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ABSTRACT 

 

EFFECTS OF ELECTRO-OSMOTIC CONSOLIDATION OF CLAYS AND ITS 

IMPROVEMENT USING ION EXCHANGE MEMBRANES 

 

by 

Lucas Martin 

Electro-osmosis is an established method of expediting consolidation of soft, saturated 

clayey soils compared to commonly used methods, such as preloading with wick drains. 

In electro-osmotic consolidation a direct current (DC) is applied via inserted electrodes. 

This causes hydrated ions in the interstitial fluid to migrate to oppositely charged 

electrodes. Because the clay particles have a negative surface charge, the majority of ions 

in the interstitial fluid are positively charged. Therefore, the net flow will be towards the 

negatively charged electrode (cathode), where the water can be removed and thus 

consolidation is achieved. Certain problems, such as pH changes in the soil around the 

electrodes, make the method inefficient and prevent the widespread use of electro-

osmotic consolidation, especially in developed nations.  

 There is limited experimental or theoretical analysis on how exactly an electric 

field removes water from clay pores. Hence in this research a new theory is developed 

based on colloidal chemistry. Furthermore, to a new technology using ion-exchange 

membranes is proposed and investigated to improve the power consumption of electro-

osmotic consolidation. 

 The first part of this research develops a new method of estimating the expected 

flow of water through clayey soils (electro-osmotic conductivity) under the influence of 

an electric field based on work done in the area of colloid chemistry. This new method 

shows clear advantages over the currently used Helmholtz-Smoluchowski model. The 



flowrate due to electro-osmosis and the soil consolidation is measured for different 

electrical conductivity values and compared with the developed theory. The results 

confirm the validity of the new model, showing that electrolyte composition in the 

interstitial fluid is a significant factor in estimating electro-osmotic consolidation. 

Additional laboratory tests show that electro-osmotic consolidation achieves effects 

similar to secondary consolidation settlement, but over a hundred times faster. This 

observation is used to accurately predict electro-osmotic consolidation for specific 

voltages. 

 The second part of the research described herein evaluates the ability of ion 

exchange membranes to improve electro-osmotic consolidation of clay soils. By inserting 

the membrane between the soil and the electrode a barrier is created that prevents 

hydrogen ions generated at the anode from moving to the cathode through the soil. When 

using the membrane, the change of soil pH around the anode is reduced by at least 10% 

and the increase in electrical resistance is slowed down by almost five times. This results 

in a 75% increased settlement for electro-osmotic consolidation tests with a membrane. 

This can prove to be a significant improvement to commercialize the use of the 

technology in developed nations. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

When subjected to loading, clay soils will consolidate and will undergo significant 

settlement which can have detrimental effects on structures and pavements. Due to the 

low hydraulic conductivity of clay, primary consolidation takes longer time to achieve, 

delaying construction. Nowadays, the method most commonly used to expedite clay soil 

consolidation is the installation of geo-drains or wick-drains followed by preloading. 

Preloading is a technique by which substantial consolidation of soil can be achieved 

before application of actual construction loads. However, the preloading technique alone 

may not be satisfactory in reduction of time of consolidation to desired extent 

(Bhattacharya and Basack, 2011). The consolidation period can be further expedited by 

electro-osmotic consolidation (Bergado et al., 2000).  

 Electro-osmosis is an established method of improving soft, saturated clayey soils 

where a direct current (DC) is applied to the soil by electrodes. Due to the application of 

an electric field, hydrated ions in the solution are attracted to the electrodes. Because the 

clay particles have a net negative surface charge, the majority of ions in the interstitial 

fluid are positively charged. Therefore, the net flow will be towards the negatively 

charged electrode (cathode). If drainage is provided at the cathode, consolidation of the 

soil occurs, resulting in higher shear strength and lower compressibility of soils. This can 

be easily shown by preconsolidating a soil sample to field conditions and then applying 

an electric field. In a small scale lab test, a 11.4 cm high cylinder of soil of 6.4 cm in 
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diameter was first consolidated to 74.3 kPa to simulate field conditions under 10 feet of 

soil in multiple loading steps. After the samples reaches full consolidation, an electric 

field was applied to further drain the sample. The resulting settlement is shown in Figure 

1.1. Regardless of pressure, when electro-osmosis was applied, a constant decrease in 

void ratio was observed. 

 

Figure 1.1 Settlement caused by electro-osmosis after full normal consolidation. 
Source: Martin and Meegoda, 2019d. 

 

 Electro-osmosis was first reported by Reuss (1809). He showed that water could 

be made to flow through a plug of clay by applying an electric voltage. Several 

researchers studied different aspects of electro-osmosis (Helmholtz 1879; Perrin 1904; 

Smoluchowski 1921; Casagrande 1948; Veder 1981; Pamukcu et al. 1997; Shang 1998). 

Electro-osmosis has been studied for almost 100 years and is still not widely used in field 

consolidation applications. It has been extensively tested and has proven to have clear 
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benefits to consolidation of cohesive soils. Unfortunately, certain problems have 

prevented the widespread use of electro-osmotic consolidation especially in developed 

nations. 

 

1.2 Theory of Electro-Osmotic Consolidation 

1.2.1 Diffuse Double Layer 

The Stern–Gouy double layer theory is one of the most important concepts for 

understanding the behavior of clayey soils. The negative surface charge of the clay 

particles creates a double layer of ion concentrations in the area surrounding the particles 

(see Figure 1.2). The layer closest to the clay surface is called the Stern layer and 

consists of a thin layer of tightly packed positive ions. These ions are strongly attracted to 

the negative surface charge of the clay particle and will not move under normal 

circumstances. The electric field created by the negative surface charge of clays still 

affects the area beyond the Stern layer. Beyond the Stern layer there is a second layer of 

mostly positive ions at high concentrations that are still attracted to the negative surface 

charge of the clays but are not strongly attached. Some negative charges can also be 

found here. This is the main layer contributing to the electro-osmotic flow. This second 

layer is called the diffused layer. Beyond the diffused layer the positive and negative ions 

in the interstitial fluid are more evenly distributed. Because the ions in the Stern layer are 

so tightly adsorbed by the clay particles, electro-osmotic flow actually starts at a small 

distance from the clay surface called the slip plane. Therefore, the actual potential at the 

slip plane is a little lower than the surface potential of the clay particles. This potential is 
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denoted as the zeta potential. Zeta potentials will differ for different soils but are usually 

in the range of -50 mV to -150 mV (Shang 1997). 

 

Figure 1.2 Schematic of Stern–Gouy double-layer model. 
Source: Cameselle 2014. 

 

1.2.2 Casagrande’s Flow Equation 

Multiple numerical models have been created to explain the electro-osmotic 

consolidation and its geochemical effects on the soil. The most widely used electro-

osmotic flow equation for the soil system was proposed by Casagrande (1949) and is 

shown below 
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 𝑞 = 𝑘𝑒𝐸𝐴 (1.1) 

 

 This simple model is based on Darcy’s law and relates the flow caused by electro-

osmotic treatment to the basic properties of the soil. It is widely used as a basis for more 

comprehensive models. This can then be combined with the flow due to hydrostatic 

pressure to yield (Mitchel and Soga, 2005): 

 

 
𝑞ℎ+𝑒𝑜 = −

𝑘ℎ

𝛾𝑤

𝜕𝑢

𝜕𝑥
− 𝑘𝑒

𝜕𝑉

𝜕𝑥
 (1.2) 

 

If water is not recirculated at the cathode, the electric field will cause negative pore water 

pressures at the anode that can be expressed as (Esrig 1968): 

 

 
𝑢𝑒(𝑥) = −

𝑘𝑒𝛾𝑤

𝑘ℎ
𝐸𝑥 (1.3) 

 

 Where 𝑥 is the distance from the cathode to the anode and 𝑘𝑒 is the electro-

osmotic conductivity defined by Casagrande (1949). The development of the negative 

pore water pressure in this equation increases the effective stress in the soil, leading to 

consolidation during electro-osmosis. The amount of consolidation will generally be 

equal to the amount of water drained. 

 According to this equation the effectiveness of electro-osmotic consolidation is 

controlled by the ratio of 𝑘𝑒 𝑘ℎ⁄ . The typical hydraulic conductivity of soils reported in 

electro-osmosis literature is in the range of 1×10
-10

 to 1×10
-9

 m/sec, whereas the 
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coefficient of electro-osmotic conductivity is in the range 1×10
-9

 to 1×10
-8

 m
2
/sec/V. 

Hence the electro-osmotic consolidation will be significant when the ratio of 𝑘𝑒 𝑘ℎ⁄  is 

higher than 0.1 (Mohamedelhassan and Shang, 2001). Due to discharge of water at the 

cathode, a hydraulic gradient is developed between the two electrodes. Consolidation of 

the soil will continue until the system reaches equilibrium where the electro-osmotic 

force driving water to the cathode is equal to reverse flow due to the hydraulic gradient 

(Mitchell and Soga, 2005) or, if the system is well drained, it will continue until electric 

resistance in the soil increases and prevents significant flow of current. This is most 

commonly the case. 

1.2.3 Helmholtz-Smoluchowski Theory 

One of the most the most widely used theories to model electro-osmotic flow is the 

Helmholtz-Smoluchowski model. This theory treats a liquid filled capillary, shown in 

Figure 1.3, as an electrical condenser with charges of one sign near the surface of the 

walls and opposite charges concentrated in a layer of fluid at a small distance from the 

walls. The latter charges cause the fluid to move as a plug flow (Mitchel and Soga, 2005). 

The velocity distribution is similar to that of hydraulic fluid flow through a pipe, having 

higher velocities at the center and decreasing as they approach the walls. 
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Figure 1.3 Electro-osmotic flow in the Helmholtz-Smoluchowski model. 

 

The rate of water flow is dependent on the balance between the electrical force 

causing the flow and the friction between the liquid and the wall. For a single capillary 

tube, the flow rate can be expressed as: 

 

 
𝑞𝑎 = 𝑣𝑎 =

𝜁𝜖

𝜇
𝐸𝑎 (1.4) 

 

For a group of N capillaries the flow equation becomes: 

 

 
𝑞𝐴 = 𝑁𝑞𝑎 = 𝑣𝑎 =

𝜁𝜖

𝜇
𝐸𝑁𝑎 (1.5) 
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If the porosity is 𝑛, then the cross-sectional area of voids is 𝑛𝐴, which must be equal to 

𝑁𝑎. Thus: 

 

 
𝑞𝐴 = 𝑁𝑞𝑎 = 𝑣𝑎 =

𝜁𝜖

𝜇
𝐸𝑛𝐴 (1.6) 

 

If we compare this to Darcy’s law, we can rewrite the equation as:  

 

 𝑞𝐴 = 𝑘𝑒𝐸𝐴 (1.7) 

 

This will yield that the coefficient of electro-osmotic hydraulic conductivity as: 

 

 
𝑘𝑒 =

𝜁𝜖

𝜇
𝑛 (1.8) 

 

The relationship between porosity and 𝑘𝑒 was studied by Mohamedelhassan (1998). The 

results of that study for a marine sediment are shown in Figure 1.4.  
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Figure 1.4 Electro-osmotic conductivity, 𝑘𝑒, with porosity, 𝑛. 
Source: Mohamedelhassan 1998. 

 

 According to the Helmholtz-Smoluchowski model, 𝑘𝑒 should be relatively 

independent of pore size. Because of this, electro-osmosis can be more effective in 

moving water through fine grained soils than flow caused by a hydraulic gradient 

(Mitchel and Soga, 2005). Values of 𝑘𝑒 for various soils are shown in Table 1.1: 

Table 1.1 Electro-Osmotic Conductivity Values for Various Clays 

Soil Type 
𝒌𝒆 

10
-5

 *(cm
2
/sV) 

London clay 5.8 

Boston blue clay 5.1 

Kaolin 5.7 

Clay silt 5 

Na-montmorillonite 2.0 to 12 

Peat 0.491 to 1.57 

Source: Asadi et al., 2013. 
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 According to double layer theory, the slip plane in the clay-water electrolyte 

system is located a small distance away from the clay surface. The zeta potential refers to 

the electric potential due to the surface charge of the clay particle at the slip plane. 

According to this model the capacity of electro-osmosis to transport water is directly 

proportional to the zeta potential of the soil, which is closely related to the resistance of 

the soil. Also, the according to the Helmholtz-Smoluchowski theory 𝑘𝑒 is independent of 

pore size while the hydraulic conductivity is. This means that electro-osmosis is more 

efficient in moving water through fine-grained soils than flow driven by a hydraulic 

gradient. 

 

1.3 Ion Hydration 

While in an aqueous solution, free ions are surrounded by a hydration shell of regularly 

arranged water molecules that are attracted to it. Since the water molecules are dipoles, 

they hydrate both positive and negative ions. This causes dissolution of ionic compounds 

in water. For example, for NaCl in water, the attraction between Na+ and H2O, and the 

attraction between Cl- and H2O is greater than between Na+ and Cl-. They separate and 

hydrate as conceptually shown in Figure 1.5.  
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Figure 1.5 Hydration scheme for (a) sodium ions and (b) chloride ions. 
Source: Hardin et al., 2010. 

 

 Hydrated ions can have multiple rings of regularly arranged water molecules. The 

size of the hydrated ion-water combination will depend on the ions charge and its radius 

without hydration. Figure 1.6 shows hydration radii for different ions. 
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Figure 1.6 Hydration ion radii. 
Source: Conway 1981. 

 

 During electro-osmosis, hydrated ions will be moved towards their oppositely 

charged electrodes due to the electric field. Electro-osmotic flow will occur when the 

drag force of cations or anions is greater than that of the other. The greater the difference, 

the greater flow there will be. Since clay is negatively charged and most of free ions are 

positive the net flow will be towards the cathode. 

 A higher hydration radius means the amount of water removed for a given ion is 

higher. For example, a hydrated Ca
2+

 ion should move more water than a hydrated Na
+
 

ion, since it has a higher hydration radius, according to Figure 1.6. If this is true, then 

applying an electric potential to soil mixed with Ca
2+

 should discharge more water than 
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soil mixed with Na
+
. This was tested on two small clay samples mixed with water 

containing NaCl and CaCl2. The chemicals were added to deionized water until it 

achieved conductivity three times that of tap water. This was then mixed with soil and 

preconsolidated to match pressures found in the field at a depth of 10 feet. After this, an 

electric potential was applied for 120 hours and the water removed was measured. The 

results are summarized below in Table 1.2. 

Table 1.2 Hydration Radius Effect on Water Removal Test Results 

Solution 
Liquid Discharged Conductivity of Liquid 

mL mS/m 

NaCl 4.83 189 

CaCl2 7.96 170 

 

 The soil treated with CaCl2 drained almost twice as much water as that treated 

with NaCl. This shows that the type of ions in solution have a significant effect on 

electro-osmotic consolidation. Ion hydration is essential to water removal with electro-

osmosis. The results also prove that electro-osmosis can be enhanced by treating soil with 

different chemical solutions. This has been investigated extensively by others (Ozkan et 

al. 1999, Lefebvre and Burnotte 2002, Alshawabkeh and Sheahan 2003, 

Mohamedelhassan and Shang 2003, Burnotte et al. 2004, Paczkowska 2005, Otsuki et al. 

2007, Chien et al. 2009, Ou et al. 2009, Chang et al. 2010, Chien et al. 2011). 
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1.4 Negative Effects of Electro-Osmotic Consolidation 

1.4.1 Introduction 

The efficiency of electro-osmotic consolidation is typically measured as the amount of 

water removed for the power consumed. If the volume is high, then the process is more 

efficient and economical. This value may vary over several orders of magnitude and is 

dependent on multiple factors including water content, soil type, electrolyte 

concentration, electrolyte type, and pH. In addition to the movement of water molecules, 

the application of an electric field generates electrochemical and physical reactions that 

negatively affect the performance of the electro-osmotic consolidation, namely: 

1. Crack development due to negative pore pressures and resulting extensive drying 

at the anode; 

2. Increasing temperatures due to electric resistance 

3. Corrosion of the electrodes; 

4. Bubble formation at the electrodes due to electrolysis of water that reduce soil-

electrode contact; and, 

5. Extreme pH changes at both electrodes 

1.4.2 Crack Development 

Crack formation is a result of extensive drying of the soils around the anode. These 

cracks reduce the contact area between the soil and the electrode material, effectively 

increasing electric resistance. When water migrates away from the anode, the clayey soil 

around it shrinks, creating tensile forces that cause cracking. This is especially 

problematic in expansive clays. The size and quantity of cracks depends on the type of 

clay but all will exhibit some measure of cracking due to their cohesive properties. 

Additionally, crack formation is enhanced by heating of the soil due to current flow 
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(Burnotte et al. 2004). Crack formation can start very early in the processes, greatly 

hindering electro-osmotic treatment. Since the size and shape of the cracks are 

unpredictable and mostly unquantifiable during treatment, they can invalidate any 

experimental lab data. As suggested by Wu et al. (2015) and others, crack formation can 

be mitigated by applying electro-osmosis with preloading. The surcharge load 

compresses the soil as the water is drained which prevents tensile forces from creating 

cracks. This also provides a more accurate understating of the consolidation caused by 

the treatment. All tests presented here will include some form of preloading to prevent 

cracking. 

1.4.3 Temperature 

Temperature in the vicinity of the anode increases due to resistive heating associated with 

the application of electric power. This, in turn, will cause drying of the soil around the 

electrode, further increasing resistance, eventually inhibiting the electro-osmotic 

treatment. In a field study done on soft clay at Mont St-Hilaire, Canada, Burnotte et al. 

(2004) reported that the rise in temperature at the anodes and in the soil emerged as an 

important controlling factor. When temperatures at the anode reached values close to 100 

°C, the resistivity of the system increased rapidly, resulting in a smaller effective voltage 

gradient in the soil and less efficient electro-osmotic consolidation. High temperatures in 

the soil are tentatively suggested as an explanation for the higher efficiency in the field as 

compared with that in the laboratory, especially for the high resistances measured near 

the anodes. 

 Rittirong et al. (2008) performed lab tests on calcareous soil to evaluate current 

and temperature with the use of polarity reversals. The results showed that there was a 
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definite relation between the temperature and the current. Initially, as the current rises, so 

does the temperature. Then, presumably due to drying and pH changes, increasing 

resistance caused the current drops. This drop is followed by a lagging temperature. 

Shang et al. (1996) also observed desiccation of the soil with the formation of a layer of 

very stiff crust at the interface between the soil and the electrodes which reduced the 

transferred voltage at the soil-electrode contact. Desiccation of the soil was also reported 

by Abiera et al. (1999) and Bergado et al. (2000) which were attributed to the generation 

of heat from the application of current; the heating and drying resulted in the hardening 

of the soil. Similar results were reported by Gray (1970), Gray and Somogyi (1977), Acar 

and Alshawabkeh (1996), Rutigliano et al. (2008), Ou et al. (2009), and Abou-Shady and 

Peng (2012). From the literature it seems heating of the soil around the anode specially is 

an unavoidable consequence of increasing resistance. While not the major factor 

governing the efficiency of electro-osmotic consolidation, it does contribute to the 

premature termination of the process. However, this could be mitigated or at least 

delayed by controlling the flow of electrical current. 

