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ABSTRACT

INSTABILITIES IN NEMATIC LIQUID CRYSTAL FILMS AND
DROPLETS

by
Michael-Angelo Y.-H. Lam

The dynamics of thin films of nematic liquid crystal (NLC) are studied. Nematic

liquid crystals are a type of non-Newtonian fluid with anisotropic viscous effects (due

to the shape of the molecules) and elasticity effects (due to interacting electrical dipole

moments). Exploiting the small aspect ratio in the geometry of interest, a fourth-order

non-linear partial differential equation is used to model the free surface of the thin

films. Particular attention is paid to the interplay between the bulk elasticity and the

preferred orientation (boundary condition) of NLC molecules at the two interfaces:

the substrate and the free surface. This work is a collection of three previously

published papers and some recent unpublished work. Two main topics are covered:

1) the flow of thin films of NLC down an inclined substrate under gravity, and 2) the

stability of thin NLC films on a horizontal substrate under the influence of surface

tension, internal elastic effects, and fluid/solid interactions. Using a combination of

analytical and computational techniques allows for a novel understanding of relevant

instability mechanisms, and of their influence on transient and fully developed fluid

film morphologies. While the analytical results in this thesis focus on NLC films, these

results may be extended to a variety of other thin film models. Finally, a numerical

code that utilizes a graphics processor unit (GPU) is presented, and the significant

performance gains are discussed.
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CHAPTER 1

INTRODUCTION

In many industrial applications involving fluid films, the geometry is such that the

film thickness is small relative to typical lateral dimensions of the film. Exploiting

this difference in scales, a long wave (lubrication) approximation to the governing

equations for fluid flow may be derived and the spatial dimension of the problem

reduced by one. Within this framework, the flow of thin layers (films) of fluids has

been studied under a variety of physical configurations, e.g. [5–19].

Thin films of liquid crystals (LCs), and particularly of nematic liquid crystals

(NLCs), find wide industrial application in display devices, due to their optical

properties (birefringence) and electric field response. The reader is referred to the

books by Castellano [20] and Johnstone [21] for a history of liquid crystal display (LCD)

development. The dielectric tensor for NLC is anisotropic which may lead to very large

refractive indices, a property used in the design of superlenses, capable of overcoming

the resolution limits of conventional imaging techniques (diffraction limit) [22]. The

dielectric property may also be used to accurately control electromagnetic waves, a

desired feature in the design of devices for the purposes of optical imaging, space

communication and object detection by lasers [23]. The reader is referred to the

review paper by Palffy-Muhoray [23] for more information on these and many other

applications.

Nematic liquid crystals (NLC) are fluid-like substances typically composed

of rod like molecules with a dipole moment associated with the anisotropic axis

(the axis parallel with the length of the rod-like molecule). The interactions of the

dipole moments cause molecules to align locally, giving rise to an elastic response;

however, in general, fluid flow and external forces may distort the local alignment.

Therefore, liquid crystals behave as a state of matter intermediate between a fluid,

1



where molecules are allowed to flow, and a solid, having some short-range order

to orientation of molecular. In addition, due to the anisotropic rheology (rod-like

molecules), viscosity depends on fluid flow relative to the local orientation of molecules.

At a surface or interface, nematic liquid crystal molecules have a preferred

orientation, a phenomenon known as anchoring. The local molecular orientation is

characterized by a director field: a unit vector representing the average direction of the

long axis of the molecules. Liquid crystal in the hybrid aligned nematic (HAN) state

has a specific molecular orientation: the polar angle (with respect to the normal to

the substrate), θ, of the liquid crystal molecules varies linearly over the film thickness,

that is, θ = c1z + c2, where c1 and c2 are constants determined by the anchoring

conditions and z is aligned with the polar axis θ = 0.

This thesis is divided into four parts and is a collection of three previously

published papers [24–26] and some current work yet to be published. The first two

chapters discuss the flow of the thin NLC film down an inclined substrate. In the first

chapter, the governing equation is simplified to two-dimensional flow, and we focus on

traveling-wave solutions, which may translate stably or exhibit instabilities in the flat

film behind the traveling front. These instabilities which are parallel to the flow, are

distinct from the usual transverse instability of downslope flow and may be analyzed

and explained by linear stability analysis of a flat translating film. In the second

chapter, these results are extended to three-dimensional flow, and we investigate the

interactions between the parallel instabilities and transverse instabilities.

There last two chapters of this thesis focus on instabilities (dewetting) of flat

films of NLC on a horizontal substrate. The third chapter focuses on two-dimensional

flow where a combination of analytical and computational techniques allows us to

reach novel understanding of relevant instability mechanisms, and of their influence

on transient and fully developed fluid film morphologies. In particular, we discuss

in detail the patterns of drops that form as a result of instability, and how the
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properties of these patterns are related to the instability mechanisms. The fourth

chapter extends these results to three-dimensional flow and discusses numerical code

developed by the author that utilizes GPUs allowing simulations of large domain sizes

to be performed that are not feasible with serial CPU computations. The capability

to simulate on large domains is essential to extend our results from two-dimensional

to three-dimensional flow.

We also note that while this thesis focuses on thin films of NLC, the analytical

techniques presented may be applied to other thin film models, and the GPU code

may be easily modified to simulate other thin film models.
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CHAPTER 2

MODELING FLOW OF NEMATIC LIQUID CRYSTAL DOWN AN
INCLINE

One approach to modeling the spreading of nematic liquid crystal droplets is within the

framework of the long wave approximation. Within this context, different anchoring

conditions have been considered, including various combinations of weak anchoring

and strong anchoring (a Dirichlet condition on the director field) at the free surface

and underlying substrate [5, 12, 14, 16, 27, 28]. In an alternative approach, energetic

arguments were used to derive an equation governing free surface evolution [29].

This approach leads to predictions that differ from those of earlier work [5, 27, 28].

The differences between the approaches were recently reconciled [12, 13], leading to

consistent predictions.

In experiments [30–32], spreading droplets of nematic liquid crystals exhibit a

diverse range of instabilities. Moreover, these instabilities exists in regimes where a

Newtonian droplet would be stable. In this chapter we consider a paradigm problem

that highlights some key features of NLC coating flows and the differences with

Newtonian cases [10, 15]: the flow of a thin film of NLC down an inclined substrate.

This chapter builds upon an earlier model [16] and modifies the free surface conditions

to be thermodynamically consistent [17]. The resulting long wave model is a modified

version of that model presented in [12], containing an additional term related to the

component of gravity in the downslope direction.

2.1 Model Derivation

As was noted by Rey and Denn [33], the Leslie-Ericksen equations [34] are applicable

for NLC composed of rigid rod-like molecules with no spatiotemporal variations in

the scalar order parameter (a measure of how well a unit vector represents the local
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average orientation of LC molecules). Moreover, it was noted that the Leslie-Ericksen

equations have been very successful in modeling NLCs with low molar mass. For

other materials, such as NLC polymers (flexible rods), there may exist spatiotemporal

dependencies in the order parameter, and other theories may be more appropriate to

describe such flows: for example, the Landau-de Gennes tensor model (a generalization

of the Leslie-Ericksen theory) or the Doi theory (a probabilistic description). In this

thesis, variations in the scalar order parameter are not considered, and we work with

the Leslie-Ericksen theory throughout. The reader is referred to the review paper by

Rey and Denn [33] for further information on the strengths and weaknesses of the

various models.

The main dependent variables within the Leslie-Ericksen formulation are the

velocity field, v = (v1, v2, v3); and the director field,

n = (n1, n2, n3) = (sin θ cosφ, sin θ sinφ, cos θ) .

The Leslie-Ericksen equations describe conservation of energy, momentum, and mass

for a nematic liquid crystal in terms of v and n. The governing equations are

∂W

∂ni
+

(
∂W

∂ni,j

)
,j

−Gi = 0 , (2.1)

∂Π

∂xi
+Gk

∂nk
∂xi

+
∂τij
∂xj

= 0 , (2.2)

∂vi
∂xi

= 0 , (2.3)

where we use subscript notation such that

F,j =
∂F

∂xj
and ni,j =

∂ni
∂xj

,

where F is some quantity. Here the important quantities are: total potential energy,

Π; bulk elastic distortion (Frank) energy, W ; kinetic rotational energy associated with

viscous forces in each direction, Gi; and the viscous non-Newtonian stress tensor, τij.
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The bulk elastic energy W for NLC is given by

2W = K1 (∇ · n)2 +K2 (n · ∇ × n)2 +K3 |n×∇× n|2

where Ki, i = 1, 2, 3, are elastic constants related to pure splay, pure twist and pure

bend distortions. Note that W is zero if and only if the director field, n, is constant.

The elastic constants are of the same order of magnitude, and it is common to

make the so-called one constant approximation [5,12,16,31,35–37], K = K1 = K2 =

K3, reducing W to

2W = K
(
(∇ · n)2 + |∇ × n|2

)
. (2.4)

The remaining quantities are given by

Gi = γ1Ni + γ2 eiknk , Π = p+W + ψg ,

Ni = −ṅi − ωik nk , eij = 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, ωij = 1

2

(
∂vi
∂xj
− ∂vj

∂xi

)
,

τij = α1nknpekpninj + α2Ninj + α3Njni + α4eij

+α5eiknknj + α6ejknkni ,

where p is the pressure and ψg is the gravitational potential. The constants γi and αi

are viscosities, satisfying γ1 = α3 − α2 and γ2 = α6 − α5. Furthermore the αi satisfy

the Onsager relation, α2 + α3 = α6 − α5.

We consider flow of a thin film of NLC down an inclined substrate, as indicated

in Figure 2.1. We define our coordinates (x, y, z) such that the in-plane coordinates

(x, y) point down and across the incline, respectively, and z is perpendicular to the

plane of the substrate; χ is the inclination angle. In our formulation, we follow [12]

but include a new gravitational potential, ψg = −gρz cosχ+ gρx sinχ, where g is the

gravitational acceleration and ρ is the density of the NLC.

As noted in the Introduction, NLC molecules have a preferred orientation with

respect to a surface, a phenomenon known as anchoring [33,38]. At a free surface, the
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Figure 2.1 A diagram showing the coordinate system used relative to the substrate.

director often prefers to align normal to the surface (so-called homeotropic anchoring).

At a solid substrate, the anchoring is determined by the chemical interactions between

the NLC and the substrate. It is common in applications that substrates are treated

chemically to impose planar anchoring with respect to the surface. In our analysis

we assume strong planar anchoring at the substrate z = 0 (the director field is

always at the preferred orientation, which here is parallel to the substrate), and weak

homeotropic anchoring at the free surface z = h [35], discussed in § 2.1.1 below.

Variations on these anchoring conditions are easily addressed within the current

framework.

2.1.1 Long Wave Approximation

Let h0 be a representative film height, L be the lengthscale of variations in the x

direction, U be the characteristic flow velocity down the plane and µ be a representative

viscosity scale. Defining the aspect ratio, δ = h0/L� 1, we scale variables as follows

(x, y, z) = (Lx̂, Lŷ, Lδẑ) , (u, v, w) = (Ux̂, Uŷ, Uδẑ) , t =
L

U
t̂, (2.5)

where hatted variables are dimensionless. Inspection of the energy (2.4) and

momentum balance (2.2) then suggests the following scalings:

W =
K

L2δ2
Ŵ and p =

µU

δ2L
p̂. (2.6)
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Using (2.5) and (2.6), two dimensionless parameters may be defined:

B = δ3ρgL2/(µU) and Ñ = K/(µUL), (2.7)

the Bond and inverse Ericksen numbers, respectively.

Energetics of the Director Field In this section, we follow the novel approach

to the energetics of the director field presented in [12]. In terms of the dimensionless

variables, and dropping the hats, to leading order the bulk energy (2.4) is

2W = θ2
z + φ2

z sin θ (2.8)

and energy conservation (2.1) becomes

∂W

∂ni
+

(
∂W

∂ni,j

)
j

+ δÑ Ḡi = 0 , Ḡ =
(
uzn3, vzn3, uzn1 + vzn2

)T
(2.9)

where the terms in Ḡ = (Ḡ1, Ḡ2, Ḡ3)T are the leading order terms of G =

(G1, G2, G3)T in (2.1). If Ñ = O(1), then the coupling term, Ḡ, in (2.9) is of lower

order. This implies that the time scale on which elastic reorientation occurs is faster

than the time scale of fluid flow. In this limit (2.9) reduces to the Euler-Lagrange

equations. The energy of the system, J , consists only of the bulk energy, W , and the

surface energy G associated with the weak (conical) homeotropic anchoring at the free

surface. Therefore

J =

∫ h

0

∫
Ω

ÑW dSdz +

∫
Ω

G dS (2.10)

where Ω is the fluid domain in the (x, y)-plane.

To find the energy minimum, we use a variational approach and consider small

variations in the director angles, φ and θ. Using integration by parts for the volume
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integral in (2.10), the vanishing of the bulk terms in the first variation of J leads to

θzz =
φz
2

sin 2θ in Ω ∪ {0 < z < h} , (2.11)[
φz sin2 θ

]
z

= 0 in Ω ∪ {0 < z < h}. (2.12)

The surface contribution, G, is assumed to be independent of the angle φ (conical

anchoring), therefore the vanishing of the surface contributions leads to

φz sin2 θ = 0 in Ω ∩ {z = h} , (2.13)

Gθ̄ + Ñ θz = 0 in Ω ∩ {z = h} , (2.14)

where θ̄ is the director angle on the free surface i.e. θ̄(x, y, t) = θ(x, y, z = h, t).

Equations (2.12) and (2.13) show that the angle φ must be independent of z, which

reduces (2.11) to θzz = 0. Satisfying the strong anchoring condition on the substrate,

S (z = 0 here), gives

φ(x, y, t) = φS(x, y) , θ = a(x, y, t)z +
π

2
, (2.15)

where φS is assumed specified. If strong anchoring is imposed on both surfaces, then

in a very thin film, adjusting between two antagonistic angles leads to unrealistically

large energy penalties in the bulk. To resolve this issue we impose weak homeotropic

anchoring, with energy G(θ̄), at the free surface. This means that the director angle

θ is approximately zero at the free surface only for thick films (h � 1), but it can

depart from zero significantly for very thin films (h � 1). More precisely, we write

(consistent with (2.15))

θ =
π

2

(
1− m(h)

h
z

)
(2.16)

where m(h) is a monotonically increasing function such that m(0) = 0 and m(∞) = 1.

This function m(h) is directly related to the surface anchoring energy G via equation
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(2.14). Using the chain rule, we find

dG
dh

= Gθ̄
dθ̄

dh
= −Ñadθ̄

dh
= −Nm(h)m′(h)

h

where N = π2Ñ /4 is the scaled inverse Ericksen number. We choose the same form

for m(h) as was used in [12],

m(h) = f(h; b)
hα

hα + βα
, f(h; b) =

1

2

[
tanh

(
h− 2b

w

)
+ 1

]
. (2.17)

Here, b � 1 is the thickness of a preexisting precursor film that is assumed to be

present in all our numerical simulations; and α, β > 0 are constants that tune

the relaxation of the anchoring at the free surface. The functional form of m(h)

corresponds to choosing a specific form of the free surface anchoring energy G(θ̄)

(it is easily checked that the corresponding G(θ̄) has a unique minimum at θ̄ = 0).

The function f(h; b) provides a continuous ‘cutoff’ behavior, i.e., it imposes planar

anchoring at the free surface to match with that at the substrate when the film height

goes below the precursor thickness, b. The constant w provides control over the range

of h for which such planar anchoring is imposed.

Flow Equations Under the long wave scalings coupled with the assumed form of

the director field given by (2.15) and (2.16), to leading order momentum conservation

(2.2) becomes

∇
(
p+Nm2

)
+ U î =

∂

∂z


 B1 B3

B3 B2


 uz

vz


 , (2.18)

∂p

∂z
= −D , (2.19)

where ∇ = (∂x, ∂y)
T , î = (1, 0)T ,

U = B sinχ , D = B cosχ (2.20)
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and Bi are given by

B1 = A1 + A2 cos 2φ , B2 = A1 − A2 cos 2φ , B3 = A2 sin 2φ ,

A1 = 1 + (α5 − α2) cos2 θ + α1 sin2 θ cos2 θ +
α3 + α6

2
sin2 θ ,

A2 = α1 sin2 θ cos2 θ +
α3 + α6

2
sin2 θ.

To proceed, we first integrate (2.19). To fix the constant of integration we assume

that in the direction normal to the surface, fluid stresses (elastic and viscous) are

balanced by surface tension,

p+Nm2 = −C∇2h on z = h(x, y, t) , (2.21)

where

C = δ3γ/(µU) (2.22)

is the inverse capillary number and γ is surface tension. The left hand side of (2.18)

is now known explicitly and furthermore is independent of z, therefore (2.18) may be

integrated. To find the constant of integration, note that in the directions tangential

to the surface, fluid stresses are balanced by surface energy gradients,

−Ñ
[
θz∇θ + θ2

z∇h
]

+

 B1 B3

B3 B2


 uz

vz

 = Ñ∇G = −Nmm′

h
∇h

on z = h(x, y, t). Substituting for θ given by (2.16) in the above equation, B1 B3

B3 B2


 uz

vz

 = 0 on z = h(x, y, t). (2.23)

11



Integrating (2.18) over the film height and imposing (2.23) at the free surface, we find

a matrix equation for uz and vz,

[
F(h) + U î

]
(h− z) =

 B1 B3

B3 B2


 uz

vz

 (2.24)

where

F(h) = ∇
(
p+ ÑW

)
= D∇h− C∇∇2h+Nm2 − hmm′

h3
∇h.

We assume there is no penetration and no slip at the substrate: w = u = v = 0 on

z = 0; and we enforce the kinematic condition (to leading order) at the free surface,

ht(x, y, t) = w(x, y, z = h, t). The conservation of mass (2.3) may then be integrated

over the film height to obtain

ht +

∫ h

0

∇ · (u, v)T dz = 0. (2.25)

The determinant of the Bi matrix on the right hand side of (2.24) is D = A2
1 − A2

2.

Assuming |A1| 6= |A2| this matrix is non-singular and may be inverted to obtain uz

and vz. We also have the following identities∫ h

0

uz(h− z) dz =

∫ h

0

u dz,

∫ h

0

vz(h− z) dz =

∫ h

0

v dz

which we use to combine expressions (2.24) and (2.25) to yield

ht +

∫ h

0

∇ ·
(
E(h)

[
G(h)− U î

])
dz = 0 (2.26)

where the matrix E(h) is defined by

E(h) =

∫ h

0

1

D

 B2 −B3

−B3 B1

 (h− z′)2 dz′. (2.27)

The integral in (2.27) is difficult to evaluate directly, therefore we follow [12] in using

a two point trapezoidal rule for its estimate. This reduces (2.26) to the following

12



fourth order nonlinear parabolic partial differential equation for the film thickness, h,

ht +∇ ·
(
Ch3∇̃∇2h−Dh3∇̃h−NM (h) ∇̃h

)
+ U∇̂h3 = 0 (2.28)

where

M(h) = m2 − hmm′ , (2.29)

∇̃ =

λI + ν

 cos 2φ sin 2φ,

sin 2φ − cos 2φ



 ∂x

∂y

 ,

∇̂ = [λ+ ν cos 2φ] ∂x + ν sin 2φ∂y + 2ν [φy cos 2φ− φx sin 2φ] ,

λ =
2 + α3 + α6

4 (1 + α3 + α6)
, ν = − α3 + α6

4 (1 + α3 + α6)

and m(h) is defined by equation (2.17). Note that for the majority of nematic liquid

crystals, −1 < α3 + α6 < 0, therefore λ > ν > 0 and ∇̃ has positive coefficients.

2.2 Analysis: Two-Dimensional Flow

To simplify the analysis and gain preliminary insight into the phenomena captured

by the model, only two dimensional flow will be considered for the remainder of this

chapter, with a full investigation of the characteristics of the 3D model deferred to

the following chapter. Under this restriction, φ = 0, π are the only consistent values

for the substrate anchoring. In either case, this leads to a factor of λ+ ν in front of

all spatial derivatives, which may be removed by rescaling time. Under this rescaling,

equation (2.28), in two space dimensions with a free surface z = h(x, t), becomes

ht +
[
Ch3hxxx −Dh3hx −NM (h)hx + Uh3

]
x

= 0, (2.30)

with M(h) defined in (2.29) and dimensionless parameters as defined in (2.7), (2.20)

and (2.22). It should be noted that if N = 0, (2.30) describes the flow of a Newtonian
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thin film down an inclined plane [39]. In 2D and in the absence of a contact line, a

Newtonian film described within the long wave approximation with inertial effects

ignored flows stably down an inclined surface with only a hump (capillary ridge)

forming near the front of the fluid. Therefore any qualitatively different behavior

exhibited by (2.30), in particular instabilities, may only result from the term in N .

2.2.1 Traveling Front Solution

Motivated by known results for Newtonian films [10,18], we first seek traveling-wave

solutions, h(x, t) = H(x − V t) = H(s), where V is the wave speed. Inserting this

ansatz into (2.30) and integrating once with respect to the new variable s = x− V t,

gives

− V H + CH3H ′′′ −DH3H ′ −NM(H)H ′ + UH3 = c (2.31)

where c is a constant of integration. Applying the far field boundary conditions,

H(s→∞) = b and H(s→ −∞) = h0, where h0 is the free surface height behind the

front and b is the precursor thickness, the front velocity satisfies

V = U
(
h2

0 + h0b+ b2
)
. (2.32)

The above expression is the usual traveling front speed for a Newtonian film; however,

recall that a factor of λ+ ν has been scaled out of the 2D governing equation (2.30).

2.2.2 Linear Stability of a Flat Film

We start by carrying out linear stability analysis (LSA) of a uniform film, which

describes the situation far behind the traveling front. Consider a flat film with a small

perturbation, h(x, t) = h0 + εh1(x, t), where ε � 1. Substituting this form of the

solution into (2.30), the O(ε) equation is

∂h1

∂t
+ Ch3

0

∂4h1

∂x4
−Dh3

0

∂2h1

∂x2
−NM (h0)

∂2h1

∂x2
+ 3Uh2

0

∂h1

∂x
= 0. (2.33)
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Assuming plane wave form h1 = eωt+ikx leads to the dispersion relation

ω = −
(
Ch3

0k
2 +

[
Dh3

0 +NM (h0)
])
k2 − 3Uh2

0ki. (2.34)

The wavenumber k is real, and for instability we require Re(ω) > 0 for some range of

k. Hence the sign of the term h3
0D+NM(h0) determines the stability of the film: if it

is negative then there is a range of unstable wavenumbers. By assumption, D, N > 0,

thus M(h), given by equation (2.29), must be negative for some range of film heights

for instability. Figure 2.2 shows M(h)/h3 and Figure 2.3 the dispersion relation in

the unstable regime. In this case the modes |k| ∈ (0, kc) are unstable, where

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

h

M(h)
h3

Figure 2.2 A plot of M(h)/h3 where M(h) is given by (2.29) and m(h) is defined
in (2.17) with α = 2, β = 0.5 and w = 0.05. For a thin film of height h such that
M(h)/h3 < 0, elastic effects are destabilizing.

kc =

√
− 1

C

[
D +

NM(h0)

h3
0

]
. (2.35)

Furthermore, the fastest growing mode is given by

km =

√
− 1

2C

[
D +

NM(h0)

h3
0

]
(2.36)

and its growth rate is

ωm =
1

4C

[
D +

NM(h0)

h3
0

]2

. (2.37)
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km kc

ω
ωm

0

Figure 2.3 An example of the dispersion relationship (2.34) in the unstable regime
(Dh3

0 + NM(h0) < 0). Plane wave disturbances with wavenumber k ∈ [0, kc] are
unstable.

We will assume throughout that the precursor film ahead of the traveling front lies in

the stable regime of film thicknesses.

2.2.3 Absolute and Convective Instability

It is known from earlier work [39], that if N = 0 and D > 0, there exist stable

traveling fronts, solutions to equation (2.31). Furthermore, based on other results [10],

for N = 0 and D < 0 (a Newtonian film “hanging” on an inverted substrate), it is

known that a traveling front may exhibit several types of instabilities. It is of interest

to analyze the analogous instabilities that arise within the context of the present

model, specified by equation (2.30).

Within the unstable regime, it is instructive to discuss the evolution of

surface perturbations. We may exploit existing results by noting that (2.33) may

be transformed to the linearized symmetric Kuramoto-Sivashinsky (KS) equation.

Following [10], we consider a moving reference frame, rescaling variables as

η =

√
− [Dh3

0 +NM(h0)]

Ch3
0

(
x− 3Uh2

0t
)
, τ =

[Dh3
0 +NM(h0)]

2

Ch3
0

t . (2.38)

Under this transformation (2.33) reduces to

hτ + hηηηη + hηη = 0.
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We now consider the velocity of the left- and right-hand boundaries (denoted − and

+ respectively) of an expanding “wave packet” of perturbations to a flat film of height

h0. Following the techniques in [40], the velocities of the expanding wave packet

boundaries are found numerically as (η/τ)± = ±1.622. Reverting to x and t variables

yields, for the boundaries of the wave packet,(x
t

)
±

= 3Uh2
0 ± 1.622

√
− [Dh3

0 +NM(h0)]
3

Ch3
0

. (2.39)

The expression under the square root is real since we are (by assumption) in the

unstable regime. Comparing the wave packet velocity (2.39) to the traveling front

velocity (2.32), we see that the right going wave packet boundary (“+” sign) is always

faster than the traveling front for b < h0. This boundary may therefore always be

ignored, since it will move to the (stable) precursor side of the traveling front. There

are three different cases to be considered for the left wave packet boundary (“−” sign),

which we now discuss.

Type 1 (Stable) The left wave packet boundary also travels faster than the front,

V < (x/t)− .

For this case, perturbations propagate ahead of the traveling front (into the physical

region occupied by the stable precursor) and are thus never observed.

Type 2 (Convectively Unstable) The left wave packet boundary velocity is

slower than the front velocity but still positive,

0 < (x/t)− < V.

In this case, perturbations grow, and propagate more slowly than the front itself. Since

the wave-packet velocity is positive it travels to the right, thus does not propagate

beyond the initial front position. The film remains flat behind the initial front.
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Type 3 (Absolutely Unstable) The left wave packet boundary velocity is

negative,

(x/t)− < 0 ,

hence travels to the left. Similarly to the Type 2, perturbations grow; but since the

wave packet travels to the left, the disturbance is not confined, and the entire film is

ultimately destabilized.

2.3 Computational Results and Discussion

In this section the results obtained from numerical simulations of equation (2.30) are

compared to the analytical and LSA predictions derived in §2.2. To simplify the

parameter study, unless stated otherwise, we vary N , and for the other parameters

we use the values specified in Table 2.1. The numerical simulations are based on

a Crank-Nicolson (implicit) discretization scheme coupled with a Newton-Raphson

iterative method to evaluate the nonlinear terms and an adaptive time stepping

scheme. The reader is referred to [12] for more information on the numerical method.

To study the dynamics of a traveling front, the domain and boundary conditions are

given by

h(x0, t) = h0, h(xL, t) = b, hx(x0, t) = hx(xL, t) = 0, (2.40)

where we set x0 = 0 and xL = 400. We use the following initial condition (IC),

h(x, 0) =
(h0 − b)

2
tanh [−5 (x− xf )] +

h0 + b

2
(2.41)

which transitions monotonically from height h0 behind the front at x = xf to the

precursor thickness, b, ahead of the front. We set the initial front position xf to be

far from the boundaries: more precisely for x ∈ [x0, xL], xf = 2 (xL + x0) /3. For
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Table 2.1 Values of the Parameters Chosen for the Simulations

Parameter Value Parameter Value Parameter Value

C 1 β 0.5 B
√

2

D 1 α 2 χ π/4

U 1 w 0.05

h0 0.25 n 5000

b 0.1

Values of the parameters chosen for the simulations (except where specified otherwise).
Here, n is the number of discretization points.

simulations of a perturbed flat film, the initial condition

h(x, 0) = h0

{
1 + 0.1 exp

[
− k

10
(x− xc)2

]
cos
[
k (x− xc)

]}
(2.42)

is used, where xc is the center of the interval, and k is given by (2.36). In the unstable

regime (D +NM(h)/h3 < 0), the maximum of the growth rate (2.37) with respect

to h corresponds to the minimum of M(h)/h3,

h0 = max
h

ωm = min
h

M(h)

h3
,

therefore for any N , C, U and D considered, the same h0 maximizes (2.37). Hence,

with fixed α, β, and w, we may fix h0 and analyze instability in the (C, D, N , U) or

(B, χ, C, N ) parameter spaces.

2.3.1 Traveling Wave

To analyze the validity of our predictions for traveling wave speed (2.32), we have

carried out simulations using (2.41) as initial condition. Table 2.2 shows that for Type

1 (stable) cases, the relative difference between the front speed V predicted by (2.32)

and the average speed of the front calculated from numerical simulations is less than

1% (the average speed was computed by averaging over a period of time sufficiently
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Table 2.2 Comparison of LSA Predictions given by (2.32) with the Average Front
Speed Calculated from Numerical Simulations

Parameters Type Numerical V Analytical V Relative Difference (%)

Default 2 0.1004 0.0975 2.9

U = 2 1 0.1948 0.1950 0.1

h0 = 0.35 1 0.1670 0.1675 0.3

N = 2 3 0.1202 0.0975 18.9

b = 0.05 1 0.0769 0.0775 0.8

C = 2 2 0.0973 0.0975 0.2

D = 2 2 0.0974 0.0975 0.1

β = 0.8 1 0.0976 0.0975 0.1

Unless specified otherwise in the ‘Parameters’ column,N = 1.25 with other parameters
as given in Table 2.1.

long that the results do not depend on the length of the averaging period). For the

unstable Types 2 and 3, instabilities may interact with the front, causing oscillations

in the height of the capillary ridge (the hump that forms behind the traveling front,

seen in the Type 1 simulations in Figure 2.4) as well in the front speed.

Figure 2.4 compares the height profiles for various N at t ∼ 400. Larger N leads

to stronger instability, as expected based on (2.37). In this expression, M(h) < 0 thus

increasing N results in larger growth rates, ωm. To compare with the LSA results,

Figure 2.5 gives the LSA predictions based on (2.36). We note that although the

agreement between the LSA and numerical results is not perfect, the LSA captures

the monotonic increasing dependence of km on N when M(h) < 0.
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Figure 2.4 Comparison of height profiles at t ∼ 400 for various values of N . The
vertical dashed line denotes the initial front position.

