Spring 1986

Substructuring analysis for impact dynamics using ANSYS finite element package

Chang Ho Cho
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Mechanical Engineering Commons

Recommended Citation
https://digitalcommons.njit.edu/theses/1438

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation.

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen.
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
SUBSTRUCTURING ANALYSIS FOR IMPACT DYNAMICS
USING ANSYS FINITE ELEMENT PACKAGE

by
Chang Ho Cho

Thesis Submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in Partial fulfillment of
the Requirements for the Degree of
Master of Science in Mechanical Engineering
1986
Title of Thesis: Substructuring Analysis for Impact Dynamics using ANSYS Finite Element Package

Name of Candidate: Chang Ho Cho
Master of Science, 1986

Thesis and Abstract Approval:

Dr. Sachio Nakamura DATE
Assistant Professor
Department of Mechanical Engineering

Signatures of other members of the thesis committee. DATE

DATE
Name: Chang Ho Cho

Degree and Data to be Conferred: Master of Science
 Mechanical Engineering
 May, 1986

Secondary Education: Jinju High School, 1967-1970

Collegiate Institutions Attended:

<table>
<thead>
<tr>
<th></th>
<th>Dates</th>
<th>Degree</th>
<th>Data of Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea University</td>
<td>1970 to 1975</td>
<td>BSME</td>
<td>February 1975</td>
</tr>
</tbody>
</table>

Major: Mechanical Engineering
Title of Thesis: Substructuring Analysis for Impact Dynamics using ANSYS Finite Element Package

Chang Ho Cho, Master of Science, 1986

Thesis Directed by: Dr. Sachio Nakamura
Assistant Professor
Mechanical Engineering Department

This thesis is intended to serve as an introductory guide to ANSYS finite element package for the analysis of impact dynamics. Substructuring technique has been used to reduce the degrees of freedom.

Finite element method is essentially a numerical technique to calculate elastic deformations. However, by introducing some techniques like gap element, the technique can be easily extended to rigid body dynamic analysis. To solve the equation of motion both for rigid body and elastic deformations, direct integration technique is used in this thesis, i.e., Houbolt method.

ANSYS is a large scale general purpose computer program for finite element analysis. Because of its generality and capability of analysis, the package is becoming one of the most popular and powerful tools in structural analysis. However, since the package is so big that it takes a while for the beginner to fully understand its operation.

This thesis is hoped to provide basic concepts and numerical theories for the beginners to use this package in
a consistent manner, especially in the case of impact dynamics, since ANSYS manual fails to give a clear explanation on the topic.

Signature of Adviser Date
TABLE OF CONTENTS

I. INTRODUCTION .. 1
 A. Introductory Comments 1
 B. Literature Survey ... 3
 C. Scope of the Thesis 5

II. COMPUTER PROGRAM ANSYS 7
 A. Introductory Comments 7
 B. Structure of ANSYS 10
 C. Solution Scheme .. 12

III. IMPACT DYNAMICS ... 16
 A. General Description 16
 B. Gap Element .. 17
 C. Time Step Optimization 20

IV. SUBSTRUCTURING TECHNIQUE 25
 A. Introductory Comments 25
 B. General Theory ... 26
 C. ANSYS Technique .. 31

V. NUMERICAL EXAMPLES .. 33
 A. Pendulum Problem .. 33
 1. Mathematical Model 33
 2. Data and Solutions 33
 3. Discussion ... 33
 B. Car Crash Problem ... 41
 1. Mathematical Model 41
 2. Data and Solutions 43
 3. Discussion ... 43
 C. Helmet Problem .. 53
 1. Mathematical Model 53
 2. Data and Solutions 53
 3. Discussion ... 54

