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ABSTRACT

A generalized non-Newtonian equation describing the rheology

of molten thermoplastics is verified for low-density polyethylenes.

The equation is extended to account for both rheological temperature de-

pendency and polyethylene molecular weight dependency. The prediction

of the rheology of new polyethylenes without additional experimentation

is thus possible.
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NOMENCLATURE

A 

	

Constant = Equation VI (Huang) 	 Ibm/ sec ond-inch
B 	 Constant = Equation VI (Huang) 	 Ibm/ sec ond-inch

C

	

Constant = Equation VI (Huang) 	 seconds
E 	 Flow Activation Energy
K 	 Constant = Equation XII (Arrhenius)
Q 	 Volumetric Flow Rate 	 inch 3/second

R

	

Radius -Capillary 	 inch
Gas Constant 	 (lbf/in. 2 )(in. 3 )/(lb-mole)(°R)

T 
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C 3 

	

Constant = Equation VI-A (Huang)
dv/dr 

	

Shear Rate-Cylindrical coordinates 	 seconds -1
dv/dx 

	

Shear Rate -Rectangular coordinates 	 seconds -1
gc 

	

Gravitational Constant 	 inch/ second2
k 

	

Constant = Equation II (Power Law)
n 

	

Flow Behavior Index = Equation II (Power Law)
p 	 Pressure 	lbf/inch2
r 	 Radial Distance 	 inch

to 	 Constant = Equation VI-A (Huang)

βij 	 Molecular Arrangement Parameter Tensor At
Equilibrium Conditions

δ 	 Rate of Shear Tensor
Δp 	 Pressure Drop - Across Capillary 	 lbf/inch2
μ 	 Viscosity 	 lbm/ second-inch
τ 	 Shear Stress 	 lbf/inch 2
τo 	Yield Stress Constant = Equation VI (Huang) lbf/inch2
τij 	 Shear Stress Tensor

J 	 Constant = Equation VI-A (Huang)
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1. INTRODUCTION

A. Purpose

For the last several years the flow behavior of molten thermo-

plastics (rheology) has been the object of extensive research. Consider-

able effort has been spent in developing means of predicting thermoplastic

rheological behavior. Nevertheless, there still exists a need for a

simple and accurate defining equation describing the flow of molten

thermoplastics upon which reliable predictions may be based. Such

an equation is presented and verified herein. A summary of results

may be found in Table I, page 22.

In addition, a general procedure is demonstrated whereby empiri-

cally determined constants of the rheological equation can be found and

tabulated for thermoplastic materials. Once such a computation is made

no further experimentation is necessary to determine rheological pro-

perties at new or extrapolated conditions, including different tempera-

tures. These constants can be related to such fundamental thermoplastic

properties as molecular weight, thus allowing the prediction of the rheology

of new materials without additional experimentation once the molecular

weight is known.

The need to be able to accurately predict thermoplastic flow be-

havior is quite practical. Thermoplastics are commonly utilized indus-

trially in the molten state. High volumes of polyethylene, polypropylene,

polystyrene and other thermoplastics are fabricated into shapes and parts
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by extrusion, injection molding and callendering. Metzger and Brodkey

state that "the high speed extrusion of film or wire jackets demands an

understanding of the flow behavior of the material". 1 All such processes

demand the accurate prediction of thermoplastic rheology if equipment

is to be designed and operated in an efficient and economical manner.

B. Theoretical Background

If a sufficient driving force is applied to a confined fluid it will

flow. However, the velocity of the flowing fluid will not be uniform

throughout. The velocity will vary with distance perpendicular to the

point of application of the force; i. e. , a velocity gradient will exist.

The molecular layer of fluid at the center of the applied force

will flow at some maximum velocity, greater than the layer adjacent

to it. This is known as a shearing effect between the two layers. Suc-

cessive layers of fluid will be sheared with resultant decreases in veloc-

ity until a wall of the fluid container is reached. The velocity at this wall

will be zero.

The shearing force per unit cross-sectional area is termed shear

stress, τ. The change in fluid velocity υ with respect to perpendicular

or normal distance X is dυ/dx , and is termed the shear rate. In the cylin-

drical system normally encountered, e. g. , an extruder tube or a

1. A. P. Metzger and R. S. Brodkey, "Measurement of the Flow of
Molten Polymers Through Short Capillaries," Journal of Applied
Polymer Science, Vol. 7, (1963), p. 399
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capillary, velocity changes with radius,dυ/dr

Many attempts have been made to develop a rheological

equation that adequately describes molten polymer rheology. All

such equations attempt to define the relationship between the shear

stress and the shear rate of the fluid. The simplest of these equa-

tions is the Newtonian equation:

I.	τ =	-μ dυ/dr

This equation states that the shear stress τ is directly proportional

to the shear rate, dυ/dt. The constant of proportionality is the μ is

cosity of the material.

A fluid that obeys equation I is termed a Newtonian fluid. Few

materials and essentially no thermoplastics obey this equation; hence,

molten thermoplastics are known as non-Newtonian fluids.

Newtonian and non-Newtonian behavior can be demonstrated

graphically, as in Figure I. For a Newtonian fluid, a plot of shear

stress against shear rate yields a straight line through the origin,

with the slope of the curve equal to the viscosity.

Non-Newtonian behavior may follow any of the several types

illustrated in Figure I. For a material exhibiting plastic behavior a

minimum shear stress, called the yield stress, is required before flow

will begin. For a Bingham plastic, once this yield stress is reached the



4Figure I
FLOW BEHAVIOR OF MOLTEN THERMOPLASTICS
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shear stress is directly proportional to the shear rate, as in Newtonian

flow. Pseudoplastic behavior is marked by a disproportionate gain in

shear rate for each increment of shear stress. This type of behavior

is common among thermoplastics. Plastic and pseudoplastic behavior

are equivalent, except that plastic behavior indicates a yield stress.

