Spring 1959

The plastic design of steel cofferdam

Robert O. Disque
Newark College of Engineering

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Civil Engineering Commons

Recommended Citation
https://digitalcommons.njit.edu/theses/1535

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
THE PLASTIC DESIGN OF A
STEEL COFFERDAM

BY

ROBERT Q. DISQUE

A THESIS
SUBMITTED TO THE FACULTY OF
THE DEPARTMENTS OF CIVIL ENGINEERING
OF
NEWARK COLLEGE OF ENGINEERING
AND
DREXEL INSTITUTE OF TECHNOLOGY

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE
OF
MASTER OF SCIENCE
IN CIVIL ENGINEERING

NEWARK, NEW JERSEY

1959
APPROVAL OF THESIS

FOR

DEPARTMENT OF CIVIL ENGINEERING
NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED: ______________________

NEWARK, NEW JERSEY
JUNE, 1959
ACKNOWLEDGMENT

For the assistance and guidance given by Professor Frederick G. Lehman, advisor for this thesis, the author extends his sincere appreciation.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMBOLS AND NOTATIONS 1</td>
</tr>
<tr>
<td>CHAPTER</td>
</tr>
<tr>
<td>I. INTRODUCTION ... 2</td>
</tr>
<tr>
<td>II. BASIC PRINCIPLES 4</td>
</tr>
<tr>
<td>RESISTANCE OF SECTIONS 4</td>
</tr>
<tr>
<td>EXTERNAL MOMENTS AND SHEARS 10</td>
</tr>
<tr>
<td>DEFLECTIONS ... 13</td>
</tr>
<tr>
<td>LOAD FACTORS ... 14</td>
</tr>
<tr>
<td>III. DISTRIBUTED LOADS AND SOIL PRESSURES 15</td>
</tr>
<tr>
<td>IV. SHEET PILE COFFERDAM 19</td>
</tr>
<tr>
<td>INTRODUCTION .. 19</td>
</tr>
<tr>
<td>PLASTIC DESIGN COMPUTATIONS 20</td>
</tr>
<tr>
<td>APPENDIX</td>
</tr>
<tr>
<td>A. MOMENT AND AXIAL LOAD 39</td>
</tr>
<tr>
<td>B. MOMENT AND SHEAR .. 41</td>
</tr>
<tr>
<td>C. COLUMN BUCKLING ... 44</td>
</tr>
<tr>
<td>D. SAMPLE PROBLEM - EXTERNAL MOMENTS 52</td>
</tr>
<tr>
<td>E. SAMPLE PROBLEM - DEFLECTIONS 55</td>
</tr>
<tr>
<td>F. DISTRIBUTED LOADS 57</td>
</tr>
<tr>
<td>G. SHEET PILE PENETRATION 59</td>
</tr>
<tr>
<td>BIBLIOGRAPHY ... 65</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>

1. Idealized Stress-Strain Curve
2. Stress Distribution Under Various Stages of Loading
3. Integration Diagram for Plastic Modulus
4. Moment and Axial Load Curve
5. Moment and Shear Curve
6. Column Buckling Curve
7. Plastic Failure of a Fixed-End Beam
8. Hinge Location for Trapezoidal Loading
9. Sheet Pile Failure Mechanisms
SYMBOLS AND NOTATIONS

A Area of Section
\(A_w\) Area of web of wide-flange section
\(A_f\) Area of flange of wide-flange section
d Depth of wide-flange section
E Modulus of Elasticity
\(\varepsilon\) Unit strain
I Moment of inertia
M Moment
\(M_p\) Plastic Moment
\(M_{pc}\) Modified plastic moment due to axial load
\(M_{ps}\) Modified plastic moment due to shear
\(M_y\) Moment producing yield stress
F Axial load
\(P_y\) Axial load producing yield stress
S Section modulus
\(\sigma\) Unit stress
\(\sigma_y\) Yield stress
\(\phi\) Angle of curvature
\(\phi_y\) Angle of curvature corresponding to yield stress
V Shear
\(V_y\) Shear producing yield stress
w Thickness of web in wide-flange section
Z Plastic Modulus
CHAPTER I

INTRODUCTION

The fundamental purpose of this thesis is to employ the plastic theory in the design of a hypothetical steel sheet pile cofferdam. Prior to undertaking this work, the author had had no previous experience with the plastic theory. Therefore, a portion of this thesis is devoted to the development of the fundamentals necessary for the actual design computations.

The theory of plastic analysis has been used as far back as the 1920's in Hungary for the structural design of apartment buildings. It is, however, only in recent years that the theory has been utilized to a significant degree in this country. Much progress has been made by J. F. Baker at Cambridge University, England and recently Lehigh University has been conducting many large scale tests of structural members and frames. It is primarily through these endeavors that the use of the plastic theory is being stimulated in the United States.

Very little work has been done to date in the application of the plastic theory to structures subjected to soil pressures. It seems, however, that structures such as designed in this thesis are ideally suited to be designed by the plastic theory.

The temporary nature of a cofferdam justifies the concept of designing for an ultimate load—deflections not being a consideration. Since the soil pressures are assumed to be triangular, there is very little possibility that the pressures would be greater than those assumed. It is, therefore, logical to design for the ultimate capacity of the structure. Nevertheless, a load factor is used to insure additional safety.

A solution to the problem of sheet pile penetration is presented in this thesis. As far as it is known, this is a new solution to the problem and would seem to be a significant contribution to the application of the plastic theory.
CHAPTER II

BASIC PRINCIPLES

The fundamental difference between elastic and plastic design is the portion of the stress-strain curve with which the designer is working. In elastic design, only that portion below the yield point is considered, while in plastic design the entire curve may be utilized in localized areas. The structure is accordingly designed for its ultimate strength. This does not, however, mean a less safe structure. A factor to account for uncertainties is applied to the loads so that under these loads, the stresses will not be excessive.

Resistance of Sections

As in the elastic theory, the basic equations of equilibrium must be satisfied. It is, therefore, necessary to determine the resistance of a section after that section has been stressed beyond the elastic limit.

Moment

It is convenient to assume that the stress-strain curve is horizontal beyond the yield point. See Figure 1. In many materials this is close to actuality and any deviation is on the side of safety. The stress distribution of a section of a symmetrical beam under pure bending is shown in Figure 2 for various stages of bending.
Figure 1. Idealized Stress-Strain Curve

Below Elastic Limit

(a)

Elastic Limit Reached in Outer Fibers

(b)

Elastic Limit Reached Throughout Section

(c)

Figure 2. Stress Distribution Under Various Stages of Loading.

Figure 3. Integration Diagram for Plastic Modulus.
It is now necessary to determine the resisting moment capacity of the section under condition (c), Figure 2. In elastic design (condition (a)), this capacity is $\sigma \frac{I}{c}$ or σS. In the plastic condition (c) a similar relationship develops. For a rectangular section, Figure 3, $M = 2\int_0^c 0 y dy$.

Unlike the elastic theory, all the stress is in the plastic range and does not vary with "y". Therefore, we can easily integrate: $M = 2\int_0^c 0 bc^2 = \sigma bc^2$.

The expression bc^2 is called the plastic modulus (Z) and is seen to be twice the static moment about the neutral axis of the half sectional area for a symmetrical section. Since both section modulus and plastic modulus are a function of the shape of the section, there exists a definite relationship between them. The ratio of these moduli is called the "shape factor" and for most wide-flange sections, the approximate formula can be used: $Z = 1.14S$.