1.4.4 Corrosion 

Another possible electrochemical reaction is the oxidation and reduction of the 

electrodes. At the anode we have, 

 

 𝑀 → 𝑀𝑐+ + 𝑐𝑒− (1.9) 

 

And at the cathode, 
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 𝑀𝑐+ + 𝑐𝑒− → 𝑀 (1.10) 

 

 Where M
n+

 represents any kind of cationic species that can be reduced. These 

electrode reactions would be affected not only by the materials of the electrode but also 

the ions in the electrolyte. The oxidation of the metallic type anodes such as copper can 

cause corrosion and reduce the efficiency of electro-osmotic consolidation. According to 

Iwata et al. 2013, their short service life has impeded the widespread application of 

electro-osmotic dewatering. In addition, eluted metal ions, particularly those of 

chromium, might cause a secondary pollution issue (Mahmoud et al. 2010). Additionally, 

the presence of metal ions and high pH values near the cathode may result in insoluble 

metal hydroxides that precipitate and stick to the cathode surface, blocking the filter 

media (Iwata et al. 2013); 

 

 𝑀𝑐+ + 𝑐𝑂𝐻− → 𝑀(𝑂𝐻)𝑐 (1.11) 

  

 The corrosion of the electrodes also releases ions into the soil. These ions, as 

explained earlier, can hydrate and carry water molecules to the cathode. This effect is too 

small to be beneficial and consumes the electrodes, which is not economical. Also, 

because it is adding external ions to the process. the results of lab tests might be skewed 

and less accurate. To avoid this, graphite was used in all tests performed in this research. 

1.4.5 Bubble Formation 

The application of an electric current through water will cause electrolysis of water 

molecules. Water molecules dissociate and form oxygen gas and hydrogen ions at the 
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anode and hydrogen gas and hydroxide ions at the cathode, as shown in equations 1.12 

and 1.13. At the anode: 

 

 2𝐻2𝑂 → 𝑂2(𝑔) + 4𝐻+ + 4𝑒−, 𝐸𝑜 = 1.23 𝑉 (1.12) 

  

At the cathode: 

 

 2𝐻2𝑂 + 2𝑒− → 𝐻2(𝑔) + 2(𝑂𝐻)−, 𝐸𝑜 = −0.83 𝑉 (1.13) 

  

 A qualitative illustration of the basic hydrolytic processes and movement of water 

during electro-osmosis is presented in Figure 1.7. 

 

 

Figure 1.7 Schematic of the EO process in soil. 

 

 The energy released drives the current flow through the soil. Hydrolysis of water 

is especially prevalent when using uncorrodable electrode materials, since there are no 
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dissociating metals to release an absorb electrons. The accumulation of gas decreases 

contact area at the electrode-soil interface and therefore increases the electrical resistance 

(Mahmoud et al. 2010). This can be easily mitigated by providing a perforated cylindrical 

electrode and adding a slight vacuum.  

1.4.6 pH Changes at the Electrodes 

As the electrolysis of the water molecules proceeds, hydroxide ions are produced at the 

cathode and hydrogen ions are produced at the anode. This results in a pH gradient across 

the soil (Lockhart 1983, Yoshida 2000, Yuan and Weng 2003). Pazos et al. (2006) reports 

the change in pH at the anode and cathode through a few days of testing. The result is 

shown in Figure 1.8. 

 

Figure 1.8 pH change at the electrodes during electro-osmosis. 
Source: Pazas et al. 2006. 
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 An acidic front produced at the anode migrates towards the cathode and a basic 

front produced at the cathode migrates towards the anode. The rate of electromigration 

could be affected by ionic mobility, and, since hydrogen ions are smaller and have 1.76 

times the ionic mobility of hydroxyl ions, the acidic front generally moves faster through 

the soil (Alshawabkeh and Bricka, 2000). Therefore, the pH drop dominates the 

chemistry across the soil except for a region close to the cathode. 

 The basic mineral structure of clays is composed of tetrahedral sheets of silicon 

and oxygen and octahedral sheets of aluminum or magnesium and oxygen. The 

arrangement of these is shown on Figure 1.9. 

 

Figure 1.9 Basic clay mineral structure. 
Source: Jordan 2014. 
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 Hydroxyls are exposed on the surfaces of clay particles, giving the particles their 

negative surface charge. These hydroxyls have a tendency to dissociate in water, 

 

 (𝐴𝑙 𝑜𝑟 𝑆𝑖)𝑂− + 𝐻+ ↔ (𝐴𝑙 𝑜𝑟 𝑆𝑖)𝑂𝐻 (1.14) 

  

 This is strongly influenced by pH. The higher the pH, the greater the tendency to 

dissociate, and vice-versa. This means that when the pH decreases due to electro-

osmosis, the surface charge of clay particles becomes less negative. Additionally, 

alumina is an amphoteric substance, meaning it can react with both acids and bases. 

When the pH is low, these will ionize positive and again reduce the negative surface 

charge of clay particles (Mitchel and Soga 2005). When the pH in the pore fluid 

decreases, the exposed negative charges on the clay surface are neutralized by the H
+
 

ions. This causes the clay surface to have a less negative surface charge. As a result, the 

surface potential, and thus the zeta potential, of the clay particle are reduced. There are 

some exceptions to this, such as bentonite clay, that naturally buffer low pH. Since the 

electro-osmotic flow is directly related to the zeta potential, the electro-osmotic 

conductivity also decreases. The lower the pH goes, and the longer it is maintained, the 

less electro-osmotic flow will occur (Rabie et al. 1994, Tuan et al. 2008). Vane and Zang 

(1997) measured the zeta potential for clay samples under different pH levels. The results 

are shown below in Figure 1.10. 
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Figure 1.10 Zeta potential values for different pH levels. 
Source: Vane and Zang 1997. 

 

 The drastic change in zeta potential greatly hinders electro-osmotic consolidation. 

Since the electro-osmotic conductivity is directly related to the zeta potential, the changes 

in pH alone have the potential to completely stifle the process. As shown in Figure 1.10, 

with low pH values the zeta potential can become very small, leading to small electro-

osmotic consolidation based on Equation 1.8.  On the cathode side, the hydroxide ions 

can combine with metallic ions in the soil and precipitate, clogging the pores. Eventually 

the electro-osmotic process stops, significantly reducing the cost efficiency of electro-

osmosis. This has been one of the major setbacks for research on electro-osmotic 

remediation of soils contaminated with heavy metals. For reactive electrodes, such as 

copper and iron, oxidation and reduction of the electrodes also take place (Wu et al. 

2015). Yoshida (2000) and Burnotte et al. (2004) showed in laboratory and field 

investigations that with continuous application of direct current, the electrical contact 

resistance between the electrodes (mainly the anode) and the soil is considerably 
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increased, leaving an effective voltage gradient in the soil too small for significant 

electro-osmotic consolidation. According to Iwata et al. (2013), this has impeded the 

widespread application of electro-osmotic dewatering. Because of the major obstacle 

presented by the changes in pH around the electrodes, improvements in this area can 

greatly increase the efficiency of electro-osmotic consolidation, enough to make it a 

viable technique for construction site preparation. 

 

1.5 Conclusions 

Due to the ability for rapid consolidation of soils using this technique, electro-osmosis 

has generated much interest in geotechnical engineering, as evidenced by the numerous 

laboratory studies that have been published. However, widespread use of this 

consolidation method is not seen in developed nations due its low electrical efficiency. 

Hence this research attempts to understand electro-osmotic consolidation using a 

theoretical analysis and then improve it using ion exchange membranes. 
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CHAPTER 2 

PREVIOUS METHODS OF IMPROVING 

ELECTRO-OSMOTIC CONSOLIDATION 

 

 

2.1 Introduction 

Different variations of electro-osmosis application have been studied over the years to 

improve its consolidation results. Among then, the most popular ones are polarity 

reversal, intermittent current, injection of saline solutions, and the use of geosynthetics. 

All have shown clear improvements over conventional electro-osmosis. These are 

described below. The contents of this chapter have been published in Martin et al. 2019. 

 

2.2 Polarity Reversal 

Unidirectional direct current (DC) electric field has been commonly used for electro-

osmotic dewatering. Theoretically, periodic reversals in direction of the electric current, 

and so electro-osmotic flow, eliminates the zeta-potential gradient and restores the high 

value of zeta-potential near the anode, thus the electro-osmotic process is restored. 

Figure 2.1 shows a test performed by Rittirong et al. (2008) where current decay appears 

to be delayed through the use of polarity reversal. This study, however, did not look at 

the relationship between the cycles. A trend line has been added for this purpose and is 

discussed later on this chapter. 
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Figure 2.1 Current improvement through polarity reversal. 
Source: Rittirong et al., 2008. 

 

 Gray and Somogyi (1977) performed a series of electro-osmotic tests on red mud 

with high water contents using electrode polarity reversals every 30 minutes. The test 

results showed that the temperature rise at the anode was not as high and the voltages 

were considerably lower in the polarity reversal modes compared with the conventional 

unidirectional mode (DC). Polarity reversal caused a more uniform increase in shear 

strength and decrease in water content compared to the asymmetrical effect of DC. It also 

significantly reduced the expansion of pH gradient and non-uniform electrochemical 

changes in the treated samples. 

 Yoshida et al. (1999) studied the effect of polarity reversals to reduce the 

electrical contact resistance during the electro-osmotic dewatering experiments. The 

experiments on white clay samples were performed using alternated current (AC) in the 

region of very low frequency (0.01 and 0.001 Hz) with constant voltage (20 and 40 V). 
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Both rectangular and sine waves were used. The test results showed higher final 

dewatered volume under polarity reversals than that under DC application. This indicates 

that the polarity reversal method reduced the excessive increase of the electrical contact 

resistance because the water moved periodically in both directions. Yoshida et al, 1999 

also showed that DC removed more water than polarity reversal for the same amount of 

power used. However, current flow lasted longer with polarity reversal, increasing total 

volume of water removed past that of DC. With the use of polarity reversal the changes 

of pH and water content distributions within the treated samples were reduced and 

therefore, the dewatering could proceed more effectively. The best dewatering results 

were achieved by the lowest reversal frequency tested, 0.001Hz, while frequencies higher 

than 0.01Hz had worse results than DC. The higher frequencies, 1Hz and 50Hz, had the 

same dewatering as that of 0.01Hz.   

 Despite the reported favorable effects, some researchers pointed that the polarity 

reversal technique could not improve the effectiveness of electro-osmosis in terms of 

discharged water and undrained shear strength (Bjerrum et al. 1967, Ou et al. 2009, Chien 

et al. 2011, Kaniraj et al. 2011). This might be due to drying and acidic conditions near 

the anode being generated before the polarity is reversed. This indicates that if the 

interval is too long, adverse conditions will be generated such that polarity reversal has 

minimal impact on the treatment. If the sediments near the anode are unsaturated before 

the polarity is reversed, they need to be re-saturated to maintain the electro-osmotic flow 

in the reverse direction when it becomes a cathode (Kaniraj 2014). Chien et al. (2011) 

stated that the unfavorable effect of polarity reversal in their laboratory study on Taipei 
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clay was also due to cementation near the anode before the polarity reversal which did 

not allow discharge of water when it became a cathode.  

 

2.3 Intermittent Current 

Current intermittence is an alternate method of power application for electro-osmosis that 

has the potential to reduce power consumption and affect electrochemical reactions 

differently than DC application. The applied voltage gradient is intermittently turned off 

and then turned on again at regular intervals. For example, direct current is applied for 2 

minutes, the power is turned off for 1 minute, then the process is repeated and the clayey 

soil receives intermittent current.  

 Rabie et al. (1994) demonstrated that electro-osmotic dewatering of clayey soil 

with interrupted power provides a 20% improvement in water removal compared to that 

using continuous DC (see Figure 2.2). Their method of power interruption involved 

periodically disconnecting the power supply and short circuiting the electrodes while the 

power was off. During the power off period, a residual current flowed through the 

sediments in an opposite direction to the external power supply (Rabie et al. 1994). This 

short circuit current reversed the electrochemical reactions which had occurred at both 

electrodes. This reduced the negative effects of electro-osmosis on the sample and 

allowed treatment time to be extended. This effect is similar to what occurs during 

polarity reversal treatment. The experiment also showed that the interval of current 

intermittence is critical to the efficiency of treatment. 
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Figure 2.2 Volume of water removed over time for current intermittence at different 

ON/OFF intervals vs. DC. 
Source: Rabie et al., 1994. 
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effectiveness of the electrical field in moving water. The current intermittence allows the 

double layer to restore its original charge distribution, which increases the efficiency of 

electro-osmotic process. However, it is also possible that normal DC application 

decreases the coefficient of electro-osmotic conductivity due to pH changes and other 

factors. The effect of intermittent current in this case is simply to reduce this drop. 

According to Casangrande’s equation, water depletion in the system will also cause a 

decrease in the coefficient of electro-osmotic conductivity. By allowing the residual 

current and hydrostatic head to redistribute water in the sample during OFF times, the 

intermittent current also reduces the drop in the coefficient of electro-osmotic 

conductivity. 

 The optimal current intermittence intervals to maximize the electro-osmotic flow 

depend on the relaxation time for the double layer to align with the applied electric field. 

In the current intermittence experiments by Mohamedlhassan and Shang (2001), various 

on/off intervals (in minutes) of 1/0.5, 2/1, 3/1.5, 4/2, and 5/2.5 were used. The optimum 

combination was found to be 2 minutes on and 1 minute off, which increased the 𝑘𝑒 up to 

100% compared with the continuous DC. Mohamedlhassan and Shang (2001) also 

showed that the open circuit is superior to the short circuit configuration used in the 

experiments by Rabie et al. (1994). The results are summarized in Table 2.1.  
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Table 2.1 Average 𝑘𝑒 for Different Current Intermittence 
Intervals 

Circuit 
ON-time 

(min) 
OFF-time 

(min) 
Average 𝒌𝒆 

(m
2
/sV) 

Open 1 0.5 9.45E-09 

Open 2 1 1.23E-08 

Open 3 1.5 1.07E-08 

Open 4 2 8.82E-09 

Open 5 2.5 8.79E-09 

Short 1 0.5 7.71E-09 

Short 2 1 7.24E-09 

Short 3 1.5 7.21E-09 

Short 4 2 7.16E-09 

DC - - 6.12E-09 

Source: Mohamedlhassan and Shang, 2001. 

 

 The residual current in the short electric circuit may enhance the capacity of 

current intermittence to restore the original charge distribution of the double layer, but it 

also reverses the direction of the electro-osmotic flow. For the open circuit configuration, 

since the electric circuit between electrodes is open during the power interruption, a 

residual voltage exists across the sample and will reduce the energy required to recharge 

the sample when the power is on again. Additionally, intermittence interval is much more 

effective in enhancing electro-osmosis with an open circuit configuration, while a closed 

circuit configuration seems to have limited electro-osmosis enhancement. However, 

Mohamedlhassan and Shang (2001) did not explain why 𝑘𝑒 in the short circuit 

configuration seems to be unaffected by intermittence interval. 

 Micic et al. (2001) investigated the use of current intermittence in electro-osmosis 

treatment of high-salinity marine sediment with steel electrodes. The investigation was 
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exercised with on/off intervals (in minutes) of 10/2, 4/2, and 2/2 and compared with a 

constant DC. It was found that the test with constant power on was the most effective in 

terms of increase in the undrained shear strength and decrease in water content. However, 

this test was the least economical because of the high power consumption and rapid 

corrosion of the anode. They concluded that the intermittent current method can be useful 

when treating marine sediment with high salinity (low resistivity) in which the current 

levels in the system will be high and electrode corrosion and power consumption will be 

too large if current intermittence is not used. This has also been shown in a large-scale 

laboratory study in a model tank by Lo et al. (2000). The use of intermittent current is 

thus shown to provide better treatment over time due to its reduction in power 

consumption and extension of electrode life. 

 Yoshida (2000) evaluated the intermittent power application to reduce the 

excessive increase of the electrical contact resistance with the lapse of time. The 

intermittent electric field was made by rectifying an AC electric field with very low 

frequencies (0.01 Hz and 0.001 Hz). Electro-osmotic dewatering of kaolinite was 

investigated under the same peak-value voltage and effective-value voltage as that under 

DC and AC electric fields. The results showed that the intermittent electric field which 

had the same peak-value voltage is capable of removing more water than that from DC 

field with same power. When applying power to maintain a constant voltage, the rate and 

the amount of removed water under current intermittence was slightly smaller than under 

DC, but almost the same as AC, except near the end of dewatering. Based on these 

findings, Yoshida (2000) concluded that the intermittent electric field considerably 

reduces the increase of the electrical contact resistance with time during electro-osmosis. 
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Other research in electro-osmosis also showed that the efficiency of treatment can be 

significantly improved and corrosion of the electrodes and the power consumption can be 

reduced if the applied current is periodically interrupted (Sprute and Kelsh 1976, Lo et al. 

1991, Shang and Lo 1997). Current intermittence is thus proved a useful alternative to 

DC application in terms of current efficiency.  

 

2.4 Injection of Saline Solution at the Electrodes 

Several recent studies have been focused on the injection of saline solutions into clayey 

soil during electro-osmosis to increase its effect on dewatering. Using different injection 

solutions during electro-osmosis, such as NaCl, KCl, CaCl2, aluminum ions, phosphoric 

ions, methacrylate poly cations, Al2(SO4)3, Mg(CH3COO)2, MgSO4, Mg(NO3)2, ZnSO4, 

AgNO3, NaOH, and Na2CO3, can enhance the effect of electro-osmosis. This method 

makes use of the interactions between chemical solutions and clayey soil particles, such 

as cation exchange and particle cementation, under the influence of an electric field 

(Ozkan et al. 1999, Lefebvre and Burnotte 2002, Alshawabkeh and Sheahan 2003, 

Mohamedelhassan and Shang 2003, Burnotte et al. 2004, Paczkowska 2005, Otsuki et al. 

2007, Chien et al. 2009, Ou et al. 2009, Chang et al. 2010, Chien et al. 2011). For 

example, the addition of NaOH solution at the anode has a dual purpose. The OH
-
 ions 

will reduce the concentration of the H
+
 ions generated at the anode. The Na

+
 ions will 

then aid electro-osmosis by migrating towards the cathode. Saichek and Reddy (2003) 

showed that using NaOH to buffer the low pH and increase the effects of electro-osmosis 

is a valid approach. At the cathode electro-osmosis generates OH
-
 ions that limit the 

efficiency of the dewatering.  Zhou et al. (2005) performed tests using different acidic 
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solutions introduced at the cathode to buffer the high pH. The most effective was found 

to be HCl. By introducing a 0.5 M HCl solution at the cathode the efficiency of electro-

osmosis greatly increased. Conditioning the pH at the electrodes is thus shown to be a 

valid method of improving results of electro-osmotic dewatering. 

