scout bees being

randomly placed in the search space. Let ĝ denote number of generations. θg2 denotes

current temperature in iteration g. Line 3 sets the initial temperature θ0
2 for SA. The

while loop in Lines 4–26 produces the best solution searched,
∗
x. Line 5 evaluates the

fitness of the sites searched by scout bees after return. Line 6 reorders the population
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Algorithm 8 BAS (Bees Algorithm based on Simulated annealing)
1: Initialize a population of |X| scout bees
2: g ← 1
3: θg2 ← θ0

2
4: while g≤ĝ do
5: Evaluate the fitness of the population
6: Sort the population of |X| scout bees with disruptive selection in (10.31)
7: Select the best scout bee (

∗
x)

8: Select Ḿ sites for the neighborhood search
9: Determine the neighborhood size, M̃

10: for i← 1 to M̀ do
11: Recruit M̌ bees for elite site i
12: Select the best one among M̌ recruited bees
13: Perform SA-based selection with (10.30) to update elite bee i
14: end for
15: for l← i to Ḿ−M̀ do
16: Recruit M̄ bees for non-elite site i
17: Select the best one among M̄ recruited bees
18: Perform SA-based selection with (10.30) to update non-elite bee i
19: end for
20: Update the fittest bee from each selected site
21: Assign |X|−Ḿ remaining bees to random search
22: Produce a new population of |X| scout bees
23: Reduce the neighborhood radius
24: g ← g+1
25: θg2 ← θg−1

2 ∗θ3

26: end while
27: Output

∗
x

of |X| scout bees with disruptive selection (10.31). Line 8 selects Ḿ fittest sites from

|X| scout bees for neighborhood search. Line 9 determines the neighborhood size, M̃ ,

and performs a neighborhood search to update Ḿ scout bees. It is important because

there may be better bees in the neighborhood area. Lines 10–14 update M̀ elite sites

by randomly recruiting M̌ bees for each elite site, selecting the best one among M̌

recruited bees, and performing SA-based selection with (10.30) to update each elite

bee. Similarly, Line 9 determines the neighborhood size. Lines 15–19 update Ḿ−M̀

non-elite sites by randomly recruiting M̄ bees for each non-elite site, selecting the

best one among M̄ recruited bees, and performing SA-based selection with (10.30) to

update each non-elite bee.
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Line 20 updates the fittest bee from each selected site to form the next

population. More bees are recruited to follow the elite M̀ sites to search in

their neighborhood including more promising solutions. Therefore, the differential

recruitment is an important and key operation of BeesA. Line 21 assigns |X|−Ḿ

remaining bees to random search. Line 22 produces a new population of |X| scout

bees. Then, the new population has two parts including a representative from each

selected patch, and other scout bees that randomly searched. Line 23 reduces the

neighborhood radius. Line 25 reduces θg2 by θ3, which denotes the temperature cooling

rate. Finally, Line 27 outputs the best scout bee (
∗
x), which is further transformed into

decision variables including [
o

N τ,1,1, · · ·,
o

N τ,NC ,NA , λ
1,1
τ , · · ·, λNC ,NAτ , %1,1

τ , · · ·, %NC ,NAτ ].

10.3 Performance Evaluation

This chapter evaluates the proposed BAS with real-life data. BAS is implemented and

coded with MATLAB 2017, and it is executed in a server with a 32-GB DDR4 memory

and an Intel Xeon E5-2699AV4 CPU at 2.4 GHz. This chapter adopts realistic task

arriving rates of three applications in Google cluster trace1 to evaluate the proposed

BAS. Figure 10.1 shows task arriving rates.

10.3.1 Parameter Setting

Similar to Chapter 8, this chapter adopts the real-life prices of power grid in Figure

8.3 to set three CDCs. In addition, this chapter adopts the wind speed in Figure 3.3

and solar irradiance in Figure 3.4 to set three CDCs. In addition, the length of each

time slot is 5 minutes, i.e., L=300 seconds.

Here, this chapter considers three applications deployed in three CDCs, i.e.,

NC=3 and NA=3. Following the work in [22, 24], Table 10.3 shows the setting of

parameters related to energy suppliers including power grid, wind energy and solar

energy. In addition, this chapter adopts real-life data about wind speed2 and solar

1https://github.com/google/cluster-data (accessed on May 6, 2019).
2http://www.nrel.gov/midc/nwtc_m2/ (accessed on May 10, 2019).
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Figure 10.1 Task arriving rates of three applications.
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Figure 10.2 Prices of power grid in three CDCs.

Table 10.3 Parameter Setting of Wind and Solar Energy

Wind energy Solar energy
φ1c φ3c (m2) φ2c (kg/m3) ψ1c ψ2c (m2)

c=1 0.3 250 1.225 0.2 150
c=2 0.375 312.5 1.5313 0.25 187.5
c=3 0.45 375 1.8375 0.3 225

Table 10.4 Parameter Setting of Three CDCs-Part 1

Êc(WH) knc Ψn
c Φ̌c

n (W)
n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3

c=1 2.1×1011 10.5 7.4 4.4 1.1 1.15 1.25 200 300 400
c=2 2.5×1011 12.5 9.4 6.4 1.0 1.1 1.2 400 500 600
c=3 1.25×1011 14.5 11.4 6.4 1.1 1.2 1.3 600 700 800

irradiance3 for 24 hours. In addition, similar to Chapter 9, this chapter adopts the

wind speed in Figure 3.3 and solar irradiance in Figure 3.4 to set three CDCs.

3http://www.nrel.gov/midc/srrl_bms/ (accessed on May 10, 2019).

233



Table 10.5 Parameter Setting of Three CDCs-Part 2

N̂c,n %̂nc
n=1 n=2 n=3 n=1 n=2 n=3

c=1 110 120 130 2.9×104 3.0×104 3.1×104

c=2 140 150 160 3.0×104 3.1×104 3.2×104

c=3 160 170 180 3.2×104 3.3×104 3.4×104

In addition, knc , Ψn
c , Φ̌c

n, N̂c,n and %̂nc are set in Tables 10.4–10.5. Besides,

T̂1=0.05 seconds, T̂2=0.1 seconds, and T̂3=0.15 seconds. It is worth noting that

BAS is sensitive to its parameter setting. Therefore, according to the parameter

setting in previous studies [52, 207, 285], many trials are performed to investigate the

optimal parameter setting in BAS with a grid search approach [286, 287]. The final

parameter setting of BAS is given as follows. NC=3,NA=3, θ̌d5=0 (1≤d≤3∗NC∗NA),

θ̂1:9
5 =[110, 120, 130, 140, 150, 160, 160, 170, 180], θ̂10:18

5 =2×103, and θ̂19:27
5 =[2.9×104,

3.0×104, 3.1×104, 3.0×104, 3.1×104, 3.2×104, 3.2×104, 3.3×104, 3.4×104]. ĝ=1000,

|X|=30, Ḿ=15, M̀=6, M̌=30 and M̄=15. Let θS1 , θ́S1,c,n and θ̃S1,c,n denote the

neighborhood radius of
o

N τ,c,n, λc,nτ and %c,nτ , respectively. Then, θS1 =14.7, θ́S1,c,n=200

and θ̃S1,c,n=3133. Let θS2 denote the reduction rate of neighborhood radius and

θS2 =0.99. Besides, θ0
2=5×106 and θ3=0.985. In addition,

∞
N=1017 and 0

γ1=
0
γ2=1.

10.3.2 Experimental Results
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Figure 10.3 Arriving rates of type 1 tasks allocated to three CDCs.

Figures 10.3–10.5 show the arriving rates of tasks of three applications allocated

to three CDCs, respectively. It is clearly observed that the number of tasks of
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Figure 10.4 Arriving rates of type 2 tasks allocated to three CDCs.
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Figure 10.5 Arriving rates of type 3 tasks allocated to three CDCs.

each application allocated to CDC 1 is the highest and that allocated to CDC 3

is the lowest. Figures 10.6–10.8 show the number of switched-on servers for three

applications, respectively. It is clearly observed that they all do not exceed their

corresponding limits. Besides, it is also observed that the number of switched-on

servers in CDC 1 for each application is the highest and that in CDC 3 is the lowest.

This is because the price of power grid of CDC 1 is the lowest and that of CDC 3 is

the highest. Therefore, the largest number of tasks are scheduled to CDC 1 with the

largest number of switched-on servers among three CDCs.