Moment and Axial Load

The ability of a section to resist moment plastically is modified under the influence of an axial load. It is, therefore, necessary to determine a relationship between the axial load and the modified plastic modulus. In the case of wide-flange sections this relationship is different when the neutral axis is in the flange.

from when it is in the web. Appendix A includes the derivation of the equations and the corresponding curves are shown in Figure 4.

Shear

The problem of shear is handled in a similar manner to that of an axial load, i.e., the plastic moment capacity of a section is modified by the influence of shear. It is reasonable, therefore, to expect to find a relationship of \(\frac{M_{Ps}}{M_P} \) to \(\frac{V}{V_y} \). Since moment is dimensionally equal to shear times a distance, a hypothetical moment arm is used instead of "V" and the thickness of the web (shear resisting capacity of a section) for "\(V_y \)".

It is assumed that yielding of ductile materials is caused by shearing stress. Since the material has been brought into the plastic range by the applied moment it cannot, therefore, develop additional shearing stresses to resist the shearing forces. All the shearing resistance of a section must be supplied by that portion still in an elastic condition. The remaining plastic portion, then, is available for plastic moment resistance. The equations used in the solution of this problem are presented in Appendix B and the resulting curves are shown in Figure 5.

Column Buckling

The equations and curves for determining the resistance to column buckling are based on the postulate that failure occurs when the rate of change of internal resisting moment with respect to curvature is equal to the rate of change of external moment with respect to curvature.
Figure 4. Moment and Axial Load Curves.
Figure 5. Moment and Shear Curves.
When the loading is such as to produce the above condition before any stresses have reached the plastic range the column will buckle according to the Euler formula.

However, it is possible under certain loading conditions for portions of the column to be stressed in the plastic range at the instant of buckling. It is this condition that must be investigated in the plastic theory. The approach given in Appendix C is based on the work of Ketter but is somewhat more direct. In addition, general equations have been derived for wide-flange shapes. Curves for the solution of this problem are in Figure 6.

External Moments and Shears

In the plastic theory the value of moments are of interest primarily at the point where a particular section has exceeded the elastic limit. When this occurs (assuming a horizontal stress-strain curve above the elastic limit) the member will rotate about that point with the value of the now plastic moment remaining constant. Other sections in the structure will in turn become plastic until the structure has acquired enough "hinges" to become unstable. At this point the structure has become a "mechanism" and is considered to have failed. This concept can be illustrated in a fixed-end beam shown in Figure 7.

Figure 6. Column Buckling Curves.
In the elastic condition M_A and M_C equal $\frac{wL^2}{12}$ and M_B equals $\frac{wL^2}{24}$. As the load, w, is increased to a certain value, points A and B will become plastic but will not exceed the plastic moment capacity of the section. At this point the beam acts as a simply supported structure and can support additional load until M_B becomes plastic. The structure now has three plastic hinges and is no longer stable. See Figure 4(b).

As can be seen from the above example, the problem is to determine the points on a structure which will become plastic and cause a mechanism to form under minimum loading. By using the fundamental principle that external work equals internal work, equations relating the plastic moment to the load can be written. Trial mechanisms are drawn and the work equations are applied to each configuration. The mechanism producing the lowest value of load as a function of the plastic moment is the correct one. A moment diagram is then drawn and if the correct mechanism has not
been overlooked there will be no moments above the plastic moment. This last operation is known as a "plasticity check". An example of this method is shown in Appendix D.

Deflections

The computation of deflections in plastic design is for the purpose of determining the maximum deflection prior to the collapse of the structure. Since under normal loading the stresses are in the elastic range, the deflections computed in the plastic theory are larger than those that would normally occur. The magnitude of the computed deflections, however, are usually smaller than would result by assuming a simple beam between supports.4

Deflection computations are made by the slope-deflection equations and are computed at the point of failure, or just before the last plastic hinge has developed and the structure has turned into a mechanism.

The application of slope-deflection equations depend on the continuity of the beam. Since in plastic design the joints are assumed to rotate freely after the plastic moment has been reached, continuity no longer exists. If the beam under investigation has only one plastic moment the equation is applied to that point. Deflection, therefore, is determined immediately prior to that hinge developing. If, however, the beam has two or more plastic

hinges, it is necessary to apply the equation to each hinge, the largest deflection computed being the correct one. A sample problem is shown in Appendix E.

Load Factor

Since the theory of plastic design considers the behavior of a structure after the elastic limit of the material is reached, it is necessary to apply a factor to the loads.

As shown in Chapter II, a wide-flange section can resist a moment 1.14 times that which will produce yield in the outer fibers before becoming completely plastic. If the yield stress is assumed to be 33,000 psi and the working stress, 20,000 psi, the ration between the two is 1.65. Therefore, the factor 1.88 (1.14 times 1.65) must be applied to the loads to obtain the same load factor of safety against ultimate strength that the simple beam now has when designed according to the A.I.S.C. Specification.\(^5\)

CHAPTER III

DISTRIBUTED LOADS AND SOIL PRESSURES

It is often convenient in the plastic theory to replace a distributed load with equivalent concentrated loads. As in the elastic theory, this method of handling distributed loads is always on the conservative side and is often used in the plastic theory.

In order to design with more economy, there is worked out in Appendix F equations for the determination of plastic moments for trapazoidal loading. The resulting curve is plotted in Figure 8. With this aid it is possible to design with rapidity and ease for trapazoidal, triangular and rectangular loading.

An adaptation of passive soil pressure to the plastic theory is presented in Appendix G. The basic difference between this approach and the universally accepted theories used in elastic design, is the inclusion of the effect of lateral movement on the passive pressures developed. Based on Terzaghi\(^6\) it is assumed that passive soil pressure is a function of lateral displacement of the soil as well as the depth. This is, of course, close to reality in a cohesionless soil and is readily adaptable to the plastic theory.

Figure 8. Hinge Location for Trapazoidal Loading.
Because of mathematical complications, the concept of passive pressure as a function of displacement is not considered in the usual methods of determining sheet pile penetration. The method presented here more closely follows the physical behavior of the soil and it is considered to be superior to the procedures used in the elastic theory.

There are two possible failure mechanisms for an anchored sheet pile retaining wall. The governing mechanism is determined by the proximity of the lowest support to the excavation surface. For the case where this support is relatively near the excavation, the piling will fail by a plastic negative moment at the support as shown in Figure 9(a). The second mechanism is produced by the development of a positive moment at a point below the support and by a negative moment at the support. These two mechanisms are illustrated in Figure 9.

![Figure 9. Sheet Pile Failure Mechanisms](image)
Case (b) in Figure 9 involves the simultaneous solution of five extremely complicated algebraic equations which are derived in Appendix G. Because of their complexity no solution is presented in this thesis.

Case (a) in Figure 9 is the more usual method of failure and a complete solution is presented in Appendix G. It is interesting to note that the necessary penetration is a function only of the distance from the lowest support to the excavation surface and is in all cases 55% of this distance.
CHAPTER IV

SHEET PILE COFFERDAM

Introduction

The structure designed in this section is a hypothetical steel sheet pile cofferdam. The overall dimensions were chosen to be 40 feet long, 13 feet wide and 48 feet deep. The soil was assumed to be a drained, cohesionless sand. The plastic design computations resulted in the selection of MP115 steel sheet piling and four waler frames composed of wide-flange shapes.

