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ABSTRACT

WIRELESS COVERAGE USING UNMANNED AERIAL VEHICLES

by
Hazim Shakhatreh

The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civilian

application domains including real-time monitoring, search and rescue, and wireless

coverage. UAVs can be used to provide wireless coverage during emergency cases where

each UAV serves as an aerial wireless base station when the cellular network goes down.

They can also be used to supplement the ground base station inorder to provide better

coverage and higher data rates for the users. During such situations, the UAVs need

to return periodically to a charging station for recharging, due to their limited battery

capacity. Given the recharging requirements, the problem of minimizing the number of

UAVs required for a continuous coverage of a given area is first studied in this dissertation.

Due to the intractability of the problem, partitioning the coverage graph into cycles that

start at the charging station is proposed and the minimum number of UAVs to cover such

a cycle is characterized based on the charging time, the traveling time and the number

of subareas to be covered by a cycle. Based on this analysis, an efficient algorithm is

proposed to solve the problem.

In the second part of this dissertation, the problem of optimal placement of a single

UAV is studied, where the objective is to minimize the total transmit power required to

provide wireless coverage for indoor users. Three cases of practical interest are considered

and efficient solutions to the formulated problem under these cases are presented. Due to

the limited transmit power of a UAV, the problem of minimizing the number of UAVs



required to provide wireless coverage to indoor users is studied and an efficient algorithm

is proposed to solve the problem.

In the third part of this dissertation, the problem of maximizing the indoor wireless

coverage using UAVs equipped with directional antennas is studied. The case that the

UAVs are using one channel is considered, thus in order to maximize the total indoor

wireless coverage, the overlapping in their coverage volumes is avoided. Two methods

are presented to place the UAVs; providing wireless coverage from one building side and

from two building sides. The results show that the upside-down arrangements of UAVs

can improve the total coverage by 100% compared to providingwireless coverage from

one building side.

In the fourth part of this dissertation, the placement problem of UAVs is studied,

where the objective is to determine the locations of a set of UAVs that maximize the

lifetime of wireless devices. Due to the intractability of the problem, the number of UAVs

is restricted to be one. Under this special case, the problemis formulated as a convex

optimization problem under a restriction on the coverage angle of the ground users and a

gradient projection based algorithm is proposed to find the optimal location of the UAV.

Based on this, an efficient algorithm is proposed for the general case of multiple UAVs.

The problem of minimizing the number of UAVs required to serve the ground users such

that the time duration of uplink transmission of each wireless device is greater than or

equal to a threshold value is also studied. Two efficient methods are proposed to determine

the minimum number of UAVs required to serve the wireless devices.
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CHAPTER 1

INTRODUCTION

UAVs can be used in many civilian applications due to their ease of deployment, low

maintenance cost, high-mobility and ability to hover [2]. Such vehicles are being used

for real-time monitoring of road traffic, remote sensing, search and rescue operations,

delivery of goods, security and surveillance, precision agriculture, and civil infrastructure

inspection. They can also be used as aerial wireless base stations to complement existing

cellular network service by providing additional capacityto hotspot areas during special

events [3] or to provide wireless coverage when cellular networks are not operational due

to natural disasters [4]. Cell on wheels (COWs), is typically used to provide expanded

wireless coverage for short-term demands, when cellular coverage is either minimal,

never present or compromised by disaster, as shown in Figure1.1. Compared to the

COWs, the advantage of using UAV-based aerial base stationsis their ability to quickly

and easily move during emergency cases [5]. They can move to 3D efficient placements

that optimize several objective functions of interest and update their placements based on

users distribution changes. In Puerto Rico, AT&T have deployed LTE-equipped UAVs to

provide wireless connectivity to customers who lost service after Hurricane Maria [6], as

shown in Figure 1.2. They also look to utilize UAVs to enhancethe wireless coverage at

big events like music festivals [7].

1



Figure 1.1 Verizon COW used during the 2018 Spring Creek fire in HuerfanoCounty,
Colorado.
Source: [8].

1.1 UAV Classification

The authors in [9] classify the UAVs into four categories based on their altitudes and

their wing types, each with its own strengths and weaknesses. The first category is the

high altitude platforms (HAPs). HAPs are designed for long-duration flights counted

in months at altitudes above 17 km. They are typically utilized to provide wide wireless

coverage for remote geographic areas. However, they are costly and their deployment time

is significantly long. The second category is the low altitude platforms (LAPs). LAPs are

flexible and can fly at altitudes of up to a few kilometers. Theyare typically utilized to

provide wireless coverage during emergency cases or to collect data from ground sensors.

On the other hand, they need to return periodically to a charging station for recharging, due

to their limited battery capacity. The third category is thefixed-wing UAVs. Fixed-wing

UAVs have high speed and more payload, but they need to maintain a continuous forward

motion in order to remain aloft, thus are not appropriate forstationary use cases. The

fourth category is the rotary-wing UAVs. Rotary-wing UAVs can hover and stay stationary

2



Figure 1.2AT&T UAV used after Hurricane Maria in Puerto Rico.
Source: [6].

in the air [10], but they have limited payload. In Table 1.1, we present the types of UAVs

and their capabilities.

1.2 UAV Use Cases

The authors in [10–12] present the typical use cases of aerial wireless base stations. Some

of the UAV use cases are as follows:

• UAVs to enhance the wireless coverage: UAVs can be utilized to supplement the
ground base station in order to provide high probability line of sight channels when
the location of user has a high blockage probability or low data rate due the high
path loss as shown in Figure 1.3.a.

• UAVs as network gateways: In remote geographic areas or disaster-stricken areas,
UAVs can be used as gateway nodes to provide connectivity to backbone networks,
communication infrastructure, or the Internet as shown in Figure 1.3.b.

• UAVs as relay nodes: UAVs can be utilized as relay nodes to provide wireless
connectivity between two or more distant wireless devices without reliable direct
communication links as shown in Figure 1.3.c.

• UAVs for data collection: UAVs can be utilized to gather delay-tolerant information
from a large number of distributed wireless devices. An example is to collect data
from wireless sensors in precision agriculture applications as shown in Figure 1.3.d.

3



Table 1.1UAV Classification

High altitude - Long endurance.

platform (HAP) - Wide coverage.

- Altitude above 17 km.

Altitude - Fast deployment.

Low altitude - High Mobility.

platform (LAP) - Low cost.

UAV - Limited flight time .

Classification - High speed.

Fixed-wing - Cannot hover.

- High payload.

Wing type - Fly for several hours.

- Can hover.

Rotary-wing - Low speed.

- Fly less than one hour.

Source: [9].

1.3 Dissertations Outline

We start by studying the continuous coverage problem in Chapter 3. In the continuous

coverage problem, we aim to minimize the number of UAVs required for a continuous

coverage of a given area, given the recharging requirements. Due to the intractability

of the problem, we study partitioning the coverage graph into cycles that start at the

charging station. We first characterize the minimum number of UAVs to cover such a

cycle based on the charging time, the traveling time, and thenumber of subareas to be
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Figure 1.3Typical use cases of aerial base stations.

covered by the cycle. Based on this analysis, we then developan efficient algorithm, the

cycles with limited energy algorithm. The straightforwardmethod to continuously cover

a given area is to split it into N subareas and cover it by N cycles using N additional

UAVs. We demonstrate that the cycles with limited energy algorithm requires 69%-94%

fewer additional UAVs relative to the straightforward method, as the energy capacity of
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the UAVs is increased, and 67%-71% fewer additional UAVs, asthe number of subareas

is increased.

In Chapter 4, we study the problem of efficient placement of a single UAV, where the

objective is to minimize the total transmit power required to cover the indoor users. The

formulated problem is generally difficult to solve. To that end, we consider three cases

of practical interest and provide efficient solutions to theformulated problem under these

cases. Then, we study the problem of minimizing the number ofUAVs required to provide

wireless coverage to the indoor users and prove that this problem is NP-complete. Due

to the intractability of the problem, we use clustering to minimize the number of UAVs

required to cover the indoor users. In our proposed algorithm, we check if the maximum

transmit power of a UAV is sufficient to cover each cluster. Ifnot, the number of clusters

is incremented by one, and the problem is solved again. In theuniform split method, we

split the building intok regular structures and utilizek UAVs to provide wireless coverage

for indoor users regardless of user distribution. We demonstrate through simulations that

the method that splits the building into regular structuresrequires 80% more number of

UAVs relative to our proposed algorithm.

In Chapter 5, we aim to maximize the indoor wireless coverageusing UAVs

equipped with directional antennas. We study the case that the UAVs are using one

channel, thus in order to maximize the total indoor wirelesscoverage, we avoid any

overlapping in their coverage volumes. We present two methods to place the UAVs;

providing wireless coverage from one building side and fromtwo building sides. Our

results show that the upside-down arrangements of UAVs, canimprove the maximum

total coverage by 100% compared to providing wireless coverage from one building side
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when the UAVs use one channel. In order to provide full wireless coverage, we use UAVs

with multiple channels and show that the upside-down arrangements of UAVs required

20%-33% fewer number of UAVs.

In Chapter 6, we formulate the placement problem of UAVs, where the objective

is to determine the locations of a set of UAVs that maximize the time duration of uplink

transmission until the first wireless device runs out of energy. We prove that this problem

is NP-complete. Due to its intractability, we start by restricting the number of UAVs to

be one. We show that under this special case the problem can beformulated as a convex

optimization problem under a restriction on the coverage angle of the ground users. After

that, we propose a gradient projection-based algorithm to find the optimal location of

the UAV. Based on this, we then develop an efficient algorithmfor the general case of

multiple UAVs. The proposed algorithm starts by clusteringthe wireless devices into

several clusters where each cluster being served by one UAV.After it finishes clustering

the wireless devices, it applies the gradient projection-based algorithm in each cluster.

We also formulate the problem of minimizing the number of UAVs required to serve the

ground users such that the time duration of uplink transmission of each wireless device is

greater than or equal to a threshold value. We prove that thisproblem is NP-complete and

propose to use two efficient methods to determine the minimumnumber of UAVs required

to serve the wireless devices.

The dissertation is finally concluded in Chapter 7.
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CHAPTER 2

RELATED WORK

UAVs deployment problem is gaining significant importance in UAV-based wireless

communications where the performance of the aerial wireless network depends on the

deployment strategy and the 3D placements of UAVs. In this chapter, we classify the

related work based on the UAV deployment strategies.

The first deployment strategies are used for minimizing the transmit power of UAVs.

The authors in [13] propose an efficient deployment framework for deploying the aerial

base stations, where the goal is to minimize the total transmit power of UAVs while

satisfying the user rate requirements. They apply the optimal transport theory to obtain the

optimal cell association. After that, they derive the optimal locations of the UAVs using

the facility location framework. The authors in [14] investigate the downlink coverage

performance of a UAV, where the objective is to find the optimal UAV altitude which leads

to the maximum ground coverage and the minimum transmit power. In [15], the authors

propose an optimal placement algorithm for a UAV to maximizethe number of covered

users using the minimum transmit power. The algorithm decouples the UAV deployment

problem in the vertical and horizontal dimensions without any loss of optimality. The

authors in [16] consider two types of users in the network; the downlink users served by

a UAV and device-to-device users that communicate directlywith one another. Using the

disk covering problem, the authors show that the entire target geographical area can be

completely covered by a UAV in a shortest time with a minimum required transmit power.

They also derive the overall outage probability for the device-to-device users, and show
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that the outage probability increases as the number of stop points that a UAV needs to

completely cover the area increases.

The second deployment strategies are used for maximizing the wireless coverage of

UAVs. In [17], the authors study the placement problem with an objective of maximizing

the number of users covered by a UAV. They formulate a quadratically-constrained

mixed integer non-linear optimization problem and proposea computationally efficient

numerical solution for the problem. The authors in [18] study the optimal deployment

of UAVs equipped with directional antennas, using circle packing theory. The 3D

locations of the UAVs are determined in a way that the total coverage area is maximized.

In [19], the authors introduce the network-centric and user-centric approaches. In the

network-centric approach, the network tries to serve as many users as possible, regardless

of their rate requirements. In the user-centric approach, the users are determined based

on the priority. The optimal 3D backhaul-aware placement ofa UAV that maximizes the

total number of served users is found for each approach. The authors in [20] study the

UAV placement problem with an objective of maximizing the number of covered users

with different Quality-of-Service requirements. They model the placement problem as

a multiple circles placement problem and propose an optimalplacement algorithm that

utilizes an exhaustive search over a one-dimensional parameter in a closed region. They

also propose a low-complexity algorithm, maximal weightedarea algorithm, to tackle this

problem. The authors in [21] utilize UAVs-hubs to provide connectivity to small-cell base

stations with the core network. The goal is to find the best possible association of the

small cell base stations with the UAVs-hubs such that the sum-rate of the overall network
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is maximized. They present an efficient algorithm, distributed maximal demand minimum

servers, to maximize the sum rate of the overall network.

The third deployment strategies are used for minimizing thenumber of UAVs

required to perform a task. The authors in [22] propose the particle swarm optimization

algorithm to find the minimum number of UAVs and their 3D placements so that all

the ground users are served. In [23], the authors study the problem of deploying the

minimum number of UAVs required to maintain the connectivity of ground mobile ad

hoc networks under the condition that some UAVs have alreadybeen deployed in the

air. They formulate this problem as a minimum steiner tree problem with existing mobile

steiner points under edge length bound constraints. They prove the NP-completeness of

the problem and propose an efficient algorithm, existing UAVs aware algorithm, to tackle

this problem. The proposed algorithm uses a maximum match heuristic to compute the

new positions for existing UAVs. The authors in [24] aim to minimize the number of

UAVs required to provide wireless coverage for a group of distributed ground terminals

such that each ground terminal is within the communication range of at least one UAV.

They propose a polynomial-time algorithm, spiral UAV placement algorithm, to place the

UAVs sequentially starting from the area perimeter of the uncovered ground terminals

along a spiral path towards the center, until all ground terminals are covered.

The fourth deployment strategies are used for collecting data using UAVs. The

authors in [5] propose an efficient framework for deploying UAVs to collect data from

ground internet of things devices. They minimize the total transmit power of these devices

by properly clustering them where each cluster being servedby one UAV. The optimal

trajectories of the UAVs are determined by exploiting the framework of optimal transport
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theory. In [25], the authors present a UAV enabled data collection system, where a UAV

is dispatched to collect a given amount of data from ground terminals at fixed location.

They aim to find the optimal ground terminal transmit power and UAV trajectory that

achieve different Pareto optimal energy trade-offs between the ground terminal and the

UAV. The authors in [26] study the problem of UAV trajectory planning for wireless sensor

network deployed in remote areas. The missions are given by aset of ground points which

define the wireless sensor network gathering zones. The UAVsshould pass through the

gathering zone to collect the data while avoiding passing over forbidden areas to avoid

collisions. The proposed UAV trajectory planners, rapidly-exploring random trees and

optimal rapidly-exploring random trees, are based on the genetic algorithm. The authors

in [27] design a basic framework for UAV data collection, which includes the following

five components: deployment of networks, nodes positioning, anchor points searching,

fast path planning for UAV, and data collection from network. They identify the key

challenges for each component and propose an efficient algorithm, fast path planning

with rules algorithm, to increase the efficiency of path planning, while guaranteeing the

length of the path to be relatively short. In [28], the authors jointly optimize the sensor

nodes wake-up schedule and the trajectory of a UAV to minimize the maximum energy

consumption of all sensor nodes such that the required amount of data is collected reliably

from each sensor node. They formulate a mixed-integer non-convex optimization problem

and propose an efficient iterative algorithm to find a sub-optimal solution. Table 2.1

summarizes the related work.
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Table 2.1Summary of the Related Work

Reference Objective Function Deployment Strategy

[13] Minimizing the transmit power Optimal transport theory

[14] Minimizing the transmit power Closed-form expression

[15] Minimizing the transmit power Optimal 3D placement algorithm

[16] Minimizing the transmit power Disk covering problem

[17] Maximizing the wireless coverage Bisection search algorithm

[18] Maximizing the wireless coverage Circle packing theory

[19] Maximizing the wireless coverage Branch and bound algorithm

[20] Maximizing the wireless coverage Exhaustive search algorithm

[21] Maximizing the wireless coverage Branch and bound algorithm

[22] Minimizing the number of UAVs Particle swarm optimization

[23] Minimizing the number of UAVs Polynomial time algorithm

[24] Minimizing the number of UAVs Polynomial time algorithm

[5] Collecting data using UAVs Optimal transport theory

[25] Collecting data using UAVs Circular and straight UAV trajectories

[26] Collecting data using UAVs Genetic algorithm

[27] Collecting data using UAVs Polynomial time algorithm

[28] Collecting data using UAVs Polynomial time algorithm
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CHAPTER 3

PROVIDING CONTINUOUS WIRELESS COVERAGE USING UAVS

3.1 Introduction

In 20051, Hurricane Katrina in the United States caused over 1,900 deaths, 3 million land-

line phone interruptions, and more than 2,000 base stationsgoing out of service [4,30,31].

Another example of a large-scale interruption of telecommunications service is the World

Trade Center attack in 2001, when it took just minutes for thenearby base stations to be

overloaded. The attacks caused the disturbance of a phone switch with over 200,000 lines,

20 cell sites, and 9 TV broadcast stations [4, 32]. These incidents demonstrate the need

for quick/efficient deployment networks for emergency cases.