2.3.2 Stable, Convectively Unstable and Absolutely Unstable Traveling

Waves

As mentioned in §2.2.3, there are three cases to consider for the left wave packet

boundary. The threshold between the Type 1 and Type 2 regimes is found by equating

the front speed (2.32) to the wave packet speed given by (2.39). The transition from

Type 2 to Type 3 is given by the parameter set such that the speed of the left-hand

boundary of the wave packet is zero. We also consider the stability threshold of a

perturbed flat film, specified by the requirement that the O(k2) coefficient in the

dispersion relation (2.34) vanishes. In terms of N , with parameters as specified in the

caption of Table 2.1, these regimes are:

Stable Perturbed Flat Film: 0 < N < 0.2810

Type 1 (Stable Traveling Front): 0.2810 < N < 0.9351

Type 2 (Convectively Unstable): 0.9351 < N < 1.3480

Type 3 (Absolutely Unstable): 1.3480 < N
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km

Figure 2.5 Comparison of the LSA prediction given by (2.36) with average wave
number k calculated from direct numerical simulations of (2.30). Plots are a function
of N with other parameters as specified in Table 2.1.

In what follows we concentrate on the unstable regimes, and consider the evolution

of a traveling front, as well as of a perturbed flat film for N = 0.7, 1.2, 1.7 (Type 1, 2,

and 3 respectively).

Figure 2.6 shows a perturbed flat film in the Type 1 regime, N = 0.7. We see

that the perturbation does not decay, but instead slowly spreads over the film, while

being convected to the right (the positive x-direction). On the other hand, Figure 2.7

shows that the analogous traveling front is stable once the capillary ridge has formed

at the front. This is as expected since here the left wave packet boundary is predicted

to move faster than the front itself; this can be also seen by direct comparison of the

speed of perturbation in Figure 2.6 and of the front in Figure 2.7.

Figure 2.8 shows a perturbed flat film in the Type 2 regime, N = 1.2. We observe

stronger instability (initial perturbation grows noticeably in amplitude) compared to

the Type 1 case and also the initial formation of solitary-like waves, similar to those

observed for hanging films [10]. The waves do not propagate beyond the center, xc,
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Figure 2.6 Height profiles for a perturbed flat film (2.42) in the Type 1 regime for
N = 0.7. From top to bottom, t = 0, 100, 200, 300, 400.
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Figure 2.7 Height profiles for traveling front (2.41) in the Type 1 regime forN = 0.7.
From top to bottom, t = 0, 100, 200, 300, 400.
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Figure 2.8 Height profiles for a perturbed flat film (2.42) in the Type 2 regime for
N = 1.2. From top to bottom, t = 0, 100, 200, 300, 400.

of the initial perturbation (2.42), suggesting convective instability. Figure 2.9 shows

the corresponding results for a traveling front. We confirm that the left boundary of

the perturbation is traveling to the right (velocity is positive) and the front remains

flat behind the initial front position, showing consistently the convective nature of

the instability.

In the Type 3 regime (N = 1.7), absolute instability is observed for both a

perturbed flat film, and for a traveling front, as shown in Figures 2.10 and 2.11,

respectively. The left wave packet boundary propagates to the left and therefore

would eventually destabilize the entire film behind the front.

2.3.3 Parametric Dependence

To study the effect of the inclination angle, first recall the relationship between D, U ,

B, and χ, which is given in (2.20). To be consistent with previous simulations (model

parameters are given in Table 2.1), we fix B =
√

2 and study the effect of χ on the

stability regimes. Figure 2.12 shows the stability zones in the (χ,N )-plane with other
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Figure 2.9 Height profiles for traveling front (2.41) in the Type 2 regime forN = 1.2.
From top to bottom, t = 0, 100, 200, 300, 400.
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Figure 2.10 Height profiles for a perturbed flat film (2.42) in the Type 3 regime
for N = 1.7. From top to bottom, t = 0, 100, 200, 300, 400.
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Figure 2.11 Height profiles for traveling front (2.41) in the Type 3 regime for
N = 1.7. From top to bottom, t = 0, 100, 200, 300, 400.

parameters defined in Table 2.1. It can be seen that, when N is large enough, for

any small angle of inclination, χ, the film is absolutely unstable. The dependence

on χ may be surprising: this figure shows that increasing χ may lead to a transition

from absolutely unstable (Type 3) to convectively unstable (Type 2), and even to

Type 1, where a traveling front is stable. An example where all three (in)stability

regimes are possible by varying only the inclination angle is shown by the dash-dotted

line N = 0.6 in Figure 2.12. We note that the effect of C and B on the results is as

expected, with larger values of both C and B stabilizing the flow.

It is of interest to discuss the stability zones in terms of the intrinsic parameters:

h0 and χ. In Figures 2.13 to 2.15 we plot the stability zones for three values of N with

fixed values for all other parameters, given in Table 2.1. We observe rich structure

involving transitions between stability and instability within the considered parameter

space, with the general trend that the surface becomes increasingly unstable for larger

values of N , as expected.
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Figure 2.12 A plot of the stability zones for a traveling front in the (χ,N )-plane.
The dashed-dotted line gives an example where, by varying the inclination angle χ,
all three stability regimes are possible. Note the entire region below the dashed curve
is a stable regime for a traveling front. In this and the following figures, S denotes
the region (below the solid curve), in which a perturbed flat film is stable. Note that
V is defined by equation (2.32) and the transformation between the (D,U)-plane and
(B, χ)-plane is defined by equation (2.20).

2.4 Conclusions

To summarize, we find that in contrast to Newtonian films, 2D flows of nematic

liquid films down an incline may be unstable with respect to surface perturbations.

Furthermore, the analysis and simulations suggest that, depending on the physical

parameters of the system, a traveling front can be stable, convectively unstable, or

absolutely unstable. Consideration of perturbed flat films leads to consistent results.

Relating the parameters in our dispersion relation back to the angle of inclination χ,

we find an interesting interplay between the destabilizing effects of gravity and the

liquid crystalline nature of the film, such that for a given N (inverse Ericksen number)

an increase of χ may bring the film from the absolute to the convective instability

regime, and even stabilize a traveling front.
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Figure 2.13 A plot of the stability zones for a traveling front in the (χ, h0)-plane
for N = 0.25. S denotes the stable region.

There are striking parallels between the results obtained in this chapter and

those obtained by for the flow of a Newtonian fluid on an inverted substrate [10] or

for the flow of a Newtonian fluid on the outer surface of a vertical cylinder [15]. For

Newtonian films, surface instability is caused by destabilizing gravity; for NLC films

it is due to the interplay between elastic properties and the anchoring conditions.
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Figure 2.14 A plot of the stability zones for a traveling front in the (χ, h0)-plane
for N = 0.8. S denotes stable regions.
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Figure 2.15 A plot of the stability zones for a traveling front in the (χ, h0)-plane
for N = 2.0. S denotes stable regions.
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CHAPTER 3

THREE-DIMENSIONAL COATING FLOW OF NEMATIC LIQUID
CRYSTAL ON AN INCLINED SUBSTRATE

3.1 Governing Equations

In this chapter we analyze a long-wave model for the three-dimensional flow of NLC

down an inclined plane. The model is an asymptotic approximation to the Leslie-

Erickson equations [34], a set of partial differential equations modeling conservation of

mass, momentum and energy for the NLC. The dependent variables are the velocity

field, v̂ = (û, v̂, ŵ); and the director field, n = (sin θ cosφ, sin θ sinφ, cos θ). Hatted

symbols denote dimensional quantities and unaccented symbols are dimensionless.

The reader is referred to the previous chapter for a complete derivation of the long

wave model; a brief overview is given in what follows.

The momentum equations in the Leslie-Erickson model may be thought of as an

extension to the Navier-Stokes equations, where the total stress tensor is composed

of an isotropic component due to pressure, p̂; and two anisotropic components:

viscous effects, characterized by six coefficients, α̂i (i = 1, 6); and elastic response,

characterized by three constants, K̂i (i = 1, 2, 3). The elastic constants are of the

same order of magnitude, and we follow many other authors in making the so-called

one constant approximation [5, 12,16,31,35–37], K̂ = K̂1 = K̂2 = K̂3.

The coordinates (x̂, ŷ, ẑ) are defined such that (x̂, ŷ) are in the plane of the

inclined substrate, with x̂ pointing down the line of greatest descent, and ẑ is normal

to the substrate. The angle of inclination of the substrate to the horizontal is denoted

by χ. In addition, five scaling parameters are defined: Ĥ, a representative film height;

L̂, a typical lengthscale in the x̂ direction; Û , a characteristic velocity in the x̂ direction;

µ̂, a representative viscosity scale; and ∆θ, the difference in the preferred anchoring

angles at the substrate and at the free surface. Defining the fluid film aspect ratio,
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δ = Ĥ/L̂� 1, we scale variables as follows:

(x̂, ŷ, ẑ) = L(x, y, δz) , (û, v̂, ŵ) = U(u, v, δw) , t̂ =
L̂

Û
t , and α̂i = µαi, (3.1)

where µ̂ = α̂4/2 is the viscosity of an analogous simple fluid i.e. with α4 = 1 and

αi = 0 for i 6= 4, the viscous stress tensor is isotropic and models a simple fluid with

viscosity µ̂.

We neglect inertia (which will be insignificant for the type of coating flows we

consider), but retain the effects of surface tension and gravity, both of which will

be important in our model. Under the scalings given by (3.1), five nondimensional

parameters are defined: B, the Bond number; C, the inverse capillary number; N , the

scaled inverse Ericksen number; η, a scaled effective anisotropic viscosity; and b� 1,

the dimensionless precursor layer thickness. In terms of the physical parameters, these

nondimensional quantities are given by

B =
δ3ρ̂ĝL̂2

µ̂Û
, C =

δ3γ̂

µ̂Û
, N = ∆θ2 K̂

µ̂Û L̂
, η =

α̂3 + α̂6

µ̂
, and b =

b̂

Ĥ
(3.2)

where b̂ is the dimensional precursor layer thickness, ĝ is the gravitational acceleration,

γ̂ is surface tension, and ρ̂ is the density. In this chapter, we consider the precursor

film thickness, b, as a given parameter, fixing its value at 0.1 throughout. Detailed

discussion regarding the influence of the value of b on simulation behavior for

Newtonian flows may be found in [41].

In (3.2), we assume elasticity is of moderate strength, N = O(δ0). One could

of course consider different limits; for example strong elasticity, N = O(δ−1); and

weak elasticity, N = O(δ). The case of strong elasticity is not within the scope

of this thesis and with the exception of neglecting lower order terms, it is unclear

whether an analytically tractable model could be obtained. A weak elasticity model

was considered by Carou et al. [42] in the framework of blade coating of a NLC.
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3.1.1 Energetics: Weak Anchoring Model

In the case of moderate elasticity, the time scale on which elastic reorientation occurs

across the layer, µ̂Ĥ2/K̂, is much faster than the time scale of fluid flow, L̂/Û . Under

this assumption, a variational approach may be used to minimize the energy, giving

φ = c3(x, y, t) , θ = c1(x, y, t)z + c2(x, y, t) . (3.3)

As mentioned in the Introduction, liquid crystal molecules have a preferred orientation

with respect to an interface (anchoring); therefore, the functions ci(x, y, t) (i = 1, 2, 3)

must satisfy appropriate anchoring (boundary) conditions. Two observations may be

made: First, φ is independent of z, thus may only be determined by the anchoring

imposed by the substrate or free surface. Second, in general, the anchoring condition

on the polar angle θ differs between the substrate S and the free surface F ; therefore,

for very thin films, there may be a large energy penalty in the bulk. To simplify the

modeling, and in line with available experimental data, we assume that anchoring

at the substrate is planar, and much stronger than the homeotropic (perpendicular)

anchoring at the free surface [14, 30, 32]. Furthermore, to avoid an elastic stress

singularity as the film height h → 0 we allow the free surface anchoring, θF , to

relax to the substrate anchoring, θS , for very thin films. Under these rather general

assumptions, (3.3) takes the form

φ = φS(x, y) and θ = θS + (θF − θS)
m(h)

h
z , (3.4)

where m(h) is a monotonically increasing function such that m(0) = 0 and m(∞) = 1.

The function m(h) is related to the free surface energy G(h) 1 by [5,12,24],

∂G(h)

∂h
= −Nm(h)m′(h)

h
. (3.5)

1 The more usual expression for surface energy as a function of anchoring angle at the free
surface, G(θ), may be obtained by use of (3.4).
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We use the following functional form for m(h) (see previous chapter for motivation)

m(h) = f(h)
hα

hα + βα
, f(h) =

1

2

[
1 + tanh

(
h− 2b

w

)]
, (3.6)

where α, β, w > 0 are parameters to be chosen. The parameter β is a characteristic

film thickness, above which free surface anchoring effects are dominant and below

which free surface anchoring is relaxed; whereas α influences the rate of change of

anchoring relaxation with respect to film height. The value of w corresponds to a

characteristic range of film heights around the precursor thickness, below which free

surface anchoring corresponds to that on the substrate, and above which the weak

anchoring controlled by α and β applies. Note that with our chosen form of m(h), the

free surface energy G may be shown to be close to that proposed (phenomenologically)

by Rapini and Papoular [30,43].

3.1.2 Long Wave Equation

Asymptotic reduction of the momentum equations of the Leslie-Ericksen model [34]

using the small aspect ratio of the film and neglecting inertial effects (see Chapter 2

for more details) leads to the following fourth order non-linear partial differential

equation for the free surface height, h(x, y, t),

ht +∇ ·
(
Ch3∇̃∇2h−

[
Dh3 +NM (h)

]
∇̃h
)

+ ULh3 = 0 , (3.7)

where

M(h) = m2 − hmm′ , (3.8)

U = B sinχ , D = B cosχ , (3.9)

∇̃ =

λI + ν

 cos 2φ sin 2φ,

sin 2φ − cos 2φ



 ∂x

∂y

 , (3.10)

L = [λ+ ν cos 2φ] ∂x + ν sin 2φ∂y + 2ν [φy cos 2φ− φx sin 2φ] , (3.11)
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λ =
2 + η

4 (1 + η)
, ν = − η

4 (1 + η)
, (3.12)

and m(h) is defined by equation (3.6). Several properties of the above model should

be noted: first, λ and ν are both singular at η = −1. Furthermore, if η < −1, ∇̃ has

negative coefficients, which would result in surface tension having a destabilizing effect.

However, for those NLCs for which data are available, −1 < η < 0; therefore only

values within this range are considered in this thesis. There are two parameters in the

above model that differentiate it from the analogous Newtonian model: N , a measure

of the elastic response due to the antagonistic anchoring conditions (the difference

in anchoring angles between the free surface and substrate); and η, a measure of

non-Newtonian viscous effects due to the azimuthal anchoring on the substrate, φ. If

η = N = 0, we recover a model for a Newtonian fluid; therefore, within the framework

of the present model, the response due to antagonistic polar anchoring conditions and

azimuthal substrate anchoring may be analyzed independently.

For direct numerical simulations, the governing equation (3.7) is solved on a

rectangular domain Ω = [x0, xL]×[y0, yL]. To reduce the influence of the boundaries on

fluid flow, in the streamwise (x) direction the free surface height is assumed constant

at the ends of the domain (modeling conditions in the far field, recalling the assumed

downslope flow); and in the transverse (y) direction, we prescribe periodic boundary

conditions. Specifically,

h(x0, y, t) = H0 , h(xL, y, t) = b , hx(x0, y, t) = hx(xL, y, t) = 0 , (3.13)

and hy(x, y0, t) = hy(x, yL, t) = hyyy(x, y0, t) = hyyy(x, yL, t) = 0 , (3.14)

where H0 is the film thickness behind the front and b is the precursor film thickness

ahead of the front. For linear stability analysis, the governing equation is solved on
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the unbounded domain and (3.13) is modified as follows:

h(−∞, y, t) = H0 , h(∞, y, t) = b , and hx(−∞, y, t) = hx(∞, y, t) = 0 . (3.15)

The linear stability analysis assumes the solution is periodic in y.

We consider only two cases of azimuthal surface anchoring in this chapter:

substrate anchoring parallel to flow, φ = 0 (mod π); and perpendicular to flow,

φ = π/2 (mod π). Note that either choice of azimuthal substrate anchoring permits

two-dimensional traveling wave solutions (discussed in the following section). Under

this restriction, (3.10) and (3.11) simplify to

∇̃ =

 κ1 0

0 κ2

∇ , L = κ1∂x , (3.16)

where

κ1 =


1

2(1+η)
φ = 0 mod π

1
2

φ = π
2

mod π
, κ2 =


1
2

φ = 0 mod π

1
2(1+η)

φ = π
2

mod π
. (3.17)

3.2 Two-Dimensional Flow Revisited

For two-dimensional flow, (3.7) simplifies to,

ht + κ1

(
Ch3hxxx −

[
Dh3 +NM (h)

]
hx + Uh3

)
x

= 0 . (3.18)

In the previous chapter, which we now briefly review, it was shown that there exists a

traveling wave solution, h(x, t) = h0(x− V t) = h0(s), where V is the traveling speed.

The traveling solution h0(s) satisfies,

− V h0 + κ1

[
Ch3

0h
′′′
0 −Dh3

0h
′
0 −NM(h0)h′0 + Uh3

0

]
= c , (3.19)
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where c is a constant of integration. Imposing the far field conditions (3.15), c and V

are found to satisfy

c = −κ1UH0b (H0 + b) , V = κ1U
(
H2

0 +H0b+ b2
)
. (3.20)

To understand the dynamics behind the traveling front, the stability of a perturbed,

traveling flat film was analyzed: the flat film was found to be unstable if

H3
0D +NM(H0) < 0 , (3.21)

where, recall, M(h) is defined by (3.8). Since N > 0 the elastic response is stabilizing

for M(H0) > 0 and destabilizing for M(H0) < 0. In the unstable regime, the growth

rate of the most unstable mode is given by

ωm = κ1
H3

0

4C

[
D +

NM(H0)

H3
0

]2

. (3.22)

In addition, within the unstable regime, an expression for the velocity of the boundaries

of an imposed disturbance, or wave packet, was derived,(x
t

)
±

= 3κ1UH2
0 ± 1.622κ1

√
− [DH3

0 +NM(H0)]
3

CH3
0

, (3.23)

where ’+’ and ’−’ denote the velocity of the right and left wave packet boundaries

respectively. Comparing V in (3.20) to (3.23), the three classes of solutions defined

in [11,24] are obtained: Type 1 (stable; V < (x/t)−), Type 2 (convectively unstable;

0 < (x/t)− < V ), and Type 3 (absolutely unstable; (x/t)− < 0). Note that both

V and (x/t)− share a common factor of κ1, thus the transitions between stability

regimes are independent of κ1.

To simplify the parameter study when we extend our results to three-dimensional

flow, we vary η, N , and D and fix the remaining parameters as in Table 3.1(a).

Furthermore, we restrict D (which, together with U , fixes χ and B, see (3.9)) to just

two values, corresponding to flow down an inclined substrate or flow down a vertical
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Table 3.1 Values of the Parameters Chosen for the Simulations (Except where
Specified Otherwise)

(a) Parameter Value Parameter Value Parameter Value

C 2 β 0.5 ∆x 0.1

U 2 α 2 ∆y 0.1

H0 0.4 w 0.05

b 0.1

(b) Parameter Value

D 1

B
√

5

χ tan−1(2)

(c) Parameter Value

D 0

B 2

χ π/2

Here, ∆x and ∆y are the partition spacings in the x and y domains respectively.
(a) Parameters used for all simulations. (b) Additional parameters for flow down an
inclined substrate. (c) Additional parameters for flow down a vertical substrate.

substrate, as given in Tables 3.1(b) and 3.1(c), respectively. The streamwise stability

regimes in the N domain (with other parameters as fixed in Tables 3.1) are given in

Tables 3.2(a) and 3.2(b) for flow down an inclined and vertical substrate, respectively.

Note that, with the chosen values of α, β, b, w, the choice of H0 corresponds to an

unstable elastic response, M(H0) < 0.

3.3 Transverse Stability of a Traveling Front

In this section, we expand our analysis of the two-dimensional problem [24] to three-

dimensional flow; in particular, we study the transverse stability of a traveling fluid

front. A traveling Newtonian front flowing down an inclined plane (N = η = 0,D > 0)

is known to be unstable with respect to transverse perturbations [18]. With U fixed,
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Table 3.2 Streamwise Stability Regimes in N Domain with all Other Parameters
Fixed.

(a) Stability Regime Value of N (b) Stability Regime Value of N

Type 1 N < 7.1 Type 1 N < 8.9

Type 2 7.1 < N < 11.4 Type 2 8.9 < N < 12.2

Type 3 11.4 < N Type 3 12.2 < N

(a) Flow down an inclined substrate where parameters are given in Tables 3.1(a)
and 3.1(b). (b) Flow down a vertical substrate where parameters are given in
Tables 3.1(a) and 3.1(c).

increasing D has a stabilizing effect. Negative values of D (corresponding to flow on

an inverted plane) have also been studied for Newtonian flow: in the two-dimensional

case [10] such flow can exhibit the Types 1, 2 and 3 streamwise instability described

in §3.2, while in the three-dimensional case [11], increasing |D| has a destabilizing

effect on transverse perturbations. We proceed to analyze transverse perturbations

within the context of the present model.

Following standard techniques applied to thin films [8], we begin the analysis

by assuming a solution of the form

h(x, y, t) = h0(s) + εh1(s, y, t) , (3.24)

where |ε| � 1, s = x− V t, V is given by (3.20), h0(s) is a stable (Type 1) traveling

front solution and h1(s, y, t) is a perturbation. Substituting (3.24) into the governing

equation (3.7) and integrating with respect to s, the traveling wave equation (3.19) is

obtained at the leading order. At order ε, we derive the following (linear) equation

for h1,

∂h1

∂t
+∇ · (CLC[h1]−DLD[h1]−NLN [h1]) + ULU [h1] (3.25)
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where

LC = h3
0∇̃∇2 + 3h2

0∇̃∇2h0 , LD = h3
0∇̃+ 3h2

0∇̃h0

LN = M(h0)∇̃+M ′(h0)∇̃h0 , and LU = 3h2
0∂s + 6h0∂sh0 .

The operators Li (i = C,D,N ,U) are linear with respect to h1; therefore, assuming

that h1 is a composition of Fourier modes, each mode may be considered separately,

i.e. h1 = g(s, t)eiqy. To derive the dispersion relationship, we let g(s, t) = ζ(s)eσt,

where σ is the growth rate. Substituting this form into (3.25), we obtain

σζ = c4(h0)∂ssssζ + c3(h0)∂sssζ + c2(h0; q)∂ssζ + c1(h0; q)∂sζ + c0(h0; q)ζ (3.26)

where

c4(h0) = −Cκ1h
3
0,

c3(h0) = −3Cκ1h
2
0∂sh0,

c2(h0; q) = 2Cλq2h3
0 + κ1

[
Dh3

0 +NM(h0)
]
,

c1(h0; q) = 3κ1

[
Ch2

0

(
∂sh0q

2 − ∂sssh0

)
+ 6Dh2

0∂sh0 + 2N∂sh′0M ′(h0)− 3Uh2
0

]
+ V,

c0(h0; q) = c00(h0; q) + c01(h0; q) + c03(h0; q) + c04(h0) ,

c00(h0; q) = −Ch0

[
κ2h

2
0q

4 + κ1 [6∂sh0∂sssh0 + 3h0∂ssssh0]
]
,

c01(h0; q) = Dh0

[
−κ2h

2
0q

2 + κ1

[
6 (∂sh0)2 + 3h0∂ssh0

]]
,

c02(h0; q) = N
[
−κ2M(h0)q2 + κ1

[
M ′(h0)∂ssh0 + (∂sh0)2M ′′(h0)

]]
,

c03(h0) = −6Uκ1h0∂sh0,

with λ given by (3.12), and κi (i = 1, 2) by (3.17). To extract the growth rate, σ, for

a fixed q, (3.26) is discretized, implementing a finite difference method to estimate

the derivatives of ζ. For some partition {sn} of s, (3.26) is approximated by

(A(h0; q)− σ) ζn = 0 , (3.27)
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where ζn = ζ(sn) and A(h0, q) is the finite difference matrix. Since only the largest

eigenvalue is required, a power iterative method is sufficient to calculate the growth

rate for each value of q, as was done by Lin & Kondic [11].

3.3.1 Small Wavelength Approximation

To validate the results obtained by solving the eigenvalue problem (3.27), in this

section we present an asymptotic approximation to the dispersion relation in the limit

of small wave numbers, |q| � 1. Note that (3.26) contains only even powers of q;

therefore, we asymptotically expand ζ and σ in q2,

σ = σ0 + q2σ1 +O(q4) and ζ = ζ0 + q2ζ1 +O(q4) . (3.28)

For a fixed q, the front position is modified from s = 0 (unperturbed) to s = sb(y, t) =

εeiqy+σt. At the front position, the film height is given by, h(sb, y, t) = b. Linearizing

about the unperturbed front position, s = 0,

εeiqy+σt
[
ζ0(0)− ∂sh0(0)

]
+O

(
ε2
)

+O
(
q2
)

= 0 . (3.29)

Setting ζ0(0) = ∂sh0(0), the boundary condition at the fluid front is satisfied to the

second order in ε and q. It is then reasonable to assume that ζ0(s) takes the form

ζ0(s) = ∂sh0(s) . (3.30)

Substituting (3.28) and (3.30) into (3.25), order εq0 terms of the dispersion relationship

may be expressed as

σ0∂sh0 =
[
−V h0 + κ1

[
Ch3

0h
′′′
0 −Dh3

0h
′
0 −NM(h0)h′0 + Uh3

0

]]
ss
, (3.31)

and recalling the two-dimensional traveling wave equation, (3.19), σ0 = 0.

To simplify the order εq2 terms, it is assumed that perturbations only occur near

the front position (the fluid flow is undisturbed in the far-field); therefore, subject to
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the boundary conditions (3.15), h0 and ζ1 must satisfy

h0(s→ −∞) = H0 , h0(s→∞) = b , and ζ1(s→ ±∞) = 0 . (3.32)

To proceed, we integrate the order εq2 terms of (3.25) with respect to s over the

infinite line. The majority of the terms may be integrated exactly and, applying the

far field conditions (3.32), evaluate to zero. The remaining non-zero terms may be

expressed as

σ1 =
κ2

H0 − b

∫ ∞
−∞

[
Ch3

0∂sssh0 −Dh3
0∂sh0 −NM(h0)∂sh0

]
ds . (3.33)

Substituting (3.19) in the integrand of the above expression, the small q approximation

to the dispersion relation is

σ = q2 κ2U
H0 − b

∫ ∞
−∞

[(h0 −H0) (h0 − b) (h0 +H0 + b)] ds+O(q4) . (3.34)

In two dimensions, κ1 and κ2 (which depend on η; see (3.17)) influence only the

traveling wave speed, V , given by (3.20). The functional form of H(s) is independent

of η; hence the integral (3.34) does not depend on η. Note, for parallel substrate

anchoring, κ2 is a constant, thus the small q analysis in this case is independent of η.

Recalling η ∈ (−1, 0), we see from (3.17) that for perpendicular anchoring, increasing

|η| strengthens transverse instabilities.

To analyze the effect of other parameters, note that while the solution h0(s)

depends on C, D, N and U , the integrand in (3.34) is not directly dependent on

these parameters. This suggests that the effect of these parameters on transverse

stability may be predicted by knowing their influence on the shape of the traveling

wave solutions, h0(s). The integrand in (3.34) is zero for h0(s) = h0 and h0(s) = b;

thus, the main contribution to the integrand comes from the region near the front. For

a Newtonian fluid, increasing D (while keeping other parameters fixed) decreases the

size of the capillary ridge in two-dimensional numerical simulations [8]. Furthermore,
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analysis of transverse perturbations for Newtonian fluids predicts that increasing D

has a stabilizing effect. In the model presented, for a destabilizing elastic response

in a flat film (M(h0) < 0), increasing N increases the size of the capillary ridge

in two-dimensional simulations [24]; therefore, increasing N is expected to have a

destabilizing effect on transverse perturbations. For a stabilizing elastic response,

M(h0) > 0, the opposite is expected.

3.3.2 Influence of Elastic Response and Substrate Anchoring

To compute the growth rates predicted by the linear stability analysis, a (Type

1) traveling wave solution, h0(s), is required. Since (3.19) is highly non-linear, an

analytical solution is not feasible. Therefore, subject to the boundary conditions given

by (3.13), the two-dimensional governing equation, (3.18), is evolved numerically until

the initial condition has converged to a stable traveling wave. The initial condition is

given by

h(x, 0) =
(H0 − b)

2
tanh [−5 (x− xf )] +

H0 + b

2
, xf =

2(x0 + xL)

3
, (3.35)

a film profile that at xf transitions from a film of thickness h0, to a film of thickness

b, the precursor layer.

The numerical method employed to evaluate the two-dimensional governing

equation, (3.18), is based on a Crank-Nicholson type discretization scheme coupled

with an adaptive time stepping method. To account for the non-linear terms, a

Newton-Raphson iterative solver is implemented. The reader is referred to the paper

by Lin et al. [12] for further information about the numerical method employed.

In addition to the small-q analysis described above, we also solve the eigenvalue

problem (3.27) numerically for a range of q-values. To do this we adapt the method

of Lin & Kondic [11] which computes only the largest eigenvalue σ for each value

of q. As mentioned in §3.1.2, the effects of the elastic response, N , and azimuthal
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Figure 3.1 (a) Influence of N on the dispersion relationship as given by the
numerical solution of the full eigenvalue problem, (3.27). (b) Comparison between
numerical results of the eigenvalue problem (solid lines) and small-q approximation
(dashed lines), (3.34). Arrows denote increasingN . Dispersion curves ignore azimuthal
substrate anchoring (η = 0) and describe flow down a vertical substrate. Parameters
are given in Tables 3.1(a) and 3.1(c).

substrate anchoring, η, may be studied independently; therefore, to begin the analysis,

we consider flow down a vertical substrate with η = 0. Figure 3.1a plots the dispersion

relationship for various values of N computed using numerical solutions to the

eigenvalue problem, (3.27). The results are compared to the small-q approximations,

(3.34), in Figure 3.1b. It may be seen that there is a good agreement between the two

methods for small q and both methods capture the expected influence of N .

To analyze the influence of azimuthal substrate anchoring, we continue to

consider flow down a vertical substrate but now fix N = 2 and vary η. In the

case of parallel anchoring, η has no influence on the small q approximation, (3.34);

therefore, only the dispersion relation calculated using the eigenvalue problem, (3.27),

is shown. In Figure 3.2, which shows the results for the case of substrate anchoring

parallel to the flow direction, we observe that increasing |η| has negligible influence for

small q (as we would anticipate, since the small q analysis results were independent of

η in this case); however, for larger q, increasing |η| has a destabilizing effect. In the

case of perpendicular substrate anchoring, the effect of η on the dispersion relation
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Figure 3.2 Influence of η, in the case of planar substrate anchoring parallel to the
flow direction, on the dispersion relationship as given by the eigenvalue problem, (3.27).
Arrow denotes the direction of increasing |η|. Here N = 2 with other parameters
given in Tables 3.1(a) and 3.1(c).

computed from the eigenvalue problem is shown in Figure 3.3a and compared to the

small-q approximation in Figure 3.3b. We observe three trends as |η| increases: the

maximum growth rate increases; the wave number, q, corresponding to the maximum

growth rate decreases; and the range of unstable modes decreases.