Figure 10.9 illustrates the amount of power grid energy consumed by three

CDCs. As is shown in Figure 3.6, prices of power grid of three CDCs vary from

each other. BAS aims to minimize the energy cost of the CDC provider by smartly

scheduling tasks of heterogeneous applications among multiple CDCs while satisfying

delay-bound constraints of all tasks of each application. It is shown that the amount
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Figure 10.6 Number of switched-on servers in three CDCs for type 1 application.
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Figure 10.7 Number of switched-on servers in three CDCs for type 2 application.
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Figure 10.8 Number of switched-on servers in three CDCs for type 3 application.

of power grid energy consumed by CDC 1 is the highest while that in CDC 3 is the

lowest. The result is consistent with prices of power grid in three CDCs, i.e., the

price of power grid in CDC 1 is the lowest while that in CDC 3 is the highest.

Figure 10.10 shows the total energy consumption of three CDCs. It is shown that

the total energy consumption of each CDC does not exceed its maximum available
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Figure 10.9 Amount of power grid energy consumed by three CDCs.

energy in each time slot. The reason is that BAS dynamically consumes the power

grid, wind and solar energy by smartly scheduling tasks of heterogeneous applications

among multiple CDCs, and suitably setting the running speed of each server in each

CDC and the number of switched-on servers in each CDC.

10.3.3 Comparison Results

To demonstrate the performance of BAS, this chapter compares it with two typical

meta-heuristic optimization algorithms, i.e., BeesA [288] and Genetic Learning

Particle Swarm Optimization (GL-PSO) [289]. Each algorithm is repeated for 30

times independently to generate the statistical results. The reasons of selecting them

as BAS’s peers are:

1) BeesA [288]: As a swarm-based optimization algorithm, BeesA is very efficient
in finding high-quality solutions. BeesA has a search procedure that is inspired
by the way honey-bee forage for food. However, it needs to figure out a number
of tunable parameters, and it often easily traps into a local optimum and causes
premature convergence.

2) GL-PSO [289]: GL-PSO performs crossover, mutation and selection on par-
ticles’ historical information to construct well diversified and highly qualified
exemplars that guide particles’ search processes. GL-PSO enhances both the
search efficiency, robustness, scalability and the global search ability of PSO.

The key parameter setting of BeesA is the same as that of BAS. In addition,

the key parameter setting of GL-PSO is given as follows. The number of iterations

is 1000. The population size is 100. The intertia weight is 0.7298. The accelerate
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Figure 10.10 Total energy consumption of three CDCs

coefficients of the locally best and the globally best individuals are both set to 2. The

exemplar learning coefficient is set to 1.49618. The maximum velocity is 10. The

probability of mutation is 0.1. The comparison among BAS, BeesA and GL-PSO can

demonstrate the accuracy and the convergence speed of the final solution of BAS.

In addition, it is worth noting that BeesA and GL-PSO are all sensitive to their
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parameter setting. Consequently, similar to BAS, many experiments are performed

to specify the optimal parameter setting of both BeesA and GL-PSO according to

the grid search method [286] and similar setting of parameters in previous studies

[288, 289]. In addition, BeesA and GL-PSO terminate their search processes if they

do not find better solutions in successive 10 iterations.
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Figure 10.11 Energy cost comparison of BAS, BeesA and GL-PSO.

0 50 100 150 200 250
0

50

100

150

200

250

300

Time slot number

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

 

 

BAS BeesA GL−PSO

Figure 10.12 Execution time comparison of BAS, BeesA and GL-PSO.

Figure 10.11 shows the energy cost comparison of BAS, BeesA and GL-PSO. It

is shown that compared with BeesA and GL-PSO, the energy cost of BAS is decreased

by 59.07% and 92.83% on average, respectively. Figure 10.12 shows the execution time

comparison of BAS, BeesA and GL-PSO. It is observed that compared with BeesA

and GL-PSO, the execution time of BAS is decreased by 26.31% and 46.15% on

average, respectively. BAS’s average execution time of all time slots is 65.94 seconds,

and it is 26.16% smaller than that of BeesA, 89.30 seconds, and 49.27% smaller than
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that of GL-PSO, 129.97 seconds. Figures 10.11 and 10.12 demonstrate that BAS

obtains a more accurate solution in less convergence time than BeesA and GL-PSO.
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Figure 10.13 Energy cost of each iteration in time slot 1.
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Figure 10.14 Penalty of each iteration in time slot 1.

Figure 10.13 illustrates the energy cost comparison of each iteration of BAS,

BeesA and GL-PSO in time slot 1. Here, each iteration of BAS means Lines 5–25

in Algorithm 8. The meaning of iterations of BeesA and GL-PSO is similar to that

of BAS. Figure 10.14 illustrates the penalty of each iteration in time slot 1, which is

obtained with (3.21) in Chapter 3. It is shown the penalty of final solutions of BAS,

BeesA and GL-PSO is near 0. This result demonstrates that their final solutions

satisfy all the constraints of the formulated problem. BeesA and GL-PSO need 951

and 996 iterations to converge to their final solutions, and their final energy cost are

$76165.77 and $218339.94, respectively. BAS only needs 201 iterations to converge

to its final solution, and its energy cost is $14832.58. Consequently, BAS significantly
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reduces the energy cost of the CDC provider in much fewer iterations than BeesA

and GL-PSO. Figures 10.13–10.14 demonstrate that the integration of the Metropolis

acceptance criterion of SA in BAS improves the solution diversity, and the global

search accuracy of BeesA.

To prove the effectiveness of FSTS, this chapter compares it with several task

scheduling methods [31, 76, 222, 290] in terms of energy cost and throughput.

1) M1. Similar to cheap price of power grid-first scheduling in [76], it schedules
tasks to CDCs by following the order of their prices of power grid.

2) M2. Similar to green energy-first scheduling in [31], it schedules tasks to CDCs
by following the order of their amount of wind and solar energy.

3) M3 [222]. It schedules tasks among distributed CDCs by leveraging geographic
and temporal variations of energy prices.

4) M4 [290]. It cost-effectively schedules tasks among CDCs by exploiting spatial
diversity of electricity prices.

Figures 10.15–10.17 show the throughput comparison of FSTS and M1–M4,

respectively. It is shown that the throughput of FSTS is greater than those of M1–M4

for each application in each time slot, respectively. For example, for application 1,

FSTS’s throughput is greater than those of M1–M4 by 25.99%, 25.37%, 10.30% and

7.74% on average, respectively. The reason is that the maximum number of servers,

running speed limits of each server and maximum energy in each CDC are all limited

in each time slot. In addition, FSTS intelligently schedules tasks of each application

among CDCs, and optimally sets the running speed of each server and the number of

switched-on servers in each CDC. Therefore, some tasks of users are refused and not

scheduled to CDCs when using M1–M4.

Figure 10.18 illustrates the energy cost of FSTS, M1–M4, respectively. To ensure

the actual performance of tasks, the penalty is required in SLAs for each rejected task

[291] after the negotiation between the CDC provider and users. The penalty of each

rejected task is usually greater than the largest energy cost corresponding to the

execution of each task of the same application among CDCs in each time slot. Thus,

241



0 50 100 150 200 250
0

500

1000

1500

2000

Time slot number

T
hr

ou
gh

pu
t (

#/
se

co
nd

)
 

 

FSTS M1 M2 M3 M4

Figure 10.15 Type 1 throughput comparison of FSTS and M1–M4.
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Figure 10.16 Type 2 throughput comparison of FSTS and M1–M4.
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Figure 10.17 Type 3 throughput comparison of FSTS and M1–M4.

this motivates the CDC provider to strictly guarantee delay constraints of tasks of

all applications. In Figure 10.18, the energy cost in each time slot is calculated by

summing up the energy cost of tasks executed in CDCs, and the penalty of rejected

tasks in each time slot. It is shown in Figure 10.18 that compared with M1–M4, the

energy cost of FSTS is decreased by 50.11%, 51.55%, 29.15%, and 25.27% on average,
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respectively. This is because FSTS intelligently schedules tasks among CDCs by

jointly investigating spatial variations in prices of power grid and the amount of

green energy in CDCs.
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Figure 10.18 Energy cost comparison of FSTS and M1–M4.

10.4 Appendix

The derivation of (10.8) is given here. The execution time of each task on a server of

application n in CDC c in time slot τ is rnc
%c,nτ

, i.e., tc,nτ = rnc
%c,nτ

.

Let W c,n
τ denote the average waiting time of tasks of application n in each

server in CDC c. According to the theory of the G/G/1 queuing system, W c,n
τ is

approximately calculated as follows.