The authors in [33] propose a UAV-based replacement networkduring disasters,

where the UAVs serve as aerial wireless base stations. However, this study does not

consider how the UAVs will guarantee a continuous coverage when they need to return

to the charging station for recharging. Though a UAV has limited energy capacity

and needs to recharge its battery before running out of energy during the coverage

process, only few studies have considered this constraint in the UAV coverage problem.

Concretely, the author in [34] determines the minimum number of UAVs that can provide

continuous coverage for a single area using identical and non-identical UAVs. However,

no consideration has been made for the case when there are multiple subareas that need to

be covered, which is the typical scenario during disasters.The author in [35] formulates

the mobile charging problem, in which multiple mobile chargers collaborate to charge

1The work of this chapter has been published in [29].
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static sensors with minimum number of mobile chargers subject to speed and energy

limits of the mobile chargers. In this problem, the chargerswill not cover the sensors

continuously. The mobile charger will visit the sensor and stay for a specific time to

charge the sensor. After finishing the charging process, it will visit the other sensors.

In [36], the authors study the continuous coverage problem for mobile targets. During the

coverage process, a UAV that runs out of energy is replaced bya new one.

Many studies [13,14,37,38] focus on minimizing the total transmission power of the

UAVs during the coverage of a geographical area, however, nolimits on the UAV energy

capacity and the need for recharging have not been considered. The work in [39] report

that the energy consumption during data transmission and reception is much smaller than

the energy consumption during the UAV hovering, i.e., it only constitutes 10%-20% of

the UAV energy capacity. Thus, it is important to conduct studies that take into account

the energy consumption during the UAV hovering rather than focusing on minimizing the

energy consumption during data transmission and reception.

Contrary to the related work above, we integrate the recharging requirements into

the coverage problem and examine the minimum number of required UAVs for enabling

continuous coverage under that setting, as shown in Figure 3.1.

3.2 System Model

Consider a geographical areaG={g1,...,gN}, wheregi represents a subareai, the subarea

g1 ∈G includes the charging station and all subareas except subareag1 need to be covered

G0=G \ g1. We aim to find the minimum number of UAVs that can provide a continuous

coverage overG0 by placing the UAVs at locations where each UAV will provide full
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Figure 3.1Providing continuous wireless coverage.

coverage for one subarea. In the continuous coverage problem, we assume: (1) Time

slotted system in which the slot duration is 1 time unit and the total coverage duration is

T . (2) All UAVs start the coverage process from the charging station and they need to

return to the charging station after they complete the coverage process. (3) Each UAV

has limited energy capacityE and it needs to return to the charging station to recharge

the battery before running out of energy during the coverageprocess. (4) Each UAV can

move (from the charging station to locationi), (from locationi to locationj) or (from

locationj to the charging station) and this process will take one time slot. (5) Each UAV

covers a given subarea for one or multiple time slots. (6) At each time slot, each subarea

will be covered by only one UAV. (7) The UAV cannot travel to the charging station or to

any other location until the handoff process is completed inwhich another UAV arrives
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Table 3.1List of Notations

M The set of fully charged UAVs available at the charging station.

E The energy capacity of each UAV.

T The total coverage duration.

ETravel
ij The energy consumed by a UAV when it travels from subarea

i to subareaj, wherei, j ∈ G.

ECover
j The energy consumed by a UAV when it covers the subareaj

for one time slot, wherej ∈ G0 (constant).

Tcharge The time that a UAV needs to recharge the battery at the charging

station.

to cover the subarea such that the continuous coverage is guaranteed. (8) The recharging

process takesTcharge at the charging station.

3.3 The Continuous Coverage Problem

3.3.1 Problem Formulation

In order to present the problem formulation, we introduce the binary variablexm that takes

the value of 1 if the UAVm visits any subarea from charging station during the coverage

durationT and equals 0 otherwise; the binary variableytij,m that takes the value of 1 if the

UAV m moves through edgeij during the time slott and equals 0 otherwise; the binary

variableztj,m that takes the value of 1 if the UAVm covers the subareaj at time slott and

equals 0 otherwise. Table 3.1 lists the notations used in this chapter.
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min
∑

m∈M
xm

subject to

ytij,m ≤ xm ∀i, j ∈ G, ∀t ∈ [0, T ], ∀m ∈M (3.1)

ztj,m ≤ xm ∀j ∈ G0, ∀t ∈ (0, T ), ∀m ∈M (3.2)

∑

m∈M
y01j,m = 1 ∀j ∈ G0 (3.3)

∑

m∈M
ztj,m = 1 ∀j ∈ G0, ∀t ∈ (0, T ) (3.4)

∑

i∈G,i 6=j

∑

m∈M
ytij,m ≤ 1 ∀j ∈ G0, ∀t ∈ [0, T ] (3.5)

∑

i1∈G
yti1j,m1

=
∑

i2∈G
yt+1
ji2,m2

∀j ∈ G0, ∀t ∈ (0, T ), m1 6= m2 (3.6)

∑

m∈M

∑

t∈[0,T )

∑

i∈G
ytij,m ≤

∑

m∈M

∑

t∈(0,T )

ztj,m ∀j ∈ G0 (3.7)

∑

j∈G0

∑

τ∈Tcharge

[ytj1,m + yt+τ
1j,m] ≤ 1 ∀m ∈M, ∀t ∈ (0, T ) (3.8)

∑

m∈M

∑

t∈[0,T ]

∑

j∈G0

yt1j,m =
∑

m∈M

∑

t∈[0,T ]

∑

i∈G0

yti1,m (3.9)
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∑

t∈[t1,t2]

∑

i,j∈G
ETravel

ij ytij,m +
∑

t∈[t1,t2]

∑

j∈G
ECover

j ztj,m ≤ E ∀m ∈M,

∀[t1, t2] ∈ [0, T ], t1 = arg yt1j,m, t2 = arg yti1,m, t2 > t1.

(3.10)

The objective is to minimize the number of UAVs that are needed to provide a

continuous coverage during the coverage durationT . Constraint sets (3.1) and (3.2) ensure

that a UAV can travel and cover the subareas only if we select it to participate in the

coverage process. Constraint set (3.3) ensures that all subareas will be covered at the

first time slot. Constraint set (3.4) guarantees the continuous coverage for each subarea.

Constraint set (3.5) allows the UAV to visit a new subarea (whenytij,m=1) or to continue

covering the current subarea (whenytij,m=0). Constraint set (3.6) characterizes the handoff

process between the UAVs, when the UAVm1 wants to visit the subareaj from subarea

i1 at timet (yti1j,m1
=1), the UAVm2 that covers the subareaj will travel to subareai2 at

time t + 1 (yt+1
ji2,m2

=1). Constraint set (3.7) describes the relation between the traveling

process and the covering process, where the number of times that the subareaj is covered

will be greater than or equal the number of times that it is visited. Constraint set (3.8)

shows that the recharging process will takeTcharge at the charging station. Constraint (3.9)

ensures that the number of UAVs outgoing from the charging station and the number of

UAVs incoming to charging station are the same after we complete the coverage process.

Constraint set (3.10) shows that the energy capacity of a UAVcan cover the wasted energy

during the traveling and the covering processes in each cycle wheret1 represents the time

that a UAV travels from the charging station with full energycapacity andt2 represents

the time that a UAV arrives to the charging station to charge the battery. Next, we prove

that the continuous coverage problem is an NP-complete.
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3.3.2 NP Completeness

Theorem 1. The Continuous Coverage Problem is NP-complete.

Proof. The number of constraints is polynomial in terms of the number of subareas, the

number of UAVs and the number of time slots. Given any solution for our problem, we

can check the solution’s feasibility in polynomial time, then the problem is NP.

To prove that the problem is NP-hard, we reduce the Bin Packing Problem which

is NP-hard [40] to a special case of our problem. The special case of our problem is

the discrete coverage problem. In this problem, each subarea will be visited one time

by one UAV during the coverage process. In the Bin Packing Problem, we have a set of

itemsU = {1, 2, ...,W}, in which each item has volumezw, wherew ∈ U . All items

must be packed into a finite number of bins (b1, b,...,bB), each of volumeV in a way that

minimizes the number of bins used. The reduction steps are: 1) The b-th bin in the Bin

Packing Problem is mapped to them-th UAV in our problem, where the volumeV for

each bin is mapped to the energy capacity of the UAVE. 2) Thew-th item is mapped to

then-th subarea, where the volume for each itemw is mapped to the energy consumed

when a UAV visits and covers subarean. 3) All UAVs have the same energy capacity

E. 4) The energy consumed during the traveling and the covering processes when a UAV

visits subareaj from any subareai ∈ G \ {j} will be constant. 5) The energy required

for a UAV to return to the charging station from any subareai will be zero (ETravel
i1 =0).

6) The time that a UAV needs to recharge a battery at the charging station will be infinity.

7) Each subarea will be visited one time by one UAV during the coverage process. If

there exists a solution to the bin packing problem with costC, then the selected bins will
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represent the UAVs and the items in each bin will represent the subareas that a UAV must

visit and the total cost of our problem isC.

3.4 Heuristic Algorithm

Due to the intractability of the problem, we study partitioning the coverage graph into

cycles that start at the charging station. We first characterize the minimum number of

UAVs required to cover each cycle based on the charging time,the traveling time, and

the number of subareas to be covered by the cycle. Our analysis based on the uniform

coverage in which a UAV covers each subarea in a given cycle for a constant time. Based

on this analysis, we then develop an efficient algorithm, thecycles with limited energy

algorithm, that minimizes the required number of UAVs that guarantees a continues

coverage.

3.4.1 Analysis

It is obvious that we needN UAVs to coverN subareas at any given time, but the question

here is how many additional UAVs are needed to guarantee a continuous coverage. In this

subsection, we assume that a UAV visits the subareas based ona cycle that starts from the

charging station and ends at the charging station for charging process. We also assume

that a given UAV covers the subareas in the cycle uniformly, in which a UAV covers each

subarea in a given cycle for a constant time. In Theorem 2, we find the minimum number

of additional UAVs that are needed to guarantee a continuouscoverage for a cycle, which

will help us while developing Algorithm 1.
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Theorem 2. The minimum number of additional UAVsk that are required to provide

continuous and uniform coverage for a cycle that containsn subareas must satisfy this

inequality:

k
TCoverage

n
≥ (n+ 1)T + TCharge,

whereTCoverage is the time that a UAV allocates to cover all subareas in the cycle,T is the

time that a UAV needs to travel from subareai to subareaj andTcharge is the time that a

UAV needs to recharge the battery at the charging station.

Proof. Consider that alln subareas in the cycle are covered byn UAVs and the UAV that

covers the last subarea want to return to the charging station to recharge its battery. The

handoff process needs to begin between one of the additionalUAVs from the charging

station and the UAV that covers the first subarea in the cycle.

The UAV that covers the last subarea needs to wait(n − 1) T to do the handoff

process, during this time the additional UAVs are covering the first subarea. After the

handoff process is completed, the UAV needsT time units to return to the charging station,

Tcharge to recharge the battery and T to visit the first subarea in the cycle again. Then, we

have:

k
TCoverage

n
≥ (n− 1)T + T + TCharge + T

Example: Givenn = 3, TCoverage = TC = 9T andTCharge = T , we want to find the

minimum number of the additional UAVsk that guarantees the continuous coverage for
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Figure 3.2Minimum number of additional UAVs.

a given subareas (see Figure 3.2). Tables 3.2-3.6 show the paths of UAVs. It is obvious

that the first UAV will be ready to cover the first subarea in thecycle again at4T + TC +

Tcharge = 14T . After the second additional UAV covered the first subarea inthe cycle, it

needs to do the handoff with one of the UAVs from the charging station atT + 5
3
TC = T +

5
3
(9T ) = T +15T = 16T . The first UAV is ready to do that, it will waitT at the charging

station and it needsT to arrive to the first subarea. We only need two additional UAVs to

continuously cover this cycle. Now, Let us check our solution by applying Theorem 2, we

havek TCoverage

n
≥ (n+ 1)T + TCharge⇒ 29T

3
≥ (3 + 1)T + T ⇒ 6T ≥ 5T .

3.4.2 The Cycles with Limited Energy Algorithm

The straightforward method (SM) to continuously coverN subareas is to allocate two

UAVs for each subarea. At the first time slot,N UAVs cover theN subareas. Then, any

UAV wants to return to the charging station to recharge the battery will do the handoff
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Table 3.2Path of the UAV1

Time 0 T T+1
3
TC

Subarea Index Charging station 1 1

Coverage Time 0 0 1
3
TC

Time 2T+1
3
TC 2T+2

3
TC 3T+2

3
TC

Subarea Index 2 2 3

Coverage Time 0 1
3
TC 0

Time 3T+TC 4T+TC 4T+TC+TCharge

Subarea Index 3 Charging station Charging station

Coverage Time 1
3
TC 0 0

Table 3.3Path of the UAV2

Time 0 T+1
3
TC T+2

3
TC

Subarea Index Charging station 1 1

Coverage Time 0 0 1
3
TC

Time 2T+2
3
TC 2T+TC 3T+ TC

Subarea Index 2 2 3

Coverage Time 0 1
3
TC 0

Time 3T+4
3
TC 4T+4

3
TC 4T + 4

3
TC+TCharge

Subarea Index 3 Charging station Charging station

Coverage Time 1
3
TC 0 0
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Table 3.4Path of the UAV3

Time 0 T+2
3
TC T+TC

Subarea Index Charging station 1 1

Coverage Time 0 0 1
3
TC

Time 2T+TC 2T+4
3
TC 3T+ 4

3
TC

Subarea Index 2 2 3

Coverage Time 0 1
3
TC 0

Time 3T+5
3
TC 4T+5

3
TC 4T + 5

3
TC+TCharge

Subarea Index 3 Charging station Charging station

Coverage Time 1
3
TC 0 0

Table 3.5Path of the First Additional UAV

Time 0 T+TC T+4
3
TC

Subarea Index Charging station 1 1

Coverage Time 0 0 1
3
TC

Time 2T+4
3
TC 2T+5

3
TC 3T+ 5

3
TC

Subarea Index 2 2 3

Coverage Time 0 1
3
TC 0

Time 3T+2TC 4T+2TC 4T + 2TC+TCharge

Subarea Index 3 Charging station Charging station

Coverage Time 1
3
TC 0 0
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Table 3.6Path of the Second Additional UAV

Time 0 T+4
3
TC T+5

3
TC

Subarea Index Charging station 1 1

Coverage Time 0 0 1
3
TC

Time 2T+5
3
TC 2T+2TC 3T+ 2TC

Subarea Index 2 2 3

Coverage Time 0 1
3
TC 0

Time 3T+7
3
TC 4T+7

3
TC 4T + 7

3
TC+TCharge

Subarea Index 3 Charging station Charging station

Coverage Time 1
3
TC 0 0

process with one of the additional UAVs that are available atthe charging station. By

applying SM, we needN additional UAVs to cover all subareas.

Our proposed algorithm, the cycles with limited energy algorithm (CLE), is inspired

by the nearest neighbor algorithm, the nearest neighbor algorithm is used to solve the

Traveling Salesman Problem [41], in which the salesman keeps visiting the nearest

unvisited vertex until all the vertices are visited. In our algorithm, the UAV (salesman)

has limited energy capacity and before visiting any new subarea, we must check if the

remaining energy is enough to return to the charging stationfrom the new location or not.

In Theorem 2, we show how to find the minimum number of additional UAVs that are

required to guarantee the continuous coverage for a given cycle, we use the Theorem 2 to

find the minimum number of additional UAVs that are required to provide the continuous
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Algorithm 1 The Cycles with Limited Energy Algorithm
1: Input:

2: The geografical areaG={g1,...,gN},
3: The required time to travel between two subareasT ,

4: The energy capacity of UAVE,

5: The time that a UAV needs to recharge the battery at the charging stationTCharge,

6: The energy consumed by a UAV when it covers the subarea for one seconde,

7: The index of the cyclei=1.

8: Start:

9: While G not empty

10: ci={g1}
11: Do:

12: v= most recently added subarea to cycleci

13: Find{g}= argminb∈G−{v} distance(v, b)

14: CalculateECoverage=E-ETravel-EReturntoBS

15: CalculateTCoverage =
ECoverage

e

16: If TCoverage

|ci| ≥ (|ci|+ 1)T + TCharge then

17: ci←− ci ∪ {g}
18:G←− G \ {g}
19: while (TCoverage

|ci| ≥ (|ci|+ 1)T + TCharge )

20: ci←− ci ∪ {g1}
21: C←− C ∪ ci

22: i=i+1

23: EndWhile

24: Output: C

coverage for a given area, by finding the cycles that need onlyone additional UAV. The

pseudo code of this algorithm is shown in Algorithm 1.

3.5 Performance Evaluation

We quantify the power consumption by UAV when it is hovering,traveling and trans-

mitting data. The power consumption in watt by a UAV during hovering can be given
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by [42]:

P = 4
T

3/2
h√
2QS

+ p,

whereTh is the fourth of the quadcopter total weight in newton,Q is the density of the air

in kg/m3, S is the rotor swept area inm2 andp is the power consumption of electronics

in watt.

