


 

102 

 

 

touchdown will be created for each flight entry in the dataset. By doing so, we will be 

able to distinguish between flights with CDA and flights Non-CDA descent profile for 

CDA instances analysis. The CDA instances analysis could be flights-focus or time-

focus. For flight-focus examples, the descent profile for two flight entries from BNA 

dataset is illustrated in Figure 5.6 and Figure 5.7, respectively. Figure 5.6 shows the 

descent profile, as been generated from our Descent Profile Analytics module, of a 

Falcon 20— a small business jet and thus belongs to the Small weight class we have 

grouped from the data—with a clear Non-CDA profile as it shows a step-down descent 

that entirely differs from CDA profile. Similarly, Figure 5.7 shows a descent profile but 

for another small aircraft, Hawker 400, that exhibits a smooth, CDA profile from cruise 

altitude of 23,000 ft to touchdown. For time-focus CDA instances analysis, Figure 5.8 

shows the count of descent profiles at BNA grouped by aircraft weight classes, the hour 

of the day for the time block expressed by the data, and the label of the descent profile 

(i.e., CDA or Non-CDA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Descent Profile of Falcon 20 Aircraft (small business jet) at BNA Shows a 

     Typical step-down Descent Arrival. 
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Figure 5.7 Descent Profile of Hawker 400 Aircraft (small business jet) at BNA Shows a 

 Typical CDA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Summary of Descent Profile Instances at BNA Shows Level of CDA 

Adoptability Analyzed based on Hour of the Day and Aircraft Weight Class. 
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5.5 CDA Predictive Analytics Module 

 

Two distinct statistical classifiers used to build a CDA predictive model. The first 

classifier is an ensemble classification model that combines multiple decision trees into a 

single model with boosting method to improve the prediction accuracy of CDA instances, 

while the second classifier is Support Vector Machines (SVM) that extends the support 

vector classifier to non-linear boundary between binary classes by enlarging the feature 

space. 

5.5.1 Decision Trees with AdaBoost 

An ensemble of classification and regression trees (CART) was used to build a CDA 

predictive model. The main strategy of CART is to partition a sample of data using 

binary rules to split parent nodes so the child nodes are more homogeneous than the 

parent node. CART models can be built for classification or regression problems and 

have the ability to handle very high-dimensional datasets. Additionally, CART have 

advantages of such as easy interpretability through graphical representation and ability to 

handle qualitative variable without the need to create dummy variables. The major 

disadvantage of CART models is in the accuracy level that may be lower than other 

classification methods (James et al., 2014). 

In this section, a CART classification model was built using decision trees to 

predict instances of CDA descent profile at BNA airport. To overcome the accuracy issue 

with CART decision trees and improve the performance of CDA predictive model, the 

Boosting approach was used. First presented in (Freund and Schapire, 1997) and 

extended to the concept of combining models together as an ensemble to reduce 
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misclassification error, bias, and variance in (Freund and Schapire, 1999), the Boosting 

algorithm is an efficient approach to predictive models building. We use a popular variant 

of the Boosting algorithm called AdaBoost (Freund and Schapire, 1999), abbreviated 

from Adaptive Boosting, to aggregate many decision trees sequentially and so each tree is 

grown using information from previously grown trees. 

5.5.2 Support Vector Machines 

First presented in (Vapnik and Vapnik, 1998), the approach taken by Support Vector 

Machines (SVM) method is to identify planes (in the case of multiple dimensions 

represented by many input variables in the prediction problem) that separates 

observations with different values of the target variable. Finding such hyperplanes would 

enable us to search for the plane that maximizes the area between the binary classification 

groups, which are in our case, CDA and Non-CDA profile. As the observations in BNA 

dataset are not linearly separable, fortunately the idea of creating new variables from the 

original input variables in the data (i.e., via feature engineering) will enhance variables 

separation through kernel function created by the SVM algorithm. A SVM with Gaussian 

Basis kernel function was used to build a CDA predictive model.   

