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ABSTRACT

WIRELESS COVERAGE USING UNMANNED AERIAL VEHICLES

by
Hazim Shakhatreh

The use of unmanned aerial vehicles (UAVS) is growing rapatiross many civilian
application domains including real-time monitoring, s¥aand rescue, and wireless
coverage. UAVs can be used to provide wireless coveragaglemergency cases where
each UAV serves as an aerial wireless base station when ithiaceetwork goes down.
They can also be used to supplement the ground base stataydento provide better
coverage and higher data rates for the users. During sugatisns, the UAVS need
to return periodically to a charging station for rechargidge to their limited battery
capacity. Given the recharging requirements, the problemioimizing the number of
UAVs required for a continuous coverage of a given area isditglied in this dissertation.
Due to the intractability of the problem, partitioning theverage graph into cycles that
start at the charging station is proposed and the minimunteuawf UAVS to cover such
a cycle is characterized based on the charging time, theltngvtime and the number
of subareas to be covered by a cycle. Based on this analysifiaient algorithm is
proposed to solve the problem.

In the second part of this dissertation, the problem of ogkiplacement of a single
UAV is studied, where the objective is to minimize the totalnsmit power required to
provide wireless coverage for indoor users. Three casesofipal interest are considered
and efficient solutions to the formulated problem undereteses are presented. Due to

the limited transmit power of a UAV, the problem of minimigithe number of UAVs



required to provide wireless coverage to indoor users tiatland an efficient algorithm
is proposed to solve the problem.

In the third part of this dissertation, the problem of maxmg the indoor wireless
coverage using UAVs equipped with directional antennagudied. The case that the
UAVs are using one channel is considered, thus in order toimma& the total indoor
wireless coverage, the overlapping in their coverage vekim avoided. Two methods
are presented to place the UAVSs; providing wireless cowefegm one building side and
from two building sides. The results show that the upsiderdarrangements of UAVs
can improve the total coverage by 100% compared to providingless coverage from
one building side.

In the fourth part of this dissertation, the placement pgoblof UAVs is studied,
where the objective is to determine the locations of a set A&fdJthat maximize the
lifetime of wireless devices. Due to the intractability bétproblem, the number of UAVS
is restricted to be one. Under this special case, the prodormulated as a convex
optimization problem under a restriction on the coveraggeaof the ground users and a
gradient projection based algorithm is proposed to find ftem@l location of the UAV.
Based on this, an efficient algorithm is proposed for the garoase of multiple UAVS.
The problem of minimizing the number of UAVs required to getlre ground users such
that the time duration of uplink transmission of each wissleevice is greater than or
equal to a threshold value is also studied. Two efficient oadlare proposed to determine

the minimum number of UAVs required to serve the wirelessabs/
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CHAPTER 1

INTRODUCTION

UAVs can be used in many civilian applications due to theseeaf deployment, low
maintenance cost, high-mobility and ability to hover [2Juc8 vehicles are being used
for real-time monitoring of road traffic, remote sensingarsé and rescue operations,
delivery of goods, security and surveillance, precisioncadgfure, and civil infrastructure
inspection. They can also be used as aerial wireless bdsmstio complement existing
cellular network service by providing additional capacdiyhotspot areas during special
events [3] or to provide wireless coverage when cellulawnéts are not operational due
to natural disasters [4]. Cell on wheels (COWSs), is typicaked to provide expanded
wireless coverage for short-term demands, when cellulaerege is either minimal,
never present or compromised by disaster, as shown in Figdre Compared to the
COWs, the advantage of using UAV-based aerial base stagaheir ability to quickly
and easily move during emergency cases [5]. They can move &ffRient placements
that optimize several objective functions of interest apdaie their placements based on
users distribution changes. In Puerto Rico, AT&T have dggdio TE-equipped UAVS to
provide wireless connectivity to customers who lost sendfter Hurricane Maria [6], as
shown in Figure 1.2. They also look to utilize UAVs to enhatfuewireless coverage at

big events like music festivals [7].



Figure 1.1 Verizon COW used during the 2018 Spring Creek fire in Huerf@oanty,
Colorado.
Source: [8].

1.1 UAV Classification

The authors in [9] classify the UAVs into four categories dza®n their altitudes and
their wing types, each with its own strengths and weaknesBhks first category is the
high altitude platforms (HAPs). HAPs are designed for lahgation flights counted
in months at altitudes above 17 km. They are typically wiizo provide wide wireless
coverage for remote geographic areas. However, they atly aosl their deployment time
is significantly long. The second category is the low altgydatforms (LAPs). LAPs are
flexible and can fly at altitudes of up to a few kilometers. They typically utilized to
provide wireless coverage during emergency cases or teatalata from ground sensors.
On the other hand, they need to return periodically to a ¢chgwstation for recharging, due
to their limited battery capacity. The third category is fixed-wing UAVs. Fixed-wing
UAVs have high speed and more payload, but they need to nraataontinuous forward
motion in order to remain aloft, thus are not appropriatestationary use cases. The

fourth category is the rotary-wing UAVs. Rotary-wing UAVarchover and stay stationary



Figure 1.2 AT&T UAV used after Hurricane Maria in Puerto Rico.
Source: [6].

in the air [10], but they have limited payload. In Table 1.E present the types of UAVs

and their capabilities.

1.2 UAV Use Cases
The authors in [10-12] present the typical use cases oflagreless base stations. Some

of the UAV use cases are as follows:

e UAVs to enhance the wireless coverage: UAVs can be utilipesupplement the
ground base station in order to provide high probabilite lof sight channels when
the location of user has a high blockage probability or lowadate due the high
path loss as shown in Figure 1.3.a.

e UAVs as network gateways: In remote geographic areas osteisatricken areas,
UAVs can be used as gateway nodes to provide connectivitg¢klbdmne networks,
communication infrastructure, or the Internet as shownguie 1.3.b.

e UAVs as relay nodes: UAVs can be utilized as relay nodes toigeowireless
connectivity between two or more distant wireless devicgbout reliable direct
communication links as shown in Figure 1.3.c.

e UAVs for data collection: UAVs can be utilized to gather detalerant information
from a large number of distributed wireless devices. An gxans to collect data
from wireless sensors in precision agriculture applicetias shown in Figure 1.3.d.



Table 1.1UAV Classification

High altitude | - Long endurance.
platform (HAP) | - Wide coverage.

- Altitude above 17 km.

Altitude - Fast deployment.
Low altitude | - High Mobility.
platform (LAP) | - Low cost.

UAV - Limited flight time .

Classification - High speed.
Fixed-wing | - Cannot hover.
- High payload.

Wing type - Fly for several hours.

- Can hover.
Rotary-wing | - Low speed.

- Fly less than one hour.

Source: [9].

1.3 Dissertations Outline
We start by studying the continuous coverage problem in @n& In the continuous
coverage problem, we aim to minimize the number of UAVs resplifor a continuous
coverage of a given area, given the recharging requiremddte to the intractability
of the problem, we study partitioning the coverage grapb ycles that start at the
charging station. We first characterize the minimum numlbddA/s to cover such a

cycle based on the charging time, the traveling time, anchtimber of subareas to be
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(d) UAVs for data collection.

Figure 1.3 Typical use cases of aerial base stations.

covered by the cycle. Based on this analysis, we then dewglagdficient algorithm, the
cycles with limited energy algorithm. The straightforwanéthod to continuously cover
a given area is to split it into N subareas and cover it by Neyelsing N additional
UAVs. We demonstrate that the cycles with limited energyatgm requires 69%-94%

fewer additional UAVs relative to the straightforward madh as the energy capacity of



the UAVs is increased, and 67%-71% fewer additional UAVghasnumber of subareas
is increased.

In Chapter 4, we study the problem of efficient placement afigis UAV, where the
objective is to minimize the total transmit power requiredccbver the indoor users. The
formulated problem is generally difficult to solve. To thatde we consider three cases
of practical interest and provide efficient solutions to filmenulated problem under these
cases. Then, we study the problem of minimizing the numbefs required to provide
wireless coverage to the indoor users and prove that thidgemois NP-complete. Due
to the intractability of the problem, we use clustering tonimize the number of UAVsS
required to cover the indoor users. In our proposed alguortithie check if the maximum
transmit power of a UAV is sufficient to cover each clustendt, the number of clusters
is incremented by one, and the problem is solved again. Inniferm split method, we
split the building intdk regular structures and utiliZzeUAVs to provide wireless coverage
for indoor users regardless of user distribution. We dermatesthrough simulations that
the method that splits the building into regular structuespuires 80% more number of
UAVSs relative to our proposed algorithm.

In Chapter 5, we aim to maximize the indoor wireless coveragi@g UAVs
equipped with directional antennas. We study the case k®atJAVs are using one
channel, thus in order to maximize the total indoor wirelesgerage, we avoid any
overlapping in their coverage volumes. We present two nustho place the UAVS;
providing wireless coverage from one building side and frtwva building sides. Our
results show that the upside-down arrangements of UAVs,iro@nove the maximum

total coverage by 100% compared to providing wireless @myefrom one building side



when the UAVs use one channel. In order to provide full wgsleoverage, we use UAVS
with multiple channels and show that the upside-down aearents of UAVs required
20%-33% fewer number of UAVSs.

In Chapter 6, we formulate the placement problem of UAVs, nettbe objective
is to determine the locations of a set of UAVs that maximizetime duration of uplink
transmission until the first wireless device runs out of gneWe prove that this problem
is NP-complete. Due to its intractability, we start by rigsiing the number of UAVS to
be one. We show that under this special case the problem camrbelated as a convex
optimization problem under a restriction on the coveraggeaof the ground users. After
that, we propose a gradient projection-based algorithmni thhe optimal location of
the UAV. Based on this, we then develop an efficient algoritomthe general case of
multiple UAVSs. The proposed algorithm starts by clusterthg wireless devices into
several clusters where each cluster being served by one A it finishes clustering
the wireless devices, it applies the gradient projectiasel algorithm in each cluster.
We also formulate the problem of minimizing the number of WAéquired to serve the
ground users such that the time duration of uplink trandomssf each wireless device is
greater than or equal to a threshold value. We prove thaptbldem is NP-complete and
propose to use two efficient methods to determine the minimummber of UAVs required
to serve the wireless devices.

The dissertation is finally concluded in Chapter 7.



CHAPTER 2

RELATED WORK

UAVs deployment problem is gaining significant importance UAV-based wireless
communications where the performance of the aerial wisetetwork depends on the
deployment strategy and the 3D placements of UAVs. In thaptdr, we classify the
related work based on the UAV deployment strategies.

The first deployment strategies are used for minimizingriduesmit power of UAVS.
The authors in [13] propose an efficient deployment fram&vior deploying the aerial
base stations, where the goal is to minimize the total trangower of UAVs while
satisfying the user rate requirements. They apply the @timnsport theory to obtain the
optimal cell association. After that, they derive the ogirocations of the UAVs using
the facility location framework. The authors in [14] invgstte the downlink coverage
performance of a UAV, where the objective is to find the optibh altitude which leads
to the maximum ground coverage and the minimum transmit powg15], the authors
propose an optimal placement algorithm for a UAV to maxinitze number of covered
users using the minimum transmit power. The algorithm dplEsithe UAV deployment
problem in the vertical and horizontal dimensions withony éoss of optimality. The
authors in [16] consider two types of users in the networ&;dbwnlink users served by
a UAV and device-to-device users that communicate direcitly one another. Using the
disk covering problem, the authors show that the entirectaggographical area can be
completely covered by a UAV in a shortest time with a minim@aguired transmit power.

They also derive the overall outage probability for the devio-device users, and show



that the outage probability increases as the number of stogspthat a UAV needs to
completely cover the area increases.

The second deployment strategies are used for maximizeyitkeless coverage of
UAVSs. In [17], the authors study the placement problem witlohjective of maximizing
the number of users covered by a UAV. They formulate a quimatbt-constrained
mixed integer non-linear optimization problem and propassmputationally efficient
numerical solution for the problem. The authors in [18] sttite optimal deployment
of UAVs equipped with directional antennas, using circlekiag theory. The 3D
locations of the UAVs are determined in a way that the totakcage area is maximized.
In [19], the authors introduce the network-centric and wsstric approaches. In the
network-centric approach, the network tries to serve asyraaers as possible, regardless
of their rate requirements. In the user-centric approduh users are determined based
on the priority. The optimal 3D backhaul-aware placemerd bfAV that maximizes the
total number of served users is found for each approach. Uti®es in [20] study the
UAV placement problem with an objective of maximizing thenrher of covered users
with different Quality-of-Service requirements. They mbthe placement problem as
a multiple circles placement problem and propose an optpiaement algorithm that
utilizes an exhaustive search over a one-dimensional pesrim a closed region. They
also propose a low-complexity algorithm, maximal weighaegh algorithm, to tackle this
problem. The authors in [21] utilize UAVs-hubs to providenoectivity to small-cell base
stations with the core network. The goal is to find the bestibts association of the

small cell base stations with the UAVs-hubs such that the-satmof the overall network



is maximized. They present an efficient algorithm, distigomaximal demand minimum
servers, to maximize the sum rate of the overall network.

The third deployment strategies are used for minimizing nbenber of UAVs
required to perform a task. The authors in [22] propose thigg@swarm optimization
algorithm to find the minimum number of UAVs and their 3D pla@nts so that all
the ground users are served. In [23], the authors study thielggn of deploying the
minimum number of UAVs required to maintain the connecyivaf ground mobile ad
hoc networks under the condition that some UAVs have alrdambn deployed in the
air. They formulate this problem as a minimum steiner tredl@m with existing mobile
steiner points under edge length bound constraints. Th@yepghe NP-completeness of
the problem and propose an efficient algorithm, existing §Aware algorithm, to tackle
this problem. The proposed algorithm uses a maximum matahdtie to compute the
new positions for existing UAVs. The authors in [24] aim tonmiize the number of
UAVs required to provide wireless coverage for a group ofriiated ground terminals
such that each ground terminal is within the communicatarge of at least one UAV.
They propose a polynomial-time algorithm, spiral UAV plaent algorithm, to place the
UAVs sequentially starting from the area perimeter of theawered ground terminals
along a spiral path towards the center, until all ground teats are covered.

The fourth deployment strategies are used for collecting daing UAVs. The
authors in [5] propose an efficient framework for deployingvd to collect data from
ground internet of things devices. They minimize the toi$mit power of these devices
by properly clustering them where each cluster being sebyedne UAV. The optimal

trajectories of the UAVs are determined by exploiting treiework of optimal transport

10



theory. In [25], the authors present a UAV enabled data ctdle system, where a UAV
is dispatched to collect a given amount of data from grounahiteals at fixed location.

They aim to find the optimal ground terminal transmit powed &RV trajectory that

achieve different Pareto optimal energy trade-offs betwtbe ground terminal and the
UAV. The authors in [26] study the problem of UAV trajectorapning for wireless sensor
network deployed in remote areas. The missions are giversbya ground points which
define the wireless sensor network gathering zones. The $Adald pass through the
gathering zone to collect the data while avoiding passirgy éerbidden areas to avoid
collisions. The proposed UAV trajectory planners, rapiekploring random trees and
optimal rapidly-exploring random trees, are based on tmegealgorithm. The authors
in [27] design a basic framework for UAV data collection, wihiincludes the following

five components: deployment of networks, nodes positigramghor points searching,
fast path planning for UAV, and data collection from networkhey identify the key

challenges for each component and propose an efficientiddggrfast path planning
with rules algorithm, to increase the efficiency of path plag, while guaranteeing the
length of the path to be relatively short. In [28], the authmintly optimize the sensor
nodes wake-up schedule and the trajectory of a UAV to mirentie maximum energy
consumption of all sensor nodes such that the required ainobddata is collected reliably
from each sensor node. They formulate a mixed-integer worex optimization problem
and propose an efficient iterative algorithm to find a subrogk solution. Table 2.1

summarizes the related work.
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Table 2.1Summary of the Related Work

n

Reference Objective Function Deployment Strategy
[13] Minimizing the transmit power Optimal transport theory
[14] Minimizing the transmit power Closed-form expression
[15] Minimizing the transmit power Optimal 3D placement algorithm
[16] Minimizing the transmit power Disk covering problem
[17] Maximizing the wireless coverage Bisection search algorithm
[18] Maximizing the wireless coverage Circle packing theory
[19] Maximizing the wireless coverage Branch and bound algorithm
[20] Maximizing the wireless coverage Exhaustive search algorithm
[21] Maximizing the wireless coverage Branch and bound algorithm
[22] Minimizing the number of UAVS Particle swarm optimization
[23] Minimizing the number of UAVs Polynomial time algorithm
[24] Minimizing the number of UAVs Polynomial time algorithm
[5] Collecting data using UAVs Optimal transport theory
[25] Collecting data using UAVs | Circular and straight UAV trajectorieg]
[26] Collecting data using UAVs Genetic algorithm
[27] Collecting data using UAVs Polynomial time algorithm
[28] Collecting data using UAVs Polynomial time algorithm

12



CHAPTER 3

PROVIDING CONTINUOUS WIRELESS COVERAGE USING UAVS

3.1 Introduction

In 2005, Hurricane Katrina in the United States caused over 1,9athde3 million land-
line phone interruptions, and more than 2,000 base stagiming out of service [4,30,31].
Another example of a large-scale interruption of telecomitations service is the World
Trade Center attack in 2001, when it took just minutes fombarby base stations to be
overloaded. The attacks caused the disturbance of a phatod svith over 200,000 lines,
20 cell sites, and 9 TV broadcast stations [4, 32]. Theselemts demonstrate the need
for quick/efficient deployment networks for emergency sase

The authors in [33] propose a UAV-based replacement netwarkng disasters,
where the UAVs serve as aerial wireless base stations. Haow#vs study does not
consider how the UAVs will guarantee a continuous coveragenathey need to return
to the charging station for recharging. Though a UAV has tiahienergy capacity
and needs to recharge its battery before running out of gnaguging the coverage
process, only few studies have considered this constraitime UAV coverage problem.
Concretely, the author in [34] determines the minimum nunolb& AVs that can provide
continuous coverage for a single area using identical andichentical UAVs. However,
no consideration has been made for the case when there arplesuibareas that need to
be covered, which is the typical scenario during disasfEng author in [35] formulates

the mobile charging problem, in which multiple mobile cheng collaborate to charge

1The work of this chapter has been published in [29].