The opposite type of behavior, where shear stress increases at a

greater rate than shear rate, is termed dilatancy. Dilatant behavior

is seldom found among thermoplastics. In addition, flow may be time

dependent. For molten thermoplastics this effect may be ignored.

A common way of defining the complex flow behavior of a non-

Newtonian material is by the use of flow curves, rather than an analyti-

cal equation. A flow curve is an empirical plot of shear stress versus

shear rate for a given material at a given temperature. Figure II is

an example of a typical flow curve. At any given point on the curve,

shear stress equals the slope of curve times the shear rate. The slope

at any point is known as the apparent viscosity, valid only at that specific

stress and shear rate. Although this graphical method is somewhat useful

industrially, the use of an apparent viscosity may lead to serious errors.

An analytical expression is much more useful for extrapolating data and

relating the flow to inherent material properties.

The most commonly found mathematical equation describing
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Figure II TYPICAL THERMOPLASTIC FLOW CURVE
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molten thermoplastic non-Newtonian behavior is the power law:
II.	τ = K(dυ/dr)n

This is the simplest non-Newtonian expression, involving only two

constants. One of the constants, the exponent of the equation n is

known as the flow behavior index. For n=1 , the equation reduces

to the Newtonian equation. Pseudoplastic behavior is indicated by

n < 1, while n > i indicates dilatancy. 2

Although the power law is simple, it is not particularly accurate.

Both K and n are, by definition, constants determined for each ther-

moplastic material. However, K and n have been found to very consid-

erably with shear rate for a given material at constant temperature. A

more reliable equation, therefore, is required.

Another non-Newtonian Theological equation found in the litera-

ture is the Eyring-Powell equation. 3

III.  τ = μ dυ/dr + 1/β sinh-1(dυ/dr)/AEP AEP, β,μ constants

Althoughmore accurate than the power law, its considerable complexity

makes it impractical for use as a design equation for thermoplastic flow

behavior. Additionally, Metzner states "the theoretical concepts upon

which the equation is based have been pointed out to be unsound. " 4

2. Giovanni Pezzin, "Rheology of Molten Polymers", Materie
Plastiche ed Elastomeri (1962) in Instron Application Series 
p-12, Instron Corp. (Canton, Ohio), p. 4.

3. A. B. Metzner, "Flow Behavior of Thermoplastics" in E. C.
Bernhardt, ed. , Processing of Thermoplastic Materials,
(N. Y. , N. Y. , 1957) p. 28.

4. 	 Ibid.



Other non-Newtonian defining equations found in the literature

are the Ellis equation:

IV. dυ/dr = (1/no)τ +CτA 	no, C, A = constants

and the Reiner -Philippoff model: 5

V 	 τ = (n∞ + no-n∞/1-(τ/D)2) d(dυ/dr)/dt

Equations of even greater complexity have been presented.

8

5. M. H. Wohl, "Rheology of Non-Newtonian Materials", Chemical
Engineering (February 12, 1968) pp. 131-132.
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II. PRESENTATION OF THE EQUATION

As stated in the previous section, various types of flow behavior-

pseudoplastic, Bingham plastic, dilatent, etc. - have been described

for non-Newtonian fluids. It has been found that for any particular

material the type of rheological behavior applicable will, in general,

depend on the shear rate range being investigated. Thus a single material

may undergo several of the listed types of flow behavior in different shear

rate ranges (one result being the variation in the constants of the power

law).

Metzner and Reed state: 6

It is obvious... that some method must eventually be devel-
oped which is universally applicable to all fluids - Newtonian
and non-Newtonian alike.

A rheological equation for non-Newtonian thermoplastics has been

developed which satisfies the above criterion and is valid in all ranges of

shear rate. This equation, derived by Dr. C. R. Huang and subsequently

referred to as the Huang equation is: 7

VI. τ = τo + [A(-dυ/dr)+B(dυ/dr)e -c(1dυ/dr) ][1/g e]

where τo, A, B, C are temperature dependent constants empirically de-

termined for thermoplastic materials.

6. A. B. Metzner and J. C. Reed, "Flow of Non-Newtonian Fluids -
Correlation of the Laminar, Transition, and Turbulent Flow Regions",
A. I. Ch. E. Journal Vol. 1 (1955) p. 434.

7. Dr. C. R. Huang, private communication (1970).
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The above equation is a simplified form of a more rigorous equa-

tion which accounts for time-dependent Theological behavior. This equa-

tion is thus applicable to both thixotropic and time-independent (e. g. poly-

ethylene) materials. This more general equation, presented below, was

developed by Dr. C. R. Huang from general principles of statistical

mechanics and irreversible thermodynamics.

VI-A  τij-τo/√1/2τijτij τij = (μ-C3Jβije-C3|δij|ng to|δij|/δij )δij

μ, C 3, J, t o = constants

The Huang equation, like the power law but unlike the Eyring--

Powell and more complicated expressions, is simple, easy to apply,

and explicit in shear stress. Unlike the power law, however, it is

quite accurate over a large range of shear rate and shear stress.

It should be noted that with both τ and C=0 equation VI reduces

to the Newtonian equation I. Additionally A and B may be considered

viscosity terms, and τo is the yield stress.

The accuracy of the Huang equation has been verified by com-

parison of predicted and experimental data. The method of comparison

and the results are presented herein. The method may be applied to

any thermoplastic material to determine the four constants of the equa-

tion. Once this is done, the flow behavior at any shear stress or shear

rate can be predicted.
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III. EXPERIMENTATION

A. Experimental Background

Any instrument used for obtaining rheological data is called

a rheometer. Two classes of rheometers are commonly employed

for evaluation of polymer melts: the capillary rheometer and the

rotational rheometer.