5.5.3 Training, Validating, and Testing of CDA Predictive Model 

To build our CDA predictive model, we partition BNA dataset into three, independent 

subsets; 70% for training, 15% for validation, and 15% for testing. This partitioning is 

done randomly to ensure each subset is representative to the whole collection of 

observations in BNA dataset. We build—and train— our CDA predictive model using 

the training dataset. To evaluate the performance of our CDA predictive model but on 
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predictive model. In terms of Precision (i.e., the fraction of instances the classifier 

precisely predicted), the AdaBoost has a precision of 6/(6+0)=1, and the SVM has the 

same precision since 5/(5+0)=1. In terms of Sensitivity, also called true positive rate, 

which refers to the fraction of the descent profile instances detected by the classifier as 

CDA. The AdaBoost has a sensitivity of 6/(6+1)=85.7%, while the SVM was 

5/(5+2)=71.4% sensitive to predictions of descent profile classes. Finally, in terms of 

Specificity, also called true negative rate, which refers to the fraction of descent profile 

instances identified as Non-CDA. The AdaBoost has specificity of 12/(12+0)=1, and the 

SVM has the same specificity since 12/(12+0)=1 (Zumel and Mount, 2014). Considering 

these performance measures, the AdaBoost may be more suitable than SVM for building 

a CDA predictive model to predict CDA instances at airports. 

Table 5.6 Error Matrix for CDA Predictive Model using AdaBoost 

 

Counts Predicted 

Actual CDA Non-CDA Total 

CDA 
6 1 7 

Non-CDA 
0 12 12 

Total 
6 13 19 

 

 

Table 5.7 Error Matrix for CDA Predictive Model using SVM 

 

Counts Predicted 

Actual CDA Non-CDA Total 

CDA 
5 2 7 

Non-CDA 
0 12 12 

Total 
5 14 19 
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implementation has been limited to light to moderate traffic, and a large stacking space 

on developing methods. In spite of the large research efforts conducted in this area, little 

attention has been given to develop metrics that help ATC estimate threshold in which 

CDA would be safe to implement for certain traffic levels. This dissertation focused on 

contributing to fill this gap by developing analytical and predictive models that can be 

used to capture that measure.   

In this dissertation, models are developed that aim at addressing the 

accommodation of more CDA operations during higher traffic levels than currently 

acceptable. The models introduced are divided into two main components; CDA 

Adoptability (CDA-A), and CDA Predictability (CDA-P). By definition, CDA-A refers 

to the level of CDA operations an airport can safely and efficiently accommodate and 

accept per hour. Mathematically, CDA-A is expressed by the CDA Adoptability Factor 

(CDA-AF), which is the ratio of average arrival hourly rate of CDA operations at an 

airport, 
CDA , to total aircraft arrival hourly rate at that airport (i.e., Airport Arrival Rate 

"AAR"). On the other hand, CDA-P refers to the ability of predicting CDA operations, 

with high accuracy, based on specific operational and weather features during high traffic 

levels, which will provide improved tactical management and enhanced adoptability to 

CDA operations under future but similar traffic and weather conditions. 

Analyzing airspace structure around airport offers a systematic way of developing 

an analytical model that adequately captures the elements associated with descent and 

approach procedures. As it was shown in Chapter 3 of this dissertation, detailed 

description to descent and approach procedures, in the light of the two, commonly used 
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descent profiles; CDA and Step-down Descent Approach (SDA). Furthermore, detailed 

comparison between CDA and SDA was presented to reveal the technical differences 

between these descent profiles from an operational stand point. This paved the way to 

introduce the concept of CDA-A, and its metric, CDA-AF, and to further investigate the 

factors that plays a critical role in affecting CDA-A, which include, but not limited to, 

