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SUMMARY 

Experimental work was undertaken to determine the mechanism con-

trolling the co-deposition of aluminas with copper during electrode-

position of copper. The aluminas were present in the copper plating

electrolytes as an insoluble disperse phase.

Three possible mechanisms for co-deposition of aluminas were

studied. They were mechanical inclusion, electrophoretic deposition,

and adsorption.

The results of experimental studies established that mechanical

inclusion was not a significant factor in the mechanism controlling

co-deposition of aluminas with copper.

Theoretical considerations of the compositions of the copper

plating electrolytes indicated that co-deposition of aluminas by an

electrophoretic mechanism was highly unlikely. The conclusions ar-

rived at by theoretical considerations were substantiated by experi-

mental measurements of the zeta potential of the aluminas.

The alumina content of the copper electro deposits was also

studied as a function of the pH of the plating bath. The results of

these tests in conjunction with sedimentation studies demonstrated

the absence of an isoelectric point for the aluminas over the pH range

studied.

The presence of thiourea in the electrolytic plating baths (a sub-

stance known to be adsorbed on a copper cathode during electrodeposi-

tion), profoundly affected the amount of alumina in the electrodeposit,



however, no adsorption of thiourea on aluminas in aqueous dispersions

was detected.
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PREFACE

This attempt to elucidate the mechanism whereby various aluminas

co-deposit with copper during the electrodeposition of copper was

prompted by previous studies made to investigate the possibility of

producing dispersion hardened alloys by electrodeposition. 1

If it would be possible to produce a dispersion hardened alloy

of copper and alumina by electrodeposition, one might anticipate ob-

taining an alloy possessing both strength and high conductivity at

elevated temperatures. Investigation of the mechanism of co-deposi-

tion of aluminas with copper was undertaken with the hope that

knowledge of the mechanism would aid in the development of such an alloy.

It is to be understood throughout this paper that the word "co-

deposit" does not necessarily imply an electrical phenomenon, but

rather that the materials co-depositing, the various aluminas, are

transported to and embedded in, the electrodeposited copper by some

means.

I wish to gratefully acknowledge the guidance of Dr. C. L.

Mantell throughout this investigation, and that of Runyon G. Ernst

for his advice and assistance in analytical problems.

I am indebted to U. S. H. R. Co. Research Division for the use

of research facilities without which this investigation would have

been impossible.

1 Final Report to International Copper Research Association
Electrodeposition of Dispersion Hardened Alloys, Opie, W. R.
Ernst, R. Cr., Hoffmann, J. E. 'Jay 1, 1964
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CHAPTER  I

CONSIDERATION OF MECHANICAL INCLUSION AS THE CONTROLLING

MECHANISM IN THE CO-DEPOSITION OF ALUHINAS DURING ELECTRO-

DEPOSITION OF COPPER

Introduction:

The term mechanical inclusion when used in reference to electro-

deposition implies a mechanism of co-deposition which is wholly me-

chanical in nature; furthermore, the only forces acting on a particle

are gravity and contact forces.

Such a particle is presumed to be electrically inert and incap-

able of any electrical interaction with electrodes in an electrolytic

plating bath.

Commercial processes for electrolytic production of a metallic

matrix containing a co-deposited phase by electrodeposition from a

bath containing a disperse insoluble phase frequently state that co-

deposition is caused by mechanical inclusion. 2,3, A. E. Grazen4 makes

the following statement:

°In essence, the process of the present invention involves simul-
taneous electrodeposition of a metal, and settling of electrical-
ly inert additive particles, under controlled conditions, to pro-

2 U. S. Patent 2,873,171 Method of Manufacturing Abrasive surfaces
by electro formation and the products obtained thereby. H, Ferrand
3/17/1959

3 U. S. Patent 1,702,927 Bearing Material and Method of Making Same
Fred K. Bezzenberger 2/19/29

4 U. S. Patent 3,061,525 Method for Electroforming and Coating
Alfred E. Grazen 10/30/67

1
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duce a composit structure in which the additive particles re-
tain their discrete identity and are more or less homogene-
ously dispersed within the electroplated metal deposit. In
describing particles as 'electrically inert® I mean that they
do not become electrically charged during the plating opera-
tion."

Theory

If settling, i.e. gravity, is the controlling mechanism for

co-deposition of aluminas (specific reference is made to alumina

in the Grazen Patent) then the following assumptions may be made:

1) The content of alumina in the electrodeposit should

be enhanced by increasing the particle size.

2) The geometry of the system, that is the disposition

of the cathode surfaces relative to the direction

of the falling particles, should effect the alumina

content of the electrodeposit.

3) In geometrically identical systems the chemical com-

position of the electrolyte employed should exercise

no effect on the alumina content of the deposit; that

is the alumina content should be the same in all

cathode deposits irrespective of bath composition.
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Experimental Procedure

In order to investigate the theory of mechanical inclusion as

the controlling mechanism in co-deposition of aluminas during de-

position of copper a modified bent cathode test was employed.

Fig. (1)

Bent Cathode Test Cell

The original bent cathode tests was used to evaluate the clar-

ity of filter effluent in electroplating baths, by comparing the

roughness of the deposit on the vertical surface with that on the

horizontal surface.

5 Sizelove, O. J. Monthly Rev. Am. Electroplaters Soc.,
Vol-16 p 15, 1929



it is apparent from figure (1) that two difficulties are inherent

in this technique; 1, the current density on the horizontal portion

of the cathode would be substantially greater than that on the vertical

surface; 2, should the deposit obtained be rough, projections on the

vertical face could act as horizontal planes and vitiate the relation-

ship between the vertical and horizontal surfaces.

To obviate the problems inherent in the use of the bent cathode

test, all vertical surfaces on the cathode were masked with electro-

platers tape and deposition occurred only on the upper and lower hori-

zontal faces of the cathode.

In order to test the validity of the third assumption made, namely

that bath composition should have no substantial effect on the alumina

content of the deposit, two different electrolytic baths were employed.

The baths chosen possessed widely variant specific conductances, and

substantially different pH operating ranges.

Description of Equipment and Apparatus. The tanks employed for

the electroplating studies were rectangular pyrex battery jars 6.0"

wide by 3-1/4" deep X 9-3/4" high.

The cathodes were fabricated from stainless steel 316 sheet of

0.030 inches thickness. The sheet was cut to dimensions of 7.5"  1.75"

and bent at right angles to form an L shaped cathode whose horizontal

surfaces measured 1.75" X 3.0".

All edges and vertical surfaces were masked with Scotch Electro-

platers Tape No. - 470.



The anodes were slices of electrolytic cathode copper 9" high by

2.25" wide by 0.5" thick.

In order to eliminate inordinately high current densities on the

projecting edge of the cathode the anode was masked one inch above and

below the projected line of intersection of the cathode with the anode.

The exposed area of the anode was equal to that of the cathode, pro-

viding both with equal average current densities.

The agitator employed in the cell6 was of pyrex glass and posi-

tioned so its center line was equi-distant from cathode and anode, and

a plane passed horizontally through the center of the blade would be

located equi-distant from the bottom of the cathode and the bottom of

the deposition tank.

The assembled apparatus is depicted in Figure (2).

Description of Materials Employed in Experiment. The chemicals

employed in preparation of the electrolytic baths are described below:

Copper Sulfate - Cu304 5H20 technical powder supplied by Fisher

Scientific Co. Spectrographic Analysis of the salts, shoved them to be

substantially free of Sb, As, and Fe. Traces of Ni were present.

Sulfuric Acid - H2304 reagent grade supplied by J. T. Baker Chemi.

cal Co., Specific Gravity - 1.84.