VI. CONCLUSION .. 64
 A. Concluding Remarks 64
 B. Future Research ... 64

APPENDIX. INPUT DATA LISTS FOR ANSYS 65
BIBLIOGRAPHY .. 74
Lists of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1-1</td>
<td>Gap-Friction Element</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 1-2</td>
<td>3-D Interface Element</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 2-1</td>
<td>Flow Chart of ANSYS Analysis</td>
<td>8</td>
</tr>
<tr>
<td>Fig. 2-2</td>
<td>Flow Chart of Substructuring</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 3-1</td>
<td>Combination Element</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 3-2</td>
<td>Direction of Positive Displacement</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 3-3</td>
<td>Force-Deflection Relation</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 3-4</td>
<td>Spectral Radius for $\theta = 0.0$</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 5-1-1</td>
<td>Mathematical Model</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 5-1-2</td>
<td>Motion of Pendulum for Case (1)</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 5-1-3</td>
<td>Motion of Pendulum for Case (2)</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 5-1-4</td>
<td>Displacements vs Time for Case (1)</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 5-1-5</td>
<td>Displacements vs time for Case (2)</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 5-2-1</td>
<td>Mathematical Model</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 5-2-2</td>
<td>Case (1)</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 5-2-3</td>
<td>Case (2)</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 5-2-4</td>
<td>Case (3)</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 5-2-5</td>
<td>Displacements vs Time for Case (1)</td>
<td>47</td>
</tr>
<tr>
<td>Fig. 5-2-6</td>
<td>Displacements vs Time for Case (2)</td>
<td>48</td>
</tr>
<tr>
<td>Fig. 5-2-7</td>
<td>Displacements vs Time for Case (3)</td>
<td>49</td>
</tr>
<tr>
<td>Fig. 5-2-8</td>
<td>Stresses vs Time for Case (1)</td>
<td>50</td>
</tr>
<tr>
<td>Fig. 5-2-9</td>
<td>Stresses vs Time for Case (2)</td>
<td>51</td>
</tr>
<tr>
<td>Fig. 5-2-10</td>
<td>Stresses vs Time for Case (3)</td>
<td>52</td>
</tr>
<tr>
<td>Fig. 5-3-1</td>
<td>Mathematical Model</td>
<td>57</td>
</tr>
<tr>
<td>Fig. 5-3-2</td>
<td>Displacements of Head vs Time</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 5-3-3</td>
<td>Displacements of Helmet vs Time</td>
<td>59</td>
</tr>
<tr>
<td>Fig. 5-3-4</td>
<td>Velocities of Head vs Time</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 5-3-5</td>
<td>Velocities of Helmet vs Time</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 5-3-6</td>
<td>Acceleration of Head vs Time</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 5-3-7</td>
<td>Acceleration of Helmet vs Time</td>
<td>63</td>
</tr>
</tbody>
</table>
A. Introductory Comments

Impact dynamics is of growing interest in modern technology. To guarantee the safety of passengers against collision, striking and all kinds of impact, the crash impact condition has been added to the traditional set of structural design criteria either by contract or by safety law. According to the U.S. Federal Motor Vehicle Safety Standards, for example, the passengers must be safe in frontal barrier crashed with 30 mph[1].

Although the safety must be confirmed by physical experiments, numerical simulations such as finite element method are widely used in the design phase of product development to reduce development cost. Many kinds of general purpose as well as special purpose finite element codes are available on the market today, e.g., ADINA, ANSYS, NASTRAN, MARC, KRASH, DYCAST, WRECKER, etc.[1,2]

Two methods are commonly used to solve impact dynamics. One approach is the gap element technique and the other is Hughes type approach. Both methods have their own advantages as well as disadvantages, respectively. Thus all sorts of researches are still being carried on[3-8].

When two elastic bodies come into collision with each other, the contact stresses are usually beyond the elastic limit in the local contact surface. This high stress tran-
smits to the whole regions with time. The large displace-
ments and rotations are also developed in the local area.
Therefore the problem can be divided into the wave propaga-
tion problem and the structural vibration problem invol-
vung geometrical and material nonlinearities[9]. Thus the
contact forces and kinematic behaviours need to be studied
in the time domain.

The finite element method for nonlinear dynamic analysis
requires a large amount of computational works compared with
linear static analysis. Because of the nature of the
step-by-step time integration solution scheme, the computa-
tion is a time consuming process. However, in many
practical problems, usually a small portion of the solutions
is of interest. The nonlinearity is also limited within
local area. Thus either the substructuring technique or the
mode superposition technique is widely used to reduce the
problem size as well as the computation time. Substantial
amount of researches have been done for the both methods
[4,9-11].

The computer program ANSYS which is used in this thesis
is a general purpose finite element code developed and
distributed by Swanson Analysis System, Inc. Unfortune-
ously, this program has limited capabilities of handling im-
pact dynamics and therefore user must be careful in using
ANSYS for this purpose.
B. Literature Survey

Many general purpose finite element codes have the capabilities of handling gap elements and contact loadings[2]. In the following, ANSR-II which is an extended version of ANSR-I is selected to be compared with ANSYS. ANSR (Analysis of Nonlinear Structural Response) is developed and maintained by Earthquake Engineering Research Center at University of California, Berkeley. It has a gap-friction element to handle gap conditions. This element is developed on the basic assumptions of trilinear inelastic force-deformation relationship, constant friction coefficient and zero internal viscous damping. Although the gap-friction element of ANSR is quite similar to the 3-D interface element of ANSYS, the ANSYS allows linear force-deformation relationship only.