AAR, arrival mix and separation requirements, wind speed and direction, airspace 

constraints, and traffic at neighboring airports. As a building block to CDA-A model, 

time aircraft take to land under CDA and SDA was estimated using two distinct methods; 

descent rules of thumb, and Base of Aircraft Data's (BADA) Aircraft Performance Model 

(APM). The two methods were described in detail and compared in terms of level of 

complexity, aircraft weight requirement, and consideration of wind effect. While a 

computational algorithm was developed to facilitate and carry out the calculations of 

aircraft's estimated landing time using descent rules of thumb, the calculations using 

BADA APM were carried out using BADA's online calculation tool; Aircraft 

Performance Calculation (APC). Finally, the results from the two methods were 

evaluated against actual landing times for various aircraft landed on Nashville 

International Airport (BNA). It is found that our computational algorithm provides an 

acceptable error rate for a strategic guidance to ATC. 

Building on the preliminaries presented in Chapter 3, and based on our 

comprehensive analysis for the parameters that governs CDA implementation during high 

traffic levels, such as terminal maneuvering area (TMA) and size of stacking space to 

stack aircraft arrivals, the CDA-A model was introduced and detailed to define and 

capture a threshold beyond which CDA becomes unsafe to adopt. Based on this analysis, 
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two probabilities were captured and presented, the first probability defines CDA 

threshold, while the second probability represents the upper bound of the system. In the 

CDA-A model, these parameters can be captured in a single measure, which we 

distinguish as the Probability of Blocking, which is defined as the fraction of time an 

aircraft's request to embark on CDA is denied principally due to safety and because the 

stacking space within the TMA is busy and congested. Essentially, the significance of 

this measure is to help answer a pressing question that ATC face during high traffic 

periods: How many CDA operations the airport can safely and efficiently accommodate 

and up to what traffic intensity? The CDA-A model and its output, the Probability of 

Blocking, help answer the question to provide better tactical decision making through 

efficient management to adopt more CDA operations during high traffic levels. 

Currently, we found that the CDA-A model can be used to capture the threshold 

beyond which CDA would be unsafe to adopt, CDA-A was applied through a numerical 

example using simulated data. A scenario was developed to represent a traffic at mid-

sized international airport during an afternoon busy level of demand, typically between 

1200 and 1700 local time. A number of parameters used in the development process of 

CDA-A model and have direct influence on CDA adoptability were identified, such 

AAR, size of stacking space, and aircraft approach speed, with typical ranges for these 

parameters were defined based design standards and previous pattern from historical data. 

The CDA-A application results revealed that when the probability of blocking for CDA 

and SDA calculated and fitted, a high probability of blocking for CDA indicates that it is 

unlikely to adopt CDA at the corresponding AAR, yet it is unlikely to revert to SDA, as it 

is so unlikely to start descending with CDA at the first place. Furthermore, CDA-A 
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application results revealed critical operational points at which the probability of 

blocking for CDA and SDA intersects when plotted against AAR. These critical points 

capture the challenge that ATC faces at high traffic levels when attempt to adopt more 

CDA operations. At these critical points, the probability of blocking for CDA is low, 

indicating that it is likely to adopt CDA at a corresponding high AAR. However, with the 

intersection with the probability of blocking for SDA, it also indicates that it is likely to 

revert to SDA. As such, the probability of blocking has identified and captured the 

threshold beyond which CDA adoption would be unsafe at these critical points. 

To validate the CDA-A model, actual data of flights operated to Nashville 

International Airport (BNA) was used. These flight data have been extracted from off-

line flight tracking logs, pre-processed, analyzed, and systematically visualized in order 

to capture the descent profile of each flight to indicate whether it would be CDA or Non-

CDA (i.e., SDA). The validation approach was set to test that the results obtained from 

the CDA-A model application using simulated data would match the expected behavior. 