13



static sensors with minimum number of mobile chargers sulije speed and energy
limits of the mobile chargers. In this problem, the chargeils not cover the sensors
continuously. The mobile charger will visit the sensor atay dor a specific time to

charge the sensor. After finishing the charging processjlitwgit the other sensors.

In [36], the authors study the continuous coverage probtambbile targets. During the
coverage process, a UAV that runs out of energy is replacedriaw one.

Many studies [13,14,37,38] focus on minimizing the totahgmission power of the
UAVs during the coverage of a geographical area, howevdimits on the UAV energy
capacity and the need for recharging have not been condid@tes work in [39] report
that the energy consumption during data transmission argptien is much smaller than
the energy consumption during the UAV hovering, i.e., ityoobnstitutes 1%-20% of
the UAV energy capacity. Thus, it is important to conductigta that take into account
the energy consumption during the UAV hovering rather tieanu$ing on minimizing the
energy consumption during data transmission and reception

Contrary to the related work above, we integrate the redch@ngquirements into
the coverage problem and examine the minimum number of nedjWAVs for enabling

continuous coverage under that setting, as shown in Figare 3

3.2 System Model
Consider a geographical arés{g,...gn }, Whereg; represents a subaréahe subarea
g1 € G includes the charging station and all subareas exceptesadaneed to be covered
Go=G \ g1. We aim to find the minimum number of UAVs that can provide attamous

coverage overr, by placing the UAVs at locations where each UAV will providdl f
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Figure 3.1Providing continuous wireless coverage.

coverage for one subarea. In the continuous coverage pnolve assume: (1) Time
slotted system in which the slot duration is 1 time unit arglttital coverage duration is
T. (2) All UAVs start the coverage process from the chargiradieh and they need to
return to the charging station after they complete the @yeprocess. (3) Each UAV
has limited energy capacity and it needs to return to the charging station to recharge
the battery before running out of energy during the covegageess. (4) Each UAV can
move (from the charging station to locati@p (from location: to locationyj) or (from
locationj to the charging station) and this process will take one tiloe &) Each UAV
covers a given subarea for one or multiple time slots. (6)ashetime slot, each subarea
will be covered by only one UAV. (7) The UAV cannot travel teetbharging station or to

any other location until the handoff process is completedfich another UAV arrives
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Table 3.1List of Notations

M The set of fully charged UAVs available at the charging stati

E The energy capacity of each UAV.

T The total coverage duration.

E%mvel The energy consumed by a UAV when it travels from subareg
i to subareg, wherei, j € G.

ch"”” The energy consumed by a UAV when it covers the subarea
for one time slot, wherg € G, (constant).

Teharge | The time that a UAV needs to recharge the battery at the angu
station.

gi

to cover the subarea such that the continuous coveragetiargead. (8) The recharging

process take$,,,,q. at the charging station.

3.3 The Continuous Coverage Problem

3.3.1 Problem Formulation

In order to present the problem formulation, we introduegtimary variable:,, that takes

the value of 1 if the UAVim visits any subarea from charging station during the coverag

duration7” and equals 0 otherwise; the binary varialjlg,, that takes the value of 1 if the

UAV m moves through edgg during the time slot and equals 0 otherwise; the binary

variablez; , that takes the value of 1 if the UA¥: covers the subaregat time slott and

equals 0 otherwise. Table 3.1 lists the notations used sictiapter.
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v[tht?] € [07 T]7 th= arg yij,m7t2 =arg yfl,m7t2 > 1.

The objective is to minimize the number of UAVs that are nekette provide a
continuous coverage during the coverage durafio@onstraint sets (3.1) and (3.2) ensure
that a UAV can travel and cover the subareas only if we setect participate in the
coverage process. Constraint set (3.3) ensures that ateadwill be covered at the
first time slot. Constraint set (3.4) guarantees the contiswcoverage for each subarea.
Constraint set (3.5) allows the UAV to visit a new subareae(lwyfmzl) or to continue
covering the current subarea (wrggpm:O). Constraint set (3.6) characterizes the handoff
process between the UAVs, when the UA wants to visit the subareafrom subarea
71 at timet (yfljm:l), the UAV m, that covers the subargawill travel to subarea, at
timet + 1 (yﬁ;}m:l). Constraint set (3.7) describes the relation betweerirtiveling
process and the covering process, where the number of tiaethe subaregis covered
will be greater than or equal the number of times that it istets Constraint set (3.8)
shows that the recharging process will tdkg,, . at the charging station. Constraint (3.9)
ensures that the number of UAVs outgoing from the chargiagst and the number of
UAVs incoming to charging station are the same after we cetegihe coverage process.
Constraint set (3.10) shows that the energy capacity of a té/cover the wasted energy
during the traveling and the covering processes in eacle eylckret, represents the time
that a UAV travels from the charging station with full enercgpacity and, represents
the time that a UAV arrives to the charging station to chalgelattery. Next, we prove

that the continuous coverage problem is an NP-complete.
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3.3.2 NP Completeness

Theorem 1. The Continuous Coverage Problem is NP-complete.

Proof. The number of constraints is polynomial in terms of the nunddesubareas, the
number of UAVs and the number of time slots. Given any sotufar our problem, we
can check the solution’s feasibility in polynomial timeeththe problem is NP.

To prove that the problem is NP-hard, we reduce the Bin PgcRimoblem which
is NP-hard [40] to a special case of our problem. The speeis¢ ©f our problem is
the discrete coverage problem. In this problem, each sabailebe visited one time
by one UAV during the coverage process. In the Bin Packindgpleéro, we have a set of
itemsU = {1,2,..., W}, in which each item has volumsg,, wherew € U. All items
must be packed into a finite number of bins, (,...p5), each of volumé/ in a way that
minimizes the number of bins used. The reduction steps gr&héb-th bin in the Bin
Packing Problem is mapped to theth UAV in our problem, where the volumg for
each bin is mapped to the energy capacity of the UAV2) Thew-th item is mapped to
the n-th subarea, where the volume for each itenls mapped to the energy consumed
when a UAV visits and covers subarea 3) All UAVs have the same energy capacity
E. 4) The energy consumed during the traveling and the coy@rocesses when a UAV
visits subareg from any subareac G \ {j} will be constant. 5) The energy required
for a UAV to return to the charging station from any subaiedll be zero (E7***'=0).

6) The time that a UAV needs to recharge a battery at the atgasgation will be infinity.
7) Each subarea will be visited one time by one UAV during theecage process. If

there exists a solution to the bin packing problem with costhen the selected bins will
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represent the UAVs and the items in each bin will represenstibareas that a UAV must

visit and the total cost of our problemds O

3.4 Heuristic Algorithm
Due to the intractability of the problem, we study partiiioghthe coverage graph into
cycles that start at the charging station. We first charaetehe minimum number of
UAVs required to cover each cycle based on the charging tiheefraveling time, and
the number of subareas to be covered by the cycle. Our asddgsed on the uniform
coverage in which a UAV covers each subarea in a given cycla éonstant time. Based
on this analysis, we then develop an efficient algorithm,aydes with limited energy
algorithm, that minimizes the required number of UAVs thaantees a continues

coverage.

3.4.1 Analysis

Itis obvious that we neeff UAVs to coverN subareas at any given time, but the question
here is how many additional UAVs are needed to guaranteetmoons coverage. In this
subsection, we assume that a UAV visits the subareas basedyate that starts from the
charging station and ends at the charging station for chgmgiocess. We also assume
that a given UAV covers the subareas in the cycle uniformlyylnich a UAV covers each
subarea in a given cycle for a constant time. In Theorem 2,neketlfie minimum number
of additional UAVs that are needed to guarantee a continaousrage for a cycle, which

will help us while developing Algorithm 1.
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Theorem 2. The minimum number of additional UAV:sthat are required to provide
continuous and uniform coverage for a cycle that contairmibareas must satisfy this

inequality:

kTCoverage Z (

n n+ 1)T + TChargea

whereToouerqge 1S the time that a UAV allocates to cover all subareas in tlodecy” is the
time that a UAV needs to travel from subare® subareg and7:;,, . is the time that a

UAV needs to recharge the battery at the charging station.

Proof. Consider that alh subareas in the cycle are coveredbyAVs and the UAV that
covers the last subarea want to return to the charging staticecharge its battery. The
handoff process needs to begin between one of the additidhés from the charging
station and the UAV that covers the first subarea in the cycle.

The UAV that covers the last subarea needs to Wait- 1) 7" to do the handoff
process, during this time the additional UAVs are coverimg first subarea. After the
handoff process is completed, the UAV ne&tame units to return to the charging station,
Terarge 10 recharge the battery and T to visit the first subarea inyoke@gain. Then, we
have:

T overage
e =E9E > (n — )T + T + Tenarge + T
n

O

Example: Givem = 3, Tooverage = To = 9T andTperge = 17, we want to find the

minimum number of the additional UAVEk that guarantees the continuous coverage for
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Figure 3.2 Minimum number of additional UAVS.

a given subareas (see Figure 3.2). Tables 3.2-3.6 show the phUAVSs. It is obvious
that the first UAV will be ready to cover the first subarea intlele again att'T + T +
Tenarge = 14T After the second additional UAV covered the first subaredéncycle, it
needs to do the handoff with one of the UAVs from the chargtagen at7"+ gTC =T+
§(9T) =T+ 15T = 16T. The first UAV is ready to do that, it will waif” at the charging
station and it needs to arrive to the first subarea. We only need two additional &Y
continuously cover this cycle. Now, Let us check our solubg applying Theorem 2, we

havek eeerase > (4 V)T + Tonarge = 2% > (3+1)T + T = 6T > 57T.

3.4.2 The Cycles with Limited Energy Algorithm
The straightforward method (SM) to continuously covérsubareas is to allocate two
UAVs for each subarea. At the first time slaf, UAVs cover theN subareas. Then, any

UAV wants to return to the charging station to recharge thitebawill do the handoff
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Table 3.2Path of the UAV1

Time 0 T T+ Te
Subarea Index Charging station 1 1
Coverage Time 0 0 s Tc

Time 2T+5 Te 2T+2 Te 3r+2 Tc
Subarea Index 2 2 3
Coverage Time 0 s T 0

Time 3Tr+T¢ AT+T¢ AT+Te+Tcharge
Subarea Index 3 Charging statior Charging station
Coverage Time s T 0 0

Table 3.3Path of the UAV2

Time 0 T+; Te T+2 Tc
Subarea Index Charging station 1 1
Coverage Time 0 0 s Tc

Time 2I+2 Te 2T+T 37+ 1o
Subarea Index 2 2 3
Coverage Time 0 s T 0

Time 3r+3Tc AT+3Tc AT + 5 Te+Tcharge
Subarea Index 3 Charging stationn Charging station
Coverage Time s T 0 0
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Table 3.4Path of the UAV3

Time 0 T+3 Tc T+Tc
Subarea Index Charging station 1 1
Coverage Time 0 0 s Tc

Time 2T+T 2I+3T¢ 3+ 3T¢
Subarea Index 2 2 3
Coverage Time 0 s T 0

Time 3r+3T¢ AT+2T¢ AT + 2 Te+Tcnarge
Subarea Index 3 Charging stationn Charging station
Coverage Time s T 0 0

Table 3.5Path of the First Additional UAV

Time 0 T+Te T+3Tc
Subarea Index Charging station 1 1
Coverage Time 0 0 s Tc

Time 2I+3T¢ 2T+2T¢ 3r+3T¢
Subarea Index 2 2 3
Coverage Time 0 s T 0

Time 37r+21¢ AT+2T ¢ AT + 2T+ T charge
Subarea Index 3 Charging statior] Charging station
Coverage Time LT 0 0
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Table 3.6Path of the Second Additional UAV

Time 0 T+3Tc T+3Tc
Subarea Index Charging station 1 1
Coverage Time 0 0 s Tc

Time 2T+3T¢ 2T+2T, 37+ 2T
Subarea Index 2 2 3
Coverage Time 0 s T 0

Time 3r+iTc AT+ITc AT + LT+ Tcharge
Subarea Index 3 Charging statior] Charging station
Coverage Time s T 0 0

process with one of the additional UAVs that are availabléhatcharging station. By
applying SM, we needv additional UAVs to cover all subareas.

Our proposed algorithm, the cycles with limited energy &ty (CLE), is inspired
by the nearest neighbor algorithm, the nearest neighbaritign is used to solve the
Traveling Salesman Problem [41], in which the salesman keegiting the nearest
unvisited vertex until all the vertices are visited. In olgaithm, the UAV (salesman)
has limited energy capacity and before visiting any new sedgave must check if the
remaining energy is enough to return to the charging stétaon the new location or not.
In Theorem 2, we show how to find the minimum number of add#aiddAVs that are
required to guarantee the continuous coverage for a givele,aye use the Theorem 2 to

find the minimum number of additional UAVs that are requiregtovide the continuous
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Algorithm 1 The Cycles with Limited Energy Algorithm
1: Input:
2: The geografical are@={g1,...gn },

: The required time to travel between two subarEas

: The energy capacity of UAZ,

: The time that a UAV needs to recharge the battery at thestgastationl g, 4,
: The energy consumed by a UAV when it covers the subareanfosecond,

: The index of the cycle=1.

. Start:

: While G not empty

10: ¢;i={g1 }

11: Do:

12: v= most recently added subarea to cygle

© 0 N O Ol h W

13: Find{g}= argminyeg_q distance(v,b)
14: CalculateECoverage:E'ETravel'EReturntoBS
15: Calculatél coperage = Eooverage

€

16: If TCT > (lei| + DT + Tonarge then
17:¢; +— ¢; U{g}

18: G +— G\ {g}

19: while (255222 > (|e;] + 1)T + Tonarge )
20:¢; +— ;U {g1}

21.C+—CuUg

22 1=i+1

23: EndWhile

24: Output: C

coverage for a given area, by finding the cycles that need @mtyadditional UAV. The

pseudo code of this algorithm is shown in Algorithm 1.

3.5 Performance Evaluation

We quantify the power consumption by UAV when it is hoveritigveling and trans-

mitting data. The power consumption in watt by a UAV duringzéong can be given
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by [42]:
3/2
P=4—L—+p

V2085

whereT), is the fourth of the quadcopter total weight in newt@nis the density of the air
in kg/m3, S is the rotor swept area im? andp is the power consumption of electronics
in watt.

The power consumption in kW by a UAV during traveling can beegiby [43]:

pomtmu,
370nr

wherem,, is the payload mass in kg, is the vehicle mass in kg,is the lift-to-drag ratio
(equals 3 for the vehicle that is capable of vertical takeoifl landing),; is the power
transfer efficiency for motor and propellerjs the power consumption of electronics in
kW andvw is the velocity in km/h.

