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ABSTRACT 

 
CANCER RISK PREDICTION WITH WHOLE EXOME SEQUENCING AND 

MACHINE LEARNING 

by 
Abdulrhman Fahad M Aljouie 

Accurate cancer risk and survival time prediction are important problems in personalized 

medicine, where disease diagnosis and prognosis are tuned to individuals based on their 

genetic material. Cancer risk prediction provides an informed decision about making 

regular screening that helps to detect disease at the early stage and therefore increases the 

probability of successful treatments. Cancer risk prediction is a challenging problem. 

Lifestyle, environment, family history, and genetic predisposition are some factors that 

influence the disease onset. Cancer risk prediction based on predisposing genetic variants 

has been studied extensively. Most studies have examined the predictive ability of variants 

in known mutated genes for specific cancers. However, previous studies have not explored 

the predictive ability of collective genomic variants from whole-exome sequencing data. It 

is crucial to train a model in one study and predict another related independent study to 

ensure that the predictive model generalizes to other datasets. Survival time prediction 

allows patients and physicians to evaluate the treatment feasibility and helps chart health 

treatment plans. Many studies have concluded that clinicians are inaccurate and often 

optimistic in predicting patients’ survival time; therefore, the need increases for automated 

survival time prediction from genomic and medical imaging data. 

For cancer risk prediction, this dissertation explores the effectiveness of ranking 

genomic variants in whole-exome sequencing data with univariate features selection 



 

methods on the predictive capability of machine learning classifiers. The dissertation 

performs cross-study in chronic lymphocytic leukemia, glioma, and kidney cancers that 

show that the top-ranked variants achieve better accuracy than the whole genomic variants. 

For survival time prediction, many studies have devised 3D convolutional neural 

networks (CNNs) to improve the accuracy of structural magnetic resonance imaging (MRI) 

volumes to classify glioma patients into survival categories. This dissertation proposes a 

new multi-path convolutional neural network with SNP and demographic features to 

predict glioblastoma survival groups with a one-year threshold that improves upon existing 

machine learning methods. The dissertation also proposes a multi-path neural network 

system to predict glioblastoma survival categories with a 14-year threshold from a 

heterogeneous combination of genomic variations, messenger ribonucleic acid (RNA) 

expressions, 3D post-contrast T1 MRI volumes, and 2D post-contrast T1 MRI modality 

scans that show the malignancy. In 10-fold cross-validation, the mean 10-fold accuracy of 

the proposed network with handpicked 2D MRI slices (that manifest the tumor), mRNA 

expressions, and SNPs slightly improves upon each data source individually.  
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CHAPTER 1 

INTRODUCTION 

 

Deep learning convolutional neural network (CNN) and existing machine learning 

methods such as support vector machine (SVM) and random forest (RF) successfully 

applied to a wide range of fields [1-4]. With the high availability of genomic and medical 

imaging data, the need increases for automated and accurate cancer risk and survival time 

predictions. 

 

1.1 Cancer Risk Prediction 

Cancer is the second leading cause of death in the United States [5]. The dissertation 

explores chronic lymphocytic leukemia, kidney cancer, and brain cancer risk predictions. 

Chronic lymphocytic leukemia accounts for 1.2% of all projected new cancer cases and 

0.7% of projected cancer deaths in 2018 in the United States [5]. Kidney and renal pelvis 

account for 3.7% of the expected new cancer cases and 2.4% of estimated cancer deaths 

in the United States in 2018 [5]. Brain and other nervous system cancer new expected 

cases is 1.3% of all cancer new incidents, and 2.7% of all cancer deaths in 2018 [5]. 

Recent advances in deoxyribonucleic acid (DNA) sequencing technologies 

allowed sequencing massive parallel DNA fragments, which reduced the time and cost to 

generate human whole-genome and whole-exome sequencing data. A DNA sequence 

consists of a chain of letters from four nucleotides: adenine (A), guanine (G), cytosine 

(C), and thymine (T). The human genome comprises about three billion base pairs, and 

only identical twins may have the same or very similar DNA sequence. There are 
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different types of variation between human genomes. The most common variation type is 

Single Nucleotide Polymorphism (SNPs), which is a substitution at a specific locus of the 

genome. When comparing two human genomes, an SNP happens once about every 1000 

nucleotides. The other types of variations, which involve one or more base pairs, are 

insertion, deletion, duplication, translocation, inversion, and copy number. Causes of 

many genetic differences in humans are vital in explaining heritable disease susceptibility 

and the presence of specific phenotypic traits. Linkage analysis and genome-wide 

association studies (GWAS) revealed more than 450 mutations [6], which predispose to 

glioma [7], colorectal [8], beast [9], ovarian [7], and other cancers types [6].  