3.4 Numerical Simulations: Three-Dimensional Flow

In this section we present direct numerical simulations of Eq. (3.7), which describes

the evolution of the free surface for nematic liquid crystal flowing down an incline.

We implement an Alternating Direction Implicit (ADI) type method with adaptive

time stepping; see [11] for the details of implementation, and [44] for a more general

discussion of the use of ADI in the context of nonlinear high-order parabolic equations.

To reduce the size of the computational domain, the grid is expanded dynamically in

the streamwise (x) direction such that the free surface height is always sufficiently flat

at the boundaries of the computational domain. The grid is shifted so that the lengths

of the flat regions at the boundaries are equal. This corresponds to undisturbed flow

at the boundaries (3.13). The initial length of the x domain, Lx = xL − x0, is fixed

at Lx = 40 for all simulations. In the y direction, symmetry boundary conditions are
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Figure 3.3 (a) Influence of η, in the case of planar substrate anchoring perpendicular
to the flow direction, on the dispersion relation as given by the numerical solution
of the full eigenvalue problem, (3.27). (b) Comparison between numerical results
of eigenvalue problem (solid line) and small-q approximation (dashed line), (3.34).
Arrows denote the direction of increasing |η|. Here N = 2 with other parameters
given in Tables 3.1(a) and 3.1(c).

imposed. The length of the y domain is fixed according to the initial condition of

interest.

To generate an initial condition, for a fixed y, the numerical traveling wave

solution is shifted and then interpolated to an equispaced (x, y) grid. Specifically, if

{x̂i} is the partition of the traveling wave solution, the shifted partition is defined as

x̃i(y) = x̂i + ∆xf(y), where ∆xf(y) is the perturbation to the front position. Using

cubic splines, the solution at nodes {x̃i(y)} is interpolated to an equispaced partition,

{xj}. This is equivalent to

h(x, y, t = 0) = h0(x−∆xf (y)) . (3.36)

In addition, the initial condition is shifted such that the initial unperturbed front

position, xf0, is the same for all simulations i.e. xf (y) = xf0 + ∆xf (y) where xf0 = 24.
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To analyze transverse instabilities, we fix the length of the y domain to be one

wavelength of a plane wave, i.e.,

xf (y) = −A cos (q [y − y0]) , q =
2π

yL − y0

, (3.37)

where A = 0.1 is the magnitude of the perturbation and for simplicity y0 = 0.

Furthermore, with the exception of extracting growth rates to validate the dispersion

relation for different q, yL is set to correspond approximately to the most unstable

mode for the Newtonian case (N = 0 and η = 0). Specifically, for flow down an

inclined substrate, yL = 13, and for flow on a vertical substrate, yL = 11.

To simulate coating flows that appear in practice, we also consider the flow

of a nematic liquid crystal on a wider y domain. In this case, the front position is

perturbed by a superposition of cosine waves with random coefficients. Specifically,

the perturbed front position and y domain are defined as

xf (y) =
N=20∑
n=1

an cos (qn [y − y0]) , qn =
nπ

yL − y0

, yL = 100 , (3.38)

where an are randomly chosen in the interval [−0.1, 0.1].

Note that with double precision arithmetic (round-off error on the scale of 10−16),

numerical noise is expected to grow on the time scale

TM =
14 ln 10

τ
, (3.39)

where τ is the growthrate of an instability (streamwise or transverse). It is assumed

that numerical noise becomes significant when the magnitude of numerical noise

instability grows to that of the numerical accuracy of the ADI method, ∆x2 = ∆y2 =

0.01. Our simulations focus on the time scales that are short compared to TM and

therefore numerical noise is not expected to influence the results.
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3.4.1 Streamwise Stable Flow (Type 1)

In this section we present numerical simulations of a Newtonian flow and a NLC

flow in the Type 1 regime (stable to streamwise perturbations), on an inclined and

vertical substrate. The influence of the azimuthal anchoring is ignored, η = 0. The

height profiles of a Newtonian flow on a vertical substrate (D = 0) are shown in

Figure 3.4. It is observed that the initial perturbation present in Figure 3.4a grows

into a finger, which eventually evolves to a stable size and and then translates steadily

down the substrate. The existence of the steady traveling solution may be similar as

discussed in [9], where it is predicted that stable non-trivial traveling waves may exist

for certain parameter values. Analysis of this phenomenon is not within the scope of

this thesis and we refer the reader to [9] for further discussion. Figure 3.5 shows the

corresponding results for a film of NLC, with N = 2. Initially a single central finger

forms and at later times, secondary fingers evolve along the y boundaries. Recalling

Figure 3.1a, for N = 2, the critical wavelength is approximately 6. This suggests that

the y domain, 0 ≤ y ≤ 11, is large enough to allow other modes (secondary fingers)

to develop.

Figure 3.6 shows the results for Newtonian and Type 1 NLC flow down an

inclined substrate (D = 1). The dynamics are qualitatively similar to those for

the vertical substrate, hence we show film height profiles only at the final time,

corresponding to the solution snapshots of Figures 3.4c and 3.5b. Increasing D is

observed to have stabilizing effect, as evidenced by the smaller finger lengths observed

in Figure 3.6.

Growth Rate of Transverse Perturbations To extract the growth rate from

simulation results, we track the position (along the x-axis) of the central finger’s tip

and root, xt(t) and xr(t), respectively. The location of the centre of the finger is

defined as xc(t) = [xt(t) +xr(t)]/2, and the length of the finger as L(t) = xt(t)−xr(t).

Following the investigation of §3.3.2, we first consider flow down a vertical substrate
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(a) t = 2000

(b) t = 2000

(c) t = 10000

Figure 3.4 Height profile of a Newtonian (N = 0 and η = 0) flow down a vertical
substrate (D = 0) at various times. TM = 3000 and other parameters are given in
Tables 3.1(a) and 3.1(c).

where the azimuthal substrate anchoring is ignored (η = 0) and vary the elastic

response parameter, N .

Changing the reference frame to one moving with the speed of the two-

dimensional traveling wave, V given in (3.20), the position of the finger tip and

root are shown in Figures 3.7a and 3.7b. It may be seen that there exist at least two

spreading regimes; initially, the finger tip and root travel at velocities close to the

two-dimensional traveling wave speed, V . As the finger evolves, the velocities deviate

from V , but appear to be nearly constant in time. The center of the finger, xc(t), in

the reference frame of the traveling wave, is shown in Figure 3.7c. At first, the center

of the finger travels at the two-dimensional traveling wave speed, suggesting that the

velocities of the finger tip and root are equal but opposite. For later times, the finger
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(a) t = 700

(b) t = 1400

Figure 3.5 Height profile of a Type 1 (N = 2) flow down a vertical substrate
(D = 0) at various times. Here the azimuthal substrate anchoring is ignored (η = 0),
and other parameters are given in Tables 3.1(a) and 3.1(c). The initial front position,
xf ≈ 24, and the initial condition is similar to Figure 3.4a.

(a) t = 10000

(b) t = 1400

Figure 3.6 Height profiles of (a) Newtonian (N = 0 and η = 0) flow; and (b)
Type 1 (N = 2) flow down an inclined substrate (D = 1) where the azimuthal
substrate anchoring is ignored (η = 0). For earlier times, the evolution of the height
profile are qualitatively similar to Figures 3.4 and 3.5. Other parameters are given in
Tables 3.1(a) and 3.1(b).
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Figure 3.7 Effect of N on (a) position of perturbation tip, (b) position of
perturbation root, (c) centre of perturbation and (d) length of perturbation. The
arrows denote increase of N . Note the positions in (a), (b) and (c) are plotted in the
reference frame x − s = x − V t where V = 0.21, given by (3.20). Here η = 0 and
other parameters are given by Tables 3.1(a) and 3.1(c).

center velocity may vary depending on the value of N ; however, the center of the

finger always remains near the two-dimensional traveling wave front position. This

suggests that while the tip of the finger travels further down the substrate than the

two-dimensional traveling wave solution, the area of the substrate coated by a film

of uniform thickness is less than it would be if the film were stable with respect to

transverse perturbations.

Figure 3.7d plots the finger length normalized by the initial length, L0 = 2A =

0.2, on a semi-log scale. It may be seen that initially fingers grow exponentially in
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time, as anticipated, but at later times, growth rates decrease. Extracting the growth

rate, σ, from the linear regions observed in Figure 3.7d, the dispersion relation found

numerically by solving (3.27) may be validated. To proceed, we consider a Type 1

flow (N = 2) with three types of azimuthal substrate anchoring: substrate anchoring

where the azimuthal angle is ignored (η = 0), planar substrate anchoring that is

parallel to flow with η = −0.8, and planar substrate anchoring that is perpendicular

to flow with η = −0.8. Figure 3.8 shows that there is excellent agreement between

growth rates extracted from direct simulations of (3.27), and the growth-rate given by

numerically solving the discretized eigenvalue problem for all three cases considered.

These results validate the influence of η and N on transverse stability predicted by

the eigenvalue problem in the both cases of the azimuthal substrate anchoring.
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Figure 3.8 Comparison of dispersion relation computed using the eigenvalue
problem (3.27) and growth rate extracted from direct numerical simulations, described
in §3.4.1. Dispersion curves are calculated for a Type 1 (N = 2) down a vertical
substrate where (a) azimuthal substrate anchoring has been ignored (η = 0), (b)
parallel azimuthal substrate anchoring with η = −0.8, and (c) perpendicular azimuthal
substrate anchoring with η = −0.8. Other parameters are given in Tables 3.1(b)
and 3.1(c).

3.4.2 Streamwise and Transverse Instability (Type 2 and Type 3)

In this subsection we discuss several numerical simulations where transverse and

streamwise instabilities are present simultaneously. We ignore the azimuthal substrate

anchoring initially and consider flow down a vertical substrate (D = 0) and inclined
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substrate (D = 1). The values of N are chosen such that either Type 2 or Type 3

solutions are expected [24] (see Table 3.2). Other parameters are given in Table 3.1. In

the case of a vertical substrate (Table 3.1(c)), Figures 3.9 and 3.10 show the evolution

of the free surface height for a Type 2 flow (N = 9) and Type 3 flow (N = 12),

respectively. For flow down an inclined substrate (Table 3.1(b)), the evolution of

the height profiles for Type 2 flow (N = 10) and Type 3 flow (N = 16) is shown

in Figures 3.11 and 3.12, respectively. Comparing the numerical results, first note

the initial perturbed front position, xf ≈ 24, relative to the unstable region. For

Type 2 flows, it is expected that the streamwise instability behind the front does not

propagate (in the x direction) beyond the initial front position; Figures 3.9 and 3.11

confirm this expectation. By contrast, Figures 3.10 and 3.12 show that for a Type

3 flow, the streamwise instabilities propagate beyond the initial front position, a

result expected from the two-dimensional analysis (presented in detail in [24] and

summarized in §3.2). These results suggest that the classifications of solutions in two

dimensions (Type 1, 2 & 3) carry over to the three dimensional case.

In the simulations presented, we observe two types of qualitative dynamics:

tear formation (e.g. x ≈ 80 in Figure 3.9a) and semi-stable traveling ridges (e.g.

x ≈ 40 in Figure 3.12a). Examining Figures 3.9, 3.10 and 3.11, it may be seen that

streamwise instabilities occur behind the front, resulting in dewetting in the center.

The dewetted region grows in the x and y directions, resulting in the initial finger

breaking from the front, forming a tear like shape. Behind the dewetting region,

analogous instabilities occur near the y boundaries and form secondary tears. This

process alternates between the two types of tear formation. Newly formed tears

appear to briefly accelerate after breakup; however, tears will eventually elongate and

connect with other tears in the streamwise direction. Considering a larger domain

in the y-direction, Figure 3.13 shows the height profiles for a Type 3 flow down a

vertical substrate where the front position has been perturbed by the superposition
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(a) t = 150

(b) t = 300

Figure 3.9 Height profile of a Type 2 (N = 9) flow down a vertical substrate at
various times. Here the azimuthal substrate anchoring is ignored (η = 0), and other
parameters are given in Tables 3.1(a) and 3.1(c). The initial front position, xf ≈ 24,
and the initial condition is similar to Figure 3.4a.

of cosine waves with random coefficients (see (3.38)). It may be seen that similar tear

formation occurs.

For a Type 3 flow down an inclined substrate, Figure 3.12, we observe the

formation of traveling ridges behind the front. The ridges appear to be analogous

to solitary-like waves observed in two-dimensional simulations [10, 24]. Similarly to

the tear formation flows, streamwise instabilities occur behind the front; however, the

dewetting regions grow rapidly in the transverse direction, splitting the film in the

streamwise direction. This may be seen in Figure 3.12a, where the dewetted region

behind the newly forming ridge is elongated. This suggests that the instability in the

streamwise direction is stronger than the instability in the transverse direction. Newly

formed ridges, however, do not persist and eventually destabilize in the transverse

direction. For later times, Figure 3.12b, it appears that the formation of new ridges

terminates. Simulating this type of flow on a larger y domain with a randomly-
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(a) t = 120

(b) t = 220

Figure 3.10 Height profile of a Type 3 (N = 12) flow down a vertical substrate at
various times. Here the azimuthal substrate anchoring is ignored (η = 0), and other
parameters are given in Tables 3.1(a) and 3.1(c). The initial front position, xf ≈ 24,
and the initial condition is similar to Figure 3.4a.

perturbed front position, Figure 3.14 shows that ridge formation still occurs for a

Type 3 flow down an inclined surface.

The existence of the semi-stable traveling ridges may be due to the initial

competition between transverse instability and streamwise instability. When tear

formation is observed, Figure 3.12, the transverse perturbation of the front grows by

a non-negligible amount before the streamwise instability occurs. In the case of ridge

formation, the streamwise instability occurs well before the transverse perturbation has

time to grow sufficiently. This suggests that instability is stronger in the streamwise

direction, which is supported by the rapid breakup observed in the x direction.

Therefore, initially, the shape of the patterns that form behind the front seems

to be governed by the streamwise instability. This results in a film profile that

is similar to two-dimensional solutions, but has been extended and perturbed in the

y direction. For later times, the ridges destabilize at a rate similar to that of the

originally perturbed front.
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(a) t = 90

(b) t = 180

Figure 3.11 Height profile of a Type 2 (N = 10) flow down an inclined substrate at
various times. Here the azimuthal substrate anchoring is ignored (η = 0), and other
parameters are given in Tables 3.1(a) and 3.1(b). The initial front position, xf ≈ 24,
and the initial condition is similar to Figure 3.4a.

Influence of Azimuthal Substrate Anchoring For a spreading nematic liquid

crystal drop on a horizontal substrate, it is known that, for radially-asymmetric

azimuthal substrate anchoring φ(x, y), the anchoring pattern imposed on the substrate

is reflected in the shape and structure of the spreading droplet [12]: broadly speaking,

for planar substrate anchoring patterns the flow is fastest in the direction parallel to

the anchoring direction, and slowest in the direction perpendicular to the anchoring.

Figures 3.15 and 3.16 show the influence of parallel and perpendicular substrate

anchoring, respectively, on a Type 2 flow down a vertical substrate (N = 9) for

various values of η. For the parameters considered, the height profiles at t = 80

are shown in Figures 3.15 and 3.16. In the case of parallel substrate anchoring,

Figure 3.15 shows that increasing |η| elongates the finger in the direction of anchoring.

For perpendicular substrate anchoring, it may be seen that structure behind the finger,

observed in Figure 3.16a, is destroyed in Figures 3.16b and 3.16c. Given that tear
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(a) t = 65

(b) t = 110

Figure 3.12 Height profile of a Type 3 (N = 16) flow down an inclined substrate at
various times. Here the azimuthal substrate anchoring is ignored (η = 0), and other
parameters are given in Tables 3.1(a) and 3.1(b). The initial front position, xf ≈ 24,
and the initial condition is similar to Figure 3.4a.

formation eventually occurs, the earlier onset of the breakup suggests that increasing

|η| strengthens the instability in the transverse direction.

3.5 Conclusions

To summarize, we have analyzed the flow of a nematic liquid crystal film down an

inclined substrate, with weak homeotropic anchoring at the free surface, and strong

planar anchoring at the substrate. Two specific cases of substrate anchoring were

considered: parallel or perpendicular to the streamwise direction. The model we derive

admits two-dimensional traveling waves for these simple anchoring scenarios. These

traveling waves may be unstable to both transverse and streamwise perturbations.

For flows that are streamwise stable, we have derived an asymptotic approximation

to the dispersion relationship for transverse perturbations and validated the analysis

by extracting the growth rates of transverse perturbations from direct numerical
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(a) t = 90 (b) t = 180

Figure 3.13 Height profile of a Type 3 (N = 12) flow down a vertical substrate
(D = 0) at various times. Here the azimuthal substrate anchoring is ignored (η = 0)
and other parameters are given in Tables 3.1(a) and 3.1(c). The initial front position,
xf0 = 24.

(a) t = 65 (b) t = 100

Figure 3.14 Height profile of a Type 3 (N = 16) flow down a inclined substrate
(D = 1) at various times. Here the azimuthal substrate anchoring is ignored (η = 0)
and other parameters are given in Tables 3.1(a) and 3.1(b). The initial front position,
xf0 = 24.
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(a) η = 0

(b) η = −0.25

(c) η = −0.5

Figure 3.15 Influence of η and parallel azimuthal substrate anchoring on the
evolution of the height profile of a Type 2 flow (N = 9) down a vertical substrate.
Height profiles are at a fixed later time, t = 80. Other parameters are given in
Tables 3.1(a) and 3.1(c).

simulation of the governing equation. In the presence of streamwise and transverse

instabilities, we observe rich dynamics when considering the evolution of the free

surface height. In addition, simulations suggest that the influence of azimuthal

substrate anchoring is similar to that observed for spreading nematic liquid crystal

drops on a horizontal substrate [12]. We hope that our computational results

will inspire future experimental investigations that may provide additional insight

regarding the model used.
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(a) η = 0

(b) η = −0.25

(c) η = −0.5

Figure 3.16 Influence of η and perpendicular azimuthal substrate anchoring on the
evolution of the height profile of a Type 2 flow (N = 9) down a vertical substrate.
Height profiles are at a fixed later time, t = 80. Other parameters are given in
Tables 3.1(a) and 3.1(c).
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CHAPTER 4

STABILITY OF THIN FLUID FILMS CHARACTERIZED BY A
COMPLEX FORM OF EFFECTIVE DISJOINING PRESSURE

Thin films, characterized by a small ratio of film thickness to typical lateral lengthscale,

arise in many applications on scales that range from nano to macro. Recently, there

has been much interest in instabilities of thin films on the nanoscale, in particular

for polymeric films [4, 45,46]; nematic liquid crystal (NLC) films [1, 3, 30,31,47]; and

metal films [48,49], to name just a few examples. In many of the considered cases, the

instabilities that develop are complicated by interplay of a number of different effects.

On the nanoscale, these necessarily include fluid/solid interaction, often modeled by

including in the governing equations a disjoining pressure term that plays an important

role in determining the film stability. The relevant forms of the disjoining pressure

may be rather complicated, reflecting, for example, complex Si/SiO2 substrates in the

case of polymer films [4], or complex physics of the fluid/solid interaction in the case

of metal films [50, 51] and the references therein. Often, it is convenient to include

additional physical effects to form a so-called “effective disjoining pressure”; these may

include additional forces of electromagnetic origin, such as for ferrofluids in electric or

magnetic fields [52]. For NLC films, such effective disjoining pressure is often called a

structural disjoining pressure, since it includes the elastic forces that are due to the

local structure of the director field (molecular orientation). Most work on this type

of problem is carried out within the framework of long wave theory, which allows for

simplifications of otherwise extremely complex free surface problems; we adopt this

approach also.

In the context of NLC films, there are several experimental studies of dewetting

on the nanoscale [1,30,31,47]. For thin NLC films deposited on SiO2 wafers, the films

were found to be unstable (dewetted) for a certain range of thicknesses, referred to
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as the “forbidden range” by Cazabat et al. [30]. Several different physical instability

mechanisms have been proposed, and the discussion regarding the relevance of each is

far from complete. Possibly relevant physical effects discussed in the literature include

thermal effects [1, 31] and the pseudo-Casimir effect [47], as well as the interplay of

elastic and disjoining pressure already discussed above [2].

The functional form of the (effective) disjoining pressure turns out to be similar

for many of the setups discussed above; for example, for NLC films, the elastic effects

lead to a disjoining pressure qualitatively similar to that found for polymer films on

Si/SiO2 substrates, or even for Newtonian films under inverted gravity conditions

(hanging films) [10,12]. This chapter is motivated by NLC films, however as discussed

above, the results are generally applicable for many other thin films with a similar

form of effective disjoining pressure (see Figure 4.1 later in the text).

Various instability mechanisms relevant to thin films have been discussed in the

literature. For example, in addition to the standard linear stability analysis, which

focuses on instabilities due to the presence of random infinitesimal perturbations (often

called spinodal dewetting), there are instabilities due to the presence of nucleation

centers [46, 53–55]. Seemann et al. [53] further separate nucleation instabilities into

two types: heterogeneous nucleation, characterized by nucleation holes with random

(Poisson) distribution that emerge within a sharp time window; and homogeneous

nucleation, possibly of thermal origin in experiments, where breakup is continuous and

more and more nucleation holes form. In a similar direction, Thiele et al. [54], and Diez

and Kondic [55], considered the metastable and absolutely stable regimes (stability

of films with respect to perturbations of finite size). In this chapter, we explore

these various stability regimes in the context of our NLC model and demonstrate

parallels between stability properties of our model and the works of others [46,53–55],

as well as similarities and differences between the referenced works. More precisely,

we analyze in detail how the change of film thickness leads to different stability

61



regimes, and the role of the disjoining pressure properties. We furthermore carry out

numerical simulations of dewetting, and discuss the connection between instability

mechanisms and the properties of the drop patterns that form during the final stages of

instability development. We discuss the dynamics that result, both as a consequence

of non-local infinitesimal perturbations (covering the whole fluid domain), and of finite

size localized perturbations. Considering both types of perturbations allows us to put

together a detailed instability diagram covering the full range of film thicknesses.

The remainder of this chapter is organized as follows. In § 4.1 we outline

the derivation of the governing equation in the context of NLC films, highlighting

differences between our model and others in the literature, especially with regard to the

form of the effective disjoining pressure. In addition, appropriate scalings and physical

parameters are discussed, and linear stability analysis (LSA) of a flat film is presented.

The issues of particular relevance to NLC films are mostly considered in this section.

We then proceed with a general discussion of film instability. In § 4.2 we discuss

so-called spinodal instabilities, due to the presence of global (random) perturbations,

intended to model the noise that is always present in physical experiments. Among

other topics, we here discuss the formation of secondary (satellite) drops that are found

only for a specific range of film thicknesses, and the distance between the emerging

drops, whose dependence on the film thickness shows unexpected and rich structure.

In § 4.3 we consider the influence of localized perturbations (nucleation centers) on the

film stability. In this section we also apply the Marginal Stability Criterion to help us

develop additional analytical insight regarding instability development; this approach

(to the best of our knowledge) has not yet been discussed in the present context. We

discuss both linearly stable and metastable regimes of instability. § 4.4 summarizes

our findings: of particular interest to the reader may be Figure 4.20, which provides a

summary of the various instability mechanisms found and discussed throughout this

chapter.
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4.1 Problem Formulation

We first outline our model for NLC films of thickness on the nano/micro scale, but

emphasize that our results are of relevance to other types of thin films (such as

polymeric films), which may be described by long-wave equations similar to ours

(equation (4.10) later) and which involve an effective disjoining pressure qualitatively

similar to that sketched in Figure 4.1b. Note that the additional local maximum

shown in Figure 4.1b, that is not present in Figure 4.1a, is important in determining

the film stability [56, 57]. In this thesis, such a maximum results from the nematic

contribution; for polymer films on a Si/SiO2 substrate it may be due to the interaction

of the polymer film with both SiO2 and Si layers [4].

For the thin films that we consider, the effects of gravity are negligible; however,

liquid/solid interactions, neglected in the previous chapters become important.

Our model derives from the Leslie-Ericksen equations [34], which comprise a fluid

momentum equation plus incompressibility, analogous to Navier-Stokes; and an

additional equation modeling conservation of energy (linear translational energy of

the NLC molecules, and angular energy about each NLC molecule’s center of mass).

The fluid momentum equation differs from Navier-Stokes in two key ways: 1) by

introducing a new anisotropic stress tensor (linear momentum), and 2) by an additional

term modeling angular momentum. For brevity, the full derivation of the long wave

model from the Leslie-Ericksen equations is skipped in this chapter; we present just a

brief overview, highlighting where the modeling differs from the previous chapters.

There are three crucial quantities in our long wave model: h, the free surface

height; and the angles θ, φ that characterize the director field, n, a unit vector

representing the local average orientation of the long axis of the rod-like NLC

molecules. It is convenient to express the director field in spherical coordinates, n =

(sin θ cosφ, sin θ sinφ, cos θ), and consider the dependent variables θ, the azimuthal

angle; and φ, the polar angle, which vary with the film height h; see Figure 4.2
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(a) Disjoining pressure Π(h) (4.9)
(b) Effective disjoining pressure Πeff(h)

(4.8)

Figure 4.1 Disjoining and effective disjoining pressures as functions of h, the film
thickness.

Figure 4.2 Schematic of the director field of the liquid crystal molecules relative to
the Cartesian coordinates.

for a schematic. Note that throughout this chapter we use hats to distinguish

between dimensional and dimensionless variables or parameters, hatted quantities

being dimensional.

Analogous to Newtonian fluid models we include surface tension with constant

surface energy density γ̂, and liquid/solid interaction with volume energy density Â

(proportional to the Hamaker constant). Unique to NLCs (with respect to simple

fluids) are the isotropic viscosity stress tensor, characterized by 6 coefficients, α̂i

(i = 1, 6); and the elastic response, characterized by three constants K̂i (i = 1, 2, 3).

Similar to other authors [31, 35–37], we use the one-constant approximation, K̂ =
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K̂1 = K̂2 = K̂3. Furthermore, under the long wave approximation, only three of the

six viscosities (α̂3, α̂4, and α̂6) are relevant.

To nondimensonalise the Leslie-Ericksen equations five scaling factors are defined:

Ĥ, the film thickness; L̂, the lengthscale of variations in the plane in the film, (x̂, ŷ);

δ = Ĥ/L̂, the small aspect ratio; Û , a characteristic flow velocity; T̂F = L̂/Û , the

timescale of fluid flow; and µ̂ = α̂4/2, a representative viscosity scale analogous to

the Newtonian viscosity (with α̂i = 0 for i 6= 4, the isotropic viscosity stress tensor

reduces to a simple Newtonian stress tensor). The choice of the scales is based on

experimental data, and is further discussed in § 4.1.3.

4.1.1 Weak Free Surface Anchoring

In addition to the fluid flow timescale, T̂F , we may consider the timescale of elastic

reorientation across the layer, T̂R = µ̂Ĥ2/K̂. Assuming the timescale of reorientation

is much faster than that of fluid flow, a quasistatic approximation (instantaneous

elastic equilibrium) can be justified, and the energy equation may be solved to give

the director field, n, as a function of the instantaneous film height, h. We have already

shown in previous chapters that the spherical director angles θ and φ are then given

as

θ = a(x, y, t)z + θS(x, y, t) and φ = φS(x, y, t) , (4.1)

where a(x, y, t) depends on the free surface height, h(x, y, t), as discussed below. The

functions θS and φS depend on the preferred orientation of the NLC molecules at the

interfaces, a phenomenon known as anchoring. We assume that the anchoring on the

substrate is stronger than that at the free surface, and therefore that θS(x, y) and

φS(x, y) are imposed by the substrate. In line with observations for physical systems,

we assume θS is constant, while φS(x, y) may vary only spatially. This solution for

the director field feeds into the anisotropic stress tensor. The particular state here in

which θ is linear in z is often called the hybrid aligned nematic (HAN) state of NLCs.
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In general, the preferred polar anchoring angles at the free surface, θF , and at

the substrate, θS (both assumed constant), are different (antagonistic anchoring). For

very thin films, adjusting between these anchoring conditions incurs a large energy

penalty in the bulk of the film. To reduce the energy penalty for very thin films, we

allow the (weakly anchored) free surface director angle θF to relax to the same value

as the (strongly anchored) substrate director angle θS for very thin films. Specifically,

we take

θ = θS + (θF − θS)
m(h)

h
z , (4.2)

m(h) = g(h)
h2

h2 + β2
, g(h) =

1

2

[
1 + tanh

(
h− 2b

w

)]
, (4.3)

where m(h) is a relaxation function (directly related to the anchoring energy at the free

surface) in which β is the thickness scale at which the bulk elastic energy is comparable

to the free surface anchoring energy, and g(h) is a ‘cut-off’ function (controlled by w)

that enforces the substrate anchoring on the free surface when the film thickness is

close to the equilibrium film thickness, b (discussed in more detail later in the text).

Note that with this form of the director field, thicker NLC films are in the

HAN state, while films close to the equilibrium thickness have a director field nearly

homogeneous across the film thickness. This transition between the states is in

agreement with several other models [30, 35, 47]. Furthermore, dimensional analysis

shows that our lengthscale β may be related to the extrapolation length discussed in

the literature [35, 37,58].

4.1.2 Long Wave Model

To derive a long wave model for nanoscale thin films, we modify the model used

in previous chapters, by neglecting gravity and including fluid-solid interaction via

disjoining pressure. With this modification, there are five nondimensional parameters:

C, the inverse Capillary number, representing the ratio of surface tension and viscous
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forces; K, the ratio of the forces due to disjoining pressure and those due to viscous

effects; N , a scaled inverse Ericksen number, representing the ratio of elastic and

viscous forces; λ and ν, scaled effective viscosities. In terms of physical parameters,

C =
δ3γ̂

µ̂Û
, K =

δ2ÂL̂

µ̂Û
, N = (∆θ)2 K̂

µ̂Û L̂
, ∆θ = θF − θS , (4.4)

λ =
2 + η

4 (1 + η)
, ν = − η

4 (1 + η)
, η =

α̂3 + α̂6

µ̂
, (4.5)

where, recall, µ̂ = α̂4/2. For the remainder of the chapter, only two-dimensional

geometry will be considered; we leave the three-dimensional case for the next chapter.