The power consumption in dB by a UAV during data transmissian be given

by [14]:
Pi(dB) = P.(dB) + L(R, h) (3.11)
L(R,h) = P(LOS) x Lios + P(NLOS) x Lyros (3.12)
P(LOS) = a.exp(—lﬁ[&je — (3.13)
Lios(dB) = 20log(4”f D)+ €ros (3.14)
Liros(dB) = 2010g( L) 1 gy, (3.15)

C
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In equation (3.11)/F, is the transmit powerp,. is the required received power to
achieve a SNR greater than threshelgl L(R, h) is the average path loss as a function
of the altitudeh and coverage radiuB. In equation (3.12)P(LOS) is the probability
of having line of sight (LOS) connection at an evaluationlaraf 0, P(NLOS) is the
probability of having non LOS connection and equaldA1-0.)), Lros andLyos are
the average path loss for LOS and NLOS paths. In equatiot8815),«c andj are
constant values which depend on the environménts the carrier frequencyj is the
distance between the UAV and useis the speed of the light§; o5 andéyos are the
average additional losses which depend on the environnherlis chapter, we assume
that the power wasted during data transmission is constéuetie the power consumed by
a UAV during data transmission and reception is much smtikm the power consumed
during hovering or traveling [39].

Given a geographical ar€a, the number of the subareas that we need to cover and
the density of the users, the question here is how to find thienapboundaries of the
subareas that will be covered by the UAVs. To answer thistgpreshe authors of [13]
utilize the transport theory to find the optimal boundariethe subareas. Unfortunately,
this approach needs to SOI@) non-linear equations at each iteration, whares the
number of subareas. In this chapter, we divide the geographiea uniformly and apply
the SM and CLE algorithms to find the minimum number of addaidJAVs that provides
the continuous coverage. We study the effect of the UAV gneapacity, the grid size
of the geographical area, the charging time and the traydiime on the number of the

additional UAVs. Table 3.7 lists the parameters used in theerical analysis [44].

28



Table 3.7Parameters in Numerical Analysis

UAV energy capacity 0.88kW.h
Power consumption by the electronics0.15kW
Grid size 4x4
Area of the graph 1kmx1km
Traveling time through edge 2.5 min
Charging station location (x,y) (0,0)
Charging time 5 min
UAV weight with battery 8.5k.g
Maximum payload weight 2k.g
Maximum forward speed 12 m/s

In Figure 3.3, we uniformly divide the geographical areaib® subareas and apply
the CLE algorithm to find the cycles with minimum number of éiddal UAVs. From the
figure, we notice that 5 cycles are needed to cover all subavih 5 additional UAVS.
Also, we note that the paths of the cycles are intersectedainyniocations. To avoid
the collisions between the UAVS, we operate the paths (sydedifferent altitudes with
small altitude differences.

In Figure 3.4, we study the effect of the UAV energy capacitytioe number of
additional UAVs needed to cover the subareas. When we isergee energy capacity of
a UAV and apply SM, the number of additional UAVs needed wilt cthange because
each subarea is covered by one cycle and two UAVs, only therage time of each

UAV increases. On the other hand, increasing the energycigpa each UAV results
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Figure 3.3 Cycles that cover the subareas using the CLE algorithm.

—i——————8—8—8—a
2 15¢ 1
= E—
= CLE
=
£ 10+
=
=
«
St
=]
E m--E
r4 "E--8--8--8--8-8%-8_
“H
O 1 1 1 1
0 2 4 6 8 10

Energy capacity of UAV (kW.h)
Figure 3.4Energy capacity vs. the number of additional UAVs.

in minimizing the number of additional UAVs that needed gs@LE. This is because
increasing the energy capacity of each UAV gives a UAV a chdnuvisit and to cover
more subareas, which minimizes the number of the cyclesatteaheeded to cover the
Subareas.

In Figure 3.5, the slope of the line produced by SM is gredian the curve of CLE.
When applying SM, the number of additional UAVs increasasdrly with the grid size.

This is because the number of additional UAVs equals thegiziel Also, when applying
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the CLE, the number of additional UAVs increases with thel giize. This is because
more cycles are needed to cover more subareas, and eachegdeone additional UAV.
In Figure 3.6, we study the effect of the charging time on thenber of additional
UAVs needed. Changing the charging time will not affect thenber of additional UAVs
needed when applying SM. This is because the coverage tireaabf UAV will cover
the time that the UAV needs to return to the charging statoretharge the battery and
to visit the subarea again. On the other hand, when applyltg, @ will be a critical

issue (see Theorem 2). Actually, charging the battery of & tdkes long time. For this
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reason, each UAV has a replacement battery [44]. We assuentarth needed to replace
the battery for each UAV is 5 minutes.

In Figure 3.7, we study the effect of the traveling time onrlnenber of additional
UAVs. Changing the traveling time will not affect the numieéradditional UAVs when
applying SM. On the other hand, it will be a critical issue twose the appropriate
traveling time when applying CLE. When increasing the tliaggtime, the wasted energy
during traveling will increase and the coverage time wiltidase. Hence, the chance to

visit other subareas will decrease.
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CHAPTER 4

PROVIDING INDOOR WIRELESS COVERAGE USING UAVS

4.1 Introduction

In order to use UAV as an aerial wireless base statitime authors in [48] presented
an Air-to-Ground path loss model that helped academic rekess to formulate many
important UAV-based coverage problems. The authors in [i#digzed this model to
evaluate the impact of a UAV altitude on the downlink grounglerage and to determine
the optimal values for altitude which lead to maximum cogerand minimum required
transmit power. In [13], the authors used the path loss modaiopose a power-efficient
deployment for UAVs under the constraint of satisfying thierequirement for all ground
users. The authors in [18] utilized the path loss model tdysthe optimal deployment of
multiple UAVs equipped with directional antennas, usinglel packing theory. The 3D
locations of the UAVs are determined in a way that the totakcage area is maximized.
In [22], the authors used the path loss model to find the mimimumber of UAVs and
their 3D locations so that all outdoor ground users are sefdewever, it is assumed that
all users are outdoor and the location of each user can besapued by an outdoor 2D
point. These assumptions limit the applicability of thisdebwhen one needs to consider
indoor users.

Providing good wireless coverage for indoor users is veqyartant. According to
Ericsson report [49], 90% of the time people are indoor arfh 8 the mobile Internet

access traffic also happens indoors [50, 51]. To guarantesless coverage, service

1The work of this chapter has been published in [45-47].
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Figure 4.1 Parameters of the path loss model.

providers are faced with several key challenges, inclugirayiding service to a large
number of indoor users and the ping pong effect due to inEmte from near-by macro
cells [52-54]. In this chapter, we propose using UAVs to pfe\a wireless coverage for
users inside a high-rise building after partial or complefeastructure damage due to
natural disasters or after base station offloading in ex@hgrerowded events [10] (such as
concerts, indoor sporting events, etc.), when the celhgdwork service is not available

or unable to serve all indoor users.

4.2 System Model
4.2.1 System Settings
Let (xyav,yuav,zuav) denote the 3D location of the UAV. We assume that all usess ar
located inside a high-rise building as shown in Figure 4ntl, ase ¢;,y;,z;) to denote the
location of useti. The dimensions of the high-rise building, in the shape @&aangular
prism, aref0, x| x [0, ys] x [0, 2]. Also, letd,,:; be the distance between the UAV and

indoor uset, letd; be the incident angle that represents the angle betweeméefIsight
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path and a unit vector normal to the building wall, anddgt; be the distance between

the building wall and indoor usér

4.2.2 Outdoor-Indoor Path Loss Models

The Air-to-Ground path loss model presented in [48] is n@rapriate when we consider
wireless coverage for indoor users, because this modefessthat all users are outdoor
and located at 2D points. In this work, we adopt the Outdodebr path loss model,

certified by the ITU [55], for the lower part of Super High Fusspcy band (low-SHF)

(450 MHz to 6 GHz). The path loss is given as follows:

Li=Lrp+ Lg+ Ly = (wlogydou,; + wlogyy fan: + 91)

+(g2 + g3(1 — cos 91')2) + (94din,i)

where Ly is the free space path loskg is the building penetration loss, arig is the
indoor loss. In this model, we also hawe=20, ¢,=32.4, 9,=14, 93=15¢,=0.5 [55] and
fan- is the carrier frequency.

In [56], the authors clarify the Outdoor-to-Indoor pathdaharacteristics based on
the measurement for 0.8 to 37 GHz frequency band. We adapdtin loss model for the

high-SHF operating frequency (over 6 GHz). The path los$/isrgas follows:

Li=Lr+ L+ Ly = (a1 + alogyg douti + aslogyg fon:) +

B2 — B
(Bt 1+ exp(—PB5(0; — Ba))

) + (1din,i)

In this model, we haver;=31.4,0,=20, a3=21.5, 5,=6.8, $,=21.8, 53=0.453, 3,=19.7

and~;=0.49.
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Note that there is a key tradeoff in the path loss models whehorizontal distance
between the UAV and a user changes. When this horizontaristincreases, the free
space path loss (i.eLy) increases a8, ; increases, while the building penetration loss

(i.e., L) decreases as the incident angle (#g.decreases as shown in Figure 4.2.

4.3 Providing Wireless Coverage Using a Single UAV
4.3.1 Problem Formulation
Consider a transmission between a UAV located:ali(/,y av,20 av) @and an indoor user
1 located at ;,y;,2;). The date rate for useis given by:

P,/ L;
C; = Bloga(1 + t’]\é )

where B is the transmission bandwidth of the UAY, ; is the UAV transmit power to
indoor useri, L; is the path loss between the UAV and an indoor usand N is the

noise power. In this work, we do not explicitly model integace, and instead, implicitly

model it as noise.
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Let us assume that each indoor user has a channel with bahdeddalsB /M,
whereM is the number of users inside the building and the rate rement for each user

isv. Then the minimum power required to satisfy this rate foheager is given by:

v.M

Pt,i,min:(Q B _I)XNXLZ-

Our goal is to find the optimal location of UAV such that thealdtansmit power required
to satisfy the downlink rate requirement of each indoor usemninimized. The objective

function can be represented as:

M
P=3"(2% —1)x N x L,

=1

whereP is the UAV total transmit power. Sinc(@“‘*BM — 1) x N is constant, our problem

can be formulated as:

M
min LTotal = E Lz
i=1

TUAVYUAV ,ZUAV
subject to
Trin < TUuAv < Tmazx,
Ymin S YuAv S Ymaz»

Zmin S ZUAV S Zmaz

L Total S L max

where the first three constraints represent the minimum andmum allowed values for
Ty av, Yuay andzy 4y . In the fourth constraintl,,,,... iIs the maximum allowable path loss
v.M

and equals’; ... /((2° 2 — 1) x N), whereP, ., is the maximum transmit power of

UAV.
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Finding the optimal placement of UAV is generally difficuktdause the problem is
non-convex. Therefore, in the next subsection, we congliidee special cases of practical

interest and derive efficient solutions under these cases.

4.3.2 Efficient Placement of a Single UAV

Case 1.The worst location in buildingtn this case, we find the minimum transmit power
required to cover the building based on the location thatt@asaximum path loss inside
the building. The locations that have the maximum path losdcated at the corners of
the highest and lowest floors, where these locations haveéxémumd,,,; ;, maximum
¢;, and maximumi,, ;. Since the locations that have the maximum path loss insiele t
building are the corners of the highest and lowest floors, laegithe UAV at the middle
of the building ¢y 41y= 0.5y, andzy 4,=0.5z;). Here, the corners of the highest and lowest
floors represent the cell edges and the middle of the buildipgesents the center of the
cell. Then, given Outdoor-to-Indoor path loss models fov-BHF and high-SHF bands,
we need to find an efficient horizontal point 41, for the UAV such that the total transmit
power required to cover the building is minimized.

Now, when the horizontal distance between the UAV and thiation increases,
the free space path loss also increases,as increases, while the building penetration
loss decreases because we decrease the incidentdantgie=igure 4.3, we demonstrate
the minimum transmit power required to cover a building dfedent heights, where the

minimum transmit power required to cover the building isegi\by:

Pt,min(dB) - Pr,th + Li
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Pr,th(dB) =N+ vm

wherepP, ,, is the minimum received powel is the noise power (equals -120dBnyy), is
the threshold SNR (equals 10dB)=50 meters 7,=20 meters and the carrier frequency is
2Ghz. The numerical results show that there is an optimattiotal point that minimizes
the total transmit power required to cover a building. Alse,note that when the height
of the building increases, the optimal horizontal distanceeases. This is to compensate
for the increased building penetration loss due to an isg@ancident angle.

In Theorem 3, we characterize the optimal incident addier low-SHF band that
minimizes the transmit power required to cover the buildifidpis helps us finding the

optimal horizontal distance between the UAV and the buddin

Theorem 3. For the low-SHF operating frequency case, when we place tA¥ &k
the middle of building , the optimal incident andgléhat minimizes the transmit power
required to cover the building will be equal 48.654° and the optimal horizontal distance

between the UAV and the building will be equa((g%)2 — (0.5y5)%)%° — m,.
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Proof. In order to find the optimal horizontal point, we rewrite tlgiation that represents
the path loss in terms of the incident angl) @nd the altitude difference between the

UAV and the use¥ (Ah;):

Ah;
Li(Ah;, 0;) = wlogy, ) +wlogy, fan: + 01

+g2 + g3(1 — cos0;)* + gadin.;

Since we place the UAV at the middle of the building and theatmns that have the
maximum path loss are located at the corners of the highddbarest floors, the altitude
difference between the UAV and the location that has the mami path loss is constant
for a given building. Now, when we take the first derivativétwiespect t@ and assign it

to zero, we get:
—Ah.cosb
dL(0) _w sinZ0
do In10 Ah
sin 6
dL(0)  —w cosf
dd  Inl0sind

+2g3sinf(1 — cosf) =0

+2g3sinf(1 — cosf) =0

(4.1)
— i) 2 _
10 cos @ = 2g3sin“0(1 — cos )
U cosh = 2g3(1 — cos? 0)(1 — cos )
In10

2g3 cos® 0 — 2g3 cos? 6 — (% + 2g3) cos € + 293 =0
n

To prove that the function is convex, we take the second devirand we get:

d*L W 1
df?  Inl0sin?0

+2g3cos O(1 — cos 0) + 2g3sin®f >0 for 0 <0 <90

Equation (4.1) has only one valid solution whichkeis §=0.6606. Therefore, the optimal
incident angle between the UAV and the location that has taeimum path loss inside

the building will be48.654°.
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In order to find the optimal horizontal distance between t& dnd the building,

we apply the pythagorean’s theorem. This gives us:

O.5Zb

tan(48.654°) )= (05m)°)

dir = ((

Therefore, the optimal horizontal distance between the @AY the building is given by:

O.5Zb

2 2105
— )" — (0.5 —
tan(48.6540)) (0-55)°) i

dopr = ((

O

In Figure 4.4, we demonstrate the transmit power requiresbwer the building as
a function of the incident angle, we notice that the optinmagla that we characterize in
Theorem 3 gives us the minimum transmit power.

Now, we find an efficient incident angtefor high-SHF band that minimizes the
transmit power required to cover the building. In order talfan efficient angle, we

rewrite the equation that represents the path loss in tefhe ancident anglef) and the
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(—]

altitude difference between the UAV and location that hasnttaximum path loss inside
the building Ah), we get:

Ah
L(Ah,0) = (ag + aslogy, s + azlogyg fan:) +

B2 — B
(Br + 1+ exp(—B3(0; — b))

) + (1din,i)

By numerically plotting the transmit power required to cotlee location that has
the maximum path loss inside the building (see Figures 4d54a®), where),=50 meters
and ;=20 meters, we show that for different building heights aifteent operating
frequencies there exists only one global minimum value. &she seen from the figures,
to provide wireless coverage to small buildings, the UAh&m@it power must be very
high, due to the high free space path loss, this demonstiaaseed for multiple UAVS
to cover the high rise building when we use high-SHF opegatiaquency. To find an
efficient incident angle that could give us the global minmmualue, we use the ternary
search algorithm [57]. The pseudo code of this algorithmhmas in Algorithm 2. A

ternary search algorithm is a method for finding the minimdra animodal function, it
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(—]

iteratively splits the domain into three separate regiatsps 6-7) and discards the one
where the minimum does not belong to (steps 8-11). The tersearch algorithm is
known to have a time complexity @ (logn), wheren is the input data size. From our
numerical results, we found that the angle that minimizegpthwer is alway$5°. This is
because the building penetration loss will be minimizethistangle (see Figure 4.2). The
angles less thatb? will also give us minimum building penetration loss but theefspace
path loss will increase as the incident angjlelecreases. Note that for the high-SHF case
the incident angle that results in the minimum path loss iallenthan that for low-SHF
case. This is due to the fact that the building penetratiea & high operating frequency
will be higher than that at low operating frequency.