The power consumption in kW by a UAV during traveling can be given by [43]:

P =
(mp +mv)v

370ηr
+ p,

wheremp is the payload mass in kg,mv is the vehicle mass in kg,r is the lift-to-drag ratio

(equals 3 for the vehicle that is capable of vertical takeoffand landing),η is the power

transfer efficiency for motor and propeller,p is the power consumption of electronics in

kW andv is the velocity in km/h.

The power consumption in dB by a UAV during data transmissioncan be given

by [14]:

Pt(dB) = Pr(dB) + L̄(R, h) (3.11)

L̄(R, h) = P (LOS)× LLOS + P (NLOS)× LNLOS (3.12)

P (LOS) =
1

1 + α.exp(−β[180
π
θ − α])

(3.13)

LLOS(dB) = 20log(
4πfcd

c
) + ξLOS (3.14)

LNLOS(dB) = 20log(
4πfcd

c
) + ξNLOS (3.15)

27



In equation (3.11),Pt is the transmit power,Pr is the required received power to

achieve a SNR greater than thresholdγth, L̄(R, h) is the average path loss as a function

of the altitudeh and coverage radiusR. In equation (3.12),P (LOS) is the probability

of having line of sight (LOS) connection at an evaluation angle of θ, P (NLOS) is the

probability of having non LOS connection and equals (1-P (LOS)),LLOS andLNLOS are

the average path loss for LOS and NLOS paths. In equations (3.13-3.15),α andβ are

constant values which depend on the environment,fc is the carrier frequency,d is the

distance between the UAV and user,c is the speed of the light ,ξLOS andξNLOS are the

average additional losses which depend on the environment.In this chapter, we assume

that the power wasted during data transmission is constant,where the power consumed by

a UAV during data transmission and reception is much smallerthan the power consumed

during hovering or traveling [39].

Given a geographical areaG , the number of the subareas that we need to cover and

the density of the users, the question here is how to find the optimal boundaries of the

subareas that will be covered by the UAVs. To answer this question, the authors of [13]

utilize the transport theory to find the optimal boundaries of the subareas. Unfortunately,

this approach needs to solve
(

N
2

)

non-linear equations at each iteration, whereN is the

number of subareas. In this chapter, we divide the geographical area uniformly and apply

the SM and CLE algorithms to find the minimum number of additional UAVs that provides

the continuous coverage. We study the effect of the UAV energy capacity, the grid size

of the geographical area, the charging time and the traveling time on the number of the

additional UAVs. Table 3.7 lists the parameters used in the numerical analysis [44].
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Table 3.7Parameters in Numerical Analysis

UAV energy capacity 0.88kW.h

Power consumption by the electronics0.15kW

Grid size 4x4

Area of the graph 1kmx1km

Traveling time through edge 2.5 min

Charging station location (x,y) (0,0)

Charging time 5 min

UAV weight with battery 8.5 k.g

Maximum payload weight 2 k.g

Maximum forward speed 12 m/s

In Figure 3.3, we uniformly divide the geographical area into 16 subareas and apply

the CLE algorithm to find the cycles with minimum number of additional UAVs. From the

figure, we notice that 5 cycles are needed to cover all subareas with 5 additional UAVs.

Also, we note that the paths of the cycles are intersected in many locations. To avoid

the collisions between the UAVs, we operate the paths (cycles) at different altitudes with

small altitude differences.

In Figure 3.4, we study the effect of the UAV energy capacity on the number of

additional UAVs needed to cover the subareas. When we increase the energy capacity of

a UAV and apply SM, the number of additional UAVs needed will not change because

each subarea is covered by one cycle and two UAVs, only the coverage time of each

UAV increases. On the other hand, increasing the energy capacity of each UAV results
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Figure 3.3Cycles that cover the subareas using the CLE algorithm.

Energy capacity of UAV (kW.h)

0 2 4 6 8 10

N
u

m
b

er
 o

f 
a
d

d
it

io
n

a
l 

U
A

V
s

0

5

10

15

                SM

  - - - -      CLE

Figure 3.4Energy capacity vs. the number of additional UAVs.

in minimizing the number of additional UAVs that needed using CLE. This is because

increasing the energy capacity of each UAV gives a UAV a chance to visit and to cover

more subareas, which minimizes the number of the cycles thatare needed to cover the

subareas.

In Figure 3.5, the slope of the line produced by SM is greater than the curve of CLE.

When applying SM, the number of additional UAVs increases linearly with the grid size.

This is because the number of additional UAVs equals the gridsize. Also, when applying
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Figure 3.5Grid size vs. the number of additional UAVs.
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Figure 3.6Charging time vs. the number of additional UAVs.

the CLE, the number of additional UAVs increases with the grid size. This is because

more cycles are needed to cover more subareas, and each cycleneeds one additional UAV.

In Figure 3.6, we study the effect of the charging time on the number of additional

UAVs needed. Changing the charging time will not affect the number of additional UAVs

needed when applying SM. This is because the coverage time ofeach UAV will cover

the time that the UAV needs to return to the charging station to recharge the battery and

to visit the subarea again. On the other hand, when applying CLE, it will be a critical

issue (see Theorem 2). Actually, charging the battery of a UAV takes long time. For this

31



Traveling time (sec)

100 200 300 400 500 600 700

N
u

m
b

er
 o

f 
a
d

d
it

io
n

a
l 

U
A

V
s

0

5

10

15

              SM

 - - - -     CLE

Figure 3.7Traveling time vs. the number of additional UAVs.

reason, each UAV has a replacement battery [44]. We assume the time needed to replace

the battery for each UAV is 5 minutes.

In Figure 3.7, we study the effect of the traveling time on thenumber of additional

UAVs. Changing the traveling time will not affect the numberof additional UAVs when

applying SM. On the other hand, it will be a critical issue to choose the appropriate

traveling time when applying CLE. When increasing the traveling time, the wasted energy

during traveling will increase and the coverage time will decrease. Hence, the chance to

visit other subareas will decrease.
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CHAPTER 4

PROVIDING INDOOR WIRELESS COVERAGE USING UAVS

4.1 Introduction

In order to use UAV as an aerial wireless base station1, the authors in [48] presented

an Air-to-Ground path loss model that helped academic researchers to formulate many

important UAV-based coverage problems. The authors in [14]utilized this model to

evaluate the impact of a UAV altitude on the downlink ground coverage and to determine

the optimal values for altitude which lead to maximum coverage and minimum required

transmit power. In [13], the authors used the path loss modelto propose a power-efficient

deployment for UAVs under the constraint of satisfying the rate requirement for all ground

users. The authors in [18] utilized the path loss model to study the optimal deployment of

multiple UAVs equipped with directional antennas, using circle packing theory. The 3D

locations of the UAVs are determined in a way that the total coverage area is maximized.

In [22], the authors used the path loss model to find the minimum number of UAVs and

their 3D locations so that all outdoor ground users are served. However, it is assumed that

all users are outdoor and the location of each user can be represented by an outdoor 2D

point. These assumptions limit the applicability of this model when one needs to consider

indoor users.

Providing good wireless coverage for indoor users is very important. According to

Ericsson report [49], 90% of the time people are indoor and 80% of the mobile Internet

access traffic also happens indoors [50, 51]. To guarantee wireless coverage, service

1The work of this chapter has been published in [45–47].
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Figure 4.1Parameters of the path loss model.

providers are faced with several key challenges, includingproviding service to a large

number of indoor users and the ping pong effect due to interference from near-by macro

cells [52–54]. In this chapter, we propose using UAVs to provide a wireless coverage for

users inside a high-rise building after partial or completeinfrastructure damage due to

natural disasters or after base station offloading in extremely crowded events [10] (such as

concerts, indoor sporting events, etc.), when the cellularnetwork service is not available

or unable to serve all indoor users.

4.2 System Model

4.2.1 System Settings

Let (xUAV ,yUAV ,zUAV ) denote the 3D location of the UAV. We assume that all users are

located inside a high-rise building as shown in Figure 4.1, and use (xi,yi,zi) to denote the

location of useri. The dimensions of the high-rise building, in the shape of a rectangular

prism, are[0, xb] × [0, yb] × [0, zb]. Also, letdout,i be the distance between the UAV and

indoor useri, letθi be the incident angle that represents the angle between the line of sight
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path and a unit vector normal to the building wall, and letdin,i be the distance between

the building wall and indoor useri.

4.2.2 Outdoor-Indoor Path Loss Models

The Air-to-Ground path loss model presented in [48] is not appropriate when we consider

wireless coverage for indoor users, because this model assumes that all users are outdoor

and located at 2D points. In this work, we adopt the Outdoor-Indoor path loss model,

certified by the ITU [55], for the lower part of Super High Frequency band (low-SHF)

(450 MHz to 6 GHz). The path loss is given as follows:

Li = LF + LB + LI = (w log10 dout,i + w log10 fGhz + g1)

+(g2 + g3(1− cos θi)
2) + (g4din,i)

whereLF is the free space path loss,LB is the building penetration loss, andLI is the

indoor loss. In this model, we also havew=20, g1=32.4,g2=14, g3=15,g4=0.5 [55] and

fGhz is the carrier frequency.

In [56], the authors clarify the Outdoor-to-Indoor path loss characteristics based on

the measurement for 0.8 to 37 GHz frequency band. We adopt this path loss model for the

high-SHF operating frequency (over 6 GHz). The path loss is given as follows:

Li = LF + LB + LI = (α1 + α2 log10 dout,i + α3 log10 fGhz) +

(β1 +
β2 − β1

1 + exp(−β3(θi − β4))
) + (γ1din,i)

In this model, we haveα1=31.4,α2=20,α3=21.5,β1=6.8,β2=21.8,β3=0.453,β4=19.7

andγ1=0.49.
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Figure 4.2Building penetration loss for high-SHF.

Note that there is a key tradeoff in the path loss models when the horizontal distance

between the UAV and a user changes. When this horizontal distance increases, the free

space path loss (i.e.,LF ) increases asdout,i increases, while the building penetration loss

(i.e.,LB) decreases as the incident angle (i.e.,θi) decreases as shown in Figure 4.2.

4.3 Providing Wireless Coverage Using a Single UAV

4.3.1 Problem Formulation

Consider a transmission between a UAV located at (xUAV ,yUAV ,zUAV ) and an indoor user

i located at (xi,yi,zi). The date rate for useri is given by:

Ci = Blog2(1 +
Pt,i/Li

N
)

whereB is the transmission bandwidth of the UAV,Pt,i is the UAV transmit power to

indoor useri, Li is the path loss between the UAV and an indoor useri andN is the

noise power. In this work, we do not explicitly model interference, and instead, implicitly

model it as noise.
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Let us assume that each indoor user has a channel with bandwidth equalsB/M ,

whereM is the number of users inside the building and the rate requirement for each user

is v. Then the minimum power required to satisfy this rate for each user is given by:

Pt,i,min = (2
v.M
B − 1)×N × Li

Our goal is to find the optimal location of UAV such that the total transmit power required

to satisfy the downlink rate requirement of each indoor useris minimized. The objective

function can be represented as:

P =
M
∑

i=1

(2
v.M
B − 1)×N × Li,

whereP is the UAV total transmit power. Since(2
v.M
B − 1)×N is constant, our problem

can be formulated as:

min
xUAV ,yUAV ,zUAV

LTotal =
M
∑

i=1

Li

subject to

xmin ≤ xUAV ≤ xmax,

ymin ≤ yUAV ≤ ymax,

zmin ≤ zUAV ≤ zmax,

LTotal ≤ Lmax

where the first three constraints represent the minimum and maximum allowed values for

xUAV , yUAV andzUAV . In the fourth constraint,Lmax is the maximum allowable path loss

and equalsPt,max/((2
v.M
B − 1) × N), wherePt,max is the maximum transmit power of

UAV.
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Finding the optimal placement of UAV is generally difficult because the problem is

non-convex. Therefore, in the next subsection, we considerthree special cases of practical

interest and derive efficient solutions under these cases.

4.3.2 Efficient Placement of a Single UAV

Case 1.The worst location in building:In this case, we find the minimum transmit power

required to cover the building based on the location that hasthe maximum path loss inside

the building. The locations that have the maximum path loss are located at the corners of

the highest and lowest floors, where these locations have themaximumdout,i, maximum

θi, and maximumdin,i. Since the locations that have the maximum path loss inside the

building are the corners of the highest and lowest floors, we place the UAV at the middle

of the building (yUAV = 0.5yb andzUAV =0.5zb). Here, the corners of the highest and lowest

floors represent the cell edges and the middle of the buildingrepresents the center of the

cell. Then, given Outdoor-to-Indoor path loss models for low-SHF and high-SHF bands,

we need to find an efficient horizontal pointxUAV for the UAV such that the total transmit

power required to cover the building is minimized.

Now, when the horizontal distance between the UAV and this location increases,

the free space path loss also increases asdout,i increases, while the building penetration

loss decreases because we decrease the incident angleθi. In Figure 4.3, we demonstrate

the minimum transmit power required to cover a building of different heights, where the

minimum transmit power required to cover the building is given by:

Pt,min(dB) = Pr,th + Li
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Figure 4.3Transmit power required to cover the building.

Pr,th(dB) = N + γth

wherePr,th is the minimum received power,N is the noise power (equals -120dBm),γth is

the threshold SNR (equals 10dB),yb=50 meters ,xb=20 meters and the carrier frequency is

2Ghz. The numerical results show that there is an optimal horizontal point that minimizes

the total transmit power required to cover a building. Also,we note that when the height

of the building increases, the optimal horizontal distanceincreases. This is to compensate

for the increased building penetration loss due to an increased incident angle.

In Theorem 3, we characterize the optimal incident angleθ for low-SHF band that

minimizes the transmit power required to cover the building. This helps us finding the

optimal horizontal distance between the UAV and the building.

Theorem 3. For the low-SHF operating frequency case, when we place the UAV at

the middle of building , the optimal incident angleθ that minimizes the transmit power

required to cover the building will be equal to48.654o and the optimal horizontal distance

between the UAV and the building will be equal to((
0.5zb

tan(48.654o)
)2 − (0.5yb)

2)0.5 − xb.
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Proof. In order to find the optimal horizontal point, we rewrite the equation that represents

the path loss in terms of the incident angle (θi) and the altitude difference between the

UAV and the useri (∆hi):

Li(∆hi, θi) = w log10
∆hi

sin θi
+ w log10 fGhz + g1

+g2 + g3(1− cos θi)
2 + g4din,i

Since we place the UAV at the middle of the building and the locations that have the

maximum path loss are located at the corners of the highest and lowest floors, the altitude

difference between the UAV and the location that has the maximum path loss is constant

for a given building. Now, when we take the first derivative with respect toθ and assign it

to zero, we get:

dL(θ)

dθ
=

w

ln10

−∆h. cos θ

sin2 θ
∆h

sin θ

+ 2g3 sin θ(1− cos θ) = 0

dL(θ)

dθ
=
−w
ln10

cos θ

sin θ
+ 2g3 sin θ(1− cos θ) = 0

w

ln10
cos θ = 2g3sin

2θ(1− cos θ)

w

ln10
cos θ = 2g3(1− cos2 θ)(1− cos θ)

2g3 cos
3 θ − 2g3 cos

2 θ − (
w

ln10
+ 2g3) cos θ + 2g3 = 0

(4.1)

To prove that the function is convex, we take the second derivative and we get:

d2L

dθ2
=

w

ln10

1

sin2 θ
+ 2g3 cos θ(1− cos θ) + 2g3 sin

2 θ > 0 for 0 < θ ≤ 90

Equation (4.1) has only one valid solution which iscos θ=0.6606. Therefore, the optimal

incident angle between the UAV and the location that has the maximum path loss inside

the building will be48.654o.

40



Figure 4.4Transmit power required to cover the building,fc=2 GHz.

In order to find the optimal horizontal distance between the UAV and the building,

we apply the pythagorean’s theorem. This gives us:

dH = ((
0.5zb

tan(48.654o)
)2 − (0.5yb)

2)0.5

Therefore, the optimal horizontal distance between the UAVand the building is given by:

dopt = ((
0.5zb

tan(48.654o)
)2 − (0.5yb)

2)0.5 − xb

In Figure 4.4, we demonstrate the transmit power required tocover the building as

a function of the incident angle, we notice that the optimal angle that we characterize in

Theorem 3 gives us the minimum transmit power.

Now, we find an efficient incident angleθ for high-SHF band that minimizes the

transmit power required to cover the building. In order to find an efficient angle, we

rewrite the equation that represents the path loss in terms of the incident angle (θ) and the
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Figure 4.5Transmit power required to cover the building,fc=10 GHz.

altitude difference between the UAV and location that has the maximum path loss inside

the building (∆h), we get:

L(∆h, θ) = (α1 + α2 log10
∆h

sin θ
+ α3 log10 fGhz) +

(β1 +
β2 − β1

1 + exp(−β3(θi − β4))
) + (γ1din,i)

By numerically plotting the transmit power required to cover the location that has

the maximum path loss inside the building (see Figures 4.5 and 4.6), whereyb=50 meters

andxb=20 meters, we show that for different building heights and different operating

frequencies there exists only one global minimum value. As can be seen from the figures,

to provide wireless coverage to small buildings, the UAV transmit power must be very

high, due to the high free space path loss, this demonstratesthe need for multiple UAVs

to cover the high rise building when we use high-SHF operating frequency. To find an

efficient incident angle that could give us the global minimum value, we use the ternary

search algorithm [57]. The pseudo code of this algorithm is shown in Algorithm 2. A

ternary search algorithm is a method for finding the minimum of a unimodal function, it
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Figure 4.6Transmit power required to cover 30 meters building height.

iteratively splits the domain into three separate regions (steps 6-7) and discards the one

where the minimum does not belong to (steps 8-11). The ternary search algorithm is

known to have a time complexity ofO(logn), wheren is the input data size. From our

numerical results, we found that the angle that minimizes the power is always15o. This is

because the building penetration loss will be minimized at this angle (see Figure 4.2). The

angles less than15o will also give us minimum building penetration loss but the free space

path loss will increase as the incident angleθi decreases. Note that for the high-SHF case

the incident angle that results in the minimum path loss is smaller than that for low-SHF

case. This is due to the fact that the building penetration loss at high operating frequency

will be higher than that at low operating frequency.