6 The word cell encompasses the complete electroplating system.



Fig. (2)

Deposition Cell for Studytng the Effect of Mechanical

Inclusion

Hatched areas on anode and cathode represent the area of the

electrodes wrapped with electroplaters tape.

6
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Ammonium Formate NH4OOCH reagent grade produced by reacting

stoichiometric quantities of Fisher Certified reagent grade Formic

Acid, Specific Gravity - 1.199 with 29% ammonium hydroxide, Dupont

A. C. S. reagent.

Potassium Sulfate - K2SO4 - Baker Analyzed Reagent, minimum

assay K2SO4 - 99.5%.

Water used in the preparation of plating baths was both double

distilled and demineralized.

Preparation of Electrolytic Baths - All glassware employed in

the preparation of baths and subsequent tests was cleaned with a

hot solution of calcium hypochlorite, sodium hydroxide then washed

with concentrated hydrochloric acid, tap water, then distilled water.

Copper Sulfate stock solutions of approximately 270 grams per

liter CuSO4 5H2O were prepared by dissolving the CuSO4 5H2O powder

in water and heating to 60° C. When a temperature of 60° C. was

attained 70 grams of Darcomax G-60 powdered activated charcoal was

added, and the solution was agitated for 1/2 hour at 60° C.

The solution was filtered by suction through Whatman 42 paper

and stored in clean glass bottles until needed.

Preparation of the Copper Sulfate Sulfuric acid bath was ac-

complished by addition of sulfuric acid to the copper sulfate stock

solution and dilution to the appropriate volume.

The preparation of the Copper Formate bath was accomplished by
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dissolving the required amount of potassium sulfate in water, adding

of the ammonium formate to the solution, then combining the above

solution with the copper sulfate stock solution and adjusting to the

appropriate volume.

The pH of the copper formate bath was adjusted to 4.0 by addi-

tion of ammonium hydroxide or formic acid; the quantity of either

used was so small as to have no significant effect on bath composi-

tion.

The composition of the plating baths is set forth below:

Copper Sulfate, Sulfuric Acid Bath

CuSO4 5H2O 	 188 grams per liter

H2SO4 	74 grams per liter

pH 	 0.5

Copper Formate Bath

CuSO4 5H20 	 200 grams per liter

K2SO4 	30 grams per liter

NH
4OOCH- 	 30 grams per liter

pH 	 4.0

Aluminas employed as the disperse insoluble suspended phase

in electrolytic studies were chosen so as to include materials of

different particle size, bulk density, and method of preparation.

A description of the various aluminas is given below:
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Properties of Aluminas Studied

Alon-C - almost chemically pure Alumina (Al 2O3) composed of extremely

fine well defined particles. (Cabot Corp.)

The crystalline modification is gamma, a cubic structure.

The material was produced by vapor phase combustion of Al2Cl6.

	

Alon-C 	 Product Data

Color - White

Al2O3 content - (moisture free) - 	 951, minimum

Particle size range 	 0.01 - 0.04 microns

Surface Area Braunaur Emmett, Teller - 50 - 100 square
meters per gram

Sp Gr 	 3.3 - 3.6

Total non - Al2O3 oxides 	 0.2% maximum

Free moisture 	 2% maximum

Ignition loss - 1000°C 	 3% maximum

pH (10% aqueous dispersion) 	 4 - 5

Bulk density 	 3-5 pounds per
cubic foot

Av particle diameter 	 0.03 microns
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Linde - A - 5175 - Manufactured by Linde Co.

Chemical Formula 	 Al2O3 (alpha modification)

Crystal System 	 Hexagonal

Hardness Mohs 	 9

Particle Size 	 0.3 microns

Surface Area (calculated) - 5.84 square meters per gram

The material was produced by calcination of high purity Al 2(SO4) 3

followed by comminution and classification.

The material is characterized by extremely uniform ultimate parti-

cle size.

Minimum Al2O3 content - 	 99.0

Maximum impurities
parts per million 	 Si - 60 	 Ga - 10

Mg - 10 	 Cu - 10

Pb - 70 	 Ag - 10

Fe - 5 	 Na - 10

Ca - 40 	 Ti - 10

Linde - B 5125 - Manufactured by Linde Co.

Chemical Formula 	 Al2O3

Crystalline modification - gamma (cubic)

Hardness Mohs 	 8

Particle size 	 0.05 microns

Surface Area (calculated) - 14.2 square meters per gram

The material was produced by calcination of high purity Al2(SO4) 3

followed by comminution and classification.



The material is characterized by extremely uniform ultimate

particle size.

Minimum Al2O3 content 	 - 99.9%

Maximum unpurities
parts per million 	 - Si - 60 	 Cu - 10

	

Mg - 10 	 Ag - 10

	

Pb - 70 	 Na 10

	

Fe- 5 	 Cr 10

	

Ca - 40 	 Ti - 10

Ga - 10

600 Grit Alundum - (Buehler, Ltd.)

The material was produced by fusing bauxite in an electric

furnace, crushing, comminuting and classifying.

Gray in color

Sp Gr 	 3.3 -3.6

Average particle size - 	 17 microns

Crystalline modification - 	 predominately
(alpha) cubic

11
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Tests Performed. Identical procedures were employed in tests

1 - 16. The alumina to be employed as the disperse phase was first

slurried in the electrolyte, then dispersed by mixing in a high speed

Waring Blender for ten minutes.

The electrolyte containing the disperse phase was transferred

to the electrolytic cell, the time noted and electrolysis begun.

A full wave, capacitive filtered, direct current power supply with

approximately 15% ripple was employed for all electrolytic experi-

ments. (Voltage and power range of rectifier, 22 V.D.C. 25 amperes)

The agitation employed was just sufficient to keep the disperse

in suspension.

Operating conditions for runs 1 - 4 are given below:

Run - 1

Electrolyte - Copper Formate

Disperse Phase - Alon-C 	 25 grams per liter

Current Density, Anode and Cathode - 30 amperes per
square foot

Cell voltage - 2.30 volts direct current

Temperature of bath 	 25°C

Deposit wt. 	 22.3 grams 7

Duration of Test 	 11.7 hours

Deposit Appearance 	 Smooth, with little
edge effect

7The top and bottom deposits were weighed separately on this test, to
ensure that anode and cathode arrangement were such that upper and
lower cathode surfaces had the same current density. Top deposit
weighed 11.1 grams bottom deposit weighed 11.7 grams. This was con-
sidered satisfactory and on subsequent tests only the total deposit
weight was measured.
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Run - 2

Electrolyte - Copper Formate

Disperse Phase - Linde B-5125 	 25 grams per liter

Current Density - Anode and Cathode - 30 amperes per
square foot

Cell voltage - 2.47 volts direct current

Temperature of bath 	 25°C

Deposit wt. 	 56.5 grams

Duration of Test 	 18.8 hours

Deposit Appearance 	 Smooth with little
edge effect

Run -3

Electrolyte - Copper Formate

Disperse Phase - Linde A-5175 	 25 grams per liter

Current Density - Anode and Cathode - 30 amperes per
square foot

Cell voltage - 2.53 volts direct current

Temperature of bath 	 250C

Deposit wt. 	 51.3 grams

Duration of Test 	 18.2 hours

Deposit Appearance 	 Smooth, slight edge
effect. Some treeing
at outer corners of
cathode

Run - 4

Electrolyte - Copper Formate

Disperse Phase - 600 grit Alundum 25 grams per liter

Current Density - Anode and Cathode - 30 amperes per
square foot

Cell voltage - 2.30 volts direct current
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Temperature of bath 	 250C

Deposit wt. 	 53.7 grams

Deposit Appearance 	 Smooth and possess-
ing a grayish cast

Attempts to produce satisfactory deposits in the Copper Sulfate

Sulfuric acid bath were unsuccessful because of the very rough and

heavily treed cathode deposits obtained.