With this restriction φ can be at most piecewise constant, with value(s) φ = 0

(substrate anchoring parallel to the x-axis) or φ = π/2 (anchoring perpendicular to

the x-axis). The governing equation for the free surface height, h(x, t), may then be

expressed as

ht +
[
Φ
(
Ch3hxxx + h3Πeff

′(h)hx
)]
x

= 0 , (4.6)

Φ =

 Φ‖ = λ− ν (φ = 0)

Φ⊥ = λ+ ν
(
φ = π

2

) . (4.7)

Here Φ‖ denotes substrate azimuthal anchoring parallel to the x-axis (φ = 0) and

Φ⊥ denotes anchoring perpendicular to the x-axis (φ = π/2); note that the value

of Φ influences only the timescale of fluid flow. Furthermore, if η = 0 in (4.5), the

governing equation (4.6) is independent of φ and our model corresponds to a fluid of

isotropic viscosity. The effective disjoining pressure is defined as

Πeff(h) = Kf(h) +
N
2

[
m(h)

h

]2

, (4.8)

with m(h) as defined in (4.3) above. Here, the second term on the right hand side

is the response due to the antagonistic anchoring conditions, while the first term
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corresponds to the disjoining pressure, taken here to be of power-law form

Π(h) = Kf(h) = K

[(
b

h

)3

−
(
b

h

)2
]
. (4.9)

The form of the effective disjoining pressure, (4.8), is similar to that considered by

Vandenbrouck et al. [2]; however, there are two important differences: (i), the (first)

term in (4.9) considered here contains the repulsive term (Born repulsion) preventing

the film thickness from reaching zero; such a term is crucial if one wants to carry out

simulations; and (ii), in the model of Vandenbrouck et al. [2], the free surface azimuthal

anchoring is assumed to be determined by the average initial thickness of the film

and does not evolve with h. The power-law form of disjoining pressure (4.9) is used

extensively in the literature; for a review see Craster and Matar [59] and for further

background regarding solid-fluid interactions, see the book by Israelachvili [60].

In the case (assumed henceforth) that φ is constant globally, a simple rescaling

of time in (4.6) yields

ht +
[
Ch3hxxx + h3Πeff

′(h)hx
]
x

= 0 , (4.10)

with Πeff as defined in (4.8). This equation will be considered in the rest of this

chapter. Note that in this model nematic effects enter only through modification of

the disjoining pressure, by adding the structural component. Figure 4.1 shows typical

forms of the disjoining pressure obtained using the parameter values discussed in the

following section. The effective disjoining pressure proposed in (4.8) is similar to that

expected for many other thin film problems, in particular the well-studied polymer

films on Si/SiO2 substrates [45]. Therefore the results that we present in the rest of

the thesis are of relevance to a wide class of complex fluids.

We note that equation (4.10) may be alternatively derived using the variational

or gradient dynamics formulation [61, 62]. In this thermodynamically motivated

68



approach the governing equation is expressed as

ht +∇ ·
[
Q(h)∇

(
δF

δh

)]
= 0 , (4.11)

where Q(h) is the mobility function, and F is the free energy functional. Lin et al. [13]

showed that, with consistent boundary conditions, the gradient dynamics formulation

is equivalent to the long wave approximation of the Leslie-Ericksen equations. In

terms of our model, Q(h) = h3 and

F (h) = −C

[
1 +

(∇h)2

2

]
− Kb

2

2h

[
b

h
− 2

]
+N

[
m(h)2

2h
−
∫ h m(s)m′(s)

s
ds

]
. (4.12)

4.1.3 Scalings and Physical Parameters

We now discuss the choice of scaling parameters mentioned in the beginning of § 4.1

and the material parameters in (4.4) and (4.5) for our model of thin NLC films (4.8)

and (4.10). In experimental studies of dewetting of NLC films, the film thickness is

typically of the order 10 to 100 nanometers [2, 3]; therefore we set the representative

film height Ĥ (used to scale z) to 100 nm. For temperatures far from a phase

transition, the lower bound of the forbidden range of thickness is a few nanometers

(it corresponds, in the experiments of Cazabat et al. [30], to a trilayer of molecules).

We define this lower bound to correspond to the equilibrium film thickness and set it

as b̂ = 1 nm. Bulk elastic energy is expected to be comparable to surface anchoring

energy for film thicknesses in the 100 nanometers range; therefore we set β̂ = 100 nm.

Periodic undulations are observed on the free surface of films with a height on the

order of Ĥ, and in experiments [3,30], the wavelength of such undulations is observed

to be in the range of 10-100 µm. Choosing the length scale in the (x, y) domain

L̂ = 10 µm, we fix the aspect ratio δ = Ĥ/L̂ = 10−2. We choose the timescale of fluid

flow T̂F = L̂/Û to match the timescale on which undulations develop in experiments,

typically seconds to minutes [3]; thus we set T̂F = 1 s, corresponding to a velocity

scale Û = 10 µm s-1.
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The remaining parameters to be specified are: γ̂, the surface tension; K̂, the bulk

elastic constant; θF , free surface azimuthal anchoring angle; θS, substrate azimuthal

anchoring angle; Â, a force per unit volume, proportional to the Hamaker constant;

and µ̂, a representative viscosity. Many experimental studies [2, 30–32,63,64] use the

cyanobiphenyl (nCB) series of liquid crystals (where n refers to the number of carbons

in the aliphatic tail), in particular, 4-Cyano-4’-pentylbiphenyl (5CB). Therefore, we

choose these physical parameters to match 5CB data. It is noted by Cazabat et

al. [30] that, due to impurities in the NLC, published measurements of surface tension

are scattered. However, to estimate the order of the non-dimensional parameters

in our model, we note that surface tension appears typically to be of order 10−2

N m-1 [30, 33]. The elastic constant, K̂, is of the order 10−11–10−10 N [32, 65]. For

the nCB series of NLCs, the molecules prefer to align normal to the free surface

(homeotropic anchoring) and in practice, substrates are often chosen and treated such

that molecules align parallel to the substrate e.g. SiO2; therefore we set θF = 0

and θS = π/2. Accurate values for the characteristic viscosity of 5CB are scarce in

the literature; however, Mechkov et al. [29] was able to fit solutions of a thin film

equation to experimental results (this chapter considers micron-scale drop thicknesses

and the model used assumes strong free surface anchoring and neglects fluid/solid

interactions) with µ̂ of order 10−2 Pa s, a value in line with reported data [66]. Taking

account of this available data, we choose K̂ = 1× 10−11 N, γ̂ = 60× 10−3 N m-1, and

µ̂ = 60× 10−3 Pa s.

In summary, the dimensional scaling factors are then fixed as

L̂ = 10 µm , Ĥ = 100 nm , T̂F = 1 s , Û = 10 µm s-1 . (4.13)

Note that with the chosen thickness scale, T̂R = µ̂Ĥ2/K̂ = 60 µs, thus we satisfy the

assumption in § 4.1.1 that the timescale of elastic reorientation across the layer (T̂R)

is much slower than that of fluid flow (T̂F ). In addition, with the value of the contact

70



angle to be discussed in § 4.1.3, the contact line velocity of a spreading NLC drop

measured by Poulard and Cazabat [32] (at the chosen contact angle) is of a similar

order to our derived velocity scale Û .

Based on the scales discussed above, the dimensionless parameters we use (at

least, for our initial investigations) are

δ = 0.01 , C = 0.0857 , N = 1.67 , K =
[
0.0017 m3J-1

]
Â , b = 0.01 , β = 1 ,

(4.14)

and Â, the volume energy density associated with fluid/solid interaction forces (here

assumed to have units of Jm−3), is discussed next.

Contact Angle To define a value for Â and thus K (see (4.4), (4.14)) we relate

the spreading parameter (a function of the contact angle) to the stored energy per

unit area of the film using the Young-Laplace equation [55]. The spreading parameter

Ŝ is given by

Ŝ = γ̂(1− cosϑc) = Ê(ĥ =∞) = −
∫ ∞
b̂

Π̂eff(ĥ) dĥ , (4.15)

where ϑc is the equilibrium contact angle, Ê(ĥ) is the stored energy per unit area,

and Π̂eff(ĥ) = (µ̂Û/δL̂)Πeff(h), where Πeff is defined by (4.8): the usual disjoining

pressure plus the elastic “structural” component, dependent on the function m(h)

and with prefactor N . This elastic term of the integral in (4.15) cannot be evaluated

analytically, due to the complicated functional form of m(h) as defined in (4.3).

However, direct numerical integration shows (for the chosen values of b, β, and w),

that the value of (4.15) is almost the same if the approximation g(h) = 1 in the

definition of m(h) is made (less than 1% difference). Setting g(h) = 1, the integral

in (4.15) may be evaluated analytically; but the result is not simple to work with.

Therefore, we asymptotically expand in ε = b/β = 0.01 � 1 and retain the leading

order term. The contact angles for NLC on Si (or SiO2) substrates were measured by
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Poulard and Cazabat [32] to be around 10−2–10−1 radians; thus assuming the contact

angle is small, ϑc � 1, (4.15) may be expressed as

Â =
γ̂ϑ2

c

b̂

(
1 + κ

[π
4
ε+O(ε4)

])
, κ =

K̂

γ̂b̂ϑ2
c

. (4.16)

To express (4.16) in terms of the nondimensional parameters (4.14), the order ε4 term

in (4.16) is neglected, and the approximated equation is multiplied by δ/µ̂Û to yield

Kb ≈ C
(
ϑc
δ

)2

+
N
βπ

, (4.17)

where b = b̂/Ĥ is the dimensionless equilibrium thickness. For the chosen values of γ̂

and K̂, and ϑc = 0.06, κπε/4 ≈ 0.364 in (4.16), therefore, it is reasonable to neglect

the elastic contribution to the spreading parameter. This is in agreement with liquid

crystals of low molar mass, where the anchoring energy on the free surface is usually

significantly smaller than the isotropic surface tension energy [67]. Neglecting the

elastic term in (4.16) then, Â = γ̂ϑ2
c/b̂, and with ϑc = 0.06, we then obtain K = 36.0.

4.1.4 Linear Stability Analysis (LSA)

We now focus on the stability properties of a flat film, and in particular on the

influence of the average film thickness, H0. For this purpose, we first carry out LSA of

a flat film solution to our governing equation (4.10). Assuming a solution of the form

h(x, t) = H0 + εeiqx+ωt where 0 < ε� 1, substitution in (4.10) yields the dispersion

relation

ω = −H3
0

[
Cq2 − Πeff

′(H0)
]
q2 , (4.18)

where

Πeff
′(h) = Kf ′(h)−NM(h)

h3
; M(h) = m2(h)− hm(h)m′(h); (4.19)
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Figure 4.3 The zeros of (4.20) (blue curves), the zero of M(H0) (dashed red line);
and the zero of f ′(H0) (dashed cyan line, lying almost entirely on the lower blue curve).
The region enclosed by the blue curves denotes film thicknesses H0 that are linearly
unstable, i.e. Πeff

′(H0) > 0. The dashed black line corresponds to a critical N /K
value; below that value, the destabilizing effect of fluid/solid interaction is stronger
than the stabilizing elastic response.

with f(h) defined by (4.9), m(h) by (4.3) and parameters C, K, and N by (4.4); their

values are given in § 4.1.3.

Assuming that q is real, a film is always stable if Πeff
′(H0) < 0, and is unstable

otherwise. Therefore, the values of H0 for which the film is unstable are determined

by the roots of

Πeff
′(H0)

K
= f ′(H0)− N

K
M(H0)

H3
0

, (4.20)

which are calculated numerically and plotted (as two blue curves) in Figure 4.3 in

the (N /K, H0)-plane. In addition the roots of f ′(H0) = 0 and M(H0) = 0 are also

plotted. Denoting the two roots of (4.20) as H− (the smaller root) and H+ (the larger

root), and noting that the region enclosed by blue curves corresponds to Πeff
′(H0) > 0,

Figure 4.3 demonstrates that for H0 ∈ (H−, H+), a flat film is unstable; therefore, we

conjecture that the unstable range of film thicknesses in our model may be related

to a range of so-called “forbidden thicknesses” noted experimentally by Cazabat et
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al. [30] for comparable films. It can be seen that, for the range of N /K considered,

H− is closely approximated by the zero of the disjoining pressure f ′(H−) ≈ 0; thus

H− ≈ 3b/2 (see (4.9)): the lower thickness threshold between linear stability and

instability is primarily determined by fluid/solid interaction forces.

For N /K > 0.01, the largest root of (4.20), H+, corresponds approximately

to the root of M(H0), suggesting that for sufficiently strong elasticity, the upper

threshold between linear instability and stability is determined by the antagonistic

anchoring conditions (elastic response). For H0 � b = 0.01, we may simplify M(H0)

(see its definition in (4.19)) by setting g(H0) = 1 in (4.3), and H+ ≈ β can be found

analytically. This is confirmed numerically using the values from §4.1.3, which give

N /K = 0.0514; the second root of (4.20) is then found to be H+ ≈ 1.0150 ≈ β (see

(4.14)).

In the linearly unstable regime, only perturbations with wavenumber q ∈ (0, qc)

are unstable; here qc is the critical wavenumber given by qc =
√

Πeff
′(H0)/C (see

(4.18)). The most unstable mode is given by qm = qc
√

2 = 2π/λm, with the growth-rate

ωm =
Q(H0) [Πeff

′(H0)]
2

4C
=
H3

0 [Πeff
′(H0)]

2

4C
, (4.21)

(see (4.11)). We will use these quantities later in the text. Note that in dimensionless

form, qc and qm do not depend on the mobility function Q(h) and the range(s) of

unstable thicknesses is/are determined by Πeff(h). Furthermore, the mobility function

only affects the growth rate of the instability.

4.1.5 Comparison to Other Models

There are several differences between the effective disjoining pressure used in our

model (4.8) and others used in the literature. Unique to our model is weak free

surface anchoring, which relaxes the free surface azimuthal anchoring as the film

height evolves. This leads to a critical thickness value, β, below which the elastic

74



contribution (ignoring fluid/solid interaction forces) is linearly destabilizing for a flat

film, and above which it is linearly stabilizing. Furthermore, and as discussed above,

Figure 4.3 shows that for N � K, H+ ≈ β, i.e. the upper bound between linear

instability and stability is controlled by the elastic response. In comparison, the

model presented by Vandenbrouck et al. [2] sets the free surface azimuthal anchoring

condition to be a constant for all film thickness (the value of which is determined by

the average initial film thickness). This is equivalent to strong anchoring (m(h) = 1

in our model), which leads to the elastic response being always linearly stabilizing;

therefore, in the theory of Vandenbrouck et al. [2], the upper threshold between

linear instability and stability, H+, is determined by the balancing of the destabilizing

disjoining pressure and the stabilizing elastic response, regardless of the values of N

and K.

Furthermore, we note that the effective disjoining pressure term in our model

may be expressed as

Πeff
′(h)hx = Kf ′(h)hx −

N
h3

[
m2(h)− hm(h)m′(h)

]
hx

= Kf ′(h)hx −
Nm2(h)

h3
hx −

∇G(h)

h
,

(4.22)

where ∇G(h) is the gradient of the free surface anchoring energy. The derivation of

G(h) is nontrivial and we refer the reader to the the previous chapters for further

details. Since the second term on the right hand side of the last equation in (4.22) is

always stabilizing, instability arises from the gradients of the free surface anchoring

energy (the last term in (4.22)), present only for non-constant m(h) (i.e., only for

weak anchoring). Thus our model includes an alternative instability mechanism due

to elastic forces not captured by the model in Vandenbrouck et al. [2].

Excluding the h−3 term, the effective disjoining pressure in our model (4.8) is

qualitatively similar to the total disjoining pressure derived by Ziherl et al. [47]. This

term is, however, essential for the purpose of carrying out numerical simulations. In
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the work by Ziherl et al. [47], the structural component to the disjoining pressure was

derived by first considering the elastic energy due to fluctuations in the director field

from some initial state. A critical thickness was defined such that, below this threshold,

the initial director field state is uniform, and above, the director field is in the

HAN state. Therefore our model has similar underlying physical mechanisms driving

instability: 1) transition between a uniform director field for thin films to the HAN

state for thick films; 2) interplay between bulk elastic energy and surface anchoring

energy as the film thickness changes; and 3) inclusion of fluid/solid interaction forces.

However, there are also the following key differences: 1) the transition between

the planar state and the HAN state is continuous in our model, whereas it is

discontinuous in Ziherl et al. [47]; 2) Ziherl et al. [47] assumed that the anchoring

at the free surface was stronger than that at the substrate, therefore the uniform

director field state for thin films was homeotropic in their model, while it is planar in

ours; 3) to obtain similar linearly stable and unstable film thickness values with their

model would require setting β ≈ 0.2; and 4) only the total disjoining pressures are

similar between the two models, the individual components (elastic contribution and

disjoining pressure minus the h−3 term), are qualitatively different.

4.1.6 Numerical Scheme

In the following sections we will present a number of numerical simulations of our

model in order to study its behaviour in detail. To solve the governing equation

(4.10) numerically, we choose a spatial domain x ∈ [0, xL], and enforce the following

boundary conditions,

hx(0, t) = hxxx(0, t) = 0 and hx(xL, t) = hxxx(xL, t) = 0 , (4.23)

where the right boundary xL is chosen as appropriate for the initial condition

considered. The numerical method employed is a fully-implicit Crank-Nicolson type
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discretization scheme, with adaptive time stepping. A Newton iterative method is

implemented at each time step to deal with nonlinear terms. More details about the

implemented numerical scheme, as well as discussion of its convergence properties can

be found in Lin et al. [11], and Witelski and Bowen [44]. For all numerical simulations

∆x = b = 0.01; such a level of discretization is sufficient to resolve accurately the

length scales of interest. Unless stated otherwise, the parameters in governing equation

(4.10) are as given in § 4.1.3.

4.2 Films Exposed to Global Perturbations

In this section, we present simulation results for films of thickness H0 with

superimposed perturbations that are nonlocal in character (cover the whole domain)

and are intended to model infinitesimal random perturbations that are expected to

be present in physical experiments. We focus on investigating film thicknesses in

the linearly unstable regime, H0 ∈ (H−, H+) ≈ (0.015, 1.015), and the morphology of

dewetted films as a function ofH0. We start by discussing results for films perturbed by

a single wavelength, on a domain equal in size to the imposed perturbation wavelength,

and then proceed to consider random perturbations and large domains.

4.2.1 Simulations: Single Wavelength Perturbation

To begin, we validate the numerical scheme by comparing the growth rates extracted

from numerical simulations to the expression (4.18) derived from LSA. The initial

condition is of the form

h(x, t = 0;H0, q) = H0 [1 + 0.01 cos(qx)] , x ∈ [0, xL] , xL =
2π

q
, (4.24)

where H0 and q will be used to parameterize (4.24). From LSA, the evolution of the

above initial condition is approximately given by h(x, t) = H0[1 + 0.01eωt cos(qx)], i.e.,

at early times, the perturbation to the flat film grows exponentially. To extract the
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(a) H0 = 0.05 (b) H0 = 0.3 (c) H0 = 0.8

Figure 4.4 Comparison of the dispersion relationship (solid blue curves) (4.18), and
the growth rates extracted from numerical simulations (×) for H0 = 0.05, 0.3 and 0.6.
Other parameters are given in §4.1.3.

growth rate from a simulation, we first compute the difference between the numerical

solution at the center of the domain and the initial film thickness: specifically, we

compute E(t) = h(xL/2, t) − H0 ≈ 0.01H0e
ωt. Thus using a linear least squares

method to fit log(E(t)), the growth rate, ω, is given by the gradient of the line of

best fit. In Figure 4.4, the growth rates extracted from simulations are compared

to those given by the dispersion relation. We see that the numerical simulations and

LSA agree extremely well over the range of unstable film thicknesses and q-values

considered.

To proceed, we investigate in detail the long-time evolution of the free surface

height, in particular, how the resulting film morphologies depend on the initial film

thickness, H0. To simplify the parameter space, we fix q = qm (thus xL = λm) in (4.24)

for the remainder of this section. Figure 4.5 shows the free surface evolution of the

NLC film for several different values of the initial average film thickness, H0. Initially,

the perturbation grows, eventually forming large drops at the domain boundaries, as

expected from LSA, and an additional secondary drop at the center. Note that to

properly visualize smaller drops, we plot the free surface height on a log scale. On

timescales much longer than the breakup time, comparable to ω−1
m , different dynamics

emerge, however, depending on the film thickness H0. For thinner films, shown in

78



(a) H0 = 0.2, ω−1
m ≈ 34.22 (b) H0 = 0.3, ω−1

m ≈ 34.64

(c) H0 = 0.6, ω−1
m ≈ 19.21 (d) H0 = 0.95, ω−1

m ≈ 423.4

Figure 4.5 Free surface evolution for various initial average film thicknesses, H0.
The initial condition is given by (4.24) with xL = λm. Other parameters are given in
§4.1.3.
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Figure 4.6 A summary of the final states obtained in simulations and their
relationship to the effective disjoining pressure. The region enclosed by the dashed
red lines is unstable. The dashed green line, at H = HΠeff

, corresponds to the zero of
the effective disjoining pressure. These line patterns will be used consistently for all
remaining figures in this chapter.

Figure 4.5a, the secondary drop persists for a short time only; while for thicker films,

see Figures 4.5b and 4.5c, the secondary drops exist on a long time scale. For films near

the critical thickness of linear instability, see Figure 4.5d, we observe an additional set

of tertiary drops forming on either side of the secondary drop. These tertiary drops

form at the same time as the primary drops, and exist on a timescale that is longer

than that of dewetting, but shorter than that on which the secondary drop persists.

We note that the times considered here are not asymptotically long, as considered by

Glasner and Witelski [68].

Our simulations reveal that droplets may be classified according to their heights,

with distinct droplet sizes emerging at different times over the course of a simulation.

Figure 4.6 shows schematically our findings regarding film stability and existence of

secondary drops on time scales that are long compared to ω−1
m . The region enclosed

by the dashed red lines denotes the linearly unstable regime (determined by the zeros

of Πeff
′(h), see (4.19)), and the dashed green line corresponds to HΠeff

≈ 0.2624, the

zero of the effective disjoining pressure Πeff (4.8). The secondary drops are found
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only for film thicknesses with positive disjoining pressure, as we discuss further below

in § 4.2.2. To the best of our knowledge, this finding is novel, and is one of the

predictions of this chapter. It would be of interest to verify it experimentally, not

only for NLC films, but also for other films where positive disjoining pressures may

be found, for example, for polymer films where positive disjoining pressure is due to

fluid/substrate interaction; or for ferrofluid films in electric or magnetic fields [52].

4.2.2 Simulations: Multiple Random Perturbations

To test the connection between the formation of secondary drops and the sign of

the disjoining pressure, we carried out simulations in large domains with imposed

perturbations of random amplitudes. The initial condition is defined as

h(x, t = 0;H0, xL) = H0 [1 + εχ(x;xL)] , χ(x;xL) =
300∑
n=1

an cos

(
nx

xL

)
, x ∈ [0, xL],

(4.25)

where an ∈ [−1, 1] are uniformly distributed, ε is chosen such that |εχ(x;xL)| ≤ 0.01

(i.e. the total perturbation size is bounded by 0.01) , and H0 and xL will be used

to parameterize (4.25). Note that for each simulation shown, a new set of random

coefficients, an, are generated.

Figure 4.7 shows the free surface evolution for initial condition (4.25) with

xL = 10λm, and the same parameters and same range of initial thicknesses, H0, as in

Figure 4.5. The main observation is that a minimum film thickness is still required

for formation of long-lived secondary drops.

To discuss this finding in more detail, we also consider the drop sizes, defined by

the heights of drop centers, Hl. Figure 4.8 shows a histogram of the log of the drop

heights extracted from simulations corresponding to the same H0 values as used in

Figure 4.7, but carried out on a larger domain (xL = 50λm) to improve statistics. We

see that for H0 < HΠeff
, Figure 4.8a, the distribution is unimodal; and for H0 > HΠeff

,

Figures 4.8b-4.8d, the distribution is bimodal (recall that HΠeff
is the zero of the
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(a) H0 = 0.2, ω−1
m ≈ 34.22

(b) H0 = 0.3, ω−1
m ≈ 34.64

(c) H0 = 0.6, ω−1
m ≈ 19.21

(d) H0 = 0.95, ω−1
m ≈ 423.4

Figure 4.7 Free surface evolution for various initial average film thicknesses, H0.
The initial condition is given by (4.25) with xL = 10λm. Other parameters are given
in §4.1.3.
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effective disjoining pressure, Πeff(HΠeff
) = 0). In addition, the dashed black line

denotes the initial film thickness H0, and it may be seen that H0 provides an adequate

threshold value between (larger) primary drops and (smaller) secondary drops (if they

exist). The relevance of the dashed gold lines will be discussed shortly in § 4.2.3,

but for now, note that as H0 → H+ (see Figure 4.8d), the height of primary drops

converges to the rightmost gold line.

To further illustrate the generality of our finding that secondary drops occur

only if Πeff(H0) > 0, we next consider the mode(s) of the drop heights, H̄l, the value(s)

of which is/are given by the peak(s) of the distribution of Hl in the histograms in

Figure 4.8, for two values of β (the parameter defining the thickness where the bulk

elastic energy is comparable to surface anchoring energy, see (4.8)). Figure 4.9 plots

H̄l as a function of H0: part (a) corresponds to the parameters used in Figure 4.8

(β = 1) and part (b) shows data for simulations with β = 2. We clearly see that, in

both cases, the secondary droplets appear only for film heights such that Πeff(H0) > 0,

and that H0 (black dashed line) can be used to differentiate primary and secondary

drops.

4.2.3 Relation to Previous Work

Before closing this section we comment on the relation of our results to those previously

reported in the literature on instabilities of polymer films. To begin, we extract the

distances, Dl, between neighbouring primary drop centres (ignoring secondary drops

with Hl < H0), and normalise Dl by λm. Figure 4.10 shows the mean distance,

D̄l, for both the present model (Figure 4.10a) and for the Newtonian equivalent

(Figure 4.10c). For H0 not near the boundaries (H∓) of the linearly unstable regime

(for Newtonian films, H+ →∞ within the present model that ignores gravity), D̄l ≈

1.15λm, consistent with LSA. Near the boundaries, however, D̄l increases dramatically

and is no longer related to λm. For very thin films (near H−), the increase of D̄l is
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(a) H0 = 0.2 (b) H0 = 0.3

(c) H0 = 0.6 (d) H0 = 0.95

Figure 4.8 Histogram of initial individual drop heights extracted from the
corresponding simulations in Figure 4.7. We see that when Πeff(H0) > 0, panels
(b), (c), and (d), the distribution is bimodal (primary and secondary drops), whereas
for Πeff(H0) < 0, panel (a), the distribution is unimodal (primary drops only). The
black dashed line denotes the initial film thickness H0 and dashed gold lines denote
the range of metastable thicknesses, to be discussed in § 4.3.2.
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(a) (b)

Figure 4.9 Mode(s) of drop heights (peak(s) of histogram data in Figure 4.8) for
(a) β = 1, and (b) β = 2. When Πeff(H0) changes from negative to positive values
(green dashed line), the distribution of the height of drop centres transitions from
unimodal (primary drops only) to a bimodal distribution (primary and secondary
drops). Furthermore, the initial film thickness, H0 (black dashed line), proves an
adequate threshold between the heights of the primary and secondary drops. Note
that for β = 1, 2, HΠeff

= 0.2624, 0.5275, respectively.

due to coarsening occurring on a time scale similar to that of dewetting; therefore,

drops merge before the entire film completely dewets. For thicker films (near H+)

the increase in the distance between drop centres appears to be due to a different

mechanism that appears rather general, since it is operational for both NLC and

Newtonian films. Note that for the same range of thicknesses, Seemann et al. [53]

suggest that thermal (homogeneous) nucleation may be relevant; our results suggest

that even without thermal effects (not included in our model), similar behaviour may

emerge. The significance of Figure 4.10b is discussed in §4.3 later. More detailed

comparison with experimental observations requires three dimensional simulations

that will be discussed in the next chapter. For now, we note that the comparison with

dewetting experiments by Vandenbrouck et al. [2] is favorable: for a 42.8 nm thick NLC

film considered in this chapter, (H0 = 0.428), our model predicts λm = 39.2 µm which

is near the experimentally measured characteristic length scale of 30 µm. Furthermore,

the timescale for dewetting to occur in experiments is about 6-7 minutes, which is

close to simulations results, 15ω−1
m = 5.6 minutes with ω−1

m = 22.47 at H0 = 0.428.
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(a) (b)

(c)

Figure 4.10 (a) Mean spacing between primary drop (Hl > H0) centers, D̄l,
normalized by λm; and (b) (variance in Dl)/λm, for a randomly perturbed NLC film
of thickness H0. The dotted magenta lines denote thickness threshold values extracted
from simulations of a film exposed to localized perturbations. The derivation and
meaning of these lines will further discussed in § 4.3 and compared; for now, we note
the increase in the variance in the region bounded by Hn1 and Hn2 , and the region
bounded by Hn1 and H+. (c) Distance between drop centers (no secondary drops) for
a Newtonian film (N = 0). Note that here there is no upper bound between linear
instability and stability (i.e. H+ is not defined) and all films thicker than H− (dashed
red line) are unstable.
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Regarding the formation of secondary drops, we note that previous works [46,54]

do not report their existence. A possible reason for this may be the difference in

scales. To see this, consider the ratio ρ = H+/H−. For the problem considered

here, ρ = O(102), while in Thiele et al. [54], and Sharma and Verma [46], ρ = O(1).

Therefore, in the present problem it is possible to distinguish clearly features that

may be invisible for smaller ρ. While we are unaware of experimental evidence of

smaller secondary drops forming during the dewetting of thin films of NLC on a solid

substrate, drops of different sizes have been observed on liquid substrates, [30]. Similar

smaller drops are observed in experiments with metal films [69,70].

Next, we discuss the shape of the primary drops. Figure 4.7 shows that for

H0 → H+, the base of these drops widens. Such behavior is found consistently for

simulations with initial film thickness in the linearly unstable regime. In the example

shown in Figure 4.7d, the larger (primary) drops are approximately flat for ten or

more length units, then transition in height to the equilibrium film; therefore, ignoring

the secondary drops, Figure 4.8d may be interpreted as showing coexistence of two

flat films, resembling NLC films observed on silicon (or silicon oxide) substrates [30].

Similarly to our results, as H0 → H+, Sharma and Verma [46] observe the height

profiles transitioning from “hills and valleys” (e.g., Figure 4.7c) to “pancakes” (wide

drops), see Figure 4.7d.

Sharma and Verma [46] also show that an analytical result may be obtained for

the minimum (equilibrium film thickness) and the maximum (height of drop centers)

of steady state solutions. We will discuss an extension of these results to our setup

later in § 4.3.2; for the present purposes it is sufficient to mention the prediction that,

for sufficiently long times, the thickness value denoted by Hm3 in Figure 4.8 should

be reached. We observe such behavior only for H0 / Hm3 for the times considered.