 Lefebvre and Burnotte (2002) carried out experiments on clay samples in which 

the anodes where chemically treated by injection of a saline solution at the beginning of 

the electro-osmotic treatment. The study showed that the injection of saline solution 

significantly decreased the power loss and doubled the voltage gradient. The experiment 

also looked at the effect of treatment on undrained shear strength. For a sample without 

treatment, the undrained shear strength increased by 158%. On the other hand, for two 

samples with electro-osmotic treatment with injection of a saline solution it increased by 

over 200%. 

 Chien et al. (2009) performed experiments on Taipei clay to study the effects of 

different electrolytes on water removed and zeta potential. The experiment tested NaCl, 

KCl, and CaCl2; with different concentrations of CaCl2. After testing for 24 hours at a 

constant applied voltage of 10 V, the drained water and zeta potential values were 

measured. The results are summarized in Table 2.2. All the above electrolytes had a 

beneficial effect in terms of water removal with CaCl2 having the best impact. However, 

due to the cation exchange properties of the clay, the zeta potential of the tests using 

CaCl2 was reduced to half that of the sodium and potassium tests. This could have 

adverse effects on long term treatment. Different concentrations of CaCl2 had limited 

impact on water removal but had a major influence on the zeta potential. The lower 

concentration resulted in a zeta potential similar to that of the other saline solutions. 
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Lastly, the treatment time with application of CaCl2 had limited impact on water removal 

and zeta potential. While a 1 day test yielded 172% increase in water removal compared 

to regular electro-osmosis, a 7 day trial resulted in only 22.1% increase showing that the 

benefits of adding saline solutions might only had an impact during the initial stages of 

treatment. This could be due to the negative effects of CaCl2 on the zeta potential.  

 

Table 2.2 Injections of Saline Solutions to Improve Electro-Osmosis 
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EO1 Control 1 64.5 22 13 11 
 

2.8 
 

EO2 Control 7 523.2 52 37 30 
 

3.2 
 

EOC1 NaCl 0.1 1 127.5 24 11 9 2 5.5 -87.3 

EOC2 KCl 0.1 1 152.7 26 12 12 4 6.6 -87.3 

EOC3 CaCl2 0.1 1 169.5 30 12 11 8 7.3 -47.3 

EOC4 CaCl2 0.01 1 158.2 22 13 11 0 6.8 -78.4 

EOC5 CaCl2 1 1 175.3 36 18 16 14 7.5 -17.7 

EOC6 CaCl2 1 7 683 70 41 38 18 4.1 -17.7 

Source: Chien et al., 2009. 

 While the concentration of positive ionic species in the system may benefit the 

process by allowing a higher current, Hu (2008) showed that an excess of these ions will 

be detrimental to the overall efficiency of the treatment. The higher the concentration of 

ions, the higher the current through the sample will be.  This translates to higher power 

consumption. However, the increase in removed water volume is minimal. This means 

that salt concentration is beneficial but will become detrimental if the concentration is too 

high. 
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 Chien et al. (2011) studied the effect of injection of calcium chloride (CaCl2) and 

sodium silicate (Na2O.nSiO2, n=3.4) solutions in a series of electro-osmotic experiments 

on Taipei silty clay. These chemicals are known to be non-toxic and have been used as 

grouting materials in sandy sediments. Perforated stainless steel tubes were installed as 

electrodes for injection of chemicals at the anode and drainage of fluid at the cathode. 

Different sequences of injection of solutions and application of voltage gradient were 

used. For the control test, only a voltage gradient of 50 V/m was applied for 7 days and 

the undrained shear strength was measured to be 39 kPa. In the second experiment, 

calcium chloride was injected for 1 hour and then the same voltage gradient was applied 

for 7 days; this increased the undrained shear strength to 49 kPa which indicates the 

positive effect of the short term injection prior to electro-osmotic treatment. For the third 

experiment, calcium chloride was injected during the application of the same voltage 

gradient for 7 days and the undrained shear strength changed to 25 kPa indicating the 

unfavorable effect of continuous injection during electro-osmotic treatment. In another 

test, calcium chloride was injected for 2 days followed by injection of sodium silicate for 

another 2 days and then the same voltage gradient was applied for the next 3 days. 

Undrained shear strength increased to 59 kPa indicating the positive effect of long term 

injection of saline solutions before the beginning of the electro-osmotic treatment. Ca
2+

 

ions reduce the double layer thickness and allow a more densely packing of the particles, 

which is beneficial for dewatering purposes. However, as shown by Chien et al. (2009), 

the use of CaCl2 does have adverse effects on the zeta potential that need to be considered 

since the electro-osmotic conductivity is proportional to the zeta potential. 
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2.5 Electrically Conductive Geo-Synthetics (EKG) 

Electro-kinetic geo-synthetics (EKG) are new forms of electrodes based on the use of 

electrically conductive geo-synthetics. Electro-kinetic geo-synthetics combine the 

electro-osmotic function of electrically conductive polymers and the drainage, filtration 

and reinforcement functions of geo-synthetics. Electro-kinetic geo-synthetics are formed 

by incorporating conductive elements within or associated with a conventional geo-

synthetic material. Alternatively the geo-synthetic material can be formed using 

conducting polymer. Recent research using electro-kinetic geo-synthetics has shown the 

potential for the application of these materials in electro-osmotic dewatering of clayey 

soil and mining tailings (Hamir et al. 2001, Glendinning et al. 2005, Fourie et al. 2007, 

and Jones et al. 2011). 

 Hamir et al. (2001) investigated four types EKG electrodes, including (type 1) a 

needle-punched geo-synthetic with a woven copper wire stringer, (type 2) a needle-

punched geo-synthetic incorporating stainless-steel fibers, (type 3) a composite formed 

by a carbon fiber sheet sandwiched between two layers of non-woven polypropylene 

sheet, and (type 4) geo-composite strip reinforcement with a copper wire stringer. The 

effectiveness of EKG electrodes in generating negative pore pressures was compared 

with the copper electrodes, as the electro-osmotic dewatering is directly related to the 

development of negative pore pressures. If the EKG electrodes are to replace regular 

electrodes then the pore pressures generated should be similar, and the resulting flow rate 

will then be similar. Test results demonstrated that there was very little difference 

between the EKG type 1 and the copper electrodes; EKG types 2 and 3 appeared more 
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effective in generating negative pore pressure. The variations in resistance with time for 

types 1 and 2 and for the copper electrode are shown in Figure 2.3.  

 The EKG electrodes showed little more resistance increase than the copper 

electrode, especially type 1. EKG type 4 was used as ground reinforcement to study the 

effect of electro-osmotic dewatering on bond performance under undrained conditions. 

Application of a potential gradient of 30 volts in addition to surcharge loading caused a 

reduction in water content of the sample ranging from 5.5% for a sample with a surcharge 

load of 350 kPa to 14% for a sample with a surcharge load of 110 kPa. Electro-osmosis 

using EKG electrodes created a significant improvement in bond strength, ranging 

between 54-210% which was in proportion to the increase in shear strength. 

 

Figure 2.3 Variation of electrical resistance of copper and EKG Types 1 and 2 

electrodes. 
Source: Hamir et al., 2001. 
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 Glendinning et al. (2005) demonstrated the successful use of EKG in the 

construction of a 4.8 m high reinforced soil wall. Clay slurry was used as backfill and 

was dewatered by electro-osmosis using EKG electrodes. Many potential benefits to 

EKG were identified. First, encasing the metallic filaments in a relatively inert polymer 

effectively eliminates electrode corrosion. Second, by forming the electrode as a geo-

synthetic and utilizing the drainage function of geo-synthetics, EKG overcomes the 

problem of removing water since it provides a suitable drainage path for pore water 

removed with electro-osmosis. Third, geo-synthetics have the ability to take on a wide 

variety of shapes and forms to suit different applications. Last, making electrodes 

identical, polarity reversal can be easily achieved without compromising either the 

drainage function or electrical efficiency. Details of applications and case studies are 

provided in Jones et al. (2011).  

 Hu (2008) provides extensive research on the use of EKGs for different 

applications. The paper provides an analysis of the best geosynthetics to use in 

combination with electro-osmosis for drainage, reinforcement, filtration, separation, or 

containment of water and other substances in clayey soil of different types. The paper 

shows that carbon has the best resistance to corrosion when used for the electrically 

conductive filaments in EKGs. Additionally, the study reports the best treatment practices 

when using EKGs for different applications. These are shown in Table 2.3. 
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Table 2.3 EKG Applications 

 Dewatering Strengthening Conditioning Clean up 

Objectives 
Reduce water 

content 

Reduces water 

content and 

increase 

strength 

Reduces water 

content, increase 

strength, promote 

biological 

activity, pathogen 

reduction 

Flush water 

through, 

mobilize/entrain 

contaminants, treat 

all soil, capture 

contaminants 

Harnessed 

Electro-

kinetic 

effects 

Electro-

osmosis 

Electro-

osmosis, pore 

pressure 

modification, 

electro-kinetic 

hardening 

Electro-osmosis, 

pore pressure 

modification, 

electrolysis, Joule 

heating 

Electro-osmosis, 

electrolysis, Joule 

heating 

Electrodes 

configuration 
Closed anode Closed anode 

Closed/semi 

closed anode 

Open anode and 

cathode 

Geosynthetic 

functions 

Drainage, 

filtration, 

containment 

Drainage, 

filtration, 

reinforcement 

Drainage, 

filtration 

Drainage/irrigation, 

filtration, 

sequestration 

Polarity 

regulation 

Normal 

polarity 

Normal and 

reversed 

Normal and 

reversed 
Normal polarity 

Source: Hu 2008. 

 

2.6 Field Applications 

Several well-documented field tests have been reported in the literature to demonstrate 

the successful in situ application of the electro-osmotic technique, including stabilization 

of excavations in clayey soil, stabilization of earth embankments, slopes and retaining 

walls, strengthening of clayey soil, dewatering, and improving friction pile capacity 

(Bjerrum et al. 1967, Chappell and Burton 1975, Lo et al. 1991, Abdel-Meguid et al. 

1999, Burnotte et al. 2004, Glendinning et al. 2005, Fourie et al. 2007, Lamont-Black and 

Weltman 2010). 
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 Lo et al. (1991) performed a field test to assess the effectiveness of the electro-

osmotic stabilization on soft sensitive clay with original average shear strength of 20 kPa 

in Gloucester, Canada. The electrodes were 60.3 mm diameter perforated copper pipes to 

allow the drainage of water. The electrodes were installed in two square grids with 

different spacing of 3 m and 6 m, to investigate the influence of the spacing between the 

electrodes. The polarity of electrodes was reversed midway during the 32 days treatment 

period. Due to the polarity reversal, the undrained shear strength was uniformly increased 

by 60% and 40 % between the electrodes of 3 m and 6 m spacing, respectively. The 

dewatering removed an approximate total 4.2 cubic meters of water and was uniform 

over the treated area. The vane shear tests performed after 10 months showed that the 

shear strength remained constant, indicating that the increase in shear strength was 

permanent. 

 Burnotte et al. (2004) reported the results of a large field demonstration at Mont 

St-Hilaire, Canada, where a soft clay foundation of an existing road embankment was 

dewatered using electro-osmosis combined with chemical injection. Perforated steel pipes 

of 170 mm diameter were used as electrodes and pumping was used at the cathodes to 

make sure the water was not recirculated into the system. The clay had initial undrained 

shear strength of 30 kPa. The test aimed to have an over consolidation ratio (OCR) of 1.5 

corresponding to a compression of 9% in 5 m of a soft clay layer. The initial profile of 

shear strength was compared with those obtained after the treatment at the mid-distance 

between the anode and the cathode, at 0.5 m from an anode, and at 0.5 m from a cathode. 

On average, at mid-distance between anodes and cathodes the undrained shear strength 

almost doubled. Thanks to the dewatering, the undrained shear strength of the clay layer 
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increased to 46 kPa near the cathodes and up to 190 kPa near the anodes. The desired 

compression of 9% was achieved uniformly after 28 days of electro-osmotic dewatering. 

When the treatment was terminated after 48 days the water removed was 460 L/m
2
, 

equivalent to a compression of 12%.  

 In another field study Ou et al. (2009) tested the effectiveness of the injection of a 

calcium chloride solution followed by the injection of a sodium silicate solution. The 

experiment tested the use of polarity reversal and DC in combination with the saline 

solutions. The test consisted of injecting the solutions through the anodes and pumping 

out water from the cathodes. In the case of polarity reversal, the injection and pumping 

were also switched. The test was run for 25 day. The polarity was reversed after 12 days. 

The saline solution was injected during the first 4 days of treatment and during 4 days 

after the polarity was reversed. During DC application, the undrained shear strength of 

soil was increased. After the polarity was reversed, the new cathode was not able to pump 

water due to cementation around the electrode. This caused the water content to increase, 

which in turn decreased the undrained shear strength.  

 Lamont-Black and Weltman (2010) implemented electro-osmosis to stabilize a 

typical 9m high railway embankment in London with side slopes of 22°, which had been 

constructed by end tipping mixed fill of London clay and brick fragments, overlying 

alluvium and terrace gravels. A prior assessment of the embankment slope showed 

movement of more than 6mm a month and inclinometer readings next to the site 

indicated a distinct slip surface at approximately 2.5 m depth with factor of safety of 1.0 

for the slope. An array of EKG electrode nails in the form of hexagons was deployed on 

the slope with a central cathode, from which the water could be drained. Application of a 



42 
 

DC potential (60-80 V) forced the water out of the ground, thus increasing material 

strength. After six weeks of electro-osmotic treatment and a power consumption of 

approximately 11.5 kwh/m
3
, the shear strength of clay fill increased by a factor of 2.3, 

resulting in factor of safety of 1.7 for the slope, well above the required 1.3. Inclinometer 

readings after the treatment showed no horizontal movement. After the treatment the 

electrodes were left in the ground to act as soil nails to further stabilize the slope. The 

applied electro-osmotic technique achieved the results at 26% lower costs and with a 

carbon footprint of 47% lower than comparable methods using gabions and slope 

slackening. 

 

2.7 Discussion 

The reversal of polarity causes a switch of the electrolysis reactions. This can balance the 

high H+ concentration generated during the previous interval, thus maintaining an overall 

pH that will not greatly affect the zeta potential. The ability of the system to balance once 

the polarity is changed depends on the reversal interval. If drainage is available at the 

cathode, too many hydrated ions might be removed before reversal and the pH will be 

allowed to change and spread the pH front. Also, the clayey soil around the electrodes 

might cement and be unable to transfer current. Hence, the interval of polarity reversal is 

very important for the effectiveness of this technique. Yoshida et al. (1999)’s experiments 

with different frequencies showed that the best dewatering results were achieved by the 

lowest reversal frequency tested, 0.001Hz, while frequencies higher than 0.01Hz had 

worse results than DC. The highest frequencies, 1Hz and 50Hz, showed no difference in 
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dewatering. This suggests that normal high frequency alternating current is not beneficial 

for electro-osmotic dewatering. 

 Polarity reversal will create a more even distribution of water content along the 

path from anode to cathode, while applying a constant direct current will result in 

significant drying near the anode but only minor dewatering near the cathode. Simply 

reversing polarity will circulate water back and forth within the system. Because of this, 

and especially since water is not being drained to maintain current, net dewatering will 

not be as high as under DC. However, water molecules are being removed from the 

chemical structure of the clayey soil and moved to the pore spaces. In this form they are 

easier to remove with the help of a surcharge load. 

 Interestingly, while it might appear that polarity reversal delays current decay in 

clayey soil, it actually doesn’t. Shown in Figure 2.1 are different intervals of polarity 

reversal. When the polarity is switched, the current peaks for short time. However, as 

evidenced by the shown trend line, the current returns to the level it would have at that 

time had the polarity not been reversed. This disproves the idea that polarity reversal can 

increase treatment time. In terms of current, the only improvement it is providing is the 

short peaks right after the polarity is switched. Thus, the benefits of polarity reversal lay 

in recirculation of water and reduction of pH changes, not in the overall dewatering 

purposes. This can be most helpful for chemical treatment of clayey soil by recirculating 

a reagent with polarity reversals. 

 While current intermittence is subject to the same problems of DC, it is able to 

prolong treatment life. As the studies show, the power efficiency is increased. However, 

the treatment times to obtain similar dewatering results as DC are longer. This means that 



44 
 

current intermittence is more efficient in the long run, but DC can provide faster results if 

treatment time is limited and power consumption costs are not critical. While the short 

circuit method allows current and water recirculation to reduce resistance in clayey soil, 

some power is wasted to transport the recirculated water to the cathode. Thus, the OFF 

interval should be short to prevent too much recirculation. An open circuit on the other 

hand provides a benefit in power efficiency over DC since it allows the soil to relax while 

not draining the residual voltage. 

 Mohamedlhassan and Shang (2001) observed a 25% residual voltage during 

intermittent current OFF times. This suggests that the clayey soil might be acting as a 

capacitor. When the power is turned ON, the clayey soil-capacitor system stores charge 

and the current in the system decreases. Then, when the power is turned OFF, the clayey 

soil-capacitor has a residual voltage that slowly drains. This can be seen in the voltage 

equation for a discharging capacitor: 

 

 𝑉𝑐 = 𝑉𝑜 ∗ 𝑒−𝑡 𝑅𝐶⁄  (2.1) 

 

Where Vo is the voltage in the capacitor when current in turned OFF, R and C are 

resistance and capacitance of the clayey soil-water system, and t is the elapsed time. The 

resistance can be written as: 

 𝑅 = 𝐻 (𝜎 ∗ 𝐴)⁄  (2.2) 

 

The clayey soil capacitance can be written as: 
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 𝐶 = 𝐴 ∗ 𝜖′ ∗ (𝜖0 𝐻⁄ ) (2.3) 

 

Hence, equation 2.1 can be written as: 

 

 𝑉𝑐 = 𝑉𝑜 ∗ 𝑒−𝑡𝜎 𝜖′𝜖0⁄  (2.4) 

 

 This might explain why intervals with the same ON/OFF ratios but higher OFF 

times have lower efficiency. Equation 2.4 shows that relaxation of electrical potential is a 

function of electrical properties of clayey soil. The 𝜎 𝜖′𝜖0⁄  term refers to the clayey soil’s 

electrical relaxation time. Hence equation 2.4 might have a significant implication in 

electro-osmotic treatment with intermittent current. If the clayey soil is allowed to relax 

for too long the benefit of residual voltage is lost and reactivating current requires 

recharge of the clayey soil. Selection of current intermittence intervals must be based on 

factors such as overall effectiveness of treatment, degree of electrode corrosion, and 

power consumption. When compared to polarity reversal, current intermittence provides 

the best results in terms of water removed for power consumed. Several studies have 

been carried out investigating these methods, but none has compared the overall 

effectiveness of each. To conclude which treatment procedure is better, the electro-

osmotic conductivity, 𝑘𝑒, was calculated for each study based on Casagrande (1949)’s 

equation. A detailed comparison of these is presented in Table 2.4. 