The principles of operation of both types of equipment are

simple. In the capillary rheometer, the material under study is

forced through a cylindrical heated capillary of precisely known length

and diameter. The required driving force is obtained by the pressure

of a dead weight or inert gas. Two parameters are measured. The

pressure drop across the capillary is measured directly (and subsequently

related to shear stress). Also, the amount of material forced through

the capillary is determined as a function of time; i. e. , the volumetric

flow rate is found (and related to shear rate). This measurement is

accomplished by weighing the amount of material collected. Operating

temperature and pressure are controlled and measured carefully.

In one type of rotational rheometer the molten polymer is

placed in an annular space between two concentric cylinders. One

of the cylinders is rotated, shearing the polymer. The rate of rota-

tion (shear rate) is measured, as well as the torque (shear stress)

required for the rotation.
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A second type of rotational rheometer is the cone and plate

type. Here the molten material is placed in the gap between a flat

plate and a cone immediately above the plate. The cone is rotated,

shearing the fluid. Torque and angular velocity are again the measured

parameters. An advantage of this type of instrument is that for small

cone-plate angles the shear rate and shear stress are uniform through-

out the material, so that no subsequent corrections are required for

non-Newtonian fluids.

Extrusion, the forcing of a material through a cylindrical die,

is analogous to the capillary rheometer operation described above.

Industrially, polyethylene and other thermoplastics are commonly

processed by extrusion. Therefore, it is desirable to obtain rheo

logical data in the high shear rate range normally encountered in extru-

sion. At these high shear rates a molten thermoplastic will tend to

climb out of the gap inherent in a rotational rheometer. No such

problem exists with capillary rheometers.

Additionally, the heat generated by the continuous shearing of

the thermoplastic also limits the ability of rotational rheometers to

operate at high shear rates. Best and Rosen state that extensive mod-

ifications to commercial rotational rheometers are required for the

attainment of accurate measurements. 8

8. D. M. Best and S. L. Rosen "A Simple Versitile and Inexpensive
Rheometer For Polymer Melts", Polymer Engineering and Science 
Vol. 8, (1968)
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For these reasons data based on capillary rheometer experiments, are

to be preferred. Data derived from capillary rheometry experiments,

therefore, are used in the verification of the Huang equation.

B. Experimental Data (Literature)

The data required for the experimental verification of the

Huang equation (equation VI) were obtained from experimentally

determined flow curves presented in the literature relating

ΔpR/2L to 4Q/πR3. The data are part of a collection of flow curves compiled
TR

by Westover in Bernhardt's PROCESSING OF THERMOPLASTIC MATERI-

ALS. 9 Severs has called this collection of flow curves the greatest ever

compiled. 10 All data were obtained in capillary rheometers by the manu-

facturer of the thermoplastics.

Low density polyethylene is the thermoplastic chosen for experi-

mental verification of the Huang equation. This material is extruded in

large volumes, and the knowledge of its rheological properties is of more

than theoretical interest.

Specifically, data on Tenite Polyethylene 856, manufactured by

Eastman Chemical Products Company, and Alathon 3, Alathon 10, and

Alathon 17, all manufactured by E. I. DuPont de Nemours and Co. are

9. R. F. Westover, "Processing Properties" in E. C. Bernhardt,
Processing of Thermoplastic Materials (N. Y. , N. Y. , 1957) pp. 547-627.

10. E. T. Severs, Rheology of Polymers (N. Y. , N. Y. , 1962) p. 26.



the thermoplastics used to verily the Huang equation. Tenite 856 is

evaluated at three temperatures: 334, 374, and 446°F, while the

Alathon series is evaluated only at 374°F. The original flow curves

are presented in Figures XVIII - XXIII, Appendix A. A sample cal-

culation shown in Appendix B demonstrating the means of verifying

and obtaining the constants of the equation utilizes Tenite 856 at 374°F.

C. Correction of Experimental Data

It may be as sumed that the flow of a molten thermoplastic

through a capillary is laminar and isothermal. Non-laminar flow is

easily observed. The onset of turbulence can be noted visually by

examination of the product. Turbulence will result in melt fracture;

a smooth uncracked product will no longer exist.

Once laminar, isothermal flow is assumed, the well known

Hagen-Poiseuille equation for Newtonian flow through a capillary is

given as: 11

VII. Q =(πR4/8μ)(dP/dL)

where R equals capillary radius and L equals capillary length. Re -

arranging and, in the limit, lettingdP = Δ

P

 and dL=L, we obtain

VIII Δ
P

R/2L = μ(4Q/πR3)

Δ

P

 equals the pressure drop across the capillary.

11. I. J. Duvdenani and I. Klein, "Analysis of Polymer Melt flow in
Capillaries Including Pressure Effects", SPE Journal V ol. 23
(December 1967) p. 42.

14
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The specific parameters measured by the manufacturers of

Tenite Polyethylene 856 were the pressure drop,Δ

P

, across a capil-

lary of 0. 019 inches diameter and the volumetric flow rate, Q , where

is defined as the amount of material collected per unit time. All

parameters of equation VIII except μ, therefore, are experimentally

determined.

It can be readily seen that equation I, the Newtonian equation,

and equation VIII, the Hagen-Poiseuille equation, take the same form.

It is common practice (although incorrect) to report τ asΔ

P

R/2L and

dυ/dr as  4Q/πR3 and plot ΔPR/2L against ΔQ/πR3 on a flow curve. Obviously, such

a procedure equates equations I and VIII and is valid only for Newtonian

fluids. The polyethylene rheological data obtained at Eastman on Tenite

856, and in fact the great majority of all thermoplastic rheological data,

is presented in the form of such an erroneous flow curve.