Case 2.The locations of indoor users are symmetric across thexy andxz planes:

In this case, we assume that the locations of indoor users aresymmetric across thexy

plane and thexz plane (such as office buildings or hotels). Under the assumption that

the z = 0 plane divides the building into two equal halves as shown in Figure 4.7, the

locations of indoor users are symmetric across thexy plane when each useri at location
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Algorithm 2 Ternary search algorithm
1: Input:

2: The interval [a,b] of unimodal function that contains the efficient incident angle.

3: The absolute precision=µ.

4: If |b-a| < µ:

5: Return (a+b)
2

6: l = a+ (b−a)
3

7: r = b− (b−a)
3

8: If f(l) > f(r)

9: Return ternarysearch(f , l, b, µ)

10: Else

11: Return ternarysearch(f , a, r, µ)

(xi, yi, zi) has a symmetric point with userj at location (xi, yi, -zi). Similarly, under the

assumption that they = 0 plane divides the building into two equal halves, the locations

of indoor users are symmetric across thexz plane when each useri at location (xi, yi, zi)

has a symmetric point with userj at location (xi, -yi, zi), wherei, j ∈M . First, we prove

thatzUAV =0.5zb andyUAV =0.5yb when the locations of indoor users are symmetric across

thexy andxz planes and the operating frequency is low-SHF (Theorem 4) orhigh-SHF

(Theorem 5). Then we use the gradient descent algorithm [58]to find an efficientxUAV

that minimizes the transmit power required to cover the building.

Theorem 4. For the low-SHF operating frequency case, when the locations of indoor

users are symmetric across thexy andxz planes, the optimal (yUAV ,zUAV ) that minimizes

the power required to cover the indoor users will be equal (0.5yb,0.5zb).
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Figure 4.7xy-plane andxz-plane.

Proof. Consider thatm1 represents the users that have altitude lower than the UAV

altitude andm2 represents the users that have altitude higher than the UAV altitude, then:

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zUAV − zi)
2)0.5, ∀zUAV > zi

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zi − zUAV )
2)0.5, ∀zUAV < zi

Also,

cosθi =
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
, ∀zUAV > zi

cosθi =
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
, ∀zUAV < zi

Rewrite the total path loss:

LTotal =

m1
∑

i=1

(wlog10(dout,i) + g3(1− cos θi)
2) +

m2
∑

i=1

(wlog10(dout,i) + g3(1− cos θi)
2) +K

Where:

K =
M
∑

i=1

(wlog10fGhz + g1 + g2 + g4din,i)
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Now, take the derivative with respect tozUAV , we get:

dLTotal

dzUAV
=

m1
∑

i=1

w

ln10

(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)
+

2g3.(1−
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
).

(
((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)
3
2

) +

m2
∑

i=1

w

ln10

−(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)

+2g3.(1−
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
).

(
−((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)
3
2

)

Rewrite the
dLTotal

dzUAV
again, we have:

dLTotal

dzUAV
=

m1
∑

i=1

w

ln10

(zUAV − zi)

d2out,i
+ 2g3.(1−

((xUAV − xi)
2 + (yUAV − yi)

2)0.5

dout,i
).

(
((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zUAV − zi)

d3out,i
) +

m2
∑

i=1

w

ln10

−(zi − zUAV )

d2out,i
+ 2g3.(1−

((xUAV − xi)
2 + (yUAV − yi)

2)0.5

dout,i
).

(
−((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zi− zUAV )

d3out,i
)

The equation above equals zero when the UAV altitude equals the half of the building

height, where the locations of indoor users are symmetric across thexy andxz planes.

The question now is how to find an efficient horizontal pointxUAV that minimizes

the total transmit power. In order to find this point, we use the gradient descent algorithm:

xUAV,n+1 = xUAV,n − a
dLTotal

dxUAV,n
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Algorithm 3 EfficientxUAV using gradient descent algorithm
1: Input:

2: The 3D locations of the users inside the building.

3: The step sizea, the step toleranceǫ.

4: The dimensions of the building[0, xb] × [0, yb] × [0, zb].

5: The maximum number of iterationsNmax.

6: Initialize xUAV

7: For n=1,2,...,Nmax

8: xUAV,n+1← xUAV,n− a
dLTotal

dxUAV,n

9: If ‖ xUAV,n − xUAV,n+1 ‖ < ǫ

10: Return: xUAV,opt = xUAV,n+1

11: End for

Where:

dLTotal

dxUAV
=

M
∑

i=1

w

ln10

−(xi − xUAV )

d2out,i
+ 2g3.(1−

((xi − xUAV )
2 + (yi − yUAV )

2)0.5

dout,i
).

(
(xi − xUAV )dout,i((xi − xUAV )

2 + (yi − yUAV )
2)−0.5

d2out,i
−

((xi − xUAV )
2 + (yi − yUAV )

2)0.5(xi − xUAV )d
−1
out,i

d2out,i
)

a: the step size.

dout,i=((xi − xUAV )
2 + (yi − yUAV )

2 + (zi − zUAV )
2)0.5

The pseudo code of this algorithm is shown in Algorithm 3. Thealgorithm uses

the gradient of the function to find the nearest local minimum. The algorithm begins with

an initial guess of the solutionxUAV (step 6). Then, it takes the gradient of the function

at that point and generates the next iteration by taking a step along the negative gradient

direction (step 8). The algorithm will converge when the gradient is zero (steps 9-11).

Now, we prove thatzUAV = 0.5zb andyUAV = 0.5yb when the locations of indoor users

are symmetric across the xy and xz planes and the operating frequency is high-SHF.
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Theorem 5. For the high-SHF operating frequency case, when the locations of indoor

users are symmetric across thexy andxz planes, the optimal (yUAV , zUAV ) that minimizes

the power required to cover the indoor users will be equal (0.5yb,0.5zb).

Proof. Consider thatm1 represents the users that have altitude lower than the UAV

altitude andm2 represents the users that have altitude higher than the UAV altitude, then:

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zUAV − zi)
2)0.5, ∀zUAV > zi

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zi − zUAV )
2)0.5, ∀zUAV < zi

Also,

θi = sin−1(
(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
), ∀zUAV > zi

θi = sin−1(
(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
), ∀zUAV < zi

Rewrite the total path loss:

LTotal =

m1
∑

i=1

α2log10(dout,i) +
(β2 − β1)

(1 + exp(−β3(sin−1(u)− β4)))

+

m2
∑

i=1

α2log10(dout,i) +
(β2 − β1)

(1 + exp(−β3(sin−1(u)− β4)))
+K

Where:

u = (
(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
), ∀zUAV > zi

u = (
(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
), ∀zUAV < zi

K =

M
∑

i=1

(α1 + α3log10fGhz + β1 + γ1din,i)
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Now, take the derivative with respect tozUAV , we get:

dLTotal

dzUAV
=

m1
∑

i=1

α2

ln10

(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)

+(
−(β2 − β1)(

−β3√
1−u2 )(

dout,i−(zUAV −zi)2d
−1
out,i

d2out,i
)

(1 + exp(−β3(sin−1u− β4)))
.

exp(−β3(sin
−1u− β4))

(1 + exp(−β3(sin−1u− β4)))
) +

m2
∑

i=1

α2

ln10

−(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)

+(
−(β2 − β1)(

−β3√
1−u2 )(

−dout,i+(zUAV −zi)2d
−1
out,i

d2out,i
)

(1 + exp(−β3(sin−1u− β4)))
.

exp(−β3(sin
−1u− β4))

(1 + exp(−β3(sin−1u− β4)))
)

The equation above equals zero when the UAV altitude equals the half of the building

height, where the locations of indoor users are symmetric across thexy andxz planes.

To find an efficient horizontal pointxUAV that minimizes the total transmit power,

we use the gradient descent algorithm, where:

dLTotal

dxUAV
=

M
∑

i=1

α2

ln10

(xUAV − xi)

d2out,i
+ (
−(β2 − β1)(

−β3√
1−u2 )(

−(zUAV −zi)(xUAV −xi)
d3out,i

)

(1 + exp(−β3(sin−1u− β4)))
.

exp(−β3(sin
−1u− β4))

(1 + exp(−β3(sin−1u− β4)))
)

dout,i=((xi − xUAV )
2 + (yi − yUAV )

2 + (zi − zUAV )
2)0.5

u=(
(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
)

Case 3. The locations of indoor users are uniformly distributed in each floor: In

this case, we propose the Particle Swarm Optimization (PSO)[59] to find an efficient 3D

placement of the UAV, when the locations of indoor users are uniformly distributed in

each floor. In general, the PSO algorithm can be used for any type of distribution as done

in [22]. The pseudo code of the PSO algorithm is shown in Algorithm 4.
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Algorithm 4 Efficient UAV placement using PSO algorithm
1: Input:
2: The lower and upper bounds of decision variable (vmin, vmax), Construction
coefficients (κ,φ1,φ2), Maximum number of iterations (tmax), Population size (W )
3: Initialiaztion:
4: φ=φ1+φ1, χ = 2κ/|2− φ− (φ2 − 4φ)0.5|
5: w=χ, c1=χφ1, c2=χφ2, Cglobal.best = inf

6: for i=1:W
7: Each particlei starts at a random initial position:

Q(i) = uniformrandom(vmin, vmax, vsize)

8: Each particlei starts with zero velocity:
V (i) = zeros(vsize)

9: Find the cost of particlei:
C(i) = costfunction(Q(i))

10: Let the best location of particlei equals the current location:
Q(i)best = Q(i)

11: Let the best cost of particlei equals the current cost:
C(i)best = C(i)

12: if C(i)best < Cglobal.best

13: Cglobal.best = C(i)best
14: end if
15: end
16: PSO Loop:
17: for t = 1 : tmax

18: for i=1:W
19: Find the velocity, position and cost for particlei:

V (i) = w ∗ V (i) + c1 ∗ rand(vsize). ∗ (Q(i)best −Q(i))

+c2 ∗ rand(vsize). ∗ (Qglobal.best −Q(i))

Q(i) = Q(i) + V (i)

20: C(i) = costfunction(Q(i))

21: if C(i) < C(i)best
22: Q(i)best = Q(i)

23: C(i)best = C(i)

24: Find an efficient placement of a UAV:
if C(i)best < Cglobal.best

25: Qglobal.best = Q(i)best
26: end if
27: end if
28: end
29:end
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The particle swarm optimization algorithm starts with (W ) random solutions (steps

6-15) and iteratively tries to improve the candidate solutions based on the best experience

of each candidate (Q(i)best) and the best global experience (Qglobal.best). In each iteration

(steps 17-29), the best location for each particle (Q(i)best) and the best global location

(Qglobal.best) are updated and the velocities and locations of the particles are calculated

based on them [22]. The velocity value indicates how much thelocation can be changed.

The velocity is given by:

V (i) = w ∗ V (i) + c1 ∗ rand(vsize). ∗ (Q(i)best −Q(i))

+c2 ∗ rand(vsize). ∗ (Qglobal.best −Q(i))

wherew is the inertia weight,c1 andc2 are the personal and global learning coefficients,

andrand(vsize) is a random positive number. Also, the location of each particle is updated

as:

Q(i) = Q(i) + V (i)

The time complexity of PSO algorithm will depend on the number of candidate solutions

(W ) and the number of iterations (tmax). Convergence of the candidate solutions has

been investigated for PSO [60]. This analyses has resulted in guidelines for selecting a

set of coefficients (κ,φ1,φ2) that are believed to cause convergence to a point and prevent

divergence of the swarms particles. We selected our parameters according to this analysis

(see Table 4.1 and Algorithm 4 (steps 4-5)).
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4.4 Providing Wireless Coverage Using Multiple UAVs

Providing wireless coverage to High-rise building using a single UAV can be impractical,

due to the limited transmit power of a UAV. The transmit powerrequired to cover the

building is too high. It is in the range of 50 dBm to 65 dBm (see Figures 4.3-4.6),

which corresponds to 100-3000 watts. In this section, the UAVs adopt a frequency

division multiple access (FDMA) technique to provide wireless coverage for the indoor

users in which the total bandwidthB is divided to multiple subchannels, and we allocate

one subchannel to each indoor user. Therefore, there is no interference between UAVs.

Furthermore, the authors in [61] show that significant powergains are attainable for indoor

users even in rich indoor scattering conditions, if the indoor users use directional antennas.

Our problem can be formulated as:

min |k|

subject to
|k|
∑

j=1

yij = 1 ∀i ∈ m (4.2.a)

|m|
∑

i=1

(2
v.|m|
B − 1).N.Lij .yij ≤ P ∀j ∈ k (4.2.b)

xmin ≤ xj ≤ xmax ∀j ∈ k (4.2.c)

ymin ≤ yj ≤ ymax ∀j ∈ k (4.2.d)

zmin ≤ zj ≤ zmax ∀j ∈ k (4.2.e)

(4.2)

wherek is the set of UAVs required to provide wireless coverage for indoor users,m is the

set of indoor users that requests a wireless coverage,υ is the rate requirement for each user

(constant),N is the noise power (constant),B is the transmission bandwidth (constant),

Lij is the total path loss between UAVj and useri andP is the maximum transmit power
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of UAV (constant). We also introduce the binary variableyij that takes the value of 1 if

the indoor useri is connected to the UAVj and equals 0 otherwise. The objective is to

minimize the number of UAVs that are needed to provide a wireless coverage for indoor

users. Constraint set (4.2.a) ensure that each indoor user should be connected to one UAV.

Constraint set (4.2.b) ensure that the total power consumedby a UAV should not exceed

its maximum power consumption limit. Constraints (4.2.c-4.2.e) represent the minimum

and maximum allowed values forxj , yj andzj .

Theorem 6. The problem represented by (4.2) is NP-complete.

Proof. The number of constraints is polynomial in terms of the number of indoor users,

UAVs and 3D locations. Given any solution for our problem, wecan check the solutions

feasibility in polynomial time, then the problem is NP.

To prove that the problem is NP-hard, we reduce the Bin Packing Problem which is NP-

hard [40] to a special case of our problem. In the Bin Packing Problem, we have a set

of itemsG = {1, 2, .., N} in which each item has volumezn wheren ∈ G. All items

must be packed into a finite number of bins (b1, b,...,bB), each of volumeV in a way that

minimizes the number of bins used. The reduction steps are: 1) The b-th bin in the Bin

Packing Problem is mapped to thej-th UAV in our problem, where the volumeV for each

bin is mapped to the maximum transmit power of the UAVP . 2) Then-th item is mapped

to the indoori-th user, where the volume for each itemn is mapped to the power required

to cover thei-th indoor user. 3) All UAVs have the same maximum transmit powerP . 4)

The power required to cover thei-th indoor user from any 3D location will be constant. If

there exists a solution to the bin packing problem with costC, then the selected bins will
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represent the UAVs that are selected and the items in each binwill represent the indoor

users that the UAV must cover and the total cost of our problemis C.

Due to the intractability of the problem, we consider clustering of indoor users.

The pseudo code of clustering indoor users is shown in Algorithm 5. In thek-means

clustering algorithm [62], we are given a set of pointsm, and want to group the points

into k clusters such that each point belongs to the cluster with thenearest mean. The first

step in the algorithm is to choose the number of clustersk. Then, randomly initializek

clusters centroids (step 6). In each iteration, the algorithm will do two things:1) Cluster

assignment step. 2) Move centroids step (step 7). In clusterassignment step, the algorithm

goes through each point and chooses the closest centroids and assigns the point to it. In

move centroids step, the algorithm calculates the average for each group and moves the

centroids there. The algorithm will repeat these two steps until it converges. The algorithm

will converge when the assignments no longer change. Thek-means clustering algorithm

is known to have a time complexity ofO(km), wherek is the number of clusters and

m is the number of points. To find the minimum number of UAVs required to cover the

indoor users, we utilize this algorithm to cluster the indoor users. In our algorithm, we

assume that each cluster will be covered by only one UAV. We start the algorithm with

k = 2 (step 4) and after it finishes clustering the indoor users, itapplies the particle swarm

optimization [59] to find the UAV 3D location and UAV transmitpower needed to cover

each cluster. Then, it checks if the maximum transmit power is sufficient to cover each

cluster, if not, the number of clustersk is incremented by one and the problem is solved

again (steps 8-9).
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Algorithm 5 Clustering Indoor Users
1: Input:

2: The maximum transmit power of UAV(P ).

3: The 3D locations ofm indoor users(xi, yi, zi).