Areas of increasing interest in personalized medicine that utilizes DNA 

sequencing data are cancer risk prediction, gene editing, and cancer targeted therapy. 

Cancer risk prediction is vital to recommend specific regular checkups and tests for 

individuals with a high risk for a particular disease that could lead to early detection, 

which could enhance treatment outcomes. 

The dissertation proposes the use of univariate ranking of genomic variations by 

computing Pearson correlation absolute value and chi-squared test statistic between each 

variant site and cancer status to weed out noisy features and reduce variants set 

dimensionality. The analysis shows that by decreasing variants' data set dimensionality 

support vector machine, and random forest classifiers achieved better classification 

performance. 
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1.2 Cancer Survival Time Estimation 

Predicting glioma survival time helps patients and their clinicians evaluate available 

treatment plans and make informed choices. Glioblastoma multiforme (GBM) is the most 

common and aggressive type of brain cancer, with a median survival rate of 15 months 

[10]. Most advanced cancer patients prefer to know their estimated survival time [11]. 

However, clinicians’ survival time estimates are inaccurate, and often optimistic [11, 12]. 

Many studies have devised 3D convolutional neural networks (CNNs) to improve the 

accuracy of structural magnetic resonance imaging (MRI) volumes to classify glioma 

patients into survival categories [3, 13-15].  

This dissertation proposes a multi-path neural network system to predict 

glioblastoma survival categories from a heterogeneous combination of genomic 

variations, messenger ribonucleic acid (RNA) expressions, 3D post-contrast T1 MRI 

volumes, and 2D post-contrast T1 MRI modality scans that show the malignancy. The 

dissertation also proposes a new multi-path convolutional neural network with 

demographic features and SNP data to predict glioblastoma survival groups that 

improved upon SVM and random forest prediction accuracy. 

 

1.3 Dissertation Contribution and Outline 

The contribution of this dissertation is four-fold: 1) to investigate the predictive ability of 

support vector machine model and the effect of ranking SNPs with Pearson’s correlation 

coefficient and chi-squared statistics in normal versus tumor samples in chronic 

lymphocytic leukemia (CLL) and kidney cancer subtypes, 2) to compare support vector 

machine and random forests prediction accuracy of germline SNPs in glioma subtypes 
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cases and healthy controls from the 1000 Genomes Project [16], 3) to propose a multi-

path neural network from heterogeneous data sources: SNP, gene expression, 2D 

magnetic resonance imaging (MRI) scans, and 3D MRI volumes to classify glioma 

patients into short- versus long-term survival groups, and 4) to propose a new multi-path 

convolutional neural network for glioblastoma survival group prediction with SNP and 

demographic features. 

In Chapter 2, the dissertation provides a problem description and a literature 

review. In Chapter 3, the dissertation proposes using SVM and feature selection to 

predict normal and tumor samples obtained from exome sequences variants in chronic 

lymphocytic leukemia (CLL). In Chapter 4, the study investigates the effectiveness of 

ranking SNPs on the predictive ability of SVM in kidney cancer subtypes normal and 

tumor samples. Chapter 5 compares the prediction accuracy of random forests and SVM 

in top-ranked SNPs to classify glioma subtypes individuals (cases) and healthy 

individuals (controls) from the 1000 Genomes Project. Chapter 6 proposes a multi-path 

neural network of combined neuroimaging, SNP, gene expression data to predict 

glioblastomas survival groups at the 14-year threshold. In Chapter 7, the dissertation 

devises a multi-path neural network architecture to predict short- and long-term survival 

classes in glioblastomas with multi-modal data. 
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CHAPTER 2 

BACKGROUND 

 

Human genomes differ among individuals in the population. The variations in human 

genomes give a rise to many phenotypic traits and diseases. First-degree relatives have 

the most similar genomes when compared to the population. Different types of variations 

occur between individuals’ DNA sequences, such as substitution, insertion, deletion, 

translocation, inversion, and duplication. Figure 2.1 shows a toy example of human DNA 

variations.   

 

 
Figure 2.1  Example of different human DNA variations, bases on red color represent the 
change occurred to the original sequence (in green shade background). Underlined bases 
represent the repeated subsequence in the DNA sequence. Bases with strikethrough 
represent deleted nucleotides from the original sequence. 