There are serious errors in both the shear stress and shear

rate terms described by the Hagen-Poiseuille equation when applied

to non-Newtonian molten thermoplastics. Defining shear stress equal

to Δ

P

R/2L does not account for entrance effects (sometimes referred to as

end effects). Entrance effects are due to the resistances resulting

from the velocity gradients encountered by the molten fluid as the
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cross-sectional area is reduced at the entrance to the capillary. 12

The error involved in not correcting shear stress for this entrance

effect is small in comparison with the error in shear rate, and will

be ignored.

Considerable error is encountered if the shear rate, dυ/dr,

is evaluated as 	 4Q/πR3. It is necessary to apply the Rabinowitsch cor

rection to obtain the true shear rate. Pearson has shown the Rabinowitsch

equation to reduce to: 13

IX.
τ R3/πR3 = -∫TROτ(dυ/dr)τ

where τR is the maximum shear stress, evaluated at the wall of the

capillary. If equation IX is differentiated we find:

X. 	 1/πR3(d(τR

3Q)/dτR) = -τR2dυ/dr

Rearranging,

XI 	 -dυ/dr = (1/TR
3τ

R

)(d(τ

R3Q)/dτR)

Equation XI is the Rabinowitsch equation for defining the actual shear

rate of a non-Newtonian, laminar, isothermal fluid. It is important

to note that the Rabinowitsch correction is rarely applied to literature

data, and not at all to the flow curves compiled by Westover.

12. E. B. Bagley, "End Corrections in the Capillary Flow of Polyethylene",
Journal of Applied Physics, Vol. 28 (1957) p. 624.

13. J. R. A. Pearson, Mechanical Principles of Polymer Malt Processing,
(Oxford, England, 1966) p. 34
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IV. RESULTS AND DISCUSSION OF RESULTS

A.

Verification of the Equation

As stated, the main objective of this thesis is to verify

equation VI, the Huang equation. The procedure used, in essence,

was to find the correct values of shear stress as a function of shear

rate for a thermoplastic (polyethylene) from experimentally deter-

mined data. If the experimentally determined and corrected shear

stress-shear rate relationship can be generated by the Huang equa

tion over the entire range of shear rates, and at various temperatures,

the Huang equation will have to be assumed valid. A sample calcula-

tion, on Tenite Polyethylene 856 at 374°F extrusion temperature, may

elucidate the procedure. This sample calculation may be found in

Appendix B.

Reiterating, the Huang equation is valid if plots of the corrected

original experimental data and data generated directly from the Huang

equation coincide. Figures III, IV, and V demonstrate that this is in-

deed the case for Tenite Polyethylene 856 at 334°F, 374°F and 446°F

respectively. Differences between the calculated and experimental

values certainly fall within the error limit of the experimental data.

The Huang equation, therefore, is valid over the range of temperatures

and shear rates investigated.

B. Constants of the Equation

Values of the constants of the Huang equation are obtained for



Figure IIIPREDICTION OF EXPERIMENTAL DATA BY HUANG EQUATION334°F EXTRUSION TEMPERATURE



Figure IVPREDICTION OF EXPARIMENTAL DATA BY HUANG EQUATION374°F EXTRUSION TEMPERATURE - SAMPLE CALCULATION



Figure VPREDICTION OF EXPERIMENTAL DATA BY HUANG EQUATION446°F EXTRUSION TEMPERATURE
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Tenite Polyethylene 856 at 334°F, 374°F and 446°F. Results are

presented in Table I. The method of obtaining the constants is out-

lined in the sample calculation, Appendix B.

Constants of the Huang equation were also obtained for the

Alathon series of polyethylenes previously described (Alathon 3, 10

and 17, E. I. DuPont de Nemours and Co. ). The results are given

in Table II.

Extrapolation of the data is valid using the Huang equation;

however, caution must be exercised. If the shear rate is increased

to a point such that turbulence and melt facture occur, the Huang equa-

tion, and indeed no equation yet developed, will hold.

C. Temperature Dependence

It is possible to extend the generality of the Huang equation

(equation VI) by defining the temperature dependence of the constants

of the equation. The temperature dependence of the constants is shown

graphically in Figures VI, VII, VIII, and IX, for Tenite Polyethylene 856.

It is possible, therefore, to predict the flow behavior of Tenite

Polyethylene 856 at temperatures other than those for which data have

been given. One merely finds the appropriate values of the constants A,

B, C, and re, from Figures VI - IX and evaluates the Huang equation with



Table I

CONSTANTS OF THE EQUATION
FOR TENITE POLYETHYLENE 856

Equation =τR=τO+1/gc[A(-dυ/dr)+ B-dυ/dr)e-c(-dυ/dr)]

τR= lbf/inch2
-dυ/dr = seconds

gc = 386. 09 inch/second z

Uncorrected Computer Output 

Extrusion Temperature - °F
334 374 446

A 0.07613 0.06861 0.06072
B 0.2363 0.2248 0.1756
C 0.007683 0.007532 0.008284
1D 9.697 6.992 3.091

Corrected Values 

Extrusion Temperature - °F
334 374 446

A = lbm 	 29.39
second-inch

26.49 23.44

B = lbm 	 91.22
second-inch

86.79 67.78

C = seconds 0.007683 0.007532 0.008284

τO = lbf
/inch2

9.697 6.992 3.091

22



Table II

CONSTANTS OF THE EQUATION
FOR ALATHON 3, ALATHON 10, ALATHON 17

AT 374°F EXTRUSION TEMPERATURE

Equation: τR = τo + 1/gc[ 	 A(-dυ/dr) +B(-dυ/dr)e-C(-dυ/dr)]