4: Number of clusters(|k| = 2).

5: START:

6: Initialize cluster centroidsγ1, γ2, ..., γk ∈ Rn randomly.

7: Repeat until convergence:

For every indoor useri ∈ m, set

c(i) = arg min
j∈k
||(xi, yi, zi)− γj||2

For each clusterj ∈ k, set

γj =

∑

i∈m,c(i)=j

(xi, yi, zi)

∑

i∈m,c(i)=j

1

8: Using particle swarm optimization algorithm, calculatethe UAV efficient 3D

location and the transmit power for each clusterj ∈ k:

P (j) =
∑

i∈m,c(i)=j

(2
v.|m|
B − 1) ⋆ N ⋆ Li

9: For j = 1 to |k|
If (P (j) > P )

|k| = |k|+ 1

go to START

End

10: Output:

11: |k| Clusters.

12: The transmit Power of each UAV.

13: The 3D locations of UAVs.

4.5 Numerical Results

4.5.1 Simulation Results for Single UAV

First, we verify our results for the second case, when the locations of indoor users are

symmetric across thexy andxz planes, using different operating frequencies, 2GHz for
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Table 4.1Parameters in Numerical Analysis for Single UAV

Vertical width of buildingyb 50 meters

Hight of each floor 5 meters

Step sizea ”GD algorithm” 0.01

Maximum number of iterationsNmax ”GD algorithm” 500

The carrier frequencyfGhz, low-SHF 2Ghz

The carrier frequencyfGhz, high-SHF 15Ghz

Number of users in each floor 20 users

(varmin,varmax) ”PSO algorithm” (0,1000)

(κ,φ1,φ2) ”PSO algorithm” (1,2.05,2.05)

low-SHF band and 15GHz for high-SHF. We assume that each floorcontains 20 users.

Then we apply the gradient descent (GD) algorithm to find the optimal horizontal point

xUAV that minimizes the transmit power required to cover the indoor users. Table 4.1 lists

the parameters used in the numerical analysis for single UAVcases.

In Figures 4.8 and 4.9, we find the optimal horizontal points for a building of

different heights. In the upper part of the figures, we find thetotal path loss at different

locations (xUAV ,0.5yb,zUAV ) and the optimal horizontal pointxUAV that results in the

minimum total path loss using the GD algorithm. In the lower part of the figures, we

show the convergence speed of the GD algorithm. As can be seenfrom the figures, when

the height of the building increases, the optimal horizontal point xUAV increases. This is

to compensate the increased building penetration loss due to an increased incident angle.
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Figure 4.8 UAV optimal placement and convergence speed of the GD algorithm for
different building heights,fc = 2G Hz.

Figure 4.9 UAV optimal placement and convergence speed of the GD algorithm for
different building heights,fc = 15G Hz.

In Figures 4.10 and 4.11, we investigate the impact of different building widths (i.e.,

xb). We fix the building height to be 250 meters for low-SHF operating frequency and 25

meters for high-SHF, then we vary the building width. As can be seen from the figures,

when the building width increases, the optimal horizontal distance decreases. This is to

compensate for the increased indoor path loss due to an increased building width.

Now, we validate the simulation results for low-SHF operating frequency by using

the particle swarm optimization (PSO) algorithm and verifyour result for the third case,

when the locations of indoor users are uniformly distributed in each floor, using low-

SHF operating frequency. As can be seen from the simulation results in Table 4.2, both
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Figure 4.10 UAV optimal placement and convergence speed of the GD algorithm for
different building widths,fc = 2G Hz.

Figure 4.11 UAV optimal placement and convergence speed of the GD algorithm for
different building widths,fc = 15G Hz.

algorithms converge to the same 3D placement, when the locations of indoor users are

symmetric across thexy andxz planes.

After that, we assume that each floor contains 20 users and thelocations of these

users are uniformly distributed in each floor. When we apply the GD algorithm, the 3D

efficient placements and the total costs for 200 meter, 250 meter and 300 meter buildings

are (24.7254, 25, 100) (7.8853 ∗ 104), (33.8180, 25, 125) (9.9855 ∗ 104) and (43.1170, 25,

150)(1.2154 ∗ 105), respectively. UAV efficient placement and the convergence speed of

the PSO algorithm for different building heights is shown inFigure 4.12. The 3D efficient

placements and the total costs for 200 meter, 250 meter and 300 meter buildings are
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Figure 4.12UAV efficient placement and convergence speed of the PSO algorithm for
different building heights.

Figure 4.13UAV efficient placement and convergence speed of the PSO algorithm for
different building widths.

(21.7995, 37.3891, 111.7901) (7.8645∗104), (32.9212, 28.7125, 124.0291) (9.9725∗104)

and (46.5898, 31.5061 ,143.8588)(1.2117 ∗ 105), respectively. As can be seen from the

simulation results in Table 4.3, the PSO algorithm providesbetter results. It provides total

cost less than the cost that the GD algorithm provides by (37dB-208dB). This is because

the PSO algorithm is designed for the case in which the locations of indoor users are

uniformly distributed in each floor. On the other hand, the GDalgorithm is designed for

the case in which the locations of indoor users are symmetricacross the dimensions of

each floor.
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Table 4.2Simulation Results: Validate the Simulation Results for the Second Case

Algorithm zb xb yb Efficient 3D placement Efficient total

path loss(dB)

GD 200 20 50 (20.025, 25, 100) 7.8825 ∗ 104

PSO 200 20 50 (20.040, 25.0130, 100.0015)7.8825 ∗ 104

GD 250 20 50 (30.809, 25, 125) 9.9971 ∗ 104

PSO 250 20 50 (30.736 , 24.960, 124.956) 9.9971 ∗ 104

GD 300 20 50 (40.746, 25, 150) 1.2146 ∗ 105

PSO 300 20 50 (40.758, 25.048, 150.054) 1.2146 ∗ 105

We also investigate the impact of different building widths(i.e., xb) using the GD

and PSO algorithms (see Figure 4.13). We fix the building height to be 250 meters and

vary the building width. As can be seen from the simulation results, the PSO algorithm

provides better results. It provides total cost less than the cost that the GD algorithm

provides by (57dB-161dB).

We can notice that the tradeoff in case three is similar to that in case two, when

the height of the building increases, the efficient horizontal pointxUAV computed by our

algorithm increases. This is to compensate the increased building penetration loss due

to an increased incident angle. Also, when the building width increases, the efficient

horizontal distance computed by our algorithm decreases. This is to compensate the

increased indoor path loss due to an increased building width.
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Table 4.3Simulation Results: Verify the Results for the Third Case

Algorithm zb xb yb Efficient 3D placement Efficient total

path loss(dB)

GD 200 20 50 (24.725, 25, 100) 7.8853 ∗ 104

PSO 200 20 50 (21.799, 37.389, 111.790) 7.8645 ∗ 104

GD 250 20 50 (33.818, 25, 125) 9.9855 ∗ 104

PSO 250 20 50 (32.921, 28.712, 124.029) 9.9725 ∗ 104

GD 300 20 50 (43.117, 25, 150) 1.2154 ∗ 105

PSO 300 20 50 (46.589, 31.506 ,143.858) 1.2117 ∗ 105

GD 250 10 50 (38.521, 25, 125) 9.7413 ∗ 104

PSO 250 10 50 (32.104, 21.017, 129.266) 9.7252 ∗ 104

GD 250 30 50 (29.393, 25, 125) 1.0275 ∗ 105

PSO 250 30 50 (25.529, 4.938, 138.765) 1.0211 ∗ 105

GD 250 50 50 (22.711, 25, 125) 1.0753 ∗ 105

PSO 250 50 50 (14.548, 17.308 ,131.8940)1.0696 ∗ 105

4.5.2 Simulation Results for Multiple UAVs

In this section, we verify our results for multiple UAVs scenario. First, we assume that

a building will host a special event (such as concert, conference, etc.), the dimensions

of the building are[0, 20] × [0, 50] × [0, 100]. The organizers of the event reserve all

floors higher than 75 meters and they expect that 200 people will attend the event. Due

to interference from near-by macro cells, the organizers decide to use UAVs to provide

wireless coverage to the indoor users. We assume that 200 indoor users are uniformly
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Table 4.4Parameters in Numerical Analysis for Multiple UAVs

Maximum transmit power of UAV (P ) 5 Watt

Operating frequency (f ) 2Ghz

Transmission bandwidth (B) 50M Hz

Rate requirement for each user (υ) 2.2Mbps

Noise power (N) -150 dBm

Min and Max allowed values forxj ,[xmin, xmax] [25,1000]

Min and Max allowed values foryj, [ymin, ymax] [0,50]

Min and Max allowed values forzj , [zmin, zmax] [0,1000]

distributed in upper part of the building (higher than 75 meters) and 200 indoor users are

uniformly distributed in the lower part (less than 75 meters). Then, we apply the clustering

indoor users algorithm to find the minimum number of UAVs required to cover the indoor

users. Table 4.4 lists the parameters used in the numerical analysis for multiple UAVs.

The algorithm starts withk = 2 and after it finishes clustering the indoor users, it

applies the particle swarm optimization to find the UAV 3D location and UAV transmit

power needed to cover each cluster. Then, it checks if the maximum transmit power is

sufficient to cover each cluster, if not, the number of clustersk is incremented by one and

the problem is solved again. As can be seen from the simulation results in Figure 4.14,

we need 5 UAVs to cover the indoor users. We can notice that an efficient horizontal point

xUAV for all UAVs 3D locations is the samexUAV = 25, the minimum allowed value for

xUAV , this is because the tradeoff (shown in Figure 4.3) disappears when a UAV covers

small height of building.
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Figure 4.14UAVs efficient placements using clustering algorithm.

Figure 4.15UAVs efficient placements using uniform split method.

In Figure 4.15, we uniformly split the building intok parts and cover it byk UAVs.

As can be seen from the simulation results, we need 9 UAVs to cover the indoor users.

The clustering algorithm provides better results, this is because it utilizes the distribution

of indoor users to divide them into clusters. On the other hand, the uniformly split method

is designed for the case in which the locations of indoor users uniformly distributed in the

building.
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CHAPTER 5

MAXIMIZING THE INDOOR WIRELESS COVERAGE USING UAVS

5.1 Introduction

In this chapter1, we aim to maximize the indoor wireless coverage using UAVs equipped

with directional antennas. We study the case that the UAVs are using one channel, thus

in order to maximize the total indoor wireless coverage, we avoid any overlapping in

their coverage volumes. We present two methods to place the UAVs; providing wireless

coverage from one building side and from two building sides.In the first method, we

utilize the circle packing theory to determine the 3-D locations of the UAVs in a way

that the total coverage area is maximized. In the second method, we place the UAVs in

front of two building sides and efficiently arrange the UAVs in alternating upside-down

arrangements. Our results show that the upside-down arrangements of UAVs, can improve

the total coverage by 100% compared to providing wireless coverage from one building

side.

5.2 System Model

5.2.1 System Settings

Consider a3D building, as shown in Figure 5.1, whereN UAVs must be deployed to

maximize the wireless coverage to indoor users located within the building. Let the

dimensions of the high-rise building, in the shape of a rectangular prism, be[0, xb] ×

[0, yb] × [0, zb]. Let (xk, yk, zk) denote the 3D location ofk-th UAV, and let (Xi, Yi,

1The work of this chapter has been published in [63].
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Figure 5.1System model.

Zi) denote the location of useri. Also, let dout,i be the distance between the UAV and

indoor useri, and letdin,i be the distance between the building wall and indoor useri.

Each UAV uses a directional antenna to provide wireless coverage where the antenna half

power beamwidth isθB. The authors in [64] use an outdoor directional antenna to provide

wireless coverage for indoor users. They show that the highest RSRP (Reference Signal

Received Power) and throughput values are measured along the main beam direction, thus

the radiation pattern of a directional antenna is a cone and the indoor volume covered by a

UAV is a truncated cone, as shown in Figure 5.2. Here,ri is the radius of the circle that is

located atyz-rectangular side ((0,0,0), (0,0,zb), (0,yb,zb), (0,yb,0))), rj is the radius of the

circle that is located atyz-rectangular side ((xb,0,0), (xb,0,zb), (xb,yb,zb), (xb,yb,0)) andxb

is the horizontal width of the building. The volume of a truncated cone is given by:

V =
1

3
πxb(r

2
i + r2j + rirj) (5.1)
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Figure 5.2Three dimensions of a truncated cone.

5.2.2 User Received Power

In [61], the authors show that significant power gains are attainable for indoor users even

in rich indoor scattering conditions, if the indoor users use directional antennas. Now,

consider a transmission betweenk-th UAV located at (xk, yk, zk) and i-th indoor user

located at (Xi, Yi, Zi). The received signal power ati-th indoor user location can be given

by:

Pr,ik(dB) = Pt +Gt +Gr − Li
(5.2)

wherePr,ik is the received signal power,Pt is the transmit power of UAV,Gt is the antenna

gain of the UAV. It can be approximated byGt ≈ 29000
θ2
B

with θB in degrees [18] andGr is

the antenna gain of indoor useri, which is given by [61]:

Gr(dB) = Gr,dir −Gr,omni −GRF (5.3)

whereGr,dir andGr,omni are free-space antenna gains of a directive and an omnidirectional

antenna respectively andGRF is the decrease in gain advantage of a directive over an

omnidirectional antenna, due to the presence of clutter.
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Also, Li is the path loss for the Outdoor-Indoor communication whichcan be

represented by [55]:

Li = LF + LB + LI = (w log10 dout,i + w log10 fGhz

+g1) + (g2 + g3(1− cos θi)
2) + (g4din,i)

(5.4)

whereLF is the free space path loss,LB is the building penetration loss, andLI is the

indoor loss. In the path loss model, we also havew=20, g1=32.4,g2=14, g3=15, g4=0.5

andfGhz is the carrier frequency.

5.3 Maximizing Indoor Wireless Coverage

In this section, the UAVs are assumed to be homogeneous having the same transmit

power, the same horizontal locationxk, the same channel and the same antenna half power

beamwidthθB. We show two methods to place the UAVs in a way that tries to maximize

the total coverage and avoids any overlapping in their coverage volumes.

5.3.1 Providing Wireless Coverage from One Building Side

In this method, we place all UAVs in front of one building side(sideA, sideB or sideC),

see Figure 5.3. The objective is to determine the three-dimensional location of each UAV

in a way that the total covered volume is maximized. Now, consider that we place the

UAVs in front of building sideA, then the projection of UAV’s coverage on the building
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Figure 5.3Building sides.

sideB is a circle as shown in Figure 5.4. Our problem can be formulated as:

max |N | × 1

3
πxb(r

2
i + r2j + rirj)

subject to

√

(yk − yq)2 + (zk − zq)2 ≥ 2rj, k 6= q ∈ N (5.5.a)

zb − (zk + rj) ≥ 0, k ∈ N (5.5.b)

(zk − rj) ≥ 0, k ∈ N (5.5.c)

yb − (yk + rj) ≥ 0, k ∈ N (5.5.d)

(yk − rj) ≥ 0, k ∈ N (5.5.e)

(5.5)

The objective is to maximize the indoor wireless coverage (covered volume), where

|N | is the number of UAVs. Constraint set (5.5.a) guarantees that truncated cones cannot

overlap. Constraint sets (5.5.b-5.5.e) ensure that UAV should not cover outside the3D

building, see Figure 5.4. We model this problem by utilizingthe well-known circle

packing problem [65]. In this problem,N circles should be packed inside a given surface
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Figure 5.4Circle packing in a rectangle.

such that the packing density is maximized and no overlapping occurs, note that the

surface in our problem is a rectangle. The authors of [65] tackle this problem by solving

a number of decision problems. The decision problem is:

GivenN circles of radiusrj and a rectangle of dimensionyb × zb, whether is it possible

to locate all the circles into the rectangle or not.

They introduce a nonlinear model for this problem. Finding the answer for the decision

problem will depend on finding the global minimizer of a nonconvex and nonlinear

optimization problem. In each decision problem, they investigate the feasibility of packing

N identical circles. If this is feasible,N is incremented by one and the decision problem

is solved again. The algorithm will stop when the decision problem yields an infeasible

packing [66]. The pseudo code of the algorithm is shown in Algorithm 6. In the next

section, we utilize the two building sides to maximize the indoor wireless coverage. This
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Algorithm 6 Circle packing in a rectangle
1: N ←− 1

2: Solve the decision problem forN circles

3: If Answer= YES

4: Then N ←− N + 1

5: Return to step 2

6: If Answer= NO

7: N ←− N − 1

8: End

9: Output N

will allow us to extend the indoor wireless coverage compared with providing wireless

coverage from one building side, because the holes induced by the cones of the UAVs of

one side can be filled by the cones induced by the UAVs of the other side without causing

overlap among the two sets of cones.

5.3.2 Providing Wireless Coverage from Two Building Sides

In this method, we place the UAVs in front of two building sides (sideA and sideB)

and efficiently arrange the UAVs in alternating upside-downarrangements. In Theorem

7, we find the horizontal location of the UAVxUAV that guarantees the upside-down

arrangements of the truncated cones. In Theorem 8, we prove that if the truncated cones

do not intersect in 3D, then the circles do not intersect in building sides (A and B), and

vice versa. In Theorem 9, we prove that if we maximize the percentage of covered area of

building sides (A and B), then we maximize the percentage of covered volume of building,

and vice versa. These theorems enable us to transform the geometric problem from 3D to

2D and present an efficient algorithm to maximize the indoor wireless coverage.
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Theorem 7. The horizontal location of the UAVxUAV that guarantees the upside-down

arrangements of the truncated cones will be equal to0.7071xb regardless of the antenna

half power beamwidth angleθB.