 While the variables in these experiments vary, there are clear trends. The 

calculation of the electro-osmotic conductivity includes the discharged water and the 

applied electric field. The vast majority of intermittent current experiments show an 
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improvement in 𝑘𝑒 while the polarity reversal tests show a reduction. For example, 

Yoshida (2000) and Yoshida et al. (1999) tested the same sample and electrodes. 

Compared to their DC electro-osmotic conductivity, the intermittent current clearly 

outperformed the polarity reversal. The results of these studies prove that intermittent 

current is superior to polarity reversal in water removal for power consumed, which is 

key for dewatering projects. When the polarity is reversed, the water is recirculated and 

energy is consumed moving the water to the new cathode. This can even create lower 

discharge for the same applied power as DC. Table 2.4 also confirms that current 

intermittence interval, circuit type during OFF times, and wave type all influence the 

discharge of water. While different samples will react differently, the comparison 

between polarity reversal and intermittent current includes multiple types of clayey soil 

and still shows valid trends. Across the referenced works polarity reversal shows mostly 

negative efficiency of water removed for power used while intermittent current shows 

mostly significant improvements. This holds true despite the different clayey soil tested, 

electrode materials, and power application variables.  
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 EKGs improve on the basic electrodes by providing longer lasting electrodes that 

solve other problems common to normal electrodes. They will not corrode as fast as 

regular electrodes since they are coated with an inert polymer. Though covering the 

metallic filaments in a somewhat inert polymer might increase resistance, the difference 

is not significant, as evidenced by the presented studies. In addition to the electrical 

properties of EKGs, they also provide better drainage paths for water molecules that have 

made wick drains popular. This path not only allows water to flow out of the clayey soil 

systems faster, but it also helps liberate the gas bubbles generated around the electrodes 

due to electrolysis. While production of highly customized EKGs might cost more, they 

will last longer, effectively reducing costs. Because EKGs can be designed to stay in 

clayey soil and act as nails they can provide additional strength for little cost. EKGs also 

work well in combination with other enhancement techniques, especially with chemical 

injections by facilitating their introduction into clayey soil. 

 The use of saline solutions to aid in electro-osmosis is shown to be beneficial by 

providing new ions that will hydrate and carry water towards the cathode and buffer the 

large pH changes. However, close consideration must be made with regards to what type 

of electrolyte to use. The main factor that seems to affect electrolyte effectiveness is ease 

of exchange. This in turn depends mainly on the valence, ion size, and relative abundance 

of different ions. While Chien et al. (2011) reported that continuous injection during 

treatment is detrimental to the effectiveness of electro-osmosis. The tests used CaCl2 

which is shown to decrease the zeta potential by Chien et al. (2009). Continuous injection 

of other solutions might provide different results since they interact differently with 

clayey soil particles based on their cation exchange capacity (CEC) and the initial 
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structure (dispersed or flocculated). The injection of saline solutions increases the 

electrolytes present in clayey soil and provide a temporary boost to current and electro-

osmotic flow. Unfortunately, with increased current and flow the rate of water 

electrolysis also increases. Hydrogen and hydroxide are produced faster at the electrodes. 

While most studies focused on anode conditioning, further study should be performed on 

the effects of conditioning at the cathode as a means to prevent precipitation and high 

alkalinity due to OH
-
 generation, which increase resistance.  

 The reported experiments show that injection of saline solutions to aid in electro-

osmosis worked best when used prior to current application. Studies also tested the use of 

polarity reversal in combination with chemical injections. Ou et al. (2009) reported that 

sediment was cemented around the anode and this impeded the flow of water when the 

polarity was reversed, decreasing strength and increasing water content. However, this 

study was not extensive and the interval of polarity reversal was not investigated. The 

combined use of these two techniques could provide a substantial improvement over 

classic electro-osmotic treatment but electrolyte type and reversal interval must be 

carefully chosen. Since the polarity reversal interval depends on the amount of water 

drained and pH changes that occurred at the electrodes, and because adding chemical 

solutions increases the electro-osmotic flow of water, the intervals will have to be lower 

than if only polarity reversal is used. 

 While Ou et al. (2009) has similar issues as Chien et al. (2011), it demonstrates 

that injection of saline solutions improved the effectiveness of electro-osmosis in the 

field. The researchers concluded that polarity reversal in conjunction with chemical 

treatment is not beneficial. However, the reversal interval has been shown above to be a 
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critical variable. A shorter period between polarity reversals could provide much better 

results. The effectiveness of these techniques might be different in the field due to having 

a less controlled environment, but the benefits are still achievable. 

 

2.8 Summary and Conclusions 

In this chapter, different techniques used to enhance electro-osmotic dewatering were 

described and analyzed. Their improvement over the classic electro-osmotic treatment 

was discussed with a focus on dewatering efficiency. Table 2.5 shows the pros and cons 

of each method. This study indicates that polarity reversal and intermittent current 

positively affected electro-osmotic treatment of clayey soil compared to DC, but that the 

power variation interval is critical to the success of both techniques. Polarity reversal 

provides a more even distribution of water removal than DC but fails in power efficiency 

for water removed. Current intermittence, especially under an open circuit, shows a clear 

increase in efficiency of water removed for power consumed. Injection of saline solutions 

at the electrodes was shown to provide some improvement in electro-osmotic dewatering 

and that it works best when application is done before testing or during the initial stages. 

Intermittent current suffers from the same problems that DC has with pH, thus and 

investigation of the effect of combining intermittent current and an injection of a buffer 

solution at the electrodes would be useful. Last, EKG electrodes were described and their 

benefits analyzed. They provide suitable replacement for classical electrodes and have 

additional functions. Field use of these techniques was also discussed and they have been 

shown to have similar effects on electro-osmotic dewatering of clayey soil in the field 

just as they do in the lab.  
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Table 2.5 Advantages and Disadvantages of Different Enhancement Techniques 

Compared to DC 

Enhancement 

technique 
Advantages Disadvantages 

Polarity 

reversal 

Longer treatment time, ions are 

recirculated, higher power 

efficiency, longer electrode life, 

reduced pH changes 

Water is maintained in the soil 

system, lower undrained shear 

strength, ON/OFF interval is critical, 

possible cementation and excessive 

ion removal 

Intermittent 

current 

Higher power efficiency for 

water removed, longer 

treatment time, longer electrode 

life 

Lower time efficiency for water 

removal, ON/OFF interval is critical 

Chemical 

injection 

Increase in current flow, 

improved water removal at low 

concentrations, increase in 

undrained shear strength 

Continuous injection is detrimental, 

improvement in strength is limited to 

immediate area around electrode, 

high concentrations reduce power 

efficiency, and higher ion valence 

provides better immediate water 

removal but can stifle long term 

treatment. 

Geosynthetics 

Cost, corrosion control, shape 

customization for different 

applications, can be used as soil 

nails, can be used in 

conjunction with the other 

enhancement techniques, 

provides a better drainage path 

Minimal increase in resistance due to 

inert polymer coating of electric 

filaments 

 

 Polarity reversal, intermittent current, injection of chemical solutions at the 

electrodes, and use of geo-synthetics increase the overall efficiency of electro-osmotic 

treatment. These techniques are very promising, especially if combined. However, the 

improvements are not sufficient to justify use of electro-osmotic dewatering. As a result, 

electro-osmotic consolidation is still not widely used in construction projects. In order to 

reduce the excessive increase of the electrical contact resistance, improve the 

performance of electro-osmotic dewatering, and propel this technology into the market as 
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a viable consolidation option, a new approach is necessary. Additionally, a deeper 

understanding of the effects and mechanisms of electro-osmosis in clays are essential to 

properly predict and quantify the efficiency of any potential improvements. 
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CHAPTER 3 

NEW METHOD TO PREDICT ELECTRO-OSMOTIC 

CONDUCTIVITY OF CLAYS 

 

3.1 Introduction 

The efficiency of electro-osmotic treatment is controlled by the electro-osmotic 

properties of the soil. Thus it is important to understand the properties that govern 

electro-osmotic phenomena in clay soils. This chapter briefly reviews an established 

theory of electro-osmotic conductivity of clays and then proposes a new theory based on 

work done in the field of colloidal chemistry. The contents of this chapter are in the 

process of being published in Martin and Meegoda 2019b and Martin and Meegoda 

2019c. 

 Because of the molecular structures of clay particles, there is a negative surface 

charge on the wide flat sides of the particle. As discussed in Chapter 1, this negative 

surface charge is balanced by free ions in the interstitial fluid. A concentration gradient of 

these ions will develop; where the positive ions will have an increased concentration near 

the clay surface that decays towards the bulk concentration with the distance from the 

particle surface. The inverse will happen with the negative ions, i.e., lesser number of 

negative charges near the clay surface. This is commonly referred to as the diffused 

double layer. When an electric field is applied parallel to the clay surface, hydrated ions 

will migrate towards the oppositely charged electrodes. Since there is a predominance of 

positive ions in the double layer the net flow will be towards the cathode, where water 

can be removed. This has been the underlying principle of electro-osmotic consolidation 
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of soft clays. Much study has been done in an attempt to understand the mechanisms at 

play and develop a mathematical theory that describes this flow. 

 One of the earliest and more widely accepted theories is based on a model 

introduced by Helmholtz (1879) and refined by Smoluchowski (1914). This model is 

discussed in detail in chapter 1 and summarized here. The model develops an expression 

for the flow of water through a soil of cross-sectional area A due to an applied electric 

field E similar to Darcy’s Law. 

 

 𝑞 = 𝑣𝐴 (3.1) 

 

Where 

 

 𝑣 = 𝑘𝑒𝐸 (3.2) 

 

 
𝑘𝑒 =

𝜁𝜖

𝜇
𝑛 (3.3) 

 

 𝜖 = 𝜖0𝜖𝑟 (3.4) 

 

Here ζ is the potential at the slip surface of the clay particle termed the zeta potential. The 

actual slip plane is not at the particle surface but some small unknown distance 𝛿 away 

from the surface of the particle (Mitchell and Soga 2005). This occurs because there is a 

layer of ions that will essentially remain attached to the clay surface. In this model 𝑘𝑒 is 

termed the electro-osmotic conductivity. This term essentially measures the effectiveness 
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of the electrical current in moving water through the soil. Thus, it is important to properly 

understand it. Other researchers have also proposed theories that describe the electro-

osmotic conductivity. Schmid, 1950 and Schmid, 1951 develop a theory where the 

electro-osmotic conductivity varies with the square of the pore radius. However, the 

Helmholtz model still gives better results for soils (Mitchell and Soga 2005). Spiegler, 

1958 proposed a model that considered the friction between the water and ions, and the 

pore walls but made assumptions that severely limited the model’s predictive power. Its 

real value is in providing a relatively simple physical representation of a complex process 

(Mitchell and Soga 2005). To date, the Helmholtz-Smoluchowski model remained the 

most popular model. However, it has some important drawbacks, such as not accounting 

for electrolyte concentration, and tends to overestimate measured values 

(Mohamedelhassan, 1998). This chapter proposes a new way of calculating the electro-

osmotic conductivity by adapting work done in colloid chemistry (Coelho at al., 1996).  

 The electro-osmotic conductivity will depend on the properties of the diffused 

double layer. Since the clay particle exhibits a surface charge due to its chemical 

structure, it can be assumed that the surface will have a constant potential. This electric 

potential decays away from the particle surface to a constant value at the bulk and affects 

the distribution of current carrying ions in the pore fluid between particles, (see Figure 

3.1). Furthermore, when two clay particles are close enough, their respective double 

layers will interact. Thus, to calculate the electro-osmotic conductivity in a clay pore it is 

necessary to determine the potential distribution caused by the movement of ions under 

an electric field. The development of the relevant equations is shown below. 
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Figure 3.1 Decay of clay particle surface potential with distance from the particle. 

 

3.2 The Poisson-Boltzmann Equation 

In the region where 𝑥 > 𝛿, the decay of the potential on the particle surface is given by 

Poisson’s equation: 

 

 ∇ ∙ 𝜖𝑬 = 𝜌 (3.5) 

 

And 

 

 𝑬 = −∇𝜓 (3.6) 

 

Here 𝑬 is the local electric field vector. Since 𝜖 is constant in the pore fluid: 

 

0 𝛿 

𝜖𝑐 = ∞ 

𝑥 

𝜓𝑥 

𝜖𝑤 𝜖𝑖 

𝜓𝛿 = 𝜁 𝜓𝑠 
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 ∇ ∙ (𝜖∇𝜓) = −𝜌 (3.7) 

 

 ∇ ∙ (∇𝜓) = −
𝜌

𝜖
 (3.8) 

 

 ∇2𝜓 = −
𝜌

𝜖
 (3.9) 

 

Near the particle surface ions will congregate to valance the surface charge and their 

distribution is given by the Boltzmann equation: 

 

 
𝑐𝑖 = 𝑐𝑖

0 exp (
−𝑧𝑖𝑒𝜓

𝑘𝑇
) (3.10) 

 

Where 𝑐𝑖 represents the concentration of ions 𝑖 at a given point. The charge density is 

given by: 

 

 𝜌 = ∑𝑐𝑖𝑧𝑖𝑒
𝑖

 (3.11) 

 

Combine Equations 3.9, 3.10, and 3.11 to obtain the Poisson-Boltzmann equation: 

  

 
∇2𝜓 = −

1

𝜖0𝜖𝑟
∑𝑧𝑖𝑒𝑐𝑖

0 exp (
−𝑧𝑖𝑒𝜓

𝑘𝑇
)

𝑖

 (3.12) 
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This equation is well known and it describes the decay of the electric potential away from 

a charged surface as a function of the potential and ion concentrations at any point. This 

is the basis for understanding the distributions of the current carrying ions within the zone 

of double layer that will affect the electro-osmotic conductivity. 

 

3.3 The Debye-Hückel Approximation 

The Poisson-Boltzmann equation can be simplified using the Debye-Hückel 

approximation. If the electrical energy is small compared to thermal energy (|𝑧𝑖𝑒𝜓| <

𝑘𝑇) it is possible to expand the exponentials in Equation 3.12 as shown below 

 

 
∇2𝜓 = −

1

𝜖0𝜖𝑟
[∑𝑧𝑖𝑒𝑐𝑖

0

𝑖

− ∑
𝑧𝑖

2𝑒2𝑐𝑖
0𝜓

𝑘𝑇
𝑖

] (3.13) 

 

Since 

 

exp (−
𝐴

𝐵
) ≈ 1 −

𝐴

𝐵
 

 

This approximation usually holds if 𝑧𝜁 < 51.4 𝑚𝑉 at room temperature (Hunter, 2001). 

Because the bulk is at equilibrium and electrically neutral, the first summation term of 

Equation 3.13 must be zero, thus: 

 

 
∇2𝜓 = [

∑ 𝑧𝑖
2𝑒2𝑐𝑖

0
𝑖

𝜖0𝜖𝑟𝑘𝑇
]𝜓 = 𝜅2𝜓 (3.14) 
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Where 

 

 
𝜅2 = [

𝑒2

𝜖𝑘𝑇
∑𝑐𝑖

0𝑧𝑖
2

𝑖

] (3.15) 

 

Here 𝜅 is known as the Debye-Hückel parameter and has units of L
-1

. The thickness of 

the diffused double layer is measured in terms of the inverse of this parameter: 

 

 
𝜆 =

1

𝜅
= 𝐷𝑒𝑏𝑦𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (3.16) 

 

The region of variable potential of the double layer which extends from the slip plane to 

the bulk is usually in the order of 3𝜆 to 4𝜆  (Hunter, 2001). It is important to note that 𝜅 

does not depend on properties of the clay. 

 

3.4 Solution for the Poisson-Boltzmann Equation for Interacting Double Layers 

During electro-osmotic flow the water will move through soil capillaries created between 

clay particles. Thus the solution to the Poisson-Boltzmann must be found for the case of 

two parallel plates. For a dilute clay water system, the clay particles are sufficiently 

separated such that the potential distributions will not interact. The solution for that case 

is simple. Presented here is the case for denser clay water system where diffused double 

layers interact such that the electric potential is never zero. Figure 3.2 shows a 
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conceptual diagram of this case. Note that in this case “x” is measured from slip plane to 

slip plane. 

 

 

Figure 3.2 Potential distribution from two overlapping double layers. The dashed lines 

represent the potential distribution for each double layer if the other was not present. The 

full line represents the predicted potential distribution. 
Source: Hunter, 2001. 

 

The potential distribution 𝜓 varies only with 𝑥, thus equation 3.14 reduces to 

 

 𝑑2𝜓

𝑑𝑥2
= 𝜅2𝜓 (3.17) 

 

Multiplying both sides by (2
𝑑𝜓

𝑑𝑥
), the following was obtained 

 

 
2

𝑑𝜓

𝑑𝑥

𝑑2𝜓

𝑑𝑥2
= 2𝜅2𝜓

𝑑𝜓

𝑑𝑥
 (3.18) 
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Which can be easily integrated to obtain 

 

 
(
𝑑𝜓

𝑑𝑥
)
2

= 𝜅2𝜓2 + 𝐶 (3.19) 

 

In the middle of the channel, where 𝑥 =
𝐿

2
, 𝜓 = 𝜓𝑚, and 

𝑑𝜓

𝑑𝑥
= 0  and hence the constant 

of integration can be calculated. 

 

 𝐶 = −𝜅2𝜓𝑚
2  (3.20) 

 

Leading to 

 

 𝑑𝜓

𝑑𝑥
= 𝜅[𝜓2 − 𝜓𝑚

2 ]1 2⁄  (3.21) 

 

 To perform the second integration Hunter, 2001 suggested the following substitution 

 

 𝜓 = 𝜓𝑚 cosh(𝑢) (3.22) 

 

 𝑑𝜓 = 𝜓𝑚 sinh(𝑢) 𝑑𝑢 (3.23) 

 

Substituting into Equation 3.21 and simplifying 
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 𝑑𝜓

𝑑𝑥
= 𝜅[𝜓𝑚

2 cosh(𝑢)2 − 𝜓𝑚
2 ]

1 2⁄
 (3.24) 

 𝑑𝜓

𝑑𝑥
= 𝜅𝜓𝑚[cosh(𝑢)2 − 1]1 2⁄  (3.25) 

 

 𝑑𝜓

𝑑𝑥
= 𝜅𝜓𝑚[sinh(𝑢)2]1 2⁄  (3.26) 

 

 𝑑𝜓

𝑑𝑥
= 𝜅𝜓𝑚 sinh(𝑢) (3.27) 

 

 𝜓𝑚 sinh(𝑢) 𝑑𝑢 = 𝜅𝜓𝑚 sinh(𝑢) 𝑑𝑥 (3.28) 

 

 𝑑𝑢 = 𝜅𝑑𝑥 (3.29) 

 

Now integrating both sides 

 

 𝑢 = 𝜅𝑥 + 𝐶 (3.30) 

 

Substituting back into equation 3.22 gives 

 

 𝜓 = 𝜓𝑚 cosh(𝜅𝑥 + 𝐶) (3.31) 

 

To solve for the constant of integration the following boundary condition can be used. 