Run - 7 produced a cathode so heavily treed that the deposit had

the appearance of sheep's wool. In Runs 8,9 and 10 various addition

agents were used in the bath to improve the cathode deposit. Addi-

tions of 50 milligrams/liter Armours bone glue, 1 gram per liter

molasses, and 2 grams per liter molasses, common addition agents in

copper plating electrolytes,were employed in Runs 8, 9 and 10 re-

spectively. Although cathode appearance improved in each successive

test, none of the deposits were satisfactory.

The difficulty was discovered in Run - 11 in which no disperse

phase was employed. The cause of the roughness was a heavy anode

sludge depositing on the cathode and acting as sites for nodulation.

Cathode appearance in Run - 12 was improved significantly by plac-

ing the anode in a nylon twill weave bag; however, the sludge was suf-

ficiently fine to ultimately pass through the anode bag and cause rough-

ness at the cathode.

Substitution of OFHC, (reg. trade) brand copper for the electro-

lytic cathode copper employed in previous tests in conjunction with



bagging the anode was found to be completely satisfactory for pro-

duction of smooth cathode deposits.

Run - 13

Electrolyte - Copper Sulfate, Sulfuric Acid

Disperse Phase - Alon-C 	 25 grams per liter

Current Density Anode and Cathode - 30 amperes per
square foot

Cell voltage - 0.92 volts direct current

Temperature of bath 	 25°C

Deposit wt. 	 83.0 grams

Duration of Test 	 29.7 hours

Deposit appearance 	 Good with slight
modulation

Run - 14

Electrolyte - Copper Sulfate, Sulfuric Acid

Disperse Phase - Linde B-5125 	 25 grams per liter

Current Density - Anode and Cathode - 30 amperes per
square foot

Cell voltage 0.97 volts direct current

Temperature of bath 	 25°C

Deposit wt. 	 34.0 grams

Duration of Test 	 12.6 hours

Deposit Appearance 	 Excellent, Cathode
surface extremely
smooth, completely
free of modulation

Run - 15

Electrolyte - Copper Sulfate, Sulfuric Acid

Disperse Phase - Linde A-5195 	 25 grams per liter

15



Current Density - Anode and Cathode - 30 amperes per
square foot

Cell voltage 0.95 volts direct current

Temperature of bath 	 25°C

Deposit wt. 	 52.0 grams

Duration of Test 	 20.1 hours

Deposit Appearance 	 Good, slight nodu-
lation

Run - 16

Electrolyte - Copper Sulfate, Sulfuric Acid

Disperse Phase - 600 grit Alundum 25 grams per liter

Current Density - Anode and Cathode - 30 amperes per
square foot

Cell voltage 0.92 volts direct current

Temperature of bath 	 25°C

Deposit wt. 	 50.0 grams

Duration of Test 	 20.1 hours

Deposit appearance 	 Good, slight nodu-
lation, treeing

At the conclusion of the electrodeposition experiments the

deposits were mechanically stripped from the cathodes. This was

easily accomplished because electrodeposited copper forms a very

weakly adherent bond to stainless steel.

The edges of the deposit were trimmed off with shears, the

deposits were thoroughly washed to remove any electrolyte, and

analyzed for alumina.

16



17

Analytical Procedure

The total deposit, exclusive of the trimmed edges was accurately

weighed and dissolved in concentrated nitric acid. The aluminas

studied are substantially insoluble in nitric acid.

After dissolution with nitric acid the slurry of alumina in

nitric acid was adjusted with concentrated ammonia to a pH between

7 and 8.

The slurry was filtered by gravity through Whatman 42 ashless

paper, and washed with a 10 volume percent boiling aqueous ammonia sol-

ution to free the residue of copper salts.

After a final water wash the residue and filter paper were trans-

ferred to a tared porcelain crucible and ashed to constant weight.

The weight of the residue after firing was taken as alumina.

The results of the deposition tests are tabulated below:
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TABULATION OF RESULTS

Analyses of Cathode Deposits obtained in Copper

Formate Electrolytic Bath

Table - 1

Disperse
Phase

Conc. in
Electrolyte
grams per
litter

Wt % Al2O3 in

Cathode Top

Cathode Deposit

Cathode Bottom

Average
Particle D
Milli-
microns

it Ratio Al2O3

Top to 	 Bottom

Alon-C 25 0.089 0.029 30 3.1

Linde B-
5125 25 2.11 1.20 50 1.76

Linde A_
5175 25 5.16 2.15 300 2.4

600 grit
Alundum 25 13.2 2.88 17000 4.6
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Analyses of Cathode Deposits obtained in Copper

,Sulfate Sulfuric Acid Electrolyte

Table - 2

Disperse
'Phase

Conc. in
Electrolyte
grams per
liter

Wt % Al2O3 in

Cathode Top

Cathode Deposit

Cathode Bottom

Average
Particle D
Milli-
microns

Wt Ratio Al2O3

Top to 	 Bottom

Alon-C 25 0.20 0.026 30  7.7

Linde B-
5125 25 0.020 0.042 50 .48

Linde A 25 0.63 0.029 300 2.2

600 grit
Alundum 25 0.15 0.021 17000 7.1

Considerably more confidence may be placed in the accuracy of the $ of

Linde-B, Linde A, and 600 grit alundum in the copper deposits obtained

in the formate baths than in the other alumina analyses.

Analyses of Alon-C and of all the aluminas reported in the deposits

obtained in the acid sulfate bath should be interpreted as indicative of

a trend rather than a definitive measure of deposit content. Due to the

low percentages of Al203 in the deposits a small weighing error could

cause a substantial change in the reported analysis.
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Ratio of Deposit Content Formate to

Sulfate Bath

Table - 3

Disperse
Phase Ratio of

Wt % Al2O3 	 in Copper Formate Deposits/

Wt % Al2O3 in Acid Copper Sulfate Deposits

Top Deposits Bottom Deposits

Alon-C .45 1.1

Linde B-5I25 106 29

Linde A-5175 82 74

600 grit
Alundum 88 136

Average 69 6o

The same caution must be applied here in interpretating results as

was mentioned previously.



Figure - 3

Weight Percent Al2O3 content of UpperCathode deposits obtained in the Copper FormateBath as a function of the logarithm of theparticle diameter



Figure - 4
Sedimentation Curves for 25 glf Linde -B- 5125 in the Copper Formate and COpper SulfateAcid Electrolyte
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Evaluation of Data and Conclusions

It was stated previously in the text of this paper that three

conditions had to be satisfied in order that mechanical inclusion be

the controlling mechanism whereby aluminas are co-deposited with

copper during electrodeposition of copper.

The first condition, that the content of Al 2O3 in the deposit

should increase with particle size is satisfied. Reference to Tables

1 and 2 indicate that as particle size of the disperse phase is in-

creased the content of the co-deposited alumina also increases.

A plot of the logarithm of particle diameter against the alumina

content for horizontal cathodes facing the direction of falling parti-

cles in the copper formate bath is illustrated in Figure (3).

By fitting the curve to the slope intercept equation one obtains

the following relationship for the alumina content as a function of

particle size;

% Al2O3 (in deposit) = 4.38 log.D -5.35 

where D is the particle diameter of the disperse phase in millimicrons.

The equation is valid only over the range of particle sizes studied.

The second condition, that the disposition of the cathode sur-

faces relative to the direction of the falling particles constituting

the disperse phase should effect the alumina content of the electro-

deposit is satisfied. Reference to Tables 1 and 2 indicate that in

seven of the eight experiments performed the ratio of the alumina con-

tent of the top electrodeposit to the bottom electrodeposit was sub-



stantially greater than one. Those analyses in which the most con-

fidence may be placed indicate also, as would be anticipated, that

the ratio of the Al203 content of the upper cathode to the lower

cathode increases as a function of particle size.