Proof. The radius of the smaller circular faceri is given by:

ri = rj
xUAV

xb + xUAV
(5.6)

Now, we divide the building sidesA andB to square cells (as shown in Figures 5.5

and 5.6), the large circle in Figure 5.5 and the small circle in Figure 5.6 will represent

the projections of UAV’s coverage on building sidesA andB when the UAV is placed

in front of building sideB. Similarly, the four small circle quarters in Figure 5.5 andthe

four large circle quarters in Figure 5.6 will represent the projections of UAVs coverage

on building sidesA andB when the UAVs are placed in front of building sideA. From

Figures 5.5 and 5.6, the diagonal of the square cell is given by D = 2rj + 2ri, whererj

is the radius of the larger circular face andri is the radius of the smaller circular face. By

applying the pythagoreans theorem, we get:

ri =

√
8− 2

2
rj = γrj (5.7)

From equations (5.6) and (5.7), we get:

xUAV

xb+xUAV
=

√
8−2
2

=⇒ xUAV = xb
(
√
8−2)

(4−
√
8)

= 0.7071xb

Thus, to guarantee the upside-down arrangements of the truncated cones, we must

place the UAVs at horizontal distance equals to0.7071xb. Theorems 8 and 9 enable us to

transform the geometric problem from 3D to 2D.
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Figure 5.5 Square cell in
side A.

Figure 5.6 Square cell in
side B.

Theorem 8. The truncated cones do not intersect in 3D iff The circles do not intersect in

building sides (A and B).

Proof. First, we prove that if the truncated cones do not intersect in 3D, then the circles

do not intersect in building sides (A and B). Assume that we have a set of truncated cones

G = {1, 2, ..., N} and they do not intersect in 3D space. Each truncated conen ∈ G can

be represented by a number of2D circles{c1n, c2n, ..., c|h|n}, where|h| is the height of

the truncated cone,c1n is the smaller circular face andc|h|n is the larger circular face. It is

obvious that if the|G| truncated cones do not intersect in3D space then the smaller and

larger circular faces do not intersect in building sides (A andB).

Second, we prove that if the circles do not intersect in building sides (A and B), then

the truncated cones do not intersect in3D. Assume that four circles (with large radiusrj)

not intersect in building sideA (see Figure 5.7), then the circles (with small radiusri)

in building sideB will appear as shown Figure 5.8. Now, we need to do two steps: 1)

Connect the lines between these points (A|h| with A1, B|h| with B1, C|h| with C1 and

D|h| with D1 ). 2) Draw circles that pass through four pointsAk, Bk, Ck andDk where

k ∈ h. After these two steps, the circles that have been drawn in step two will represent

72



Figure 5.7 Four circles
(with radius rj) in
building sideA.

Figure 5.8 Four circles
(with radius ri) in
building sideB.

a truncated cone that his circular bases do not intersect with the four circles in building

sides (A andB). Also, the truncated cones do not intersect in 3D space.

Theorem 9. We maximize the percentage of covered area of building sides(A and B) iff

We maximize the percentage of covered volume of building.

Proof. First, we divide the building sidesA andB to square cells (as shown in Figures 5.5

and 5.6). The percentage of covered volume is given by:

V =
⌊ (ybzb)

4r2j
⌋2(π

3
xb(r

2
i + rirj + r2j ))

(xbybzb)
(5.8)

Where:

⌊ (ybzb)
4r2j
⌋: the number of square cells in the building side.

2: the number of truncated cones in the square cell (see Figures 5.5 and 5.6).

π
3
xb(r

2
i + rirj + r2j ): the volume of truncated cone.

(xbybzb): the volume of the building. Now, from equations (5.7) and (5.8), we get:

V =
⌊ (ybzb)

4r2j
⌋(2π

3
)(γ2 + γ + 1)r2j

(ybzb)
= K1⌊

(ybzb)

4r2j
⌋r2j , (5.9)
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The percentage of covered area of building sides (A andB) is given by:

W =
⌊ (ybzb)

4r2j
⌋(πr2i + πr2j )

(ybzb)
+
⌊ (ybzb)

4r2j
⌋(πr2i + πr2j )

(ybzb)
=
⌊ (ybzb)

4r2j
⌋2π(r2i + r2j )

(ybzb)
(5.10)

Now, from equations (5.7) and (5.10), we get:

W =
⌊ (ybzb)

4r2j
⌋2π(γ2 + 1)r2j

(ybzb)
= K2⌊

(ybzb)

4r2j
⌋r2j , (5.11)

whereK1 =
( 2π

3
)(γ2+γ+1)

(ybzb)
, K2 =

(2π)(γ2+1)
(ybzb)

. From equations (5.9) and (5.11), maximizing

the percentage of covered volume of buildingV is equivalent to maximizing the

percentage of covered area of building sides (A and B)W , and vice versa, whereK1

andK2 are constants.

In Algorithm 7, we maximize the covered volume by placing theUAVs in

alternating upside-down arrangements. First, we find the horizontal distance between the

building and the UAVsxUAV = 0.7071xb (see Theorem 7) that guarantees the alternating

upside-down arrangements. Then, we divide the building sidesA andB to square cells

and place one UAV in front of the square cell. In steps (8-16),we find the3D locations of

UAVs that cover the building from side B. On the other hand, steps (17-25) find the3D

locations of UAVs that cover the building from side A. Finally, the algorithm will output

the total number of UAVs and the total covered volume.

5.4 Simulation Results

Let the dimensions of the building, in the shape of a rectangular prism, be[0, xb = 30]×

[0, yb = 40] × [0, zb = 60]. We use three methods to cover the building using UAVs. In

the first method, we place all UAVs in front of one building side (A orB) (FOBS). In the
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Algorithm 7 Maximizing Indoor Wireless Coverage
1: Input:

2: The dimensions of buildingxb, yb andzb
3: The radius of the larger circular facerj
4: Initialization:

5: ri =

√
8− 2

2
rj

6: xUAV = 0.7071xb

7: u = q = 0

8: The3D locations of UAVs that cover the building from side B are given by:

9: For k1 = 1 : ⌊ yb
2rj
⌋

10: For s1 = 1 : ⌊ zb
2rj
⌋

11: u = u+ 1

12: xq = xUAV + xb

13: yu = (2k1 − 1)rj

14: zu = (2s1 − 1)rj

15: End

16: End

17: The3D locations of UAVs that cover the building from side A are given by:

18: For k2 = 1 : ⌊ yb
3rj
⌋

19: For s2 = 1 : ⌊ zb
3rj
⌋

20: q = q + 1

21: xq = −xUAV

22: yq = (2k2)rj

23: zq = (2s2)rj

24: End

25: End

26: Output:

27: The number of UAVs= u+ q

28: The covered volume=(u+ q)(π
3
xb(r

2
i + rirj + r2j ))
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Figure 5.9Total coverage vs.θB.

second method, we place all UAVs above the building (C) (ABS). In the third method, we

arrange the UAVs in alternating upside-down arrangements (AUDA). In Figure 5.9, we

find the maximum total coverage for different antenna half power beamwidth anglesθB.

As can be seen from the simulation results, the maximum totalcoverage is less than half

for the FOBS and ABS methods, this is because providing wireless coverage from one

building side will only maximize the covered area of the building side. On the other hand,

we improve the maximum total coverage by applying the AUDA, this is because AUDA

will allow us to use a higher number of UAVs to provide wireless coverage compared with

providing wireless coverage from one building side, as shown in Figure 5.10.

In order to provide full wireless coverage, we utilize multiple channels to cover the

holes. We start the coverage process with one channel and then we fill the holes using

UAVs with multiple channels until we cover the whole building. In Figure 5.11, we find

the total number of UAVs required to provide full coverage. As can be seen from the

figure, FOBS and ABS need high number of UAVs to guarantee fullwireless coverage,

due to the irregular shapes of the holes in the building. Here, we can easily specify the

number of UAVs required to cover each hole, due to the small projections of the holes
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in the building side. On the other hand, AUDA needs fewer number of UAVs to provide

full wireless coverage, due to the small-regular shapes of the uncovered spaces inside the

building. Here, we need only one UAV to cover each hole. In Figure 5.12, we find the total

transmit power consumed by UAVs when the building is fully covered. Here, we assume

that the threshold SNR equals 25dB, the noise power equals -120dBm, the frequency of

the channel is 2GHz and the antenna gain of each indoor user is14.4 dB [61]. As can

be seen from the figure, the total transmit power in all methods is very small, due to the

high gain of the directional antennas. Also, we can notice that the total power consumed
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Figure 5.12Total transmit power vs.θB.

in FOBS and ABS is higher than that of AUDA. This is because thenumber of UAVs

required to fully cover the building in AUDA is fewer than that for FOBS and ABS.
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CHAPTER 6

MAXIMIZING THE LIFETIME OF WIRELESS DEVICES USING UAVS

6.1 Introduction

Prior studies on UAV-based wireless coverage typically consider downlink scenarios

from a UAV to ground users1. The authors in [14] investigate the downlink coverage

performance of a UAV, where the objective is to find the optimal UAV altitude which

leads to the maximum ground coverage and the minimum transmit power. In [13], the

authors consider the downlink scenario, where the goal is tominimize the total required

transmit power of UAVs while satisfying the users rate requirements. In [46] and [47],

the authors propose using a UAV to provide wireless coveragefor indoor users during

emergency cases and special events, where the objective is to find an efficient placement

of a single UAV that minimizes the total transmit power required to cover the indoor users.

Due to the limited transmit power of the UAV, the authors in [45] study the problem of

minimizing the number of UAVs required to cover the indoor users.

Only few studies consider the uplink scenario in which the ground wireless devices

transmit data to a UAV. The authors in [68] study the throughput maximization problem in

UAV relaying systems by optimizing the source/relay transmit power along with the UAV

trajectory, subject to practical mobility constraints. In[25], the authors present a UAV

enabled data collection system, where a UAV is dispatched tocollect a given amount of

data from ground terminals at fixed location. They aim to find the optimal ground terminal

1The work of this chapter has been published in [67].
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transmit power and UAV trajectory that achieve different Pareto optimal energy trade-offs

between the ground terminal and the UAV.

Under disaster situations (such as earthquakes or floods), users may not be able

to communicate with remote-undamaged terrestrial ground stations due to the limited

transmit power of wireless devices. They are also not able torecharge their wireless

devices due to physical damage to energy infrastructure. Inthe case of Hurricane Katrina,

about 700,000 customers in Louisiana and almost 200,000 in Mississippi lost power [69].

In such situations, providing wireless coverage becomes more important, since people in

the disaster area seek to learn about the emergency event, locate their family and friends,

and receive commands to flee the disaster-affected area [70,71]. In this chapter, we are

motivated to explore how the placements of UAVs can enhance the time durations of

uplink transmissions of wireless devices when the UAVs are used to provide wireless

coverage for the users utilizing these devices under disaster situations.

6.2 System Model

We assume that a set of ground usersI is located within a 2D geographical area, where

each useri ∈ I has a wireless device with residual energyEi. We consider an uplink

scenario in which the ground users adopt a frequency division multiple access (FDMA)

technique to transmit data to a set of UAVsU at a desired data rateR as done in [72]

and [73], where the UAVs are supported by backhaul links thatinterconnect them to

together and connect them to the core of the Internet. To realize these links, we could

use free space optics. FDMA allocates one subchannel to eachuser for communications

and hence the channels do not interfere with one another [72]. Notice that the equal
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bandwidth division in FDMA ensures fairness among the ground users [74]. We also

assume that each useri ∈ I is served by a UAV for a time durationτiu seconds and

this time duration depends on the residual energy of wireless device represented by the

battery levelEi and the placement of UAVu, whereu ∈ U . Received Signal Strength

Indicator (RSSI) sensors on board the UAVs measure the strength of RF signals across a

range of frequencies. The received signals, although noisydue to the radio-propagation

environment and sensor noise, can be used to determine the approximate locations of

wireless devices using Bayesian filters [75] and Kalman filters [76], where running the

localization algorithm has minimal effect on the power consumptions of wireless devices.

We also assume that the ground wireless devices can send the values of residual energies

to the UAVs using control messages [39].

In this chapter, we assume that the wireless channel betweenground useri and

UAV u is line of sight dominated, so that the free space path loss model is adopted similar

to [68] and [25], wherei ∈ I andu ∈ U . In Section 6.4, we show that this assumption is

realistic. The path loss is given as follows:

Liu =

(

4πdiuF

c

)2

(6.1)

wherediu =
√

(Xu − xi)2 + (Yu − yi)2 + (Zu)2 is the distance between ground useri

and UAV u, (xi, yi) is the 2D location of ground useri, (Xu, Yu, Zu) is the 3D location

of UAV u, F is frequency (in Hz) andc is the speed of light (in m/s). Note that when the

distance between a ground user and UAV (i.e.,diu) increases, the required transmit power

(i.e.,piu) to satisfy a given data rate increases.
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Figure 6.1Ground users transmitting data to UAVs.

6.3 Problem Formulation

Consider a transmission between a user located at(xi, yi) and a UAV located at

(Xu, Yu, Zu) that acts as an aerial base station to collect data from usersas shown in

Figure 6.1. The rate for useri is given by:

Ciu = Bi log2

(

1 +
piu/Liu

N

)

(6.2)

whereBi is the transmission bandwidth of useri, piu is the transmit power from useri to

UAV u, Liu is the path loss between useri and UAVu, andN is the noise power.

Let us assume that all users have the same data rateR and each user has a channel

with bandwidth equalsB/|I|, whereB is the total available bandwidth in the system

and|I| is the number of ground users. FDMA allocates one subchannelto each user for

communications and hence the user’s transmissions do not interfere with one another. The

minimum power required to satisfy the data rateR for each user is given by:

piu =
(

2
R.|I|
B − 1

)

NLiu
(6.3)

In this chapter, the lifetime is defined as the time duration of uplink transmission

until the first wireless device runs out of energy. Our goal isto find the optimal placements
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of the|U | UAVs such that the lifetime of wireless devices is maximized. Our problem can

be formulated as:

max
(Xu,Yu,Zu),wiu,τiu

min
i∈I,u∈U

τiu

subject to

|U |
∑

u=1

wiu = 1 ∀i ∈ I (6.4.a)

wiu

(

2
R.|I|
B − 1

)

NLiu ≤ Pmax ∀i ∈ I, ∀u ∈ U (6.4.b)

wiu(τiu − τth) ≥ 0 ∀i ∈ I, ∀u ∈ U (6.4.c)

wiuτiu

(

2
R.|I|
B − 1

)

NLiu ≤ Ei ∀i ∈ I, ∀u ∈ U (6.4.d)

xmin ≤ Xu ≤ xmax ∀u ∈ U (6.4.e)

ymin ≤ Yu ≤ ymax ∀u ∈ U (6.4.f)

zmin ≤ Zu ≤ zmax ∀u ∈ U (6.4.g)

(6.4)

whereU is the set of UAVs that are utilized to serve the set of ground usersI. We also

introduce the binary variablewiu that takes the value of 1 if the ground useri is connected

to UAV u and equals 0 otherwise. The objective is to determine the locations of the

UAVs such that the time duration of uplink transmission until the first wireless device runs

out of energy is maximized. In order to maximize the durationof uplink transmission,

each user will be connected to the nearest UAV. Constraint set (6.4.a) guarantees that

each ground user should be connected to one UAV. Constraint set (6.4.b) ensures that the

transmit power of each wireless device should not exceed itsmaximum transmit power

Pmax. Constraint set (6.4.c) guarantees that each ground useri ∈ I is served by UAV

for a time greater thanτth seconds. Constraint set (6.4.d) ensures that the total energy
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consumed by user’s device should not exceed its battery energy levelEi. Constraint sets

(6.4.e-6.4.g) represent the minimum and maximum allowablevalues forXu, Yu andZu,

respectively.

Theorem 10. The problem represented by (6.4) is NP-complete.

Proof. The number of constraints is polynomial in terms of the number of ground users,

number of UAVs, and locations. Given any solution to our problem, we can check the

solution’s feasibility in polynomial time; then, the problem is NP.

To prove that the problem is NP-hard, we reduce thep-center problem which is

NP-hard [77], to a special case of our problem. In thep-center problem, we are given

a set of demand pointsm and a set of facilitiesp where each demand point receives its

service from the closest facility. The objective is to determine the locations of|p| facilities

that minimize the maximal distance for all demand points [78]. The reduction steps are as

follows.

• Thep-th facility in thep-center problem is mapped to theu-th UAV in our problem,
where the set of demand pointsm is mapped to the set of ground usersI.

• In the special case of our problem that we map to, all wirelessdevices have the same
residual energyEi = E, ∀i ∈ I.

• In the special case of our problem that we map to,Pmax =∞ andτth = 0.

Now, minimizing the the maximal distance in thep-center problem is equivalent to

maximizing the lifetime in the special case of our problem.