 

Substitution, also called single nucleotide polymorphism (SNP), involves a one 

base change in the DNA sequence that can be a transition or transversion. Transition is a 

type of a SNP where the base change is between purines bases [A, G] or pyrimidines [C, 
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T] bases. Transversion is single change in the DNA sequence that is between purine and 

pyrimidines bases. Even though the number of possible transversion are higher, 

transitions happen more frequently in human genome [17]. 

A single change in the DNA sequence results in missense, nonsense, or silent 

mutation. Missense and nonsense mutations alter the protein sequence and are more 

likely to effect protein function. Silent mutations do not modify amino acid sequence and 

often have no effect on protein function; however, these mutations can make a 

phenotypic change such as increasing/decreasing protein synthesis time [18].  

Insertion/deletion (InDel) variations, which are the second common variations in 

human genome [19], are insertion, adding a subsequence to the DNA, or deletion, 

removing a subsequence from the DNA.  

Translocations happen when a part of the DNA sequence is moved from one 

chromosome to another. Inversions occur when part of the DNA sequence is reverse 

complemented; for example, in Figure 2.1, the subsequence CCT is first reversed to TCC 

and then complemented to AGG. The complement for the base A is T and vice versa, and 

the complement for the base C is G and vice versa.   

Copy number variation (CNV) is a type of structural variation where the number 

of copies in a DNA region varies among the population and involves thousands of 

nucleotides. There are two types of CNV: duplication and deletion. Duplication is where 

a one kilobase or more is repeated, and deletion is where one kilobase or more is lost 

from the DNA sequence. 

For cancer risk predictions, there are different genomic-based data that can be 

used such as Polygenic Risk Scores (PRS) [20-22], DNA variants identified through 
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Genome-Wide Association Studies (GWAS) [23, 24], genomic variants detected by SNP 

arrays, and variants discovered from Next Generation Sequencing (NGS) data [25]. 

 

2.1 Polygenic Risk Score (PRS) 

Polygenic Risk Score (PRS) is a continuous variable that is calculated from an ensemble 

of known markers for the disease of interest, which are obtained from published (GWAS) 

findings, one way to construct the PRS feature is to count the number of the known risk 

alleles present in each sample. Another way is to calculate the risk alleles and assign a 

weight specifically to each risk allele [26]. Many studies attempt to use PRS to estimate 

breast cancer risk in high-risk women [27-29]. In [27], the authors found that including 

PRS from known breast cancer SNPs have improved cancer risk prediction in high-risk 

women when compared to family history alone [26]. 

 

2.2 Genome-Wide Association Studies (GWAS)  

The goal of GWAS is to interrogate human genome variation to identify statistically 

significant variations that differentiate large cohort of cases (individuals with the disease 

present) from controls (disease-free individuals) [30]. A common measure of the effect 

size of the association between a given SNP and a particular disease in GWAS is the odds 

ratio (OR). For example, in a biallelic SNP, which have only two possible bases, for the 

two allele copies in the DNA there are three unordered possible genotypes A/A, A/a, or 

a/a, where the letter ‘A’ represents the major allele and the letter ‘a’ represents the minor 

allele (less frequent allele). Table 2.1 gives an example of calculating alleles at a 

particular SNP for case and control groups in a 2X2 contingency table. 
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Table 2.1  Dominant Genotypic Model 2x2 Contingency Table 

 A/A or A/a a/a Total 

Disease (cases) e f r1 = e+f 

Healthy (controls) g h r2 = g+h 

Total c1 = e+g c2 = f+h t = (r1+r2+c1+c2) 

 

The odds ratio under the dominant model is then calculated from Table 2.1 as: 

!"($/$)	()	($/*) =
, × ℎ

/ × 0
 (2.1) 

To compute odds ratio or chi-squared statistic in a given SNP for cases and 

controls, there are different models to group the genotypes into two classes (2x2) instead 

of having a 2x3 table for genotypes ‘a/a’, ‘A/a’, and ‘A/A’. These models are additive, 

multiplicative, recessive, and dominant.  

To calculate the odds ratio under a dominant model for ‘A’, the model assumes 

that having an ‘A’ increases the risk and for recessive model vice versa, one needs to 

compute the odds of disease given that an individual carries an ‘A’ genotype and the odds 

of disease giving that an individual carries an ‘a/a’ genotype, then takes the ratio of the 

two odds. In Equation 2.1, if the OR is greater than one, then the ‘A’ genotype increases 

the risk of the disease. If the OR is less than one, then having a genotype of ‘A’ decreases 

a person’s risk of having the disease. However, if the OR is equal to one, then there is no 

association between the genotype and the disease. The chi-squared test is a standard test 

used in GWAS for calculating the statistical significance of a genotype, assuming a 

dominant/recessive model, for a particular disease. From Table 2.1, the chi-squared can 

be calculated, with a degree of freedom = 1 as: 
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12,4 =
52
6
×
74
6
× 6 

Χ9 =::
;!2,4 − 12,4=

9

12,4

9

4>?