A problem similar to sheet pile penetration as described in Chapter III exists if each successive excavation is carried below the design elevation of the waler frame prior to the installation of the frame itself. In this thesis it is assumed that each waler frame will be installed when excavation has proceeded not more than four feet below the lowest waler. When the excavation has been carried one foot below the design elevation, the waler is lowered and wedged into position. It is, therefore, permissible to design the sheet piling for the final position of the waler frame.
SHEET PILE COFFERDAM

Design Diagram

PLAN

SECTION

Elev. 0.0

Elev. -10.0

Elev. -22.5

Elev. -33.5

Elev. -43.5

Elev. -48.0

51.0'

180'

10.0' 10.0' 10.0' 10.0'

40.0'
Soil Properties

\[\phi = 30^\circ, \gamma = 105 \text{#/ft}^2, \ m_b = \frac{25}{19} \text{tons/ft}^4 \]

\[K_A = \tan^2(45^\circ + \frac{\phi}{2}) \]

\[K_A = 0.334 \]

\[w' = 0.334 \times 105 = 35.1 \text{/#/ft}^3 \]

Load Factor

\[\text{Load Factor} = \frac{0.3}{0.5} \times \left[\frac{33,000 \text{psi}}{24,000 \text{psi}} \right] \times 1.14 = 1.57 \]

Sheeting

Use MP115

\[A = 10.59 \text{in.}^2, \ S = 8.8 \text{in.}^3, \ I = 22.4 \text{in.}^4 \]

Compute Z and \(M_p \)

\[I = 2Ad_i^2 \]

\[d_i^2 = \frac{I}{2A} = \frac{22.4}{2 \times 10.59} = 1.055 \]

\[d_i = 1.028 \]

\[Z = Ad_i = 10.59 \times 1.028 = 10.9 \]

Modular length of each sheet - 19.63 in.

\[M_p = \frac{33.0 \times 10.9 \times 12}{19.63 \times 12} = 18.3 \text{#/ft}^4 \]

Soil Pressure

\[w = w' \times 1.57 \]

\[w = 35.1 \times 1.57 = 55.2 \text{/#/ft}^3 \]
Waler Location

See Chapter III and Appendix F for formula and curve.

1st Waler

Cantilevered beam

\[55.2 \times L \times \frac{h}{L} \times \frac{2}{3} \times L = M_p = 18,300 \text{ ft-lb} \]

\[L^3 = 1,000 \]

\[L = 10.0' \]

Elev. -10.0

2nd Waler

\[L = 12.5', h = 10.0', \quad \frac{h}{L} = 0.8, \quad \frac{a}{L} = 0.582, \quad a = 7.28 \]

\[3haL = 3 \times 10 \times 7.28 \times 12.5 = 2,730 \]

\[3aL^2 = 3 \times 7.28 \times 12.5^2 = \frac{3,410}{6,140} \]

\[3ha^2 = 3 \times 10 \times 7.28^2 = 1,590 \]

\[a^3 = 7.28^3 = 385 \]

\[\frac{2a^4}{L} = \frac{2 \times 385 \times 7.28}{12.5} = \frac{449}{2,420} \]

\[6,140 - 2,420 = 3,716 \]

\[M_p = \frac{55.2}{12} (3,716) = 17,100 \text{ ft-lb} < 18,300 \text{ ft-lb} \]

Elev. -22.5
3rd Waler

\[L = 11.0, \quad h = 22.5, \quad \frac{h}{L} = 2.04, \quad \frac{a}{L} = 0.556, \quad a = 6.12 \]

\[3haL = 3 \times 22.5 \times 6.12 \times 11.0 = 4,550 \]
\[3aL^2 = 3 \times 6.12 \times 11.0^2 = \frac{2,220}{6.770} \]

\[3ha^2 = 3 \times 22.5 \times (6.12^2) = 2,530 \]
\[a^3 = 6.12^3 = 229 \]
\[\frac{2a^4}{L} = \frac{2 \times 229 \times 6.12}{11.0} = \frac{255}{3.014} \]

\[M_p = \frac{55.2}{12} \left(6770 - 3014 \right) = 17,300 < 18,300 \]

Elev. -33.5

4th Waler

\[L = 10.0, \quad h = 33.5, \quad \frac{h}{L} = 3.35, \quad \frac{a}{L} = 0.541, \quad a = 5.41 \]

\[3haL = 3 \times 33.5 \times 5.41 \times 10.0 = 5,440 \]
\[3aL^2 = 3 \times 5.41 \times 10^2 = \frac{1,623}{7,063} \]

\[3ha^2 = 3 \times 33.5 \times (5.41^2) = 2,940 \]
\[a^3 = 5.41^3 = 158 \]
\[\frac{2a^4}{L} = \frac{2 \times 158 \times 5.41}{10.0} = \frac{1.71}{3.269} \]

\[M_p = \frac{55.2}{12} \left(7,063 - 3,269 \right) = 17,400 < 18,300 \]

Elev. -43.5
Unit Load at each water

Elev. -10.0

From above
\[55.2 \times \frac{10^2}{2} = 2,760 \text{ #/Ft.} \]

From below
\[55.2 \times 10 \times \frac{12.5}{2} = 3,440 \]
\[55.2 \times 12.5^2 = 1,440 \]
\[\frac{7,640}{7,640} \text{ #/Ft.} \]

Elev. -22.5

From above
\[1,440 \times 2 = 2,880 \]

From below
\[55.2 \times 22.5 \times \frac{11}{2} = 6,830 \]
\[55.2 \times \frac{110^2}{2} \times \frac{1}{3} = 1,115 \]
\[\frac{14,265}{14,265} \text{ #/Ft.} \]

Elev. -33.5

From above
\[6,830 \]
\[1,115 \times 2 = 2,230 \]

From below
\[55.2 \times 33.5 \times \frac{10}{2} = 9,250 \]
\[55.2 \times \frac{100}{6} = \frac{920}{920} \text{ #/Ft.} \]
\[\frac{19,230}{19,230} \text{ #/Ft.} \]
From above

\[920 \times 2 = 1,840 \]

From below

See Chapter III and Appendix G. Assuming failure mechanism 1.

\[Q = 0.452(552)(43.5)(8) + 0.865(55.2)64 + 1.1 \left(\frac{18,300}{8} \right) \]

\[Q = 14,280 \text{ \#/Fr.} \]

\[9,250 + 1,840 + 14,280 = 25,370 \text{ \#/Fr.} \]

Summary - Waler Loading

<table>
<thead>
<tr>
<th>Waler Elev.</th>
<th>-10.0</th>
<th>-22.5</th>
<th>-33.5</th>
<th>-43.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load - #/Fr</td>
<td>7.6</td>
<td>14.3</td>
<td>19.2</td>
<td>25.4</td>
</tr>
</tbody>
</table>

Compute \(M_p \) for beam with rectangular loading.

\[E.W. = 2 \int_{0}^{L/4} \omega \phi x dx = \omega \phi \frac{L^2}{4} \]

1. \(W. = M_p \cdot 4 \phi \)
2. \(E.W. = I.W. \)
3. \(\omega \phi \frac{L^2}{4} = 4 \phi M_p \)

\[M_p = \frac{W \cdot L^2}{16} \]
M_p for 10 ft. and 13 ft. span at each elev.