Condition three, that in systems of identical geometry the de-

posit content should be independent of the bath composition is defi-

nitely not satisfied.

The possibility of bath density or viscosity may be discounted

by reference to Figure (4). Though admittedly a difference of approx-

imately a factor of two (2) exists in the sedimentation rate of the

copper formate and copper sulfate, sulfuric acid baths this is in-

adequate to account for a difference of a factor of 67 in the wt %

of alumina in the cathodes obtained.

Another interesting observation concerns the average ratio of the

alumina contents of the top and bottom cathodes of the copper formate

bath to the alumina content of the top and bottom cathodes in the

copper sulfate sulfuric acid bath, tending to indicate a relationship

between alumina content and bath compositions.

In summation it may be concluded that within a particular bath

composition the phenomenon of mechanical inclusion effects the alu-

mina content of the deposit, but is in itself controlled by the nature

of the electrolyte employed.



CHAPTER II 

CONSIDERATION OF ELECTROPHORETIC MIGRATION AS THE CONTROLLING 

:MECHANISM FOR THE CO-DEPOSITION OF ALUMINA WITH COPPER DURING

ELECTRO DEPOSITION OF COPPER

Introduction:

Electrophoresis may be defined as the migration of charged par-

ticles, suspended 8 in a solution, under the influence of an electric

field.

In consideration of the co-deposition of aluminas with copper by

electrophoresis, the phenomenon may be thought of as the electric

field surrounding the cathode exerting an electrostatic force of at-

traction on the alumina particle. The electrostatic force of attrac-

tion would cause the particle to migrate to the cathode and be bound

there.

Once bound to the cathode the particle would become embedded in

the matrix of copper deposited over it.

Theoretical considerations, which will be discussed in greater

detail below, indicate that the zeta potential of the disperse phase

will determine whether or not a particle may be electrophoretically

deposited.

8 The choice of the word suspended is unfortunate, since it
allows the inference that ions and molecules, are excluded
from exhibiting electrophoretic effects. Migration of com-
plex ions is sometimes referred to as ionophoresis. The
term electrophoresis is completely applicable to migration
of macro-molecules in an electric field.
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Theoretical Considerations

The derivation of the zeta potential offered below relies on

several references. 9,10,11,12

Diagrammatic Representation of the

Double Layer

26

Fig. (5)

The concept of the zeta potential is based on the idea of an

electrical double layer, occurring at the interface between a liquid

and a solid. In Fig. (5) the black line indicates a fixed solid sur-

9 	 Perrin J., J. Chim. Phys. 2 607 (1904)

10 

	

Bier alan Electrophoresis, Theory Methods and Applications
Academic Press, Inc. 1959

11 	 Glasstone Samuel - An Introduction to Electro-Chemistry.
D. Van Nostrand Co., Inc. 	 1942

12 	Butler J. A. V. Electrical Phenomena at Interfaces The
Mac Milan Co. New York, 1951
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face while the positive charges represent strongly adsorbed molecules

or ions constituting the fixed portion of the double layer. The

charges some distance away from the fixed charges represent the diffuse

component of the double layer. The system is clearly analogous to a

parallel plate condenser. According to the laws of electrostatics

where V represents the potential difference between the diffuse and

fixed charge layers

e - represent the charge density

t - the distance between plates

D - the dielectric constant of the medium
π

- constant - 3-1414

if the double layer is equivalent to a parallel plate condenser

then the zeta potential may be written as

where γ  represents the charge density

d - the thickness of the double layer

D - the dielectric constant of the medium

To prove the relationship is correct consider an element of vol-

ume, at an infinite distance from the fixed portion of the double layer

whose time average potential is ψ.)

Work required to bring an ion from infinity into the double layer

would be
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	 Zξψ - for a positive ion

	

- Zξψ - for a negative ion

Applying the Boltmann Distribution law to ions to determine the

time average number of positive and negative ions yields

where n + n - 	 represent the total numbers of positive and nega

tive ions respectively in a unit volume.

The net charge or charge density per unit volume then becomes

If the assumption is made that Zξψ/κ is much less than unity

then exp -Zξψ/κτ and exp Zξψ/κτ may be expressed as a power series

yielding ρ = -ξ2ψ/κτ ΣiniZi2, in order to solve for

time average of potential, it is necessary to have another equation

relating ρ andψ.

The second relationship relies on the fact that the potential ψ

and the electrical charge density ρ may be related by Poisson's

equation.

Poisson's equation in rectangular coordinates takes the form

Since the particle diameter of the aluminas studied is very much

greater than the thickness of the double layer the surface of the par-

ticle will be considered infinite in extent in the Y and Z directions,

that is the electric potential will vary only in the X direction,

normal to the surface of the particle.



And the final form of the equation is
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This can be simplified appreciably by combining constants.

= 4.802 x 10-10 e.s. units

k  = (gas constant per molecule) - 1.33 x 10 -16

Wi = no, of each ion per cubic centimeters obtained

by multiplying concentration in gram moles per

liter (Ci) by 6.02 x 10 20

Substituting in constants yields

Making substitution
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The solution of this equation takes the form

evaluating constants as

4L-------- 0

Therefore C1 must be equal to zero

Substituting

Since 1P represents charge density at any point in the solu-

tion, and further since the charge 6 on the fixed component of the

double layer, in our case the alumina particle, must be equal in

magnitude to the total charge in the diffuse layer; the net charge on

the fixed component of the double layer may be determined by a summation

of the charge density in the diffuse layer from the fixed double layer

to infinity.

where (a) is the distance of closest approach of the diffuse layer to

the fixed layer
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It is assumed in this integration that κ is a constant, i.e.

the concentration and species of ions in the double layer is identi-

cal with that in the bulk of the solution. This may not be the case,

but no evidence to contravert it could be located in the literature.

Continuing: The value of the constant C1 may now be substituted

in the expression for electrical potential as a function of distance.

if κ is small then eκ(a-x) 	 is approximately equal to 1 and the

equation reduces to ψ = 4πσd/Dκ yielding an equation

equivalent toξ = 4πδd/D

where d = 1/κ represents the thickness of the double layer, by

analogy the distance between condenser plates.

	

Illustrative calculations are offered below for κ in the

copper formate, and copper sulfate sulfuric acid baths.



An assumed value of D will be used since no values for aqueous

solutions were located in the literature

D = 10

T = 298°K

for the Copper Formate Bath

Table - 4

Calculation of Ci Zi2 for Copper Formate Bath

Constituent Ci Zi2 CiZi2

NH4 .477 1 .477

OOCH .477 1 .477

Cu .803 4 3.212

K .344 1 .344

SO4 .975 4 3.900

32

Similar calculations for the Copper Sulfate Sulfuric acid bath

yield
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In order to obtain some qualitative indication of the magni

tude of the zeta potential at 1/κ = .529, .472A° experimental

data for the zeta potential of aqueous solution of barium chloride

with glass12a as a function of barium chloride concentration was ob-

tained. The thickness of the double layer was calculated, assuming

a dielectric constant (D) of 50.

The zeta potential of the barium chloride, glass system was

plotted as a function of thickness of the double layer and values

for the double layer thickness of the two copper plating baths

studied were added to the graph. See Fig. (6)

It may be seen from Fig. (6) that the value of the zeta poten-

tial for the System barium chloride, glass approaches zero at con-

centrations considerably more dilute than those employed in the

copper plating baths.

If comparison between systems of strong electrolytes is valid,

then a zeta potential very close to zero may be anticipated in the

copper plating baths studied.