τR= lbf/inch2
-dυ/dr = seconds -1

gc = 386. 09 inch/second 2

Material Weight
Average
Molecular
Weight

A

lbm
second-inch

B

lbm
second-inch

C

seconds lbf
inch2 

Alathon 3 525, 000 3. 009 18. 41 0. 0002849 26. 34

Alathon 10 300, 000 2.2.06 12.16 0. 0002600 10. 61

Alathon 17 225, 000 2. 035 6. 15 O. 0002500 1. 91

23
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Figure VI
TEMPERATURE DEPENDENCE OF THE CONSTANT "A"FOR TENITE POLYETHYLENE 856

Figure VIITEMPERATURE DEPENDENCE OF THE CONSTANT "B"FOR TENITE POLYETHYLENE 856



Figure VIII
TEMPERATURE DEPENDENCE OF THE CONSTANT "τ O"FOR TENITE POLYETHYLENE 856

Figure IXTEMPERATURE DEPENDENCE OF THE CONSTANT "τ O"FOR TENITE POLYETHYLENE 856
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these constants. This method reverts to the use of flow curves rather

than a preferred analytical expression.

Kowalski states "if data are not available at the temperature

required, extrapolation or interpolation can be safely made over a

100°F temperature range by use of the Arrhenius equation μ=Ae -E/RT where

A = constant for the specific fluid, E = flow activation energy, R = gas

constant, T = absolute temperature. " 14 Since the constants A and B

of the Huang equation are analogous to the constant μ, viscosity, it

was attempted to fit the constants of the Huang equation to an Arrhenius

expression. A reasonably good fit was obtained, as can be seen from

Figures X - XIII. For a perfect fit, all points would fall on a straight

line of slope = E and ordinate-intercept equal to lnK. The constants

A and B can now be defined as temperature dependent parameters,

XII 	 A=KAe-EA/T, B=KBe-EB/T

Similarly, it was attempted to fit both τo and C to an Arrhenius

expression. A reasonably good fit was obtained for τ o (see Figure XIII.)

However, the attempt to fit the constant C to an Arrhenius expression

did not succeed (Figure XII). This is not surprising in light of the

fact that, unlike the other constants of the Huang equation, C is not

analogous to viscosity, its units being seconds. No analytical expression

14. R. C. Kowalski, "Introduction to Melt Rheology and Applications to
Extrosion", SPE Journal, Vol. 24 (1968) p. 50.
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Figure XTEMPERATURE DEPENDENCE OF THE CONSTANT "A"FOR TENITE POLYETHYLENE 856 - ARRHENIUS PLOT

Figure XIIITEMPERATURE DEPENDENCE OF THE CONSTANT "B"FOR TENITE POLYETHYLENE 856 - ARRHENIUS PLOT



2 8Figure XIITEMPERATURE DEPENDENCE OF THE CONSTANT "C"FOR TENITE POLYETHYLENE 856 - ARRHENIUS PLOT

Figure XIIITEMPERATURE DEPENDENCE OF THE CONSTANT "τO"FOR TENITE POLYETHYLENE 856 - ARRHENIUS PLOT
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for the temperature dependence of C has yet been delineated. There-

fore, data will have to be reported in the form of a curve, as in Figure

XII.

The K and E values of A, B, and τo for Tenite Polyethylene

856 are given in Table III. These values, along with Figure XII and

the Huang equation are all that is required to completely describe the

flow of this material.

The above procedure may be applied to any thermoplastic whose

rheological properties are known at three or more temperatures. Thus,

and thermoplastic's rheological behavior can be completely described by

six constants (KA, KB, Kτo,EA,EB,Eτo) and one curve (C as a function

of temperature). It is hoped that manufacturers will adopt this procedure

in reporting the rheological behavior of their products.

D. Molecular Weight Dependence

Although the rheological behavior of a particular thermoplastic can

be predicted by both the Huang equation, once the values of the constants

are known, and published flow curves, no accurate prediction of the be-

havior of one material based solely on the flow curve of another is pos -

Bible. It is possible, however, that such predictions can be made by

extrapolating or interpolating values of the Huang equation constants.
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Table III

TEMPERATURE DEPENDENCY
OF THE CONSTANTS OF THE EQUATION
FOR TENITE POLYETHYLENE 856

Arrhenius Expression

X = Kxe-Ex/T

X Constant of the Equation
T = Extrusion Temperature, °R

Constant K E

A 	 lbm
second-inch

6.49 -1170

B 	 lbm
second-inch

8.28 -1930

τo
lbf/inch

2 0.00170 -6900
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Rheological behavior is known to be a function of the mole-

15cular structure of thermoplastics. 	 It should be possible to relate

the Huang equation constants to such characteristics as molecular

weight and molecular weight distribution. R. G. King has stated

that viscosity is a function of the molecular weight distribution of a

thermoplastic, the wider molecular weight spread polymers showing

a greater dependence of viscosity on shear rate. 16 Additionally,

Kowalski has stated that the higher the molecular weight of a thermo-

plastic, the higher its position will be on a flow curve. 17

The prediction of the rheological behavior of low density poly-

ethylene (at 374°F) based on the material's molecular weight may be

achieved by the use of Figures XIV - XVII and the Huang equation

(equation VI). The Figures were derived from published rheological

data on a series of polyethylenes at different molecular weights: Alathon

3, 10, and 17, E. I. DuPont de Nemours and Co. Table II in a previous

section gives the values of the constants of the Huang equation at the

molecular weights evaluated.

The values of the constants were found as described for the

sample calculation in Appendix B. Although the correlations between

15. A. P. Metzger and J. R. Knox, "The Effect of Pressure Losses in
the Barrel on Capillary Flow Measurements!', Transactions of the
Society of Rheology, Vol. 9 (1965) p. 13.