The gap-friction element of ANSR is defined by one bearing plane and one node as shown in Fig. 1-1. The bearing plane may be defined by three nodes and may be arbitrarily oriented in space[12]. The 3-D interface element of ANSYS is defined by two nodes as shown in Fig. 1-2. The interface plane is assumed to be perpendicular to the connecting line of two nodes[13]. Both elements have the capability of resisting deformation normal and shear to a bearing and a interface plane[12,13]. ANSYS has additionally few more different elements and one independent module having the capability to handle gap condition. This will be further discussed in Chapter II. ANSR has limited element libra-
Fig. 1-1: Gap-Friction Element

Fig. 1-2: 3-D Interface Element
ries and more element libraries are under development[2]. Thus the current version of ANSR-II has pretty limited capability in handling impact dynamics.

C. Scope of the Thesis

This thesis is intended as an introductory guide to ANSYS package for the analysis of impact dynamics. The main focus is to predict the contact forces as well as the kinematic behaviour of elastic bodies during the impact. The damping effect and the material nonlinearity are ignored. The large displacement is allowed and the stress stiffening effect is included. The substructuring technique is used to reduce the computer memory requirement and computation time.

Many works have been done to solve the impact dynamics using gap elements[1,3,7]. However, many of those works involve only a single gap element. This thesis attempts to use two gap elements in series to simulate practical situations using ANSYS to study the numerical behaviors and to search for better numerical technique. In the following, the gap condition is simulated using a combination element, JSTIF=40, or a gap condition module in ANSYS.

Since the capability of ANSYS is pretty limited, e.g., it has no capability to check the penetration of a body, the selected examples are all quite simple. The first example simulates rigid body dynamics. The second example calculates stresses in the time domain to simulate collision.
The third example figures out the kinematic behaviours of a impact of two gap elements in series to simulate helmet impact dynamics.
CHAPTER II. COMPUTER PROGRAM ANSYS

A. Introductory Comments

The ANSYS is a proprietary general purpose computer program developed and maintained exclusively by Swanson Analysis System, Inc. The first edition was released in 1972, and it is continuously being updated with the addition of improved modeling and problem solving techniques. The present edition installed at Mechanical Engineering Department of NJIT is Version 4.2 released in 1985.

The ANSYS program is a large scale finite element code using the matrix displacement method to solve the several classes of engineering problems. Analysis capabilities cover (1) structural mechanics including static and dynamic, linear and nonlinear, (2) heat transfer including steady-state and transient, (3) fluid flow and (4) electro- and magnetostatics. The overall flow chart of ANSYS analysis type is given in Fig. 2-1. It also has the capability to create a superelement, substructuring, as shown in Fig. 2-2. The element library contains more than forty elements for structural analysis and more than twenty elements for heat transfer analysis.

The solution techniques used in ANSYS are: (1) wavefront (or frontal) method to solve a system of linear simultaneous equations, (2) Guyan reduction technique for dynamic matrix condensation, (3) Jacobian method for the solution of
Fig. 2-1: Flow Chart of ANSYS Analysis
Fig. 2-2: Flow Chart of Substructuring
eigen value problems (EVP) and (4) an implicit numerical integration method (i.e., Houbolt method) for initial value problems (IVP)[2,13,14].

ANSYS may be run in a fully interactive mode, in a fully batch mode or in a combination mode of both. The program is user oriented and self-contained. It does not require special knowledge of system operations or computer programming. However, because of the flexibility and generality of its analysis capability, user must know the basic assumptions as well as the theories based on for correct use.

B. Structure of ANSYS

The computer program ANSYS consists of several routines, such as preprocessing routines, postprocessing routines, auxiliary routines, etc. Each of the routines is a group of related modules, and a module is also a group of related commands. The commands are divided into two types, slash(/) type and ordinary type. The slash commands are usually used for supplying general control instructions such as selecting the run mode and the type of run, printout controls, plot controls, file controls, etc. The ordinary commands are used for supplying general specification and action instructions such as specifying all input data, generating mesh and plot, etc[13].

Analysis of any engineering problem basically consists of
three phases: preprocessing phase, solulution phase and postprocessing phase. The preprocessing is performed using PREP7 and PREP6 routines. In this phase all input data and solution schemes may be defined. The PREP7 routine is used to define the all general input data. The PREP6 routine is used to define the transient load data. The solution phase is designed to be automatically initiated, so that the basic user needs only two or three commands to activate this phase (/INPUT,27, /INPUT,23 and FINISH). In this phase the validity of input data can be checked and the solutions of analysis may be obtained.