When 𝑥 =
𝐿

2
, the potential is 𝜓 = 𝜓𝑚. Therefore, 
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1 = cosh (

𝜅𝐿

2
+ 𝐶) (3.32) 

 

 
0 =

𝜅𝐿

2
+ 𝐶 (3.33) 

 

 
𝐶 = −

𝜅𝐿

2
 (3.34) 

 

This gives 

 

 
𝜓 = 𝜓𝑚 cosh (𝜅𝑥 −

𝜅𝐿

2
) (3.35) 

 

It useful to present  Equation 3.35 in terms of the zeta potential, which is more easily 

measurable than the potential at the center of the channel. When 𝑥 = 0 → 𝜓 = 𝜁. 

 

 
𝜓𝑚 =

𝜁

cosh(
𝜅𝐿
2 )

 (3.36) 

 

Finally, substituting Equation 3.36 back into equation 3.35 gives the local electrostatic 

potential between two interacting double layers. 
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𝜓 = 𝜁

cosh (𝜅 (𝑥 −
𝐿
2))

cosh (
𝜅𝐿
2 )

 (3.37) 

3.5 Development of the Electro-Osmotic Conductivity 

Driven by the applied electric field, the local motion of the fluid in the neighborhood of 

the particle surface is governed by the Stokes equations with the body force in this case 

given by the applied field 

 

 𝜇∇2𝑣 − ∇𝑝 = −𝜌E (3.38) 

 

and 

 

 ∇ ∙ 𝑣 = 0 (3.39) 

 

Assuming that inertia forces are negligible and that ion density is not affected by ion 

migration (because the ions replace themselves as they move from further down the 

channel), Equation 3.9 can be used to rewrite Equation 3.38 as 

 

 𝜇∇2𝑣 − ∇𝑝 = 𝜖∇2𝜓𝐸 (3.40) 

 

If the applied electric field is parallel to the particle surface the local pore fluid velocity 

and the potential vary only along the 𝑥 direction. Thus, in the absence of an applied 

pressure gradient and assuming gravity is negligible Equation 3.40 can be reduced to 
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𝜇

𝑑2𝑣

𝑑𝑥2
= 𝜖

𝑑2𝜓

𝑑𝑥2
𝐸 (3.41) 

 

The first integration gives 

 

 
𝜇

𝑑𝑣

𝑑𝑥
= [𝜖

𝑑𝜓

𝑑𝑥
] 𝐸 + 𝐶 (3.42) 

 

This can be integrated again using the no-slip condition where 𝑥 = 0 → 𝑣 = 0 𝑎𝑛𝑑 𝜓 =

𝜁, to give 

 

 𝜇𝑣 = 𝜖(𝜓 − 𝜁)𝐸 + 𝐶𝑥 (3.43) 

 

 The quantity C is related to the velocity gradient beyond the double layer. In the 

absence of an applied pressure and for interacting double layers C must be zero, for the 

velocity gradients and the associated shear stresses in this region only arise in order to 

balance the pressure forces on the liquid (Hunter, 2001). Thus Equation 3.43 reduces to 

 

 
𝑣 =

𝜖(𝜓 − 𝜁)

𝜇
𝐸 (3.44) 

 

 This equation describes the velocity of the pore fluid under an applied electric 

field. Comparing this to Equation 3.2 reveals that the first part of the right-hand side of 

Equation 3.44 is the electro-osmotic conductivity of the clay. To differentiate it from that 

of Equation 3.3 it will be assigned the symbol 𝛽. 
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 𝛽 =
𝜖

𝜇
(𝜓 − 𝜁) (3.45) 

 

 This equation shows that the electro-osmotic conductivity varies locally within 

the pore space since it is influenced by the local potential. To analyze the flow of fluid 

through clay soil, it is useful to determine the average electro-osmotic conductivity 

through a given pore. First, substitute from Equation 3.37 to get 

 

 

𝛽 =
𝜖

𝜇

[
 
 
 
 

𝜁

cosh (𝜅 (𝑥 −
𝐿
2))

cosh (
𝜅𝐿
2 )

− 𝜁

]
 
 
 
 

 (3.46) 

 

Then take the average using the formula 

 

 
𝑓𝑎𝑣𝑔 =

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 (3.47) 

 

Here Equation 3.46 will be averaged from one particle surface (𝑥 = 0) to the other 

(𝑥 = 𝐿). 

 

 

𝛽𝑎𝑣𝑔 =
1

𝐿
∫

𝜖𝜁

𝜇

[
 
 
 
 cosh (𝜅 (𝑥 −

𝐿
2))

cosh (
𝜅𝐿
2

)
− 1

]
 
 
 
 

𝑑𝑥
𝐿

0

 (3.48) 
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𝛽𝑎𝑣𝑔 =
𝜖𝜁

𝜇𝐿

[
 
 
 
 sinh (𝜅 (𝑥 −

𝐿
2))

𝜅 cosh (
𝜅𝐿
2 )

− 𝑥

]
 
 
 
 

0

𝐿

 (3.49) 

 

 

𝛽𝑎𝑣𝑔 =
𝜖𝜁

𝜇𝐿
[
tanh (

𝜅𝐿
2 )

𝜅
− 𝐿 −

tanh (−
𝜅𝐿
2 )

𝜅
] (3.50) 

 

Using the identity tanh(𝑥) = − tanh(−𝑥) Equation 3.50 reduces to 

 

 

𝛽𝑎𝑣𝑔 =
𝜖𝜁

𝜇𝐿
[
2 tanh (

𝜅𝐿
2 )

𝜅
− 𝐿] (3.51) 

 

or 

 

 

𝛽𝑎𝑣𝑔 =
𝜁𝜖

𝜇
[
2 tanh (

𝜅𝐿
2 )

𝜅𝐿
− 1] (3.52) 

 

 Thus Equation 3.52 gives the average electro-osmotic conductivity through a 

channel between two parallel charged plates. It depends on the pore fluid’s permittivity 

and viscosity, the pore diameter, the clay particles surface potential (expressed through 

the zeta potential), and the pore electrolyte’s properties. 
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3.6 Laboratory Tests 

Seven electro-osmotic consolidation laboratory tests on kaolin clay were performed. The 

samples were mixed with water to reach the liquid limit. The wet samples were allowed 

to rest for 24 hours inside a vacuum oven to remove entrapped air. After this period the 

samples were placed in the consolidometer and loaded to allow of normal consolidation 

to occur with a load equivalent to 10 feet of soil. The samples were connected to a power 

supply and a voltage of 2.5, 5, 7.5, 10, 12.5 and 15 volts was applied. The settlement and 

electrical resistance were measured. The experimental setup and testing equipment used 

are shown in Figure 3.3. 

 

Figure 3.3 Experimental equipment and setup. 
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 After normal consolidation under the desired load was completed, the samples 

were connected to the power supply. During this time, the settlement as well as the soil 

resistance is measured continuously. Typical data for an electro-osmotic consolidation 

test is shown in Figure 3.4. 

 

Figure 3.4 Typical experimental data for electro-osmotic consolidation. 

 

 Since the soil is saturated, the settlement measured is exactly equal to the 

drainage. Therefore Equations 3.1 and 3.2 can be used to calculate the experimental 

electro-osmotic conductivity based on the measured settlement and applied electric field. 

To compare to the models described the average electro-osmotic conductivity has been 

calculated using the settlement data in the region of relatively constant slope at the 

beginning of the test. For that same region of time, the resistance data is used to calculate 

the average electric conductivity of the sample using Pouillet’s Law, 
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𝜎 =

𝐻

𝑅𝐴
 (3.53) 

 The ratio of pore fluid conductivity (𝜎𝑝) to the average electric conductivity of the 

sample (𝜎) or the formation factor (𝐹 = 𝜎𝑝 𝜎⁄ ) is a good indicator of the soil fabric or the 

soil structure which depends on the double layer thickness value shown in Equation 3.52 

(Anandarajah et al., 1986, Meegoda and Arulanandan, 1986, Meegoda and Ratnaweera, 

2008). The measured values of the pore fluid electrical conductivity were used to graph 

electrical conductivity contours. These contours, as well as the electro-osmotic 

conductivity found with the old model, the proposed model, and experimentally are all 

shown in Figure 3.6. 

 

3.7 Comparison of Predicted and Measure Electro-osmotic Conductivities 

Both Equations 3.3 and 3.52 describe the electro-osmotic conductivity with one key 

difference: the influence of pore size and pore fluid chemistry. Equation 3.3 accounts for 

the pore volume as porosity. It has been stated in the literature that this is one of the 

reasons why electro-osmotic consolidation works well in fine grained clayey soils. 

Contrary to the hydraulic conductivity, the electro-osmotic conductivity does not depend 

on pore size, only on porosity (Mitchell and Soga 2005). A more rigorous development of 

an electro-osmotic conductivity coefficient has led to Equation 3.52. This shows that the 

electro-osmotic conductivity does in fact depend on pore size. However, a simple 

analysis of the function 𝑓(𝑥) =
tanh(𝑥)

𝑥
 shows that as the pore size gets smaller, the 

electro-osmotic conductivity increases. Pore size depends primarily on soil type. It can be 

estimated but not accurately measured, especially since it will not be constant throughout 

the soil mass.  
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 Equation 3.52 takes into account the properties of the electrolyte in the pores. 

This means that a more accurate understanding can be obtained of the electro-osmotic 

conductivity and what influences it. The variation of the electro-osmotic conductivity can 

be calculated for different pore electrolytes while keeping the other properties of the 

system constant. This can then be compared to the electro-osmotic conductivity predicted 

by the Equation 3.3. This was done for 4 different electrolyte concentrations using typical 

values for the other properties. The electro-osmotic conductivities were plotted as a 

function of water content assuming 100% saturation. To optimally compare results, 

Equations 3.3 and 3.52 were first non-dimensionalized as shown in Equations 3.54 and 

3.55. 

 

 𝜇

𝜁𝜖
𝑘𝑒 = 𝑛 (3.54) 

 

 
𝜇

𝜁𝜖
𝛽𝑎𝑣𝑔 =

2 tanh (
𝜅𝐿
2 )

𝜅𝐿
− 1 (3.55) 

 

 Figure 3.5 shows channel geometry used and Table 3.1 shows the values used for 

the constants. Based on Figure 3.5, the channel width 𝐿 and the porosity can be 

calculated for different water contents 𝜔 as follows 

 

 𝐿 = 𝑤𝐺𝑠𝜔 (3.56) 
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𝑛 =

𝐿

𝐿 + 𝑤
 (3.57) 

 

 Hence the L value in Equation 3.55 can be replaced by 𝑛. The comparison of non-

dimensionalized electro-osmotic conductivity values from Helmholtz-Smoluchowski 

model as well as from the proposed model shows that both models show that the electro-

osmotic conductivity is a function of the soil porosity. In addition to the soil porosity, the 

electro-osmotic conductivity based on the proposed model is also a function of the 

diffused double layer thickness.  

 

Figure 3.5 Channel geometry between two clay particles of thickness 𝑤. 

 

 

 

 

 

 

 

𝑤 𝑤 

𝐿 
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Table 3.1 System Constants 

Constants Symbol Value Unit 

Fluid relative permittivity 𝜖𝑟 80.2  

Permittivity of free space 𝜖0 8.85E-12 F/m 

Fluid viscosity 𝜇 0.001002 s*Pa 

Zeta potential 𝜁 -0.03 V 

Electron charge 𝑒 -1.60E-19 C 

Avogadro constant 𝑁𝑎 6.0221E+23  

Valence (z:z) 𝑧 1  

Boltzmann constant 𝑘 1.38E-23 J/K 

Temperature (20 °C) 𝑇 293.15 K 

Thickness of clay particle 𝑤 100.00 nm 

Specific gravity of solids 𝐺𝑠 2.7  

Plastic limit 𝑃𝐿 30%  

Liquid limit 𝐿𝐿 90%  

 

 The analysis was performed for a 1:1 electrolyte of sodium chloride at different 

concentrations. The results of the laboratory tests along with the predictions based on the 

two models are shown in Figure 3.6. Electrical conductivity contours of the pore fluid 

were also plotted with the laboratory tests data of the electro-osmotic conductivity. 

Figure 3.6 demonstrates that the proposed equation for calculating electro-osmotic 

conductivities provides a comprehensive model by taking into account pore electrolyte 

properties, which the Helmholtz-Smoluchowski model overlooks. Hence the proposed 

model can provide a more accurate approximation of the effect of electro-osmotic 

consolidation. This agrees with the literature, which shows that addition of saline 

solutions at the electrodes increases the flow of water (Ozkan et al. 1999; Lefebvre and 

Burnotte 2002; Burnotte et al. 2004; Paczkowska 2005; Chien et al. 2009; Ou et al. 2009; 
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Chang et al. 2010; Chien et al. 2011). Therefore, the proposed model could provide an 

explanation for that phenomenon. 

 

Figure 3.6 Electro-osmotic conductivities based on different models. 
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3.8 Estimating Electro-Osmotic Conductivity of Anisotropic Clay 

3.8.1 Introduction 

In typical soil clay particles are aligned in all directions. Channels parallel to the applied 

electric field will have the highest electro-osmotic conductivity while channels 

perpendicular to the applied electric field will have the lowest electro-osmotic 

conductivity. Thus, it is reasonable to estimate the total soil electro-osmotic conductivity 

by calculating a weighted average of the electro-osmotic conductivity of parallel and 

perpendicular channels. The weights of each channel type are given by the anisotropy of 

the sample. Thus, if the porosity, type of clay, and anisotropy are known, the total soil 

electro-osmotic conductivity can be more accurately calculated. 

 This section develops the electro-osmotic conductivity for the case of a channel 

perpendicular to the applied electric field. Additionally a laboratory test was conducted to 

calculate the anisotropy of a lab sample of kaolinite. This was then used to estimate the 

electro-osmotic conductivity and compare it to experimental measurements. 

3.8.2 Electro-Osmotic Conductivity for a Channel Perpendicular to the Applied 

Electric Field 

The main difference between and parallel and a perpendicular channel is that in a parallel 

channel the applied electric field does not affect the distribution of charges in the double 

layer created by the clay surface. The ion density is not affected by ion migration because 

the ions replace themselves as they move from further down the channel. In a 

perpendicular channel, in fact for any non-parallel channel, the electric field creates an 

uneven distribution of charges. Because the applied electric field cannot be directly 

included in the derivation of the electro-osmotic conductivity, it can instead be simulated 



77 
 

with an equivalent electric field parallel to the channel and by changing the surface 

potential of one of the clay surfaces to obtain the same uneven distribution of charges. 

For this, a potential distribution between two parallel surfaces of different surface 

potential is required. Figure 3.7 shows a conceptual sketch of this distribution. 

 

Figure 3.7 Potential distributions from two overlapping double layers with different 

surface potentials. The dashed lines represent the potential distribution for each double 

layer if the other was not present. The full line represents the predicted potential 

distribution. 

 

 Chakraborty (2015) showed that the potential distribution between two parallel 

plates of different surface potential is given by 
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𝜓 = 𝜓𝐴 cosh(𝜅𝑥) +

𝜓𝐵 − 𝜓𝐴 cosh(𝜅𝐿)

sinh(𝜅𝐿)
sinh(𝜅𝑥) (3.58) 

 

 This is true for any values of 𝜓𝐴 and 𝜓𝐵 , and if 𝜓𝐴 = 𝜓𝐵 then the expression 

simplifies to the case of a parallel channel described earlier in this chapter. Driven by the 

applied electric field, the local motion of the fluid in the neighborhood of the particle 

surface is governed by the Stokes equations with the body force in this case given by the 

equivalent electric field following Poisson’s equation. If the equivalent electric field is 

parallel to the particle surface the local pore fluid velocity and the potential vary only 

along the 𝑥 direction. Thus, in the absence of an applied pressure gradient and assuming 

gravity is negligible Stoke’s equation can be reduced to 

 

 
𝜇

𝑑2𝑣

𝑑𝑥2
= 𝜖

𝑑2𝜓

𝑑𝑥2
𝐸𝑒 (3.59) 

 

Integrating twice gives 

 

 𝜇𝑣 = 𝜖𝐸𝑒𝜓 + 𝐶1𝑥 + 𝐶2 (3.60) 

 

The constants of integration can be solved with the following boundary no-slip 

conditions: 

1. When 𝑥 = 0, 𝜓 = 𝜓𝐴, and 𝑣 = 0. This gives 𝐶2 = −𝜖𝐸𝑒𝜓𝐴 

2. When 𝑥 = 𝐿, 𝜓 = 𝜓𝐵, and 𝑣 = 0. This gives 𝐶1 =
𝜖𝐸𝑒

𝐿
(𝜓𝐴 − 𝜓𝐵) 

Substituting back into Equation 3.60 
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𝑣 = [

𝜖

𝜇
( 𝜓 − 𝜓𝐴 +

𝑥

𝐿
(𝜓𝐴 − 𝜓𝐵))] 𝐸𝑒 (3.61) 

 

 This equation returns the flow velocity of the pore fluid as a function of location 

inside the pore due to the equivalent electric field. The coefficient of the equivalent 

electric field is the electro-osmotic conductivity for a channel perpendicular to the 

applied electric field. 

 

 
𝛽90 =

𝜖

𝜇
( 𝜓 − 𝜓𝐴 +

𝑥

𝐿
(𝜓𝐴 − 𝜓𝐵)) (3.62) 

 

Combining Equations 3.58 and 3.62 will solve for the electro-osmotic conductivity. 

 

 
𝛽90 =

𝜖

𝜇
( [𝜓𝐴 cosh(𝜅𝑥) +

𝜓𝐵 − 𝜓𝐴 cosh(𝜅𝐿)

sinh(𝜅𝐿)
sinh(𝜅𝑥)] − 𝜓𝐴

+
𝑥

𝐿
(𝜓𝐴 − 𝜓𝐵)) 

(3.63) 

 

Then take the average using the formula 

 

 
𝑓𝑎𝑣𝑔 =

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 (3.64) 
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Here Equation 3.63 will be averaged from one particle surface (𝑥 = 0) to the other 

(𝑥 = 𝐿). 