A sensitivity analysis to the parameters considered in developing the CDA-A model by 

running the simulation multiple times and varying the parameters over range of high and 

low values. When applying the CDA-A model using the actual flight data from BNA 

airport, it has shown that at airport arrival of 26 aircraft per hour, no more than three 

consecutive CDA instances were observed. When investigating the impact of minimum 

separation distance on the probability of blocking, flight data from BNA airport shows 

that—as anticipated—an increase in separation distance will corresponds to an increase 

in the probability of blocking, especially at higher airport arrival rates. Furthermore, 

when CDA-A model was applied on BNA actual flight data, it was found that as the 
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probability of blocking help determines the threshold beyond which CDA is unsafe to be 

adopted during an airport arrival rate, it provide an effective metric to estimate the arrival 

rate of CDA operations. This estimation could be carried out through a typical counting 

process for CDA instances that has been successfully adopted once CDA-A model is 

applied and the probability of blocking calculated. As such, the arrival rate of CDA 

operations was estimated, and CDA-AF, along with the probability of blocking using 

BNA flight data were calculated. As an example, it was shown that the CDA-A model 

capture CDA threshold at local time 1500, when AAR was 26 aircraft per hour, and the 

number of CDA instances—based on CDA-A validation process—was 13 instances, 

which provide an estimate for arrival rate of CDA operations, CDA-AF was calculated as 

0.5, meaning CDA-A was 50%, with the probability of blocking, on average, is 0.02435. 

For the CDA-P, an indirect data-driven CDA model was developed essentially 

based on data-driven system approach and aim at extraction of traffic features, such as 

aircraft type and speed, altitude, and rate of descent; and weather features, such as wind 

speed and direction, from off-line flight tracking logs. The framework consists of two 

modules Descent Profile Analytics, and CDA Predictive Analytics, with objective to 

develop CDA predictive models that predicts CDA instances during high traffic periods 

at airports. The data used for analysis comprised of two components; traffic and weather 

data. The traffic data represents flights arrivals to a major US airport; Nashville 

International Airport (BNA) on June 17th, 2015, between the hours of 1200 and 1700 

local time. data has been provided by flight tracking information provider (i.e., 

FlightAware.com) that provides on-line tracking services to flights from and to airports 

via the FAA's ASDI (Aircraft Situation Display to Industry) and using Automatic 
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Dependent Surveillance - Broadcast (ADS-B) stations. Since the information in the off-

line flight tracking logs were specifically reported from ADS-B stations, then the data 

that can be extracted from this logs considered to be spatio-temporal data and thus would 

accurately approximates the 4D (latitude, longitude, altitude, and time) of aircraft's 

position over flight trajectory. On the other hand, the weather data are obtained from the 

Meteorological Aviation Reports (METAR) generated from the METAR stations. 

As an example of the challenges faced when preparing the off-line flight tracking 

data for modeling, missing values treatment was carried out to deal with missing data, 

such as disconnection of ADS-B reporting of an aircraft's position and repetition of a 

flight instance with the same unique Flight ID entry but with different time reporting. 

Furthermore, Feature Engineering (FE), the process of using domain knowledge on 

transforming extracted information from raw data into features that better represent the 

underlying problem to predictive modeling, and ultimately, resulting in improved 

accuracy on unseen data. FE was used in this work to create new features from BNA 

dataset after preparing and processing the off-line flight tracking logs raw data. Features 

created using FE include examples such as aircraft weight classes (e.g., Heavy, Large, 

and Small) and Top of Descent (TOD) altitude and distance. For TOD features 

extraction, great-circle distance computations for aircraft positions along flight trajectory 

were used to create these two new features. 