9

2>?

 

(2.2) 

(2.3) 

Where !2,4 is the observed count in each cell in Table 2.1 for cases and controls, and 12,4 

is the expected count for each cell under independence assumption.  

Many genome-wide association studies (case and control) have singled out SNPs 

and genes that are individually significant for gliomas [31-33]. Other studies identified 

several SNPs that are strongly associated with kidney renal clear cell carcinoma (KIRC) 

[34], cervical kidney renal papillary cell carcinoma (KIRP) [35], and chronic 

lymphocytic leukemia (CLL) [36]. 

GWA studies have identified many susceptibility loci for many cancers, but these 

novel variants cover only a small portion of the genome. Variants called from Next 

Generation Sequencing or SNPs array data have higher genome coverage, and therefore, 

there is a need to exploit these collective SNP data to assess its cancer risk predictive 

ability using machine learning methods.  

 

2.3 SNP Array 

An SNP array is a chip-based microarray technology offered primarily by Affymetrix and 

Illumina companies. Affymetrix genome-wide human SNP array 6.0 has 906,600 probes 

to genotype SNPs. The array is composed of hundreds of thousands of probes on a glass. 

Each probe contains multiple fixed short single-strand complement sequences for specific 

locus in the DNA sequence that binds to specific target sequence fragments (the ones 
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Figure 7.1  The proposed multi-path model architecture with SNP and demographic 
features. 
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Single-path Model:  The research compares fitting a combined SNP and demographic 

features with our multi-path model to fitting a single-path 1D convolutional neural net 

with SNPs only and with three demographic features alone neural network. 

Support Vector Machine (SVM):  SVM with a linear kernel was used. Briefly, SVM 

finds a hyperplane that maximizes the distance between the two classes’ data points that 

are closest to the margin (support vectors). In its soft-margin version, SVM allows 

misclassification of noisy data points and introduces a trade-off hyperparameter C that 

needs to be tuned. As C approaches infinity, the classifier gets closer to the hard-margin 

solution. The pipeline uses 10-fold cross-validation to select the best performing C in the 

training dataset. The research compared combining SNP and demographic features to 

fitting an SVM model with each data source individually. For SVM and random forest 

experiments, the scikit-learn library [116] was used. 

Random Forest:  Random forest is an ensemble method that constructs many decision 

trees by choosing random samples with replacement to build each tree and randomly 

generates a subset of features to select from for each candidate split, usually the one with 

the highest Gini impurity or entropy, then it takes the majority vote of all trees 

predictions to output a class prediction. The default parameters for the quality measure of 

the split were used. The pipeline employed 10-fold cross-validation to select the optimal 

hyperparameter for the number of trees to construct. The pipeline fits a model with 

combined SNP and demographic features, SNP alone, and age+age group+gender 

individually. 
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7.2.8  Evaluation Metrics 

Accuracy, which is the number of correctly classified samples over the number of all 

predicted samples, was used to measure classifiers’ prediction power in the test data set. 

However, in training and validation data sets, we used the balanced accuracy, which is 

the average of true positive rate and true negative rate, since it has imbalanced class 

distribution. 

 

7.3  Results 

7.3.1  Cross-Validation 

In the training set, the pipeline performed 10-fold cross-validation to select the best 

number of epochs and learning rates for single- and multi-path neural network system. 

Figure 7.2 shows the mean balanced accuracy attained with different learning rates and 

the number of epochs across the ten folds. The best mean balanced accuracy of 63% 

(±0.08) across ten folds is realized when we fed both SNP and demographic features into 

our multi-path model with 0.01 as the learning rate. The mean balanced accuracy slightly 

drops after it reaches its peak at the 13th epoch. With SNP data alone, the best learning 

rate was 0.001 with nine epochs, where the single-path convolutional neural network 

attained 54% (±0.12) mean balanced accuracy. With the demographic features alone, the 

single-path neural network reached its highest mean balanced accuracy of 59% (±0.12) at 

epoch 14 with a learning rate of 0.1. 
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Figure 7.2  Cross-validation average balanced accuracy across 10-folds as a function of 
the number of epoch and learning rate for multiple data inputs: demographic 
characteristics (age+age groups+gender) only, SNPs only, or SNPs and demographic 
characteristics combined. Each line color, which is shown in the series color legends, 
represents input data (learning rate in parentheses). 
 