 

 
𝛽90𝑎𝑣𝑔 =

1

𝐿
∫

𝜖

𝜇
( [𝜓𝐴 cosh(𝜅𝑥) +

𝜓𝐵 − 𝜓𝐴 cosh(𝜅𝐿)

sinh(𝜅𝐿)
sinh(𝜅𝑥)] − 𝜓𝐴

𝐿

0

+
𝑥

𝐿
(𝜓𝐴 − 𝜓𝐵)) 𝑑𝑥 

(3.65) 

 

 
𝛽90𝑎𝑣𝑔 =

𝜖

𝜇𝐿
∫ 𝜓𝐴 cosh(𝜅𝑥) +

𝜓𝐵 − 𝜓𝐴 cosh(𝜅𝐿)

sinh(𝜅𝐿)
sinh(𝜅𝑥) − 𝜓𝐴

𝐿

0

+
𝑥

𝐿
(𝜓𝐴 − 𝜓𝐵)𝑑𝑥 

(3.66) 

 

 
𝛽90𝑎𝑣𝑔 =

𝜖

𝜇𝐿
[
𝜓𝐴

𝜅
sinh(𝜅𝑥) +

𝜓𝐵 − 𝜓𝐴 cosh(𝜅𝐿)

𝜅 sinh(𝜅𝐿)
cosh(𝜅𝑥) − 𝜓𝐴𝑥

+
(𝜓𝐴 − 𝜓𝐵)

2𝐿
𝑥2]

0

𝐿

 

(3.67) 

 

 
𝛽90𝑎𝑣𝑔 =

𝜖

𝜇𝐿
[
𝜓𝐴

𝜅
sinh(𝜅𝐿) +

𝜓𝐵 − 𝜓𝐴 cosh(𝜅𝐿)

𝜅 sinh(𝜅𝐿)
cosh(𝜅𝐿) − 𝜓𝐴𝐿

+
(𝜓𝐴 − 𝜓𝐵)

2𝐿
𝐿2 −

𝜓𝐴

𝜅
sinh(0)

−
𝜓𝐵 − 𝜓𝐴 cosh(𝜅𝐿)

𝜅 sinh(𝜅𝐿)
cosh(0) + 𝜓𝐴(0) −

(𝜓𝐴 − 𝜓𝐵)

2𝐿
(0)2] 

(3.68) 
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𝛽90𝑎𝑣𝑔 =

𝜖

𝜇𝐿𝜅
[𝜓𝐴 (sinh(𝜅𝐿) −

cosh2(𝜅𝐿)

sinh(𝜅𝐿)
−

𝜅𝐿

2
+

cosh(𝜅𝐿)

sinh(𝜅𝐿)
)

+ 𝜓𝐵 (
cosh(𝜅𝐿)

sinh(𝜅𝐿)
−

𝜅𝐿

2
−

1

sinh(𝜅𝐿)
 )] 

(3.69) 

 

Using the identity 𝑠𝑖𝑛ℎ2(𝑝) − 𝑐𝑜𝑠ℎ2(𝑝) = −1 gives 

 

 
𝛽90𝑎𝑣𝑔 =

𝜖

𝜇𝐿𝜅
[𝜓𝐴 (

cosh(𝜅𝐿) − 1

sinh(𝜅𝐿)
−

𝜅𝐿

2
) + 𝜓𝐵 (

cosh(𝜅𝐿) − 1

sinh(𝜅𝐿)
−

𝜅𝐿

2
 )] (3.70) 

 

And finally, using the identity tanh (
𝑝

2
) =

cosh(𝑝)−1

sinh(𝑝)
 gives the final equation for electro-

osmotic conductivity through a pore 

 

 

𝛽90𝑎𝑣𝑔 =
𝜖

𝜇
(𝜓𝐴 + 𝜓𝐵) (

tanh (
𝜅𝐿
2 )

𝜅𝐿
−

1

2
) (3.71) 

 

 Even though this equation has been derived for a channel perpendicular to the 

applied electric field it will still work for an electric field in any direction as long as the 

corresponding surfaces potentials 𝜓𝐴 and 𝜓𝐵 are calculated based on the orientation. For 

example, for the case where the applied electric field is parallel to the channel 𝜓𝐴 =

𝜓𝐵 = 𝜁, thus Equation 3.71 reduces to that derived earlier for a parallel channel 
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𝛽𝑎𝑣𝑔 =
2𝜁𝜖

𝜇
(
tanh (

𝜅𝐿
2 )

𝜅𝐿
−

1

2
) (3.72) 

3.8.3 Calculating Equivalent Surface Potentials 

The equivalent surface potentials 𝜓𝐴 and 𝜓𝐵 will depend on the orientation and the 

intensity of the applied electric field (see Figure 3.8). One of the potentials will remain 

the same as the clay particle’s actual surface potential, known as the zeta potential. The 

other will change to produce an equivalent electric field across the width of the pore. 

 

Figure 3.8 Orientation 𝜃 of pore channel with respect to applied electric field 𝐸. 

 

The equivalent electric field in the y-direction drives flow through the channel 

and can be calculated as 

 

 𝐸𝑦 = 𝐸𝑐𝑜𝑠(𝜃) (3.73) 

 

 The equivalent electric field in the x-direction does not drive flow through the 

channel but influences the double layer potential distribution. From this the equivalent 

surface potentials 𝜓𝐴 and 𝜓𝐵 can be calculated. 

𝐸 

𝜃 

𝐿 

𝑦 

𝜓𝐵 

𝜓𝐴 
𝑥 
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𝐸𝑥 = 𝐸𝑠𝑖𝑛(𝜃) =

(𝜓𝐴 − 𝜓𝐵)

𝐿
=

∆𝜓

𝐿
 (3.74) 

From this, the change in necessary in one of the surface potentials can be calculated as 

 

 ∆𝜓 = 𝐸𝐿𝑠𝑖𝑛(𝜃) (3.75) 

 

Thus, the surface potentials can now be calculated 

 

 𝜓𝐴 = 𝜁 + ∆𝜓 (3.76) 

 

And 

 

 𝜓𝐵 = 𝜁 (3.77) 

 

The channel spacing 𝐿 can be calculated from common soil properties where the variable 

𝑤 represents the typical particle thickness 

 

 𝐿 = 𝑤𝐺𝑠𝜔 (3.78) 

 

3.8.4 Calculating the Electro-Osmotic Conductivity for Anisotropic Clay 

The electro-osmotic conductivity can now be calculated for a typical clay under and 

applied electric field using a weighted average of the conductivity through parallel and 
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perpendicular channels. Combing Equations 3.71, 3.72, and 3.75-3.77 and setting 

𝜃 = 90° for perpendicular channels gives 

 

 

𝛽 =
𝜖

𝜇
∗ (

tanh (
𝜅𝑤𝐺𝑠𝜔

2 )

𝜅𝑤𝐺𝑠𝜔
−

1

2
) ∗

𝑃(2𝜁) + 𝑄(2𝜁 + 𝐸𝑤𝐺𝑠𝜔)

𝑃 + 𝑄
 (3.79) 

 

 This model describes the electro-osmotic conductivity for a saturated clay soil 

based on the properties of the clay (𝑤,𝐺𝑠 , 𝜔, 𝜁, 𝑃, 𝑎𝑛𝑑 𝑄), the properties of the pore fluid 

(𝜖, 𝜇, 𝑎𝑛𝑑 𝜅), and the applied electric field (𝐸). Most of these quantities are simple to test 

for or estimate or are usually available in the literature. The anisotropy coefficients P and 

Q must be tested for since they will depend on the clay’s loading history. This new model 

can provide useful estimates of flow using the classical equation for flow through soil 

under an electric field (Mitchel and Soga, 2005) 

 

 𝑞 = 𝐴𝐸𝛽 (3.80) 

 

3.8.5 Laboratory Test for Anisotropy of Electro-Osmotic Conductivity 

Equation 3.79 suggests that the electro-osmotic conductivity might be a vector, whereas 

it’s used as a scalar in the geotechnical profession. A qualitative laboratory test was 

performed to measure the value of the electro-osmotic conductivity for a soil when an 

electric field is applied in different directions. The soil used was commercially available 

brown kaolin with a liquid limit of 90. To prepare the soil for testing, it was thoroughly 

mixed with water to the liquid limit and slowly preloaded to 200 kPa. 
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 To consolidate the soil a Teflon cylinder was used. The cylinder was closed on 

the bottom by a porous electrode plug that applies a voltage but also allows for water 

drainage. The top of the cylinder has an extractable electrode with similar setup. Load 

can then be applied on the top electrode to imitate stress conditions in the field. To track 

the settlement of the sample high precision GeoJac® settlement probes are placed on top 

of each cylinder. 

 The samples were consolidated using electro-osmosis with and without a 

membrane and applying an electric field corresponding 160 V/m. One test received a 

vertical electric field, in the same direction as the overburden pressure. The other 

received a horizontal electric field through a modified electrode and drain built into the 

wall of the cylinder. The settlement was tracked for each. The test was terminated after 

40 hours. 

 The results for the settlement tests using electro-osmosis in different directions 

are shown in Figure 3.9. The test where a horizontal electric field was applied shows a 

significantly higher settlement. This is likely the case because the soil fabric is expectedly 

dispersed. Since the soil was mixed with water to the liquid limit and slowly consolidated 

to a high pressure, the clay particles would have tended to consolidated in a dispersed 

arrangement rather than flocculated. This means the hydraulic conductivity will be 

greater horizontally. As Figure 3.9 shows, this is also the case for the electro-osmotic 

conductivity. Since the fabric is dispersed, most of the pores are aligned somewhat 

parallel to the applied electric field, providing the highest equivalent electric field, as 

equation 3.73 shows. 
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Figure 3.9 Settlement under a horizontal and vertical applied electric field. 

 

3.9 Conclusions 

The conventional model for the electro-osmotic conductivity of clayey soils is limited 

and does not consider important aspects of the clay-pore-water system. A new model was 

developed based on colloidal chemistry literature that better describes the flow of water 

between clay particles due to an electric gradient. The main contribution of this adapted 

model is that it considers the properties of the pore electrolyte. It also has more 

explanatory power; in essence, it can provide insight into why injection of saline 

solutions to the soil has been reported to improve electro-osmotic consolidation. The 

model also might be able to correct our understanding about the influence of pore sizes 

on electro-osmotic flow through soils. The model has also been expanded to account for 

the anisotropy of natural soils, making it possible to obtain more accurate predictions of 
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the utility of electro-osmotic consolidation for a particular soil as well as enriching our 

understanding of the mechanism at play during electro-osmotic consolidation. 

 The theoretical and experimental work described in this chapter leads to and 

demonstrates an important conclusion. The electro-osmotic conductivity is a vector. It is 

different horizontally and vertically for a given soil. This has important implications for 

the application of electro-osmotic consolidation in field applications. The clay soil fabric 

plays a significant role and should be investigated. It is possible that for some cases 

where electro-osmosis shows low efficiency simply changing the direction of the applied 

electric field could improve the results significantly. Based on this new insight, the 

performance of electro-osmosis can be assessed more accurately.    
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CHAPTER 4 

ELECTRO-OSMOSIS AND SECONDARY CONSOLIDATION 

 

4.1 Introduction 

There is much that is still not understood about the mechanisms taking place during 

electro-osmotic consolidation. One such issue is what known type of work is electro-

osmosis replacing, if any. If electro-osmosis is creating an effect currently achieved 

through other methods, then comparing and quantifying the efficiency of electro-osmotic 

consolidation is simple. However, if it is creating a whole new effect then measuring its 

usefulness, especially in field applications, becomes more difficult. It is proposed in this 

section that electro-osmosis has similar effects to secondary consolidation. Therefore, a 

comparison can be made and more accurate conclusions can be drawn about the 

efficiency of treating a soil with electro-osmosis. The contents of this chapter are being 

published in Martin and Meegoda 2019d. 

 

4.2 Soil Compression 

When foundation structures are built, they cause an increase in stress on the soil below 

them. This leads to compression of the soil mass. In general, this compression is observed 

in three ways 

a. Ejection of water or air from the space between solid particles (voids); 

b. Deformation of the solid particles; and 

c. Relocation of soil particles. 

According to Das and Sobhan 2018 settlement can be categorized as follows: 
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1. Elastic settlement (or immediate settlement), which is caused by the elastic 

deformation of dry soil and of moist and saturated soils without any change in the 

moisture content. This is mostly relevant in granular soils. 

2. Primary consolidation settlement, which is the result of a volume change in 

saturated cohesive soils because of expulsion of the water that occupies the bulk 

of the void spaces. 

3. Secondary consolidation settlement, which is observed in saturated cohesive soils 

and organic soil and is the result of the plastic adjustment of soil fabrics. It is an 

additional form of compression that occurs at constant effective stress over time. 

It is relatively slow but can be very significant depending on the type of soil. 

 When dealing with clays, primary and secondary consolidation typically govern 

any settlement considerations. Primary consolidation occurs relatively quickly under a 

new pressure due to the generation of excess pore water pressures and results in the 

removal of water molecules that are in the bulk part of the pore spaces. Once the excess 

pore water pressures are dissipated, primary consolidation ends and no more settlement 

of that kind is observed. Secondary consolidation on the other hand will continue to occur 

indefinitely and is generally understood to consist in the removal of water molecules that 

are chemically or otherwise attached to the solid particles. In the case of organics, which 

are composed of high amounts of water, significant secondary consolidation settlements 

are observed as they break down and release the water molecules that composed their 

organic structure. In the case of pure clays, water is chemically bonded to the particles in 

the double layer. This water is tightly held to clays and will not be released under stresses 

caused by an applied load, but will usually slowly do so over a long period of time. 

Depending on the type of clay, the double layer water content can be significant. For 

example, in the case of Na-montmorillonite the soil can easily reach water contents in the 

hundreds. The magnitude of the secondary consolidation is calculated as 
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𝑆𝑠 =

𝐻

1 + 𝑒𝑝
𝐶𝛼 log (

𝑡2
𝑡1

) (4.3) 

 

4.3 Electro-Osmosis and Secondary Consolidation 

Theoretically, applying an electric field to a clay soil should mobilize the water 

molecules in the particle double layer. Electro-osmosis does not mobilize water in the 

bulk of the pore because positive and negative ions are balanced, resulting in zero net 

flow. As shown in Chapter 1, this is evidenced by the fact that electro-osmosis can 

achieve drainage and settlement even after primary consolidation has finished, without 

any changes in pore water pressure. This suggests that electro-osmosis has a similar 

effect to secondary consolidation. If so, electro-osmotic consolidation could be used as a 

much quicker alternative to secondary consolidation efforts. 

 Primary and secondary consolidation tests were carried out on a sample of kaolin. 

The samples were consolidated to a pressure of 37.2 kPa and then allowed to undergo 

secondary consolidation for up to 2 months. This was carried out using a traditional one 

dimensional consolidation frame. Then, the load was doubled twice to induce new 

primary consolidation and study the trends of void ratio versus pressure. 

 At the same time, several electro-osmotic consolidation tests were carried out at 

different voltages. The same loading schedule was applied before and after electro-

osmosis. This resulted in a variation of void ratio versus pressures for different voltages 

and for different secondary consolidation schedules. 
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4.4 Results and Discussion 

Figure 4.1 shows the results for the consolidation tests in a void ratio versus pressure 

plot. The secondary consolidation tests exhibit a change in void ratio that is constant 

across different pressures. This corroborates that primary and secondary consolidation 

drained portions of the pore water. After adding additional load to a secondary 

consolidation test, the primary consolidation reveals an almost identical compression 

index as the test with only primary consolidation. The test that allowed for 2 months of 

secondary consolidation shows only minor improvements over 1 month, which is 

consistent with typical secondary consolidation tests. The process is very slow. After 

applying electro-osmosis, the effects are very similar to secondary consolidation but with 

a significantly higher change in void ratio. Additionally, the compression index remains 

almost the same before and after electro-osmosis. This is evidence that electro-osmotic 

consolidation has a similar effect as secondary consolidation. Only the test with 10 volts 

was reloaded for additional primary consolidation. Tests using other voltages were 

simply plotted to show the trend of change in void ratio with voltage. Compared to 

settlement due to primary consolidation, the test using 15 volts achieves a settlement 

equivalent to that caused by a surcharge load of 7.5 feet of soil in a 20 feet deep normally 

consolidated Kaolin clay. 
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Figure 4.1 Settlements after primary, secondary, and electro-osmotic consolidation. 

 

 Figure 4.2 shows a time versus void ratio plot. This graph can be used to 

calculate the secondary compression index 𝐶𝛼, which had a value of 0.0243. This is 

within the typical range for normally consolidated clays (Das and Sobhan 2018). After 

about 24-36 hours, primary consolidation was completed and a voltage was applied for 

the electro-osmosis tests. This caused a steady decrease in void ratio (not shown) until a 
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final void ratio was reached (shown) usually within 48 hours. The graph demonstrates 

that for all the applied electric fields, electro-osmosis provided higher and quicker 

consolidation than the secondary consolidation period tested. However, the electro-

osmosis tests reached a final void ratio, after which no further change was observed. This 

is caused by the different problems discussed in Chapter 2. 

 

Figure 4.2 Secondary consolidation settlement and final settlement for electro-osmotic 

consolidation at different voltages. 

 

 Since secondary consolidation will continue to develop over time with no limit in 

a reasonable time scale, after some time it will reach the same void ratio changes as 
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consolidation to achieve the same consolidation as electro-osmosis at different applied 

electric fields was calculated and shown in Figure 4.3 in a log-log graph. The electric 

field values were nondimensinalized using the lowest electric field applied, 𝐸0 =

34.2𝑉 𝑚⁄ . A trend line can be created to fit the data with an R
2
 value of 0.998. This 

gives a relationship between the desired time that can be saved from secondary 

consolidation and the required voltage to achieve the needed change in void ratio. This 

relationship is governed by the equation 

 

 𝑡2
𝑡1

= 1342 (
𝐸

𝐸0
)
4.65

 (4.2) 

 

 

Figure 4.3 Relation between electro-osmotic consolidation at different applied electric 

fields and time required for an equivalent secondary consolidation. 
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log (

𝑡2
𝑡1

) = 4.65 log (
𝐸

𝐸0
) + 3.13 (4.3) 

 

This can them be substituted into equation 4.1 to give 

 

 
𝑆𝐸𝑂 =

𝐻

1 + 𝑒𝑝
𝐶𝛼 [4.65 log (

𝐸

𝐸0
) + 3.13] (4.4) 

 

 Here 𝑆𝐸𝑂 is the settlement caused by electro-osmosis. This is a significantly 

valuable relationship. It can be used to predict which voltage is necessary to achieve a 

desired degree of equivalent secondary consolidation using electro-osmosis requiring 

only simple laboratory tests for the secondary compression index and initial void ratio. 

Since electro-osmosis is completed in a minute fraction of the time secondary 

consolidation takes, and since their effects are similar in nature, this relationship can 

provide sufficient grounds for considering electro-osmosis as a viable option in the field. 

Electro-osmosis can effectively reduce soil preparation time for construction, by many 

years in some cases, in just a few days.  

 

4.5 Conclusions 

Secondary consolidation and electro-osmotic consolidation are shown to have similar 

effects in draining pore water from a kaolin clay both theoretically and experimentally. 

This suggests that a direct comparison is possible. Several tests were carried out to find 

the consolidation prowess of each technique. It was found that electro-osmosis provided 
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superior results and in a significantly shorter time. Additionally a relationship was found 

that allows the user to predict the voltage required to achieve the equivalent change in 

void ratio using electro-osmosis as a certain secondary consolidation. This new 

understanding has potential to reinvigorate the study of electro-osmosis. It also provides a 

clearer basis for comparing the efficiency of electro-osmotic consolidation. In this 

research, only one type of lab soil was used. Therefore, more extensive testing on 

different soils, especially field soils, is required to make wide ranging predictions. 

However, this lays the foundation for that work and demonstrates that electro-osmosis is 

relatable to known methods of consolidation. 