Practical Considerations of Electrophoretic Deposition in High Conductivity Systems

	

If theoretical considerations concerning the possibility of

electrophoretic effects in high conductivity electrolytes were con-

sistently substantiated by actual experiment one could definitively

state that electrophoresis plays no part in the co-deposition of

aluminas with copper.

12a
A. J. Ham E. D. M. Dean Trans. Far Soc - 36
1-322 (1940) pp 55



Zeta Potential of Glass in Barium ChlorideSolutions as a function of Double Layer Thickness(Figure 6)
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A. F. Grazen4 makes the statement

"Since the voltage employed in normal electroplating oper-
ations is usually in the order of 12 volts or less, the
voltage gradients present in the electrolyte are insuf-
ficient to cause any cataphoretic deposition of additive

particles."

Sautterl3 in his studies on production of dispersion hardened

nickel alloys by electrodeposition, was of the opinion that the amount

of disperse phase in the deposit was simply a function of the num

ber of impacts and varied with the concentration of the disperse

phase.

Although the observations of Grazen and Sautter tend to con-

firm the theoretical considerations, the experiences of other In-

vestigators does not.

Bidgood and Kent14 succeeded in producing electrophoretic

coatings on cathode heaters, at deposition potentials of 30 volts,

fron solutions containing, both 30 grams per liter aluminum nitrate

and 20 grans per liter magnesium nitrate.

4

	

U. S. Patent - 3,01,525 Method for Electroforming and
Coating  Alfred E. Grazen 10/30/67

13

	

Sautter F. K. Electrodeposition of Dispersion - Hardened
Nickel - Al2O3 Alloys Report No. WVT-R.R. 6204 Feb. 62

14 	E. S. Bidgood, G. H. Kent Trans Elec. Chem. Soc. 3.7
321 (1945)
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Williams and Martin 15 in their studies on electrodeposited com-

posite coatings make the statement

"It is possible that the fibers or particles are trans-
ferred to the cathode by electrophoretic action to be
keyed into the matrix by the electrolytic deposition of
the matrix 	 metal."

and later in the same paper state

"In view of the sensitivity of success of the co-deposi-
tion technique on the hydrogen ion concentration in the
bath it would appear that electrophoresis plays a sig

nificant part in the process."

The baths studied and employed successfully for production of

electrodeposited composite coatings included a sulfuric acid, copper

sulfate bath very comparable to the one employed in the present

studies.

Actual  measurements of what purported to be the zeta potential

were made by Khan and Sosnovskiil6 on lead dioxide particles in solu

tions 0.3 to 1.0 molar in sulfuric acid and .18 to .85 molar in cadmium.

Their measurements made by the ultramicroscope technique, in-

dicated that the lead dioxide particles possessed a zeta potential

of 47.5 millivolts.

15 

	

R. V. Williams and P. W. Martin Electrodeposited Composite
Coatings, British Iron and Steel Research Association,

London, S W 11 (1964)

16 	 Khan O. A. and Sosnovskii G. N. Catapboretic Transfer of
PbO2 in Solutions Containing H2SO4 and CdSO4.
Zh. Prikl Khim 37 (4) 890-2 (1964)
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Experimental Procedure Part I

Electrophoretic Measurements. Measurements of the zeta potential

of the various aluminas were first attempted in distilled water.

The method employed for measurement of zeta potential, was the mov-

ing boundary technique.17

Use of the moving boundary technique involves measuring the velocity,

in an electric field, of the boundary formed between a suspension of the

disperse phase, and the suspending medium.

prom the velocity of the boundary, the potential gradient employed

and the dielectric constant and viscosity of the system studied the zeta

potential of the disperse phase may be calculated.

Moving boundary measurements were made in a Burton U-tube, see Fig.

(7). This method possesses the advantage of requiring no elaborate

volte measuring equipment and is capable of producing results repro-

ducible within five per cent.

Prior to any test work the U-tube was allowed to stand in aqua

regia over night to insure its absolute cleanliness.

The procedure employed in filling the U-tube was to first intro-

duce the supporting electrolyte18 into the U-tube from the top by

removing an electrode until partially filled, then very carefully and

17 	 Bikerman J. J. Trans Far Soc - la 1643-52 (1936)

18	The supporting electrolyte is simply a liquid of the same com
position as that in which the disperse phase is suspended;
however, the supporting electrolyte has no disperse phase.



Fig. (7)

Burton U-Tube Apparatus

far 'loving Boundary Measurements
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slowly introduce the suspension through the bottom stopcock. If prop-

erly done a sharp boundary will form between the disperse phase and the

supporting electrolyte.

:hen the supporting electrolyte had covered the electrodes, the

stopcock was closed.

To measure the nobility of the disperse phase the power was ap-

plied, and the voltage increased until a noticeable rate of boundary

movement was attained.

The voltage required and the boundary velocity were noted. Data

obtained for Alon-C is tabulated below.



TABULATION OF RESULTS

U-Tube Measurements

Disperse Phase - Alon-C

Supporting Electrolyte - Water

Table - 5

Moving Boundary Data for Alon-C

Time
min.

Voltage
Volts D.C.

Height of Inter-
face millimeters
Anode Leg

Current
milliamperes

0 0.0 20 0.0

2 610 16 1.35

5 610 11 1.60

8 615 5 1.65

10 615 1 1.65

Similar readings may be obtained by reading the increase in the

height of interface in the cathode chamber.

Calculation of the zeta potential

40

19 See Potter E. C. "Electrochemistry" p 173



where - 9 x 104 - is the conversion factor for electrostatic units

to volts

Substituting

The sign of the charge is determined by the direction of the mov-

ing boundary. Since the boundary rose toward the cathode, negatively

charged, the particles possess a positive charge. Therefore

Attempts to measure the zeta potential of the other aluminas in

distilled water were unsuccessful. The size of the particles was too

great for a stable suspension to form.

Zeta potential determinations were also attempted on Alon-C sus-

pended in the copper sulfate sulfuric acid bath at various concentra-

tions. The conditions of the tests are tabulated below.
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Variables Studied; Moving Boundary Method;

Alon-C in Copper Sulfate Bath

Table - 6

Bath Conc
Voltage
V.D.C.

Boundary
Velocity

CuSO4 H2SO4 Normal 20 None

"    "
Dil 10:1 57,111,160 None

"    " Dil 100:1 225,428 None

CuSO4, H2SO4 100
mg/1 Thiourea Normal 19.3 None

"    " Dil 10:1 60,110,161 None

"    "
Dil 100:1 225,450 None

Despite the variety of concentrations and voltages employed in the

measurements, no discernible, boundary motion could be detected; in fact

the suspensions prepared at dilute concentrations of electrolyte, 10:1,

100:1, were less stable than that of suspensions prepared with undiluted

electrolyte.



Experimental  Procedure Part II 

Coulometer Studies.

Introduction:

Since no definitive results were obtained from attempts to mea-

sure the zeta potential of aluminas directly, studies were taken to

determine if a portion of the deposition current was carried by the

disperse phase.

It was reasoned that if the particles acted as charge carriers

for the deposition current, the copper deposited would be less than

the theoretical amount; since a portion of the current ordinarily

carried by copper ions would be carried by the disperse phase.

It was anticipated that the portion of the deposition current

carried by the disperse phase would be quite small and attempts to

determine it would require a highly accurate measure of the total

current passed. This necessitated the use of a coulometer.

In order to enhance the portion of the current carried by the

disperse phase, the aluminas employed were those which produced elec-

trodeposits with the highest disperse phase content. To further en-

hance the quantity of alumina in the electrodeposit, a cell identical

in all respects to that employed in the studies of mechanical inclu-

sion was used. The anodes were the same as used in the previous

studies. The bottom surface of the cathode was masked with electro-

platers tape so as to obtain deposition oily on the upper surface.