SVM C regularization hyperparameter and the number of trees to grow for 

random forest classifiers were tuned. Figure 7.3 shows that the SVM achieved its best 

results when C= (1, 0.1), where both values are equally the best in combined SNP and 

demographic features, SNP alone, and demographic features alone. When learning with 

demographic features alone, SVM attained 61% (±0.08) mean balanced accuracy. SVM 

achieved 56% (±0.11) mean balanced accuracy with SNPs data alone, and the mean 

balanced accuracy drops to 50% (±0.10) when combining SNP and demographic 

features. 

For random forest, setting the number of trees to 10 yielded a better performance 

for SNPs alone with 50% (±0.12) mean balanced accuracy and demographic features 

alone 52% (±0.08) mean balanced accuracy. In combined SNPs and demographics, with 

the optimal number of trees of 100 that was selected with cross-validation in the training 

set, achieved 49% (±0.11) mean balanced accuracy. Figure 7.3 shows the average 10-fold 
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cross-validation with different hyperparameters for SVM and random forest. 

 

Figure 7.3  Cross-validation mean balanced accuracy across 10-folds with linear SVM 
(with different C regularization values) and random forest (with different number of trees 
values) and multiple data inputs: demographic characteristics (age+age groups+gender) 
only, SNPs only, or SNPs and demographic characteristics combined. Each bar color 
represents a data source. 
 

7.3.2  Test Set Prediction Performance 

After cross-validating, the optimal hyperparameters for each classifier with each data 

source. The pipeline fits a model on the full training and validation sets and predicts an 

independent and balanced test set. Table 7.4 shows the accuracies attained by the 

proposed model, SVM, and random forest accuracies with and without combining SNP 

and demographic features. The proposed multi-path model, with combined SNP and 

demographic features (age, age group, and gender), achieved the highest classification 

accuracy of 67%, when learning with the optimal hyperparameters that were selected 

with the 10-fold cross-validation: learning rate of 0.01, and 13 epochs. 
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Table 7.3  Prediction Accuracy on Test Set with the Optimal Hyperparameters 

 SNP and demographic SNP Demographic 

 0.67 0.60 0.60 
Our method lr =0.01 lr =0.001 lr =0.1 

 epoch =13 epoch =9 epoch =14 
SVM 0.60 0.57) 0.60 

 C =1 C =1 C =1 
Random forest 0.46 0.50 0.53 

 # of trees =10 # of trees =10 # of trees =100 
 

Combined SNP and Demographic Features: When combining SNP and demographic 

features, the proposed multi-path model achieved an accuracy of 67%, which 

outperformed both SVM (60%) and random forest (47%) accuracies. Furthermore, 

passing SNP, age, age groups, and gender yielded a nicer training curve that is stable 

across training epochs. Figure 7.4 compares the training balanced accuracy of the 

combined SNP and demographic features with SNP data alone and demographics 

individually. 

 

 

Figure 7.4  Training accuracy on training set (n=244) for combined SNP and 
demographic features, and each data source individually.  
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SNP and Demographic Features: In the test set, fitting a model with SNPs individually 

or age+age groups+gender alone had lower accuracy than combining SNPs and 

demographic features. With SNP data only, the proposed single-path CNN had an 

accuracy of 60% with a learning rate of 0.001 and 9 epochs. SVM achieved an accuracy 

of 57% with C=1, and random forest accuracy is 50% with 100 trees. Figure 7.5 displays 

the proposed model prediction accuracy with different data sources on the test set. With 

demographic features alone, SVM and the proposed single-path neural network 

performed equally with 60% accuracy. Random forest attained 50% accuracy. Table 7.4 

compares the accuracy achieved by the proposed CNN, SVM, and random forest with 

combined SNP and demographic features and with each data source individually. 

 

Figure 7.5  Test set prediction accuracy for combined SNP and demographic features, 
and each data source alone. 
 

7.4 Conclusion 

This chapter proposes a new multi-path convolutional neural network for combined SNP 

and age, age group, and gender that improved upon SVM and random forest in terms of 

model accuracy in cross-validation and an independent test set. The research shows that 
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using combined SNP and demographic features in a multi-path network attains a better 

classification performance than each data source individually and stabilized the learning 

process. 
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