The postprocessing phase is optional. In this phase the solutions of analysis may be reorganized, tabulated and plotted. The ANSYS has several postprocessing routines, such as POST1, 26, 27, 28, 29 and 30. The functions of each routines may be summarized as follows[13].

<table>
<thead>
<tr>
<th>ROUTINES</th>
<th>FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST1</td>
<td>General Database Results Postprocessing</td>
</tr>
<tr>
<td>POST26</td>
<td>Time-History Results Postprocessing</td>
</tr>
<tr>
<td>POST27</td>
<td>Post Data File Operations and Results Postprocessing</td>
</tr>
<tr>
<td>POST28</td>
<td>Response Spectrum Generation</td>
</tr>
<tr>
<td>POST29</td>
<td>2-D Solid Harmornic Element Postprocessing</td>
</tr>
<tr>
<td>POST30</td>
<td>2-D Shell Harmornic Element Postprocessing</td>
</tr>
</tbody>
</table>

The ANSYS run may be completed with three routines in most engineering analyses. But linear transient dynamic
analysis, KAN=5, and harmonic response analysis, KAN=6, consist of four routines, because these two analyses have two solution passes. In these two analyses, a stress pass is additionally required to obtain the whole solutions.

Many local files are created during ANSYS run. Some of these files are created according to user's commands, and all other files are automatically created during run. All of those files contain their own data needed for the solution of analysis and may also be needed for related phases, such as a solution restart, a solution stress pass, postprocessing, etc. The data transfer from one routine to another routine may be achieved by means of these local files[13].

C. Solution Scheme

ANSYS is developed using finite element method employing matrix displacement technology based on the energy principle. According to the principle of virtual work,

\[\delta U = \delta V \] \hspace{1cm} (2-1)

Here \(\delta U \) is the first variation of total strain energy given by

\[\delta U = \int_V \delta \varepsilon^T \sigma \, dv \] \hspace{1cm} (2-2)

and \(\delta V \) is the first variation of total potential energy given by

\[\delta V = -\delta u_F + \int_V \delta u^T b \, dv + \int_A \delta u^T s \, dA \] \hspace{1cm} (2-3)
where \(u, F, b \) and \(s \) are nodal displacement, external force, body force and surface traction vectors, respectively.

Substituting equations (2-2) and (2-3) into equation (2-1), one obtains the following equilibrium equations\([15]\).

\[
K u + f = F
\]

(2-4)

where \(K \) is an element stiffness matrix given by

\[
K = \int_{V} B^T D B \, dV
\]

(2-5)

Here \(B \) and \(D \) are a strain shape function and a stress matrix, respectively. \(f \) is a nodal element force vector given by

\[
f=-\int_{V} N^T b \, dV-\int_{A} N^T s \, dA-\int_{A} B^T D \varepsilon_0 \, dV+\int_{V} B^T \sigma_0 \, dV
\]

(2-6)

Here \(N \) is a displacement shape function. Equation (2-4) can be rewritten in partitioned matrix form:

\[
\begin{bmatrix}
K_{ii} & K_{ib} \\
K_{bi} & K_{bb}
\end{bmatrix}
\begin{bmatrix}
u_i \\
u_b
\end{bmatrix}
=
\begin{bmatrix}
F_i \\
F_b
\end{bmatrix}
-\begin{bmatrix}
f_i \\
f_b
\end{bmatrix}
\]

(2-7)

The subscripts \(i \) and \(b \) are used to refer the degrees of freedom that are free and imposed displacements, respectively. The first part of equation (2-7) may be solved for basic unknowns \(\{u_i\} \).

\[
\{u_i\} = -[K_{ii}]^{-1} [K_{ib}]\{u_b\} + [K_{ii}]^{-1} \{R_i\}
\]

(2-8)

where \(R = F - f \).
The main portion of this solution procedure is to calculate the inverse of the stiffness matrix K. The Gaussian elimination procedure is one of the most popular technique for this purpose, and the total stiffness matrix is usually assembled before performing this procedure. In this case back-up storage for the total unreduced stiffness matrix is required. From a view point of storage manipulation, this technique is not efficient. ANSYS uses more memory efficient technique, wave front direct solution method. This method deals with the only related stiffness matrices that are actually required to eliminate a specific degree of freedom and then it statically condenses out that degree of freedom[14,16].