Once again, it is quite possible that the details of the influence of the film thickness
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could not be captured in Sharma and Verma [46] due to insufficient separation of

scales.

4.3 Films Exposed to a Localized Perturbation

In this section, we focus on instabilities induced by a localized perturbation, with the

main motivation of comparing and contrasting results with those of the preceding

section where the film was perturbed globally. In physical experiments, localized

perturbations (also referred to as nucleation centers) may be due to impurities,

substrate defects, or some localized modification of the film structure. To facilitate the

comparison between the influence of local and global perturbations on film stability,

we still model such localized perturbations by perturbing the initial film thickness,

anticipating that this is sufficient to gain basic insight into the influence of more

complex perturbation types, listed above, that may occur in physical experiments.

We use the following initial condition

h(x, t = 0) = H0

[
1− d exp

(
−
[ x

0.2W

]2
)]

, (4.26)

i.e., a film of thickness H0 with a localized perturbation at the left boundary, x = 0,

where a line of symmetry is assumed. The parameters W and d control the width

and depth of the perturbation, respectively.

The section below is separated into two parts: First, in § 4.3.1, we consider the

linearly unstable regime. Here, we describe first the computational results and then

consider an analytical approach, based on marginal stability analysis. This approach

allows us to gain better insight into instability development, in particular regarding

emerging wavelengths. In the second part, § 4.3.2, we discuss the results relevant to

linearly stable films.
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4.3.1 Linearly Unstable Regime

Here we fix d = 0.1 and W = λm in (4.26). The domain length is initially set to 5λm,

and the right boundary is dynamically expanded as a simulation progresses. Our

simulations should therefore be representative of a localized perturbation imposed on

a film of infinite extent.

Computational Results Figure 4.11 shows simulation results obtained with initial

condition (4.26) and using the same parameter sets as in Figures 4.5 and 4.7, as well

as an additional thickness value, H0 = 0.05. The main observation is that the

localized perturbation propagates to the right and successively touches down forming

drops; however, comparing these results to those obtained using random infinitesimal

perturbations we note two main differences: first, no secondary drops are seen for

localized perturbations; and second, the distance between drops is close to λm only for

some values of H0; for example, in Figure 4.11 the agreement with LSA is found only

for H0 = 0.05 and H0 = 0.6, panels (a) and (d), respectively. Note that while in panel

(c) two different drop heights are observed (see x ≈ 2 and x ≈ 14), the magnitude of

the drop heights is similar; therefore, we do not classify the smaller drops as secondary

drops as was done in the previous section. The emergence of different drop heights

with similar magnitude was observed by others [71] and will be further discussed in

§ 4.3.1.

To investigate further the dewetting process we calculate the mean distance

between drop centers, D̄l. Figure 4.12a shows the results; to improve statistics, the

simulations are carried out in large domains expanded in time to 320λm. We observe

the existence of four different regimes characterized by the magnitude of D̄l/λm,

separated by three distinct film heights (marked by the dotted magenta lines showing

where D̄l/λm ≈ 1.1, to characterize departure from LSA predictions) and denoted

Hn1 , Hn2 , and Hn3 . We see that in the regions marked R I and R III, the distance
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(a) H0 = 0.05, ω−1
m ≈ 1.681

(b) H0 = 0.2, ω−1
m ≈ 34.22

(c) H0 = 0.3, ω−1
m ≈ 34.64

(d) H0 = 0.6, ω−1
m ≈ 19.21

(e) H0 = 0.95, ω−1
m ≈ 423.4

Figure 4.11 The free surface evolution for various initial average film thicknesses,
H0. The initial condition is given by (4.26). Note that the film profiles shown in (b)
and (e) form drops, but for times longer than shown here. The domain size shown in
each panel is 10λm; the simulation domains extend beyond the right boundary. The
other parameters are given in §4.1.3.
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(a) (b)

(c)

Figure 4.12 (a) The mean distance between drop centers, D̄l, normalized by λm, at
t = 350ω−1

m ; (b) The corresponding number of drops; and (c) The mean height of drop
centers, H̄l, normalized by H0. The magenta dotted lines correspond to the values of
H0 for which D̄l/λm crosses the value 1.1. The other parameters are given in §4.1.3.
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between drop centers is well approximated by λm; however, there exist regions R II

and R IV, where there is no correlation between D̄l and λm.

Regimes for which D̄l 6≈ λm have been reported before [54, 55] for different thin

film models; however, the main findings differ from those presented here. Thiele

et al. [54], and Diez and Kondic [55] both identify a D̄l 6≈ λm regime near the

upper threshold H+ between linear instability and stability (see the R IV regime in

Figure 4.12a). The work by Thiele et al. [54] furthermore discusses a corresponding

regime close to H−; in the present formulation, this is a subset of the R I region very

close to H− where, similarly to the results for a film exposed to random perturbations

(see Figure 4.10a) the difference between D̄l and λm is due to coarsening occurring on

the considered time scale. Thiele et al. [54] describe this transition to the D̄l 6≈ λm

regime as a super/subcritical transition (spinodal to nucleation-dominated regime).

A new finding of this chapter is the existence of multiple super/subcritical transitions

(our R II and R IV regimes).

Before exploring the instability development due to a local perturbation more

rigorously, we first note a connection to our previous results for randomly perturbed

films. Recalling the results for the mean distance between drop centres, D̄l, for

films exposed to random perturbations (see Figure 4.10a), while D̄l/λm ≈ 1.15

mostly everywhere, there appears to be small peak in D̄l/λm in the thickness range

corresponding to the R II regime. To highlight this connection further, in Figure 4.10b

the variance in Dl/λm is plotted as a function of the initial film thickness H0. We see

that the variance increases in the R II and R IV regime, suggesting that there is a

connection between the results for randomly and locally perturbed films. A possible

explanation of this connection is that on large domains, the film does not dewet

everywhere at the same time even if exposed to random perturbations; therefore,

at the locations where the film dewets initially, the solution may appear as due to

a localised perturbation, with retracting fronts modifying the distance between the
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drops that form eventually. The influence of these fronts may result in a large variance,

explaining the results captured by Figures 4.10a and 4.10b.

We also note a possible connection to the theoretical and experimental results

presented by Diez and Kondic [55]; Seemann et al. [53]; and Thiele et al. [54]. Seemann

et al. [53] suggest that as H → H+ (or H−), where by definition Πeff
′(H+) = 0 (Πeff

′(H)

corresponds to φ′′(h) in the referenced work), the barrier to nucleation vanishes, thus

nucleation by thermal activation is possible. While our model does not include thermal

effects, our results are similar to those observed by Seemann et al. [53]. Therefore,

the R IV regime in our results, and the nucleation reported by Diez and Kondic [55],

and Thiele et al. [54] (again no thermal effects considered), may be analogous to the

thermal nucleation regime.

We note that under appropriate scaling, solutions of the form h(x, t) = H0[1 +

εh1(x, t) + ε2h2(x, t) + O(ε3)], where 0 < ε� 1, are to leading order independent of

the model parameters. The scalings are as follows:

h = H0Ψ , x =

√
C

Πeff
′(H0)

ζ , and t =
C

Q(H0) [Πeff
′(H0)]

2 τ , (4.27)

where for generality we keep the general mobility function, Q(h). The rescaled leading

order equation is

h1,τ + h1,ζζζζ + h1,ζζ = 0, (4.28)

and the mode of maximum growth and its corresponding growth rate are q̌m =

1/
√

2, ω̌m = 1/4, respectively (here the check notation denotes the values obtained

from the rescaled model). We see that as long as h1(x, t) = O(1) (i.e., as long as linear

theory is applicable), the evolution for different choices of H0 differs only by spatial

and temporal scales. Recall that the initial conditions (4.24), (4.25), and (4.26) were

chosen to scale with λm and H0, so the corresponding initial conditions in the rescaled
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Figure 4.13 The inner square bracketed term in (4.29).

variables are identical. The governing equation for h2(x, t) is

h2,τ+h2,ζζζζ+h2,ζζ = −
[
h1
Q′(H0)

Q(H0)

(
h1,ζζζ +

[
1 +

Q(H0)Πeff
′′(H0)

Q′(H0)Πeff
′(H0)

]
h1,ζ

)]
ζ

, (4.29)

for general Q(h), and for Q(h) = hn,

h2,τ + h2,ζζζζ + h2,ζζ = −
[
h1

H0

(
nh1,ζζζ +

[
n+

H0Πeff
′′(H0)

Πeff
′(H0)

]
h1,ζ

)]
ζ

. (4.30)

For any unstable film thickness H0, the second order equations only differ by the

forcing term on the right hand side, which is independent of the inverse Capillary

number, C, suggesting that the effective disjoining pressure determines the transition

between different dewetting morphologies. Figure 4.13 plots the term enclosed by

inner square brackets in (4.30) for n = 3 and other parameters as given in § 4.1.3.

Note that this term is an increasing function of H0 in most of the R II regime (between

Hn1 and Hn2), in contrast to its behavior elsewhere. While we do not yet have a clear

explanation of how this observation is related to the film breakup properties seen in

the R II regime, we expect that it may be useful in future analysis of different stability

regimes.
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Marginal Stability Criterion: Outline Marginal stability criterion (MSC)

theory analyses front propagation into an unstable state using Fourier transforms and

asymptotic theory. The analysis in some cases allows one to rationalize the manner

in which an unstable front (resulting from the presence of a localized perturbation)

propagates into an unstable flat film. In particular, the outcome of this approach

is the front speed, which can then be correlated with the time of breakup at which

consecutive drops form, and their distance. To begin, we give a brief overview of

MSC theory and its main results in the present context; the reader is referred to the

comprehensive review by van Saarloos [72] for further details. Then in the following

section we discuss the correlation of MSC predictions with our computational results.

We assume that the solution of the rescaled leading order governing equation

(4.28) has a spatial Fourier series representation, i.e.

h1(ζ, τ) =

∫ ∞
−∞

h̆1(q̌, τ)eq̌ζi dq̌ . (4.31)

Furthermore, with the ansatz

h̆1(q̌, τ) = h̃1(q̌)e−ω̌(q̌)τi , (4.32)

substituting (4.31) into (4.28) yields∫ ∞
−∞

[
−iω̌(q̌) + q̌4 − q̌2

]
h̃1(q̌)eq̌ζi−ω̌(q̌)τi dq̌ = 0 , (4.33)

where h̃1(q̌) is the Fourier transform of the initial condition (assumed analytic).

Satisfying (4.28) for arbitrary h̃1(q̌) gives the dispersion relation,

ω̌(q̌) = −i(q̌4 − q̌2) . (4.34)

In the reference frame traveling with velocity V̌ =
(√
C/Q(H0) [Πeff

′(H0)]
3
2

)
V , the

solution can be expressed as

h1(s, τ) =

∫ ∞
−∞

h̃1(q̌)eiq̌se−i[ω̌(q̌)−V̌ q̌]τ dq̌ , (4.35)
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where s = ζ − V̌ τ . If the above integral converges, h1(s, τ) satisfies the rescaled

governing equation (4.28), and V̌ is defined as the “linear spreading speed” [72].

Following Saarloos [72], we now consider the limit τ →∞ and use a saddle-point

approximation (steepest descent method) to approximate the integral in (4.35). The

saddle-point q̌∗ satisfies

V̌ =
dω̌(q̌)

dq̌

∣∣∣∣
q̌∗
. (4.36)

To eliminate exponent terms of the integrand in (4.35) that lead to decay or growth

in τ , we set

V̌ =
ω̌i(q̌)

q̌i
, (4.37)

where V̌ ∈ R (by definition), the i subscript denotes the imaginary part of variables,

and an r subscript will be used to denote the real part. Recall ω̌(q̌) is a polynomial

in q̌ and thus differentiable, so that (4.36) may be expressed as

V̌ = Re

[
dω̌

dq̌

∣∣∣∣
q̌∗

]
=

1

2

[
∂ω̌r
∂q̌r

+
∂ω̌i
∂q̌i

]∣∣∣∣
q̌∗
, (4.38)

and

Im

[
dω̌

dq̌

∣∣∣∣
q̌∗

]
=

1

2

[
∂ω̌i
∂q̌r
− ∂ω̌r
∂q̌i

]∣∣∣∣
q̌∗

= 0 . (4.39)

Furthermore, by definition, ω̌r and ω̌i satisfy the Cauchy-Riemann equations,

simplifying (4.38) and (4.39) to

V̌ (q̌∗) =
∂ω̌r
∂q̌r

∣∣∣∣
q̌∗
, and Im

[
dω̌

dq̌

∣∣∣∣
q̌∗

]
=
∂ω̌i
∂q̌r

∣∣∣∣
q̌∗

= 0 , (4.40)

respectively. Satisfying the second condition in (4.40) gives an expression for q̌r as a

function of q̌i and taking the derivative of (4.37) with respect to q̌i yields

dV̌

dq̌i
=

1

q̌i

[
∂ω̌r
∂q̌r

+
dq̌i
dq̌r

∂ω̌r
∂q̌i
− ω̌i(q̌)

q̌i

]
. (4.41)
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Evaluating the above equation at the saddle point, and substituting (4.37) and (4.40),

we find

dV̌

dq̌i

∣∣∣∣
q̌∗

= 0 , (4.42)

and thus q̌∗i is a critical point of V̌ . We note that this critical point is a minimum

of V̌ ; however this information is not required to determine V̌ itself [72]. Equations

(4.36), (4.40), and (4.42) provide the necessary conditions to determine q̌∗r , q̌
∗
i , and V̌ .

Therefore, with the rescaled dispersion relationship defined by (4.34),

q̌∗ =

√
3 +
√

7

4
+

√
1

6

[√
7− 1

]
i ≈ 0.791 + 0.262i , (4.43)

and

V̌ =
1

9

√
1 +
√

7
(

5 +
√

7
)
≈ 1.622 ⇒ V ≈ 1.622

Q(H0) [Πeff
′(H0)]

3
2

√
C

, (4.44)

where the second equation in (4.44) is given in the unscaled variables. We note in

passing that MSC also provides the condition for when a front propagating to the right

will spread with the linear spreading speed asymptotically. If the initial condition

decays faster than e−q̌
∗ζ as ζ → ∞, then the instability will spread with velocity

V given by (4.44), and the solution is referred to as a pulled front. For an initial

condition that does not decay fast enough, the instability will propagate into the

unstable state with a speed greater than V . The solution is then referred to as a

pushed front and deriving an expression for the speed at which it spreads is nontrivial.

For the present problem, the initial condition (4.26) is a Gaussian perturbation, thus

decays sufficiently fast and a pulled front is expected.

Regarding the time scale for successive drop formation, we note that if a localised

perturbation leads to a coherent pattern behind the front, it is periodic in time, i.e.,

H(s) = H(ζ − V̌ τ) = H(ζ + λ̌ − V̌ τ) = H(ζ − V̌ (τ + ťMSC)), where ťMSC is the

time between successive drops detaching from behind the front at distances λ̌ apart.
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Satisfying H(ζ + λ̌− V̌ τ) = H(ζ − V̌ (τ + ťMSC)) yields

ťMSC =
λ̌

V̌
=

2π

q̌V̌
≈ 5.478 , or tMSC = 5.478

C
Q(H0) [Πeff

′(H0)]
2 , (4.45)

where, for future reference, q̌ = q̌m was used in the first expression to obtain the second

one. In the next section we proceed with correlating the presented MSC results with

the computational ones.

The speed of the propagating front, (4.44), may alternatively be obtained by

using pinch point analysis, with a key difference of how the complex integral path is

chosen in the Fourier representation (4.35) (see the papers by Huerre et al. [73, 74]

for further details on pinch point analysis). Our results in the previous chapters for

flow of a thin film down an inclined plane relied on the results of such analysis to

derive the velocity of wave packet boundaries (V in the MSC analysis). In that work,

analytical and numerical simulations confirmed the existence of three stability regimes

behind the front traveling down the inclined plane: stable, convectively unstable, and

absolutely unstable. These same instabilities were discussed by Saarloos [72] within a

different physical context. The two unstable regimes were further subdivided into two

cases: coherent pattern formation (periodic array of drops) and incoherent pattern

formation; however, a general analytical theory for predicting these cases is not yet

available. We will discuss our computational results within this context briefly in the

next section.

Having explicit results for the time scales on which localized and random

perturbations lead to dewetting and drop formation, given by tMSC and ω−1
m ,

respectively, allows one to discuss which instability is relevant and actually destabilizes

a film. Considering the ratio of these time scales, however, shows it to be independent

of the film thickness. This finding at first sight appears at odds with the commonly

accepted paradigm that for thin films spinodal instability is relevant, while for thick

ones nucleation is dominant [53]. One explanation is that the nucleation instability
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may be operational for thin films as well (assuming that nucleating centers are

available), but this is not obvious due to the same wavelengths resulting from

both localized and global perturbations (for example, in the R III regime, compare

Figures 4.10a and 4.12a). However, more careful discussion of this important issue

requires simulations in 3D, and we therefore defer to the next chapter.

Marginal Stability Criterion: Correlation with computational results We

now return to simulations of our model, and consider them in light of the MSC

predictions. Using the analytical result (4.44) for the linear spreading speed, V ,

of the propagating perturbation, simulation results may be plotted in the reference

frame moving with this speed. Furthermore, to emphasize the difference between the

dewetting dynamics for different regimes, the traveling wave variable, s = x− V t, is

scaled by λm.

Figure 4.14 shows typical results in R II and R III regimes (the results in R I are

similar to those in R III). First, we see that the instabilities caused by the localized

perturbation are essentially bounded by s = 0, demonstrating that MSC correctly

predicts the speed with which instabilities propagate into the unstable flat region.

Furthermore, since the front speed is given by MSC, we are in the pulled front case

as expected. Second, the differences between the dewetting dynamics in the various

regimes are easily observed, and we discuss these differences next. Movies (Movie

1 - 4 in the online supplementary material of the published paper [26] or arXiv 1) are

also available to better illustrate the instability evolution.

In the R III regime, see Figure 4.14b and Movie 1, in the reference frame traveling

with MSC speed V , the solution is a leftward-propagating traveling wave, with a

stationary envelope (in the traveling reference frame). Furthermore, as the traveling

1 https://arxiv.org/abs/1704.03919, accessed April 25, 2018

99



(a) (b)

Figure 4.14 Typical evolution of the film thickness in the reference frame traveling
with the linear spreading speed V in (a) R II regime and (b) R III regime. Note that
the x-axis has been scaled by λm to highlight departure from the LSA predictions in
R II regime.

wave propagates to the left, its amplitude (close to the front) grows monotonically

and dewets the film periodically with wavelength λm, therefore leading to coherent

pattern formation.

In the R II regime, however, the instability evolution is more complicated. Here,

the amplitude of the waves connecting the capillary ridge to the flat film (see e.g.

s/λm ∈ [−2, 1] in Figure 4.14a) does not grow monotonically as it travels to the left,

but oscillates until some critical amplitude is reached. In this regime (and similarly

in R IV, not discussed for brevity), both coherent and incoherent pattern formation is

possible; see Movies 2 -4 for examples that illustrate either coherent pattern formation

(Movie 2); a bimodal pattern where drops of two different sizes are produced (Movie

3); or a disordered state, where the evolution resembles the R III regime sporadically

interrupted by a different type of dynamics (Movie 4). Clearly, more work is needed

to understand the details of pattern formation in R II (and R IV) regimes; we leave

this for the future and for now focus on the main features of the results, without

delving further into various modes of breakup in the R II regime.
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(a) (b)

Figure 4.15 The mean time between drop formation extracted from simulations,
normalized by (4.45) with (a) λ = λm and (b) λ = D̄l, i.e. the mean distance between
drop centers obtained in simulations.

To compare the film breakup times predicted by MSC (4.45) to the results

of simulations, we extract the mean time between formation of successive drops.

The results are plotted in Figure 4.15 as a function of the initial film thickness, H0,

normalized by (4.45) with (a) λ = λm and (b) λ = D̄l (the mean distance between drop

centers extracted from simulations). Similarly to the results given in Figure 4.12a,

Figure 4.15a shows that with λ = λm the MSC prediction (4.45) gives good agreement

with the numerics in regions R I and R III; however, there is no agreement in R

II and R IV. Substituting instead the mean distance between drop centers λ = D̄l

into (4.45), Figure 4.15b demonstrates that MSC gives the correct result for all film

thicknesses not near the threshold values between instability and stability (dashed

red lines). This result suggests that the MSC approach provides the correct result

for breakup times once the instability wavelength is selected; however MSC does not

provide information about this selected wavelength in the R II regime.

We note that, while a nonlinear variant of MSC has been developed, it applies

only to pushed fronts [72] that are not relevant here. An alternative theory mentioned

(but not thoroughly analyzed) by Saarloos [72] is the Eckhaus or Benjamin-Feir

resonance, based upon interaction between unstable waves. In the next chapter, we
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analyze whether such interaction could be responsible for the observed instability in

R II and R IV regimes.

To summarize: for linearly unstable films subjected to a localized perturbation,

we have extracted the mean spacing between drop centers and the mean formation

times of successive drops, as a function of the initial film thickness, H0. It has been

shown that there exists a region, R II in Figures 4.12a and 4.15a, such that the results

in the nonlinear evolution regime differ significantly from the predictions of LSA. Our

understanding is that the effects leading to the existence of regimes R II and R IV

are fully nonlinear.

4.3.2 Linearly Stable Regime

We now switch focus to locally perturbed films with initial film thicknesses in the

linearly stable regime, in particular for H0 > H+. First, we investigate the behavior of

linearly stable films exposed to a finite amplitude disturbance (metastability). Then,

once dewetting is induced, we investigate the speed at which a localized perturbation

propagates into the stable film region.

Metastability: Analytical findings We first adapt the results of Thiele et al. [54],

and Diez and Kondic [55], and derive the metastable regime. Note that this regime is

referred to as the heterogeneous nucleation regime by Seemann et al. [53]; however,

in contrast to the results to be presented here, Seemann et al. [53] provide no upper

bound to this regime.

A linearly stable film is metastable if there exists a thinner, linearly stable, film

with lower energy, hence, given a perturbation of sufficient size, the perturbation can

push the thicker film into the energetically preferable thinner film state (dewetting).

To derive an expression for the energy per unit length of a film, we analyze steady

state solutions to the governing equation (4.10) that connect two flat films of different

thicknesses.
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To begin, we set ht(x, t) = 0 in (4.10), integrate with respect to x, and divide

by Q(h) = h3 to yield

Chxxx + Πeff
′(h)hx = d0 , (4.46)

where d0 is the constant of integration. Note that the metastability analysis from

this point on is independent of the form of the mobility function Q(h). Similarly to

Sharma and Verma [46], we use the far-field conditions

h(x→ −∞, t) = Hmin , h(x→∞, t) = Hmax , Hmin < Hmax , (4.47)

and

hx(x, t) = hxx(x, t) = hxxx(x, t) = 0 , x→ ±∞ , (4.48)

where Hmin and Hmax are constants to be determined. Applying boundary conditions

(4.48) to (4.46), we find d0 = 0. Equation (4.46) is then integrated again in x to

obtain

Chxx + Πeff(h) = Π0 , (4.49)

where Π0 is the constant of integration. To satisfy (4.47) and (4.48), we require Πeff(h)

to have the same value, Π0, for at least two different film thicknesses; i.e. ignoring

the transition region between the flat films of thickness Hmin and Hmax, the effective

disjoining pressure is constant across the film. We may then parameterize steady state

solutions, satisfying boundary conditions (4.47) and (4.48), by Π0.

Recalling Figure 4.6, there are, at most, three different film thicknesses with

the same disjoining pressure, hence there are at most three roots to Πeff(h) = Π0,

which we denote as Hm1 , Hm2 , and Hm3 , where Hm1 < Hm2 < Hm3 . Furthermore, we

define four regimes: MI (no roots of Πeff(h) = Π0), MII (two roots), MIII (three roots),

and MIV (one root), see Figure 4.16. Note that Hm1 and Hm3 correspond to the left

and right solid blue curves, respectively in Figure 4.16 (thus represent linearly stable
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Figure 4.16 The solution space of (4.49) subject to conditions (4.47) and (4.48).
Solid blue curves denote linearly stable films, and the dotted blue curve denotes
linearly unstable ones.

solutions), and Hm2 is denoted by the central dotted blue curve (a linearly unstable

solution).

A solution to the steady-state boundary value problem specified by (4.47)–(4.49)

requires at least two unique roots; therefore there are no possible solutions in MI

or MIV, and solutions only exist for Π0 ∈ (Πmin,Πmax), where Πmin and Πmax are

the local minimum and local maximum of Πeff(h) respectively, the values of which

are given in Figure 4.16 (for the chosen parameter values). In MII, there are two

roots of (4.47)–(4.49), thus one solution joining these states, with Hmin = Hm1 and

Hmax = Hm2 i.e. the solution in MII connects a thin linearly stable film to a thicker

unstable one.

In MIII, there are three roots; thus we can choose two different Hmin and Hmax,

see Figure 4.17. Since Hm2 is a linearly unstable thickness, the corresponding steady

state solutions are also unstable. Ignoring the unstable solution branch, we see that

there is a one parameter family of stable steady solutions in MIII; thus we set

Π0 ∈ (0,Πmax) , Hmin = Hm1 , and Hmax = Hm3 . (4.50)

Integrating (4.49) with respect to h yields

C
2

(hx)
2 + e(h) = e0 , e(h) = r(h) + Π0h , (4.51)
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where e(h) is the energy per unit length of the film due to the effective disjoining

pressure. Here, the constant of integration e0 may be interpreted as the total energy

due to surface tension and effective disjoining pressure, and

r(h) = −
∫ h

Πeff(s) ds =
Kb2

2h

[
b

h
− 2

]
−N

[
m2(h)

2h
−
∫ h m(s)m′(s)

s
ds

]
. (4.52)

Recalling the free energy functional (4.12), we note that F (h) = −[C(1+(hx)
2/2]−r(h).

Setting e0 = e(Hm1) we plot e(h)− e0 in Figure 4.17 for various Π0, and observe that

only for Π0 > 0 are there two local minima for e(h) − e(Hm1), see Figure 4.17b.

In addition, we note that the film thicknesses at the local minima (Hm1 and Hm3)

correspond to linearly stable films, and the film thickness at the local maximum (Hm2)

corresponds to a linearly unstable film.

Following Thiele et al. [54], we seek a value of Π0 such that the two local minima

of (4.52) have the same energy. Specifically, we seek a value of Π0 that satisfies

∂e (Hmin)

∂h
=
∂e (Hmax)

∂h
= 0 , (4.53)

and

e (Hmin) = e (Hmax) . (4.54)

Note that

∂e

∂h
= 0 ⇔ Πeff(h) = Π0 , (4.55)

therefore by inspection, (4.53) and (4.54) are equivalent to satisfying the far-field

conditions, (4.47) and (4.48), in (4.49) and (4.51), respectively.

We now apply these results to the specific problem in question. For the

parameters chosen in § 4.1.3, Π0 = Π∗0 ≈ 0.07273 satisfies (4.53) and (4.54), and

H∗min = H∗m1
≈ 0.99799×10−2 , H∗m2

≈ 0.39024 , H∗max = H∗m3
≈ 3.05160 , (4.56)
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where ‘*’ superscripts denote the values obtained by using Π∗0 in Equation (4.49). The

metastability regime is thus given by

H0 ∈ (H∗m1
, H−) ∪ (H+, H

∗
m3

) . (4.57)

The region (H∗m1
, H−) corresponds to a narrow range of film thicknesses close to the

equilibrium thickness, which we do not consider further. Films thicker than H∗m3

are absolutely stable, thus no perturbations may induce dewetting. The identified

metastable region (H+, H
∗
m3

) is considered by numerical simulations in the next

section.

Before closing we note the following: (1) In Seemann et al. [53], the metastable

regime (heterogeneous nucleation in that work) is defined as H0 > H+. Extending

our presented metastability analysis to the disjoining pressure models of Seemann et

al. [53], we find that for all positive disjoining pressures values (Π0 in (4.51)), condition

(4.54) is never satisfied; specifically, we find that for all Π0 > 0, e (Hmin) < e (Hmax),

hence there is no upper bound for the metastable regime, consistent with the findings

of Seemann et al. [53]. Therefore, the existence of absolutely stable films is one of

the distinguishing features of the effective disjoining pressure considered here. (2)

Satisfying (4.53) implies that Hmin and Hmax are critical points of e(h); however, to

satisfy condition (4.53) with Hmin 6= Hmax, there must exist at least three distinct

critical points, i.e., at least three different thicknesses must be characterized by the

same disjoining pressure. In our model, this corresponds to positive disjoining pressure.

This finding is in agreement with other works [3, 53, 75], where it is stated that a

disjoining pressure of the form shown in Figure 4.1b will lead to metastability, a

coexistence of films of different thicknesses. (3) In the work of Sharma and Verma [46],

the solution derived in this section is referred to as a pancake solution. We will refer

to this solution as a front solution since (4.47) and (4.48) are analogous to the far-field

conditions used for a traveling front solution in the previous chapters. Note that the
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(a) Π0 < 0 (b) Π0 > 0

Figure 4.17 e
(
h
)
−
(
Hm1

)
where e(h) is defined in (4.51) for an initial film profile

with (a) negative effective disjoining pressure, Π0 < 0; and (b) positive effective
disjoining pressure, Π0 > 0. Arrows denote the direction of increasing Π0.

same nomenclature is used by Thiele et al. [54]; the derivation of the front solution in

that work is slightly different to that presented here, however, the two methods yield

the same result.

Metastability: Numerical Simulations In this section, we investigate numer-

ically the evolution of localized perturbations in the metastable regime, H0 ∈

(H+, H
∗
m3

) ≈ (1.015, 3.0516). The initial condition is specified by (4.26), which

is parameterized by the initial film height, H0. To explore the influence of the

perturbation properties, we vary W and d, respectively the width and depth of

the perturbation. In particular, we discuss the quantity dmin(H0;W ), the minimum

perturbation amplitude required to induce dewetting. Since we are only interested

if breakup occurs for a particular set of d and W , it is not necessary to dynamically

expand the right boundary in the x domain; therefore, to reduce simulation time, we

fix x ∈ [0, 200].

Figure 4.18 plots dmin(H0;W ) as a function of H0 for various values of W .