W c,n
τ =

1+ (Ωc,n
τ )2

( 1
ρc,nτ

)2+
(
Ωc,n
τ

)2

σ̂τ,c,n+σ̃τ,c,n
2T̄ c,nτ (1− ρc,nτ )

(10.33)

According to (10.33),

W c,n
τ =

1+ (Ωc,n
τ )2

( 1
ρc,nτ

)2+
(
Ωc,n
τ

)2

σ̂τ,c,n+σ̃τ,c,n
2T̄ c,nτ (1− ρc,nτ )

=
1+ σ̃τ,c,n

(t̄c,nτ )2

( T̄
c,n
τ

t̄c,nτ
)2+ σ̃τ,c,n

(t̄c,nτ )2

σ̂τ,c,n+σ̃τ,c,n
2T̄ c,nτ (1− ρc,nτ )

=
(t̄c,nτ )2+σ̃τ,c,n
(T̄ c,nτ )2+σ̃τ,c,n

σ̂τ,c,n+σ̃τ,c,n
2T̄ c,nτ (1− ρc,nτ )

(10.34)
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Then, the average response time of tasks of application n in each server in CDC

c in time slot τ is denoted by T c,nτ , and it is calculated as follows.

T c,nτ =T̄ c,nτ +W c,n
τ

=
(t̄c,nτ )2+σ̃τ,c,n
(T̄ c,nτ )2+σ̃τ,c,n

σ̂τ,c,n+σ̃τ,c,n
2T̄ c,nτ (1− ρc,nτ )

=T̄ c,nτ +
(t̄c,nτ )2+σ̃τ,c,n
(T̄ c,nτ )2+σ̃τ,c,n

σ̂τ,c,n+σ̃τ,c,n
2(T̄ c,nτ − t̄c,nτ )

=
r̄nc
%c,nτ

+

(r̄nc )2

%c,nτ
+ σ̆c,n

(%c,nτ )2

(T̄ c,nτ )2+ σ̆c,n
(%c,nτ )2

σ̂τ,c,n+ σ̆c,n
(%c,nτ )2

2(T̄ c,nτ − r̄nc
%c,nτ

)

=
r̄nc
%c,nτ

+
(r̄nc )2+σ̆c,n

(T̄ c,nτ )2(%c,nτ )2+σ̆c,n

σ̂τ,c,n(%c,nτ )2+σ̆c,n
2σ̆c,n(T̄ c,nτ %c,nτ −r̄nc )

=
r̄nc
%c,nτ

+((r̄nc )2+σ̆c,n)
σ̂τ,c,n(%c,nτ )2+σ̆c,n

2%c,nτ (T̄ c,nτ %c,nτ − r̄nc )((T̄ c,nτ )2(%c,nτ )2+σ̆c,n)
(10.35)

It is worth noting that equation (10.35) is equivalent to (10.8). Then, (10.8) is

derived accordingly.

10.5 Summary

Cloud computing allows enterprises to achieve many benefits by reducing administra-

tive, capital and operational cost. Yet it suffers from the high energy consumption

problem that negates its advantages. Many large-scale enterprises adopt distributed

green cloud data center (CDC) systems to provide application services to users

through intelligent task scheduling. However, existing studies fail to minimize the

energy cost of a CDC provider by providing fine-grained spatial scheduling for tasks

of heterogeneous applications. In addition, many factors, e.g., prices of power grid and

the amount of green energy in green CDCs show their significant spatial variations.

Therefore, it is a big challenge to minimize the energy cost of the CDC provider.

This chapter uses a G/G/1 queuing model to analyze the performance of servers,

and further formulates a constrained optimization problem. It is solved by a newly

proposed Bat Algorithm based on Simulated annealing to find a close-to-optimal
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solution. Then, a Fine-grained Spatial Task Scheduling (FSTS) algorithm is proposed

to achieve the energy cost minimization for the CDC provider by optimally allocating

tasks of heterogeneous applications among multiple CDCs, and specifying the running

speed of each server and the number of switched-on servers in each CDC. Real-life

data-driven experiments demonstrate that FSTS can decrease energy cost and ensure

the highest throughput in comparison with its several up-to-date scheduling methods.
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CHAPTER 11

PROFIT-MAXIMIZED COLLABORATIVE COMPUTATION
OFFLOADING AND RESOURCE ALLOCATION IN DISTRIBUTED

CLOUD AND EDGE COMPUTING SYSTEMS

This chapter presents the details of the proposed profit-maximized collaborative

computation offloading and resource allocation, and it is organized as follows.

Section 11.1 first gives an illustrative framework of the system, and then formu-

lates a constrained profit maximization problem. Section 11.2 presents details of

Simulated-annealing-based Migrating Birds Optimization (SMBO) to efficiently solve

it. Real-life data is adopted to evaluate it in Section 11.3. At last, the conclusion is

drawn in Section 11.4.

11.1 Problem Formulation

This section gives the formulation of a constrained optimization problem for a cloud

and edge computing system as is shown in Figure 11.1. In this chapter, the framework

includes three layers, i.e., terminal, edge computing and cloud data center (CDC)

ones. The arriving tasks of users are sent through heterogeneous smart mobile devices,

e.g., iPad, smart phones, computers, sensors on the road and all they are produced

at the terminal layer, and the returned results are sent back to this layer eventually.

These tasks need to be executed by such applications as industrial internet devices,

smart home, smart city, autonomous driving and medical monitoring.

This chapter considers a heterogeneous network to deliver arriving tasks to

nodes in edge computing and CDC layers. As is shown in Figure 11.1, for a given

area, the wireless infrastructure of this network mainly includes many WiFi access

points and multiple small-cell base stations (SBSs). The cell radius of SBSs that might

be hosted by different mobile telecom carriers varies from 0.01 km to 2 km, and SBSs

are mutually interconnected and reachable to transmit signals and messages. SBSs,
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Figure 11.1 Illustrative system framework.

e.g., WiFi access points, gateways and micro cells, are part of the network for highly

populated urban areas. Tasks are delivered to the edge computing layer including a

task scheduler and nodes in edge computing. The scheduler smartly allocates tasks

between the edge and CDC. If a task is scheduled to CDC, a macro base station just

forwards it to CDC; otherwise, a macro base station (MBS) needs to execute it in its

node (server) at the edge computing layer.

MBS is located at the network edge, and consists of many heterogeneous nodes

with limited storage, computing and transmission ability. It provides ubiquitous

coverage and its cell radius varies from 8 km to 30 km. It receives tasks from the

terminal layer, and executes some of them locally and sends others to CDC through

Internet backbone. It reduces tasks’ latency and alleviates pressure on the CDC layer.

The CDC layer typically owns and manages multiple interconnected server clusters

with large computing and storage capacities and provides different kinds of cloud

resources to handle complex tasks.

11.1.1 Decision Variables

Let ys,qτ be a binary variable. If task s is scheduled to execute in node q in the edge

computing layer in each time slot τ , ys,qτ =1; otherwise, ys,qτ =0. Let N †τ denote the

number of tasks scheduled to nodes in the edge computing layer in time slot τ . Let

µτ denote the task service rate of CDC servers in time slot τ . It is assumed that
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users’ arriving tasks can be executed in the edge computing or CDC layer. Thus, in

time slot τ , N †τ needs to be less than or equal to the total number of arriving tasks

in τ , λτL, i.e.,

N †τ≤λτL (11.1)

where λτ is the task arriving rate in time slot τ , and L is the length of each time slot.

Let N q
τ denote the maximum number of tasks that can be executed by node q

in edge in time slot τ . Thus,
N†τ∑
s=1

ys,qτ ≤N q
τ (11.2)

In the edge computing layer, there are N0 heterogeneous nodes. In time slot τ ,

task s has to be and can only be scheduled to execute in only one node in the edge

computing layer. Thus,
N0∑
q=1

ys,qτ =1 (11.3)

11.1.2 Response Time

The total number of arriving tasks in time slot τ is λτL according to (11.1). Then,

the number of tasks scheduled to execute in CDC in time slot τ is
(
λτL−N †τ

)
. Let λ́τ

denote the arriving rate of tasks scheduled to CDC in time slot τ , i.e., λ́τ=λτL−N†τ
L

.

Let T†τ denote the maximum response time of tasks executed in all nodes in the edge

computing layer in time slot τ . Let T ‡τ denote the average response time of all tasks

executed in the CDC layer in time slot τ .

Let T s,qτ denote the execution time of task s (1≤s≤N †τ ) on node q (1≤q≤N0).