Description of Equipment. The coulometer employed consisted of

two anodes of identical dimensions, cut from cast OFHC, (reg. trade)
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copper. The cathode was equal in area to the effective anode area

and was situated equidistant from the anode and in a plane parallel

to the plane of the anodes.

The electrolyte employed in the coulometer was similar to that

recommended by the National Bureau of Standards. The composition

was:

CuSO4 5H2O 	 - 200 grams per liter

H2SO4 	-   5 grams per liter

Ethanol 	 -  3 milliliters per liter

The coulomoter was placed electrically in series with the two

deposition cells, tank-1 and tank-2, whose compositions are given

below:

Tank - 1

Standard Copper Formate Bath

Disperse phase - Linde A - 25 grams per liter

Tank - 2

Standard Copper Formate Bath

Disperse phase - 600 grit Alundum 25 grams
per liter

The cathodes employed in the coulometer and the deposition tanks

were carefully cleaned, accurately weighed and positioned in their

respective tanks.

The tanks were charged with electrolyte and electrolysis started

immediately. At the completion of the run, the cathodes were removed
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from the tanks, washed copiously with distilled water, dried at 80 0C

and weighed.

The deposits containing the disperse phase were stripped from

the cathode mechanically and analyzed for alumina. The results are

given below:

TABULATION OF RESULTS

Coulometer Cathode Weight initially 	 56.4140 grams

Coulometer Cathode Weight after Electrolysis 	 82.4389 "

Weight of Copper deposited in coulometer 	 26.0249

Weight of Cathode deposit stripped 	 26.0242 1

Weight of Cathode 1 initially 	 - 	 106.0773

Weight of Cathode 1 after Electrolysis 	 - 	 134.2860

Weight of Cathode deposit 	 28.2087

Weight of Cathode deposit stripped 	 28.0783 20

Weight of Cathode 2 initially 	 - 	 101.3700

Weight of Cathode 2 after Electrolysis 	 - 	 130.0491

Weight of Cathode deposit 	 28.6791

Weight of Cathode deposit stripped 	 28.6473 20

Material reporting in cathode by means other than electro deposition:

Tank - 1 28.0783 - 26.0242 = 2.0541 grams

Tank - 2 28.6473 - 26.0242 = 2.6231 grams

20 The stripped deposit weight is the correct weight. The
deposit had not been dried adequately and moisture could
be detected between the substrate and the deposit.



Weight of Alumina in Deposit 1 - 1.1629 grams

Weight of Alumina in Deposit 2 - 2.3262 grams

Comparison of the weight of alumina deposited with the material

reporting in the cathode by means other than electrodeposition, in-

dicated that the cathodes in Tanks 1 and 2 were operating at greater

than 100% current efficiency.

To check this observation the filtrates obtained during the an-

alytical separation of the soluble copper from the alumina, were ana-

lyzed for copper electrogravimetrically

Total copper in cathode Deposit - 1 	 26.446

Total copper in cathode Deposit - 2 	 26.069

Copper in excess of theoretical for a divalent copper plating

bath:

Cathode - 1 	 0.422 grams

Cathode - 2 	 0.045 grams

An interesting observation was the fact that something other

than alumina or copper was present in both deposits, since the sum

of the disperse phase and the cathode copper was less than the de-

posit weight

Cathode - 1 	 Deposit Weight - 28.078

Copper plus alumina - 27.609

Cathode - 2 	 Deposit Weight - 28.647

Copper plus alumina - 28.395

L6



Weight of material other than copper or alumina in cathode de-

posits

Cathode - 1 	 0.469 grams

Cathode - 2 	 0.252 grams

No attempts were made to identify the unaccounted for material

in the cathode.

Two possibilities were considered as capable of causing the de-

position of copper in excess of the theoretical amount. The first

was the possibility of cuprous ions in the copper formate bath dis-

charging at the cathode. The second possibility was •copper entering

the deposit as copper ions adsorbed on the alumina particles.

To determine which of the mechanisms conjectured was correct,

two copper formate coulometers identical in construction and electro-

lyte composition were placed in series with the copper sulphate coulo-

meter and electrolyzed for twenty hours.

It was hypothesized that if the first mechanism, monovalent copper

ions discharging, was responsible for cathode efficiency greater than

1001J, then both cathode deposits obtained in the copper formate bath

would be greater in weight than the copper sulfate coulometer deposit

by an equal amount.

If adsorbed copper ions on the alumina particles were responsible

for a cathode efficiency greater than 100%, then the copper formate
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coulometer deposits would be equal in weight to the copper sulfate

coulometer deposits. The results are given below:

Copper deposited copper sulfate coulometer 	 29.1694 grams

Copper deposited, first copper formate coulo-
meter 	 30.3657 grams

Copper deposited, second copper formate coulo-
meter 	 30.4891 grams

It is apparent from the data above that neither of the proposed

mechanisms was responsible for the excess copper deposited.

Examination of the copper formate coulometer cells revealed the

presence of a large amount of anode sludge. Microscopic investigation

of copper formate coulometer deposits demonstrated the presence of this

sludge in the cathode.

The presence of anode sludge in the cathode deposits vitiated the

significance of the test findings and coulometer studies were abandoned.
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Experimental Procedure Part  III

Investigation of Alumina Content of Deposit as a Function of the

pH of the Plating Bath.

Introduction:

Colloidal substances frequently possess an isoelectric point. The

isoelectric point of a substance may be defined as that pH at which an

equal number of strongly adsorbed groups of opposite charge are present

on the surface of the particle.

At the isoelectric point of a colloidal particle the zeta potential

falls to zero.

If the supposition is made that in order to co-deposit electro-

phoretically the alumina particle studied must be positively charged,

a sharp decrease in the alumina content of the deposit would be antici-

pated at the isoelectric point of the aluminas.

Previous investigations 1,15,21 have determined that alumina may

be co-deposited during the electrodeposition of copper at pH's from

3.5 to 12; while attempts to co-deposit aluminas at pH - 0.5 were un-

successful. If an isoelectric point exists it is apparent that it

must be sought between a pH of 3.5 and 0.5.

1

	

Final Report to International Copper Research Assn. Electro-
deposition of Dispersion hardened Alloys, Opie W. R. Ernst,
R. G., Hoffmann, J. E. May 1, 1964

15

	

R. V. Williams and P. W. Martin Electrodeposited Composite
Coatings. British Iron and Steel Research Association,
London, SW 11 (1964)

21

	

U. S. Patent No. 3,132,927 Wear Resistant Material
W. G. Bonier 	 5/12/64
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Another characteristic of colloids at their isoelectric point

is their ability to form flocs and settle rapidly. Because the

charge on the colloid is zero at the isoelectric point, mutual forces

of repulsion are absent and collision of colloid particles with each

other results in agglomeration. 22 In fact attempts have been made to

quantitatively relate sedimentation rate and zeta potential. 23

Experimental work was undertaken to investigate the alumina con-

tent of the cathode deposit as a function of the pH of the plating

bath. Sedimentation tests were run concurrently to determine the

effect of pH on sedimentation rate.

Description of Equipment and Materials Employed. The deposi-

tion cells employed in the pH studies were identical with the de-

position tanks employed in the initial coulometer studies.

The sedimentation tests were made in graduated columns at the

completion of each deposition test.