16. R. G. King, "A Rheological Measurement of Three Polyethylene
Melts, Rheologica Acta, Vol. 5 (1966) p. 40.

17. R. C. Kowalski, op. cit.



3 2Figure XIVMOLECULAR WEIGHT DEPENDENCE OF THECONSTANT "A" FOR LOW-DENSITY POLYETHYLENE

Figure XVMOLECULAR WEIGHT DEPENDENCE OF THECONSTANT "B" FOR LOW-DENSITY POLYETHYLENE
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Figure XVIMOLECULAR WEIGHT DEPENENCE OF THECONSTANT "C" FOR LOW-DENSITY POLYETHYLENE

Figure XVIIMOLECULAR WEIGHT DEPENENCE OF THECONSTANT "τ O" FOR LOW-DENSITY POLYETHYLENE



experimental and theoretical data was not as good as that achieved

with Tenite 856, this may be explained in part by the much broader

shear rate range fit by the constants for the Alathon series: 1 - 1000

seconds -1for the Alathon's compared to 1 - 400 seconds-1 for

Tenite 856.

Although based essentially on only one material (Alathon), the

Huang equation should give a good first approximation of the rheology

of all low density polyethylenes. The constants of Figures XIV - XVII

should be used for such calculations. The procedure shown may be

applied to additional thermoplastic rheological data for other materials.

Also, it should be possible to relate the constants of the equation to

other inherent thermoplastic properties, such as molecular weight

distribution. Additional work in this area is felt to be justified.

34
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APPENDIX A

ORIGINAL DATA (Literature)

Reported by R. F. Westover, ''Processing Properties" in

E. C. Bernhardt, ed, Processing of Thermoplastic Materials, N.Y.,

1957, pp. 602 - 606, 610.



Figure XVIII
ORIGINAL DATA - TENITE POLYEHYLENE 856334°F EXTRUSION TEMPERATURE



Figure XIXORIGINAL DATA - TENITE POLYETHYLENE 856374°F EXTRUSION TEMPERATURE



Figure XXORIGINAL DATA - TENITE POLYETHYLENE 856446°F EXTRUSION TEMPERATURE
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Figure XXIORIGINAL DATA - ALATHON 3 POLYETHYLENE374°F EXTRUSION TEMPERATURE



Figure XXII

ORIGINAL DATA - ALATHON 10 POLYETHYLENE

374°F EXTROSION TEMPERATURE

40



Figure XXIIIORIGINIAL DATA - ALATHON 17 POLYETHYLENE374°F EXTRUSION TEMPERATURE

41
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Appendix B
Sample Calculation

Data was taken from Westover's flow curves compiled in

Bernhardt's book 18 for Tenite Polyethylene 856 at 374°F. The

data originally was presented in the form of a logarithmic plot of

ΔPR/2L versus 4Q/πR3. These parameters were labeled "maximum

shear stress" and "apparent shear rate" respectively. These

terms are misleading and will be ignored. The original flow

curve for the sample calculation (replotted) is presented in

Figure XIX, Appendix A.

In order to better interpolate the data, the original flow

curve is replotted in rectangular coordinates. The results are

presented in Figure XXIV.

The actual volumetric flow rate, Q, is found by dividing

the reported 4Q/πR3 at each shear stress point by 4/πR3 where R

is the capillary radius, 0.0095 inches. The values of Δ PR/2L = τ R

,and the volumetric flow rate Q are tabulated for the sample calculation

in Table IV. τRQ is also found and tabulated in Table IV.

The value of 	 d(τR3Q)/τR is determined at each value of TR and

results presented in Table IV. This is accomplished by a numerical

differentiation procedure whereby τR3Q is plotted against τR and

the slope of the tangent to the curve is evaluated at each shear stress.

18. R. F. Westover, op. cit.



Figure XXIVUNCORRECTED FLOW CURVE



Table IV

SAMPLE CALCULATION
TENITE POLYETHYLENE 856 AT 374°F

τR = ΔPR/2L

Shear
Stress

lbF, Inch2

4Q/πR3

Seconds -1

Q =
(4Q/πR3)/(4/πR3)

Vol. Flow
Rate

Inch3 /Sec.

τR3Q d(τR3Q)/dτR -dυ/dr =
R

Corrected
Shear
Rate

Seconds -1

5.5 2.5 1.68x10
-6

2.80x10

-4

-
6.9 4.0 2.69x10 -6 8.85 5.70x10 -4 4.44
7.6 5.0 3.37x10

-6
1.48x10

-3

1.02x10 -3 6.54
8.3 6.0 4.04x10

-6

2.31x10

-3

1.65x10 -3 8.89
9.5 8.0 5.39x10

-6

4.62x10

-3

2.51x10-3 10.3
10.4 10.0 6.74x10

-6

7.58x10

-3

3.87x10 -3 13.3
11.4 12.0 8.08x10

-6

1.20x10

-2

5.24x10 -3 15.5
12.3 14.0 9.43x10

-6

1.75x10
-2

7.31x10 -3 17.9
13.0 16.0 1.08x10 -5 2.37x10-2 9.74x10 -3 21.4
13.7 18.0 1.21x10

-5
3.12x10 -2 1.21x10 -2 23.9

14.3 20.0 1.35x10 -5 3.94x10 -2 1.53x10 -2 27.9
14.8 22.0 1.48x10

-5

4.80x10-2 1.89x10 -2 32.0
15.6 25.0 1.68x10

-5

6.39x10-2 2.09x10 -2 31.9
16.2 27.0 1.82x10

-5

7.73x10-2 2.58x10-2 36.5
16.9 30.0 2.02x10

-5

9.75x10-2 3.02x10-2 39.3
17.4 32.0 2.15x10

-5

1.14x10 -1 3.52x10 -2 43.2
18.1 35.0 2.36x10

-5

1.40x10
-1

3.90x10-2 44.2
18.6 37.0 2.49x10

-5

1.60x10

-1

4.62x10-2 49.6
19.2 40.0 2.69x10

-5

1.91x10

-1

5.08x10-2 51.2
19.7 42.0 2.83x10

-5

2.16x10 -1 6.17x10-2 59.0
20.1 45.0 3.03x10 -5 2.46x10 -1 7.06x10 -2 64.9
20.5 47.0 3.16x10 -5 2.73x10