Let Ns denote the size of task s. Let ~q denote the processing speed of node q. Then,

T s,qτ =
Ns
~q
ys,qτ (11.4)
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It is worth noting that the maximum response time (T†τ ) of all tasks executed

in the edge computing layer includes transmission time and computation time in the

CDC layer. Then, T†τ is obtained as:

T†τ=
N0

max
q=1

 N0∑
s=1

T s,qτ

 (11.5)

Let T̂ † denote users’ response time limit for tasks scheduled to execute in the

edge computing layer. Thus, T†τ cannot exceed T̂ †, i.e.,

T†τ≤T̂ † (11.6)

Similar to the work in [110, 245], this chapter adopts anM/M/1/N̂‡/∞ queuing

system to analyze the behavior of switched-on servers in CDC. Here, N̂‡ denotes the

maximum number of tasks that all servers in a CDC can execute. It is assumed that

users’ tasks arrive in a Poisson process with mean rate λ́τ and task service time has

an exponential distribution with mean rate µτ . Let T ‡τ denote the average response

time of tasks scheduled to execute in the CDC layer. Let T̂ ‡ denote users’ response

time limit of tasks scheduled to execute in the CDC layer. Then, T ‡τ is obtained as:

T ‡τ=υτ+
∆18
τ

µτ (1−∆17
τ )

(11.7)

where

∆18
τ =

ρτ
1−ρτ

−

(
N̂‡ + 1

)
(ρτ )

N̂‡+1

1− (ρτ )
N̂‡+1

,

∆17
τ =

1−ρτ
1− (ρτ )

N̂‡+1

ρτ=
λ́τ
µτ
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υτ is the total transmission time of input/output data to/from the CDC layer

through MBS, and ∆17
τ is the possibility when there are no tasks in the CDC layer in

the current time slot.

In addition, to guarantee the stability of a task queue in the CDC layer, (11.8)

has to be met:

λ́τ≤µτ (11.8)

In time slot τ , T ‡τ cannot exceed its limit T̂ ‡, i.e.,

T ‡τ≤T̂ ‡ (11.9)

11.1.3 Profit

Then, let f1, f2 and F1 denote total revenue, total cost and total profit in time slot

τ . Then, F1 is obtained as:

F1=f1−f2 (11.10)

To meet the actual response time requirements of users, this chapter uses service

level agreements (SLAs) [292, 293] as legal contracts. They are typically predefined

between users and cloud providers. In this chapter, SLAs specify the revenue or

penalty if the response time of tasks is within or beyond their limits, respectively.

Long response time of tasks leads to worse quality of applications and it reduces

profit of the system providers that not only have to meet tasks’ quality of service

(QoS), but also to maximize the total profit. In this chapter, QoS is defined as the

response time of tasks. This chapter adopts the following SLA as an example. If the

actual response time of a task is less than or equal to 0.1 seconds, its revenue is $0.5;

otherwise, its penalty is -$0.2. Let x denote the actual response time of a task, and

let ∆19(t) denote its corresponding revenue or penalty. Then,

∆19(t)=

 0.5, t≤0.1 seconds

−0.2, t>0.1 seconds
(11.11)
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According to (11.11), the revenue brought by each task scheduled to execute in

the edge computing layer is ∆19(T†τ ). Then, the total revenue brought by all tasks

scheduled to execute in the edge computing layer is ∆19(T†τ )N
†
τ . Similarly, the revenue

brought by each task scheduled to execute in the CDC layer is ∆19(T ‡τ ). Then, the

revenue brought by all tasks scheduled to execute in CDC is ∆19(T ‡τ )
(
λτL−N †τ

)
. zτ

is obtained as:

f1=∆19(T†τ )N
†
τ+∆19(T ‡τ )

(
λτL−N †τ

)
(11.12)

Let f22 denote the energy cost of all tasks scheduled to execute in the CDC layer

in time slot τ . Let f23 denote the execution cost of all tasks scheduled to execute

in the edge computing layer in time slot τ . Then, f2 consists of f22 and f23. Let

f s,q23 denote the execution cost of task s scheduled to execute in node q in the edge

computing layer in time slot τ . Let ∂̂ denote the upper limit of f s,q23 .

f s,q23 ≤∂̂ (11.13)

f23 is obtained as
∑N†τ

s=1

∑N0

q=1

(
ys,qτ f s,q23

)
. Let pτ denote the price of power grid

in time slot τ . Let Eτ denote the amount of energy consumed by all tasks scheduled

to execute in the CDC layer in time slot τ . Thus, f22=pτEτ . Similar to the work

in [294, 295], the data transmission cost between CDC and edge computing layers is

ignored. Thus, f2 is obtained as:

f2=pτEτ+
N†τ∑
s=1

N0∑
q=1

(
ys,qτ f s,q23

)
(11.14)

11.1.4 Energy Consumption

Φ̂ and Φ̌ denote the peak and idle power of each server in the CDC layer, respectively.
•
N denotes the number of tasks processed by each switched-on server per time in the

CDC layer, and α denotes the power usage effectiveness value [296] of CDC. Following
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the work in [23], energy consumption Eτ is calculated as follows.

Eτ=
∆5µτ+∆4λ́τ (1−δτ )

•
N

L (11.15)

∆5=Φ̂+ (α−1) Φ̌

∆4=Φ̂−Φ̌

δτ=
1− ρτ

1− (ρτ )N̂
‡+1

(ρτ )
N̂‡

Let Ê denote the maximum amount of the total available energy in the CDC

layer. Then, Eτ cannot exceed ∆, i.e.,

∆5µτ+∆4λ́τ (1−δτ )
•
N

L≤Ê (11.16)

The execution cost of all tasks scheduled to execute in the edge computing layer

needs to be less than or equal to the energy cost of all tasks scheduled to execute in

the CDC layer in time slot τ , i.e.,
N†τ∑
s=1

N0∑
q=1

(
ys,qτ f s,q23

)
≤pτEτ (11.17)

Let N̂ denote the maximum number of servers in the CDC layer. Then, the

number of switched-on servers is µτ/
•
N, which must satisfy:

µτ
•
N
≤N̂ (11.18)

11.1.5 Load Balance Model

In the edge computing layer, several load factors can be used to evaluate the load

balance of nodes [297]. This chapter considers three important factors including CPU,

memory and bandwidth [298]. To allocate resource reasonably, this chapter defines

the load level of each node q in time slot τ as follows.

κqτ=κ0
1ϕ

1,q
τ +κ0

2ϕ
2,q
τ +κ0

3ϕ
3,q
τ (11.19)
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where ϕ1,q
τ , ϕ2,q

τ and ϕ3,q
τ denote the utilization of CPU, memory and bandwidth

resources of node q in time slot τ , respectively. κ0
1 , κ0

2 and κ0
3 denote their weights

and satisfy:

κ0
1+κ0

2+κ0
3=1 (11.20)

ϕ1,q
τ , ϕ2,q

τ and ϕ3,q
τ cannot exceed 1, i.e.,

ϕ1,q
τ =

N†τ∑
s=1

ys,qτ ςs1

}̂1

≤1 (11.21)

ϕ2,q
τ =

N†τ∑
s=1

ys,qτ ςs2

}̂2

≤1 (11.22)

ϕ3,q
τ =

N†τ∑
s=1

ys,qτ ςs3

}̂3

≤1 (11.23)

where ςs1 , ςs2 and ςs3 denote the amount of CPU, memory and bandwidth resources

needed by each task s, respectively. }̂1, }̂2 and }̂3 are the maximum available amount

of CPU, memory and bandwidth resources in each node, respectively.

Let κ̄τ denote the average load level of all nodes in the edge computing layer in

time slot τ . Then, (11.24) is obtained.

κ̄τ=

N0∑
q=1

κqτ

N0
(11.24)

Let ετ denote the load balance level of all nodes in the edge computing layer in

time slot τ . This section uses the standard deviation to characterize it, i.e.,

ετ=

√√√√ 1

N0

N0∑
q=1

(
κqτ − κ̄τ

)2≤ε̂ (11.25)
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where ε̂ denotes the specified maximum load balance level. It is worth noting that

the lower ετ is, the more balanced the edge computing layer is.

11.1.6 Profit Maximization Problem

The objective is to maximize F1, i.e.,

Max
ys,qτ ,N†τ ,µτ

{F1} (11.26)

subject to (11.1)–(11.3), (11.6), (11.8), (11.9), (11.13), (11.16)–(11.18), (11.21)–

(11.23), (11.25) and (11.27).

N †τ∈N+, µτ≥0, ys,qτ ∈{0, 1} (11.27)

Then, SMBO used to solve the problem is described in the next section.

11.2 Simulated-annealing-based Migrating Birds Optimization

Note that F1 is nonlinear in terms of ys,qτ , N †τ and µτ . Thus, it is a constrained

nonlinear optimization problem. To well solve it, this chapter designs a method of

penalty function to convert it into an unconstrained one, i.e.,

Max
ys,qτ ,N†τ ,µτ

{
F̃1(x )=F1−

∞
Nf

}
(11.28)

In (11.28), F̃1 is a new objective function and
∞
N denotes a large positive

constant. x2 is a decision vector including ys,qτ , N †τ and µτ . f denotes the penalty

if any equality and inequality constraint is violated, and it is obtained with (3.21) in

Chapter 3.

There are several traditional methods, e.g., convex programming, conjugate

gradient methods, quasi-Newton methods and interior point methods, to solve it.