Case 2.The locations of indoor users are symmetric acrossith@nd zz planes:
In this case, we assume that the locations of indoor usersyanenetric across they
plane and the:z plane (such as office buildings or hotels). Under the assomiat
the z = 0 plane divides the building into two equal halves as shownigufe 4.7, the

locations of indoor users are symmetric acrossith@lane when each useémt location
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Algorithm 2 Ternary search algorithm
1: Input:
. The interval §,b] of unimodal function that contains the efficient incidengée.
: The absolute precisioay.

2

3

4:1f |b-a| < g

5:  Return @
6:1=at+"

e
8

9

HE £ > f(r)
Return ternarysearchf, [, b, 1)
10: Else

11: Return ternarysearchf, a, r, 1)

r=b—

(z;, y:, ;) has a symmetric point with usérat location ¢;, v;, -z;). Similarly, under the
assumption that the = 0 plane divides the building into two equal halves, the |coadi

of indoor users are symmetric across theplane when each uséat location ¢;, v;, z;)

has a symmetric point with usgmat location {;, -y;, z;), wherei, j € M. First, we prove
thatzy 41,=0.5z, andyy 41,=0.5y, when the locations of indoor users are symmetric across
thezy andxz planes and the operating frequency is low-SHF (Theorem #jgir-SHF
(Theorem 5). Then we use the gradient descent algorithmt¢bfhd an efficientr; 41

that minimizes the transmit power required to cover thedaug.

Theorem 4. For the low-SHF operating frequency case, when the locatioinindoor
users are symmetric across thg andzz planes, the optimal(; 4v,zu 4v) that minimizes

the power required to cover the indoor users will be eqoaly,0.525).
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Proof. Consider thatn, represents the users that have altitude lower than the UAV

altitude andn,, represents the users that have altitude higher than the Ui\de, then:
douti = ((xyav — %’)2 + (yuav — yi)2 + (zrav — Zi)z)O'S, Varav > %

douti = ((xpav — iliz)2 + (yuav — yz)2 + (2 — ZUAV)Q)O'E), Varav < %

Also,
T )24 — y;)2)08
cosy, — (( UA2v ) (yUAQv Yi)°) Yy > %
((zpav — x:)? + (yuav — vi)? + (zvay — 2:)2)"
_ 2.)2 _ ,.\2)\0.5
cose, = ((zvav — 2)* + (yoav — ¥i)*) Vipar < 2

(zvav — )%+ (yuav — ¥i)? + (2 — zuav)?)*?’

Rewrite the total path loss:
mi

Lrota = Z(wloglo(dout,i) + g3(1 — cos 6;)) +
i1
m2

Z(wloglo(d%t’i) + g3(1 — cos Qi)z) + K

=1

Where:

M
K = Z(wloglothz + 91+ g2 + gadin,)

i=1

45



Now, take the derivative with respectp 41/, we get:

dLrota _ W (zuav — )
dzyay = In10 ((zvav — :)* + (yuav — %:)* + (zvav — z)?)

+

2g5.(1 — (zuav — x:)* + (yvav — 4i)?)"®
((uav — 2:)? + (yvav — ¥i)* + (zvav — 2)?)0°
( (zrav — x;)* + (yuav — ¥:)?)*° (zuav — 2) )
((zvav — 2:)* + (yoav — vi)* + (zvav — 2z:)?)2
w —(2i — 2vav)
< 1n10 ((zvav — xi)* + (yoav — ¥:)* + (2 — zvav)?)

).

((zyay — xi)Q + (yyav — %)2)0'5
(oar — 2P + (oav — w1 (i — zoar 20
( —((wvav —zi)* + (yoav — 4:)*)"* (2 — 2vav)

7)

((xray — x:)? + (yvav —v:)? + (zi — zuav)?)2

: dL7otq .
Rewrite the— 2% again, we have:

RUAV
dL ota — w 2 — Z; T _xl.2+ _ Z,20.5
Total :Z ( UA\2/ ) +2gs.(1 — ((zvav )+ (yuav — vi)?) )
dzyav i=1 inl0 dout,i dout,i

(((JTUAV — )%+ (yvav — v:)3) " (zuav — Zi))
d3

out,i

+

w —(z — zuav) (zyav — 2:)* + (yuav — 4:)*)°°
2gs.(1 —
10 &2 + 29a.(

i=1 out,i dOUtﬂ’

).

(—((SUUAV —2;)* + (yvav — 4:)*)*? (21 — zuav)
d3

out,i

)

The equation above equals zero when the UAV altitude eghal$alf of the building

height, where the locations of indoor users are symmetriwsadhery andzz planes.

O

The question now is how to find an efficient horizontal paipty,, that minimizes

the total transmit power. In order to find this point, we usedghadient descent algorithm:

dLTotal

a
deAV,n

TUAVn+1 = TUAV,n —

46



Algorithm 3 Efficient x4, using gradient descent algorithm
1: Input:
2: The 3D locations of the users inside the building.

: The step size, the step tolerance

: The dimensions of the buildif@, ;] x [0, ys] x [0, 25).

: The maximum number of iterations,,,...
s Initialize xpav

s Forn=1,2,...,N iz
dLTotal
a
dzyavn
If || zuavn — Tvavinsr || <€

TUAVn+1 € TUAV,R—

© O N O U AW

10: Return: TUAV,opt = TUAV,n+1
11: End for

Where:

w —(x; — Tyav) 4 2g5.(1 (zi — zpav)* + (yi — yUAV)Q)O'B).

= 2
dryay i=1 inl0 doum dout,z’

<($i — 2pav)dowi((T; — zyav)? + (yi — yrav)?) 0P

d2

out,s

((zi — zuav)? + (i — yoav)?) " (2 — zuav)d,y,
d2

out,i

)

a: the step size.
dout,i=((x; — rrav)® + (Yi — yuav)® + (zi — zvav)?)*?

The pseudo code of this algorithm is shown in Algorithm 3. THhtgorithm uses
the gradient of the function to find the nearest local minimiiime algorithm begins with
an initial guess of the solution; 41 (step 6). Then, it takes the gradient of the function
at that point and generates the next iteration by taking@ateng the negative gradient
direction (step 8). The algorithm will converge when thedigat is zero (steps 9-11).

Now, we prove thaty 4y = 0.5z, andyy 4y = 0.5y, when the locations of indoor users

are symmetric across the xy and xz planes and the operagiqgdncy is high-SHF.
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Theorem 5. For the high-SHF operating frequency case, when the looatiaf indoor
users are symmetric across thgandz z planes, the optimalf; v, 2z 41) that minimizes

the power required to cover the indoor users will be eqoaly,0.525).

Proof. Consider thatn, represents the users that have altitude lower than the UAV

altitude andn, represents the users that have altitude higher than the Ui\de, then:

douti = (xray — 7:)* + (yuav — i) + (zuav — 2)°)°°, Vzpay > 2

douti = (T ay — 1) + (yoav — ¥:)> + (zi — 2uav)?)*?, Vzpav < 2

Also,
0; = Si’nil( 2 (ZUAV — 222) 3 05), Vzuay > z;
((zuav — :)? + (yuav — vi)? + (zuav — 2)2)"
91- = Si’nil( (ZZ _ ZUAV) ), VZUAV < Z;

((xpav — 2:)? + (yvav — vi)? + (2 — 2uav)?)"?

Rewrite the total path loss:

o | (52— B)
Lo = 2 alomoltouts) ¥ (1o i (a) = o))
m: (62— B)

+ 2 caloguldons) ¥ T ety gy R

Where;
. (zvav — 2i) ‘
= (oar o T Goav =3 + Goaw —zpps Tovav > %
u=( (2 — 2vav) )y Vzpav < z

((xpav — x:)? + (yuav — vi)? + (2 — z2uav)?)?

M
K= Z(Oél + azlogio fan: + Br + 1dini)
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Now, take the derivative with respectp 41/, we get:

mi
dLrotal _ Qo (zvav — z)
dzuay = In10 ((zvav — :)* + (yoav — %:)* + (zvav — z)?)

(B = Bu) (gl (BB ey o sinu— B)

T e B —60) O+ eap(—Balsintu— )
- Qo —(Zz‘ - ZUAV)
— In10 ((zvav — 2:)* + (yuav — 4:)* + (2 — 2vav)?)
O ) () () Csin Y — ) |
(1 + exp(—Ps(sin~tu — By))) (1 + exp(—Ps(sin=u — B4)))

The equation above equals zero when the UAV altitude egbeldalf of the building

height, where the locations of indoor users are symmetrasadhery andzz planes. [J

To find an efficient horizontal point;; 41, that minimizes the total transmit power,

we use the gradient descent algorithm, where:

—5 —(z —z)(z —z;)
dLTotal - [6%) (xUAV — xz) _<ﬁ2 — /81)(\/17:;2)( UAV. - UAV )

out,i

p— + .
d!L‘UAV i1 In10 dgut,i (1 + €:Ep(—53(sm_1u o 54)))

exp(—B3(sin~u — b))
(14 exp(—Ps(sin~'u — By)))

Aot i=((x; — zvav)® + (yi — yuav)? + (zi — zvav)?)*?
(ZUAV - Zi) )
((zpay — )% + (yvav — vi)? + (zuav — 2)?)05

u=(

Case 3.The locations of indoor users are uniformly distributed acle floor: In
this case, we propose the Particle Swarm Optimization (S®@)o find an efficient 3D
placement of the UAV, when the locations of indoor users anigoumly distributed in
each floor. In general, the PSO algorithm can be used for geydfdistribution as done

in [22]. The pseudo code of the PSO algorithm is shown in Atgor 4.
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Algorithm 4 Efficient UAV placement using PSO algorithm
1: Input:
2: The lower and upper bounds of decision variable,(, v,...), Construction
coefficients £,¢1,¢2), Maximum number of iterations,(..), Population sizel{’)
3: Initialiaztion:
4 p=p1+d1, X =26/|2 — ¢ — (¢* — 4¢)°7]
SIw=x, c1=XP1, C2=XP2, Cytobat.best = inf
6: for i=1:W
7. Each particle starts at a random initial position:
Q(7) = uni formrandom(Vmin, Vmaz, Usize)
8:  Each particlé starts with zero velocity:
V(i) = zeros(vsize)
9:  Find the cost of particlé
C(i) = cost function(Q(1))
10: Let the best location of particieequals the current location:
Q(1)pest = Qi)
11. Letthe best cost of particleequals the current cost:
C(i)pest = Ci)
12: if C(9)pest < Cotobat.best

13: Cglobal.best = C(i)best

14: endif

15:end

16: PSO Loop:

17:fort =1 :t,u

18: for i=1:W

19: Find the velocity, position and cost for parti¢ie

V(i) =w* V(i) + c1 % rand(vsize). * (Q(1)pest — Q(7))
+02 * rand(vsize)- * (leobal.best - Q(l))
Qi) = Qi) + V(4)
20:  C(i) = cost function(Q(i))

21: if C(1) < C(i)pest

22: Qi)pest = Qi)

23; Ci)pest = C (i)

24: Find an efficient placement of a UAV:
if C()pest < Coobal.best

25! Qgioval.best = Q(7)vest

26: end if

27 end if

28: end

29:end
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The particle swarm optimization algorithm starts with' random solutions (steps
6-15) and iteratively tries to improve the candidate sohsibased on the best experience
of each candidate}(:)..s:) and the best global experiena@ f.pq.5c5). IN €ach iteration
(steps 17-29), the best location for each partic)i{,.s;) and the best global location
(Qqiobarbest) are updated and the velocities and locations of the pastiate calculated
based on them [22]. The velocity value indicates how muchdbation can be changed.

The velocity is given by:

V(i) =w*x V(i) + c1 x rand(vgize). * (Q(1)pest — Q(7))

+co * rand(Vsize). * (Qgiobal.best — Q(1))

wherew is the inertia weightg; andc, are the personal and global learning coefficients,
andrand(vs;..) is arandom positive number. Also, the location of each garis updated

as.

Qi) = Q@) + V(1)

The time complexity of PSO algorithm will depend on the numifecandidate solutions
(W) and the number of iterations,(,.). Convergence of the candidate solutions has
been investigated for PSO [60]. This analyses has resultgdidelines for selecting a
set of coefficients{,¢1,¢-) that are believed to cause convergence to a point and freven
divergence of the swarms particles. We selected our paessn@tcording to this analysis

(see Table 4.1 and Algorithm 4 (steps 4-5)).
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4.4 Providing Wireless Coverage Using Multiple UAVs

Providing wireless coverage to High-rise building usingrgke UAV can be impractical,
due to the limited transmit power of a UAV. The transmit powequired to cover the
building is too high. It is in the range of 50 dBm to 65 dBm (segukres 4.3-4.6),
which corresponds to 100-3000 watts. In this section, th&/d4JAdopt a frequency
division multiple access (FDMA) technique to provide was$ coverage for the indoor
users in which the total bandwidib is divided to multiple subchannels, and we allocate
one subchannel to each indoor user. Therefore, there istadarence between UAVS.
Furthermore, the authors in [61] show that significant paye@ns are attainable for indoor
users even in rich indoor scattering conditions, if the mrdgsers use directional antennas.

Our problem can be formulated as:

min | k|

subject to

||

Zyij =1 Viem (4.2.qa)
j=1

Im|

SO ) NLyyy <P Viek (4.20) (4.2)
i=1

Tin < Tj < Tmag Viek (4.2.c)
Ymin S Y; S Ymaz \V/j ek (42d)
Zmin < 2j < Zmag Viek (4.2.€)

wherek is the set of UAVs required to provide wireless coverageridoor usersy: is the
set of indoor users that requests a wireless coveragehe rate requirement for each user
(constant),V is the noise power (constanty, is the transmission bandwidth (constant),

L;; is the total path loss between UAvand usei and P is the maximum transmit power
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of UAV (constant). We also introduce the binary variaplethat takes the value of 1 if
the indoor usef is connected to the UAY and equals 0 otherwise. The objective is to
minimize the number of UAVs that are needed to provide a es®lcoverage for indoor
users. Constraint set (4.2.a) ensure that each indoorhseldsbe connected to one UAV.
Constraint set (4.2.b) ensure that the total power consumedUAV should not exceed
its maximum power consumption limit. Constraints (4.2.2-4) represent the minimum

and maximum allowed values far, y; andz;.

Theorem 6. The problem represented by (4.2) is NP-complete.

Proof. The number of constraints is polynomial in terms of the nundfendoor users,
UAVs and 3D locations. Given any solution for our problem, se® check the solutions
feasibility in polynomial time, then the problem is NP.

To prove that the problem is NP-hard, we reduce the Bin PgdRnoblem which is NP-
hard [40] to a special case of our problem. In the Bin Packiraplem, we have a set
of itemsG = {1,2,.., N} in which each item has volumg, wheren € G. All items
must be packed into a finite number of binsg, ¢,...p5), each of volumé’ in a way that
minimizes the number of bins used. The reduction steps gr&héb-th bin in the Bin
Packing Problem is mapped to tji¢h UAV in our problem, where the volumié for each
bin is mapped to the maximum transmit power of the URV2) Then-th item is mapped
to the indoori-th user, where the volume for each itenis mapped to the power required
to cover the-th indoor user. 3) All UAVs have the same maximum transmvv@aoP. 4)
The power required to cover thigh indoor user from any 3D location will be constant. If

there exists a solution to the bin packing problem with costhen the selected bins will
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represent the UAVs that are selected and the items in eachibbirepresent the indoor

users that the UAV must cover and the total cost of our prolath O

Due to the intractability of the problem, we consider clusig of indoor users.
The pseudo code of clustering indoor users is shown in Algori5. In thek-means
clustering algorithm [62], we are given a set of pointsand want to group the points
into k£ clusters such that each point belongs to the cluster withélagest mean. The first
step in the algorithm is to choose the number of cluster§hen, randomly initialize:
clusters centroids (step 6). In each iteration, the allgoriwvill do two things:1) Cluster
assignment step. 2) Move centroids step (step 7). In clasggnment step, the algorithm
goes through each point and chooses the closest centraldssaigns the point to it. In
move centroids step, the algorithm calculates the avemageaich group and moves the
centroids there. The algorithm will repeat these two stepisiiconverges. The algorithm
will converge when the assignments no longer change.kfimeans clustering algorithm
is known to have a time complexity @?(km), wherek is the number of clusters and
m is the number of points. To find the minimum number of UAVs rieeg to cover the
indoor users, we utilize this algorithm to cluster the indasers. In our algorithm, we
assume that each cluster will be covered by only one UAV. \&# ghe algorithm with
k = 2 (step 4) and after it finishes clustering the indoor useegplies the particle swarm
optimization [59] to find the UAV 3D location and UAV transnubwer needed to cover
each cluster. Then, it checks if the maximum transmit powesuifficient to cover each
cluster, if not, the number of clustekss incremented by one and the problem is solved

again (steps 8-9).
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Algorithm 5 Clustering Indoor Users
1: Input:

2: The maximum transmit power of UAV/P).
: The 3D locations ofrn indoor usersx;, y;, z;)-
: Number of cluster§| k| = 2).
: START:
. Initialize cluster centroids;, v», ..., 7 € R" randomly.
: Repeat until convergence:

For every indoor user € m, set

e = arg min (s, . 2) — ]I
For each clustey € k, set

Z (@i, Yi» 2)

iem,c(d=j

Vi Z 1

i€m,c(D=j

8: Using particle swarm optimization algorithm, calculabee UAV efficient 3D
location and the transmit power for each clugter k:
PHi= Y @F —1)xN«L

iem,c()=j

9: For j = 1to |k|

If (P(j) > P)

|k = k[ +1
goto START
End

10: Output:
11: |k| Clusters.
12: The transmit Power of each UAV.
13: The 3D locations of UAVSs.