10 ft. span

$$M_p = \frac{wL^2}{16} = \frac{w \cdot 10^2}{16} = 6.25w$$

13 ft. span

$$M_p = \frac{wL^2}{16} = \frac{w \cdot 13^2}{16} = 10.55w$$

Summary M_p (external)

<table>
<thead>
<tr>
<th>Elev.</th>
<th>-10.0</th>
<th>-22.5</th>
<th>-33.5</th>
<th>-43.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10' (EW)</td>
<td>47.5''-k</td>
<td>89.5''-k</td>
<td>120''-k</td>
<td>159''-k</td>
</tr>
<tr>
<td>13' (NS)</td>
<td>80.0''-k</td>
<td>151''-k</td>
<td>202''-k</td>
<td>268''-k</td>
</tr>
</tbody>
</table>

Summary - Moments and Forces

<table>
<thead>
<tr>
<th>Member</th>
<th>Mp</th>
<th>P</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elev. -10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10' EW</td>
<td>47.5</td>
<td>49.5</td>
<td>38.0</td>
</tr>
<tr>
<td>13' NS</td>
<td>80.0</td>
<td>38.0</td>
<td>49.5</td>
</tr>
<tr>
<td>Elev. -22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10' EW</td>
<td>89.5</td>
<td>93.0</td>
<td>71.5</td>
</tr>
<tr>
<td>13' NS</td>
<td>151.0</td>
<td>71.5</td>
<td>93.0</td>
</tr>
<tr>
<td>Elev. -33.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10' EW</td>
<td>120</td>
<td>120</td>
<td>96.0</td>
</tr>
<tr>
<td>13' NS</td>
<td>202</td>
<td>96.0</td>
<td>120.0</td>
</tr>
<tr>
<td>Elev. -43.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10' EW</td>
<td>159</td>
<td>165</td>
<td>127</td>
</tr>
<tr>
<td>13' NS</td>
<td>268</td>
<td>127</td>
<td>165</td>
</tr>
</tbody>
</table>
Compute members for each waler

Waler - Elev. -10.0 - EW beam

\[S_{\text{trial}} = \frac{47.5 \times 12}{1.14 \times 33.0} = 15.2 \text{ in}^3 \]

Try 8 WF24

\[A = 7.06, \quad A_f = 2 \times 6.5 \times 0.398 = 5.18 \]
\[A_w = 7.06 - 5.18 = 1.88 \]
\[\frac{A_f}{A_w} = 2.75 \]

Axial Load

\[P_y = 7.06 \times 33.0 = 233^k \]
\[\frac{P}{P_y} = \frac{49.5}{233} = 0.212 \]

From axial load diagram

\[\frac{M_{pe}}{M_p} = 0.92 \]

Shear

\[2a = 5.0, \quad a = 2.5, \quad d_w = 7.93 - 2(0.398) = 7.13 \]
\[\frac{a}{d_w} = \frac{2.5 \times 12}{7.13} = 4.2 \]

From shear diagram

\[\frac{M_{ps}}{M_p} = 0.95 \]

\[S_{\text{req'd}} = \frac{15.2}{(0.92)(0.95)} = 17.4 < 20.8 \]

Use 8 WF24
Valer - Elev. -10.0 - N5 beam

\[S_{ent} = \frac{80 \times 12}{1.14 \times 33} = 25.6 \]

Try 8WF31

\[A = 9.12, \quad A_E = 2 \times 8.0 \times 0.433 = 4.94 \]
\[A_W = 9.12 - 4.94 = 4.18 \]
\[\frac{A_E}{A_W} = 1.18 \]

Axial Load

\[\frac{P}{P_y} = \frac{38}{9.12 \times 33} = 0.126 \]
\[\frac{M_{ec}}{M_p} = 0.98 \]

Shear

\[2a = 6.5, \quad a = 3.25, \quad d_W = 8.0 - 2 \times (0.433) = 7.13 \]
\[\frac{a}{d_W} = \frac{3.25 \times 12}{7.13} = 5.48 \]
\[\frac{M_{ps}}{M_p} = 0.9 \]

\[S_{req'd} = \frac{25.6}{(0.98)(0.98)} = 26.7 < 27.4 \]

Use 8WF31
Naler - Elev. -22.5 - EW beam

\[S_{\text{tents.}} = \frac{89.5 \times 12}{1.14 \times 33} = 28.6 \]

Try 10WF33

\[A = 9.71 \quad A_F = 2 \times 7.96 \times 0.433 = 6.99 \]
\[A_W = 9.71 - 6.99 = 2.72 \]
\[\frac{A_F}{A_W} = 2.57 \]

Axial Load

\[\frac{P}{P_y} = \frac{93}{9.71 \times 33} = 0.290 \]

\[\frac{M_{pc}}{M_p} = 0.83 \]

Shear

\[a = 2.5, \quad d_w = 9.75 - 2(0.433) = 8.88 \]
\[\frac{a}{d_w} = \frac{2.5 \times 12}{8.88} = 3.38 \]
\[\frac{M_{ps}}{M_p} = 0.93 \]

\[S_{\text{req'd}} = \frac{28.6}{(0.83)(0.93)} = 38.3 \cdot 35.0 \cdot 42.2 \text{ Use 10WF39} \]
Water - Elev. -22.5, N5 beam

\[S_{tent.} = \frac{151 \times 12}{1.14 \times 33} = 48.2 \]

Try 10WF 49

\[A = 14.4 \quad A_F = 2(10.0)(0.558) = 11.2 \]
\[A_w = 14.4 - 11.2 = 3.2 \]
\[\frac{A_F}{A_w} = \frac{11.2}{3.2} = 3.5 \]

Axial Load

\[\frac{P}{P_y} = \frac{71.5}{14.4 \times 33.0} = 0.15 \]
\[\frac{M_{pc}}{M_p} = 0.95 \]

Shear

\[a = 3.25, \quad d_w = 10.0 - 2(0.558) = 8.88 \]
\[\frac{a}{d_w} = \frac{3.25 \times 12}{8.88} = 4.4 \]
\[\frac{M_{pc}}{M_p} = 0.95 \]

\[S_{req'd} = \frac{48.2}{(0.95)(0.95)} = 54.6 = 54.6 \]

Use 10WF 49
Water - Elev. -33.5, EW beam

Stent. = \(\frac{120 \times 12}{1.14 \times 33} = 38.3 \)

Try 12WF 40

\[A = 11.77 \quad A_F = 2(8.0)(0.516) = 8.25 \]
\[A_w = 11.77 - 8.25 = 3.52 \]
\[\frac{A_F}{A_w} = 2.34 \]

Axial Load

\[\frac{P}{P_y} = \frac{120}{11.77 \times 33} = 0.31 \]
\[\frac{M_{pc}}{M_p} = 0.81 \]

Shear

\[a = 2.5, \quad d_w = 11.94 - 2(0.516) = 10.91 \]
\[\frac{a}{d_w} = \frac{2.5 \times 12}{10.91} = 2.3 \]
\[\frac{M_{ps}}{M_p} = 0.85 \]

\[S_{req'd} = \frac{38.3}{(0.81)(0.85)} = 55.8 < 58.2 \]

Use 12WF 45
Water - Elev. -33.5, N5 beam

\[S_{tent} = \frac{202 \times 12}{1.14 \times 33} = 64.5 \]

Try 12WF65

\[A = 19.11 \quad A_F = 2(12.0)(0.606) = 14.5 \]
\[A_w = 19.11 - 14.5 = 4.6 \]
\[\frac{A_F}{A_w} = 3.15 \]

Axial Load

\[\frac{P}{P_y} = \frac{96}{19.1 \times 33} = 0.152 \]

\[\frac{M_{pe}}{M_p} = 0.95 \]