But they often require the derivatives of objective functions in their optimization

problems. Thus, they are applicable to solve some typical constrained optimiza-

tion problems with specific mathematical characteristics [299]. In addition, their
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optimization steps are complicated and their obtained solutions to often intractable

problems are usually of poor-quality. To avoid such drawbacks of traditional

algorithms, several nature-inspired metaheuristic-based optimization algorithms, e.g.,

tabu search, genetic algorithm and particle swarm optimization, have been used to

find near optimal solutions to large-scale constrained optimization problems. Each

metaheuristic algorithm aims to find an improving solution iteration by iteration.

Among many, an emerging nature inspired metaheuristic algorithm named

Migrating Birds Optimization (MBO) is proposed in [300]. It differs from other

metaheuristic algorithms because it has a benefit mechanism among solutions. It is

inspired and derived from an effective V flight formation of migrating birds (solutions),

which brings benefits in energy saving because birds in other positions get benefit from

the birds in front. In MBO, there is a leader bird in the flock (population) and two

lines of other birds follow it. It is typically assumed that if the leader bird becomes

tired after flying for a certain time, it flies to the end of a line and one of other

following birds becomes a new leader.

Each solution compares itself with a number of its own neighbors, and several

best neighbors of the front solution. It is replaced by the best of them if it becomes

worse. It means that if one solution is not improved by its own neighbors, it may

be replaced by one of neighbors of its front solution. This operation is repeated for

several times. Then, the leader solution goes to the last position, and one of the

second solutions goes to the first position. The algorithm is terminated after a given

number of iterations.

MBO explores more areas within neighbor spaces of feasible solutions by first

initializing a number of parallel solutions for birds in a V formation. The leader

bird in the V-formation spends the most energy. In MBO, the neighborhood within

more promising solutions is explored in more details. After several iterations,

these solutions might move to different directions if they are improved along their
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ways. Nevertheless, finally most solutions of MBO may converge to one or several

local optima, and therefore, their quality is usually unsatisfying in many cases.

Consequently, the search accuracy of MBO needs to be improved.

Simulated annealing (SA) can conditionally jump from local optima by accept-

ing some worse moves with the Metropolis acceptance rule [301]. It is pointed that

SA can obtain global optima with large probability in theory, and SA is widely used

to find high-quality solutions to different optimization problems. However, its main

drawback is its very slow convergence speed. In this chapter, a hybrid algorithm

called SA-based Migrating Birds Optimization (SMBO) is proposed by combing SA’s

Metropolis acceptance rule and MBO. Specifically, this chapter adopts the SA-based

update mechanism to change a solution. Its novelty includes the integration of an

SA-based update mechanism into MBO, and the disruptive selection of solutions to

improve its solution diversity.

11.2.1 Solution (Bird) Encoding

Let |X| denote the number of solutions (birds) in the population. Each solution

i (1≤i≤|X|) includes decision variables including ys,qτ , N †τ and µτ . xi denotes the

position of each solution i.

xi=
[
y1,1
τ , · · · and yN

†
τ ,N

0

τ , N †τ , µτ

]
(11.29)

11.2.2 SA-based Update Mechanism

This chapter adopts an SA-based update mechanism to change a solution i. Let xgi

and xg+1
i denote positions of each solution i in iterations g and g+1. θg2 denotes

current temperature in iteration g and w3 denotes a random number in (0,1). If

widetildeF1(xgi )≥F̃1(xg+1
i ), xg+1

i is selected to update solution i; otherwise, it is

accepted only if

e

(
F̃1(xgi )−F̃1(xg+1

i )
)

θg2
>w3 (11.30)
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11.2.3 Disruptive Selection

Disruptive selection chooses higher and lower-quality solutions. First, F̃i is defined

as the absolute difference between fitness value (Fi) of solution i, and the average

value (F̄) for all solutions in the flock. Second, the new fitness function (F́i) for

solution i is obtained as F̃i/
∑|X|

i=1 F̃i. According to (11.31), decentralized solutions

that are farther from the average value for all birds have a larger chance to be selected.

Therefore, the disruptive selection can improve the diversity of birds in the flock by

selecting diverse ones. F́i is given as:

F́i=
F̃i∑|X|
i=1 F̃i

(11.31)

F̃i=|Fi−F̄|

Let M̃ denote the number of neighbor solutions for each solution. LetM0 denote

the number of unused neighbor solutions of the current solution, which are shared

with the next solution in the V formation. Let N ∗ denote the number of time slots.

Let ĝ denote the number of total iterations. Algorithm 9 shows details of SMBO.

Line 1 initializes parameters including |X|, M̃ , M0, N ∗ and ĝ. Line 2 initializes a

population of |X| initial solutions randomly. Line 3 sorts the initial flock according

to the ascending order of their fitness values obtained with (11.28). In addition, at

each iteration, solutions in the current flock are similarly sorted. Line 4 organizes

them in a V formation according to Figure 11.2. Figure 11.2 shows an exemplar

flock including 7 solutions, and their V formation. Here, solution 1 is the best while

solution 7 is the worst. Thus, solution 1 is corresponding to the leader bird, and its

successor solutions are 2 and 3, respectively. It is worth noting that solution 3 is

worse than solution 2, and both of them are worse than solution 1 and better than

solutions 4-7.

Line 6 initializes θ1
2 with the starting temperature θ0

2. Lines 9–30 perform N ∗

times to update all solutions in the flock. Line 10 creates M̃ neighbors for the leader
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Figure 11.2 7-solution V formation.

solution and sorts them. Line 11 increases g by M̃ . Lines 12–15 create M̃−M0

neighbors for each solution i (2≤i≤|X|) and sort them. g is increased by M̃−M0

for each solution. Line 16 moves the best neighbor of the leader solution to
∗
X(1),

and puts the second and third-best neighbors of the leader solution into the neighbor

sets of two successors of the leader solution. Lines 17–19 move the best neighbor of

solution i (2≤i≤|X|−2) to
∗
X(i), and put M0 unused best neighbors of solution i into

the neighbor set of solution i+2. Line 20 moves the best neighbor of solution |X|−1

to
∗
X(|X|−1), and puts M0 unused best neighbors of solution |X|−1 into the neighbor

set of solution |X|−1. Line 21 moves the best neighbor of solution |X| to
∗
X(|X|), and

puts M0 unused best neighbors of solution |X| into the neighbor set of solution |X|.

Lines 22–28 adopt the SA-based update mechanism to change solution i (1≤i≤|X|)

via (11.30). Specifically, if
∗
X(i) is better than solution i, solution i is updated with

∗
X(i); otherwise, the SA’s metropolis rule is performed to update solution i via (11.30).

Line 31 moves the leader solution to the end and forwards its left or right successor

to the leader position. Line 32 sorts all solutions except the leader in the flock.

Let
∗
X denote the set of best solutions in the flock. Line 31 moves the leader

solution to the end and forwards its left or right successor to the leader position.

Specifically, the leader solution is alternately moved to the left or right end. For

example, if the leader solution in the current iteration is moved to the left end, the

left successor is forwarded to the leader position. Then, the leader solution in the next
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Figure 11.3 Task arriving rate.

iteration is moved to the right end, and the right successor is forwarded to the leader

position. Line 32 sorts all solutions except the leader in the flock. Line 34 reduces

temperature θg2 by θ3, which denotes the temperature cooling rate. The while loop

stops if g=ĝ. Line 36 returns the best solution (leader bird) in the flock, which is

converted into decision variables including [y1,1
τ , · · ·, and yN

†
τ ,N

0

τ , N †τ , µτ ].

11.3 Performance Evaluation

This chapter evaluates the proposed SMBO with real-life data. SMBO is coded and

implemented with MATLAB 2017 in a computer with an Intel Xeon CPU with 2.4

GHz and a 32-GB memory.

11.3.1 Parameter Setting

This chapter uses realistic tasks collected from Google cluster trace1 to evaluate the

proposed method. Figure 11.3 illustrates the task arriving rate in one day. In addition,

this chapter uses realistic price of power grid collected from the New York Independent

System Operator2. Figure 11.4 illustrates the price of power grid in one day. Besides,

the length of one time slot is 300 seconds, i.e., L=300 seconds.