 

 

 

 

  



97 
 

CHAPTER 5 

ION EXCHANGE MEMBRANES 

 

5.1 Introduction 

Electro-osmotic consolidation has long been of interest in the research community due to 

its potential to improve on current methods of clay soil consolidation. Unfortunately, as 

described in previous chapters, many problems hamper the process, especially the quick 

and drastic changes in pH in the soil around the electrodes. Many methods have been 

studied to remedy this problem with various levels of success but more work is needed to 

make electro-osmosis a viable option for consolidation of clays. 

 A potential solution is the use of ion exchange membranes to filter hydrogen ions. 

An ion exchange membrane (IEM) is a non-porous, membranous functional polymer 

having ionic groups. This technology has the potential to improve electro-osmotic 

consolidation by regulating the flow of ions resulting from hydrolysis at the electrodes. In 

the case of the anode, an anion exchange membrane (AEM) can be used to restrict the 

flow of hydrogen ions into the soil. This prevents the pH from decreasing and the zeta 

potential can be maintained at a higher level. Similarly, a cation exchange membrane 

(CEM) can be used at around the cathode to isolate hydroxyl ions so that they won’t 

migrate into the soil and cause precipitation of metallic ions and clogging of the pores. 

The contents of this chapter are being published in Martin and Meegoda 2019a and 

Martin and Meegoda 2019e. 

 Ion exchange membranes differ from other polymer films in having charged 

groups, anionic and/or cationic, that are fixed on the polymer film. The particular 
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properties of the ion exchange membrane arise from the existence of the charge. The ion 

exchange membrane is ion conductive, namely, ions can permeate through the membrane 

together with water molecules. Because ion exchange membranes have ionic groups 

which are hydrated, these membranes are hydrophilic. Their characteristics are primarily 

decided according to the amount (ion exchange capacity) and species of the charged 

groups and their distribution in the membrane, and the amount of water molecules 

adsorbed on the membrane due to these groups (water content). The main characteristics 

of the membrane are:  

1. Ion conductivity, 

2. Hydrophilicity and 

3. The existence of fixed carrier (ion exchange groups). 

 According to these characteristics, various applications have arisen. The most 

common of these is electro-dialysis, which is used in seawater desalination, industrial 

wastewater treatment of highly scaling waters, food and beverage production, and other 

industrial wastewaters treatments. IEM can improve electro-osmotic consolidation by 

preventing the flow of hydrogen ions into the soil so that no deterioration of clay 

particles’ chemical and electrical properties occurs. 

 In ion exchange membranes, charged groups are attached to the polymer 

backbone of the membrane material. These fixed charge groups partially or completely 

exclude ions of the same charge from the membrane. This means that an anionic 

membrane (AEM) with fixed positive groups excludes positive ions but is freely 

permeable to negatively charged ions (see Figure 5.1).  
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Figure 5.1 Anion exchange membrane excludes co-ions and allows movement of 

counter-ions. 

 

 Similarly, a cationic membrane (CEM) with fixed negative groups excludes 

negative ions but is freely permeable to positively charged ions. Ions that are rejected by 

the membrane are termed co-ions, since they share the charge type with the exchange 

groups of the membrane, while ions that are able to ion exchange into the membrane are 

called counter-ions.  Ion exchange using membranes is based on the competitive 

adsorption between two ions at a charged surface. This process is reversible; the ion 

exchanger can be regenerated or loaded by washing with the appropriate ions (Giorno et 

al. 2015). The selectivity of the membranes is due to Donnan equilibrium and Donnan 

exclusion, and not due to physically blocking or electrostatically excluding specific 

charged species (Tanaka 2003). 
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5.2 Donnan Equilibrium 

Donnan equilibrium, also known as the Gibbs–Donnan effect, refers to the behavior of 

ions near a semipermeable membrane. These ions fail to distribute evenly on both sides 

because some of the ions cannot cross the boundary. The presence of a different charged 

substance that is unable to pass through the membrane creates an uneven electrical 

charge. Equilibrium occurs when the electric gradient driving the movement of ions is 

balanced by a concentration gradient that generates diffusion. In the case of an ion 

exchange membrane there are fixed ionic groups that are attached to the polymer 

structure of the membrane and thus act as the impermeable ions. This effect is explained 

below. 

 An ion exchange membrane is placed next to a balanced solution of ions (see 

Figure 5.2a). In the membrane quaternary ammonium groups are bonded to the polymer 

structure, making it an anion exchange membrane. This restricts the flow of co-ions 

(cations) and stimulates the flow of counter-ions (anions). Chloride ions have migrated 

into the membrane during the membrane preparation process. On the solution side, there 

are chloride and potassium ions in concentrations that are equimolar with the ions in the 

membrane side. 
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Figure 5.2.a Pretreated ion exchange membrane is introduced into a KCl solution. 

 

 Since the membrane side does not contain any potassium ions, these migrate into 

the membrane from the bulk side along a concentration gradient (see Figure 5.2b). The 

presence of positive potassium ions and quaternary ammonium ions makes the membrane 

side electro-positive with respect to the bulk side and creates an electrical potential 

difference.  
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Figure 5.2.b K
+
 ions move due to a concentration gradient. 

 

 The development of positive charge on the membrane side creates an electrical 

potential gradient that counter balances the concentration gradient for potassium ions, 

preventing the concentrations of potassium from becoming equal on both sides (see 

Figure 5.2c).  
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Figure 5.2.c K
+
 ions move due to an electrical gradient. 

 

 Simultaneously, the net positive charge in the membrane side attracts the chloride 

ions from the bulk side to migrate into the membrane along an electrical gradient (see 

Figure 5.2d).  
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Figure 5.2.d Cl
-
 ions move due to an electrical gradient. 

 

 The concentration of chloride ions on the membrane side now exceeds that of the 

bulk side, and potassium ions will migrate from the membrane side to the bulk side along 

a concentration gradient (see Figure 5.2e).  
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Figure 5.2.e Cl
-
 ions move due to a concentration gradient. 

 

 At equilibrium, the competing concentration and electric gradients for each ion 

are in balance (see Figure 5.2f). And there is no net flow of ions through the membrane. 

Chloride ions and potassium ions move back and forth between the membrane side and 

the bulk side in response to the electrochemical gradients such that each side remains 

electrochemically neutral within itself due to equimolar concentrations of cations and 

anions. 
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Figure 5.2.f Donnan equilibrium. 

 

 Between the two sides, there is an unequal distribution of permeable ions. This 

imbalance creates an electrical charge across the membrane boundary. In the above case, 

the bulk side is negative to the side with the impermeable cations. The voltage gradient at 

which an ion is in equilibrium with its diffusion gradient is called the Donnan potential. 

Applying an electric field will increase the electric potential gradients that drive ions 

movement. 
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5.3 Membrane Types and Properties 

Ion exchange membranes can be classified based on their function, since this is 

dependent on the membranes’ properties.  

1. Cation exchange membranes, which have cation exchange groups (anionic 

charged groups), and cations selectively permeate through the membranes, 

2. Anion exchange membranes, which have anion exchange groups (cationic 

charged groups), and anions selectively permeate through the membranes, 

3. Amphoteric ion exchange membranes, in which there are both cation and anion 

exchange groups at random throughout the membranes, 

4. Bipolar ion exchange membranes which have a cation exchange membrane layer 

and anion exchange membrane layer (bilayer membranes), 

5. Mosaic ion exchange membranes, which have domains with cation exchange 

groups over cross-sections of the membranes and also domains of anion exchange 

groups. An insulator may exist around the respective domains. 

 Depending on the desired application, the properties of the membrane that are of 

interest will vary. Some of these are described in Table 5.1, based on typical 

specifications sheets for commercial membranes. 
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Table 5.1 Membrane Properties 

Property Description 
Example / typical values 

Units Value 

Membrane type Membrane’s function 
 

anion 

exchange 

Counter ion 
Balancing fixed ions groups during 

shipment and storage before first use  

Bromide 

(Br-) 

Delivery form 

Describes how the membrane will be 

shipped to customer. Can be either 

dry or wet and has implications for 

storage and preparation before use. 
 

dry 

Thickness (dry) 

Thickness of the membrane sheet. 

Might change slightly when the 

membrane is hydrated 

μm 110 – 140 

Weight per unit 

area 
Weight per unit area mg/cm

2
 10 – 13 

Ion exchange 

capacity (in Cl
-
 

form) 

Related to the concentration of fixed 

charges in the membrane structure, it 

describes the ability of the 

membrane to attract counter ions and 

repel 

meq/g 0.7 – 1.0 

Area resistance Resistance times cross-sectoinal area Ω cm
2
 5.0 – 20.0 

Specific 

conductivity 

Measures a material's ability to 

conduct an electric current 
mS/cm 1.0 – 2.5 

Selectivity (e.g. 

in 0.1 / 0.5 

mol/kg KCl at 

T = 25 °C) 

Transport number of counter-ions in 

the membrane 
% 93 – 98 

Uptake in H2O 

at T = 25 °C 
Water content after preparation wt % 5 – 15 

Dimensional 

swelling in H2O 

at T = 25 °C 

Dimensional changes due to 

preparation 
% 0 – 1 

Proton transfer 

rate 

Leakage rate of protons through 

AEMs due to interfacial transfer 

reactions 

μmol/(min*cm
2
) 60 - 400 
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5.4 Permselectivity 

Permselectivity, which is a key property of IEMs, refers to the restriction of permeation 

of ions across a boundary or membrane wall on the basis of charge. The ion 

concentrations inside the membrane especially that of co-ions, is important for the 

membrane’s permselectivity. A fully permselective membrane would completely exclude 

co-ions. This exclusion is termed the Donnan exclusion. The permselectivity of the 

membrane (𝜓𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒) can be calculated from the transport number of the counter-ions 

in the membrane (𝑇𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑖𝑜𝑛
𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ) and the counter-ions (𝑇𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑖𝑜𝑛) and co-ions (𝑇𝑐𝑜−𝑖𝑜𝑛) 

of the outside solutions (Giorno et al. 2015): 

 

 
𝜓𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 =

𝑇𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑖𝑜𝑛
𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 − 𝑇𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑖𝑜𝑛

𝑇𝑐𝑜−𝑖𝑜𝑛
 (5.1) 

 

 Under an applied electric field, the current carried by anions and cations is not 

necessarily equal. The transport number of a species is the fraction of the current carried 

by that species. Because of the Donnan effect, there is a very low concentration of co-

ions in the membrane, thus they carry a very small portion of the current. Their transport 

numbers are usually between 0 and 0.05. Counter-ions on the other hand are abundant in 

the membrane and their transport numbers of these ions are around 0.95 to 1.0 (Baker 

2004). 

 

5.5 Limiting Current Density 

Due to the great majority of counter-ions in the membrane the transport number of the 

counter-ions in the membrane is much higher than that of the counter-ions in the bulk 
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solution. As a consequence, a diffusion boundary layer is formed on both sides of the 

membrane. A conceptual concentration profile can be drawn as seen in Figure 5.3 for an 

anion exchange membrane in steady state conditions. 

 

Figure 5.3 Conceptual concentration profile of counter-ions around an anion exchange 

membrane. 

 

 The mass balance equation for the anions moving from the desalting side into the 

membrane can be written as,  
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𝐽𝐸  

 

𝐽𝑑𝑖𝑓𝑓 

 



111 
 

 𝐽𝐸 + 𝐽𝑑𝑖𝑓𝑓 − 𝐽𝑑𝑖𝑓𝑓
𝑚 = 𝐽𝐸

𝑚 (5.2) 

 

Hence, each of the flux values are 

 

 𝑖𝑎−

𝐹
+

𝐷(𝐶1 − 𝐶2)

𝛿1
−

𝐷𝑚(𝐶3 − 𝐶2)

𝛿𝑚
=

𝑖𝑎−
𝑚

𝐹
 (5.3) 

 

Where  𝐶1, 𝐶2, 𝐶3, and 𝐶4 are the anion concentrations in the desalting solution, in the 

membrane-desalting side interface, in the membrane-concentrated side interface, and in 

the concentrated solution, respectively. The mass balance can be rearranged as, 

 

 
𝑖 =

𝐹𝐷(𝐶1 − 𝐶2)

𝛿1(𝑎−
𝑚 − 𝑎−)

−
𝐹𝐷𝑚(𝐶3 − 𝐶2)

𝛿𝑚(𝑎−
𝑚 − 𝑎−)

 (5.4) 

 

In general, the diffusion coefficient of the anions in the desalting solution is much greater 

than that in the membrane (Baker 2004). Thus the equation can be simplified to, 

 

 
𝑖 =

𝐹𝐷(𝐶1 − 𝐶2)

𝛿1(𝑎−
𝑚 − 𝑎−)

 (5.5) 

 

As the current density increases, 𝐶2 will increasingly decay and eventually become 

virtually zero at higher currents. The current threshold at which 𝐶2 is zero is called the 

limiting current, 
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𝑖𝑙𝑖𝑚 =

𝐹𝐷𝐶1

𝛿1(𝑎−
𝑚 − 𝑎−)

 (5.6) 

 

 When electro-osmotic flow is carried out at a higher current than the limiting 

current density, water splitting will occur on the desalting side to provide ions to carry the 

charge. This will cause pH changes in the solution. In the above case, hydrogen ions 

(protons) will be generated and move towards the cathode. If the purpose of the 

membrane was to block the flow of protons, it is imperative to work at currents below the 

limiting current. 

 Two variables have a significant effect in maintaining a sufficiently high limiting 

current. First, the concentrations of counter-ions in the desalting (𝐶1) side needs to be 

sustained. If this depletes, the limiting current will also drop significantly. Second, the 

thickness of the diffusion boundary layer should be minimized. This depends on the 

structure of the system and the operating conditions. The limiting current can be 

determined by measuring the current-voltage relationship of the system. 

 

5.6 Determination of Limiting Current Density 

The limiting current density of ion exchange membranes has been studied for many 

decades, almost from the inception of ion exchange membranes. The basic method of 

determining its value has remained virtually the same (Sata et al. 1969). When a current 

is applied to the testing cell, the drop in voltage across the cell can be related as, 

 

 𝑉 = 𝑅𝐼 + 𝑉𝑒 + 𝑉𝑐 + 𝑉𝑝 (5.7) 
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 Where 𝑅𝐼 is the ohmic drop, 𝑉𝑒 is the electrode potential, 𝑉𝑐 is the concentration 

potential, and 𝑉𝑝 is the polarization potential. If we divide the equation by the applied 

current, 𝐼, we can get the following expression, 

 

 𝑉

𝐼
= 𝑅 +

(𝑉𝑒 + 𝑉𝑐 + 𝑉𝑝)

𝐼
 (5.8) 

 

 Here 𝑅 is the resistance of the cell. For a given test with an applied current, the 

voltage can be measured, thus obtaining a plot of the voltage to current ratio and the 

current itself. A typical graph is shown in Figure 5.4.a below (Cowan and Brown 1959). 

As the current increases, the ratio of voltage to current will decrease somewhat 

uniformly. At some value of current, the voltage current ratio will develop a change in 

slope. This is due to a drop in efficiency in transporting electrolyte ions. When the 

limiting current is exceeded, some energy must be spent on splitting water molecules to 

create sufficient ions to carry the current. The negative slope of the initial part of the 

graph can be extended to intersect the positive slope of the second part of the graph. The 

point at which they intercept is defined as the limiting current. 
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Figure 5.4.a Limiting current determination using a V/I graph. 

 

 Alternatively, the current can be plotted as a function of voltage. This will expose 

three areas of interest and also help estimate the limiting current. A conceptual graph can 

be seen in Figure 5.4.b. 
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Figure 5.4.b Limiting current determination using a current vs. voltage graph. 

 

 The graph shows that as the applied voltage increases, the current reaches a 

maximum based on the properties of the electrolyte. Further increases in voltage do not 

initially increase current but eventually will by causing hydrolysis on the other side of the 

membrane. The limiting current corresponds to the current at which the curve flattens 

out. It is critical to determine the voltage and which the limiting current is reached and 

operate below it so as to not undermine the membrane. 

 

5.7 Proof of Concept Test with Anion Exchange Membranes 

5.7.1 Testing Process 

A study was performed using two electro-osmosis tests. Test 1 was used as a control. 

After preparation, the sample was connected to a power supply and 15 volts of DC were 
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applied. During this time, an overburden pressure of 4 kPa was maintained to prevent 

crack formation. Water was drained from the cathode reservoir. Settlement and current 

were recorded. After 40 hours, the samples were disconnected and pH measured as per 

Hendershot et al. 2008. Test 2 introduced an AEM at the anode. For these tests, the anode 

reservoir was filled with deionized water to allow for hydrolysis to occur. A third test was 

later conducted to evaluate the effect of a cation exchange membrane. Contrary to 

expectations, the cation exchange membrane reduced the hydraulic conductivity of the 

system such that little water was drained throughout the test at the cathode, showing that 

drainage through the electrode will be insufficient. Thus, the data for that test is not 

included here. The configuration of the electro-osmotic process combined with both 

membranes is shown in Figure 5.5. 

 

Figure 5.5 Schematic of electro-osmotic treatment of soil using ion exchange 

membranes. 
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5.7.2 Soil Sample 

Sample soil preparation consists of first mixing 50% brown kaolin clay and 50% rock 

flour by weight. The mixture is mixed with water to a moisture content of 37.5%. The 

mixed sample is allowed to rest for 24 hours inside a vacuum oven to remove entrapped 

air. After this period, the sample is placed in the testing chamber and loaded to allow of 

normal consolidation to occur. Properties of the used samples are shown on Table 5.2. 

Table 5.2 Soil Properties 

Soil Composition (by weight) Value 

    Brown Kaolin (%) 50 

    Rock flour (%) 50 

Liquid Limit (%) 33.5 

Plastic Limit (%) 16.9 

Soil pH 6.13 

Water content (%) 37.5 

 

5.7.3 Membrane Preparation 

For the AEM, it was prepared for use by soaking it in a 5% NaCl solution for 12 hours. 

This allowed the membrane to hydrate and expand. After this, the membrane was placed 

at the anode between the electrode and the soil. Membrane properties are listed in Table 

5.3. 
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Table 5.3 Anion Exchange Membrane Properties 

Property Value 

Membrane AMI-7001S 

Polymer Structure 

Gel polystyrene cross linked with 

divinylbenzene 

Functional Group Quaternary Ammonium 

Ionic Form Chloride 

Thickness (mm) 0.45±0.025 

Electrical Resistance (Ohm*cm
2
), 0.5 mol/L NaCl <40 

Maximum Current Density (Ampere/m2) <500 

Permselectivity (%), 

0.1 mol KCl/kg / 0.5 mol KCl/kg 

90 

Total Exchange Capacity (meq/g) 1.3±0.1 

Water Permeability (ml/hr/ft
2
) @5psi <3 

Mullen Burst Test strength (psi) >80 

Thermal Stability (Celcius) 90 

Chemical Stability Range (pH) 1-10 

 

5.7.4 Testing Chamber 

Figure 5.6 shows a schematic diagram and dimensions of the rectangular testing 

chamber. A small drainage tube in the cathode reservoir allowed for drainage of removed 

water. Graphite electrodes were used to prevent adding ions to the sample and 

deterioration of the electrode (Wu et al. 2015). This will also prevent corrosion due to 
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high pH in the anode reservoir, in addition, the acidic water can be easily drained by 

using hollow electrodes if necessary in the field. The membrane was placed between the 

electrode and the soil such that the electrode was not in direct contact with the soil. 