The bath employed for the deposition studies was the copper for-

mate bath. Adjustment of the pH of the bath was made by additions of

22

	

Riddick T. H. The Role of the Zeta Potential in Coagulation
Involving Hydrous Oxides. First Water Conference, Technical
Association of the Pulp and Paper Industry 6/4/63

23

	

Dulin C. I. and Elton G.A.H. Determination of Electrokinetic
charge and Potential by the Sedimentation Method. Part I Silica
in Aqueous Solutions of Potassium Chloride J. Chem Soc.
pp 286-9 1952



concentrated reagent grade sulfuric acid. The disperse phase in all

tests was 25 grams per liter Linde-B-5125

	

Measurements of pH were made with a Beckman Zeromatic pH meter.

	

At the conclusion of each run the deposits were stripped from

the cathode, copiously washed with water and analyzed for alumina.

	

The results of the experimental work are tabulated below:

51



TABULATION OF RESULTS

Results of Deposition Studies Performed

in Copper Formate Bath at Various pH's

Table -7

pH of
Electrolyte

Mls Cone H2SO4 Reqd
to obtain pH

Cell Voltage
V.D.C.

Wt %; Al2O3
in deposit

4.0 0.0 2.30 1.95

3.5 2 2.22 1.74

3.0 4 2.32 2.09

2.5 15 2.82 1.63

2.0 19 2.10 1.57

1.5 33 2.00 1.45

1.0 64 1.11 2.03

0.5 106 0.83 1.74

52
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The deposit content of the bath was also plotted as a function

of pH. See Fig. (8)

From the sedimentation data the constant rate portion of the sedi-

mentation curves was plotted. See Fig. (9)

The derivatives of the sedimentation curves were plotted as a

function of the pH of the bath. See Fig. (10)

The alumina content of the deposit was then plotted as a func-

tion of the sedimentation rate of the bath. See Fig. (11)

Inspection of Fig. (E) indicates that no significant change in

deposit content was experienced with decreasing pH.

No abrupt increase in sedimentation rate was experienced, as

would be anticipated if the alumina passed through an isoelectric

point. See Fig. (10) In fact the sedimentation rate decreased with

decreasing pH. The decrease can probably be attributed to the higher

density of the electrolyte at lower pH's due to the large quantity of

sulfuric acid required to depress the pH.

A plot of the deposit content as a function of sedimentation rate,

see Fig. (11) showed no demonstrable relationship.

An observation worthy of note concerned the fact that the deposit

obtained at pH - 0.5 contained a substantial amount of alumina, yet

the copper sulfate, sulfuric acid bath which also operates at pH - 0.5

produced a deposit containing virtually no alumina.

It may be concluded that the mechanism controlling co-deposition



Linde B-5125 Content of Electro depositas a function of pH of Electrolytic BathFig (8)



Sedimentation Curves at Various pH's for the Copper Formate Electrolytic Bath containing 25 grams per liter Linde B-5125 as the Disperse Phase	 (Fig 9)



Free Settling Sedimentation Route for Copper Formate Electrifyte containing 25 gms per liter Linde B-5125 as a Function of pH	 	 (Fig -10)



Linde B-5125 Content of Electrodepositas a function of the slope of the Free Settling Portion of the Sedimentation Curves	 	 	 (Fig - 11)
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of aluminas is not controlled solely by the pH of the electrolyte.

Conclusions. In conclusion it may be stated that no demonstrable

evidence of electrophoretic control of the co-deposition of aluminas

during electrolytic deposition of copper was established, based on the

following observations.

1) Theoretical considerations suggest that the existence of a

zeta potential is extremely unlikely in solutions of strong

concentrated electrolytes such as those present in the

electrolytic baths used in these studies.

2) No discernible migration of the alumina particles was detect-

able, other than in distilled water, in an electric field.

3) The pH of the electrolytes employed in the electrodeposition

studies appeared to have no effect on the amount of alumina

reporting in the cathode deposit.



CHAPTER III

CONSIDERATION OF ADSORPTION AS THE CONTROLLING MECHANISM FOR

THE CO-DEPOSITION OF ALUMINA WITH COPPER DURING ECTRODEPOSTIION

OF COPPER

Introduction:

The results of the experimental studies in Chapters I and II in-

dicated that neither mechanical nor electrophoretic effects were the

controlling factor in co-deposition of aluminas; however, both studies

indicated that bath composition profoundly effects the amount of alumi-

na co-deposited.

The hypothesis that a constituent in the electrolytic bath changes

the nature of the surface of the alumina particle so as to allow it to

be adsorbed on the copper cathode and be keyed into the copper matrix

by copper electrodeposited over it would be consonant with the observa-

tions made in Chapters I and II.

Theory 

The type of adsorption anticipated would be a short range

Van der Waal's adsorption where the particles would have to be brought

to within close proximity of the cathode in order for alumina particle

to be held, by the weak electrostatic forces involved, long enough for

copper to deposit on it and imbed it in the deposit.

In contradistinction to adsorption electrophoresis is controlled

by long range forces, that is, the particles will migrate in an elec-

tric field, without mechanical assistance,
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Previous studies of electrodeposition of copper from a copper

sulfate, sulfuric acid bath containing thiourea and disperse phase

of 25 grams per liter Alon-C1 established that the presence of

thiourea in the electrolyte, profoundly affected the amount of al-

umina co-deposited in the cathode.

The use of thiourea in copper sulfate, sulfuric acid baths as

an additive to improve the quality of the electrodeposits is well

known; 24 however, the mechanism by which thiourea modified the char-

acteristics of the copper electrodeposit was only recently elucidated

by Bacon, Hoekstra, Sison and Trivich. 25 The results of their in-

vestigation established that during the electrodeposition process

thiourea was adsorbed on the cathode surface. Through the use of

radioactive tracers it was established that thiourea was strongly

and uniformly adsorbed.

If it could be proven that the aluminas employed in these studies

adsorbed thiourea and further, that they then would co-deposit with

copper during electrodeposition of copper in a copper sulfate, sulfuric

acid bath substantiation of adsorption as the controlling mechanism

for the co-deposition of aluminas with copper would be realized.

1Final Report to International Copper Research Assn. Electra_
deposition of Dispersion Hardened Alloys, Opie, W. R. Ernst,
R. G. Hoffmann, J. E. May 1, 1964

24Clifton, F. L. and Phillips, W. H. Proc. Am. Electroplaters
Soc. 30. 92 1942

25Bacon ice, Hoekstra, J. J., Sison, B. C., Trivich, D.
The Role of Thiourea in the Electrodeposition of Copper
J. Electro Chem. Soc. V.106 May 1959



Accordingly, studies were undertaken:

1) To determine the quantity of thiourea adsorbed by aqueous

dispersions of the various aluminas. 26

2) To determine the effect of thiourea in the electrolytic

bath on the amount of alumina co-deposited.

26 Adsorption studies were made in aqueous solutions rather
than actual electrolyte because the sulfate content of
the electrolyte would make thiourea analysis impossible
by conventional analytical techniques.
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Experimental Procedure Part I

Adsorption Studies.

Description of Materials Employed in Adsorption Studies. The

four aluminas employed in the adsorption studies were described pre-

viously in Chapter - I. To obtain a qualitative idea of the adsorp-

tion capacities of the various aluminas their surface area was calcu-

lated.

Illustrative calculations are offered below for Alon-C. Since

the method employed for calculating the area of Alon-C agreed well

with actual surface area obtained by the B.E.T. method a similar

technique was used to calculate the area of the other aluminas.

Average diameter of an Alon-C particle - 30 millimicrons

Volume of a sphere - 4.189 r3

Volume of a single Alon-C particle = (4.189)(15 10 -7 ) 3cm3

= (4.189)(3.375 10-18)

where the radius of the sphere is expressed in centimeters.