Shear

\[d_w = 12.12 - 2(0.606) = 10.91 \]
\[\frac{Q}{d_w} = \frac{3.25 \times 12}{10.91} = 3.28 \]
\[\frac{M_{ps}}{M_p} = 0.90 \]

\[S_{req'd} = \frac{64.5}{(0.95)(0.90)} = 75.5 \lesssim 88.0 \]

Use 12WF65
Water - Elev. - 43.5, EW Span

Stent. = \frac{159 \times 12}{1.14 \times 33} = 50.8

Try 14 WF 53

A = 15.59
A_f = 2 \times (8.06)(0.658) = 10.6
A_w = 15.59 - 10.6 = 5.0
A_f \quad A_w = 2.12

Axial Load

\frac{P}{P_y} = \frac{165}{15.59 \times 33} = 0.321

\frac{M_{pc}}{M_p} = 0.8

Shear

d_w = 13.94 - 2 \times (0.658) = 12.62
\frac{a}{d_w} = \frac{2.5 \times 12}{12.62} = 2.38
\frac{M_{ps}}{M_p} = 0.87

\frac{S_{reqd}}{(0.8)(0.87)} = 73.0 < 77.8

Use 14 WF 53
Water - Elev. - 43.5, N5 Span

\[S_{tent} = \frac{268 \times 12}{1.14 \times 33} = 82.2 \]

Try 14WF68

\[A = 20.0 \quad A_F = 2(10.04)(0.718) = 14.4 \]
\[A_W = 20.0 - 14.4 = 5.6 \]
\[\frac{A_F}{A_W} = 2.57 \]

Axial Load

\[\frac{P}{P_y} = \frac{127}{20 \times 33} = 0.19 \]
\[\frac{M_P}{M_P} = 0.92 \]

Shear

\[d_W = 14.06 - 2(0.718) = 12.62 \]
\[\frac{a}{d_W} = \frac{12 \times 3.25}{12.62} = 0.31 \]
\[\frac{M_{Ps}}{M_P} = 0.87 \]

\[S_{reqd} = \frac{82.2}{(0.92)(0.87)} = 103 = 103 \]

Use 14WF68
Strut Design

<table>
<thead>
<tr>
<th>Elev.</th>
<th>Load</th>
<th>Member</th>
<th>(\tau)</th>
<th>(A)</th>
<th>(\frac{L}{r})</th>
<th>(\frac{P}{P_y}) Allowable</th>
<th>(\frac{P}{P_y}) Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-10.0</td>
<td>76*</td>
<td>1.61</td>
<td>7.06</td>
<td>97</td>
<td>0.75</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>-22.5</td>
<td>142*</td>
<td>1.61</td>
<td>7.06</td>
<td>97</td>
<td>0.75</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>-33.5</td>
<td>192*</td>
<td>2.01</td>
<td>9.12</td>
<td>77.5</td>
<td>1.0</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>-43.5</td>
<td>254*</td>
<td>2.01</td>
<td>9.12</td>
<td>77.5</td>
<td>1.0</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Summary - Water Frames

Elev. - 10.0

Elev. - 22.5

Elev. - 33.5

Elev. - 43.5
Waler Corner Reinforcing

Required web thickness = $\frac{2S}{d^2}$

Diagonal stiffener thickness = $\frac{\sqrt{b}}{b} \left(\frac{5}{d} - \frac{Wd}{2} \right)$

<table>
<thead>
<tr>
<th>Elev. Member</th>
<th>S</th>
<th>d</th>
<th>W</th>
<th>W req'd</th>
<th>b</th>
<th>W stiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>-10.0</td>
<td>8WF31</td>
<td>27.4</td>
<td>0.288</td>
<td>8.0</td>
<td>0.402</td>
</tr>
<tr>
<td>10WF49</td>
<td>54.6</td>
<td>0.340</td>
<td>1.09</td>
<td>8.0</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>12WF65</td>
<td>88.0</td>
<td>0.390</td>
<td>1.2</td>
<td>10.0</td>
<td>0.578</td>
<td></td>
</tr>
<tr>
<td>14WF68</td>
<td>103.0</td>
<td>0.418</td>
<td>1.05</td>
<td>10.04</td>
<td>0.616</td>
<td></td>
</tr>
</tbody>
</table>

8
Typical Details

Web R and Stiffener
See previous page

Corner Detail

Stiffeners to match flange of strut

Strut Detail
APPENDIX A
MOMENT AND AXIAL LOAD

The stress pattern can be divided into two portions. One portion as (c), Figure A.1, to resist the bending moment and the second portion (d) to resist pure compression due to the axial load. The force available to resist the compression, P_y, would be $\sigma_y 2 y_o w$. If there were no moment in the section, the available plastic force, P_y, would be $\sigma_y (A_F + A_w)$.

Therefore:

$$\frac{P}{P_y} = \frac{\sigma_y 2 y_o w}{\sigma_y (A_F + A_w)}$$

Substituting $dw \cdot w$ for A_w,

$$\frac{P}{P_y} = \frac{2 y_o}{dw(1 + \frac{A_F}{A_w})} \quad \text{Equation A.1}$$
In a similar way the ratio of the available moment with an axial load, M_{pc}, to the moment with an axial load can be found. If no axial load were present $M_p = \sigma \left(\frac{1}{2} A_f d_f + \frac{1}{4} A_w d_w \right)$. From Figure A.1 the available moment with an axial force is:

$$M_{pc} = \sigma y (\frac{1}{2} A_f d_f + \frac{1}{4} A_w d_w - W y_0^2).$$

Therefore:

$$\frac{M_{pc}}{M} = 1 - \frac{4 y_0^2}{d_w^2 \left(1 + \frac{2 A_f d_f}{A_w d_w} \right)}$$ Equation A.2

Solving for y_0 in Equation A.1 and substituting in Equation A.2 we obtain:

$$\frac{M_{pc}}{M_p} = 1 - \left[\frac{P}{P_y} \left(1 + \frac{A_f}{A_w} \right) \right]^2 \frac{1}{\left(1 + \frac{2 A_f d_f}{A_w d_w} \right)}$$ Equation A.3

Equation A.3 shows reduction of available plastic moment due to an axial load when the neutral axis is in the flange and is plotted in Figure.

For the case of the neutral axis in the web a similar expression can be developed:

$$\frac{M_{pc}}{M_p} = \frac{2 \frac{d}{d_w}}{1 + \left(1 + \frac{d}{d_w} \right) \frac{A_f}{A_w} \left[\frac{A_f}{A_w} - \left\{ \frac{P}{P_y} \left(1 + \frac{A_f}{A_w} \right) - 1 \right\} \right]}.$$ Equation A.4
APPENDIX B
SHEAR

The fundamental relationship between moment and shear is $M = Vd$ where "d" is the distance along the beam to a point of contraflexure and "V" is the shear at that point. In the case of a uniform load an equivalent "V" and "d" is used. The moment, then, to be resisted is V_d.