In addition, the following parameters are set as follows. ε̂=0.01, N †τ=30,

}̂3=3000 MB/s, }̂2=1024 MB, and }̂1=2048 MIPS. In addition, ςs3 , ςs2 and ςs1 are

1https://github.com/google/cluster-data
2https://www.nyiso.com/
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Algorithm 9 SMBO (SA-based Migrating Birds Optimization)

1: Initialize parameters including |X|, M̃ , M0, N ∗ and ĝ
2: Initialize a population of |X| initial solutions randomly
3: Sort the initial flock according to their fitness values obtained with (11.28)
4: Organize them in a V formation according to Figure 11.2
5: g ← 1
6: θg2 ← θ0

2
7: while g≤ĝ do
8: i← 1
9: while i≤N ∗ do

10: Create M̃ neighbors for the leader solution and sort them
11: g=g+M̃
12: for i← 2 to |X| do
13: Create M̃−M0 neighbors for each solution i and sort them
14: g=g+M̃−M0

15: end for
16: Move the best neighbor of the leader solution to

∗
X(1), and put the second-best

and the third-best neighbors of the leader solution into the neighbor sets of
two successors of the leader solution

17: for i← 2 to |X|−2 do

18: Move the best neighbor of solution i to
∗
X(i), and put M0 unused best

neighbors of solution i into the neighbor set of solution i+2
19: end for
20: Move the best neighbor of solution |X|−1 to

∗
X(|X|−1), and put M0 unused

best neighbors of solution |X|−1 into the neighbor set of solution |X|−1

21: Move the best neighbor of solution |X| to
∗
X(|X|), and put M0 unused best

neighbors of solution |X| into the neighbor set of solution |X|
22: for i← 1 to |X| do
23: if

∗
X(i) is better than solution j then

24: Update solution i with
∗
X(i)

25: else
26: Use SA’s metropolis rule to update solution i with (11.30)
27: end if
28: end for
29: i← i+1
30: end while
31: Move the leader solution to the end and forward its left or right successor to

the leader position
32: Sort all solutions except the leader in the flock
33: g ← g+1
34: θg2 ← θg−1

2 ∗θ3

35: end while
36: Return the best solution (leader bird) in the flock

randomly produced in the range of (0,0.1), i.e., ςs3∈(0,0.1) MB/s, ςs2∈(0,0.1) MB and

ςs1∈(0,0.1) MIPS. In addition,
•
N=0.05 tasks, N̂=2×103, Ê=1×105 WH, Φ̂=600 W,
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Figure 11.4 Price of power grid in one day.
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Figure 11.5 Number of tasks scheduled to edge computing and CDC layers.

Φ̌=300 W, α=1.6 and ∂̂=$0.01. Besides, υτ is set to 1
5
∆18
τ /
(
µτ
(
1−∆17

τ

))
seconds.

In addition, ηi,jτ is randomly produced in the range of (0,0.01), i.e., f s,q23 ∈$(0,0.01).

T̂ ‡=0.1 seconds, T̂ †=0.1 seconds, L=300 seconds, N̂‡=30, N q
τ=1000, κ0

1=0.3333,

κ0
2=0.3333 and κ0

3=0.3333.

Besides, Ns is randomly produced in the range of (1×106, 8×106) processing

operations, i.e., Ns∈(1×106, 8×106). ~q is randomly produced in the range of

(1×1011, 2×1011) processing operations per second, i.e., Ns∈(1×1011, 2×1011). The

parameters of SMBO are set as follows. |X|=51, M̃=3, M0=1, m=10, G=513,

T†τ=5×106 and θ3=0.985. In addition,
∞
N=1010.

11.3.2 Experimental Results

Figure 11.5 shows the number of tasks scheduled to edge computing, i.e., local

computing and CDC layers. It is shown that the number of tasks scheduled to the
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Figure 11.6 Number of switched-on servers in the CDC layer.
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Figure 11.7 Amount of energy consumed in the CDC layer.

CDC layer is much lower than that scheduled to the edge layer in each time slot.

The reason is that nodes in the edge layer are much closer to users and can avoid

the transmission delay of input/output data to/from the CDC layer through MBS.

Since CPU, memory, bandwidth, and storage resources, available energy, and the load

balance of all heterogeneous nodes in the edge computing layer are all limited.

Therefore, a few tasks also need to be offloaded to execute in servers in the

CDC layer but the number of offloaded tasks is much lower than that executed in

nodes in the edge layer. Figure 11.6 shows the number of switched-on servers in the

CDC layer. The maximum number of servers in the CDC layer is 2000, i.e., N̂=2000.

It is shown that the number of switched-on servers in the CDC layer is less than its

corresponding upper limit in each time slot.

Figure 11.7 shows the amount of energy consumed in CDC in each time slot.

The maximum amount of the total available energy in the CDC layer is 1×105 WH,
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Figure 11.8 Total response time of each task in CDC and edge computing layers.

i.e., ∆=1×105 WH. It is shown that the amount of energy consumed in the CDC

layer is less than its limit in each time slot. It demonstrates that the proposed SMBO

dynamically consumes the energy in CDC and edge computing layers.

Figure 11.8 shows the total response time of each task executed in CDC and

edge computing layers. The users’ response time limits for each task scheduled to

execute in the edge computing and CDC layers are both set to 0.1 seconds, i.e.,

T̂ †=T̂ ‡=0.1 seconds. Therefore, it is shown that the total response time of each task

executed in CDC and edge computing layers is less than its limit in each time slot,

i.e., (11.6) and (11.9) are both met in each time slot. The results demonstrate that

the execution results based on the obtained schedule can strictly meet response time

limits of tasks.
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Figure 11.9 Load balance level of all nodes in edge computing layer.

Figure 11.9 shows the load balance level of all nodes in the edge computing

layer in each time slot. The specified maximum load balance level in the edge
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computing layer is 0.01, i.e., ε̂=0.01. It is shown that the load balance level of

all nodes in the edge computing layer is less than its limit in each time slot. This

result demonstrates that SMBO provides the load balance among nodes in the edge

computing layer. The reason is that SMBO jointly considers CPU, memory, and

bandwidth resource limits, the load balance needs of all nodes, and different processing

capacities of heterogeneous nodes in the edge computing layer. The result in Figure

11.9 demonstrates that the proposed SMBO realizes the collaborative computation

offloading and resource allocation for all tasks by jointly optimizing the computation

offloading between CDC and edge computing layers, and specifying resource allocation

in CDC layer.

11.3.3 Comparison Results

To validate SMBO, this chapter compares it with two typical meta-heuristic

optimization algorithms including firefly algorithm (FA) [302] and Genetic Learning

Particle Swarm Optimization (GL-PSO) [289], and two baseline algorithms including

local computing and entire offloading. Here SMBO, FA and GL-PSO are repeated

independently for 30 times to produce their respective results. The reasons for

choosing them as benchmark algorithms are given as follows.

1) FA [302]: As an emerging meta-heuristic algorithm, FA can efficiently find
high-quality optima of multimode functions. Each of its fireflies is independent
of each other, and it is easy to be implemented in parallel. Its convergence speed
is fast, but it suffers from a premature convergence problem. The oscillation in
its search process happens repeatedly, and its accuracy is often unsatisfying for
high-dimension optimization problems.

2) GL-PSO [289]: GL-PSO applies a genetic learning mechanism of a genetic
algorithm (GA) to construct exemplars that are hybridized with particle swarm
optimization (PSO) in a cascade manner. Then, particles in PSO are guided by
the exemplars produced by GA. Thus, GA and PSO are integrated cohesively to
diversify the search of particles thus guiding the population to find high-quality
solutions. The search history of particles in PSO provides promising genetic
information to GA and helps it reproduce high-quality exemplars.
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3) Local computing. All arriving tasks of users are executed by nodes in the edge
computing layer.

4) Entire offloading. All arriving tasks of users are offloaded and executed in
servers in the CDC layer.

The comparison between SMBO and FA can demonstrate the former’s conver-

gence speed. The comparison between it and GL-PSO can demonstrate its solution

accuracy. Besides, SMBO, FA and GL-PSO are all sensitive to the setting of their

parameters. Therefore, similar to SMBO, several trials are conducted to determine

the parameter setting for both FA and GL-PSO with the grid search method [303].

Besides, SMBO, FA and GL-PSO stop their search processes if their solutions are not

improved in 10 consecutive iterations.
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Figure 11.10 Profit of each iteration of SMBO, FA and GL-PSO in time slot 1.
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Figure 11.11 Convergence time of SMBO, FA and GL-PSO in each time slot.

Figure 11.10 shows the profit computed at each iteration of SMBO, FA and

GL-PSO in time slot 1. Each iteration of SMBO refers to Lines 8–34 in Algorithm
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9. The iterations of FA and GL-PSO are similar to those of SMBO. FA and GL-PSO

require 148 and 195 iterations to stop their searches, and their final profits are $365.72

and $694.76, respectively. On the other hand, SMBO only requires 126 iterations to

stop its search, and its final profit is $734.35. It is observed that compared to FA and

GL-PSO, SMBO’s average profit of all time slots is increased by 50.20% and 5.39% on

average, respectively. Figure 11.11 shows the convergence time comparison of SMBO,

FA and GL-PSO in each time slot. It is shown that compared to FA and GL-PSO,

SMBO’s average convergence time of all time slots is reduced by 49.26% and 72.21%

on average, respectively. Therefore, SMBO increases the profit in less time and fewer

iterations than FA and GL-PSO. Figures 11.10 and 11.11 prove that the adoption

of SA’s Metropolis acceptance rule in the proposed method increases the diversity of

population and search performance.
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Figure 11.12 Profit of SMBO, FA, GL-PSO, local computing and entire offloading.