In the region above dmin(H0;W ) (solid curves) and below the dotted black line

(d = 1), the initial condition given by (4.26) induces dewetting. We see that

for all values of W considered, dmin(H0;W ) → 0 as H0 → H+; i.e. as the film
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Figure 4.18 dmin(H0;W ) as a function of H0 for various values of W . Black arrow
denotes direction of increasing W .

thickness approaches the threshold H+ between linear stability and instability, an

infinitesimally small perturbation (d� 1) will induce dewetting, as expected. More

importantly, Figure 4.18 demonstrates that as H0 → Hm3 , dmin(H0;W ) → 1; i.e.

as the film thickness H0 approaches the threshold Hm3 between metastability and

absolute stability, the initial condition (4.26) has to essentially rupture the film (d ≈ 1)

for dewetting to be observed. This demonstrates that the analysis in § 4.3.2 provides

a correct upper bound for the metastable regime. Note that dmin(Hm3 ;W ) is a

monotonically decreasing function of the perturbation width W . This is expected,

since the transition region between a film of thickness H0 and the minimum of the

initial condition (4.26) increases as W increases, thus the transition region (which

was assumed to be small and ignored in § 4.3.2) is no longer negligible.

We note that the presented results suggest that our model may transition

between the regimes called thermal and heterogenous nucleation, see [53]. AsH0 → H+

more and more holes are expected as the solution evolves, which may be a result of

relatively small perturbations requiring more time to be experimentally measurable

compared to the larger perturbations. In contrast, for H0 significantly larger than

H+, only perturbations above the threshold value dmin will form holes, effectively

enforcing an upper bound on the time window within which hole nucleation is observed.
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(a) (b)

Figure 4.19 (a) Front position and (b) front speed as a function of time extracted
for various initial film thicknesses, H0, within the metastable regime. Black arrows
denote direction of increasing H0.

Therefore, as H0 → H+ from above, dmin → 0 and the time window (∝ d−1
min) in which

holes form transitions from a sharp window, to a infinitely long time window, within

which more and more holes can form.

We now briefly describe the film evolution once dewetting is induced. Similarly

to our simulations in § 4.3.1, the right boundary in the x domain is dynamically

expanded; we set the initial domain to [0, 10]. Simulations show that when dewetting

occurs, a retracting front forms, and propagates without additional dewetting events

into the flat film region. Similarly to Münch [76], we extract from our simulation

results the front position, xf(t), and its speed, vf(t). Figure 4.19a shows that at

long times, xf(t) ∝ t1/2. Not surprisingly, this power law is different from the t2/3,

power law found by Münch [76] for a thin film model in the slip dominated regime.

Figure 4.19b shows that at long times, vf (t) ∝ t−1/2, whereas in the linearly unstable

regime, simulations and analysis show that propagation speed is a constant, see § 4.3.1.
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4.4 Conclusions

While the chapter has been motivated by NLC films, we have presented results that

are relevant to a much wider class of problems involving thin films on substrates, such

that the fluid-solid interaction involves a relatively complex form of effective disjoining

pressure (sketched in Figure 4.20). Such a form has been derived in this chapter as

an effective disjoining pressure that includes an elastic contribution for NLC films;

however similar functional forms have been extensively considered in the literature

focusing on polymer films on Si/SiO2 substrates [4] and the references therein.

In the NLC context, novel elements include dynamic relaxation of the free

surface polar anchoring, θF , as a function of film thickness h(x, t). In addition, we

have highlighted differences and similarities between the presented model, and others

discussed in the literature [1, 30,31,47]. Furthermore, our model exhibits a range of

film thickness such that a film is linearly unstable, which is analogous to the so-called

“forbidden range” discussed in the literature [30].

More generally, an extensive statistical analysis of our computational results,

combined with novel analytical results based on the Marginal Stability Criterion, has

allowed us to identify a variety of instability mechanisms. In addition to the linearly

unstable regime, where infinitesimally small perturbations induce dewetting, there

are regimes that require perturbations of sufficient magnitude to induce dewetting

(metastability), and regimes that are stable with respect to perturbations of any size

(absolute stability). We have also identified the regimes that are linearly unstable,

but susceptible to nucleation dominated dynamics. While we do not consider thermal

effects, we find that for some film thicknesses (close to the stability boundaries) our

results are similar to other results attributed to a thermal nucleation mechanism,

suggesting that consideration of thermal effects may not in fact be needed to explain

the dynamics. Also, we have formulated analytical procedures for identifying most of
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the stability regimes found computationally. In particular, the application of marginal

stability analysis has allowed us to reach new insight.

Figure 4.20 summarizes the various stability regimes uncovered, and correlates

them with the form of effective disjoining pressure. The following regions are identified:

(i) Linearly unstable regime, H0 ∈ (H−, H+) ≈ (1.5b, β), where b is the equilibrium

thickness and β is the film thickness at which elastic force are relevant (see

§ 4.1.3 and § 4.1.4).

(ii) Linearly stable regime, H0 /∈ (H−, H+).

(iii) Linearly unstable regime with negative disjoining pressure, H0 ∈ (H−, HΠeff
),

where HΠeff
is the thickness marking the sign change of Πeff (Πeff(HΠeff

) = 0).

If randomly perturbed, the film will dewet and form primary drops only (see

§ 4.2).

(iv) Linearly unstable regime with positive disjoining pressure, H0 ∈ (HΠeff
, H+). If

randomly perturbed, the film will dewet and form primary and secondary drops.

(v) Absolutely stable regime, H0 < H∗m1
or H0 > H∗m3

. The film is stable with

respect to any perturbation (see § 4.3.2).

(vi) Metastable regime, H0 ∈ (H∗m1
, H−) ∪ (H+, H

∗
m3

). A linearly stable film is

unstable with respect to finite size perturbations.

(vii) Spinodal regime, H0 ∈ (H−, Hn1)∪ (Hn2 , Hn3) ⊂ (H−, H+). A linearly unstable

film perturbed by either localized or random perturbations will result in the

mean distance between drop centers, D̄l, as predicted by LSA, i.e. D̄l ≈ λm

(see § 4.3.1).

(viii) Nucleation regime within linearly unstable regime, H0 ∈ (Hn1 , Hn2)∪(Hn3 , H+) ⊂

(H−, H+). A linearly unstable film perturbed by a localized perturbation
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Figure 4.20 Summary of the various stability regimes discussed in this chapter
in relation to the effective disjoining pressure. The dashed lines denote analytically
derived values and dotted lines denote values extracted from numerical simulations.
See the text for explanation of numbered regions.

will lead to D̄ 6≈ λm, and for a randomly perturbed film the variance in the

distribution of inter-drop distances is significantly larger than for the spinodal

regime, although we still find that D̄ ≈ λm.

The regime often called ‘heterogenous nucleation’ includes the regimes (vi) and (viii);

the ‘spinodal’ regime is defined under (vii).

There are several potential directions for future work. Statistical analysis has

shown interesting connections between the observed phenomena and properties of the

effective disjoining pressure; however, no clear physical mechanism has been identified

analytically. Further investigation of the presented results is therefore required. Also,

generalizing our results to three dimensional flows is another area of interest, and is

the subject of the next chapter.
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CHAPTER 5

GPU ADI METHOD FOR GENERAL THIN FILM EQUATIONS

In this chapter, we present a fast numerical method for the 2+1 dimensional

generalized thin film equation using a Graphics Processing Unit (GPU) and the

Compute Unified Device Architecture (CUDA) Application Programming Interface

(API). Specifically, we implement the trapezoidal type Alternating Direction Implicit

(ADI) scheme on a single GPU. With this implementation, large domain simulations

can be carried out more than an order of magnitude faster than a similarly coded

serial Central Processing Unit (CPU) method.

The method is applied to thin films evolving on a substrate, with particular focus

on nematic thin films, although a very similar formulation applies also to polymer

films spreading on silicon/silicon oxide substrates. What distinguishes different films,

substrates and film thickness regimes, at least for slow flows where inertial effects are

not significant, is essentially the form of (effective) disjoining pressure that, in addition

to liquid/solid interaction, may include the effects of anchoring in the context of liquid

crystals, interactions of electric or magnetic type in the context of ferrofluids [52], or

composite substrates in the case of polymer films [4]. The influence of the functional

form of such effective disjoining pressure on film stability was discussed in two spatial

dimensions (2D) in Chapter 4. In that chapter, we presented numerical evidence

for the formation of secondary (satellite) drops for positive values of the effective

disjoining pressures, as well as discussed various regimes of instability development

within linearly unstable as well as metastable regimes. In this chapter we focus on

extending these results to 3D films.

The rest of this chapter is organized as follows. Section 5.1 provides the basic

mathematical formulation of the problems that will be considered. The numerical

methods are discussed in § 5.2, and the performance of the presented method in
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§ 5.3. The aspects related to implementation on a GPU are relegated to Appendix A.

An application specific to nematic liquid crystal (NLC) films is given in § 5.4,

and comparison to experimental results for both NLC and polymer films in § 5.5.

Conclusions are given in § 5.6.

5.1 Governing Equation

We consider the equations describing nonlinear diffusion of the following general form

ut +∇ ·
[
f0(u)∇∇2u+ f1(u)∇u

]
= 0 , (5.1)

where u(x, y, t) is the evolving quantity of interest; f0(u) and f1(u) are some smooth

nonlinear functions of u. The square bracketed term may be interpreted as the flux

that governs the diffusion process. Governing equations of the form stated in (5.1)

appear in a variety of models for thin fluid films, and also apply to other diffusive

type physical processes such as those relevant to colloid-polymer suspensions [77].

5.1.1 Description of Model Problems

Equations of the form (5.1) commonly appear in the context of thin fluid films. In

this context, the variable u describes the film thickness, h. For future reference, we

specify here the governing equation for thin films in dimensional form (dimensional

variables are hatted)

µĥt + ∇̂ ·
[
f̂0(ĥ)∇̂∇̂2h+ f̂1(ĥ)∇̂ĥ

]
= 0 , (5.2)

where ĥ(x̂, ŷ, t̂) is film thickness and µ is the viscosity. To nondimensonalize (5.2), four

scaling factors are defined: H, a representative film thickness scale, L, the lengthscale

of variations in the plane of the film, (x̂, ŷ); δ = H/L � 1, the small aspect ratio;

and T , the timescale of fluid flow. Scaling (x̂, ŷ), t̂ and ĥ in the obvious way, (5.2)
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becomes

ht +∇ ·
[
f0(h)∇∇2u+ f1(h)∇h

]
= 0, where f0 =

TF0

µL4
f̃0(h) and f1 =

TF1

µL2
f̃1(h),

(5.3)

where F0 and F1 are some positive dimensional prefactors associated with f̂0 and

f̂1, respectively, such that f̃0 and f̃1 are nondimensional and functions of the

nondimensional variable h, for example, f̂0(ĥ) = F0f̃0(h). The prefactors of f̃0 and f̃1

in (5.3) are nondimensional; therefore, for simplicity, we absorb these prefactors into

the definitions of the relevant functions.

5.1.2 Linear Stability Analysis (LSA)

We now present a brief overview of linear stability analysis (LSA) of a flat film of

thickness H0 in 2D (two dimensions), which will be used to validate our numerical

code. To derive the dispersion relation, the solution is assumed to be of the form

h(x, t) = H0(1 + εeiqx+iωt), where ε � 1. Substituting this form of the solution into

(5.1) yields

ω = i
[
f1(H0)q2 − f2(H0)

]
q2 . (5.4)

A film of thickness H0 is linearly unstable if f2(H0) > 0, and in the unstable flat film

thickness regime, the critical wavenumber (below which films are unstable), the most

unstable mode, and the maximum growth rate are given by

qc =

√
f2(H0)

f1(H0)
, qm =

√
f2(H0)

2f1(H0)
and ωm =

[f1(H0)]2

4f1(H0)
, (5.5)

respectively.

5.1.3 Thin Film Models

We consider in this chapter three different models i.e. different sets of f0(h) and f1(h)

in (5.3). The first model considered is a test case of a simple linear partial differential
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equation, i.e,

f0(h) = c0 and f1(h) = c1 , (5.6)

where the sign of f1 is chosen so that a flat film is linearly unstable. For the remaining

two models, we assume f0 and f1 are of the form

f0(h) = Ch3 and f1(h) =
h3Π′(h)

C
, (5.7)

where C is the inverse Capillary number (ratio of surface tension forces to viscous force)

and Π(h) is the disjoining pressure, typically describing the strength of fluid/solid

interaction. In our second model, the disjoining pressure will be actually specified

as an ‘effective’ disjoining pressure derived in the context of nematic films [12, 26].

Therefore, for the second model, Π(h) = ΠNLC(h), with

ΠNLC(h) = K

[(
b

h

)3

−
(
b

h

)2
]

+
N
2

[
m(h)

h

]2

, (5.8)

where

m(h) = g(h)
h2

h2 + β2
; g(h) =

1

2

[
1 + tanh

(
h− 2b

w

)]
; (5.9)

the scales are taken as

H = 100 nm , L = 10 µm , T = 1 s ; (5.10)

and the nondimensional parameters are

C = 0.0857 , K = 36.0 , N = 1.67 , β = 1 , w = 0.05 , b = 0.01 . (5.11)

For brevity, we leave the discussion of the details of this model to § 5.4, where we

focus on extending previous results from 2D to 3D films. However, for now, we note

that the term in the disjoining pressure defined in (5.8) with a prefactor K is the

power-law form of disjoining pressure consisting of Born repulsion and the van der
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Waals force. The power-law form of the disjoining pressure is commonly used in the

literature; see e.g., the review by Craster and Matar (2009) [59] for detailed discussion.

The term with a prefactor N is due to the elastic response of NLC, further discussed

in § 5.4.

The third model describes polymeric films [4], where Π(h) = ΠPOL(h), with

ΠPOL(h) = −∂ψPOL

∂h
, where ψPOL(h) =

C

h8
− ASiOx

12πh2
+
ASiOx − ASi

12π(h+ d)2
(5.12)

and the coefficients are given by

C = 0.00581 , C = 1.181 , ASiOx = 41.25 , ASi = −243.75 , d = 191 ,

(5.13)

with the scalings

H = 1 nm , L = 100 nm , T = 60 s , (5.14)

(here the physical parameters are taken from Seemann et al. [53]). The first term in

(5.12) is due to steric effects (non-bonding intermolecular interactions), and the last

two terms are van der Waals forces in a thin film of a polymer deposited on a silicon

substrate (Si), coated in a silicon oxide (SiOx) layer of thickness d. Note that the

notation for chemicals follows Seemann et al. [53].

5.2 Numerical Method

The numerical approach that we employ is based on the Alternate Direction Implicit

method, discussed in the context of thin film flows by Witelski and Bowen (2003) [44]

and implemented in recent works, such as [11,12]. In the present chapter we provide

a review of the method, both for completeness, and for the purpose of discussing

particular issues involving implementation in a GPU computing environment. More

precisely, in § 5.2.1 we discuss a finite volume scheme in terms of fluxes, temporal
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discretization is described in § 5.2.2, discretization of fluxes in § 5.2.3, and boundary

conditions are discussed in § 5.2.4.

5.2.1 Conservation Law

In terms of a conservation law, the governing equation may be expressed as

ut +∇ · F(u) = 0 , where F(u) = f0(u)∇∇2u+ f1(u)∇u (5.15)

is the flux vector, with two components, i.e., F(u) = {Fx(u), Fy(u)}. To simplify the

results, we generalize the flux to linear combinations of terms of the form

F(u) = f(u)L[u] (5.16)

where f(u) is some smooth function of u and L is some linear differential operator

with two components, i.e., L[u] = {Lx[u], Ly[u]}. The results to be shown can be

easily extended to the flux in our original governing equation (5.15).

Following the finite volume method, the governing equation for ū, the average

value of u on some sub-domain Ω, is given by

ūt = − 1

A

∮
∂Ω

F(u) · n ds , (5.17)

where A is the area of the sub-domain Ω, ∂Ω denotes its boundary, and n is the

outward-pointing normal. To subdivide the entire domain, the solution is discretized

on an equipartitioned grid; specifically, the grid points in the x and y directions are

defined as

xi = X0 + i∆s 0 ≤ i ≤ I and

yj = Y0 + j∆s 0 ≤ j ≤ J ,

(5.18)

where ∆s is the grid spacing; I + 1 and J + 1 are the numbers of points in x and y

domains, respectively; and X0 and Y0 are the initial points in x and y, respectively.
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Furthermore, the cell average points are given by

ū(i,j) =
1

A

∮
Ω(i,j)

u(x, y) dA, where Ω(i,j) = [xi, xi+1]× [yj, yj+1] and A(i,j) = ∆s2,

(5.19)

for 0 ≤ i < I and 0 ≤ j < J ; and their respective governing equations are

ūt,(i,j) = − 1

∆s2

[∫ xi+1

xi

Fy,(,j) dx+

∫ yj

yj+1

Fx,(i+1,) dy

−
∫ xj

xj+1

Fy,(,j+1) dx−
∫ yj+1

yj

Fx,(i,) dy

]
,

(5.20)

where

Fx,(i,j) = Fx(u(xi, yj)) , Fx,(,j) = Fx(u(x, yj)) , Fx,(i,) = Fx(u(xi, y)) , (5.21)

and similar notation is used for Fy and ūt. To solve (5.20), two second-order accurate

approximations are implemented: 1) the integrals on the right-hand side of (5.20) are

evaluated using the midpoint rule, e.g.,∫ xi+1

xi

Fy,(,j) dx = ∆s
[
Fy,(i+ 1

2
,j) +O(∆s2)

]
, (5.22)

where

xi+ 1
2

= X0 +

(
1

2
+ i

)
∆s 0 ≤ i < I , and

yj+ 1
2

= Y0 +

(
1

2
+ j

)
∆s 0 ≤ j < J ,

(5.23)

are the center points of the grid; and 2) the cell averaged value are approximated by

the cell-centered value, i.e.,

ū(i,j) = u(i+ 1
2
,j+ 1

2
) +O(∆s2) = u(xi+ 1

2
, yj+ 1

2
) +O(∆s2) . (5.24)

Substituting (5.22) and (5.24) into (5.20) yields

ut,(i+ 1
2
,j+ 1

2
) = − 1

∆s

[
Fx,(i+1,j+ 1

2
) − Fx,(i,j+ 1

2
) + Fy,(i+ 1

2
,j+1) − Fy,(i+ 1

2
,j)

]
+O(∆s2) .

(5.25)
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5.2.2 Temporal Discretization

Let us write (5.25) in the following general form

ut = −Du , (5.26)

where D is a nonlinear matrix differential operator, representing the fluxes on the

right-hand side of (5.25); and u = {up} is the collection of grid point values u(i,j).

The grid points in u are ordered lexicographically and may be in row-major form,

p = Ji+ j; or column-major form, p = Ij + i. Note that bold notation will be used

to denote vectors associated with cell centered quantities on the spatial grid.

To begin, a central difference discretization in time is applied to (5.26),

un+1 − un = −∆tDun+1/2 (5.27)

where ∆t is the time step, and n superscripts denote the value at the current time.

Using a trapezoidal rule to evaluate the non-linear term at the half step, Dun+1/2 =

[Dun+1 + Dun] /2 +O(∆t2), (5.27) may be expressed as(
I +

∆t

2
D

)
un+1 =

(
I− ∆t

2
D

)
un , (5.28)

where I is the identity matrix. Equation (5.28) contains a nonlinear implicit term, i.e.,

nonlinear dependence on the unknown un+1; therefore the above equation is solved

numerically using a Newton iterative scheme.

Newton Iterative Scheme We rewrite (5.28) as a root solving problem; specifi-

cally, we define

G(un+1) =

[(
I +

∆t

2
D

)
un+1 −

(
I− ∆t

2
D

)
un
]

= 0 , (5.29)
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and find un+1 satisfying this equation using Newton’s iterative scheme. First, we

compute the Jacobian of G with respect to un+1, yielding

JG = I +
∆t

2
JD , (5.30)

where JD is the Jacobian of Dun+1. The Newton iterative scheme may be expressed

as

JG,(k)w =

(
I +

∆t

2
JD

)
w = −G(un+1

(k) )

un+1
(k+1) = un+1

(k) + w ,

(5.31)

where u(k) corresponds to the values at the current iterative step, w is an intermediate

variable, and the (k) subscript in JG,(k) indicates that the nonlinear un+1 terms

in JG,(k) are evaluated using un+1
(k) . The iterative scheme is initialized by setting

un+1
(0) = un. To reduce computational complexity, we apply an Alternating Direction

Implicit (ADI) type scheme, discussed next.

Alternating Direction Implicit (ADI) Method The ADI method splits the

implicit differential operator (5.30) in two parts (implicit x derivatives for a fixed y

and vice versa). Specifically, the right-hand side of (5.30) may be expressed as

I +
∆t

2
JD =

(
I +

∆t

2
Jy

)(
I +

∆t

2
Jx

)
+

∆t

2
Jxy −

∆t2

4
JxJy , (5.32)

where Jx and Jy are the pure x and y derivative terms in JD, respectively; and Jxy

are the remaining mixed derivative terms, i.e. Jxy = JD − Jx − Jy.

Neglecting the implicit mixed derivatives, Jxy, we may substitute (5.32) into

(5.31) reducing the method to first-order accuracy; however, as noted and confirmed

numerically by Witelski and Bowen [44], implementing an appropriate iterative

method, the ADI scheme will converge to second order accuracy in time. We will also

show second order convergence for our implementation. The Newton iterative scheme
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in (5.31) becomes(
I +

∆t

2
Jy,(k)

)
w = −

[(
I +

∆t

2
D

)
un+1

(k) −
(

I− ∆t

2
D

)
un
]
, (5.33)(

I +
∆t

2
Jx,(k)

)
v = w , (5.34)

un+1
(k+1) = un+1

(k) + v , (5.35)

where w and v are intermediate variables. This pseudo-Newton iterative method

reduces (by an approximation) the left hand side of (5.32) from a large sparse matrix

of size IJ × IJ into two block diagonal matrices (right hand side of (5.32)). In the

implicit y step, using column-major ordering, we form a block diagonal matrix, Jy,

with I blocks of size J × J . Each block can be inverted independently of others,

thus reducing the computational complexity. Furthermore, each block is a n-diagonal

matrix, where the width of the diagonal band, n, depends on the stencil used to

evaluate spatial derivatives. For our implementation, n = 5 (penta-diagonal system).

The n-diagonal matrices can be inverted with linear complexity, further reducing

computational cost, e.g., using an extension of the Thomas algorithm for an n-diagonal

matrix. Similarly, in the implicit x step, using row-major ordering, we form a block

diagonal matrix, Jx, with J blocks of size I × I.

Adaptive Time Stepping To control the time step, we first specify the convergence

conditions. Specifically, the solution at the next time step is accepted (i.e. un+1 =

un+1
(k+1)) if

max
0≤i<I,0≤j<J

∣∣∣∣∣ v(i+ 1
2
,i+ 1

2
)

u(k),(i+ 1
2
,i+ 1

2
)

∣∣∣∣∣ < εTol (5.36)

where εTol is the error tolerance. In addition, if the error tolerance is not satisfied in

a specified maximum number of iterative steps, the scheme is assumed to have failed.

Note 1: Our simulations show that setting the maximum number of iterative

steps, K, to 10 gives the largest effective time steps, i.e., ∆t/K is maximized.
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Start

Load initial condition and
set initial time step, ∆t.

Initialize iterative
scheme un+1

(0) = un.

Solve (5.33) to (5.35).

Does next iteration
satisfy solution criteria?

Accept solution as next
time step, un+1 = un+1

(k+1).

Final time step reached?

End

Has a maximum iteration
count been reached?

Reject current solution
at n + 1 and reduce ∆t.

Is ∆t below some
minimum threshold?

Failed end state,
∆t too small.

Has a minimum amount
of successful time

steps been computed?

Increase ∆t.

Is ∆t above some
maximum threshold?

Set ∆t to maximum
threshold value.

yes

yes

no

no
yes

no

yes

no

no

yes

no

yes

Figure 5.1 Flow chart of the adaptive time stepping with a nested pseudo-Newton
iterative scheme. Note that rectangles marked in red correspond to the start of ends
of the flow chart, orange designates processes, and green denotes decisions.
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Note 2: Other restrictions besides the convergence of the iterative scheme may

be placed on accepting the solution at the next iteration or next time step, e.g.,

sufficiently small truncation error, thus for generality, we will refer to the collection

of such conditions as the solution criteria.

If the solution criteria are not met, then the time-step is reduced and the pseudo-

Newton iterative scheme is performed with the new reduced time step. Furthermore,

if the new reduced time step is below some minimum, the numerical scheme halts and

ends in a failed state. To improve the efficiency of the numerical scheme, the time step

is increased if a minimum number of successful time steps have been consecutively

computed. To remove possible numerical errors, the time step is bounded from above.

Figure 5.1 shows a flow chart of the adaptive time stepping procedure, coupled with

the pseudo-Newton iterative method.

5.2.3 Flux Discretization

To summarize the results so far, a second-order accurate scheme has been developed

in terms of a non-linear spatial differential operator D, representing the fluxes across

cell boundaries; therefore, to complete the scheme, in this section, the form of D is

described. Recalling (5.25), we may split D into two parts: the fluxes across the x

cell boundaries Dx, and the fluxes across the y cell boundaries Dy. The values of D

are specified in terms of fluxes, i.e.,

Ds =
Fs,+ − Fs,−

∆s
, (5.37)

where Ds is either Dx or Dy, and Fs,+ and Fs,− are non-linear matrix differential

operators for the fluxes at the two boundaries. Similarly to § 5.2.1, the fluxes are

generalized to a linear combination of functions of the form

F = f(u)L , (5.38)
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where f(u) is a function of u, and L is a linear differential operator. We may express

D as

D =
Fx,+ − Fx,− + Fy,+ − Fy,−

∆s
. (5.39)

To derive an expression for Jx and Jy in (5.33) and (5.34), we recall that mixed

derivative terms have been ignored, and therefore,

Jx =
∂

∂u

[
Fx,+ − Fx,−

∆s

]
and Jy =

∂

∂u

[
Fy,+ − Fy,−

∆s

]
, (5.40)

where ∂/∂u denotes the Jacobian, and the non-linear matrix differential operator, F,

only contains derivatives with respect to its subscript.

To complete the derivation, expressions for Fx,+, Fx,−, Fy,+, and Fy,− are

required. For brevity, we specify these expressions by the following descriptions:

1. at the cell-centered point (i, j),

• Fx,+ is evaluated at (xi+1, yj+ 1
2
) ,

• Fx,− is evaluated at (xi, yj+ 1
2
) ,

• Fy,+ is evaluated at (xi+ 1
2
, yj+1) , and

• Fy,− is evaluated at (xi+ 1
2
, yj) ;

2. the linear matrix differential operator L is computed using cell-centered values;

3. f(u) at a cell boundary is evaluated using interpolation, e.g.,

f(u(i+ 1
2
,j)) =

f(u(i+ 1
2
,j+ 1

2
)) + f(u(i+ 1

2
,j− 1

2
))

2
+O(∆s2) ; (5.41)

4. the total combined stencil of all terms is shown in Figure 5.2.
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Figure 5.2 X and © denote the solution cell-center values u(i,j) and the function
cell-center values, fi,j, respectively. These values are required to numerically evaluate
the flux differences (5.37) at the cell-center (i, j).

5.2.4 Boundary Conditions

To complete the description of the numerical methods, we now discuss the boundary

conditions. Typically, boundary conditions of the form

ux(x0, y) = uxxx(x0, y) = 0 , ux(xI , y) = uxxx(xI , y) = 0 ,

uy(x, y0) = uyyy(x, y0) = 0 , uy(x, yJ) = uyyy(x, yJ) = 0 ,

(5.42)

are used, and may be interpreted as symmetry conditions. Furthermore, the boundary

conditions correspond to zero flux at the boundary, recall (5.15).

To implement the boundary conditions, the stencil shown in Figure 5.2 includes

ghost points at the boundaries. While ghost points may be used for explicit terms,

un+1
(k) and un, for the implicit term, un+1

(k+1), the finite difference stencil must be

modified; however, since implicit terms are derivatives of a single variable, the stencil

modification is relatively simple.

Using the boundary conditions to define the ghost points, the left-hand sides

of the numerical scheme (5.33) and (5.34) are computable everywhere except at the

corners of the domain, e.g., at the cell-center point i = j = 0. There are two choices

to compute the ghost points in the corner (xi, yj for i, j = −2,−1): First, the y

boundary conditions are applied, computing the solution at the ghost points (xi, yj)

for i = 0, 1 and j = −2,−1, then the x boundary conditions are applied at the new
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ghost points, computing the solution at the corner ghost points. Alternatively, the

order of operations may be reversed. It is relatively easy to show that both procedures

lead to identical results.

5.3 Numerical Performance

We now switch focus to the numerical performance and accuracy of our implementation.

The details related to implementation in the GPU computing environment are

discussed in Appendix A. Here, we discuss first convergence, followed by confirmation

of conservative properties, and the comparison with LSA. Then, we discuss the

performance by comparing the GPU and serial CPU codes.

For the purpose of the numerical tests discussed in this section, we choose an

initial condition of the form

u(x, y, t = 0) = H0

(
1 +

[
εx cos

(πx
λ

)
+ εy cos

(πy
λ

)])
, (5.43)

where εx = εy = 0.1, (x, y) ∈ [0, Pλ] × [0, Pλ], λ = 2π/q, and q is the wave number.

The initial film thickness, H0, is fixed at 1 for the linear model (for simplicity), 0.5 for

the NLC model, and 3.9 for the polymer model. For the last two models, the values

are motivated by the experiments [2, 4].

5.3.1 Validation

To test the convergence properties, the adaptive time stepping is removed and we set

the maximum number of Newton iterative steps to 5000 (allowing for a more robust

selection of spatial step size). In addition, we chose q = qm and P = 6 in (5.43)

where qm is given by (5.5). The spatial step size, ∆s = Pλm/I, where λm = 2π/qm

is the most unstable wavelength, I is the number of grid points, and simulations are

carried out on a square computational domain, I = J ; therefore, choosing I (discussed

in the next sections) determines ∆s. Note that the choice P = 6 is made so as to
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maximize the range of grid sizes that fit into the GPU’s memory and maintain a

sufficiently large spatial step size to maximize the (common) stable time step. For

the comparison with LSA, adaptive time stepping is utilized, the maximum number

of Newton iterative steps is reverted back to 10, we set P = 1, and vary q according

to the dispersion curve from LSA.

Convergence To study the convergence properties, we first define I0, the initial

spatial grid size, i.e., I = I0, and ∆t0, the initial time step size. In addition, since

obtaining an analytical solution for the non-linear models is not possible, we compute

the error relative to the numerical solution obtained for the most refined grid.

For the purpose of checking temporal convergence, we fix I0 = 256 for all

simulations, and set ∆t0 = 10−3ω−1
m , i.e., we scale the time step with the growth rate

of the most unstable mode. The initial simulation is carried out for one time step,

∆t0, and for each subsequent simulation, the time step is halved, and the simulation

is carried out to the final time, ∆t0. Figure 5.3a shows the L2 norm of the error

for all three considered problems for two implementations: i) the Newton iterative

convergence error tolerance, εTol in (5.36), is set close to machine precision (solid

curves), εTol = 10−14; and ii) the error tolerance is set to scale with the temporal

error (dashed curves), εTol = max(∆t2, 10−14). Note that we limit εTol ≥ 10−14 since

if the relative error in the Newton iterative scheme is smaller than machine error,

the iterative method will always fail. We observe that in the first case, second-order

temporal accuracy is achieved (compare to the dotted black line). Note that for the

linear model, the two curves lie on top of each other, as expected. Furthermore, the

results show that it is sufficient to set the Newton error tolerance to be proportional

to the temporal accuracy to maintain second-order accuracy, and even higher order

convergence is achieved for the nonlinear models, although the error is larger.