Due to the intractability of our problem, we start by considering the case where there

is only one UAV. Based on this, we propose an efficient algorithm to solve the problem

for the general case of multiple UAVs.
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6.4 The Single UAV Case

For the special case of a single UAV. Our problem can be formulated as:

max
(Xu,Yu,Zu),τiu

min
i∈I

τiu

subject to

(

2
R.|I|
B − 1

)

NLiu ≤ Pmax ∀i ∈ I (6.5.a)

τiu ≥ τth ∀i ∈ I (6.5.b)

τiu

(

2
R.|I|
B − 1

)

NLiu ≤ Ei ∀i ∈ I (6.5.c)

xmin ≤ Xu ≤ xmax (6.5.d)

ymin ≤ Yu ≤ ymax (6.5.e)

zmin ≤ Zu ≤ zmax (6.5.f)

(6.5)

From equation (6.1), we can notice that the optimal altitudeof the UAV that maximizes

the lifetime of wireless devices is equal tozmin, which could correspond to the minimum

altitude due to safety consideration [25]. Now, our objective becomes finding the optimal

2D placement of the UAV such that the lifetime of wireless devices is maximized. Even

though the problem has a number of nonlinear constraints, wecan transform (6.5) to a

convex optimization problem with two variables by proving that the constraint sets (6.5.a-

6.5.c) can be represented by the intersection of half spheres and the region formed by this

intersection is a convex set in terms of(Xu, Yu).

Theorem 11. The constraint sets (6.5.a-6.5.c) can be represented by theintersection of

half spheres and the region formed by this intersection is a convex set in terms of(Xu, Yu).
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Figure 6.2Range of distances that satisfies constraint set (6.5.a).

Proof. From (6.1) and (6.3), the transmit power of ground useri is given by:

piu =
(

2
R.|I|
B − 1

)

N

(

4πdiuf

c

)2

= Kd2iu (6.6)

whereK is a constant and equals
(

2
R.|I|
B − 1

)

N

(

4πf

c

)2

. Now, to satisfy constraint set

(6.5.a),piu must be less thanPmax. From (6.6), the range of distancesd1 that satisfies the

constraint set (6.5.a) is given by:

d1 ≤
√

Pmax

K
(6.7)

The range of distancesd1 represents a half sphere with radius

√

Pmax

K
as shown in Figure

6.2. To satisfy constraint sets (6.5.b) and (6.5.c),piu must be less than
Ei

τth
. From (6.6),

the range of distancesd2 that satisfies constraint sets (6.5.b) and (6.5.c) is given by:

d2 ≤
√

Ei

τthK
(6.8)

The range of distancesd2 also represents a half sphere with radius

√

Ei

τthK
as shown

in Figure 6.3. For each ground useri, the range of distances that satisfy the constraint sets

(6.5.a)-(6.5.c) can be represented by a half sphere with radius:

min

{
√

Pmax

K
,

√

Ei

τthK

}

(6.9)
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Figure 6.3Range of distances that satisfies constraint sets (6.5.b) and (6.5.c).

The half sphere is a convex set and the intersection of convexsets is also a convex set [79].

From Theorem 11, we restrict the2D placement of UAV(Xu, Yu) to be inV . The

convex feasible regionV is given by:

V = V1

⋂

V2

V1 =

|I|
⋂

i=1

{(x, y, z) ∈ R3|
√

(x− xi)2 + (y − yi)2 + z2 ≤ min{
√

Pmax

K
,

√

Ei

τthK
}}

V2 = {(x, y) ∈ [xmin, xmax]× [ymin, ymax]|z = zmin}

(6.10)

whereV1 represents the convex set that satisfies the constraint sets(6.5.a)-(6.5.c) andV2

represents the optimal altitude of the UAVzmin.

In the next theorem, we prove that the objective function is concave under a

restriction on the coverage angle of ground userθ. The coverage angle is shown in Figure

6.4 and depends on the 3D placement of the UAV and the 2D location of ground user.

This theorem enables us to find the optimal placement for the UAV.
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Figure 6.4Coverage angleθ.

Theorem 12. The objective function of (6.5) is concave if the coverage angle θ of each

wireless device is greater than60o.

Proof. Proving that the time duration of uplink transmission of wireless deviceτiu

is concave implies that the objective function is concave where minimizing concave

functions is concave [80] and concave maximization preserves concavity [79]. Now, we

only need to prove that (6.11) is a concave function:

τiu =
Ei

piu
=

Ei

(2
R.|I|
B − 1)NLiu

=
Ei

(2
R.|I|
B − 1)N(

4πdiuF

c
)2

=
Ei

Kd2iu
(6.11)

SinceEi

K
> 0, ∀i ∈ I, we need to prove thatf is a concave function:

f =
1

(Xu − xi)2 + (Yu − yi)2 + z2min

, ∀i ∈ I (6.12)

Using the second order condition, the functionf is concave if the Hessian is negative

semidefinite [79]. Now, the Hessian is negative semidefiniteif these conditions are

satisfied:

(a)
d2f

dX2
u

≤ 0, ∀i ∈ I

(b)
d2f

dY 2
u

≤ 0, ∀i ∈ I

(c)
d2f

dX2
u

d2f

dY 2
u

−
(

d2f

dXudYu

)2

≥ 0, ∀i ∈ I

(6.13)
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To check the first condition, we need to find

(

d2f

dX2
u

)

:

df

dXu
=

−2(Xu − xi)

((Xu − xi)2 + (Yu − yi)2 + z2min)
2

d2f

dX2
u

=
−2((Xu − xi)

2 + (Yu − yi)
2 + z2min)

2

((Xu − xi)2 + (Yu − yi)2 + z2min)
4

+

8(Xu − xi)
2((Xu − xi)

2 + (Yu − yi)
2 + z2min)

((Xu − xi)2 + (Yu − yi)2 + z2min)
4

=
−2((Xu − xi)

2 + (Yu − yi)
2 + z2min) + 8(Xu − xi)

2

((Xu − xi)2 + (Yu − yi)2 + z2min)
3

=
6(Xu − xi)

2 − 2(Yu − yi)
2 − 2z2min

((Xu − xi)2 + (Yu − yi)2 + z2min)
3

(6.14)

From (6.14),
d2f

dX2
u

≤ 0, ∀i ∈ I if:

z2min ≥ 3(Xu − xi)
2 − (Yu − yi)

2, ∀i ∈ I (6.15)

Similarly,
d2f

dY 2
u

≤ 0, ∀i ∈ I if:

z2min ≥ 3(Yu − yi)
2 − (Xu − xi)

2, ∀i ∈ I (6.16)

To check the third condition, we need to find
d2f

dX2
u

d2f

dY 2
u

−
(

d2f

dXudYu

)2

:

d2f

dXudYu

=
8(Xu − xi)(Yu − yi)

((Xu − xi)2 + (Yu − yi)2 + z2min)
3

(6.17)
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From (6.17), we get:

d2f

dX2
u

d2f

dY 2
u

− (
d2f

dXudYu
)2 =

−2((Xu − xi)
2 + (Yu − yi)

2 + z2min) + 8(Xu − xi)
2

((Xu − xi)2 + (Yu − yi)2 + z2min)
3

.

−2((Xu − xi)
2 + (Yu − yi)

2 + z2min) + 8(Yu − yi)
2

((Xu − xi)2 + (Yu − yi)2 + z2min)
3

−

64(Xu − xi)
2(Yu − yi)

2

((Xu − xi)2 + (Yu − yi)2 + z2min)
6

=
4((Xu − xi)

2 + (Yu − yi)
2 + z2min)

2

((Xu − xi)2 + (Yu − yi)2 + z2min)
6
−

16(Yu − yi)
2((Xu − xi)

2 + (Yu − yi)
2 + z2min)

((Xu − xi)2 + (Yu − yi)2 + z2min)
6

−

16(Xu − xi)
2((Xu − xi)

2 + (Yu − yi)
2 + z2min)

((Xu − xi)2 + (Yu − yi)2 + z2min)
6

+

64(Xu − xi)
2(Yu − yi)

2

((Xu − xi)2 + (Yu − yi)2 + z2min)
6
−

64(Xu − xi)
2(Yu − yi)

2

((Xu − xi)2 + (Yu − yi)2 + z2min)
6

=
4((Xu − xi)

2 + (Yu − yi)
2 + z2min)

((Xu − xi)2 + (Yu − yi)2 + z2min)
5
+

−16(Xu − xi)
2 − 16(Yu − yi)

2

((Xu − xi)2 + (Yu − yi)2 + z2min)
5

=
−12(Xu − xi)

2 − 12(Yu − yi)
2 + 4z2min

((Xu − xi)2 + (Yu − yi)2 + z2min)
5

(6.18)

From (6.18),
d2f

dX2
u

d2f

dY 2
u

−
(

d2f

dXudYu

)2

≥ 0, ∀i ∈ I if:

z2min ≥ 3(Xu − xi)
2 + 3(Yu − yi)

2, ∀i ∈ I (6.19)
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From (6.15), (6.16) and (6.19), the Hessian is negative semidefinite if the following

conditions are satisfied:

(a)z2min ≥ 3(Xu − xi)
2 − (Yu − yi)

2, ∀i ∈ I

(b)z2min ≥ 3(Yu − yi)
2 − (Xu − xi)

2, ∀i ∈ I

(c)z2min ≥ 3(Xu − xi)
2 + 3(Yu − yi)

2, ∀i ∈ I

(6.20)

From the three conditions in (6.20), we can notice that if condition (c) is satisfied, then

conditions (a) and (b) are also satisfied. Let us definedmax as a maximum possible

2D distance in the geographical area (i.e., if the users are distributed in a circular

geographical area, thendmax is equal to the diameter of circle). From condition (c),

if zmin ≥
√
3dmax then the objective function of (6.5) is concave wheredmax ≥

√

(Xu − x)2 + (Yu − y)2, ∀i ∈ I. Then, the coverage angleθ must be greater than

tan−1
√
3dmax

dmax
= 60o.

Here, we can notice that the altitude of UAVzmin controls the concavity of the

objective function. Theorem 12 enables us to find the optimalplacement for the UAV,

when the coverage angleθ of each wireless device is greater than or equal to60o.

In this chapter, we assume that the wireless channel betweena ground user and a

UAV is line of sight dominated. To verify that the coverage angle that we characterize it

in Theorem 12 guarantees a line of sight path, we utilize lineof sight (LOS) probability

models for downlink scenarios.
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Table 6.1Parameters for Air-to-Ground Path Loss Model Using HAP and LAP

Environment Platform type a1 a2 a3 a4 a5 a6

Suburban HAP 101.6 0 0 3.25 1.241 0

Urban HAP 120 0 0 24.3 1.229 0

Suburban LAP 0.1 750 0 0 0 8

Urban LAP 0.3 500 0 0 0 15

For low altitude aerial platforms (LAP), the probability ofhaving a LOS connection

in downlink scenario is given by [81]:

P (LOS) =

m
∏

n=0






1− exp






−

[

Zu − (n+ 1
2
)(Zu−z)

m+1

]2

2a62












(6.21)

wherem = ⌊r√a1a2−1⌋, r is the ground distance between the UAV and ground user,Zu

andz are the UAV and ground user heights, and the parametersa1, a2 anda6 are constant

values that depend on the environment (see Table 6.1).

For high altitude aerial platforms (HAP), the probability of having a LOS connection

in downlink scenario is given by [82]:

P (LOS) = a− a1 − a2

1 +
(

θ−a3
a4

)a5 (6.22)

wherea1, a2, a3, a4 anda5 are empirical parameters given in Table 6.1 for two different

environments.

In Figure 6.5, we plot the probability of having a LOS wireless connection in

suburban and urban environments using LAP and HAP. We can notice that the coverage

angle that we characterize in Theorem 12 gives us more than 0.9 LOS probability.
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Figure 6.5LOS probability for LAP and HAP in different environments.

Therefore, our assumption that a wireless channel is a line of sight dominated is a realistic

assumption.

Now, we propose to use the Gradient Projection Algorithm [83] to find the optimal

placement of a UAV, when the UAV’s altitude satisfies the condition in Theorem 12. The

gradient projection algorithm is given by:

(Xu, Yu)
n+1 = [(Xu, Yu)

n + δ▽Ψ((Xu, Yu)
n))]+ (6.23)

wheren is the iteration number,δ is a positive step size,▽Ψ is the gradient of the objective

function in (6.5) and[q]+ denotes the orthogonal projection of vectorq onto convex setQ.

In particular,[q]+ is defined by:

[q]+ = arg min
w∈Q
||w − q||2 (6.24)

The pseudo code of the gradient projection algorithm is shown in Algorithm 8.

Also, we can use the PSO algorithm [59] to find an efficient 3D placement of a UAV,

when the altitude of a UAV does not satisfy the condition in Theorem 12.
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Algorithm 8 The Gradient Projection Algorithm
1: Input:

2: The step toleranceǫ.

3: The step sizeδ.

4: The maximum number of iterationsnmax.

5: Initialize (Xu, Yu)

6: For n=1,2,...,nmax

7: (Xu, Yu)
n+1 = [(Xu, Yu)

n + δ▽Ψ((Xu, Yu)
n))]+

If ‖ (Xu, Yu)
n − (Xu, Yu)

n+1 ‖ < ǫ

8: Return: (Xu, Yu)opt = (Xu, Yu)
n+1

9: End for

6.5 Clustering Algorithm for Multiple UAVs Case

Due to the intractability of the general problem represented by (6.4), we consider

clustering of ground users. The pseudo code of clustering users is shown in Algorithm

9 and it is inspired by the k-means clustering algorithm [62]. In thek-means clustering

algorithm, we are given a set of pointsI, and want to group the points intok clusters

such that each point belongs to the cluster with the nearest mean. The main step in our

algorithm is to choose the number of clusters|U | (step 4) and then randomly initialize

|U | clusters centroids (step 6). In each iteration, the algorithm will do two things: 1)

cluster assignment step, 2) move centroids step (step 7). Incluster assignment step, the

algorithm goes through each point and chooses the closest centroid and assigns the point

to it. In move centroids step, the algorithm calculates the mean point of each cluster (the

mean point minimizes the sum of squared Euclidean distancesbetween itself and each

point in the cluster) and moves the centroids there. The algorithm repeats these two steps

until it converges. It converges when the assignments no longer change. After it finishes
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clustering the users, it applies the Gradient Projection Algorithm or PSO Algorithm to

find the placements of UAVs (steps 8-12) within each cluster.

Algorithm 9 Maximizing the Lifetime of Wireless Devices.
1: Input:

2: The residual energy of each wireless deviceEi, i ∈ I.

3: The locations of|I| ground users.

4: The number of UAVs|U |.
5: START:

6: Initialize the placements of the UAVsγ1, γ2, ..., γ|U | randomly.

7: Repeat until convergence:

For every useri ∈ I, set

c(i) = arg min
u∈U
||(xi, yi)− γu||2

For each UAVu ∈ U , set

γu =

∑

i∈I,c(i)=u

(xi, yi)

∑

i∈I,c(i)=u

1

8: If θi ≥ 60o, ∀i ∈ I

9: Calculate the optimal placements of UAVs using the

Gradient Projection Algorithm.

10: else

11: Calculate the efficient placements of UAVs using the

PSO Algorithm.

12: endif

13: Output:

14: |U | Clusters.

15: The lifetime of wireless devicesmin τiu
i∈I,u∈U

.

16: The placements of UAVs.

6.6 Finding the Minimum Number of UAVs

In this section, we consider the problem of minimizing the number of UAVs required to

serve the ground users such that the time duration of uplink transmission of each wireless
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deviceτiu is greater than or equal toτth. Our problem can be formulated as:

min
(Xu,Yu,Zu),wiu,τiu

|U |

subject to

(6.4.a)− (6.4.g).

(6.25)

Theorem 13. The problem represented by (6.25) is NP-complete.

Proof. The number of constraints is polynomial in terms of the number of ground users,

number of UAVs, and locations. Given any solution to our problem, we can check the

solution’s feasibility in polynomial time; then, the problem is NP.

To prove that the problem is NP-hard, we reduce the set cover problem, which is

NP-hard [84], to a special case of our problem. In the set cover problem, we have a set

of elementsG = {1, 2, ..., N}, called the universe, and a familyS of subsets ofG whose

union equals the universeG. The objective is to find the smallest subfamily of setsA ⊆ S

whose union equals the universe. The reduction steps are as follows.

• The set of elementsG in the set cover problem is mapped to the set of ground users
I in our problem.

• The familyS of subsets ofG in the set cover problem is mapped to the subsets of
covered ground users from all possible UAV placements, where a useri is covered
by the UAVu located at(Xu, Yu, Zu) if τiu ≥ τth.

If and only if, there exists a solution to the set cover problem with number of subsets

C, then the minimum number of UAVs in our problem isC.

Next, we propose to use two efficient methods to determine theminimum number

of UAVs required to serve the wireless devices.
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Method 1. Minimizing the number of UAVs using clustering:Due to the

intractability of the problem, we consider clustering of ground users. The pseudo code of

clustering users is shown in Algorithm 10. In our algorithm,we assume that each cluster

will be covered by only one UAV. We start the algorithm with two UAVs |U | = 2 (step

5) and after it finishes clustering the users, it applies the Gradient Projection Algorithm

or PSO Algorithm to find the placements of UAVs (steps 9-13) within each cluster. Then,

it checks if the time duration of uplink transmission of eachwireless device satisfies the

constraintτiu ≥ τth (steps 14-15) , if not, the number of UAVs|U | is incremented by one

and the previous steps are repeated until it converges.