Figure 11.12 illustrates the profit comparison of SMBO, FA, GL-PSO, local

computing and entire offloading. It is shown that compared with FA, GL-PSO, local

computing and entire offloading, the profit of SMBO is increased by 66.83%, 21.32%,

34.81% and 30.22% on average, respectively. The reasons are given as follows. As is

shown in Figure 11.10, the solution accuracy of SMBO is higher than those of FA,

GL-PSO, and therefore, the profit of SMBO is larger than those of FA and GL-PSO.

Local computing schedules all tasks of users to execute in nodes of the edge computing

layer. It is worth noting that battery energy, CPU, memory and bandwidth resources
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are all limited in nodes in the edge computing layer. Similarly, entire offloading

schedules all tasks of users to execute in servers of the CDC layer. On the other

hand, the maximum amount of energy, the maximum number of servers, etc. in

the CDC layer are also limited. Thus, tasks scheduled with local computing and

entire offloading need to wait for execution and suffer from higher latency, resulting

in bad user experience and low profit. The experimental results validate that the

proposed offloading method in SMBO outperforms these four benchmark methods on

profit. This is because the proposed method jointly considers computation offloading

between CDC and the edge, and CPU, memory and bandwidth allocation to nodes

in the edge computing layer.

11.4 Summary

In recent years, edge computing has been gaining enormous attention, and is growingly

adopted due to its fast response and close proximity to users when computing tasks

are not intensive. However, its computing resources and energy capacity are limited.

Cloud data centers (CDCs) have rich computation resources but are usually located

in remote sites, and need both energy and time to transmit programs or data to CDCs

and retrieve results from CDCs. Consequently, offloading tasks in the edge to CDCs is

becoming a promising alternative to maximize the profit while enforcing user-specific

response time limits of tasks. Based on an architecture including terminal, edge

computing and CDC layers. This chapter proposes a profit-maximized collaborative

computation offloading and resource allocation algorithm. It jointly optimizes the

computation offloading between CDC and edge computing layers, and specifies

resource allocation in CDC layer. In each time slot, a single-objective constrained op-

timization problem is formulated and solved by a proposed Simulated-annealing-based

Migrating Birds Optimization (SMBO) algorithm. Realistic data-driven experimental

results demonstrate that SMBO obtains larger profit than its several existing methods.
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CHAPTER 12

CONCLUSIONS AND FUTURE WORK

12.1 Summary of Contributions

An increasing number of companies deploy their delay-constrained applications, e.g.,

big data processing, deep learning, and high-performance computing, in various

cloud data centers (CDCs). These applications share infrastructure resources in

CDCs and provide services to users in a high-performance and cost-effective way.

This inevitably increases the amount of energy consumed by these large-scale

data centers. As an emerging architecture, edge computing provides real-time

and scalable data processing capacities in the network edge, but it suffers from

some challenging problems of limited battery and processing capacities. Therefore,

intelligent task scheduling and resource allocation in CDCs and nodes in the edge

are critically important in running them energy-efficiently and profit-sensitively.

However, it is highly challenging to jointly achieve greenness, cost-effectiveness,

energy efficiency and delay bound assurance due to dramatic growth, aperiodic arrival

and heterogeneity of tasks. Consequently, this dissertation work proposes a series

of intelligent task scheduling and resource allocation algorithms to address these

challenges arising from distributed cloud and edge computing systems.

1) Contributions of the background work of this dissertation.

The background work has presented four intelligent optimization algorithms

to solve above problems. First, Chapter 3 in the background work investigates

the spatial diversity of bandwidth prices of Internet service providers (ISPs), power

grid prices and the availability of renewable green energy to minimize the total cost

of a CDC provider. Specifically, Chapter 3 formulates a nonlinear optimization

problem and solves it by a proposed simulated-annealing-based bat algorithm. In

this way, Chapter 3 proposes a Spatial Task Scheduling and Resource Optimization
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(STSRO) method to minimize the total cost of a CDC provider by exploiting such

spatial diversity in CDCs. STSRO cost-effectively schedules all arriving tasks of

heterogeneous applications while strictly meeting their delay bound constraints.

Real-life data-driven experimental results demonstrate that STSRO drastically

increases the throughput and reduces the total cost of the CDC provider in comparison

with cheap-electricity-first and renewable energy-first scheduling methods provided

that delay bound constraints of all tasks are strictly satisfied.

Second, Chapter 4 in the background work proposes a Geography-Aware Task

Scheduling (GATS) approach to maximize total profit of the CDC provider by jointly

and optimally determining the allocation of tasks of all applications among multiple

ISPs and task service rates of servers in CDCs. GATS considers spatial variations

of ISP bandwidth prices, availability of green energy, prices of power grid, and

revenue brought by the execution of tasks. Specifically, Chapter 4 formulates a

profit maximization problem as a convex optimization one solved by an interior point

method. GATS intelligently schedules tasks of all applications in comparison with

two typical task scheduling methods. Simulation results show that GATS increases

the total profit and throughput of the CDC provider compared to two typical task

scheduling approaches.

Third, Chapter 5 in the background work proposes a novel Spatio-Temporal

Task Scheduling (STTS) method that exploits the spatial and temporal variations

in prices of power grid and availability of green energy in CDCs. STTS jointly

investigates the spatial and temporal variations in prices of power grid and availability

of renewable energy in CDCs within all tasks’ delay bound constraints, and aims to

minimize energy cost of CDC providers by cost-effectively scheduling all arriving

tasks of heterogeneous applications among multiple CDCs. In each iteration of

STTS, the energy cost for the CDC provider is formulated and solved with a hybrid

meta-heuristic algorithm named Genetic Simulated-annealing-based Particle Swarm
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Optimization (GSPSO). Extensive trace-driven experimental results demonstrate that

it achieves higher throughput and lower energy cost for the CDC provider than

simulated annealing, particle swarm optimization, bat algorithm and Spatio-Temporal

Load Balancing (STLB) methods, respectively while strictly meeting delay bound

constraints of all arriving tasks of heterogeneous applications.

Fourth, Chapter 6 in the background work considers the temporal variations in

prices of power grid, revenue, solar irradiance, wind speed and prices of public clouds.

Chapter 6 presents a Temporal Task Scheduling (TTS) algorithm that investigates

such temporal variations, and cost-effectively schedules all tasks to the CDC and

public clouds within delay bound constraints. Specifically, Chapter 6 formulates a

profit maximization problem for a green hybrid CDC provider, and solves it with

the proposed GSPSO algorithm. Extensive simulation experiments are conducted to

demonstrate that the proposed TTS outperforms cheap-electricity-first, immediate

and renewable energy-first scheduling methods, respectively in terms of profit.

2) Contributions of this dissertation.

First, Chapter 7 in this dissertation work proposes a Profit and Quality of

service (QoS)-optimized Task Scheduling (PQTS) method to achieve a beneficial

tradeoff between these two objectives including the profit maximization for CDC

providers, and the average task loss possibility minimization for users’ applications.

Specifically, this dissertation work formulates a bi-objective optimization problem

and solves it with a Simulated-annealing-based Bi-objective Differential Evolution

(SBDE) algorithm. The minimum Manhattan distance is used to specify a knee

solution that determines proper task split among ISPs and task service rates at

CDCs in each time slot. Real-life data-based simulations are conducted to reveal that

the proposed method achieves significantly higher profit and lower average task loss

possibility of all applications than three existing task scheduling algorithms including
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electricity-cost-aware distributed task scheduling, profit maximization approach and

green task balancing, respectively.

Second, Chapter 8 in this dissertation work formulates the joint optimization of

energy cost and QoS as a bi-objective constrained optimization problem. It is solved

by a Simulated-annealing-based Adaptive Differential Evolution (SADE) algorithm

to obtain a close-to-Pareto-optimal set. In this way, it properly allocates arriving

tasks among CDCs, and changes task service rates of each CDC in each time slot.

Real-life data-based results demonstrate that SADE reduces energy cost and response

time of tasks compared with Non-dominated Sorting Genetic Algorithm 2 (NSGA2)

and multi-objective evolutionary algorithm based on decomposition.

Third, Chapter 9 in this dissertation work formulates a constrained bi-objective

optimization problem, which is solved with an Improved Multiobjective Evolutionary

Algorithm based on Decomposition (IMEAD). The obtained result determines a

high-quality balance between maximizing the revenue of green CDC providers and

minimizing their energy cost of heterogeneous applications. It jointly determines

the optimal split of all arriving tasks of each application among multiple CDCs,

and specifies the optimal task service rate of each server in each CDC at each time

slot. Simulations prove that it increases the profit of CDC providers and reduces

the convergence time in comparison with NSGA2 and strength pareto evolutionary

algorithm 2.