-1

7.30x10-2 64.5
21.0 50.0 3.37x10

-5

3.19x10 -1 8.54x10-2 71.9
21.8 55.0 3.70x10 -5 3.84x10

-1

9.89x10-2 77.3
22.5 60.0 4.04x10

-5

4.60x10

-1

1.16x10-1 85.1
23.2 65.0 4.38x10 -5 5.47x10

-1

1.28x10-1 88.3
24.0 70.0 4.71x10

-5

6.52x10

-1

1.47x10-1 94.7
24.6 75.0 5.05x10

-5

7.52x10

-1

1.82x10-1 111.6
25.1 80.0 5.39x10 -5 8.52x10

-1

1.92x10-1 113.1
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Table IV (Con't. )

SAMPLE CALCULATION
TENITE POLYETHYLENE 856 AT 374°F

τr=ΔPR/2L

Shear
Stress
lbF, Inch2

4Q/πR3

Seconds -1

Q=(4Q/πR3)/
(4/πR3)

Vol. Flow
Rate

Inch3 /Sec.

τR3Q d(τR3Q)/dτR
-dυ/dr |r=R

Corrected
Shear
Rate

Seconds -1

25.8 85.0 5.72x10
-5

9.83x10-1 2.02x10 -1 112.7
26.4 90.0 6.06x10 -5 1.11x100 2.38x10 -1 126.8
26.9 95.0 6.40x10 -5 1.24x100 2.83x10 -1 145.2
27.3 100.0 6.73x10 -5 1.37x10 0 3.22x10 -1 160.4
27.7 105.0 7.07x10 -5 1.50x10 0 3.23x10 -1 156.3
28.2 110.0 7.41x10 -5 1.66x100 3.28x10 -1 153.1
28.7 115.0 7.74x10 -5 1.83x10 0 3.67x10 -1 165.4
29.1 120.0 8.08x10

-5

1.99x100 4.12x10 -1 180.6
29.5 125.0 8.42x10

-5

2.16x100 4.36x10 -1 186.0
29.9 130.0 8.75x10

-5

2.34x100 4.60x10 -1 191.0
30.3 135.0 9.09x10 -5 2.53x100 4.85x10 -1 196.1
30.7 140.0 9.43x10

-5

2.73x100 5.10x10 -1 200.9
31.1 145.0 9.76x10

-5

2.94x10 0 5.36x10 -1 204.4
31.5 150.0 1.01x10 -4 3.16x100 5.98x10 -1 228.7
31.8 155.0 1.04x10 -4 3.35x10 0 6.28x10 -1 230.5
32.2 160.0 1.08x10 -4 3.60x10 0 6.54x10 -1 234.2
32.5 165.0 1.11x10 -4 3.81x100 6.86x10 -1 241.1
32.9 170.0 1.14x10 -4 4.08x100 6.73x10 -1 230.8
33.3 175.0 1.18x10 -4 4.35x100 7.44x10 -1 249.0
33.6 180.0 1.21x10 -4 4.60x100 8.35x10 -1 274.6
33.9 185.0 1.25x10 -4 4.85x10 0 8.67x10 -1 280.1
34.2 190.0 1.28x10 -4 5.12x100 8.98x10 -1 285.6
34.5 195.0 1.31x10 -4 5.39x10 0 9.30x10 -1 296.1
34.8 200.0 1.35x10 -4 5.67x10 0 9.63x10 -1 295.2
35.1 205.0 1.38x10 -4 5.97x10 0 9.95x10-1 299.8
35.4 210.0 1.41x10 -4 6.27x100 1.03x100 304.6
35.7 215.0 1.45x10 -4 6.59x10 0 1.06x100 310.2
36.0 220.0 1.48x10 -4 6.91x100 1.10x10 0 315.1
36.3 225.0 1.52x10 -4 7.25x10 0 1.24x100 349.4
36.5 230.0 1.55x10 -4 7.53x100 1.28x100 356.7
36.8 235.0 1.58x10 -4 7.89x100 1.20x100 329.0
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Table IV(Con't. )

SAMPLE CALCULATION
TENITE POLYETHYLENE 856 AT 374°F

τR =
ΔPR/2L

Shear
Stress

bF, Inch2

4Q/πR3

Seconds-1

Q =

(4Q/πR3)/(4/πR3)

Vol. Flow
Rate

Inch3 /Sec.