To confirm the spatial convergence, we fix ∆t0 = 10−8ω−1
m for all simulations

and set the coarsest grid size I0 = 36. Recalling § 5.2.1, the numerical solution is
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Figure 5.3 Plot of the L2 norm of the error as a function of (a) time step size and
(b) grid size for: the linear model (blue curves with ‘+’ symbols), the NLC model (red
curves with ‘◦’ symbols), and the polymer model (yellow curves with ‘2’ symbols).
Solid curves denote simulations where Newton iterative convergence error tolerance is
close to machine precision, εTol = 10−14; and dashed curves denote simulations with
error tolerances set to (a) εTol = max(∆s2, 10−14) and (b) εTol = max(∆t2, 10−14). The
dotted black line denotes second order convergence. Note that in both figures for the
linear model the two curves (solid and dashed) lie on top of each other, as expected.

evaluated at the cell-centers of the spatial grid; therefore, if the spatial step size is

halved, the cell-centered points on the refined grid are not contained in the coarse grid.

To avoid errors associated with interpolating the numerical solutions on different grid

sizes to a common grid size, we instead triple the grid size (e.g., Ik = 3kI0, where k is

the level of refinement) so that cell-centered points on the coarser grid are contained

in the refined grid. Figure 5.3b confirms second-order spatial accuracy. Furthermore,

we observe that there is little difference between setting the Newton error tolerance

to εTol = max(∆s2, 10−14) or close to machine precision, εTol = 10−14.

To summarize, the results show that the implemented method is second-order

accurate in time and space, and furthermore, that it is sufficient to set the error

tolerance to scale with the order of the spatial and temporal accuracy. Such

implementation significantly reduces computational time.
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Conservation of Mass To verify conservation of mass, we carry out the simulations

until the final time, 1000∆t0, and collect data in intervals of 100∆t0. Furthermore,

motivated by the results of § 5.3.1, we fix εTol = max(∆s2, 10−14) for spatial

convergence simulations, and εTol = max(∆t2, 10−14) for temporal convergence

simulations. To compute the average mass of the solution, recall that the cell average

is given by the cell-centered value (with second order accuracy), therefore, the average

mass on the entire domain is given by

Ū =
1

IJ

I−1∑
i=0

J−1∑
j=0

u(i+ 1
2
,j+ 1

2
) . (5.44)

Figure 5.4 shows the change (relative to the initial condition) in total mass for the

linear model (left column), NLC model (central column) and polymer model (right

column), for fixed time step and varied spatial step (top row), and fixed spatial step

and varied time step (bottom row). The results obtained when spatial step size is

varied (top row) show that there is no trend in the mass error (i.e, numerical noise)

with the exception of the smallest step size for the NLC model, indicated by the

arrow in subpanel b; and the polymer model, subpanel c. It is interesting to note that

the conservation law formulation of the governing equation in terms of fluxes, recall

equation (5.25) in § 5.2.1, indicates that conservation of mass should be second order

accurate in space. However, while the approximations of the fluxes are second-order

accurate, cancellation of these errors across a cell boundary leads to higher order

accuracy.

When time step is varied, and the spatial step fixed, the bottom row of Figure 5.4

shows that conservation of mass is at least second order accurate. For the linear model,

subpanel d, the error is close to machine precision, so no trend is observed.

Comparison to LSA Here, we validate our model by showing agreement with

LSA. This is done by comparing the growthrates extracted from simulations to the
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Figure 5.4 Plot of the relative mass error as a function of time for the linear
model (left column), the NLC model (central column), and the polymer model (right
column) for decreasing spatial step size (top row) and decreasing time step (bottom
row). Spatial steps sizes and time steps sizes are the same as Figure 5.3 and ‘×’,
‘+’, ‘◦’, ‘∗’, ‘2’, and ‘3’ symbols denote progressively decreasing spatial step sizes.
decreasing step size, respectively. Arrows in subpanels b and e denote simulations
where a trend may exist for the relative mass error. Note that for the top row of
figures ∆t = ∆t0 = 10−8ω−1

m and for the bottom row of figures ∆t = 2−i∆t0 where
∆t0 = 10−3ω−1

m and i = 0, 1, 2, 3, 4, 5 is the refinement depth (decreasing step size).

dispersion relation (5.4). For each model, simulations are carried out for several q

values for perturbations in either the x or y directions. In addition, the linear domain

is fixed to λm, i.e. P = 1 in (5.43) with 32 points (I = J = 32). The final solution time

is fixed at T = log(1.3)|ω(q)]−1|, where ω(q) is defined in (5.4). Figure 5.5 confirms

that the numerical results agree with the LSA predictions, validating the code.

5.3.2 Performance Comparison

Having validated the accuracy, convergence, and mass conservation of our numerical

method, here we discuss the computational performance of our GPU implementation
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Figure 5.5 Comparison between dispersion relations (blue curve) and growth rates
extracted from numerical simulations (symbols) for a) the linear model, b) the NLC
model, and c) the polymer model. ‘×’ symbols (red) denote initial condition perturbed
in the x direction and ‘+’ symbols (gold) denote a perturbation in the y direction.

(details are given in Appendix A) in comparison to our serial CPU code. We note

that CPU computations were performed on an Intel c© CoreTM i7-6700K and GPU

computations were performed on a Nvidia Geforce c© GTX Titan X Maxwell. For

brevity, the performance results are computed only for the NLC model. For simplicity

we compare two major components: inverting the penta-diagonal matrices in (5.33)

and (5.34); and computing the entries of the matrices in (5.33). These particular

components were chosen since they are responsible for the dominant part of the

computational cost.

We begin by comparing the GPU penta-diagonal solver to the in-house serial

CPU penta-diagonal solver. The serial CPU implementation is based on a method

found in Numerical Recipes in FORTRAN [78]. Figure 5.6 shows that for the smallest

domain size, the GPU performs about the same as the CPU code; however, for larger

domains, the speedup reaches a factor of 40. The saturation of the speed up occurs

when the total number of independent linear systems is greater than the total core

count (3072 for the GPU used in the reported computations).

Next, we compare the second major component of the solvers, computing the

entries of the matrices in (5.33) and (5.34). Since no equivalent in-house serial CPU

implementation exists for computing these terms, for simplicity we only implement an

132



Figure 5.6 Plot of relative speedup to solve penta-diagonal system in the GPU code
over the original in-house CPU code for various square domains sizes.

Figure 5.7 Plot of relative speedup in forming the linear system in (5.33) in the
GPU code over equivalent CPU code for various square domains sizes.

equivalent version of the kernel used to compute the matrices in (5.33). We assume

the time required for computing the matrix in (5.34) scales (with respect to the

CPU) similarly to the computation time required to evaluate the matrices in (5.33).

Figure 5.7 shows that on a large enough domain, the GPU implementation is at least

25 times faster than the serial CPU code. We note that in the GPU implementation,

for the smallest two domain sizes in Figure 5.7, the domain is sufficiently large and all
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cores in the GPU should be utilized, therefore, the reduced performance (compared

to the 4 largest domains) may be due to bottlenecks in the memory.

We have therefore showed that on large enough domain sizes our GPU

implementation can perform up to 25 times faster than the CPU code. While we have

not compared the GPU implementation to an equivalent serial CPU implementation

in full, we have shown significant performance increase in major components of the

numerical scheme, thus it is reasonable to assume similar performance gains would

be observed in a full comparison.

5.4 Nematic Liquid Crystals

In this section, we focus on the thin film model derived for nematic liquid crystals,

i.e., the governing equation given by (5.1) and (5.8). The details of the model itself

are discussed in detail in Chapter 4, where a weak anchoring model was presented. In

Chapter 4 it was shown that the nematic contribution to the thin film model resulted

in an effective disjoining pressure, given by (5.8), and plotted in Figure 5.8. Similar

functional forms of the disjoining pressure, characterized by a local maximum for

nonzero film thicknesses, are found in other contexts, such as polymer films [4].

We discuss some of the main features of the results from Chapter 4 in the

three dimensional context. These include formation of satellite (secondary) drops,

nucleation versus spinodal type instability, and metastable films. The fact that we

are able to simulate accurately large domains of linear dimensions measured in tens of

wavelengths of maximum growth, allows us to obtain results that are only very weakly

influenced by the presence of the domain boundaries. This section is organized as

follows: in § 5.4.1 we present the model in terms of the gradient dynamics formulation,

§ 5.4.2 gives a model outline, and the main part, § 5.4.3 presents the computational

results.
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Figure 5.8 Plot of the disjoining pressure for a NLC, (5.8), as a function of the
film thickness. The region between the outer dashed red vertical lines denotes linearly
unstable film thicknesses, and the central dashed green line denotes the zero of the
disjoining pressure, HΠ (within the linearly unstable regime).

5.4.1 Gradient Dynamics Formulation

It is convenient to express the governing equation (5.1) in terms of the gradient

dynamics formulation; in particular, it is advantageous to express analytical results in

terms of a disjoining pressure, Π̂(ĥ). The benefit of this formulation is that previous

analytical results for 2D films in Chapter 4 show that the form of the disjoining

pressure primarily determines the transition between different stability types of a thin

film as a function of its thickness.

To motivate this assertion, we perform LSA on the gradient dynamics

formulation of the governing equation, which is given by

µĥt + ∇̂ ·

[
Q̂(ĥ)∇δF̂

δĥ

]
= 0, where F̂ (ĥ) = γ

[
1 +
∇̂ĥ · ∇̂ĥ

2

]
+ ψ̂(ĥ), Π̂(ĥ) = −∂ψ̂

∂ĥ
,

(5.45)

Q̂(ĥ) is the mobility function, F̂ (ĥ) is total interfacial energy (Gibbs energy), γ is the

surface tension, and Π̂(ĥ) is disjoining pressure. Relating (5.45) to the nondimensional

governing equation (5.3),

f̃0(h) = Q̃(h) , F̂0 = γM̂ , f̃1(h) = Q̃(h)Π̃′(h) and F̂1 =
M̂Ψ̂

H2
, (5.46)
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where, similarly to before, M̂ and Ψ̂ are dimensional constant prefactors derived from

expressing Q̂(ĥ) and Ψ̂(ĥ) as dimensionless functions of the dimensionless variable

h, e.g., Q̂(ĥ) = M̂Q̃(h). The nondimensional linear stability analysis results (5.5)

simplify to

qm =

√
Π′(H0)

2Γ
and ωm =

Q(H0)[Π′(H0)]2

4Γ
, where Γ =

Ψ̂

γδ2
(5.47)

is a dimensionless constant and may be interpreted as the ratio of disjoining pressure to

surface tension forces. We note that the disjoining pressure determines the transition

between linear stability (Π′(H0) < 0) and instability (Π′(H0) > 0). The instability

wavelength is independent of the mobility function, which only affects the growth rate

of instabilities.

5.4.2 Model Description

To motivate the form of the disjoining pressure shown in Figure 5.8 and defined by (5.8),

here we provide a brief outline of the main features of NLC, and we refer the reader

to Chapter 4 for a more detailed derivation. Typically, NLC molecules are rod-like

structures with an (electrical) dipole moment, which gives rise to a state of matter

intermediate between a crystal and a liquid. Specifically, similarly to a Newtonian

fluid, there is no positional ordering to the NLC molecules; however, similarly to a

crystal, molecules have short-range orientational order due to interactions between

dipoles (elastic response). To model NLC, in addition to modeling the velocity field of

molecules (as with most fluids), short-range ordering is often modeled with a director

field. The director field is a unit vector, aligned with the long axis of the liquid

crystal, see Figure 5.9a, and it is often convenient to consider the polar angle, θ, and

azimuthal angle, φ, of the director field orientation as a function of Cartesian space

(x, y, z).
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Figure 5.9 a) Schematic of director field relative to liquid crystal molecule.
b) Strong free surface anchoring model example. c) Weak free surface anchoring
model.

The evolution of NLC may be modeled using the Leslie-Ericksen equations,

an extension of the Navier-Stokes equations, with an additional equation modeling

conservation of energy. Under the long wave approximation, and assuming that the

time scale of fluid flow is much faster than the time scale of the elastic reorientation,

the conservation of energy equation decouples from the remaining equations and only

depends on the director field. Using energy minimization, the polar and azimuthal

angles of the director field are determined to be of the form

θ(x, y, z) = a(x, y)z + b(x, y) and φ(x, y) = c(x, y) , (5.48)

where a(x, y), b(x, y), and c(x, y) are constant with respect to z and satisfy boundary

conditions, thus the director field is a function of the instantaneous fluid height.

At the interface between the NLC film and another material, liquid crystal

molecules molecules satisfy certain anchoring conditions. Typically, at the free surface

(air/NLC interface), molecules are normal to the free surface (θ(x, y, z = h) = π/2),

and at the NLC/substrate interface, planar anchoring is appropriate, so θ(x, y, z =

0) = 0, see Figure 5.9b. However, for very thin films, or close to a contact line,

this configuration induces a large energy penalty in the bulk due to rapid variations

in the director field; therefore, we implement a novel weak free surface anchoring
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model. In practice, the substrate anchoring is stronger than the free surface anchoring,

thus we relax the free surface anchoring to that of the substrate for very thin films

(weak anchoring model) to alleviate the large energy penalty in the bulk (compare

Figures 5.9b and 5.9c). Specifically,

θ(x, y, z) =
π

2

(
1− m(h)

h
z

)
(5.49)

where m(h) ∈ [0, 1] and is defined in (5.9). The azimuthal anchoring φ in (5.48)

is independent of z; therefore, assuming the substrate anchoring dominates, the

azimuthal anchoring is determined by the substrate. The governing equation (5.1) is

a simplification of the long wave approximation of the Leslie-Ericksen equations that

ignores substrate anchoring. In the full (long wave) model, the mobility function may

be expressed as

Q(h) =

λI + ν

 cos 2φ sin 2φ

sin 2φ − cos 2φ


h3 , (5.50)

where I is the identity matrix, and λ and ν are anisotropic viscosities. To simplify

the model, we fix λ = 1 and ν = 0, which removes the dependency on φ. Note that

by definition, λ > ν, therefore the mobility function is positive definite, thus does

not change stability properties. We leave the investigation of the effects of substrate

anchoring for future work.

5.4.3 Simulations

For the remainder of this section, we focus on extending the previous analysis carried

out for 2D films to 3D films. This section is divided into three parts. In the first

two parts, we focus on the linearly unstable regime, first investigating coarsening and

satellite drop formation, and second, the nucleation dominated regime. In the third

part, the metastable regime is examined. Before presenting these results, we discuss

the domain size and spatial step size of simulations, and the tools used to quantify
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simulation results; in particular, the Fourier transform of the film profile and the Betti

numbers, a topological measure of the film profile. Note that these tools will only be

applied to the results in the linearly unstable regime.

Unlike § 5.3.1, where the spatial step size was determined by I, λm, and P ,

in this section, we instead fix ∆s, λm, and P and the grid size I = Pλm/∆s. The

grid sizes in this section range from 1000 to 4000 points and will be specified when

discussing simulation results in this section. For all simulations, we fix the spatial

step size to ∆s = 0.05 except for the film thicknesses H0 = 0.05, where ∆s = 0.01;

and H0 = 0.1, where ∆s = 0.02. The spatial step size was changed at these (linearly

unstable) film thicknesses as to maintain a sufficient number of points per period of

the most unstable wavelength λm. Note that for thicker films, while a larger ∆s may

be chosen while maintaining a sufficient number of points per period (say 50), to

adequately resolve the contact line, ∆s is chosen to be close to the precursor thickness

b = 0.01. In addition, simulations in the linearly unstable regime (first two parts) are

scaled in two ways: 1) the linear domain size is set to Pλm where P is an integer,

i.e., domains are scaled by P periods of the most unstable wavelength from LSA;

and 2) when comparing results for different film thicknesses as a function of time,

it is convenient to define a new timescale, τ = tωm, i.e., we scale time by the most

unstable growth rate obtained using LSA. We fixed P = 40 for all (linearly unstable)

thicknesses with the exception of H0 = 0.8, where P = 10.

We are primarily interested in extracting the length scale that dominates the

instability pattern of the dewetting thin film as a function of time. Using a 2D Fourier

transform, the most unstable wave numbers can be extracted; however, obtaining

precise values is not straightforward. The procedure that we use is described in some

detail in Appendix B; here we just provide an outline. Assuming that the instability

pattern is isotropic, the magnitude of the 2D Fourier transform may be mapped to a

one-dimensional (radial) function of the magnitude of the wave number qr =
√
q2
x + q2

y ,
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where qx and qy are the x and y components of the wave number. In addition, several

smoothing techniques are required to reliably extract local maxima.

Next, we discuss the use of Betti numbers to quantify the results of the

simulations. The Betti numbers, bn, are n positive integers that characterize the

connectivity of n-dimensional objects (simplicial complexes). To compute the Betti

numbers, the Computational Homology Project (CHomP) software package 1 is

implemented. In terms of a 2D (binary) black and white image, such as the example

in Figure 5.10, the zeroth Betti number, b0, is the number of connected white regions;

and the first Betti number, b1, is the number of black regions. Note that white

regions, b0, that connect with the boundary are not counted; however, black regions,

b1, that connect with the boundary are counted; thus simulations on large domains are

essential for removing boundary effects. The first two Betti numbers for an example

image are illustrated in Figure 5.10.

Figure 5.10 The Betti numbers of the above image are b0 = 3 (white regions with
blue outline) and b1 = 5 (black regions with red outline). Note that white regions,
b0, that connect with the boundary (gray border) are not counted; however, black
regions, b1, that connect with the boundary are counted.

To compute the Betti numbers for our simulations requires mapping the

numerical solution, h(x, y, t), to some binary function (black and white), h̀(x, y, t;H∗),

where H∗ is a threshold thickness such that h̀(x, y, t;H∗) = 0 if h(x, y, t) ≥ H∗ (white)

1 http://chomp.rutgers.edu/, accessed April 25, 2018
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and h̀(x, y, t;H∗) = 1 if h(x, y, t) < H∗(black). To examine the Betti numbers for

various film thicknesses, we define the average Betti numbers, b̀0 and b̀1 per unit area

of the most unstable wavelength, e.g., b̀0 = b0/P
2 where Pλm is the linear domain

size, see (5.51). Therefore, the average Betti numbers give a measure of the number

of features (components, holes) per λ2
m. Furthermore, the averaged Betti numbers are

plotted as functions of the threshold value H∗ scaled by the average film thickness

H0 (vertical axis) and the rescaled time τ (horizontal axis).

Evolution of films exposed to infinitesimal perturbations of global charac-

ter Here we analyze the evolution of randomly perturbed films of thicknesses H0

that are in the linearly unstable regime. The initial condition is set to a flat film that

has been randomly perturbed, and to excite all modes in the 2D Fourier transform

independently (combinations of qx and qy), pseudo-Perlin noise is used. Specifically,

the initial condition is of the form

u(x, y, t = 0) = H0(1 + ε |ζ(x, y)|) , (x, y) ∈ [0, Pλm] (5.51)

where P is a positive integer, λm = 2π/qm, qm is given in (5.5), ζ(x, y) is the inverse

Fourier transform of

ζ(qx, qy) =
∣∣∣(q2

x + q2
y

)−α/2
exp (2πia(qx, qy))

∣∣∣ , (5.52)

ε = 0.01, α is some positive constant, and a(qx, qy) is a random variable which is

uniformly distributed on [−1, 1] for each (qx, qy). In addition, ζ(x, y) is scaled so that

|ζ(x, y)| ≤ 1 and we fix α = 200/I, where I is the number of discretization points in

the x and y directions, so that the spatial scale of the noise is proportional to λm.

Figures 5.11 and 5.12 show the results for the thinnest film that we consider,

H0 = 0.05, and for times τ = 5 and 20, respectively. The central parts of the figures

show the free surface thickness. The corresponding radial Fourier Transform is shown
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at top right. We see that the most unstable wavelength dominates the morphology

of the film at τ = 5. On the bottom right, the local maximum of the radial Fourier

transform is plotted as a function of time, showing that for 1 < τ < 6, qm dominates

the wave pattern. At later times, drops form and coarsening is observed in the radial

Fourier transform. Similar coarsening effects are also observed in Volume of Fluid

based simulations of nanoscale metal films [79]. We find consistent results for all

unstable film thicknesses considered, in the range [0.05 : 0.8].

Figure 5.11 Contour plot of the free surface height (center) for H0 = 0.05 at τ = 5.
On the right hand side, we plot the corresponding radial Fourier transform of the
film height (top), and local maximum of radial Fourier transform, qmax (bottom) as a
function of τ . On the left hand side, we show the contour plots of the average Betti
numbers b̀0 (top) and b̀1 (bottom) as a function of τ and scaled threshold value H∗/H0.
The vertical magenta line corresponds to the solution time shown in the central panel.
For this simulation, the grid size is 1637× 1637.

The Betti numbers may be interpreted in two ways, depending on the times

considered. For short time scales (before dewetting), b0 represents the number of

regions where the film height is above H∗; and b1 is the number of regions where the

height is below H∗. Assuming H∗ > b, for longer time, b1 → 1, i.e., a fully connected

precursor film forms (which is connected to the boundaries of the computational

domain), and b0 is the number of drops with a height larger than H∗ that are not

connected to the boundary. To further gain insight into the topological features, we
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Figure 5.12 Contour plot of the free surface height (center) for H0 = 0.05 at τ = 20.
The rest of the figure is as described in the caption of Figures 5.11. For this simulation,
the grid size is 1637× 1637.

compute the Betti numbers for threshold thicknesses H∗ ∈ [1.5b, 7H0], where b = 0.01

is the precursor thickness.

Figures 5.11 and 5.12 also plot the average Betti numbers b̀0 (top left) and b̀1

(bottom left), as contour plots. We observe the ‘peninsula’ like light blue structure in

b̀0 (top row), the tip of which starts at τ ≈ 3 and H∗/H0 ≈ 1. This corresponds to a

local increase of film thickness (therefore formation of isolated hill tops). These hill

tops are associated with formation of surrounding valleys, indicated by an increase of

b̀1 around the same time. We also note that this peninsula structure forms for early

times for which LSA describes the morphology of the film. At later times, when drops

start to form, see Figure 5.12, the Betti number b1 → 1, corresponding to a connected

precursor layer (no loops). The b̀1 result shows that there are no structures present

for any value of the threshold, suggesting in particular that there are no structures

present at small thresholds, or in other words, no satellite drops. Focusing on the

results for the average Betti number b̀0, we observe that b̀0 is mostly constant for

H∗/H0 < 3 and begins to decay to zero above this threshold value, indicating that

the majority of drop heights are approximately of the same order of magnitude.

143



Our previous analysis of 2D films showed the presence of satellite drops persisting

on a timescale longer than dewetting (τ � 1) for the linearly unstable film thicknesses

corresponding to positive disjoining pressure. For the present choice of parameters,

Π(H0) = 0 for H0 = 0.2624, see Figure 5.8. The question is whether similar behavior

can be observed for the currently considered 3D films. To answer this question, we

consider thicker films. Figure 5.13 shows the results for H0 = 0.6. We note that

the Fourier transform (and in particular, the dominant wave number) shows results

similar to those for thinner films shown in Figures 5.11 and 5.12. However, there

is a significant difference in b̀0 for threshold values below H0; specifically we note

the presence of the rectangular bright yellow region. Following the magenta line in

Figure 5.13, it may be seen that b̀0 is large for H∗/H0 < 0.5 and has a slight minimum

at H∗/H0 ≈ 1.5 and a maximum at H∗/H0 ≈ 2.5. This indicates the presence of

smaller secondary satellite drops (bright yellow region) and larger primary drops

(constant region for 2 < H∗/H0 < 3). Therefore, the finding that positive values of

the disjoining pressure lead to the existence of satellite drops for 2D films, is found

to propagate to 3D films.

Evolution of films exposed to both localized and random perturbations

We now switch focus to linearly unstable film thicknesses that are susceptible to

nucleation-type of instability. Previous results for 2D films in Chapter 4, which

consider the evolution of a single localized perturbation, show that the localized

perturbation would propagate into the flat regime, dewetting the film and successively

forming drops. Extracting the average distance between the drop centers, four

regimes were identified numerically: regions R I and R III, where the mean distance

between drop centers is characterized by λm, the most unstable wavelength (spinodal

dewetting); and regions R II and R IV, where the mean distance between drops is

not characterized by λm (nucleation dominated regime). These stability regions as

they relate to the disjoining pressure are shown in Figure 5.14. While we do not
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Figure 5.13 Plot of the free surface height (center) for H0 = 0.6 at τ = 20.
Corresponding radial Fourier transform (top right) of free surface height in center,
and local maximum of radial Fourier transform (bottom right) as a function of τ . Left
subpanels plot the average Betti numbers b̀0 (top) and b̀1 (bottom) as a function of
τ (horizontal axis) and scaled threshold valued H∗/H0 (vertical axis). The vertical
magenta line corresponds to the solution time in the respective subpanels. For this
simulation, the grid size is 3882× 3882.

consider directly the extension of a localized perturbation propagating in to the flat

regime for long times, we note that the 2D results for the mean distance between drop

centers produced by global random perturbations, while characterized by λm, shows

an increase in the variance in the mean distance in the R II and R IV regimes. This

is the feature of the results on which we focus in the current 3D simulations.
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Figure 5.14 Stability regimes R I, R II, R III, and R IV as described in the text.
The solid blue curve shows the disjoining pressure (5.8). The vertical dashed lines
were determined numerically in Chapter 4.
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To begin, we consider the evolution of a flat film of thickness H0 perturbed by

global random perturbations with superimposed larger localized perturbations with a

specified average mean distance apart. Specifically, the initial condition is given by

u(x, y, t = 0) = H0(1 + ε|ζ(x, y)|+ 10εη(x, y)) , (5.53)

where ζ(x, y) is the pseudo-Perlin noise (5.52), and localized perturbations are defined

by

η(x, y) =
4∑
i=1

4∑
j=1

exp

(
−(x− χi)2 − (y − ξj)2

0.04λ2
m

)
, (5.54)

where χi = (8i−4+4ai)λm, ξj = (8j−4+4bj)λm, and ai and bj are random variables

uniformly distributed on [−1, 1] i.e. we generate a two-dimensional array of localized

perturbations with mean distance 8λm apart.

Note that we do not consider the evolution of flat films with localized

perturbations only for three reasons: 1) previous results in Chapter 4 were done

in Cartesian coordinates, therefore, a radial localized perturbation is not a direct

extension to the initial condition of the previous results; 2) numerical instability in

the azimuthal direction dominates the radial instability which controls the distance

between drops (or circular rivulets in radial coordinates); 3) in practice, global random

perturbations are always present. Therefore, carrying out simulations where both local

and global perturbations are present brings us closer to understanding experimental

results.

Similarly to the previous section, plots similar to Figure 5.13 will be shown;

however, we note that the radial Fourier transforms may have more than one local

maximum; therefore, we also plot the second largest local maximum (yellow dots) of

the largest local maximum (red dots), and the local maximum of the radial Fourier

transform for the same film thickness with random perturbations only (dashed blue

curve). Note that we ignore the second largest local maximum if it is sufficiently
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small, specifically if it is less than 5% of the largest local maximum. In Figure 5.15,

simulation results are plotted for H0 = 0.2 (nucleation dominated regime) at τ = 2. It

may be seen that the localized perturbations grow into large holes and dominate the

radial Fourier transform for 1 < τ < 5. At later times, see Figure 5.16, while drops

form, the holes are still visually distinguishable (central column). Furthermore, for

τ > 5, there are two dominating wave numbers (top right subpanel in Figure 5.16),

one of which corresponds to the coarsened value from the simulation with random

perturbations only (compare to the dashed blue curve in the bottom right subpanel)

and the other wave number corresponding to the average distance between localized

perturbations, q = qm/8. These results indicate that it is possible to identify the

nucleation dominated regime; furthermore they show the importance of using large

scale simulations so as to be able to extract the second, smaller, wavenumber from

the radial Fourier transform.

Figure 5.15 Plot of the free surface thickness (center) for H0 = 0.2 at τ = 2.
Corresponding radial Fourier transform (top right) of free surface height in center,
and the large local maximum (red dots) and second largest local maximum (yellow
dots) of the radial Fourier transform (bottom right) as a function of τ . Here the dashed
blue curve corresponds to the local maximum of the radial Fourier transform for a
simulation carried out with the same film thickness, but with random perturbations
only, and the horizontal green line is the wave number associated with the average
distance between localized perturbations. Left subpanels plot the Betti numbers b̀0

(top) and b̀1 (bottom). The vertical magenta line corresponds to the solution time in
the respective subpanels. For this simulation, the grid size is 1970× 1970.
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Figure 5.16 Plot of the free surface height (center) for H0 = 0.2 at τ = 20. The
rest of the figure is as described in the caption of Figure 5.15. For this simulation,
the grid size is 1970× 1970.

Figure 5.17 plots, for comparison, the results for H0 = 0.05 (spinodal dominated

regime) at τ = 20. The results show that for long times, the localized perturbations

have negligible effect on the morphology, and only a single wave number (which is the

same as the simulation with random perturbations only) dominates the wave pattern.

Simulations were also carried out for H0 = 0.3 (nucleation dominated) and H0 = 0.6

(spinodal dominated), confirming the results.

Figure 5.17 Plot of the free surface height (center) for H0 = 0.05 at τ = 20. The
rest of the figure is as described in the caption of Figure 5.15. For this simulation,
the grid size is 1637× 1637.
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In regard to Betti numbers, we note that there is negligible qualitative difference

between simulation results with localized and random perturbations, and simulation

results with random perturbations only, compare Figures 5.11, 5.12, and 5.13 to

Figures 5.15, 5.16, and 5.17. However, we do note that there is a slight difference

in b̀1 (bottom left subpanels). Specifically, for random perturbations only, there is

one peninsula like structure, the tip of which starts at H∗/H0 = 1 and connects with

the vertical rectangular structure at 8 < τ < 10, whereas for the simulations in this

section, there are two peninsula structures, the lower of which corresponds to the

localized perturbations.