~N O 01 A W

4.5 Numerical Results
4.5.1 Simulation Results for Single UAV
First, we verify our results for the second case, when thations of indoor users are

symmetric across they andzz planes, using different operating frequencies, 2GHz for
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Table 4.1Parameters in Numerical Analysis for Single UAV

Vertical width of buildingy, 50 meters
Hight of each floor 5 meters
Step sizex "GD algorithm” 0.01
Maximum number of iterationd/,,,,,. "GD algorithm” 500
The carrier frequencygy., low-SHF 2Ghz
The carrier frequencyg., high-SHF 15Ghz
Number of users in each floor 20 users
(varmin,varmax) "PSO algorithm” (0,1000)
(k,¢1,02) "PSO algorithm” (1,2.05,2.05)

low-SHF band and 15GHz for high-SHF. We assume that each d¢lmatains 20 users.
Then we apply the gradient descent (GD) algorithm to find h&n@al horizontal point

xy av that minimizes the transmit power required to cover the andsers. Table 4.1 lists
the parameters used in the numerical analysis for single thSés.

In Figures 4.8 and 4.9, we find the optimal horizontal poirtsd building of
different heights. In the upper part of the figures, we findttital path loss at different
locations ¢y av,0.5,204) and the optimal horizontal point;; 4y that results in the
minimum total path loss using the GD algorithm. In the lowartpf the figures, we
show the convergence speed of the GD algorithm. As can befsmarihe figures, when
the height of the building increases, the optimal horizbptent ;41 increases. This is

to compensate the increased building penetration lossodae increased incident angle.
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(a) The height is 200 meters (b) The height is 250 meters

Figure 4.8 UAV optimal placement and convergence
different building heightsf, = 2G Hz.
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Figure 4.9 UAV optimal placement and convergence
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In Figures 4.10 and 4.11, we investigate the impact of dffebuilding widths (i.e.,

xp). We fix the building height to be 250 meters for low-

meters for high-SHF, then we vary the building width.

SHF opiegafrequency and 25

As cansken from the figures,

when the building width increases, the optimal horizontatathce decreases. This is to

compensate for the increased indoor path loss due to arasenlduilding width.

Now, we validate the simulation results for low-SHF opergtirequency by using

the particle swarm optimization (PSO) algorithm and veaty result for the third case,

when the locations of indoor users are uniformly distribuite each floor, using low-

SHF operating frequency. As can be seen from the simulaéisults in Table 4.2, both
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Figure 4.10 UAV optimal placement and convergence speed of the GD dlguorior
different building widths f. = 2G Hz.
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Figure 4.11 UAV optimal placement and convergence speed of the GD dlguorior
different building widthsf. = 15G Hz.

algorithms converge to the same 3D placement, when theidosadf indoor users are
symmetric across they andzz planes.

After that, we assume that each floor contains 20 users anld¢hgons of these
users are uniformly distributed in each floor. When we app&/&D algorithm, the 3D
efficient placements and the total costs for 200 meter, 258maad 300 meter buildings
are (24.7254, 25, 10078853 = 10%), (33.8180, 25, 125)(9855 * 10%) and (43.1170, 25,
150)(1.2154 * 10°), respectively. UAV efficient placement and the convergespeed of
the PSO algorithm for different building heights is showtrigure 4.12. The 3D efficient

placements and the total costs for 200 meter, 250 meter addrigder buildings are
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Figure 4.13 UAV efficient placement and convergence speed of the PSQitdgofor
different building widths.

(21.7995, 37.3891, 111.7901)§645 * 10%), (32.9212, 28.7125, 124.029D)§725 % 10%)
and (46.5898, 31.5061 ,143.8588)(117 * 10°), respectively. As can be seen from the
simulation results in Table 4.3, the PSO algorithm proviaetser results. It provides total
cost less than the cost that the GD algorithm provides byE32@BdB). This is because
the PSO algorithm is designed for the case in which the looatof indoor users are
uniformly distributed in each floor. On the other hand, the &&orithm is designed for

the case in which the locations of indoor users are symmatrigss the dimensions of

each floor.
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Table 4.2Simulation Results: Validate the Simulation Results fer 8scond Case

Algorithm | z, | =y | Efficient 3D placement | Efficient total

path loss(dB)

GD 200| 20| 50 (20.025, 25, 100) 7.8825 % 10*

PSO 200 | 20 | 50 | (20.040, 25.0130, 100.0015)7.8825 * 10*

GD 250| 20| 50 (30.809, 25, 125) 9.9971 x 10*

PSO 250| 20| 50| (30.736,24.960, 124.956) 9.9971 x 10*

GD 300| 20| 50 (40.746, 25, 150) 1.2146 * 10°

PSO 300| 20| 50| (40.758,25.048, 150.054) 1.2146 * 10°

We also investigate the impact of different building wid{hs., =;) using the GD
and PSO algorithms (see Figure 4.13). We fix the building ltteig be 250 meters and
vary the building width. As can be seen from the simulaticgutts, the PSO algorithm
provides better results. It provides total cost less thancibst that the GD algorithm
provides by (57dB-161dB).

We can notice that the tradeoff in case three is similar to ith@ase two, when
the height of the building increases, the efficient horiabpbintx;; 4,y computed by our
algorithm increases. This is to compensate the increasédingipenetration loss due
to an increased incident angle. Also, when the building lwidcreases, the efficient
horizontal distance computed by our algorithm decreasdsis i§ to compensate the

increased indoor path loss due to an increased buildindhwidt
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Table 4.3Simulation Results: Verify the Results for the Third Case

Algorithm | z, | = | v Efficient 3D placement | Efficient total

path loss(dB)

GD | 200| 20|50 (24.725, 25, 100) 7.8853 % 101

PSO 200| 20| 50| (21.799, 37.389, 111.790) 7.8645 * 10*

GD | 250| 20|50 (33.818, 25, 125) 0.9855 * 10*

PSO 250 | 20| 50| (32.921, 28.712,124.029) 9.9725 % 10*

GD 300| 20| 50 (43.117, 25, 150) 1.2154 * 10°

PSO 300| 20| 50| (46.589, 31.506,143.858) 1.2117 * 10°

GD |250| 10|50 (38.521, 25, 125) 9.7413 % 10*

PSO 250 | 10| 50| (32.104,21.017,129.266) 9.7252 % 10*

GD 250 30| 50 (29.393, 25, 125) 1.0275 * 10°

PSO 250| 30| 50| (25.529,4.938,138.765)| 1.0211 * 10°

GD | 250|50] 50 (22.711, 25, 125) 1.0753 % 10°

PSO 250 | 50 | 50| (14.548, 17.308 ,131.8940) 1.0696 * 10°

4.5.2 Simulation Results for Multiple UAVs

In this section, we verify our results for multiple UAVs segin. First, we assume that
a building will host a special event (such as concert, camfeg, etc.), the dimensions
of the building aref0, 20] x [0,50] x [0,100]. The organizers of the event reserve all
floors higher than 75 meters and they expect that 200 peofilattend the event. Due
to interference from near-by macro cells, the organizecsdéeto use UAVs to provide

wireless coverage to the indoor users. We assume that 200ringers are uniformly
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Table 4.4Parameters in Numerical Analysis for Multiple UAVs

Maximum transmit power of UAV P) 5 Watt
Operating frequencyf{) 2Ghz
Transmission bandwidthy) 50M Hz
Rate requirement for each use) ( 2.2Mbps
Noise power {V) -150 dBm

Min and Max allowed values fat;, [ in, Tmas| | [25,1000]

Min and Max allowed values fay;, [Yimin, Ymaz] [0,50]

Min and Max allowed values fot;, [zmin, Zmaz] | [0,1000]

distributed in upper part of the building (higher than 75 eng} and 200 indoor users are
uniformly distributed in the lower part (less than 75 metefien, we apply the clustering
indoor users algorithm to find the minimum number of UAVs rieed to cover the indoor
users. Table 4.4 lists the parameters used in the numenablsas for multiple UAVs.

The algorithm starts witlk = 2 and after it finishes clustering the indoor users, it
applies the particle swarm optimization to find the UAV 3Ddton and UAV transmit
power needed to cover each cluster. Then, it checks if thermem transmit power is
sufficient to cover each cluster, if not, the number of clisstas incremented by one and
the problem is solved again. As can be seen from the simuolagisults in Figure 4.14,
we need 5 UAVSs to cover the indoor users. We can notice thaffiareat horizontal point
xy v for all UAVs 3D locations is the samg; 4, = 25, the minimum allowed value for
xyav, this is because the tradeoff (shown in Figure 4.3) disagpshen a UAV covers

small height of building.
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Figure 4.15UAVs efficient placements using uniform split method.

In Figure 4.15, we uniformly split the building infoparts and cover it by UAVS.
As can be seen from the simulation results, we need 9 UAVsYerdbe indoor users.
The clustering algorithm provides better results, thisasause it utilizes the distribution
of indoor users to divide them into clusters. On the othedh#re uniformly split method
is designed for the case in which the locations of indoorsugeiformly distributed in the

building.
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CHAPTER 5

MAXIMIZING THE INDOOR WIRELESS COVERAGE USING UAVS

5.1 Introduction

In this chaptet, we aim to maximize the indoor wireless coverage using UAYs@ped
with directional antennas. We study the case that the UA€s1aing one channel, thus
in order to maximize the total indoor wireless coverage, wacdaany overlapping in
their coverage volumes. We present two methods to place Avs;Uproviding wireless
coverage from one building side and from two building sidésthe first method, we
utilize the circle packing theory to determine the 3-D loma$ of the UAVS in a way
that the total coverage area is maximized. In the secondadetie place the UAVS in
front of two building sides and efficiently arrange the UAWsalternating upside-down
arrangements. Our results show that the upside-down amaggts of UAVS, can improve
the total coverage by 100% compared to providing wirelesem@ge from one building

side.

5.2 System Model
5.2.1 System Settings
Consider a3D building, as shown in Figure 5.1, wheré UAVs must be deployed to
maximize the wireless coverage to indoor users locatedinwitie building. Let the
dimensions of the high-rise building, in the shape of a regéar prism, bd0, ;] x

[0,y5] % [0, 2]. Let (xx, yx, 2) denote the 3D location aof-th UAV, and let (X;, Y;

1The work of this chapter has been published in [63].
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Figure 5.1 System model.
Z;) denote the location of usér Also, letd,,; be the distance between the UAV and
indoor useri, and letd,,; be the distance between the building wall and indoor user
Each UAV uses a directional antenna to provide wirelessrem@where the antenna half
power beamwidth i8z. The authors in [64] use an outdoor directional antennaduige
wireless coverage for indoor users. They show that the BIJRERP (Reference Signal
Received Power) and throughput values are measured alemggtim beam direction, thus
the radiation pattern of a directional antenna is a conelamdtoor volume covered by a
UAV is a truncated cone, as shown in Figure 5.2. Herés the radius of the circle that is
located atyz-rectangular side ((0,0,0), (0:0), (Os,25), (014,0))), r; is the radius of the
circle that is located ajz-rectangular side {(,,0,0), ¢,0,25), (z5,¥5,23), (T4,y5,0)) andz,

is the horizontal width of the building. The volume of a trated cone is given by:

1
V= gwxb('r’f + 75+ rirj) (5.1)
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Figure 5.2 Three dimensions of a truncated cone.

5.2.2 User Received Power

In [61], the authors show that significant power gains ar@rzdble for indoor users even
in rich indoor scattering conditions, if the indoor userg @airectional antennas. Now,
consider a transmission betwegsth UAV located at ¢, yx, 2:) andi-th indoor user

located at {;, Y;, Z;). The received signal power &th indoor user location can be given

by:
Pi(dB) = P, + G, + G, — L (5.2)

whereP, ;;, is the received signal power, is the transmit power of UA, is the antenna
gain of the UAV. It can be approximated 6y ~ % with 65 in degrees [18] and’, is

the antenna gain of indoor usgmwhich is given by [61]:
Gr(dB) = Gr,dir - Gr,omm’ — GRF (53)

whereG,. 4, andG,. ,..; are free-space antenna gains of a directive and an omrtidimat
antenna respectively an@dRF is the decrease in gain advantage of a directive over an

omnidirectional antenna, due to the presence of clutter.
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Also, L; is the path loss for the Outdoor-Indoor communication wheelm be

represented by [55]:

Li=Lr+ Lg+ L = (wlogy dout,; + wlogyy fans
(5.4)

+91) + (92 + g3(1 — c086;)?) + (gadin.;)
where L is the free space path loskg is the building penetration loss, arg is the
indoor loss. In the path loss model, we also hawe&0, ¢,=32.4, go=14, g3=15, g4,=0.5

and fqy. Is the carrier frequency.

5.3 Maximizing Indoor Wireless Coverage
In this section, the UAVs are assumed to be homogeneous ghalven same transmit
power, the same horizontal locatiop, the same channel and the same antenna half power
beamwidthdz. We show two methods to place the UAVs in a way that tries toimipe

the total coverage and avoids any overlapping in their @gerolumes.

5.3.1 Providing Wireless Coverage from One Building Side

In this method, we place all UAVs in front of one building sig&de A, sideB or sideC),
see Figure 5.3. The objective is to determine the three-aiineal location of each UAV
in a way that the total covered volume is maximized. Now, aersthat we place the

UAVs in front of building sideA, then the projection of UAV’s coverage on the building
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side B is a circle as shown in Figure 5.4. Our problem can be forredlas:

1
max |N| X gwxb(rf + 7“]2 +71;5)

subject to

\/(yk —Yg)? + (2 — 2)? > 2r;, k#qe N (5.5.q)

2 — (2 +1;) >0, k€N (5.5.b) (5.5)
(2, —1;) >0, keN (5.5.¢)

Y — (Y +75) 20, ke N (5.5.d)
(yr—7;) >0, keN (5.5.€)

The objective is to maximize the indoor wireless coveragwdoed volume), where
|N| is the number of UAVs. Constraint set (5.5.a) guarantegdiinacated cones cannot
overlap. Constraint sets (5.5.b-5.5.e) ensure that UAWIshoot cover outside theD
building, see Figure 5.4. We model this problem by utilizitg well-known circle

packing problem [65]. In this problend circles should be packed inside a given surface
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(x5,0,0) (X, ¥p,0)
Figure 5.4 Circle packing in a rectangle.

such that the packing density is maximized and no overla@ppeturs, note that the
surface in our problem is a rectangle. The authors of [69l¢aihis problem by solving
a number of decision problems. The decision problem is:
GivenN circles of radiusr; and a rectangle of dimensiap x z,, whether is it possible
to locate all the circles into the rectangle or not.
They introduce a nonlinear model for this problem. Finding answer for the decision
problem will depend on finding the global minimizer of a nomeex and nonlinear
optimization problem. In each decision problem, they itigade the feasibility of packing
N identical circles. If this is feasibley is incremented by one and the decision problem
is solved again. The algorithm will stop when the decisioobem yields an infeasible
packing [66]. The pseudo code of the algorithm is shown inofithm 6. In the next

section, we utilize the two building sides to maximize theéaar wireless coverage. This
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Algorithm 6 Circle packing in a rectangle
I:N+—1

2: Solve the decision problem fo¥ circles

3: If Answer= YES
4: Then N +— N +1
5: Return to step 2
6: If Answer= NO
7N +—N-—-1

8: End

9: Output N

will allow us to extend the indoor wireless coverage comgaxgh providing wireless
coverage from one building side, because the holes indugéuketcones of the UAVS of
one side can be filled by the cones induced by the UAVs of therailde without causing

overlap among the two sets of cones.