 

Figure 5.6 Schematic of testing cell. 

 

5.8 Results and Discussion 

5.8.1 pH 

The variations of pH in the soil bed are shown in Figure 5.7. As the hydrolysis proceeds, 

hydroxide ions are produced at the cathode, whereas at the anode protons are produced, 

this results in a pH gradient across the soil (Yoshida 2000, Yuan and Weng 2003). The 

acid front near the anode and base front near the cathode migrate towards each other. The 
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acid front moves faster than the base front due to the higher mobility of H+ than OH-, 

and therefore low pH dominates the chemistry across the soil except for a small region 

close to the cathode (Alshawabkeh and Bricka, 2000). The control test reflects this 

phenomena. The pH around the anode drops to 3.9 and rises to 9.5 at the cathode, 

indicating that hydrolysis has occurred affecting the soil pH as expected. The pH at the 

center of the sample is acidic compared to the original, showing that the acidic front 

dominates. 

 Test 2 combines electro-osmosis with an AEM to prevent the flow of hydrogen 

ions into the soil near the anode and reduce the change in pH. The pH of Test 2 near the 

anode decreased to 5.0, even with in the presence of the membrane. This might be due to 

the exchange capacity of the membrane. As hydrolysis takes place, the membrane 

prevents the passage of H+ ions into the soil. However, eventually the membrane is 

depleted and ions can pass more freely. The time it takes for the membrane to be depleted 

is dependent many factors, such as soil type, electrode type, applied voltage, water 

content, type of ions in solution, type and size of membrane, and other; thus is usually not 

predicted (Sata 2004). The membrane used had a low hydraulic conductivity, thus 

passage of ions from the anode reservoir would still be partially thwarted even after 

depletion. The pH at the cathode is higher than that of the control. Since the membrane 

prevented the flow of hydrogen ions into the soil bed, the zeta potential of clay particles 

was better maintained. This is evidenced by the lower electrical resistance of Test 2 as 

shown in Figure 5.8. Consequently, the current throughout the test is higher (Figure 5.9) 

and hydrolysis occurs at a greater rate. This slightly greater generation of hydroxide ions 

increases the pH at the cathode to 10.1. At the center of the soil bed, the pH for Test 2 is 
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higher than the control. Since the hydrogen ions are trapped in the anode reservoir, the 

basic front generated at the cathode can migrate towards the anode and increases the pH 

of the soil. This further shows that the membrane prevented over acidification of the soil 

around the anode but the alkalinity around the cathode increase. Despite this, the results 

were still favorable as shown in Figure 5.9 and Figure 5.10. 

 

Figure 5.7 pH across soil bed after 40 hours of electro-osmotic treatment. Test 1: control; 

Test 2: electro-osmosis with anion exchange membrane. 

 

 The pH of the drained water and the water in the anode reservoir were also 

measured. These values are shown in Table 5.4. The drained water pH corresponded with 

the pH of the soil near the electrodes. Both had high pH, with Test 2 showing the higher 

value. Because the membrane prevented the generated hydrogen ions from flowing into 

the soil, the pH of the water in the anode reservoir decreased to below 1. This indicated 
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that the membrane succeeded in keeping the hydrogen ions from entering the soil bed. A 

yellowish coloration and faint smell also formed in the water. 

Table 5.4 pH Measurements For Drained Water 

 

Test 1: Control Test 2: EO + AEM 

Drained water pH 10.17 10.79 

Anode reservoir pH - 0.5* 

*The pH meter used had a minimum safe range of 1. Thus, the measurement obtained for 

the anode reservoir is below 1 but unreliable beyond that. 

 

5.8.2 Electrical Resistance and Current 

In accordance with the literature, the electrical resistance of the soil increased as electro-

osmosis was carried out. The electrical resistance of the soil throughout testing was 

measured in one minute intervals for 40 hours. The results are shown in Figure 5.8. Both 

tests display an increasing electrical resistance. However, Test 1 experiences an electrical 

resistance 4.8 times greater than that of Test 2. The membrane does increase the electrical 

resistance in Test 2 by a fixed amount; however the trends still show its positive effects. 
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Figure 5.8 Soil resistance during 40 hours of electro-osmotic treatment. Test 1: control; 

Test 2: electro-osmosis with anion exchange membrane. 

 

 Figure 5.9 shows the variation in current through the soil over time. According to 

Ohm’s law, the current is directly related to the electrical resistance, thus as electrical 

resistance increases the current decreases. While the current is still high compared to the 

initial value, and although the rate at which it decreases is low, the current can be 

expected to reach very low values, and even zero, if electro-osmosis is continued. If the 

test was continued until current reached zero, the membrane would have long been 

depleted and its effects likely nullified by the highly acidic water in the anode reservoir. 

Both Figure 5.8 and Figure 5.9 show some irregularities, especially at around 1000 

minutes, which are common when making precise current measurements during electro-

osmotic treatment (Micic et al. 2001, Sun and Ottosen, 2012, Hu et al. 2015). 
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Figure 5.9 Current through the soil during 40 hours of electro-osmotic treatment. Test 1: 

control; Test 2: electro-osmosis with anion exchange membrane. 

 

5.8.3 Settlement 

A settlement gauge was placed on the center of the soil bed to measure the settlement of 

the sample as electro-osmosis was applied. Figure 5.10 shows the settlement as a 

function of time. The application of a direct current induced settlement on both samples. 

Test 2 showed increased settlement due to the use of the AEM. Both tests show an initial 

high settling rate that plateaus after about 18 hours. Following this, settlement continues 

but at a much lower rate. Because the membrane prevented the flow of hydrogen ions 

into the soil bed, the absolute value of the zeta potential was not as affected and the 

electrical resistance in Test 2 did not increase as rapidly as Test 1. This allowed for a 

higher current and, thus, higher electro-osmotic flow, leading to increased consolidation. 
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Figure 5.10 Settlement at the center of soil bed during 40 hours of electro-osmotic 

treatment. Test 1: control; Test 2: electro-osmosis with anion exchange membrane. 

 

5.8.4 Summary of Proof of Concept Test 

This small study assessed the possibility of use of AEMs at the anode to isolate 

hydrolysis of water around the anode and prevent the flow of hydrogen ions into the soil. 

The membrane showed positive results in all respects when compared to conventional 

electro-osmotic treatment. The pH of the soil around the anode did not decrease as much 

as with in the control test. It still decreased compared to the initial value. This is likely 

due to depletion of the exchange capacity of the membrane. The electrical resistance of 

the soil was shown to increase at a slower rate for the test with the membrane. This 

further affirms that the membrane produced a positive effect. The increased settlement of 

Test 2 was also very positive. The use of a membrane allowed for consolidation beyond 

that obtainable with simple electro-osmosis. Also of note is that despite using the 

membrane, the electrical resistance of the soil still increased. This demonstrates the 
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acidification of the soil around the anode is not the only force reducing electric 

efficiency. 

 

5.9 Improving Electro-Osmosis with Anion Exchange Membranes 

Several tests were carried out to quantify the efficiency of using anion exchange 

membranes in enhancing electro-osmotic consolidation. For this, consolidation tests were 

performed using different applied voltages to a soil sample with and without the 

membrane and the results were compared. 

5.9.1 Soil 

The soil used was commercially available brown kaolin with a liquid limit of 120. To 

prepare the soil for testing, it was thoroughly mixed with water to the liquid limit. After 

mixing and obtaining a homogeneous mixture, the soil was placed in a vacuum oven and 

a vacuum was applied to the soil capsule. The sample was stirred thoroughly and then left 

in the vacuum oven for 24 hours to remove any air voids. 

5.9.2 Apparatus 

To consolidate the soil, a Teflon cylinder was used. The cylinder had an inner diameter of 

6.35 cm. The cylinder was closed on the bottom by a porous electrode plug that applies a 

voltage but also allows for water drainage. The plug consists of an electrode, porous 

stone, plastic disk, and base. The base contains a small orifice from which to control the 

liquid level at that electrode. On top of the electrode porous paper was placed to prevent 

the soil particles from clogging the electrode. This is not necessary when membranes are 

present. Both the electrode and plastic disk have multiple small holes to allow flow of 

liquid. The top of the cylinder has an extractable electrode with similar setup (see Figure 
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5.11). Load can then be applied on the top electrode to imitate stress conditions in the 

field. To track the settlement of the sample high precision GeoJac® settlement probes are 

placed on top of each cylinder. 

 

Figure 5.11 Testing cell and loading frame. 

 

5.9.3 Preconsolidation 

To achieve more relevant results, the soil is preloaded to the calculated stress found in the 

field. Assuming a depth of 10 feet, the vertical load to simulate field stress was calculated 

to be about 24 kg. After preparation with the vacuum oven, the soil was placed in the 

cylinder and allowed to settle by its own weight for 2-3 days. The soil was then loaded to 

24 kg in 5 loading increments (1.5, 3, 6, 12, and 24 kg) to avoid undesired changes in soil 
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structure and its properties. In each load increment the settlement was monitored and 

timed. This is used to asses when the sample has reached full consolidation under the 

current load. The new load increment is then applied. After the calculated field vertical 

stress is applied and 100% primary consolidation is achieved, the samples are ready for 

electro-osmotic treatment. 

5.9.4 Membrane Preparation 

The AEM was prepared for use by soaking it in a 5% NaCl solution for 12 hours. This 

has to be done to allow the membrane to hydrate and expand. After this, the membrane 

was placed at the anode between the electrode and the soil. Membrane properties are 

listed in Table 5.5. 

Table 5.5 Anion Exchange Membrane Properties 

Counter Ion Bromide (Br
-
) 

Thickness 110 - 140 µm 

Electrical Resistance 5.0 - 9.0 Ω*cm
2
 

Ion Exchange Capacity 0.7 - 1.0 meq/g 

Selectivity 93 - 98 % 

Proton Transfer Rate 60 - 400 µmol/(min*cm
2
) 

 

5.9.5 Testing 

The samples were consolidated using electro-osmosis with and without a membrane and 

applying an voltage of 2.5, 5, 7.5, 10, and 15 volts. The settlement was tracked for each. 

The test was terminated once the settlement showed no further significant change. The 

maximum settlement achieved in each test was measured and the ratio of settlement using 
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the AEM to the settlement with regular electro-osmosis was calculated and plotted as a 

function of voltage. The limiting current was also measured. 

5.9.6 Results and Discussion 

The limiting current was tested four times to estimate the average voltage at which the 

membrane was undermined by producing hydrolysis. The result for one of these tests is 

shown on Figure 5.12. 

 

Figure 5.12 Limiting current test. 

 

 On average, at a voltage of 5.25 V, the limiting current was reached for the setup 

used. For the samples used, this corresponds to an electric field of 0.72 V/cm. Thus, if the 
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significantly decrease. Based on this, the different voltages for the consolidation tests 

were selected. 

 Figure 5.13 shows the results of the consolidation tests using electro-osmosis 

with and without an AEM. The use of the AEM displays significant improvements over 

the conventional application of electro-osmosis. For all the voltages applied, the 

membrane outperformed regular electro-osmosis, especially for the lower voltages. This 

clearly demonstrates the potential of ion exchange membranes to enhance electro-osmotic 

consolidation and potentially make it commercially viable in construction.  

 

Figure 5.13 AEM efficiency at different voltages. 

 

 The graph matches the prediction based on the limiting current values reported in 
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though always staying positive. However, once the electric field corresponding to the 

limiting current is exceeded, the AEM has the lowest efficiency and is relatively constant. 

This happens because hydrolysis is occurring past the membrane and basically recreating 

the effects of regular electro-osmosis. It’s as if a membrane wasn’t being used. The small 

increase in efficiency at the higher electric fields is likely due to the initial delay of 

hydrogen ions, however small, from entering the soil. After this, the process continues 

normally. Figure 5.13 also shows the best result from the other improvement techniques 

discussed in chapter 2. The best improvement was about 175% using intermittent current. 

This result is comparable to using the membrane at high voltages. However, using a 

membrane at low voltages still provides a substantially more significant enhancement. 

The threshold voltage gradient required for the hydrolysis reactions to take place is also 

shown. If the applied voltage gradient is below, in this case, 0.282 V/cm, electro-osmosis 

will not occur. The theoretical maximum improvement that could be achieved with a 

membrane in this setup is approximately 650%. 

 Figure 5.14 shows the settlement achieved for each test as a percentage of the 

total height right before application of the electric field. This graph reveals some 

interesting trends. First, regular electro-osmosis settlement increases with an increasing 

electric field but seems to peak around 1.3 V/cm. This corroborates Kaniraj et al., (2011) 

findings on the optimal voltage gradient. Applying a higher electric field causes the 

detrimental effects of the treatment to occur too quickly and the process is stifled before 

much consolidation can be achieved. The same effect occurs with the AEM tests. If and 

electric field higher than that corresponding to the limiting current is applied the tests 

behave like simple electro-osmosis tests and a peak is observed around 1.3 V/cm. 
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Figure 5.14 Settlement achieved for tests with and without an AEM. 

 

 Second, the efficiency of using AEM is always higher than regular electro-

osmosis, even when comparing low AEM voltages versus high voltages without AEM. 

This means that the use of AEM produces significantly higher settlements with lower 

power consumption, showing that membranes have a high potential to make electro-

osmosis a commercially viable option for consolidation. 

 

5.10 Conclusions 
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chemical structure of the clay particles. This results in higher settlements for less power 

consumed. The improvement might be significant enough to warrant the use of electro-

osmotic treatment in soil treatment and preparation projects. However, there is a limiting 

current beyond which the electro-osmotic consolidation process is less effective. The 

limiting current for each particular application needs to first be calculated to maintain an 

optimal electric field. Then, using a composite electrode with a membrane, consolidation 

can potentially be achieved very effectively. Larger scale testing is still necessary to 

come to firm conclusions, but the work presented here proves the potential of ion 

exchange membranes and lays the foundation for future work in combining membranes 

with electro-osmotic consolidation. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

The study described herein presents a new technology for consolidation of soft clayey 

soils. This technology involves the use of electro-osmosis enhanced by ion exchange 

membranes to electricity-driven create water flow though clay soil that achieve 

significantly greater settlements than conventional consolidation methods and more 

efficiently than other electro-osmosis techniques. A comprehensive review of other 

electro-osmotic consolidation methods was performed. Preliminary studies using ion 

exchange membranes showed that using membranes at the anode reduced the migration 

of hydrogen ions into the soil and significantly improved consolidation and electrical 

resistance. Several tests were performed to compare electro-osmotic consolidation with 

and without an anion exchange membrane at different voltages. A mathematical model 

was developed to describe the effects of electro-osmosis in clays. This model showed 

some improvements over previous models, especially with regards to the influence of the 

pore fluid and pore size. To describe natural soils, the model was expanded to account for 

anisotropy and a test was carried out to examine the electro-osmotic conductivity in 

different directions. The study also looked at the similarities between electro-osmotic 

consolidation and secondary consolidation. Multiple tests were carried out to estimate the 

relationship between secondary consolidation time and electro-osmotic consolidation at 

different voltages. The major findings from the research are summarized as follows: 
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1. Polarity reversal, intermittent current, injection of chemical solutions at the 

electrodes, and use of geo-synthetics increase the overall efficiency of electro-

osmotic treatment. However, the improvements are not sufficient to justify 

widespread use of electro-osmotic dewatering. 

 

2. The proposed equation for calculating electro-osmotic conductivities provides a 

comprehensive model by taking into account pore electrolyte properties, which 

the Helmholtz-Smoluchowski model overlooks. Hence the proposed model can 

provide accurate approximation of the effect of electro-osmotic consolidation. 

 

3. The model also demonstrates that pore sizes do influence electro-osmotic flow 

through soils, contrary to what was previously thought. 

 

4. The new mathematical model for estimating the electro-osmotic conductivity has 

more explanatory power in that it provides insight into why injection of saline 

solutions to the soil has been reported to improve electro-osmotic consolidation. 

 

5. The model has been expanded to account for the anisotropy of natural soils, 

making it possible to obtain more accurate predictions of the electro-osmotic 

conductivity for a particular soil based on simple tests. 

 

6. The electro-osmotic conductivity is a vector. It is different horizontally and 

vertically for a given soil. The clay soil fabric plays a significant role in electro-

osmotic consolidation and should be investigated before application. 

 

7. Secondary consolidation and electro-osmotic consolidation are shown to have 

similar effects in draining pore water from a kaolin clay both theoretically and 

experimentally. Electro-osmosis provided superior consolidation results and in a 

significantly shorter time. Additionally a relationship was found that allows the 

user to predict the voltage required to achieve the equivalent change in void ratio 

using electro-osmosis as a certain secondary consolidation. 

 

8. Using an anion exchange membrane showed very positive results in all respects 

when compared to conventional electro-osmotic treatment. The pH of the soil 

around the anode did not decrease as much. The electrical resistance of the soil 

was shown to increase at a slower rate for the test with the membrane. 

 

9. The membrane successfully reduces an acid front of hydrogen ions that are 

generated due to electrolysis from moving into the soil, thereby preventing the 

deterioration of the chemical structure of the clay particles. This results in 

significantly higher settlements for less power consumed. 
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10. There is a limiting current beyond which the electro-osmotic consolidation 

process is less effective. The limiting current for each particular application needs 

to first be calculated to maintain optimal voltage levels. Then, using a composite 

electrode with a membrane, consolidation can potentially be achieved very 

effectively. 

 

6.2 Recommendations for Future Work 

1. While other techniques were insufficient to make electro-osmosis viable, 

combining them might provide an increased efficiency in consolidation. Further 

studies should investigate the effectiveness of combining ion exchange 

membranes with other electro-osmosis techniques, especially intermittent current. 

 

2. In this research, only one type of lab soil was used, a commercially available 

brown kaolin. Therefore, more extensive testing on different soils, especially field 

soils, is required to make wide ranging predictions. 

 

3. Laboratory samples are uniform and not always representative of real soils. 

Therefore, testing with natural soils should be explored in future studies. 

 

4. The new mathematical model can predict the electro-osmotic flow through a soil 

under an applied electric field. Further studies should compare predictions for 

different soils with test results. 

 

5. The electro-osmotic conductivity was shown to be anisotropic. Further work 

should investigate other similarities to hydraulic conductivity. Knowledge of the 

properties of hydraulic conductivity could guide research of electro-osmotic 

conductivity of composite soils. 

 

6. Different membrane structures should be tested to examine which works best with 

electro-osmosis on clays. A new membrane could potentially be synthetized for 

this purpose.  

 

7. Large scale testing is still necessary to come to firm conclusions on the 

applicability and efficiency of these findings to field projects. 
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