Metastable Regime Here we briefly investigate the metastability regime previously

studied for 2D films. The metastability regime corresponds to the film thicknesses that

are linearly stable; however, they are unstable with respect to perturbations of finite

amplitude. Previous analytical results have shown that there exists a thickness regime,

H0 ∈ (H+, Hm3) ≈ (1.01, 3.04), that is metastable. Extensive numerical simulations

have shown that for an initial condition of the form

h(x, y, t = 0) = H0

1− d exp

−[√x2 + y2

0.2W

]2
 , W = 4π (5.55)

with y = 0 for 2D films. For dewetting to occur, the magnitude of the perturbation, d,

required to induce dewetting, approaches 1 as H0 → Hm3 , i.e. for film thickness near

to or larger than Hm3 , the initial perturbation has to dewet the film for dewetting to

occur, d ≈ 1. In addition, for illustrative purposes, we consider an initial condition of

the form

h(x, y, t = 0) = H0 [1− dη(x, y)] , (5.56)

where the linear domain size is 100, H0 = 1.5, d = 0.85, and η(x, y) is given in (5.54)

with λm = 2.5 (for convenience, we use the value from (5.54) although λm is not

relevant for metastable films). An example of the free surface profile given by the
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initial condition specified by (5.56) is shown in Figure 5.18a, with the film profile at

t = 1000 in Figure 5.18b.

(a) (b)
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Figure 5.18 a) Example of the free surface profile given by the initial condition
given in (5.56), and b) the resultant free surface at t = 1000. c) Metastability results
for initial condition (5.55) as a function of the initial film thickness, H0, and initial
magnitude of the localized perturbation, d. From previous results for 2D films (y = 0
in (5.55)), the blue curve denotes the minimum d required to induce dewetting. For
the 3D films, × denotes initial condition parameters that induced dewetting, and ©
denotes parameters that did not induce dewetting.

To investigate the metastable regime, simulations are carried out with the initial

condition specified in (5.55) for several average film thicknesses H0 ∈ (H+, Hm3) and

several initial perturbation sizes d ∈ [0, 1]. As a function of H0, Figure 5.18c compares

the minimum d required to induce dewetting for 2D films (blue curve) to simulation

results for the radial extension of the same initial condition for 3D films (5.55). Here,

crosses and circles denote the parameters that do/do not induce dewetting, respectively.

It may also be seen that 2D results extend to 3D; however, the minimum d required to

induced breakup is slightly larger. This may be due to the difference in the geometry

between the localized perturbations in 2D and 3D.

5.5 Comparison to Experimental Results

In this section, we compare simulation results for NLC and polymeric films to available

experimental results. The disjoining pressures considered are given by (5.8) and (5.12),
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respectively. To scale the domain and initial condition for different film thicknesses,

simulations are performed on a square domain, and the linear domain size is scaled

with λm. In addition, we fix ∆s = 0.05 for both models. The initial condition is given

by (5.51). For all simulations in this section, we fix P = 40.

The first set of experimental results considered is dewetting experiments for

NLC films by Schlagowski et al. [1] and Vandenbrouck et al. [2]. In the experiments

by Vandenbrouck et al. [2], a flat film is formed by increasing the temperature of the

NLC such that a flat film is stable at the considered film thickness of interest (isotropic

phase). The flat film is formed by using a spin coating method, and then cooled to a

temperature so that it becomes unstable (nematic phase). Schlagowski et al. [1] varied

the temperature of the NLC sample, alternating between the isotropic and nematic

phases, observing the morphology of the film as the temperature crosses the threshold

between the isotropic phase and nematic phase. Figure 5.19 compares a 3D rendering

of our numerical results to experimental results of two different types of NLC. In

both experiments, the characteristic wavelength of undulations is appropriately 30

µm, which is similar to λ̂m = 42 µm for the parameters stated in (5.10) and (5.11).

(a)
(b)

(c)

Figure 5.19 a) Simulation result for a 50 nm (H0 = 0.5) thick film of 4-Cyano-
4’-pentylbiphenyl (5CB) nematic liquid crystal vs b) experimental results from b)
Schlagowski et al. (2002) [1] for a 85 nm thick 4-Octyl-4-Cyanobiphenyl (8CB) film
and c) Vandenbrouck et al. (1999) [2] for a 43 nm thick 5CB film.
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The next experiment we consider is that by Herminghaus et al. [3], who prepared

flat films of NLC in a Langmuir trough. Unlike the spin coating method, transferring

the flat film from the Langmuir trough to the solid substrate may induce defects

in the film (localized perturbations). To simulate this initial state, large localized

perturbations at random locations are added to the initial condition (5.51). Figure 5.20

demonstrates that the localized perturbations can induce the formation of large holes,

leading to patterns that are visually similar to the experimental images.

(a)

(b)

Figure 5.20 a) Simulation result for a 20 nm (H0 = 0.2) thick film of
4-Cyano-4’-pentylbiphenyl (5CB) nematic liquid crystal film vs b) an experimental
result from Herminghaus et al. [3] for a 40 nm thick tris(trimethylsiloxy) silane-
ethoxycyanobiphenyl (5AB4) film.

The last experiment we consider is a dewetting experiment with polymeric films

by Jacobs et al. (2008) [4]. Figure 5.21 compares simulation results with experimental

results for a 3.9 nm thick polymeric film on a silicon substrate coated with a 191 nm

layer of silicon oxide. It may be seen that the dominant wavelength in our simulations

matches the experimental results; however, the timescales of dewetting differ. This

may be due either to the choice of the initial perturbation size, or possibly to the

choice of the viscosity, recall (5.47), which, in the framework of LSA, only affects the

timescale of instability.
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(a) (b)

Figure 5.21 Comparison between a) our numerical simulations at t = 60s and b)
the experiment by Jacobs et al. (2008) [4] for a 4.9 nm film on a silicon substrate
coated with a 191 nm layer of silicon oxide. Note color scales on both subpanels are
the same; specifically, black corresponds to 0 nm and white corresponds to 20 nm.
The linear domain size in both subpanels is 8 µm and the scale bar for (b) corresponds
to 5µm.

5.6 Conclusions

In this chapter, we describe a GPU implementation of an ADI numerical scheme

applied to evolution of thin films in a three dimensional setting. The scheme has been

generalized to conservation equations with nonlinear fluxes, and validated by extensive

testing of its convergence and conservative properties, as well as by comparison with

linear stability analysis. The computational gains obtained by carrying out simulation

on a GPU are substantial, and allow for carrying out simulations in large domains

with rather basic computational resources.

The main set of results presented in this chapter focuses on three dimensional

(3D) simulations of unstable films. We find that the main features of the results

previously presented in 2D persist in 3D. In particular, satellite (secondary) drops

are still observed for positive values of the disjoining pressure, and also we find

distinctive features of instability development as film thickness is varied within the

linearly unstable regime. While these results are consistent with the 2D ones, they

also provide much more detailed information about instability development, due to
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the presence of an additional physical dimension. The large scale simulations that we

present in this chapter allow also for a direct comparison with experimental results

carried out with nematic liquid crystal, as well as polymer, films.

There are several possible avenues for extending the work presented in this

chapter. Regarding satellite drops, the nucleation dominated regime, and the

metastable regime, investigation of other thin film models (with similar disjoining

pressure) would verify the generalization of our results in terms of a disjoining pressure.

There are also several possible improvements that may be made to our GPU code, for

example, a multi-GPU implementation, implementing adaptive mesh refinement, or

improving numerical accuracy. Another important improvement would be to improve

the parallelization of the linear solver using techniques such as the SPIKE method [80]

or cyclical reduction [81,82].
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

To summarize this thesis, we find that using a combination of analytical and

computational techniques allows us to reach novel understanding of relevant instability

mechanisms, and of their influence on transient and fully developed fluid film

morphologies. While numerical simulations were performed in the context of nematic

liquid crystals, the analytical techniques presented may be applied to a variety of thin

film models. Therefore, it is of great interest to extend these results to other thin film

models.

For flow down an inclined substrate, we have explored a variety of instability

types (stable, convectively unstable and absolutely unstable) that occur behind a fluid

front flowing down an incline (traveling wave). The complex interactions between

these instabilities and the instability transverse to the flow have also been explored

using numerical simulations and analytical techniques.

On a horizontal substrate, several stability regimes have been identified for a flat

film: linear instability, metastability, absolute instability, nucleation dominated, and

spinodal dominated. Secondary satellite drops that exist on time scales much longer

than dewetting were thoroughly investigated using extensive numerical simulations.

These results were framed in terms of an effective disjoining pressure as a function of

the initial film thickness, the qualitative functional form of which appears in several

other thin film models.

We have also presented a GPU code developed by the author and have

demonstrated the significant performance gains possible through GPU computing

and, in general, parallel computing. Without such gains the simulations of Chapter 5

would not have been feasible. Several possible improvements to the GPU code have

also been discussed, which would be of benefit to explore in the future.

155



APPENDIX A

GPU IMPLEMENTATION

In this appendix, the specifics of the GPU implementation are discussed. To begin, we

give an overview on key concepts of GPU computing utilized in our implementation.

The GPU is a vector type processor which processes data in the Single Instruction,

Multiple Data (SIMD) framework of parallel computing [83], i.e., the same finite

difference scheme (single instruction) is applied at each grid point (multiple data). A

GPU consists of several multi-core processors (MPs) which share a global memory

bank (analogous to the CPU memory). Analogous to the levels of cache memory on

CPUs 1, each MP has a fast (compared to global memory) shared (between cores of

a MP) memory bank, and an even faster register memory (of the individual cores);

however, unlike CPU cache memory, the shared memory bank has to be explicitly

handled in a code in order to reduce redundant access to the (slow) global memory.

Use of register memory is automatic when defining variables within the scope of the

kernel (similar to the automatic use of cache memory on a CPU). Typically, the

shared memory bank is used to store data that will be reused by other threads within

a thread block, whereas register memory is used to store values that will only be used

by an individual thread.

In CUDA, instructions on the GPU (device) are executed from the CPU (host)

in terms of kernel calls. There are two input parameters unique to a kernel call, each

composed of 3 numbers, specifying the size of a vector, matrix, or tensor. The purpose

of these parameters is to divide a domain into sub-lengths, sub-squares or sub-cubes;

and assign each sub-domain a vector, matrix, or tensor of threads, which we will refer

1 Technically, the shared memory bank is not a level of cache memory, and MPs already
have a L1 and a L2 cache (register memory).
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to as a thread block. The input parameters provide an intuitive way of sub-dividing a

multi-dimensional domain for parallelization (sub-domains), and a natural (geometric)

way of mapping threads to points on the sub-domain. On the hardware level, threads

within a thread block are further sub-divided into groups called warps (32 threads to

each warp for the GPU used in this paper). Instructions to the MPs are batched in

terms of warp (vectors) and are executed in the SIMD architecture framework.

The last important concept for GPU computing (for our implementation) is

coalesced data access to the global memory, i.e., adjacent data values that are adjacent

in memory may be accessed in a single SIMD transaction (as opposed to multiple

transactions), improving efficiency. This is an important issue for the ADI method, in

particular, solving the system of penta-diagonal matrices in each direction, the details

of which will be discussed in A.2.1.

Note 1: It is important to note that to fully utilize all threads on a MP, the

size of the thread block is typically an integer multiple of the warp size.

Note 2: Since warps are executed in the SIMD framework, warps with threads

with different instructions (warp divergence) are not computed in parallel, but each

different instruction is executed in series, e.g., for n different sets of instructions,

the warp is computed in n serial steps (each sub-group of threads, within the warp,

with the same instructions, are computed in parallel). Ghost points remove warp

divergence at the boundaries; however, this is only an order I + J improvement (the

complexity of the complete scheme is IJ).

A.1 GPU and CPU Interactions

In addition to the three levels of GPU memory, the GPU may also access the CPU

memory; however, the access time for this level of memory (with respect to the GPU

memory) is prohibitively slow and may drastically affect the performance of a GPU

code, e.g., for simple computations, the time required for transferring the data between
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the GPU and CPU can be comparable to (or even greater than) the time required

to perform the computation on the GPU. Furthermore, data have to be explicitly (in

code) transferred between the GPU and CPU, and memory must be allocated on both

the CPU and GPU 2, 3. To remove this bottleneck, unless necessary, all computations

are performed on the GPU. Recalling the outline of the numerical scheme, controlling

the adaptive time stepping is independent of grid size, therefore performed on the

CPU. Computationally expensive steps (center column of steps in Figure 5.1) may be

(naively) parallelized on the GPU, with the exception of evaluating the convergence

criteria (restrictions on accepting the solution at the new time).

To compute the convergence criteria, we first note that for serial computations,

it is simple to determine if the convergence criteria are violated at any of the grid

points, i.e., the serial code may iterate through the grid points until the convergence

criteria is not satisfied; once determined, the appropriate changes may be made to

the time step. However, this procedure is slightly non-trivial on a GPU; specifically, a

thread can not terminate the execution of warps in the queue (remaining grid points

at which the convergence criteria are to be computed). Therefore, once one of the

convergence criteria is determined not to be satisfied at a grid point, this information

(state) cannot be returned to the CPU, nor can control be returned to the CPU in

this manner; thus, the appropriate changes to the time step cannot be determined.

The naive approach is to transfer the data from the GPU’s memory to the CPU’s

2 Newer GPU models that support NVDIA’s Unified Memory model, where explicit
transferring of data and allocation of memory on both the CPU and GPU is no longer
necessary. Our implementation was originally developed on an older GPU that did support
the Unified Memory model.

3 Data in memory are typically organized in blocks of fixed length, often called ‘pages’.
For higher data bandwidth between CPU and GPU, the CPU memory is page-locked to
GPU memory (called ‘pinned’ memory in CUDA), i.e., Similar to coalesced data access,
page locking provides a direct mapping between pages in the GPU’s memory and the
pages in CPU’s memory, removing offsets between pages, allowing CUDA to improve the
data bandwidth by transferring the page in a single instruction (as opposed to multiple
instructions).
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memory. However, as mentioned before this transfer is slow; therefore, a reduction

method is used to reduce the amount of data to transfer. In more exact terms, each

thread evaluates the convergence criteria at a grid point. The data are reduced on

each thread block (sub-domain) by determining if any of the convergence criteria are

not met within the thread block, and the reduced data (information for each thread

block) are transferred to the CPU.

In our implementation, the size of the thread block is 16× 16, thus reducing the

total amount of data to be transferred by a factor of 256. To further reduce the data

volume to be transferred, we do not store the 8 byte double precision value for the

point that violates the convergence criteria, but instead store an integer value (an ID

representing the convergence criterion that was not satisfied) in a 1 byte char (flag

variables). In total, this method reduces total volume of data to be transferred by a

factor of 2048, and the cost of transfer is therefore negligible compared to the GPU

computations. The relevant information regarding convergence criteria may then be

compressed (reduction) by the GPU, transferred quickly to the CPU, and using a

simple loop, the CPU checks the flag on each thread block and adjusts the time-step

accordingly.

Note 1: To the authors’ knowledge, on a GPU, each entry in a boolean array

is stored as a byte (8 bits), thus is not a true bit array (1 bit per entry); thus there

is no reduction in memory usage when using a boolean array instead of a char array.

While a bit array could have been implemented, this was not done as: a) memory

has to be carefully accessed by threads so as to not incur inefficiencies; b) the use of

char values allows information about the failure state on a sub-domain to be passed

back to the host CPU (thus logged); and c) the total data size has been sufficiently

reduced.

Note 2: The reduction on the GPU may be done recursively, i.e. one could

further divide the flags into sub-domains, and check whether each flag on the sub-
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domains (of flags) is equal to one of the convergence conditions IDs. However with

each recursive step, there are diminishing returns in efficiency (less parallelization due

to recursively smaller domain sizes), and furthermore, a sufficient reduction in the

size of the data has already been achieved.

Having developed a hybrid method (CPU and GPU) to evaluate the convergence

criteria, all computationally expensive operations (center column of steps in Figure 5.1)

can be parallelized on the GPU, and only a small volume of data (relative to size of

the solution) has to be transferred between the CPU and the GPU at every time step

and iteration step. While the remaining computationally expensive operations (center

column of steps in Figure 5.1) may have a naive parallelization, for fast computation,

effective uses of the various GPU memory types is required. This applies in particular

to solving (5.33) to (5.35), which we focus on in the next section.

A.2 GPU Kernels

Analogous to loop fusion (removal of loop overheads by combining similar loops),

reducing the number of kernel calls (kernel fusion) can improve efficiency, in particular,

by reducing repeated requests to the same data in global memory, and reducing the

use of global memory to store intermediary data. Before discussing the details of the

kernels solving (5.33) and (5.34), we first present the remaining GPU computations,

which are computed with two kernels: the preprocessing kernel, which computes the

solution at the ghost points and the nonlinear functions and their derivatives at the

cell-center points (xi+ 1
2
, yj+ 1

2
) (see § 5.2.3 and 5.2.4); and the reduction and update

kernel, which computes the solution criteria and reduces the dataset, and updates the

iteration step (5.35) 4. In both kernels, the domain is sub-divided into squares (16×16

4 At this point it is unknown if the iteration step satisfies the solution criteria; therefore,
this calculation is possibly redundant if the solution is rejected, however, this inefficiency is
negligible in comparison to splitting the kernel.
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in our implementation) and assigned a thread block of the same size, see Figure A.1a.

Shared memory and register memory are naively used to remove repeated access to

global memory.

(a) Generic (b) Linear System Solver (c) Form Linear System

Figure A.1 Graph of the various sub-domain block and thread block combinations
used in this GPU implementation. Thin lines denote borders between cell centers and
thicker lines denotes sub-domain blocks. Light gray shaded areas mark an example
subdomain, with darker gray shared areas marking thread block. Note in b) thread
block and sub-domain block are the same.

To solve efficiently the penta-diagonal system defined in (5.33) and (5.34)

requires care. Recall that at each time step and each iteration step, there are I

penta-diagonal matrices of size J × J and J penta-diagonal matrices of size I × I to

invert, (5.33) and (5.34), respectively. To show this, we arrange solution values u(i,j)

in terms of a matrix, u; and use the subscripts (, j) and (i, ) to refer to the jth column

of u (fixed y) and the ith row of u (fixed x). Similar notation will be used for v and

w. Using this notation, we may express (5.33) to (5.35) as

Aj

[
w(,j)

]T
=

[
an+1

(k),(,j) + bn(,j)

]T
0 ≤ j < J , (A.1)

Biv(i,) = w(i,) 0 ≤ i < I , (A.2)

un+1
(k+1) = un+1

(k) + v , (A.3)
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where

Aj = I +
∆t

2
Jyj , Bi = I +

∆t

2
Jxi ,

an+1
(k),(,j) = −

(
I− ∆t

2
D(,j)

)
un+1

(k),(,j) , bn(,j) =

(
I− ∆t

2
D(,j)

)
un(,j) .

(A.4)

Note that Aj and Bi are penta-diagonal matrices representing the implicit y derivatives

for a fixed xi, and the implicit x derivatives for a fixed yj, respectively.

We therefore solve (A.1) and (A.2) in four kernels: 1) Compute Ai for each i,

an+1
(k) and bn; 2) Invert the penta-diagonal system in (A.1) and compute the transpose

(coalesce data access); 3) Compute Bj for each j; and 4) Invert penta-diagonal systems

in (A.2) and compute the transpose.

Note 1: bn is independent of the iteration step, k, and is therefore only

computed at the initial iteration step (for each time step), and stored in memory

for use in future iterations. Furthermore, when initializing the iterative method,

un+1
(0) = un, we do not explicitly copy un into un+1

(0) , but instead manipulate array

pointers to access the correct terms.

Note 2: While there exist pre-existing subroutine libraries to perform a matrix

transpose, to remove redundant global memory access, the inverse solver is fused with

an efficient transpose method.

Note 3: Kernel fusion may be used to combine steps 1) and 3); however, the

time saving is negligible compared to the prohibitive total global memory cost, e.g.,

if M bytes are needed to store the solution, 6M bytes are required to store one set of

penta-diagonal linear systems, plus an additional M bytes for the fixed implicit term

in (A.4), bn. Our current implementation restricts the total domain size to be able

to fit into global memory; therefore, not fusing the kernels allows almost 25% more
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memory to be utilized (an additional 4M bytes are needed for storing the nonlinear

functions and their derivatives) 5.

A.2.1 Linear System Solver

We begin with the most difficult computation to parallelize, inverting the penta-

diagonal linear systems, (A.1) and (A.2). At best, a single penta-diagonal linear system

may be solved with linear complexity; however, the scheme is highly non-parallelizable.

To parallelize a single penta-diagonal system would require a reduction type method;

however, such a method would increase the total number of calculations. To avoid

this issue, we instead assign to each thread on a GPU a linear system to solve.

To invert an individual penta-system, a LU factorization 6 is implemented e.g.,

Ai = LiUi. In general, solving the linear system LiUiai = ci may be separated into

two operations,

Uiai = bi , and Libi = ci , (A.5)

which may be inverted with linear complexity. To sub-divide the (x, y) domain

for parallelization, the domain is divided according to the spatial direction, i.e., the

domain is divided into strips. The direction that is sub-divided depends on the current

direction of the ADI method being computed e.g., solving the implicit y derivatives

for fixed x, the domain is divided in the x direction. The width of the strips (16 in our

implementation) is the number of penta-diagonal systems in each sub-domain (strip)

5 Our implementation uses synchronous kernel calls i.e. kernels are executed in serial by the
CPU. By sub-dividing the domain into partitions (which would be further sub-divided by
the kernels), clever use of asynchronous kernel calls may be used to reduce the total memory
requirement, e.g., if each partition contains M1 � M bytes of the solution, then 5M plus
some small multiple of 10M1 bytes would be required, i.e., the total memory usage may be
halved (approximately).

6 While Gaussian elimination may be used, it requires more divisions to be computed, which,
on a GPU, is more expensive to evaluate when compared to a multiplication. On a CPU,
typically, there is no significant difference.
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e.g., different i in (A.5). Each sub-domain is assigned a vector of threads (equal to

the width of the strips) which invert the subset of penta-diagonal systems by LU

factorization. Figure A.1b gives an example of a 16×16 domain with strips of length

4. Since each penta-diagonal system is independent (for a given ADI direction), each

step of the LU factorization is essentially a three point iterative method, therefore,

register memory is used to store the previous two iterative points.

As mentioned previously, to utilize memory coalescence (threads access data

points that are adjacent to each other in global memory), data must be transposed

in memory. To fuse the transpose with LU factorization, the transpose is computed

while inverting the second step of the LU factorization, e.g., inverting Uiai = bi in

(A.5). Since coalesced memory access is not relevant for shared memory access, it

may be used to temporarily store data. For example, in the y implicit direction

of the ADI method, 16 threads (each x value) compute an iteration step (fixed y

value) of the U factorization, and then store the data row-wise (fixed y) in a square

block of shared memory, the size of which depends on the strip width (16× 16 in our

implementation). Repeating the U factorization for the next 15 iteration steps, the

solution is computed on a 16 × 16 sub-block. The transpose may be performed in

a block-wise fashion by accessing the shared memory column-wise (fixed x) without

any significant inefficiency, and then stored in global memory with coalesced access.

A.2.2 Computing the Linear System

We now switch focus to the remaining two kernels not yet defined, computing Aj,

an+1
(k,(,j)), bn(,j), and Bi in (A.4). It is mostly trivial to parallelize the computation

of Aj, Bi, an+1
(k),(,j) and bn(,j), as at a given time step, threads do not depend on the

data computed by other threads; however, to compute numerical derivatives, adjacent

points are required, therefore it is prudent to use shared memory to reduce redundant

global memory access.
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To compute Bi in (A.4), the domain is divided into squares and assigned a

thread block of equal size (16×16 in our implementation). While we may define a

shared memory block of equal size to the sub-domain, threads near the x boundaries

of the sub-domain depend on data in the adjacent sub-domain; therefore analogous

to the idea of ghost points, we padded that shared memory block with ghost points

(corresponding to solution values in adjacent sub-domains). In our implementation,

adding ghost points (2 points at each boundary) results in a 20×16 block of shared

memory. Note that data must be in the transpose form; however, since shared memory

is already being used and a square thread block is operating on the sub-domain, the

transpose is performed block-wise when transferring the data to global memory.

While we may apply the same procedure for computing Aj, an+1
(k),(,j), and bn(,j)

in (A.4), unlike computing Bi, threads near either the x or y boundaries of the

sub-domain depend on data in the adjacent sub-domain; therefore, the shared memory

bank is padded with ghost points in both directions (20×20 in our implementation).

For the Bj shared memory block, ghost points could be transferred from global

memory to shared memory with little inefficiency; however, for the Ai, an+1
(k),(,j), and

bn(,j) shared memory blocks, memory transfer is inefficient with the additional ghost

points. A faster approach is to subdivide the domain into sub-rectangles and assign

each sub-domain a vector of threads e.g., in our implementation the sub-domain size

is 32×15, where the 32 threads are mapped to 32 x values, and each thread loops

through 15 y values, see Figure 5.2. Furthermore, we note that the y derivatives, at

most, depend on five points (j − 2, j − 1, j, j + 1 and j + 2); therefore, instead of a

(32+4)×(15+4) (sub-domain plus ghost points) shared memory block, we implement

five 36 × 1 shared memory blocks. Similarly, function values and their derivatives

require three points, therefore six (three each) 36×1 7 shared memory blocks are used

7 While only a 34× 1 shared memory block is required to store function values plus ghost
points, a 36 × 1 domain is chosen to align shared memory indices to those of the shared
memory used to store the solution, simplifying coding.
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for each nonlinear function (there are two in our model). While the initial iteration

(first y value on sub-domain) requires transferring seventeen 36×1 blocks of data from

global memory to shared memory, in subsequent iterations, only five 36 × 1 blocks

of data are transferred from the global memory to shared memory: the solution, the

two non-linear functions and their derivatives.

Note: It is interesting to note that numerical tests show that the choice of

15 in the sub-block size for Ai, an+1
(k),(,j), and bn(,j) leads to the fastest computation

time (seemingly independent of the thread block size), which is related to our

implementation. To remove explicitly copying data between shared memory location,

computations for each looped y value are grouped into a subroutine, and at each loop

step, the input parameters are alternated by pointer manipulation. For example, for

a generic three point method, first define v−1 = uj−1, v0 = uj, and v1 = uj+1, where

u is the global memory variable and v is the shared memory variable. Performing the

following operations at the next three iteration steps (three cycle):

1. Compute f(v−1, v0, v1), and then set v−1 = uj+2.

2. Compute f(v0, v1, v−1), and then set v0 = uj+3.

3. Compute f(v1, v−1, v0), and then set v1 = uj+4.

It may be seen that by the third step, v−1 = uj−1+3, v0 = uj+3, and v1 = uj+1+3, i.e.,

the definitions of the shared memory variables are realigned but offset by 3. Similarly,

a five point method results in a five cycle. Recalling the combined stencil in Figure 5.2,

the method is a three point method with respect to function values, and a five point

method with respect to solution values; therefore, combining the 3 cycle and 5 cycle,

results in a 15 cycle, the most efficient choice for the y domain size according to

numerical tests.
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APPENDIX B

RADIAL FOURIER TRANSFORM

In this section we give an overview of the procedure for computing the radial Fourier

Transform used to analyze simulations in § 5.4.3. To map the magnitude of the 2D

Fourier transform to the radial Fourier Transform, a one dimensional (1D) function of

the magnitude of the wave number qr =
√
q2
x + q2

y , six processing steps are performed.

The first four steps smooth the magnitude of the Fourier transform and map the

smoothed data from a 2D Cartesian definition of the wavenumber to a 1D function

of the magnitude of the wave number. The remaining two steps further smooth the

data so as to reliably extract the local maxima.

(a) (b)

0 1 2 3 4 5
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F
F
T

×10
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(d)

Figure B.1 a) An example the log of the magnitude of the two-dimensional Fourier
transform. b) An example of smoothing the data in (a) using a convolution with a
Gaussian filter. c) A plot of: i) the data in (b) mapped to a radial one-dimension
function (yellow scatter plot) using equation (B.1); ii) a linear least squares fit of the
scatter plot data to the piece-wise linear function ( red ‘×’ symbols); and iii) the
piece-wise linear function smoothed with a moving average filter (dashed blue curve).
d) Is a zoomed in version of subpanel (c) demonstrating the improved smoothness
using the moving average filter.

First, the peak at the zero wave number is removed by subtracting the initial film

thickness H0, i.e., the magnitude of the Fourier transform of ζ(x, y) = h(x, y)−H0 is

computed, an example of which is shown in Figure B.1a. Second, to reduce noise and

smooth out the data, the magnitude of the Fourier transform data is convoluted with a
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Gaussian function/filter. Third, the smoothed data, ζ̄ are mapped from the Cartesian

coordinates (qxi , qyj) to polar coordinates (qri , qθj). Fourth, the polar coordinate data

are mapped to a (radial) function ¯̄ζ(qri), by averaging over the θ direction for a fixed

qri , i.e., we compute

¯̄ζ(qrk) =
1

Nk

∑
(i,j)∈Pk

ζ̄(qri , qθi) , Pk = {qri , qθi ∈ R|qri = qrk} (B.1)

where Nk is the number of points in the set Pk. An example of (B.1) is given by the

yellow scatter plot in Figure B.1c with Fourier transform data in Figure B.1a. To

extract a local maximum (dominant wavenumber) numerically, sufficiently smooth

data are required. To smooth the scattered data two final processing steps are

performed: first, using a linear-least squares method, the scattered data are fitted to

a piece-wise continuous function of the form

¯̄̄
ζ(q) = ak + bk

s− qk
qk+1 − qk

, where s ∈ [0, 1] , q = qk + s(qk+1 − qk) , (B.2)

and the domain is restricted to q ∈ [0, 5qm] (reducing computational cost). Note that

we choose qk’s such that each interval contains 10 points. Denoting the number of

intervals as K, continuity implies bk = ak+1 − ak for 0 ≤ k < K − 1 and choosing

a0 = 0 (i.e. ζ(q = 0) = 0) leaves K free parameters: bK−1 and ak for 1 ≤ k ≤ K − 1,

therefore the fitting procedure is fully determined.

An example of this fitting procedure is given by the red ‘×’ scatter plot in

Figure B.1c. This step accurately captures the trend of the scattered data; however,

we could not produce a sufficiently smooth function, see Figure B.1d for a comparison

between the piece-wise continuous function (red ‘×’ symbols), and the additional

smoothing step (dashed blue curve) discussed next. To smooth the piece-wise

continuous function, the next step evaluates (B.3) on an equipartitioned grid of 400
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points and smooths the data using a moving average filter. Specifically, we compute

¯̄̄̄
ζ(qk) =

1

2P + 1

P∑
p=−P

¯̄̄
ζ(qk+p) (B.3)

where P is half the filter width, and the filter is applied three times with P = 3, 2,

and then 1.

To numerically extract the local maxima, a second order method is used to

compute the derivative of the radial Fourier transform, and a combination of a bisection

method and interpolation is used to find the roots of the derivative (critical points). To

extract the local maxima, the first derivative test is used where the second derivative

is computed numerically at the roots.
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