5.3.2 Providing Wireless Coverage from Two Building Sides

In this method, we place the UAVs in front of two building ssdéside A and sideB)
and efficiently arrange the UAVs in alternating upside-d@mwangements. In Theorem
7, we find the horizontal location of the UAY 4 that guarantees the upside-down
arrangements of the truncated cones. In Theorem 8, we pnavé the truncated cones
do not intersect in 3D, then the circles do not intersect ifdng sides (A and B), and
vice versa. In Theorem 9, we prove that if we maximize thegraiage of covered area of
building sides (A and B), then we maximize the percentag@weéred volume of building,
and vice versa. These theorems enable us to transform theegigoproblem from 3D to

2D and present an efficient algorithm to maximize the indooelss coverage.
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Theorem 7. The horizontal location of the UAY,; 41 that guarantees the upside-down
arrangements of the truncated cones will be equal. @71z, regardless of the antenna

half power beamwidth angh;.

Proof. The radius of the smaller circular facgis given by:

=1, TUAV (5.6)
Ty + Tuav

Now, we divide the building sidegl and B to square cells (as shown in Figures 5.5
and 5.6), the large circle in Figure 5.5 and the small ciral&igure 5.6 will represent
the projections of UAV’s coverage on building sidésand B when the UAV is placed
in front of building sideB. Similarly, the four small circle quarters in Figure 5.5 ahd
four large circle quarters in Figure 5.6 will represent thej@ctions of UAVS coverage
on building sidesA and B when the UAVs are placed in front of building side From
Figures 5.5 and 5.6, the diagonal of the square cell is giyeb b= 2r; + 2r;, wherer;

is the radius of the larger circular face ands the radius of the smaller circular face. By

applying the pythagoreans theorem, we get:

V8 —2
2

r; = Tj = ”}/7’] (57)

From equations (5.6) and (5.7), we get:

TuAV \/§272 = Tpay = T Ef\_/g; = 0.7071x, O

Tp+TU AV

Thus, to guarantee the upside-down arrangements of theatiechcones, we must
place the UAVs at horizontal distance equal9 f71z,. Theorems 8 and 9 enable us to

transform the geometric problem from 3D to 2D.
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Theorem 8. The truncated cones do not intersect in 3D iff The circles atomtersect in

building sides (A and B).

Proof. First, we prove that if the truncated cones do not intersesfl, then the circles
do not intersect in building sides (A and B). Assume that weeleset of truncated cones
G ={1,2,...,N} and they do not intersect in 3D space. Each truncated eané&: can
be represented by a numberd circles{ci,, can, ..., ¢ }» Where|h| is the height of
the truncated cone;,, is the smaller circular face ang,,, is the larger circular face. Itis
obvious that if thgG| truncated cones do not intersect3ify space then the smaller and
larger circular faces do not intersect in building siddsagd B).

Second, we prove that if the circles do not intersect in lngdides (A and B), then
the truncated cones do not intersecsin. Assume that four circles (with large radiug
not intersect in building sidel (see Figure 5.7), then the circles (with small raditjs
in building sideB will appear as shown Figure 5.8. Now, we need to do two steps: 1
Connect the lines between these points, (with A;, By, with By, C}, with C; and
Dy, with D, ). 2) Draw circles that pass through four points, B, C;, and D, where

k € h. After these two steps, the circles that have been drawremtsto will represent
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Figure 5.7 Four circles Figure 5.8 Four circles
(with  radius ;) in (with radius r;) in
building sideA. building sideB.

a truncated cone that his circular bases do not intersehbttiv four circles in building

sides @ and B). Also, the truncated cones do not intersect in 3D space. O
Theorem 9. We maximize the percentage of covered area of building $&lesd B) iff
We maximize the percentage of covered volume of building.

Proof. First, we divide the building side4 and B to square cells (as shown in Figures 5.5

and 5.6). The percentage of covered volume is given by:

L LE2Gm 0t 4y 4 )

(Typ2p) (8)

Where:

| &%) |- the number of square cells in the building side.

47"]2.
2: the number of truncated cones in the square cell (seedsdub and 5.6).

™

Zay(r] + rir; + 17): the volume of truncated cone.

(xpypzp): the volume of the building. Now, from equations (5.7) an@jpwe get:

vV — 5 — K, L(:ybzb)J,r? (59)

2 175
47’j
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The percentage of covered area of building sidearid B) is given by:

B T U o At L o ik G I L
— J + J — J .
(ybzb) (ybzb) (ybzb)

Now, from equations (5.7) and (5.10), we get:

@ 21 (2 + 1)r?
W L 4r]. J (7 ) J _ Kzt(beb)Jrz- (511)
(y2b)

(%”)('y%wl)’ Ky = (2m)(v2+1)

wherek, = (Ybzp) T (ywva)

. From equations (5.9) and (5.11), maximizing
the percentage of covered volume of buildifng is equivalent to maximizing the
percentage of covered area of building sides (A andiB)and vice versa, wher&;

and K, are constants. O

In Algorithm 7, we maximize the covered volume by placing tHAVs in
alternating upside-down arrangements. First, we find thizdotal distance between the
building and the UAVs:; 4y = 0.7071x, (See Theorem 7) that guarantees the alternating
upside-down arrangements. Then, we divide the buildingssidand B to square cells
and place one UAV in front of the square cell. In steps (8-@)find the3 D locations of
UAVs that cover the building from side B. On the other handpst(17-25) find thé D
locations of UAVs that cover the building from side A. Finallhe algorithm will output

the total number of UAVs and the total covered volume.

5.4 Simulation Results
Let the dimensions of the building, in the shape of a rectirgurism, bel0, z;, = 30] x
[0,y, = 40] x [0, zb = 60]. We use three methods to cover the building using UAVS. In

the first method, we place all UAVs in front of one buildingesig@! or B) (FOBS). In the
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Algorithm 7 Maximizing Indoor Wireless Coverage

1: Input:

2: The dimensions of buildingy, 3, andz,
3: The radius of the larger circular face
4: Initialization:
5 r, = \/g _ 2rj
2
6: zyay = 0.7071xy
7"u=q=0
8: The3D locations of UAVs that cover the building from side B are giv®y:
9: Fork; =1: LQy—éJ
10: Fors; =1: L%J
11: u=u+1
12: Tq = Tyav + Ty
13: Yu = (2k1 — D)1}
14: 2y = (281 — D)r;
15: End
16: End
17: The3D locations of UAVs that cover the building from side A are givey:
18: For ks =1: L%J
19: Forsy=1: L%J
20: g=q+1
21: Tq = —Tyav
22: Yg = (2ko)7;
23: Zq = (282)7;
24: End
25: End
26: Output:

27: The number of UAVs- u + ¢
28: The covered volume + ¢)(3xy(r7 + rirj +173))
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Figure 5.9 Total coverage v4ip.

second method, we place all UAVs above the buildiog (ABS). In the third method, we
arrange the UAVs in alternating upside-down arrangemeXit@). In Figure 5.9, we
find the maximum total coverage for different antenna hal@obeamwidth angleg;.
As can be seen from the simulation results, the maximum ¢ot&rage is less than half
for the FOBS and ABS methods, this is because providing essetoverage from one
building side will only maximize the covered area of the dunt side. On the other hand,
we improve the maximum total coverage by applying the AUD#s is because AUDA
will allow us to use a higher number of UAVs to provide wirede®verage compared with
providing wireless coverage from one building side, as shimFigure 5.10.

In order to provide full wireless coverage, we utilize mpiki channels to cover the
holes. We start the coverage process with one channel andnaidill the holes using
UAVs with multiple channels until we cover the whole buildinin Figure 5.11, we find
the total number of UAVs required to provide full coverages ¢an be seen from the
figure, FOBS and ABS need high number of UAVs to guaranteexirktless coverage,
due to the irregular shapes of the holes in the building. Heesecan easily specify the

number of UAVs required to cover each hole, due to the smalleptions of the holes
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in the building side. On the other hand, AUDA needs fewer neinadd UAVs to provide
full wireless coverage, due to the small-regular shapeletihcovered spaces inside the
building. Here, we need only one UAV to cover each hole. InuFegb.12, we find the total
transmit power consumed by UAVs when the building is fullyeed. Here, we assume
that the threshold SNR equals 25dB, the noise power equalsiBim, the frequency of
the channel is 2GHz and the antenna gain of each indoor uddr4sdB [61]. As can
be seen from the figure, the total transmit power in all meshedrery small, due to the

high gain of the directional antennas. Also, we can notie tifie total power consumed
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in FOBS and ABS is higher than that of AUDA. This is becauserttmber of UAVs

required to fully cover the building in AUDA is fewer than tifar FOBS and ABS.
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CHAPTER 6

MAXIMIZING THE LIFETIME OF WIRELESS DEVICES USING UAVS

6.1 Introduction

Prior studies on UAV-based wireless coverage typicallystber downlink scenarios
from a UAV to ground usefs The authors in [14] investigate the downlink coverage
performance of a UAV, where the objective is to find the optitdAV altitude which
leads to the maximum ground coverage and the minimum transmier. In [13], the
authors consider the downlink scenario, where the goal mitemize the total required
transmit power of UAVs while satisfying the users rate reguoients. In [46] and [47],
the authors propose using a UAV to provide wireless covefagendoor users during
emergency cases and special events, where the objectwéinsltan efficient placement
of a single UAV that minimizes the total transmit power reqdito cover the indoor users.
Due to the limited transmit power of the UAV, the authors iB][4tudy the problem of
minimizing the number of UAVS required to cover the indooerss

Only few studies consider the uplink scenario in which theugid wireless devices
transmit data to a UAV. The authors in [68] study the throughpaximization problem in
UAV relaying systems by optimizing the source/relay traigrower along with the UAV
trajectory, subject to practical mobility constraints. [Bb], the authors present a UAV
enabled data collection system, where a UAV is dispatcheditect a given amount of

data from ground terminals at fixed location. They aim to fimelaptimal ground terminal

1The work of this chapter has been published in [67].
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transmit power and UAV trajectory that achieve differentg®a optimal energy trade-offs
between the ground terminal and the UAV.

Under disaster situations (such as earthquakes or floodsjs unay not be able
to communicate with remote-undamaged terrestrial grouatioss due to the limited
transmit power of wireless devices. They are also not ablee¢barge their wireless
devices due to physical damage to energy infrastructurthelsase of Hurricane Katrina,
about 700,000 customers in Louisiana and almost 200,000ssi84ippi lost power [69].
In such situations, providing wireless coverage become® ingportant, since people in
the disaster area seek to learn about the emergency evett their family and friends,
and receive commands to flee the disaster-affected are@lJfOn this chapter, we are
motivated to explore how the placements of UAVs can enhahedime durations of
uplink transmissions of wireless devices when the UAVs aeduto provide wireless

coverage for the users utilizing these devices under disagtiations.

6.2 System Model

We assume that a set of ground uskis located within a 2D geographical area, where
each used € [ has a wireless device with residual enetgly We consider an uplink
scenario in which the ground users adopt a frequency divisialtiple access (FDMA)
technique to transmit data to a set of UAVsat a desired data ratg as done in [72]
and [73], where the UAVs are supported by backhaul links thirconnect them to
together and connect them to the core of the Internet. Tazeetiese links, we could
use free space optics. FDMA allocates one subchannel towssefor communications

and hence the channels do not interfere with one another [R2fice that the equal
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bandwidth division in FDMA ensures fairness among the gdousers [74]. We also
assume that each usere I is served by a UAV for a time duration,, seconds and
this time duration depends on the residual energy of wisetlevice represented by the
battery levelFE; and the placement of UAV,, whereu € U. Received Signal Strength
Indicator (RSSI) sensors on board the UAVs measure thegitrexi RF signals across a
range of frequencies. The received signals, although rthigyto the radio-propagation
environment and sensor noise, can be used to determine phexapate locations of
wireless devices using Bayesian filters [75] and Kalmanr§il{g6], where running the
localization algorithm has minimal effect on the power agngtions of wireless devices.
We also assume that the ground wireless devices can sendltiesof residual energies
to the UAVs using control messages [39].

In this chapter, we assume that the wireless channel betgeemd user and
UAV w is line of sight dominated, so that the free space path loskem® adopted similar
to [68] and [25], where € [ andu € U. In Section 6.4, we show that this assumption is

realistic. The path loss is given as follows:

2
Liw = <4ﬂdi“F> 6.1)

C

whered;, = \/(X. — z;)2+ (Y, — v:)? + (Z,)? is the distance between ground user
and UAV u, (x;,y;) is the 2D location of ground user (X,, Y., Z,) is the 3D location
of UAV u, F'is frequency (in Hz) and is the speed of light (in m/s). Note that when the
distance between a ground user and UAV (tig,) increases, the required transmit power

(i.e., p;,,) to satisfy a given data rate increases.
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Figure 6.1 Ground users transmitting data to UAVS.

6.3 Problem Formulation
Consider a transmission between a user locatedzaty;) and a UAV located at
(X., Yy, Z,) that acts as an aerial base station to collect data from aseshown in

Figure 6.1. The rate for useis given by:

L
Ciu = Bilog, (1 n pw]/v “) (6.2)

whereB; is the transmission bandwidth of usep;, is the transmit power from useto
UAV u, L;, is the path loss between ugeand UAV u, andN is the noise power.

Let us assume that all users have the same datdirated each user has a channel
with bandwidth equals3/|I|, where B is the total available bandwidth in the system
and|I| is the number of ground users. FDMA allocates one subchdaregch user for
communications and hence the user’s transmissions doteofare with one another. The

minimum power required to satisfy the data r&téor each user is given by:

P = (2% 1) N L, (6.3)

In this chapter, the lifetime is defined as the time duratibonmink transmission

until the first wireless device runs out of energy. Our go#d ind the optimal placements

82



of the|U| UAVs such that the lifetime of wireless devices is maximiz&dr problem can

be formulated as:

max min Ty,
(X, Yu,Zu) Wiy, Tin 1€1,uclU

subject to
> wn =1 Viel (6.4.a)

Wi (2'7 . 1) NLjy < Ppow Vi€ ILYueU (6.4.D)

(6.4)
Wi (Tiw — Ten) > 0 Vie LYNueU (6.4.c)

WinTin (2 L 1) NLw <E YielVuelU (6.4.d)

Lmin S Xu S Lmax Yu ceU (646)
Ymin < Yu < Ymax Yu e U (64f)
Zmin S Zu S Zmax \V/U € U (649)

whereU is the set of UAVs that are utilized to serve the set of grousers/. We also
introduce the binary variable;, that takes the value of 1 if the ground usé&s connected
to UAV u and equals O otherwise. The objective is to determine thatitmts of the
UAVs such that the time duration of uplink transmission Lthi first wireless device runs
out of energy is maximized. In order to maximize the duratbmiplink transmission,
each user will be connected to the nearest UAV. Constrain(6s¢.a) guarantees that
each ground user should be connected to one UAV. Constetid < .b) ensures that the
transmit power of each wireless device should not exceethdgsmum transmit power
P,.... Constraint set (6.4.c) guarantees that each groundiuser is served by UAV

for a time greater tham,;, seconds. Constraint set (6.4.d) ensures that the totagener
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consumed by user’s device should not exceed its batterggitmrel F;. Constraint sets
(6.4.e-6.4.9) represent the minimum and maximum allowahlees forX,, Y, and 7,

respectively.

Theorem 10. The problem represented by (6.4) is NP-complete.

Proof. The number of constraints is polynomial in terms of the nundfground users,
number of UAVs, and locations. Given any solution to our eoly we can check the
solution’s feasibility in polynomial time; then, the preloh is NP.

To prove that the problem is NP-hard, we reduce pgkeenter problem which is
NP-hard [77], to a special case of our problem. In pheenter problem, we are given
a set of demand points and a set of facilitiep where each demand point receives its
service from the closest facility. The objective is to detigre the locations of| facilities
that minimize the maximal distance for all demand pointg.[T8e reduction steps are as

follows.

e Thep-th facility in thep-center problem is mapped to theth UAV in our problem,
where the set of demand poinisis mapped to the set of ground usérs

¢ Inthe special case of our problem that we map to, all wiradestces have the same
residual energyy; = E,Vi € 1.