As part of the Descent Profile Analytics Module, exploratory data analysis was 

conducted to statistically summarize BNA airport dataset, which we divided into training, 

validation, and testing datasets in order to build our predictive model. It is important to 

note that this exploratory analysis has been conducted only on the training dataset, which 
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accounts of 70% of BNA dataset. The off-line flight tracking logs contains data of 

different flights arrivals to BNA airport as a collection of numerous data entry instances 

corresponds to a single flight. Hierarchal Clustering Analysis (HCA), also referred to as 

hierarchal clustering, was used in order to build a structure of clusters from this data. The 

latitude and longitude of every flight data entry instance is converted to a distance value 

with respect to the position of the airport, and the haversine formula was used to calculate 

the great-circle distance between two points—that is, the shortest distance over the earth's 

spheroid surface— from their latitudes and longitudes. As clusters were created, we used 

the Levenshtein distance that often used to measure the distance between two strings. The 

Levenshtein distance formula was specifically used due to the fact that Flight ID in the 

off-line flight tracking data could be viewed as a string of characters. 

After clustering analysis of the flight entries has been completed, and the great-

circle distance computed for each flight entry, then clustered flight entries are now ready 

to be visualized to determine the profile descent of each flight entry in BNA datasets. 

That is, the descent profile graph that plot the altitude of aircraft as a function of the 

distance to touchdown was created for each flight entry in the dataset. By doing so, we 

were being able to distinguish between flights with CDA and flights Non-CDA descent 

profile for CDA instances analysis. In addition, the CDA instances analysis could be 

flights-focus or time-focus. 

Working on the CDA Predictive Analytics Module, two distinct statistical 

classifiers used to build CDA predictive models. The first classifier is an ensemble 

classification model that combines multiple decision trees into a single model with 

boosting method to improve the prediction accuracy of CDA instances, which decision 
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trees with Adaptive Boosting (AdaBoost), while the second classifier is Support Vector 

Machines (SVM) that extends the support vector classifier to non-linear boundary 

between binary classes by enlarging the feature space.  

To build our CDA predictive model, BNA dataset was partitioned into three, 

independent subsets; 70% for training, 15% for validation, and 15% for testing. This 

partitioning was done randomly to ensure each subset is representative to the whole 

collection of observations in BNA dataset. We have built—and trained— our CDA 

predictive model using the training dataset. To evaluate the performance of the CDA 

predictive model but on previously unseen dataset, the validation dataset, also known as 

the design dataset, is used as it provides early estimate on the predictive model 

performance. Finally, the performance of the CDA predictive model was further 

evaluated on the third partition of BNA dataset; the testing dataset, also known as the 

hold-out or out-of-sample dataset, as it contains randomly selected observations from the 

full BNA dataset that are not used in any way in building the CDA predictive model and 

not in-common with neither the training nor validation datasets, to ensure that the model 

will perform well on new observations. The error matrix, also known as confusion matrix, 

is an appropriate model performance evaluation tool, especially when predicting a 

categorical target, as it is the case with our CDA predictive model was used to evaluate 

the performance of our CDA predictive model that we built using decision trees with 

AdaBoost and SVM methods. At the end of the evaluation process, it was found that the 

CDA predictive model built using decision trees with AdaBoost has an error rate of 

5.26%, which means the accuracy rate is 94.74%, and sensitivity of 85.7%. On the other 

hand, the CDA predictive model built using SVM has an error rate of 10.52%, which 
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means the accuracy rate is 89.47%, and sensitivity of 71.4%. In general, comparing the 

performance of the two models, we found that the AdaBoost outperform the SVM in 

terms of accuracy and sensitivity. 

The research conducted in the production of this dissertation have reached the 

following contributions:   

i. Introduced the concept of Continuous Descent Approach Adoptability (CDA-A) 

as the level of CDA operations an airport can safely and efficiently accommodate 

and accept per hour to air transportation industry and air traffic management 

(ATM) sector. Developed and presented Continuous Descent Approach 

Adoptability Factor (CDA-AF), a metric through which CDA-A can be measured 

and expressed.  

ii. Developed, tested, and validated an analytical model for CDA-A that capture 

CDA and Step-down Descent Approach (SDA) operations, based on factors that 

impact CDA implementation, such as airport arrival rate, separation distance 

between aircraft, and runway capacity, to help estimate the threshold beyond 

which CDA adoption is unsafe. Developed and defined the Probability of 

Blocking, kP , a metric that help estimate the maximum traffic level beyond 

which CDA adoption would be unsafe. 