Fourth, Chapter 10 in this dissertation work proposes a Fine-grained Spatial

Task Scheduling (FSTS) algorithm to achieve the energy cost minimization for

a provider of distributed CDCs by optimally allocating tasks of heterogeneous

applications among multiple CDCs, and specifying the running speed of each server

and the number of switched-on servers in each CDC. FSTS uses a G/G/1 queuing

model to analyze the performance of servers, and further formulates a constrained

optimization problem. It is solved by a newly proposed simulated-annealing-based

271



bees algorithm to find a close-to-optimal solution. Real-life data-driven experiments

demonstrate that FSTS can decrease energy cost and ensure the highest throughput

in comparison with bees algorithm, Genetic Learning Particle Swarm Optimization

(GL-PSO), STLB, and spatial task scheduling, respectively.

Fifth, Chapter 11 in this dissertation work proposes a profit-maximized

collaborative computation offloading and resource allocation algorithm. It jointly

optimizes the computation offloading between CDC and edge computing layers,

and specifies resource allocation in the CDC layer. It jointly considers CPU,

memory, and bandwidth resource limits, load balance requirements of all nodes,

and different processing capacities of heterogeneous nodes in the edge computing

layer. In addition, it jointly considers the maximum amount of energy, maximum

number of available servers and task queue stability of servers in the CDC layer.

In each time slot, a single-objective constrained optimization problem is formulated

and solved by a proposed Simulated-annealing-based Migrating Birds Optimization

(SMBO) algorithm. Realistic data-driven experimental results demonstrate that

SMBO obtains larger profit than its firefly algorithm, GL-PSO, local computing and

entire offloading, respectively while meeting response time limits of tasks. It can be

readily implemented and incorporated into large-scale industrial computing systems.

12.2 Limitations

The limitations of the proposed algorithms are discussed here. First, this dissertation

work assumes that the future information, e.g., arriving rates of tasks, solar irradiance,

wind speed, prices of power grid and unit bandwidth prices, are already known at the

start of each time slot. However, in real CDCs, the information prediction typically

requires time to determine the prediction models based on historical data. This

dissertation ignores the information prediction time. Thus, some future information

may be unavailable when the proposed algorithms start to run. This may cause

the unexpected results that delay bounds of some tasks cannot be guaranteed. The
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recently emerging big data technologies, e.g., deep learning-based and other prediction

algorithms [304]–[311], and the wide deployment of high-performance clusters in

CDCs make it possible that the prediction of above information can be performed in

a real-time manner, and negligible. But their actual prediction performance needs to

be further evaluated.

Second, this dissertation adopts the Google cluster trace to evaluate the

proposed algorithms. Similar to the work in [110], it is assumed that the task service

time conforms to the exponential distribution. Many existing studies [312]–[314]

adopt the M/M/1 queueing model to evaluate the performance of their proposed

methods with simulators or a realistic cluster of servers in data centers. Their results

demonstrate that the Google trace data can effectively and well approximate the

behaviors of real data centers. Nevertheless, the M/M/1 queueing system has strong

assumption of the exponential task service time. Actually, several more accurate and

advanced queueing models, e.g., G/D/1, G/G/c,M /G/1, G/M /1 and Pareto queues

with the tailed distribution assumption [306], could be adopted for the performance

analysis of CDCs and edge computing systems. In addition, some hybrid queueing

models combine many different queueing ones together to improve the accuracy of

performance modeling for cloud and edge computing systems [114, 307, 308, 309].

They should be adopted to evaluate some of our proposed methods.

Third, similar to the work in [24], this dissertation determines the setting

of parameters of each meta-heuristic optimization algorithm with multiple trials

based on the parameter setting in previous studies. Nevertheless, all meta-heuristic

optimization algorithms are sensitive to the setting of their parameters [23]. It

currently lacks the comprehensive parameter sensitivity analysis, and the optimal

setting of parameters might not be obtained. Therefore, a thorough sensitivity

analysis of parameters of all algorithms would further improve the current scheduling

precision and cost-effectiveness of tasks for distributed cloud and edge computing
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systems [315, 316, 317]. In this way, the energy cost of CDC and edge providers, and

performance of tasks of delay-constrained applications could be further optimized.

12.3 Future Research

The future work should add some extensions to this dissertation work from the

following two aspects. First, this dissertation work considers simple applications

whose tasks are executed independently and does not rely on the execution of other

applications. On the contrary, there are many workflow applications in CDCs and

edge computing, such as scientific workflows [267, 306, 318, 319, 320] and complex

engineering analysis. Each workflow application consists of multiple application

subsystems, and its execution often involves the execution of multiple tasks. In

addition, the interactions among tasks are complex, and the execution of each task

often depends on the execution results of other tasks with which it interacts. Besides,

to ensure the quality of service specified by users, the CDC provider and the users

often sign service level agreements (SLAs). If the actual execution time of users’

tasks of workflow applications exceeds its corresponding threshold specified in SLAs,

a CDC provider needs to pay users a high penalty fee. On the other hand, in

an actual CDC, each task contains complex conditions, loops and other program

structures. In addition, resources, e.g., CPU, memory and I/O, of each server in

CDCs are often shared by multiple virtual machines (VMs). This resource sharing

mode makes the performance of each VM change with time. Therefore, it is often

difficult to effectively predict the execution time of each task in a particular VM for

a workflow application. In addition, the size of execution data of tasks in typical

CDCs is huge. For example, the data currently processed in an industrial Internet

platform, INDICS [321], is nearly 6000TB. Therefore, in the big data environment,

to improve the responsiveness of CDCs to users, it is urgent to design an effective

big data-driven task execution time prediction method. Specifically, the future work

should investigate how to utilize the time autocorrelation in task execution time data
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of VMs, and the local spatial dependence between each VM and its nearby VMs with

deep learning methods, e.g., rough stacked denoising autoencoder [322, 323] and long

short-term memory [324, 325]. According to the information, the valuable temporal

and spatial features could be automatically extracted from the task execution time

data, and the execution time of tasks in VMs would be effectively predicted.

Second, there are many types of complex workflow applications in CDCs

[326], e.g., complex cloud simulation workflows and cloud manufacturing workflows

[318, 319], [327]–[329]. These workflows require various resources, e.g., software, data,

information, models, knowledge and VMs in CDCs. Each workflow application often

requires collaborative interaction among multiple tasks to achieve users’ objectives.

CDCs adopt a pay-as-you-go method to dynamically provide various types of resources

for users around the world through networks. The economies of scale of cloud

computing have attracted more and more users to deploy their different types

of complex workflow applications in CDCs, e.g., Google, Amazon and Microsoft.

Therefore, for each CDC provider, as types and number of workflow applications in

CDCs grow rapidly, it becomes a very important and challenging problem of how to

maximize the profit of a CDC provider while ensuring the latency requirements of

users’ tasks of workflow applications. The future work will should investigate how

to utilize execution patterns of tasks of workflow applications in VMs, dependency

among tasks, and the profit relation between workflow applications and CDC

providers. Then, the profit of CDC providers would be maximized by intelligently

scheduling and dispatching users’ tasks to VMs. Its applications to other optimization

problems [322, 323], [330]–[341] should also be pursued.

Third, all the proposed solution algorithms are based on the novel combinations

of mature intelligent optimization methods, i.e., bat algorithm, bees algorithm,

simulated annealing, differential evolution, genetic algorithm, particle swarm opti-

mization, multi-objective evolutionary algorithm and migrating birds optimization.
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A common issue for them is that their performance tends to be sensitive to many

user-defined parameters and the optimal parameter settings are problem-dependent.

Hence, their further analysis and investigation are required. Some newly developed

meta-heuristics, e.g., [342]–[350] should be tried. It is critically important to

determine the best parameter setting for each meta-heuristic optimization algorithm.

There are many classic, proven, and highly useful methods, e.g., the Taguchi’s

experimental design method [195], which could be tried to find an optimal reasonable

combination of the user-defined parameters. In addition, there are some grid-based

parameter adaptation methods, e.g., a systematic parameter-search method called

support vector machine-Grid [287] and a grid-based approach [351]. The grid-based

methods can investigate the parameter selection toward the optimal direction while

keeping an extensive distribution of different parameters in the evolutionary process.

In addition, learning-based methods, e.g., stacked autoencoder deep neural network

[352] should be also adopted to search better parameter setting. Stacked autoencoder

is efficient to reduce the dimension of parameter values especially for large-scale

optimization problems, and keep their important features. In this way, it can specify

the optimal parameter setting and speed up the search process of each meta-heuristic

optimization algorithm.
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