Surface area per gram of alumina (Alon-C)

Surface area per gram of Linde-B-5125 - 14.2 m 2 per gram
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Surface area per gram of Linde-A-5175 - 5.34 m2 per gram

Surface area per gram of 600 grit Alundum - 0.103 m2 per gram

The particles of alumina per gram are also given below:

Alon-C

	

- 2.07 x 1016

Linde-B-5125 	 - 4.48 x 1015

Linde-A-5175 	 - 2.06 x 1013

600 grit Alundum - 1.14 x 108

The thiourea used in the studies was Fishers Certified Reagent

Grade Cat. Ho. T-101.

The purity of the thiourea was determined by the analytical pro-

cedure outlined below. The same procedure was employed in all subse-

quent thiourea analyses. Its reproducibility was confirmed by running

blanks and duplicates, when possible, on the samples generated.

Procedure

The solution whose thiourea content was to be determined, was

transferred to a 250 millimeter beaker and acidified by addition of

a few drops of concentrated hydrochloric acid.

The solution was heated and bromine water was added to it until

the red color of the bromine became permanent. The function of the

bromine was oxidation of the sulfur in thiourea to sulfate ion.

Nitric acid may also be used for the oxidation, but very careful con-

trol of the HNO3 
concentration is required. Excess bromine was then

expelled by boiling the solution.



Sufficient barium chloride was added to the solution to precipi-

tate all sulfate ion present as barium sulfate.

The barium sulfate was digested for a minimum of an hour, then

filtered onto Whatman-42 ashless paper. The filter paper with the

barium sulfate was transferred to a tared porcelain crucible and fired

to a constant weight.

Thiourea content was calculated as

Weight of residue after firing x 26.10/233.40 = Weight Thiourea

Adsorption Studies Experiments Performed. In order to determine

the quantity of Thiourea adsorbed on the various aluminas, samples con-

taining 25 grams per liter of the four aluminas and 1 gram per liter

thiourea in an aqueous solution were prepared.

The aqueous alumina suspensions were stored in sealed containers

and periodically shaken. After standing, with periodic shaking, for

four days the suspensions were centrifuged in an International Centri-

fuge, Size-l Type C, for several hours. Examination of the samples

after centrifugation revealed that in no case had a clear supernatant

liquid been obtained.

New samples were prepared and gravity filtration studies under-

taken. The results of these tests showed that 600 grit Alundum, Linde-

A-5175 and Linde-B-5125 could be filtered off by repeatedly passing

the filtrate back through the filter paper.
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In order to separate the Alon-C from the suspension by gravity

filtration, it was necessary to first precoat the filter paper with

Linde-B-5125. The Alon-C suspension was filtered through the pre-

coated paper and the filtrate discarded until the filtrate from the

Linde-B suspension had been flushed out of the filter paper.

During all filtration studies the equipment containing alumina

suspensions was covered to avoid loss of water by evaporation. The

results of the adsorption studies are tabulated below:

TABULATION OF RESULTS

Results of Adsorption Studies

Concentration of Thiourea in Solution - 1.0 grams per liter

Concentration of Alumina in Suspension - 25 grams per liter

Table - 8

Suspended
Phase

Surface Area of
Alumina - m2gm

Grams of Thiourea Adsorbed
Grams of Alumina Present

Alon-C 53.4 Less than 0.001

Linde-B-
5125 14.2 Less than 0.001

Linde-A
5175

5.3 Less than 0.001

600g Alundum 0.10 Less than 0.001

From the preceding tabulation it may be concluded that the amount

of thiourea adsorbed, if any, was so exceedingly small as to be out-

side the precision of the analytical technique employed.



Experimental Procedure Part II

Electrodeposition Studies.

Description of Equipment and Materials. The electrolytic cells

for studying the effect of thiourea on the amount of alumina co-

deposited during electrodeposition of copper in a copper sulfate,

sulfuric acid bath are described below:

Plating tanks - 6.0" wide by 3-1/4" deep by 9-3/4" high

Cathodes - Stainless Steel - 7" by 2-3/3"

Anodes - OFHC (reg. trade) copper - 7" by 2-3/8"

The anode and cathode were placed at opposite ends of the tank

in vertical parallel planes 5-1/2 inches apart.

The plating conditions and bath composition for each run are

offered below. The current density employed in all tests was 30

amperes per square foot and the temperature of the plating bath was

25°C.

Bath Composition

CuSO4 5H2O 	 188 grams per liter

H2SO4 	74 grams per liter

Molasses 	 2 grams per liter

Thiourea 	 100 milligrams per liter

Disperse Phase

Run - 1 	 25 grams per liter 	 Alon-C

Run - 2 	 25 grams per liter 	 Linde-B-5125

Run - 3 	 25 grams per liter 	 Linde-A-5175
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Run - 4 	 25 ;Tams per liter 	 600 	 Alundum

At the conclusion of each run, the deposits were stripped from

the cathode and analyzed for alumina by the method described in

Chapter-I.

The results of the tests are tabulated below. Offered for com-

parison are the alumina contents of deposits obtained on the bottom

cathode surfaces for the copper sulfate, sulfuric acid bath studied

in Chapter-I of this paper. The composition of the sulfuric acid,

copper sulfate bath used in Chapter-I is identical with the bath

composition employed in this study, with the exception of thiourea.

Also included in the tabulation is the ratio of the molecules

of thiourea to the number of alumina particles in the bath.



TABULATION OF RESULTS

Alumina Content of Deposits Obtained in the Copper

Sulfate Electrolyte With and Without Thiourea

Table - 9

Disperse
Phase
Conc. 25g/l

Molecules of Thiourea
Per

Alumina Particle

Wt % Alumina in
Cathode Deposit
Thiourea in elec-
trolyte-100mg/l

Wt % Alumina
in Cathode
Deposit-No
Thiourea in
Electrolyte

Alon-C 1.47x103 0.60 0.026

Linde-B-
5125 7.07x103 0.73 0.042

Linde-A-.
5175 1.53x10

6 0.65 0.029

600 grit
Alundum 2.78x1011

0.92
0.021
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SUMMARY OF CONCLUSIONS CHAPTERS I II AND III

The results of the experimental work performed along with theo-

retical considerations allow the following conclusions to be made.

echanical inclusion does not appear to control the co-deposition

of aluminas with copper. This conclusion was definitively established

by plating studies in copper plating baths of different composition;

where it was shorn that varying the composition of the bath increased

the alumina content of the electrodeposits by factor of approximately

sixty.

The pH of the copper electroplating bath appears to have no signi-

ficant effect on the amount of alumina co-deposited with copper. The

copper formate bath at a pH of 0.5 produced a deposit containing a sub-

stantial amount of alumina while the copper sulfate, sulfuric acid 'oath

at the same pH produced deposits containing virtually none. Further

evidence of alumina co-deposition being independent of the pH of the

plating bath was obtained when it was shown that the addition of small

amounts of thiourea to a plating bath caused a large increase in the

amount of alumina in the electrodeposit.

No evidence of electrophoretic affects controlling co-deposition of

aluminas was obtained. Experimental measurements of the zeta potential

of the aluminas did not indicate that a zeta potential existed in the

systems studied. The results of the experiments were in agreement with

the predictions based on theory.



The possibility of adsorption controlling the co-deposition of

aluninas may not be precluded on the basis of the experimental work

performed, The results of studies performed neither substantiate or

disprove the theory of adsorption.
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RECOMMENDATIONS

The results of the studies performed confirm the findings of

previous investigations; that it is possible to produce dispersion

hardened alloys of copper with a disperse phase of alumina by electro-

deposition.

The alloys of copper and alumina produced by electrodeposition,

were highly unsatisfactory with regards to their physical proper-

ties.

The alloys were extremely brittle, and very weak mechanically.

Attempts to stress relieve the alloys by annealing caused them to

crack and curl.

It is recommended that means other than electrodeposition be

sought for production of dispersion hardened copper alumina alloys.
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