iii. Developed a framework, based on data-driven system approach, that help 

predict—with high accuracy—CDA instances at airports during high traffic 

periods for CDA-P.  
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iv. Utilizing the developed framework, a CDA predictive model was built, validated, 

and tested using two distinct predictive modeling methods; Decision Tress with 

Adaptive Boosting (i.e., AdaBoost), and Support Vector Machines (SVM). This 

confirms that predicting CDA operations during high traffic periods is achievable 

and highlights the need to adopt the presented framework as a building block for 

trajectory prediction module in the core of an automated decision support system 

(DSS) that help ATC make sound judgment on CDA operations as they monitor 

the progress of each aircraft. 

The results of this research opened the doors to multiple, new investigations, and 

paved the way for possible future research topics, including: 

i. Expand the application of the CDA-A model to larger airports with higher level of 

demands, but are not at their maximum capacity yet. 

ii. Investigate more factors that have influence on CDA adoptability, such traffic at 

neighboring airports, and include them in the CDA-A model for more 

comprehensiveness and enhanced representation. 

iii. Apply the CDA-A model to Point Merge System (PMS) to investigate the 

feasibility of the model under different airspace structure. 

iv. Enhance the CDA predictive model by sampling data for more days from various 

seasons of the year, to capture variation in weather and traffic conditions, for the 

same busy time frame considered in order to obtain more number of flights 

observations at a particular airport. 
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v. Utilize the framework presented for CDA Predictability model to develop an 

airport-specific data-driven model by considering attributes such as certain arrival 

procedures and runways used for landing to predict CDA instances and improve 

CDA-A. To be used as a building block for an automated prediction decision 

support system (DSS), this model could be built to be direct (i.e., in the on-line 

mode) through appropriate connection with the operational infrastructure in-use to 

provide real-time prediction based on real-time feed of data inputs. 
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APPENDIX A 

ALGORITHM TO COMPUTE AIRCRAFT LANDING TIME 

 

Figure A.1 shows the pseudo code for the developed computational algorithm to estimate 

aircraft landing time based on descent rules of thumbs. The algorithm initializes by 

reading data that contains flight information for flights operated at a given airport. These 

flights should be processed and sorted to identify descent profile (e.g., CDA or Non-

CDA) of each flight. Then the algorithm reads altitudes, ground speed, approach speed, 

and number of descent requirements that an aircraft has to follow based on air traffic 

controller (ATC) instructions. Regardless of whether the descent profile is CDA or Non-

CDA, ATC instructs pilots to descend on stages of altitude reductions over which pilots 

has to report their set of information to ATC, such as current altitude, speed, and rate of 

descent, at the end of each stage. The output of the algorithm is compute total time for 

aircraft to descend over all these stages. 

  To run the algorithm, the altitude that the aircraft needs to dissipate, and the 

distance associated with that altitude difference needs to be defined. Then, based on the 

number of descent requirements stages, the algorithm iterates between current altitude 

and new altitude that the aircraft will reach, computing altitude difference, rate of 

descent, and how far the top of descent (TOD) point is located from the new altitude. 

Since the speed that should be reported to ATC below 10,000 feet is ground speed rather 

than true airspeed, the algorithm will consider this operational standard while computing 

total descent time and distance to descent.  
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Figure A.1 Pseudo code of the developed computational algorithm to calculate landing 

time for different aircraft types with Continuous Descent Approach (CDA) and Step-

down Descent Approach (SDA). 
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APPENDIX B 

BASE OF AIRCRAFT DATA (BADA) AIRCRAFT PEFORMANCE 

CALCULATION (APC) TOOL 
 

Figure A.1 shows the Graphical User Interface (GUI) of Base of Aircraft Data's (BADA) 

Aircraft Performance Calculation (APC) tool. As one of BADA's Support Tools, APC 

provides access to online implementation of the BADA Aircraft Performance Model 

(APM), which include database of various performance parameters for several types of 

aircraft, and APM's formulas that developed by EUROCONTROL. When using APC, the 

user would have the option to run an APC session for a single aircraft or multiple aircraft. 