Method 2. Minimizing the number of UAVs using matrix reduction method: In

Section 6.4, we prove that the constraint sets (6.5.a-6.5.c) can be represented by the

intersections of half spheres. We also show that the optimalaltitude of a UAV that

maximizes the lifetime of wireless devices is equal tozmin. In this method, we represent

the constraint sets of problem (6.25) by intersections of multiple circles when each user

i ∈ I satisfies this condition:

zmin ≤ min{
√

Pmax

K
,

√

Ei

τthK
} ≤ min{∆xi,∆yi} (6.26)

where∆xi equalsmin{|xi − xmin|, |xi − xmax|} and∆yi equalsmin{|yi − ymin|, |yi −

ymax|}. Here, we can find the minimum number of UAVs and their placements using the

matrix reduction method [85]. The reduction method begins with a matrix representing

which wireless devices are within the critical distance of every potential UAV placement.

In our problem, the potential UAV placement is any point in the circle intersection region.

The method then eliminates any row(s) (wireless device(s))such that all of its entries
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Algorithm 10 Minimizing the number of UAVs.
1: Input:

2: The residual energy of each wireless deviceEi, i ∈ I.

3: The locations of|I| ground users.

4: The threshold time duration of uplink transmissionτth.

5: The number of UAVs is two(|U | = 2).

6: START:

7: Initialize the placements of the UAVsγ1, γ2, ..., γ|U | randomly.

8: Repeat until convergence:

For every useri ∈ I, set

c(i) = arg min
u∈U
||(xi, yi)− γu||2

For each UAVu ∈ U , set

γu =

∑

i∈I,c(i)=u

(xi, yi)

∑

i∈I,c(i)=u

1

9: If θi ≥ 60o, ∀i ∈ I

10: Calculate the optimal placements of UAVs using the

Gradient Projection Algorithm.

11: else

12: Calculate the efficient placements of UAVs using the

PSO Algorithm.

13: endif

14: For i = 1 to |I|
15: If (τiu < τth)

16: |U | = |U |+ 1

17: go to START

18: End

19: Output:

20: |U | Clusters.

21: The placements of UAVs.
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Figure 6.6Computing circle intersection areas using Algorithm 11.

are greater than or equal to the corresponding entries of another row. The second step

of the method eliminates any column(s) (potential UAV placement(s)) such that all of

its entries are less than or equal to the corresponding entries of another column. The

matrix reduction method repeats these two steps until it converges. It converges when

no more columns or rows are eliminated. Now, the question is how to find the circle

intersection areas. Unfortunately, when more than three circles are considered, the

number of configurations grows exponentially. The authors in [1] present an algorithm,

Computing Circle Intersection Areas (CCIA) Algorithm, to find the circle intersection

areas. The overall complexity of this algorithm grows asN2
c 2

Nc whereNc is the number

of circles and each circle represents the wireless coverageof base station. They apply their

algorithm to compute the total coverage of ten base stations. In our problem, each circle

represents the feasible region that satisfies the constraint sets of each wireless device. Due

to the large number of wireless devices, it will be impractical to apply the CCIA algorithm.

In problem (6.10), we show that the constraint sets of wireless devices can be

represented by the intersection of circles and the region formed by this intersection

satisfies the constraint sets of wireless devices. It is obvious that finding at least one point

in each circle intersection area is sufficient to solve our problem, where any point in the
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circle intersection area will satisfy the constraint sets of wireless devices. In Algorithm

11, we divide the plane into equal sized grids and present a method that can find the

points in the circle intersection areas in polynomial time in terms of the number of points

in planeK and the number of circles|I|. The algorithm aims to find some points in each

intersection region instead of finding all points as done in CCIA algorithm. It starts by

giving each 2D point in[xmin, xmax] × [ymin, ymax] a weightw based on the number of

circles that are covering a 2D point (step 4). It then finds each family Gw of subsets of

[xmin, xmax]×[ymin, ymax] that has a weightw, wherew ∈ {2, 3, ..., |I|} (steps 5-6). After

that, if there is a subsetg ∈ Gw, it eliminates all neighboring subsets that have weights

less thanw (steps 7-8), as shown in Figure 6.6. Finally, it finds the points in the circle

intersection areas (steps 9-11). The overall complexity ofthis algorithm grows as|I|K2

where|I| is the number of circles andK2 is the grid size. It will be a critical issue to

choose the appropriate grid sizeK2 when algorithm 5 is applied. When increasing the

grid size, the probability to detect the feasible regions ofwireless devices will increase.

We iteratively increase the grid size until we detect the feasible regions that satisfy the

constraint sets of all wireless devices.

6.7 Numerical Results

6.7.1 Simulation Results for Single UAV

We first verify the results of Theorem 12. Then we use the Gradient Projection Algorithm

and the PSO Algorithm. Table 6.2 lists the parameters used inthe numerical analysis.

To verify the results of Theorem 12, we assume that 900 groundusers are uniformly

distributed in a geographical area of size500m×500m, then we plot the objective function
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Algorithm 11 Computing Circle Intersection Areas.
1: Input

2: |I| circles where the center of each circle is given by

(xi, yi), i ∈ I.

3: START

4: Give a weightw for each 2D point(x, y) ∈ [xmin, xmax]

×[ymin, ymax], wherew represents the number of circles

that are covering a 2D point(x, y).

5: For w = |I| to 2

6: Find a familyGw of subsets of[xmin, xmax]×
[ymin, ymax] that has a weightw.

7: For w = |I| to 3

8: For each subsetg ∈ Gw that has weightw, remove

neighbor subsets that have weights less thanw.

9: Output

10: The circle intersection areas are given by:

11:Gw ∪Gw−1 ∪ ... ∪G2.

Table 6.2Parameters in Numerical Analysis

Maximum transmit powerPmax 0.5 watt

Energy of each wireless deviceEi Uniformly distributed between

4500 and 18000 Joule

Data rateR 1 Mbps

Total bandwidthB 50 MHz

The noise powerN 1× 10−17

The carrier frequencyF 2 Ghz

(κ, φ1, φ2) (1, 2.05, 2.05)

in (6.5) without any constraints at two different altitudesof the UAV. The first value for

altitudezmin is 1300 meters, which satisfies the condition in Theorem 12. The second
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Figure 6.7Lifetime of wireless devices at different altitudes.

value for altitude is 40 meters and it does not satisfy the condition in Theorem 12. In

Figure 6.7.a, we can notice that the objective is concave when the altitude of UAV is equal

to 1300 meters. On the other hand, the objective function becomes non-concave at 40

meters as shown in Figure 6.7.b.

In Figures 6.8 and 6.9, we place the UAV at altitude 1225 meters and use the

gradient projection algorithm when the ground users are uniformly and non-uniformly

distributed. The optimal placement are (244, 187, 1225) and(298, 251, 1225),

respectively. In Figures 6.10 and 6.11, we place the UAV at altitude 500 meters. This

altitude does not satisfy the condition in Theorem 12 and therefore we propose to use

the PSO [59] when the ground users are uniformly and non-uniformly distributed. The

efficient placements are (254, 212, 500) and (260, 255, 500),respectively. In order

to verify the efficiency of PSO algorithm, we use a search-based algorithm. Both of

the algorithms converge to the same 3D placement. A simple way to maximize the

lifetime of wireless devices is to place the projection of a UAV placement at the center

of deployment region regardless of the users distribution,let us call this method as the

center projection method. In Table 6.3, we show the simulation results for single UAV.

We can notice that our proposed UAV placement algorithms canimprove the lifetime of
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Figure 6.8 Simulation results of the uniform distribution case using gradient projection
algorithm.

Figure 6.9 Simulation results of the non-uniform distribution case using gradient
projection algorithm.

wireless devices by only 10% compared with center projection method. This is because

the efficient placements of UAVs are near the center of the deployment region due to the

uniformly distributed of residual energies of the wirelessdevices. For the multiple UAVs

scenario, we show that our proposed UAV placement algorithms can improve the lifetime

of wireless devices by 90%-122%.

6.7.2 Simulation Results for Multiple UAVs

For the multiple UAVs scenario, we assume that 1250 ground users are uniformly

distributed in a geographical area of size1000m×1000m and four UAVs are used to serve
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Figure 6.10Simulation results of the uniform distribution case using PSO algorithm.

Figure 6.11Simulation results of the non-uniform distribution case using PSO algorithm.

the ground users. We apply Algorithm 9 to cluster the wireless devices into four clusters

as shown in Figure 6.12, where each cluster is served by one UAV. After that, we utilize

the UAV placement algorithms. In Table 6.4, we place each UAVat altitude 1500 meters

and use the gradient projection algorithm to find the optimalplacement in each cell. The

optimal placements for the first, second, third and fourth UAVs are (753, 245, 1500), (915,

634, 1500), (263, 395, 1500) and (408, 980, 1500), respectively. We also place each UAV

at altitude 500 meters and use the PSO algorithm to find an efficient placement in each

cell. The efficient placements for the first, second, third and fourth UAVs are (733, 201,

500), (881, 749, 500), (207, 308, 500) and (298, 797, 500), respectively. We can notice

that our proposed UAV placement algorithms can improve the lifetime of wireless devices
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Table 6.3Simulation Results for Single UAV

Algorithm Distribution of 3D placement of Lifetime

users UAV

The gradient projection algorithm Uniform (244, 187, 1225) 1563 sec

The center projection method Uniform (250, 250, 1225) 1549 sec

The gradient projection algorithm Non-uniform (298, 251, 1225) 1566 sec

The center projection method Non-uniform (250, 250, 1225) 1548 sec

The PSO algorithm Uniform (254, 212, 500) 7641 sec

The search-based algorithm Uniform (254, 212, 500) 7641 sec

The center projection method Uniform (250, 250, 500) 6937 sec

The PSO algorithm Non-uniform (260, 255, 500) 7379 sec

The search-based algorithm Non-uniform (260, 255, 500) 7379 sec

The center projection method Non-uniform (250, 250, 500) 6819 sec
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Figure 6.12Clustering the wireless devices using Algorithm 9.

by 90%-122% compared with center projection method. This isbecause our proposed

algorithms minimize the distances between the ground usersand a UAV in each cluster.
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Table 6.4Simulation Results for Multiple UAVs Using Algorithm 9

Altitude UAV Algorithm 3D placement Lifetime

of UAV index of UAV

1 Gradient projection (753, 245, 1500) 861 seconds

Center projection (501, 499, 1500) 793 seconds

2 Gradient projection (915, 634, 1500) 864 seconds

1500 meters Center projection (501, 501, 1500) 780 seconds

3 Gradient projection (263, 395, 1500) 856 seconds

Center projection (499, 499, 1500) 827 seconds

4 Gradient projection (408, 980, 1500) 861 seconds

Center projection (499, 501, 1500) 777 seconds

1 PSO algorithm (733, 201, 500) 6613 seconds

Center projection (501, 499, 500) 3349 seconds

2 PSO algorithm (881, 749, 500) 6660 seconds

500 meters Center projection (501, 501, 500) 2995 seconds

3 PSO algorithm (207, 308, 500) 6351 seconds

Center projection (499, 499, 500) 3288 seconds

4 PSO algorithm (298, 797, 500) 5909 seconds

Center projection (499, 501, 500) 3095 seconds

In Figure 6.13, we assume that 1250 ground users are uniformly distributed in a

geographical area of size10000m×10000m and the time duration of uplink transmission

of each wireless deviceτiu must be greater than or equal to 5 minutes. We also assume that
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Figure 6.13Minimizing the number of UAVs using Algorithm 10.

the UAVs have the same altitude 1500 meters. We utilize Algorithm 10 to minimize the

number of UAVs required to serve the wireless devices. The algorithm converges when

the number of UAVs is seven. The efficient placements of the UAVs and the lifetimes of

the wireless devices are shown in Table 6.5.

Table 6.5Simulation Results for Multiple UAVs Using Algorithm 10

Altitude UAV Algorithm 3D placement of UAV Lifetime

of UAV index

1 (8690, 4651, 1500) 448 seconds

2 (4120, 4534, 1500) 377 seconds

1500 meters 3 PSO algorithm (1782, 1990, 1500) 391 seconds

4 (8435, 8157, 1500) 521 seconds

5 (1304, 7674, 1500) 338 seconds

6 (7168, 1209, 1500) 330 seconds

7 (5333, 8136, 1500) 503 seconds

In Table 6.6, we consider the case that each wireless device satisfies the condition

in inequality (6.26) where the ground users are uniformly distributed in a geographical
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Table 6.6A Comparison Between CCIA Algorithm and Algorithm 11

Algorithm Number Step Optimal number Number of UAVs Total number

of users size of UAVs using algorithm of operations

CCIA 1000 — 10 10 1.07 ∗ 10307

Algorithm 2000 20 20 4.59 ∗ 10608

100 10 2.85 ∗ 109

1000 200 10 10 2.2 ∗ 109

Algorithm 5 300 10 1.26 ∗ 109

100 20 7.7 ∗ 109

2000 200 20 20 4.4 ∗ 109

300 20 2.52 ∗ 109

area of size10000m × 10000m. We apply algorithm 11 that iteratively increases the

step size until it detects the feasible regions that satisfythe constraint sets of all wireless

devices. The step size represents the number of points that the algorithm add to the grid

size in each iteration. When increasing the step size, the probability to detect the feasible

regions of wireless devices will increase. We find the numberof operations (worst case)

required to compute the circle intersection areas using CCIA algorithm and algorithm 11

for different number of users. We can notice that the number of operations of algorithm 11

is much lower than those in the CCIA algorithm. This is because the overall complexity

of algorithm 11 grows as|I|K2 (polynomial time) where|I| is the number of users and

K2 is the grid size. In order to verify the efficiency of Algorithm 11, we find the optimal
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number of UAVs using a search-based algorithm. Both of the algorithms converge to the

same number of UAVs.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

The problem of minimizing the number of UAVs required for a continuous coverage of a

given area is first studied in Chapter 3. Due to its intractability, partitioning the coverage

graph into cycles that start at the charging station is proposed and the minimum number

of UAVs to cover such a cycle is characterized based on the charging time, the traveling

time and the number of subareas to be covered by the cycle. Based on this analysis, an

efficient algorithm is developed to solve the problem.

In Chapter 4, the problem of optimal placement of a single UAVis studied, where

the objective is to minimize the total transmit power required to provide wireless coverage

for indoor users. Three cases of practical interest are considered and efficient solutions to

the formulated problem under these cases are presented. Dueto the limited transmit power

of a UAV, the problem of minimizing the number of UAVs required to provide wireless

coverage to indoor users is studied and an efficient algorithm is developed to solve the

problem.

In Chapter 5, the problem of maximizing the indoor wireless coverage using UAVs

equipped with directional antennas is studied. The case that the UAVs are using one

channel is considered, thus in order to maximize the total indoor wireless coverage, the

overlapping in their coverage volumes is avoided. Two methods are presented to place

the UAVs; providing wireless coverage from one building side and from two building

sides. The results show that the upside-down arrangements of UAVs can improve the total

coverage by 100% compared to providing wireless coverage from one building side.
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In Chapter 6, the placement problem of UAVs is studied, wherethe objective is to

determine the locations of a set of UAVs that maximize the lifetime of wireless devices.

Due to the intractability of the problem, the number of UAVs is restricted to be one. Under

this special case, the problem is formulated as a convex optimization problem under a

restriction on the coverage angle of the ground users and a gradient projection based

algorithm is proposed to find the optimal location of the UAV.Based on this, an efficient

algorithm is proposed for the general case of multiple UAVs.The problem of minimizing

the number of UAVs required to serve the ground users such that the time duration of

uplink transmission of each wireless device is greater thanor equal to a threshold value is

also studied. Two efficient methods are proposed to determine the minimum number of

UAVs required to serve the wireless devices.

Some of the future possible directions for this work are:

• Some path loss models are formulated based on simulation softwares such as Air-
to-Ground path loss for low altitude platforms and Air-to-Ground path loss for high
altitude platforms, therefore it is necessary to perform real experiments to model
the statistical behavior of the path loss.

• Previous research works utilize a UAV as an aerial relay nodeto maximize the
throughput of ground users under the assumption of free space propagation. This
assumption could not be practical especially for urban environments. As future
work, we aim to utilize practical path loss models to study this problem.

• The problem of minimizing the number of UAVs required for a continuous coverage
of a given area can be extended by considering more realisticscenarios such as
utilizing UAVs with different energy capacities and using multiple charging stations
to recharge the batteries of UAVs.

• The problem of maximizing the lifetime of wireless devices can be extended by
considering the indoor users.

• The problem of providing indoor wireless coverage using UAVs can be extended by
considering more realistic scenarios such as providing indoor wireless coverage for
multiple buildings.
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• As future work, we will utilize UAVs to minimize the age-of-information in wireless
sensor networks. The age of information is defined as the amount of time elapsed
since the instant at which the freshest delivered update takes place.

• We will utilize UAVs to maximize the number of covered users when the cellular
base station is unable to provide wireless coverage for all users due to 1) The high
number of users inside a targeted cell and/or 2) The locationof a user has a high
blockage probability.
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