¢ In the special case of our problem that we mapQ,, = oo andr,, = 0.

Now, minimizing the the maximal distance in theenter problem is equivalent to

maximizing the lifetime in the special case of our problem. O

Due to the intractability of our problem, we start by consing the case where there
is only one UAV. Based on this, we propose an efficient alparito solve the problem

for the general case of multiple UAVS.
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6.4 The Single UAV Case

For the special case of a single UAV. Our problem can be foaedl as:

max min 7,
(Xu,YVuyZu)aTiu el

subject to
R.|I|
(27 - 1) NLiy < Poas Viel (6.5.q)
Tiu 2 Tih Viel (6.5.0)
(6.5)
Tiu (2¥ - 1) NLzu S Ei VZ - ] (650)
Lmin S Xu S Tmax (65d>
Ymin S Yu S Ymax (656)
Zmin S Zu S Zmax (65f)

From equation (6.1), we can notice that the optimal altitofithe UAV that maximizes
the lifetime of wireless devices is equal4g;,, which could correspond to the minimum
altitude due to safety consideration [25]. Now, our objeebecomes finding the optimal
2D placement of the UAV such that the lifetime of wirelessides is maximized. Even
though the problem has a number of nonlinear constraints;ametransform (6.5) to a
convex optimization problem with two variables by provihgtthe constraint sets (6.5.a-
6.5.c) can be represented by the intersection of half splzeré the region formed by this

intersection is a convex set in terms(df,,, Y,,).

Theorem 11. The constraint sets (6.5.a-6.5.c) can be represented binteesection of

half spheres and the region formed by this intersection isravex set in terms @fX,, Y., ).
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Figure 6.2 Range of distances that satisfies constraint set (6.5.a).

Proof. From (6.1) and (6.3), the transmit power of ground usergiven by:

2
Piu = (2%” - 1) N (“di“f) = K&, (6.6)

R.|I|

. 4
whereK is a constant and equa{QT — 1) N <Lf

2
) . Now, to satisfy constraint set
C

(6.5.a),p;, must be less thafk,,.... From (6.6), the range of distancésthat satisfies the

constraint set (6.5.a) is given by:

P max
K

dr

VAN

(6.7)

. . [ Praz -
The range of distancek represents a half sphere with rad 57 as shown in Figure

6.2. To satisfy constraint sets (6.5.b) and (6.50¢),must be less thar—. From (6.6),
Tth

the range of distancek that satisfies constraint sets (6.5.b) and (6.5.c) is giyen b

E;

dy <
2= TthK

(6.8)

The range of distancek also represents a half sphere with radi S—K as shown
Tth
in Figure 6.3. For each ground usethe range of distances that satisfy the constraint sets

(6.5.a)-(6.5.c) can be represented by a half sphere withsad
. Pmam Ez
mm{w 7 ’”TthK} (6.9)
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Figure 6.3 Range of distances that satisfies constraint sets (6.5d0)6ab.c).

The half sphere is a convex set and the intersection of cas®isxs also a convex set [79].

O

From Theorem 11, we restrict ti2é) placement of UAV(X,,, Y,,) to be inV. The

convex feasible regiolr is given by:

V=n[v
11| 2 i
— 3 )2 YAY 2 < . max 7
V= (NGep2) € RV =2 4y — w4 2 < minfy| =/ 250
‘/2 = {(if),y) € [xmin7xmax] X [ymin7ymax]|z = Zmz'n}
(6.10)

whereV; represents the convex set that satisfies the constrainfésgta)-(6.5.c) and;
represents the optimal altitude of the UAY,,,.

In the next theorem, we prove that the objective function ascave under a
restriction on the coverage angle of ground userhe coverage angle is shown in Figure
6.4 and depends on the 3D placement of the UAV and the 2D twtati ground user.

This theorem enables us to find the optimal placement for thé U
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Figure 6.4 Coverage anglé.

Theorem 12. The objective function of (6.5) is concave if the coveraggieafh of each

wireless device is greater thai°.

Proof. Proving that the time duration of uplink transmission of eleéss devicer;,
is concave implies that the objective function is concaveenhminimizing concave
functions is concave [80] and concave maximization presseooncavity [79]. Now, we

only need to prove that (6.11) is a concave function:

Pu (@ O)NL, e gy Al K, (6.11)
C
Since% > 0,Vi € I, we need to prove thgtis a concave function:
1 .
f= Viel (6.12)

(X =)+ (Ya— 9. + 22

min

Using the second order condition, the functipms concave if the Hessian is negative

semidefinite [79]. Now, the Hessian is negative semidefiifitthese conditions are

satisfied:
(a);% <0, Viel
(b)c‘%’; <0, Viel (6.13)
(C)j;g 52; - (d)?ij;Yu)Q >0, Viel
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To check the first condition, we need to fi( °f ):
dX?
df —2(X, — ;)
Xy~ (X =22+ (Yu— 9 + 22,,)°
Ef 2K — @) + (Yo —9:)° + 20)°
dX7  (Xu—2)? + (Yo — vi)? + 25
8(Xu — ) (Xu — 2:)” + (Yo — ¥:)* + 2iin)
(Xu = 20)? + (Y — 9:)* + 2750)*
—2((Xu = 2:)* + (Yo — 90)* + 2i0) + 8(Xu — 25)°
- (Xu =22+ (Va =) + 22,0
C6(X, — )2 = 2(Y, — )t — 222

_|_

(6.14)

min

(X =)+ (Yo — 1) + 2p)?

& f . .
From (6'14)’ﬁ <0,Vielif:

u

Zin 2 3(Xy — ) = (Y —y)2Vie ] (6.15)

min

2
Similarly, j—y‘]; <0,Viellf

2 >3, —ui)? — (Xy—2)2 Viel (6.16)

min

2 2 2 2
To check the third condition, we need to fi%d J;;iyJ; — (d)? §Y ) ;

>2f 8(Xu — ) (Yu — vi)
dX,dY,  ((Xu— )2+ (Yo — yi)? + 223)°

min

(6.17)
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From (6.17), we get:

’f d°f ( d*f 2 = —2((Xu = 2:)* + (Ya — 9:)* + 20i) + 8(Xo — 23)?
dX2dy? dX,dY, (X — )2+ (Yu — 9i)? + 225, '
—2((Xy —)* + (Yo —v:)* + 22) +8(Ye — 4s)?
(X =2+ (Y — 9 + 22,)° -
64(X, — 2,)%(Yy — ui)?
(Xu = 2)? + (Yu — 92)? + 20"
4( Xy — )+ (Y —yi)? + 22,2
(X —23)2 4+ (Yo —y:)? + 22,)8
16(Y, — yi)2((Xy — 23)% + (Yo — 9i)? + 224
(Xu—z2+ Y=y +22)°
16(X, — 2)2(Xy — )2 + (Yo — v:)? + 224
(X —2i)2 + (Yo — 9:)? + 205)°
64(X, — 2,)%(Yo — yi)?
(Xu =)+ (Y — )+ 22,)°
64(X, — 2,)%(Yy — yi)?
(Xu = 2)? + (Yu — 9:)? + 20"
4((Xy — )+ (Yo —yi)? + 22,)

T (X —w) + (Y — )2 + 22,7
—16(X, — ;)% — 16(Y, — y;)?
(Xy = )24+ (Yo —y:)? + 225,)°
L 12(X = )2 = 12(Yy — y)? + 422

min

(X —23)2 4+ (Yo —u:)? + 22,)°

(6.18)

EfEf (BN

From (6.18),dX2 vz (qudYu) >0,Viellif
2> 3(Xy — ) +3(Ye — ) Vie l (6.19)
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From (6.15), (6.16) and (6.19), the Hessian is negative defmite if the following

conditions are satisfied:

(@) 2 > 3(Xy — )" = (Y — )2, Vi€ [

(02 > 3(Ya = 9:)* — (Xu — @)%, Vi€ I (6.20)

min

()22, > 3(Xy — ) +3(Y, —y)2 Vi€ [

min

From the three conditions in (6.20), we can notice that ifditbon (c) is satisfied, then
conditions (a) and (b) are also satisfied. Let us defing, as a maximum possible
2D distance in the geographical area (i.e., if the users @®illited in a circular
geographical area, thef,., is equal to the diameter of circle). From condition (c),

if zmn > V3dmax then the objective function of (6.5) is concave whekg,, >

VX, —2)2+ (Y, —y)%Vi € I. Then, the coverage anglemust be greater than

tan~! Y3dua — 600, O

max

Here, we can notice that the altitude of UAY,;, controls the concavity of the
objective function. Theorem 12 enables us to find the optpledement for the UAV,
when the coverage angheof each wireless device is greater than or equébto

In this chapter, we assume that the wireless channel betavgeound user and a
UAV is line of sight dominated. To verify that the coverageykmthat we characterize it
in Theorem 12 guarantees a line of sight path, we utilize dhsight (LOS) probability

models for downlink scenarios.
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Table 6.1Parameters for Air-to-Ground Path Loss Model Using HAP aA& L

Environment| Platform type| a; as | as | au as ag
Suburban HAP 1016 O | 0 |3.25|1.241| O
Urban HAP 120 0 | 0]243|1.229| 0O
Suburban LAP 01 |750| 0| O 0 8
Urban LAP 03 |[500| 0| O 0 15

For low altitude aerial platforms (LAP), the probabilityleéving a LOS connection

in downlink scenario is given by [81]:

. [Z (4 1)(Zu-2)]?
P(LoS) =] |1 - eap | - 2@;” (6.21)
n=0

wherem = |r,/aia; — 1], r is the ground distance between the UAV and ground user,
andz are the UAV and ground user heights, and the parameters andag are constant
values that depend on the environment (see Table 6.1).

For high altitude aerial platforms (HAP), the probabilifynaving a LOS connection
in downlink scenario is given by [82]:

ap — a2

m (6.22)

a4

P(LOS) =a—

wherea,, as, as, ay andas are empirical parameters given in Table 6.1 for two différen
environments.

In Figure 6.5, we plot the probability of having a LOS wiredesonnection in
suburban and urban environments using LAP and HAP. We cacenibiat the coverage

angle that we characterize in Theorem 12 gives us more tHarLOS probability.
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Figure 6.5LOS probability for LAP and HAP in different environments.
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Therefore, our assumption that a wireless channel is a fisight dominated is a realistic

assumption.
Now, we propose to use the Gradient Projection Algorithnj {83ind the optimal
placement of a UAV, when the UAV'’s altitude satisfies the gbad in Theorem 12. The

gradient projection algorithm is given by:
(X, Vo)™ = [(X,, Y)" + 0V ((X,,Y,)")]" (6.23)

wheren is the iteration numbed,is a positive step siz& V is the gradient of the objective
function in (6.5) andg|*™ denotes the orthogonal projection of vecf@nto convex sef).

In particular,[¢]* is defined by:

]+

[q]" = arg min [|w — ql|» (6.24)
weR

The pseudo code of the gradient projection algorithm is shiovAlgorithm 8.
Also, we can use the PSO algorithm [59] to find an efficient 3ixpment of a UAV,

when the altitude of a UAV does not satisfy the condition iredrem 12.
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Algorithm 8 The Gradient Projection Algorithm
1: Input:
2: The step tolerance

: The step sizé.

: The maximum number of iterations, ..

- Initialize (X,,Y.,)

s For n=1,2,....,nmax

(X Vo)™ = [(Xo, Vo) + 5VU((X,, Ya)")JF
If [ (Xu, Vo)™ — (X, Yo)" | <€

Return: (X, Yy)opt = (X, Ya)" ™

9: End for

N o oA oW

oo

6.5 Clustering Algorithm for Multiple UAVs Case

Due to the intractability of the general problem represgénby (6.4), we consider
clustering of ground users. The pseudo code of clusteriegsus shown in Algorithm
9 and it is inspired by the k-means clustering algorithm [@8]the k-means clustering
algorithm, we are given a set of poinis and want to group the points intoclusters
such that each point belongs to the cluster with the neareahmThe main step in our
algorithm is to choose the number of clustér§ (step 4) and then randomly initialize
|U| clusters centroids (step 6). In each iteration, the algoriwill do two things: 1)
cluster assignment step, 2) move centroids step (step ©Qluster assignment step, the
algorithm goes through each point and chooses the closaisbitband assigns the point
to it. In move centroids step, the algorithm calculates tie@mpoint of each cluster (the
mean point minimizes the sum of squared Euclidean distabesgeen itself and each
point in the cluster) and moves the centroids there. Theidligo repeats these two steps

until it converges. It converges when the assignments ngeloohange. After it finishes
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clustering the users, it applies the Gradient ProjectiogoAthm or PSO Algorithm to

find the placements of UAVs (steps 8-12) within each cluster.

Algorithm 9 Maximizing the Lifetime of Wireless Devices.
1: Input:
2: The residual energy of each wireless devigei € 1.
: The locations of/| ground users.
: The number of UAVSU|.
: START:
- Initialize the placements of the UAVg, s, ..., vy randomly.
: Repeat until convergence:

~N o 0o AW

For every usei € I, set
) = arg IJlllI]l (i, yi) — 7l |2
For each UAVu € U, set

Z (@i, y1)

_iel,cW=u

i€l,cD=y

8:1f 6; > 60°,Viel

9: Calculate the optimal placements of UAVs using the
Gradient Projection Algorithm.

10: else

11: Calculate the efficient placements of UAVs using the
PSO Algorithm.

12: endif

13: Output:

14:|U| Clusters.

15: The lifetime of wireless devicesin 7;,.
i€l uelU

16: The placements of UAVS.

6.6 Finding the Minimum Number of UAVS
In this section, we consider the problem of minimizing thentner of UAVS required to

serve the ground users such that the time duration of upiamstnission of each wireless
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devicer;, is greater than or equal tg,. Our problem can be formulated as:

min |U|
(Xu7Yu7ZU)7wiu7Tiu

subject to (6.25)

(6.4.a) — (6.4.9).
Theorem 13. The problem represented by (6.25) is NP-complete.

Proof. The number of constraints is polynomial in terms of the nundfground users,
number of UAVS, and locations. Given any solution to our fpealy we can check the
solution’s feasibility in polynomial time; then, the preiph is NP.

To prove that the problem is NP-hard, we reduce the set cawdigm, which is
NP-hard [84], to a special case of our problem. In the setrcprablem, we have a set
of elementsy = {1, 2, ..., N}, called the universe, and a famifyof subsets otz whose
union equals the universe. The objective is to find the smallest subfamily of séts. .S

whose union equals the universe. The reduction steps acd@ss.

e The set of elementS in the set cover problem is mapped to the set of ground users
I in our problem.

e The family S of subsets of7 in the set cover problem is mapped to the subsets of
covered ground users from all possible UAV placements, e/lbasset is covered
by the UAV v located at X, Y., Z,,) if 7, > Typ.

If and only if, there exists a solution to the set cover prableith number of subsets

C, then the minimum number of UAVs in our problem(s 0

Next, we propose to use two efficient methods to determinenihénum number

of UAVs required to serve the wireless devices.
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Method 1. Minimizing the number of UAVs using clusteringdue to the
intractability of the problem, we consider clustering odbgnd users. The pseudo code of
clustering users is shown in Algorithm 10. In our algorithme assume that each cluster
will be covered by only one UAV. We start the algorithm withawAVs |U| = 2 (step
5) and after it finishes clustering the users, it applies tred@&nt Projection Algorithm
or PSO Algorithm to find the placements of UAVs (steps 9-13himieach cluster. Then,
it checks if the time duration of uplink transmission of eadgheless device satisfies the
constraintr;, > 7, (steps 14-15) , if not, the number of UAVE]| is incremented by one
and the previous steps are repeated until it converges.

Method 2. Minimizing the number of UAVs using matrix reduction methad
Section 6.4, we prove that the constraint sets (6.5.a)6c¢a be represented by the
intersections of half spheres. We also show that the optatidalde of a UAV that
maximizes the lifetime of wireless devices is equattg,. In this method, we represent
the constraint sets of problem (6.25) by intersections oftipia circles when each user

1 € 1 satisfies this condition:

Pmax Ez .
Zmin < Min{y/ 7 7_MJ(} < min{Az;, Ay; } (6.26)

whereAz; equalsmin{|z; — Tpmin|, |Ti — Tmaz|} @NdAy; equalsmin{|y; — Yminl, |yi —

Ymaz| - Here, we can find the minimum number of UAVs and their placeisasing the
matrix reduction method [85]. The reduction method begiith & matrix representing
which wireless devices are within the critical distance\adrg potential UAV placement.
In our problem, the potential UAV placement is any point ia tircle intersection region.