Figure B.1
Stress Distribution - Section Partially Plastic

Considering Figure B.1, the available resisting moment is $M_p = \sigma_y \frac{yw}{3} y_o^2$. Substituting V_d for M_{plv} we get:

$$y_o^2 = -\frac{3}{\sigma_y w} (V_d - M_p) \quad \text{Equation B.1}$$

or

$$y_o^2 = -\frac{3}{\sigma_y w} (M_{plv} - M_p)$$
It is necessary now to find a relationship between y_0, σ_y and V. In an elementary section, $\sigma_x = \sigma_y$. Therefore, in the elastic range $\sigma_x = \sigma_y \frac{y}{y_0}$. Differentiating with respect to x,

$$\frac{\delta \sigma_x}{\delta x} = \sigma_y \left[- \frac{y_0' y}{y_0^2} \right].$$

Since $\frac{\delta \tau}{\delta y} = -\frac{\delta \sigma_x}{\delta x}$,

$$\frac{\delta \tau}{\delta y} = \sigma_y \frac{y_0' y}{y_0^2}.$$

Integrating between y and y_0 gives

$$\tau = \frac{\sigma_y}{2} \cdot y_0 \left[\left(\frac{y}{y_0} \right)^2 - 1 \right] \quad \text{Equation B.2}$$

Differentiating Equation B.1

$$2y_0y_0' = -\frac{3}{\sigma_y} w' V \quad (d \text{ and } M_P \text{ are } f(x))$$

$$y_0 = \frac{3}{2w' y_0} \cdot \frac{V}{\sigma_y}$$

Substituting in Equation B.2,

$$\tau = \frac{3}{4} \cdot \frac{V}{w} y_0 \left[1 - \left(\frac{y}{y_0} \right)^2 \right].$$
Assuming that $\tau_{\text{max}} = \frac{\sigma_y}{\sqrt{3}}$ and exists in the center of the section $\sqrt{3}$ where $y = 0$,

$$y_0 = \frac{3\sqrt{3}V}{4\omega y}$$

Substituting this in Equation B.1

$$0.563 \frac{V^2}{\omega y} = M_p (1 - \frac{V_d}{M_p}) \text{ Equation B.3}$$

The plastic moment (M_p) in Equation B.3 is the available moment if there were no shear force present and is:

$$M_p = \left[\frac{Af \, df}{2} + \frac{Aw \, dw}{4} \right] \sigma_y$$

Substituting this value in Equation B.3 and using M_{pv} for V_d gives:

$$0.563 \left(\frac{M_{pv}}{M_p} \right) \left(\frac{dw}{2d} \right)^2 \left[1 + 2 \frac{Af \, df}{Aw \, dw} \right] + \frac{M_{pv}}{M_p} - 1 = 0$$

A column under given lateral loads will have an added moment increment at its midpoint equal to the axial load times the deflection: \[\Delta M = P \Delta y_0. \]

Assuming a deflection curve as in Figure C.1,

\[\Delta y = \Delta y_0 \cos \frac{\pi x}{L} \]

Since \(\phi = \frac{d^2 y}{dx^2} \),

\[\Delta \phi_0 = \frac{d}{dx^2} (\Delta y) = \frac{d}{dx^2} (\Delta y_0 \cos \frac{\pi x}{L}) \]

\[\Delta \phi_0 = \Delta y_0 \frac{\pi^2}{L^2}. \]
and \(\Delta y_0 = \Delta \phi_0 \frac{L^2}{\pi^2} \).

\[\Delta M = P \Delta y_o = P \Delta \phi_0 \frac{L^2}{\pi^2} \]

\[\frac{\Delta M}{\Delta \phi_0} = \frac{PL^2}{\pi^2} \quad \text{Equation C.1} \]

now: \(\phi_y = \frac{My}{EI} \)

\[\frac{\phi_y}{My} = \frac{1}{EI} \quad \text{Equation C.2} \]

Multiplying Equation C.1 by Equation C.2,

\[\frac{\Delta M}{\Delta \phi_0} \cdot \frac{\phi_y}{My} = \frac{PL^2}{\pi^2 EI} \quad \text{Equation C.3} \]

also \(P_y = \sigma_y A, \quad \frac{\sigma_y A}{P_y} = 1 \).

Multiplying the right hand side of Equation C.3 by the above:

\[\frac{\Delta M}{\Delta \phi_0} \cdot \frac{\phi_y}{My} = \frac{PL^2}{\pi^2 EI} \cdot \frac{\sigma_y A}{P_y} \cdot \frac{P_y}{P_y} \]

\[\frac{\Delta M}{\Delta \phi_0} \cdot \frac{\phi_y}{My} = \frac{P \sigma_y}{P_y \pi^2 E} \left(\frac{L}{r} \right)^2 \]

\[\therefore \frac{d \left(\frac{M}{My} \right)}{d \left(\frac{\phi_0}{\phi_y} \right)} = \frac{P \sigma_y}{P_y \pi^2 E} \left(\frac{L}{r} \right)^2 \quad \text{Equation C.4} \]
Equation C.4 represents the change in moment with respect to curvature for the external moments. The use of M_y and ϕ_y in the left hand side of the equation are for convenience when considering the internal equations.

The derivation of internal moment equations for wide-flange shapes follows. The objective in this analysis is to relate the internal moment resisting capacity of a section to the curvature. By equating the first derivative of this equation to Equation C.4 the ratio $\frac{\phi}{\phi_y}$ is obtained. Substituting this ratio in the original internal moment equation $\frac{M}{M_y}$ is obtained. We then will be able to plot $\frac{M}{M_y}$ versus $\frac{\phi}{\phi_y}$ with various values of L/r.

![Stress and Strain Distribution Plastic Portion in Flange]

Figure C.2
Stress and Strain Distribution Plastic Portion in Flange
Figure C.2 shows the deformation and stress distribution of a wide-flange beam under moment with the plastic condition in the flange only.

\[M = Z \left(\frac{\phi}{\phi_y} \sigma_y \right) - \frac{WF}{Z} \sigma_y \left(\frac{\phi}{\phi_y} - 1 \right) \frac{d (\phi - \phi_y)}{E \phi^2} \]

\[d - \frac{2}{3} d \left(\frac{\phi - \phi_y}{2 \phi} \right) \]

Dividing the above equation by \(M_y = Z \sigma_y \) and reducing,

\[\frac{M}{M_y} = \frac{\phi}{\phi_y} - \frac{WF \sigma_y}{6Z} \left[\frac{\phi}{\phi_y} + 2 \left(\frac{\phi}{\phi_y} \right)^2 - 3 \left(\frac{\phi}{\phi_y} \right)^3 \right]. \]

Equation C.5

\[\frac{d \left(\frac{M}{M_y} \right)}{d \left(\frac{\phi}{\phi_y} \right)} = 1 - \frac{WF \sigma_y}{6Z} \left[1 - 4 \left(\frac{\phi}{\phi_y} \right)^3 + 9 \left(\frac{\phi}{\phi_y} \right)^4 \right]. \]

Equation C.6
Figure C.3 shows the deformation and stress distribution of a wide-flange beam under moment with plastic condition in the web.

\[
M = \sigma_y A_F (d - T_F) + \sigma_y T_w \left(\frac{d w - \frac{\phi_y}{\phi} \cdot d}{z} \right) \left[d w - \left(\frac{d w - \frac{\phi_y}{\phi} \cdot d}{z} \right) + \frac{\sigma_y}{\phi} T_w \cdot \frac{\phi_y}{\phi} \cdot \frac{d}{z} \cdot \frac{4}{3} \cdot \frac{\phi_y}{\phi} \cdot \frac{d}{z} \right]
\]

Dividing the above equation by \(M = Z \sigma_y \) and reducing,
\[
\frac{M}{M_y} = \frac{AF}{Z} (d - T_e) + \frac{Tw}{Z} \left[\frac{d}{z} \left(\frac{\phi}{\phi_y} \right)^{-1} - \frac{1}{12} \left(\frac{\phi}{\phi_y} \right)^{-2} \right].
\]