In addition, APC provides other basic calculations for aircraft speed conversions, and 

atmosphere model.  

 

Figure B.1 BADA APC Graphical User Interface (GUI) for a single aircraft session. The 

main area lists the license that was issued to the user by EUROCONTROL, a drop-down 

list from which the user can select the aircraft type to calculate the performance 

parameters, another drop-down list that prompts the user to select a flight phase for 

performance calculations (e.g., climb, cruise, descent), and selection for whether to run 

the calculations based on the old or new International Standard Atmosphere model. 

BADA license reference 

aircraft type selection 

flight phase selection 

atmosphere model selection 

left panel menu 

contains user 

log-in 

credentials, 

option to manage 
multiple users, 

licenses requests 

and/or projects 

for BADA, APC 

session selection, 

and other 

support tools, 
such as basic 

calculations for 

speed 

conversions, 

aircraft synonym 

search, and 

documentation 
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Figure B.2 APC initialization for a single aircraft session. After summarizing the 

selections of BADA license, aircraft type, flight phase (Descent) and ISA model, the 

main area lists five main sections; Limitations, Calculation Type, Descent Option, 

Pressure Altitude, and Temperature. 

 

Figure B.2 shows the initialization of a single aircraft APC session. For this 

sample session, Boeing 747-400 with engine CF6-80C2B1F was selected, the flight 

phase to calculate performance parameters was descent, and the new ISA model was 

selected in this session. The main area is divided into five sections; Limitations, 

Calculation Type, Descent Option, Pressure Altitude, and Temperature, respectively. 

In limitations, limits have been set for aircraft mass, speed, and pressure altitude. The 

user has the option to select nominal values, or set values that must not exceed these 

limits. The calculation type section gives the user the option to select whether this 

calculation could be done with reference to point, so a value for gross weight for the 

Limitation section 

Calculation Type section 

Descent Option section 

Pressure Altitude section 

Temperature section 
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selected aircraft has to entered, or integrated calculations over the descent profile, so the 

user has to enter an initial mass for the selected aircraft to start the calculations. Descent 

option gives the user to select between three options; descent at given calibrated airspeed 

(CAS)/Mach, descent at given rate, or descent at given gradient. Pressure altitude section 

prompts the user to enter initial and final values for altitude, with option to define a step 

at which altitude is decreasing. Finally, the temperature section prompts the user to 

optionally enter a value for temperature deviation from ISA. After entering the required 

values, the user may click the "Calculate" button at the lower end of the screen to run the 

APC session. 

The results from APC for a single aircraft session will be similar to what 

illustrated in Figure B.3, in which the output of the session will be displayed in a spread-

sheet-like table format. The first column of the output table is the pressure altitude, in 

feet, and as the flight selected for the performance calculation is descent, then pressure 

altitude is listed in descending order starting and ending with the altitudes that the user 

has defined. The second column of the output represents the aircraft mass, in kilograms. 

The third and fourth columns lists the aircraft speed in Mach and true airspeed (TAS), in 

knots, respectively. The fifth column computes the aircraft's rate of descent (ROD) in feet 

per minute, while the sixth column lists calculations for aircraft's gradient, in degrees. 

Lastly, the seventh column lists calculations for fuel flow during the descent, in 

kilograms per second. For the user's convenience, APC plot graphs of the results.  

Finally, it is important to mention that the user can convert the units of the 

calculated parameters by simply specify this selection before initialize the APC session.  
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                 Figure B.3 Output of AP single aircraft session. 
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