The method then eliminates any row(s) (wireless devicegggh that all of its entries
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Algorithm 10 Minimizing the number of UAVS.

1: Input:

2: The residual energy of each wireless devigei € 1.

: The locations of/| ground users.

: The threshold time duration of uplink transmissign

: The number of UAVS is two|U| = 2).

: START:

- Initialize the placements of the UAVg, v, ..., vy randomly.
: Repeat until convergence:

00 N O O A W

For every uset € I, set
o = arg min||(z;, y;) = Yull”
For each UAVu € U, set

Z (i, i)

iel,c=yu

iel,c®=u

9:1f 6, > 60°,Vi € I
10: Calculate the optimal placements of UAVs using the

Gradient Projection Algorithm.

11:else

12: Calculate the efficient placements of UAVs using the
PSO Algorithm.

13: endif

14:Fori = 1to |I|

15 If (730 < T3p)

16: Ul =|U|+1
17 goto START
18: End

19: Output:

20: |U| Clusters.
21: The placements of UAVS.

98



The circle
intersection areas

Neighbor subsets

Figure 6.6 Computing circle intersection areas using Algorithm 11.

are greater than or equal to the corresponding entries dhanoow. The second step
of the method eliminates any column(s) (potential UAV plaeat(s)) such that all of
its entries are less than or equal to the correspondingesntfi another column. The
matrix reduction method repeats these two steps until iveges. It converges when
no more columns or rows are eliminated. Now, the questioroig to find the circle
intersection areas. Unfortunately, when more than thredesi are considered, the
number of configurations grows exponentially. The authord] present an algorithm,
Computing Circle Intersection Areas (CCIA) Algorithm, tadi the circle intersection
areas. The overall complexity of this algorithm grows\g" where IV, is the number
of circles and each circle represents the wireless covefdugese station. They apply their
algorithm to compute the total coverage of ten base stationgur problem, each circle
represents the feasible region that satisfies the conts$etgof each wireless device. Due

to the large number of wireless devices, it will be impraaitio apply the CCIA algorithm.

In problem (6.10), we show that the constraint sets of wa®ldevices can be
represented by the intersection of circles and the regiomdd by this intersection
satisfies the constraint sets of wireless devices. It isasvihat finding at least one point

in each circle intersection area is sufficient to solve owbfgm, where any point in the
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circle intersection area will satisfy the constraint sdtsvmeless devices. In Algorithm
11, we divide the plane into equal sized grids and presenttaadehat can find the
points in the circle intersection areas in polynomial timégrms of the number of points
in plane K and the number of circlgg|. The algorithm aims to find some points in each
intersection region instead of finding all points as done @iAalgorithm. It starts by
giving each 2D point iNZin, Tmaz] X [Ymin, Ymaz) @ Weightw based on the number of
circles that are covering a 2D point (step 4). It then find$hdamily GG,, of subsets of
[Zomins Tmaz] X [Ymins Ymaz) that has a weight, wherew € {2, 3, ..., |I|} (steps 5-6). After
that, if there is a subset € G, it eliminates all neighboring subsets that have weights
less thanw (steps 7-8), as shown in Figure 6.6. Finally, it finds the fwin the circle
intersection areas (steps 9-11). The overall complexitisfalgorithm grows a§l| K
where|I| is the number of circles anfi? is the grid size. It will be a critical issue to
choose the appropriate grid siZ&* when algorithm 5 is applied. When increasing the
grid size, the probability to detect the feasible regionsvwéless devices will increase.
We iteratively increase the grid size until we detect thesitda regions that satisfy the

constraint sets of all wireless devices.

6.7 Numerical Results
6.7.1 Simulation Results for Single UAV
We first verify the results of Theorem 12. Then we use the @rad?rojection Algorithm
and the PSO Algorithm. Table 6.2 lists the parameters ustteinumerical analysis.
To verify the results of Theorem 12, we assume that 900 grasads are uniformly

distributed in a geographical area of si®m x 500m, then we plot the objective function
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Algorithm 11 Computing Circle Intersection Areas.
1: Input
2: |I] circles where the center of each circle is given by
(i, y;), 1 € 1.
3: START
4: Give a weightw for each 2D pointx, y) € [Zmin, Tmaz]
X [Yrmin, Ymaz), Wherew represents the number of circles
that are covering a 2D poifit;, ).
5:Forw = |I|to 2
6:  Find a familyG.,, of subsets ofz,.in, Tmaz] ¥
[Ymin, Ymaz) that has a weight.
7:Forw=|I|t03
8: For each subsef € G, that has weightv, remove
neighbor subsets that have weights less than
9: Output
10: The circle intersection areas are given by:
11: G, UGy U ... UGj.

Table 6.2Parameters in Numerical Analysis

Maximum transmit powerP,,.. 0.5 watt

Energy of each wireless devide | Uniformly distributed between

4500 and 18000 Joule

Data rateR 1 Mbps
Total bandwidthB 50 MHz
The noise powelV 1 x 10717
The carrier frequency’ 2 Ghz

(K, @1, P2) (1, 2.05, 2.05)

in (6.5) without any constraints at two different altituddgshe UAV. The first value for

altitude z,,;, is 1300 meters, which satisfies the condition in Theorem 1l2e Jecond
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Figure 6.7 Lifetime of wireless devices at different altitudes.

value for altitude is 40 meters and it does not satisfy theditaom in Theorem 12. In
Figure 6.7.a, we can notice that the objective is concavenitealtitude of UAV is equal
to 1300 meters. On the other hand, the objective functiooies non-concave at 40
meters as shown in Figure 6.7.b.

In Figures 6.8 and 6.9, we place the UAV at altitude 1225 nsetard use the
gradient projection algorithm when the ground users aréotmly and non-uniformly
distributed. The optimal placement are (244, 187, 1225) @B, 251, 1225),
respectively. In Figures 6.10 and 6.11, we place the UAV tude 500 meters. This
altitude does not satisfy the condition in Theorem 12 andefloee we propose to use
the PSO [59] when the ground users are uniformly and noreumify distributed. The
efficient placements are (254, 212, 500) and (260, 255, 5@8pectively. In order
to verify the efficiency of PSO algorithm, we use a searctebaagorithm. Both of
the algorithms converge to the same 3D placement. A simple twanaximize the
lifetime of wireless devices is to place the projection of &M placement at the center
of deployment region regardless of the users distributieinys call this method as the
center projection method. In Table 6.3, we show the simutatesults for single UAV.

We can notice that our proposed UAV placement algorithmsicgumove the lifetime of
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Figure 6.8 Simulation results of the uniform distribution case usimgdjent projection
algorithm.
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Figure 6.9 Simulation results of the non-uniform distribution casengsgradient
projection algorithm.

wireless devices by only 10% compared with center projaati@thod. This is because
the efficient placements of UAVs are near the center of théogtepent region due to the
uniformly distributed of residual energies of the wireldesices. For the multiple UAVs
scenario, we show that our proposed UAV placement algosttam improve the lifetime

of wireless devices by 90%-122%.

6.7.2 Simulation Results for Multiple UAVs
For the multiple UAVs scenario, we assume that 1250 grouretsuare uniformly

distributed in a geographical area of siz®0m x 1000m and four UAVs are used to serve
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Figure 6.11Simulation results of the non-uniform distribution caseng$? SO algorithm.

the ground users. We apply Algorithm 9 to cluster the wireldavices into four clusters
as shown in Figure 6.12, where each cluster is served by ove Affer that, we utilize

the UAV placement algorithms. In Table 6.4, we place each @fdltitude 1500 meters
and use the gradient projection algorithm to find the optipt@tement in each cell. The
optimal placements for the first, second, third and fourtivelare (753, 245, 1500), (915,
634, 1500), (263, 395, 1500) and (408, 980, 1500), respytiWe also place each UAV
at altitude 500 meters and use the PSO algorithm to find anegffiplacement in each
cell. The efficient placements for the first, second, third sourth UAVs are (733, 201,
500), (881, 749, 500), (207, 308, 500) and (298, 797, 508paetively. We can notice

that our proposed UAV placement algorithms can improveitagrhe of wireless devices
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Table 6.3Simulation Results for Single UAV

Algorithm Distribution of | 3D placement of Lifetime

users UAV

The gradient projection algorithm ~ Uniform (244, 187, 1225) 1563 sec

The center projection method Uniform (250, 250, 1225) 1549 sec

The gradient projection algorithm Non-uniform | (298, 251, 1225) 1566 sec

The center projection method| Non-uniform | (250, 250, 1225) 1548 sec

The PSO algorithm Uniform (254, 212, 500)| 7641 sec
The search-based algorithm Uniform (254, 212, 500)| 7641 sec

The center projection method Uniform (250, 250, 500)| 6937 sec

The PSO algorithm Non-uniform | (260, 255, 500)| 7379 sec

The search-based algorithm | Non-uniform | (260, 255, 500)| 7379 sec|

The center projection method| Non-uniform | (250, 250, 500)| 6819 sec
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400 -
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Figure 6.12Clustering the wireless devices using Algorithm 9.

by 90%-122% compared with center projection method. Thiseisause our proposed

algorithms minimize the distances between the ground asetsr UAV in each cluster.
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Table 6.4Simulation Results for Multiple UAVs Using Algorithm 9

Altitude UAV Algorithm 3D placement Lifetime
of UAV index of UAV
1 Gradient projection (753, 245, 1500) 861 seconds
Center projection| (501, 499, 1500) 793 seconds
2 Gradient projection (915, 634, 1500) 864 seconds
1500 meters Center projection | (501, 501, 1500) 780 seconds
3 Gradient projection (263, 395, 1500) 856 seconds
Center projection | (499, 499, 1500) 827 seconds
4 Gradient projectior] (408, 980, 1500) 861 seconds
Center projection | (499, 501, 1500) 777 seconds
1 PSO algorithm | (733, 201, 500)| 6613 seconds
Center projection| (501, 499, 500)| 3349 seconds
2 PSO algorithm | (881, 749, 500)| 6660 seconds
500 meters Center projection| (501, 501, 500)| 2995 seconds
3 PSO algorithm | (207, 308, 500)| 6351 seconds
Center projection| (499, 499, 500)| 3288 seconds$
4 PSO algorithm | (298, 797, 500)| 5909 seconds$
Center projection| (499, 501, 500)| 3095 seconds$

In Figure 6.13, we assume that 1250 ground users are unifatisiributed in a
geographical area of siz®000m x 10000m and the time duration of uplink transmission

of each wireless device, must be greater than or equal to 5 minutes. We also assume that
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Figure 6.13Minimizing the number of UAVs using Algorithm 10.
the UAVs have the same altitude 1500 meters. We utilize Aflgwor 10 to minimize the
number of UAVS required to serve the wireless devices. Therdhm converges when
the number of UAVs is seven. The efficient placements of the¥4Jand the lifetimes of

the wireless devices are shown in Table 6.5.

Table 6.5Simulation Results for Multiple UAVs Using Algorithm 10

Altitude UAV Algorithm 3D placement of UAV| Lifetime

of UAV index

1 (8690, 4651, 1500) | 448 seconds

2 (4120, 4534, 1500) | 377 seconds

1500 meterg 3 PSO algorithm (1782, 1990, 1500) | 391 seconds

4 (8435, 8157, 1500) | 521 seconds
5 (1304, 7674, 1500) | 338 seconds
6 (7168, 1209, 1500) | 330 seconds
7 (5333, 8136, 1500) | 503 seconds

In Table 6.6, we consider the case that each wireless dexafisfiss the condition

in inequality (6.26) where the ground users are uniformbtributed in a geographical

107



Table 6.6 A Comparison Between CCIA Algorithm and Algorithm 11

Algorithm | Number| Step| Optimal numbern Number of UAVs| Total number
of users| size of UAVsS using algorithm | of operations
CCIA 1000 — 10 10 1.07 % 1037
Algorithm | 2000 20 20 4.59 % 10098
100 10 2.85 * 10°
1000 | 200 10 10 2.2 % 10°
Algorithm 5 300 10 1.26 % 10°
100 20 7.7 % 10°
2000 | 200 20 20 4.4 %10°
300 20 2.52 x 10°

area of sizel0000m x 10000m. We apply algorithm 11 that iteratively increases the
step size until it detects the feasible regions that satisfyconstraint sets of all wireless
devices. The step size represents the number of pointsidaigorithm add to the grid
size in each iteration. When increasing the step size, thieghility to detect the feasible
regions of wireless devices will increase. We find the nundb@perations (worst case)
required to compute the circle intersection areas usingdAG@jorithm and algorithm 11
for different number of users. We can notice that the numbeperations of algorithm 11
is much lower than those in the CCIA algorithm. This is beealr® overall complexity
of algorithm 11 grows afl|K? (polynomial time) where!| is the number of users and

K? is the grid size. In order to verify the efficiency of Algonith11, we find the optimal
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number of UAVs using a search-based algorithm. Both of therihms converge to the

same number of UAVS.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

The problem of minimizing the number of UAVS required for antitnuous coverage of a
given area is first studied in Chapter 3. Due to its intraditgbpartitioning the coverage
graph into cycles that start at the charging station is pgeda@and the minimum number
of UAVs to cover such a cycle is characterized based on thegicitatime, the traveling
time and the number of subareas to be covered by the cycledBasthis analysis, an
efficient algorithm is developed to solve the problem.

In Chapter 4, the problem of optimal placement of a single Ug\gtudied, where
the objective is to minimize the total transmit power regdito provide wireless coverage
for indoor users. Three cases of practical interest areiderest and efficient solutions to
the formulated problem under these cases are presentedo Bxedimited transmit power
of a UAV, the problem of minimizing the number of UAVs requdr& provide wireless
coverage to indoor users is studied and an efficient algarithdeveloped to solve the
problem.

In Chapter 5, the problem of maximizing the indoor wirelesgerage using UAVs
equipped with directional antennas is studied. The casethieaUAVs are using one
channel is considered, thus in order to maximize the totaan wireless coverage, the
overlapping in their coverage volumes is avoided. Two meshare presented to place
the UAVs; providing wireless coverage from one buildingesahd from two building
sides. The results show that the upside-down arrangemid&s can improve the total

coverage by 100% compared to providing wireless coverage &me building side.
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In Chapter 6, the placement problem of UAVs is studied, whieeeobjective is to
determine the locations of a set of UAVs that maximize thetiliie of wireless devices.
Due to the intractability of the problem, the number of UAg sestricted to be one. Under
this special case, the problem is formulated as a convexnggttion problem under a
restriction on the coverage angle of the ground users anadiegt projection based
algorithm is proposed to find the optimal location of the UR&sed on this, an efficient
algorithm is proposed for the general case of multiple UAMse problem of minimizing
the number of UAVs required to serve the ground users sudtthlaime duration of
uplink transmission of each wireless device is greater tragual to a threshold value is
also studied. Two efficient methods are proposed to deterthi@ minimum number of
UAVs required to serve the wireless devices.

Some of the future possible directions for this work are:

e Some path loss models are formulated based on simulatibnasek such as Air-
to-Ground path loss for low altitude platforms and Air-toe@nd path loss for high
altitude platforms, therefore it is necessary to perforal experiments to model
the statistical behavior of the path loss.

e Previous research works utilize a UAV as an aerial relay rnodsmaximize the
throughput of ground users under the assumption of freeespaapagation. This
assumption could not be practical especially for urbanrenvients. As future
work, we aim to utilize practical path loss models to studg groblem.

e The problem of minimizing the number of UAVs required for atinuous coverage
of a given area can be extended by considering more readiséinarios such as
utilizing UAVs with different energy capacities and usingltiple charging stations
to recharge the batteries of UAVSs.

e The problem of maximizing the lifetime of wireless devicesrde extended by
considering the indoor users.

e The problem of providing indoor wireless coverage using 9&¥n be extended by
considering more realistic scenarios such as providingandireless coverage for
multiple buildings.
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e As future work, we will utilize UAVs to minimize the age-offiormation in wireless
sensor networks. The age of information is defined as the ahajuime elapsed
since the instant at which the freshest delivered updatstplace.

e We will utilize UAVs to maximize the number of covered usersem the cellular
base station is unable to provide wireless coverage forsalisudue to 1) The high

number of users inside a targeted cell and/or 2) The locatiauser has a high
blockage probability.
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