Equation C.7

\[
\frac{d(M/M_y)}{d(\phi/\phi_y)} = \frac{Tw}{Z} \left[-\frac{d}{z} \left(\frac{\phi}{\phi_y} \right)^{-2} + \frac{1}{6} \left(\frac{\phi}{\phi_y} \right)^{-3} \right].
\]

Equation C.8

Figure C.4

Stress and Strain Distribution
Entire Section in Elastic Range

Figure C.4 shows the deformation and stress distribution of a wide-flange beam under moment with the entire section in the elastic range.
We now have three pairs of equations relating moment and curvature. We must now add the effect of an axial load.

\[P_y = \sigma y A, \quad P = \sigma A \]

\[\frac{P}{P_y} = \frac{\sigma}{\sigma y}, \quad \sigma = \frac{P \sigma y}{P_y}. \]

Multiplying both sides of the above equations by \(Z \),

\[\sigma Z = \frac{P}{P_y} \sigma y Z, \quad M = \frac{P}{P_y} M_y \]

\[\therefore \frac{M}{M_y} = \frac{P}{P_y}. \]

Equations C.5, C.7 and C.9 are modified by subtracting \(\frac{P}{P_y} \) from the right hand side. A summary of the moment-curvature equations follows.
SUMMARY OF M-φ EQUATIONS

Internal Equations

\(0 < \frac{\phi}{\phi_y} < 1 \)

\[
\frac{M}{M_y} = \frac{\phi}{\phi_y} - \frac{P}{P_y}
\]

\[
\frac{d}{d\left(\frac{M}{M_y}\right)} = 1
\]

\(1 < \frac{\phi}{\phi_y} < \frac{d}{dw} \)

\[
\frac{M}{M_y} = \frac{\phi}{\phi_y} - \frac{Wd}{6Z} \left[\frac{\phi}{\phi_y} + 2 \left(\frac{\phi}{\phi_y} \right)^2 - 3 \left(\frac{\phi}{\phi_y} \right)^3 \right] - \frac{P}{P_y}. \]

\[
\frac{d}{d\left(\frac{M}{M_y}\right)} = -\frac{Wd}{6Z} \left[1 - 4 \left(\frac{\phi}{\phi_y} \right)^3 + 9 \left(\frac{\phi}{\phi_y} \right)^4 \right].
\]

\[
\frac{d}{dw} < \left(\frac{\phi}{\phi_y} \right) < \infty
\]

\[
\frac{M}{M_y} = \frac{A_F}{Z} (d - T_r) + \frac{T_w}{Z} \left[\frac{dw}{Z} \left(\frac{\phi}{\phi_y} \right)^{-1} \frac{d^2}{dz} \left(\frac{\phi}{\phi_y} \right)^{-3} \right] - \frac{P}{P_y}. \]

\[
\frac{d}{d\left(\frac{M}{M_y}\right)} = \frac{T_w}{Z} \left[- \frac{dw}{Z} \left(\frac{\phi}{\phi_y} \right)^{-2} + \frac{d^2}{dz} \left(\frac{\phi}{\phi_y} \right)^{-3} \right].
\]

External Equation

\[
\frac{d}{d\left(\frac{M}{M_y}\right)} = \frac{P}{P_y} \frac{\phi_y}{\pi^2 E} \left(\frac{L}{T} \right)^2.
\]
The various failure mechanisms are as follows:
Mechanism III

Equate External Work to Internal Work and determine lowest value of P in terms of M_p.

Mechanism I

E.W. = $ZP \cdot \phi \cdot L$

I.W. = $M_p \phi + 2M_p \cdot 2\phi + M_p \cdot \phi = 6M_p\phi$

$ZP\phi L = 6M_p\phi$

$P = 3 \frac{M_p}{L}$

Mechanism II

$P\phi L + ZP\phi L = M_p\phi + 2M_p \cdot 2\phi + M_p \cdot 2\phi + M_p\phi$

$P = \frac{8}{3} \frac{M_p}{L}$

Mechanism III

$P\phi L = 4M_p\phi$

$P = \frac{4M_p}{L}$
The lowest value of P is Mechanism II.
A plasticity check is now made by drawing the moment diagram to insure that no moments exceed the plastic moment.

\[\text{Loading Diagram} \]

\[\text{Moment Diagram} \]

No moments in the above diagram exceed the plastic moment of the member.
APPENDIX E
SAMPLE PROBLEM-DEFLECTIONS

Figure E.1 Sample Problem.

Assume last hinge to form is "A."

\[\theta_A = \theta_A' + \frac{A}{L} + \frac{L}{2EI} \left[M_{AB} - \frac{M_{BA}}{2} \right]. \]

\(\theta_A = 0, \) rotation has not begun.

\(\theta_A' = 0, \) no loads between "A" and "B."

\[M_{AB} = -M_P \]

\[M_{BA} = -\frac{M_P}{2} \]

\[0 = \frac{A}{L} + \frac{L}{2EI} \left[-M_P + \frac{M_P}{4} \right]. \]

\[\Delta = \frac{3}{8} \frac{L^2}{EI} M_P. \]

Assume last hinge at "B." Even though continuity is assumed at "B" there will be rotation at that point. Therefore, it will be necessary to write equations for
beam BA and beam BC and solve simultaneously.

Beam BA

\[\theta_{BA} = \theta + \frac{L}{2EI} (M_{BA} - \frac{M_{AB}}{2}) \]

\[\theta_{BA} = \frac{\Delta}{L} + \frac{L}{2EI} (-\frac{M_{P}}{2} + \frac{M_{P}}{2}) \]

\[\theta_{BA} = \frac{\Delta}{L} \]

Beam BC

\[\theta_{BC} = -\frac{\Delta}{L} - \frac{L}{4EI} \frac{M_{P}}{2} \]

\[\theta_{BC} = -\frac{\Delta}{L} - \frac{L}{4EI} M_{P} \]

\[\theta_{BA} = \theta_{BC} \]

\[\frac{\Delta}{L} = -\frac{\Delta}{L} - \frac{L}{4EI} M_{P} \]

\[\Delta = -\frac{L^{2}}{8EI} M_{P} \]

Assume the last hinge at "C."

\[\theta = \frac{\Delta}{L} + \frac{L}{2EI} (M_{CB} - \frac{M_{BC}}{2}) \]

\[\theta = \frac{\Delta}{L} + \frac{L}{2EI} (2M_{P} - \frac{M_{P}}{4}) \]

\[\Delta = -\frac{L^{2}}{8EI} M_{P} \text{, the largest deflection.} \]
APPENDIX F
DISTRIBUTED LOADS

The purpose of this section is to derive general equations for the plastic moment and the location of the plastic hinge for a beam with triangular and rectangular loading.

Figure F.1
Failure Condition with Distributed Load

External Work

\[E.W. = \omega h \int_0^a \frac{a}{a} x \, dx + \omega \int_0^a \frac{L-a}{a} x^2 \, dx + \omega \int_0^{L-a} (L-a) \, dx + \omega \int_0^{L-a} (L-x) x \, dx. \]
Internal Work

Internal Work

\[I.W. = M_p \left[\phi + \frac{\phi L}{a} + \phi \left(\frac{L - a}{a} \right) \right]. \]

\[I.W. = 2 M_p \phi \frac{L}{a} \]

External Work = Internal Work

\[2 M_p \phi \frac{L}{a} = \frac{w \phi}{6} \left[-3h a l - L a^2 - 2a^3 + 3hL^2 + 3L^3 \right]. \]

\[M_p = \frac{w}{12} \left[-3h a^2 - a^3 - \frac{2a^4}{L} + 3h a L + 3aL^2 \right] \]

Equation F.1

Differentiating with respect to "a" to determine minimum value of \(M_p \).

\[\frac{dM_p}{da} = \frac{w}{12} \left[-6a h L - 3a^2 - \frac{8a^3}{L} + 3hL^2 + 3L^2 \right] = 0 \]

\[-6a h L - 3a^2 - \frac{8a^3}{L} + 3hL^2 + 3L^2 = 0 \]

Equation F.2
APPENDIX G
SHEET PILE PENETRATION

Figure G.1
Sheet Pile Penetration—Mechanism I

$m_h = \text{Coefficient of Horizontal Subgrade Reaction}$

Passive Force $= \frac{1}{3} m_h \phi L (L-h)^2$.