τR3Q d(τR3Q)/τR
dυ/dr |r=R

Corrected
Shear
Rate

Seconds-1

37.1 240.0 1.62x10 -4 8.25x10 0 1.35x10 0 364.1

37.3 245.0 1.65x10
-4

8.56x10 0 1.39x10 0 370.9

37.6 250.0 1.68x10

-4

8.95x100 1.42x100 372.9

37.8 255.0 1.72x10

-4

9.27x10 0 1.64x10 0 426.1

38.0 260.0 1.75x10

-4

9.61x10 0 1.68x10 0 431.9

38.2 265.0 1.78x10

-4

9.95x100 1.53x100 389.3

38.5 270.0 1.82x10

-4

1.04x10 1 1.57x100 393.2

38.7 275.0 1.85x10 -4 1.07x10 1 1.82x10 0 451.1

38.9 280.0 1.89x10 -4 1.11x10 1 1.85x100 453.9

39.1 285.0 1.92x10 -4 1.15x10 1 1.88x10 0 456.5

39.3 290.0 1.95x10 -4 1.18x10 1 1.74x10 0 418.2

39.6 295.0 1.99x10 -4 1.23x10

1

1.78x10 0 421.4

39.8 300.0 2.02x10 -4 1.27x10 1 2.00x100 468.7

40.0 305.0 2.05x10 -4 1.31x10

1

2.05x100 475.7

40.2 310.0 2.09x10-42. 09x10 1.36x10 1 2.13x10 0 489.3

40.4 315.0 2.12x10 -4 1.40x10

1

1.94x100 441.3

40.7 320.0 2.15x10

-4

1.45x10 1 1.96x10 0 439.3

40.9 325.0 2.19x10 -4 1.50x10 1 2.25x100 499.3

41.1 330.0 2.22x10

-4

1.54x10 1 2.30x10 0 505.5

41.3 335.0 2.25x10 -4 1.59x10

1

2.33x10 0 507.2

41.5 340.0 2.29x10
-4 1.64x10 1 2.40x100 517.4

41.7 345.0 3.32x10 -4 1.69x10 1 2.45x100 523.1

41.9 350.0 2.36x10

-4

1.73x10

1

2.86x100 604.8

42.0 355.0 2.39x10

-4

1.77x10

1

2.93x100 616.6

42.2 360.0 2.42x10
-4 1.82x10

1

2.55x10
0

531.6

42.4 365.0 2.46x10

-4

1.87x10

1

2.60x10 0 536.9

42.6 370.0 2.49x10

-4

1.93x10 1 2.67x10 0 546.2

42.8 375.0 2.52x10 -4 1.98x10 1 2.70x100 547.2

43.0 380.0 2.56x10

-4

2.03x10 1 3.75x100 552.2

43.2 385.0 2.59x10

-4

2.09x10 1 3.26x100 648.3

43.3 390.0 2.62x10 -4 2.13x10 1 3.30x10 0 653.4

43.5 395.0 2.66x10 -4 2.20x10
1

2.90x10 0 568.9

43.7 400.0 2.69x10

-4

2.25x10 1 -
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Although the numerical calculations were aided greatly by the use of

a Wang electronic calculator, the numerical differentiation procedure

ould not be simplified and was found to be very time consuming. Ap-

proximately thirteen graphs and ninety data points are necessary for

each flow curve evaluated. Figure XXV, is an example of such a graph

used in the sample calculation.

Once the above calculations are completed the correct shear

rates are obtained at each shear stress value. This is achieved by

use of the Rabinowitsch correction, equation XI in this thesis. The

corrected shear rate is obtained by multiplying d(τR3Q)/τR

x 1/τR3πR2obtaining -dυ/dr. A tabulation of shear stress and corrected shear rate

for the sample calculation is presented in Table IV.

Shear stress and corrected shear rate are now plotted in the

form of a flow curve, as in Figure XXVI. A comparison of the original

data with the corrected data is also shown in Figure XXVI. Such a

comparison points out the fact that the shear rates reported in the original

data are, in some cases, in error by more than forty per cent. Thus, the

use of 	 4Q/πR3 as the shear rate is completely unjustified. Unfortunately,

this is a standard practice in industry.

Once the corrected shear stress - shear rate data are

determined, the procedure is to find the values of the Huang equation

such that the data can be generated by use of the equation. A trial

and error procedure for evaluation of the four constants in a



Figure XXVNUMERICAL DIFFERENTIATION



Figure XXVIEFFECT OF RABINOWITSCH CORRECTION ON UNCORRECTED FLOW CURVE
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non-linear equation is a difficult, if not impossible task to accomplish

by hand. However, this computation was made possible by the use of

an IBM 1130 computer.

The computer program utilized is a modified standard IBM

program for the evaluation of the best fit of the constants by non-

linear least squares. The program is coded in Fortran IV.

In principle, the program minimizes the sum of the squares

of the differences between the experimental and the computer calculated

values by a combination of statistical methods. The necessary input

to the program consists of: the equation to be fit (the Huang equation,

equation VI); the data, shear stress 	 τR andand corrected shear rate

-dυ/dr in this case; initial guesses of the values of the constants of the

equation as determined by the procedure outlined below; and the size

of each iteration.

Initial estimates of the constants of the Huang equation may

be determined through a plot of τR/(-dυ/dr) against -dυ/dr Figure XXVII is

such a plot, with data of the sample calculation. At very high values

-dυ/dr, e-c(-dυ/dr) is very small, and τR/(-dυ/dr) reduces to the constant A

of the Huang equation. At very low values of the corrected shear

rate e-c(-dυ/dr) is essentially equal to unity, and 	 τR/(-dυ/dr) is approxi

mately equal to the constants A plus B. For the sample calculation

the estimated value of A as determined from Figure XXVII closely

approximates the final correct value.



Figure XXVIIINITIAL ESTIMATES OF CONSTANTS
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The constants of the Huang equation are determined, as

shown for the sample calculation, for Eastman Chemical Products

Tenite Polyethylene 856 at temperatures of 334°F, 374°F, and

446°F, and for Alathon. 3, 10 and 17 (DuPont) at 374°F. The

constants A and Bof the equation, obtained from the computer

analysis, must be corrected for the gravitational constant g c

before they can be used in the Huang equation. The corrected

values of the constants are presented in Tables I and II in this thesis.
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