$\Sigma H = 0 \quad Q + \frac{1}{3} m_h \phi L (L-h)^2 = qL + \frac{\omega L^2}{2}$. Equation G.1

$\Sigma M = 0 \quad \frac{1}{3} m_h \phi L (L-h)^2 \left(\frac{3L+h}{4} \right) = \frac{qL^2}{2} + \frac{\omega L^3}{3} - M_p$. Equation G.2

External Work
\[
E.W. = q \int_0^L x \phi \, dx + \int_0^l \omega x \, dx \phi x - \frac{1}{2} \int_h^L \phi \left((h+x)^2 \right) \, dx.
\]
\[
E.W. = \frac{q \phi L^2}{2} + \frac{\omega \phi L^3}{3} - \frac{m \phi^2}{2} \left[\frac{h^2 (l-h)^2}{2} + \frac{2h (l-h)^3}{3} + \frac{(l-h)^4}{4} \right].
\]

Internal Work
\[
I.W. = M_p \phi
\]
\[
E.W. = I.W.
\]
\[
M_p \phi = \frac{q \phi L^2}{2} + \frac{\omega \phi L^3}{3} - \frac{m \phi^2}{2} \left[\frac{h^2 (l-h)^2}{2} + \frac{2h (l-h)^3}{3}
\right.
\]
\[
+ \left. \frac{(l-h)^4}{4} \right].
\]

Rearranging terms,
\[
\frac{q \phi L^2}{2} + \frac{\omega \phi L^3}{3} = M_p + \frac{m \phi^2}{2} \left[\frac{h^2 (l-h)^2}{2} + \frac{2h (l-h)^3}{3}
\right.
\]
\[
+ \left. \frac{(l-h)^4}{4} \right]. \text{ Equation G.3}
\]

Combining Equations G.2 and G.3,
\[
\frac{1}{3} m \phi (l-h)^2 \left(\frac{3L + h}{4} \right) = \frac{m \phi^2}{2} \left[\frac{h^2 (l-h)^2}{2} + \frac{2h (l-h)^3}{3}
\right.
\]
\[
+ \left. \frac{(l-h)^4}{4} \right].
\]

Reducing,
\[
h^2 + 2hl + 3l^2 - 6l - 2h = 0 \quad \frac{L}{h} = 1.55
\]
Solve for Q:

Rearranging Equation G.1,
\[Q = qL + \frac{\omega L^2}{2} - \frac{1}{3} mh \phi L (L-h)^2. \] Equation G.1

Rearranging Equation G.2,
\[\frac{1}{3} mh \phi (L-h)^2 = \frac{4}{3L+h} \left[\frac{qL^2}{2} + \frac{\omega L^3}{3} - Mp \right]. \]

Solving simultaneously:
\[Q = qL + \frac{\omega L^2}{2} - \frac{4}{3L+h} \left[\frac{qL^2}{2} + \frac{\omega L^3}{3} - Mp \right]. \]

For \(h = 0.645L \)
\[Q = 0.452 qL + 0.865 \omega L^2 + 1.1 \frac{Mp}{L} \]
Figure G.2
Sheet Pile Penetration-Mechanism 2

Unknowns: \(a, b, L, Q \) and \(\phi \)

Equations:

\[
\begin{align*}
\Sigma H &= 0 \\
\Sigma M &= 0 \\
I.W. &= E.W. \\
\frac{d(M_p)}{d b} &= 0 \\
\frac{d(M_p)}{d a} &= 0 \\
\text{Passive Force} &= m h \phi \int_{0}^{L-h} (L+a-h-x)x \, dx \\
\text{P.F.} &= \frac{m h \phi}{6} \left[L^3 - 2hL^2 + h^2L + 3aL^2 - 6hLa + 3ah^2 - hL^2 + 2h^2L - h^3 \right].
\end{align*}
\]
\[\Sigma H = 0 \]

\[Q + \frac{m h \phi}{6} \left[L^3 - 2 h l^2 h + 3 a l^2 - 6 h l a + 3 a h^2 \right. \]

\[- h l^2 + 2 h^2 l - h^3 \] = \(Q L + \frac{w L^3}{2} \). Equation G.3

Moment of Passive Force about Q.

\[M_{\text{passive}} = mh \phi \int \left[(L + a - h - x)(h + x) x \right] dx \]

\[M_{\text{passive}} = 12 mh \phi \left[L^4 - 2 hl^3 + 4L^3 a - 18L^2 a h \right. \]

\[+ 24 h^2 l a - 10 h^3 a + 2h^3 l - h^4 \]

\[\Sigma M = 0 \]

\[12 mh \phi \left[L^4 - 2 hl^3 + 4L^3 a - 18L^2 a h + 24 h^2 l a \right. \]

\[- 10 h^3 a + 2h^3 l - h^4 \] = \(\frac{qL^2}{2} + \frac{wL^3}{3} - M_p \).

Equation G.4

External Work

\[E.W. = \phi q \int \left(\frac{L + a - b}{b} \right) x \ dx + \phi \omega \left(\frac{L + a - b}{b} \right) \int x^2 dx \]

\[+ (q + \omega b) \phi \int (L + a - x) dx + \phi \omega \int (x - b)(L + a - x) dx \]

\[- \frac{m h \phi}{2} \int \left(L + a - h - x \right) \left(L + a - h - x \right) \phi \ x \ dx. \]
Internal Work

\[I_W = M_p \frac{(L + a - b)}{b} + M_p \frac{(L + a)}{b} \phi. \]

Equating Internal Work to external work and solving for \(M_p \).

\[
M_p = \frac{b}{2L + 2a - b} \left\{ \frac{bql}{2} - \frac{ab^2}{2} - \frac{gb^2}{3} \right\}

- \frac{2wba}{3} + \frac{wb^3}{L} + \frac{qL^2}{2} + \frac{aLq}{2} + 2awbL

+ \frac{3L^3 \omega}{2L^2 a} - \frac{m\Phi}{24} \left[L^4 + 4L^3 a - 4L^3 h - 12L^2 ah \right.

- 6a^2L^2 + 3L^2 h^2 + 12haL + 12a^2hL - 4h^3L - 4h^3a

\left. - 6a^2h^3 + h^4 \right]\]. Equation G.5

Equation G.5 should be differentiated with respect to "a" and "b" and equated to zero. These two equations together with Equations G.3, G.4 and G.5 should then be solved simultaneously for \(M_p, Q \) and \(L \).
REFERENCES

Beedle, Lynn S. Plastic Strength of Steel Frames

Beedle, Lynn S., Thurlmann, Bruno and Ketter, Robert L.
Plastic Design in Structural Steel. Lecture Notes, Summer Course, Sept., 1955. (Lehigh University, Bethlehem, Penna., 1957)