The active equations are represented by

\[\sum_{j=1}^{n} K_{lj} u_j = R_l \] \hspace{1cm} (2-9)

Here n is a total number of equations and l is an equation number, i.e., row number. To eliminate a typical equation $p=1$, the equation is first normalized to[14]:

\[\sum_{j=1}^{n} \frac{K_{pj}}{K_{pp}} u_j = \frac{R_p}{K_{pp}} \] \hspace{1cm} (2-10)

This equation may be rewritten as follows and stored in a file for later back-substitution.

\[\sum_{j=1}^{n} K_{pj}^* u_j = R_p^* \] \hspace{1cm} (2-11)

where
The remaining equations are modified and the p's equation, i.e., p's row, is eliminated from the following equations.

\[K^*_p = \frac{K_{pj}}{K_{pp}} \] \hspace{1cm} (2-12)

\[R^*_p = \frac{R_p}{K_{pp}} \] \hspace{1cm} (2-13)

The remaining equations are modified and the p's equation, i.e., p's row, is eliminated from the following equations.

\[K^*_{1j} = K_{1j} - K_{1p} \frac{K^*_p}{K_{pj}} \] \hspace{1cm} (2-14)

\[R^*_1 = R_1 - K_{1p} \frac{R^*_p}{K_{pp}} \] \hspace{1cm} (2-15)

\[\sum_{j=1}^{n-1} K^*_{1j} u_j = R^*_1 \] \hspace{1cm} (2-16)

where \(l \neq p \).

This process is repeated for all other equations to be eliminated. Since this procedure is performed in the order of elements, the size of wave front is directly affected by the numbering scheme of elements. Thus an effective numbering of elements is necessary to reduce the size of memory storage. The other solution scheme adopted in ANSYS, i.e., Houbolt method, is considered in Chapter III.
CHAPTER III. IMPACT DYNAMICS

A. General Description

Impact dynamics may be defined as a dynamic response problem in which the applied load F is developed by impact. Since the boundary conditions are continuously changing in time, it must be treated as a nonlinear problem regardless of the nonlinearities of geometry and materials[15]. In order to allow the rigid body motion in finite element analysis, the concept of gap element is introduced. Since this problem is to be solved using ANSYS, the problem is viewed from the point of ANSYS. ANSYS has two possibilities to analyze this problem. For the whole time domain, this problem must be solved by nonlinear transient dynamic analysis, $KAN=4$, with gap element. However, for a certain time domain, this problem may be solved by reduced linear transient dynamic analysis, $KAN=5$, with gap conditions.

A general dynamic equilibrium equation may be written by

$$ M\ddot{u} + C\dot{u} + Ku = F $$ \hspace{1cm} (3-1)

This equation can be solved using numerical integration scheme based on the finite difference method. Among several numerical integration schemes for solving this equation, ANSYS adopts the Houbolt method.

The Houbolt method uses two backward difference formula to express the velocity and acceleration vectors in terms of
The solutions of the governing equation at time \(t + \Delta t \) are given in terms of \(u_t \), \(u_{t-\Delta t} \) and \(u_{t-2\Delta t} \) by

\[
2 \left(\frac{2}{(\Delta t)^2} M + \frac{11}{6} \frac{1}{t} C + K \right) u_{t+\Delta t} = F_{t+\Delta t} + \left(\frac{5}{(\Delta t)^2} M + \frac{3}{t} \right) u_t \\
- \left(\frac{4}{(\Delta t)^2} M + \frac{3}{2} \frac{1}{t} C \right) u_{t-\Delta t} + \left(\frac{1}{(\Delta t)^2} M + \frac{1}{3} \frac{1}{t} C \right) u_{t-2\Delta t}
\]

(3-4)

The accuracy of this method depends on the time step \(\Delta t \), and the computation time is also directly proportional to the number of time steps used. Therefore, finding an optimum time step becomes a crucial factor in both the accuracy and computation cost.

B. Gap Element

The ANSYS has four kinds of elements handling gap conditions: (1) compression or tension only spar element, JSTIF=10, (2) 2-D interface element, JSTIF=12, (3) 3-D interface element, JSTIF=52, and (4) combination element, JSTIF=40. Although two interface elements can withstand the normal and shear forces, only normal forces are considered in this
thesis. However the compression or tension only spar element is not sufficient in function. Thus the combination element is used in this thesis.

This element consists of (1) two springs, (2) one damper, (3) one friction resistor and (4) one gap as shown in Fig. 3-1. According to the specification of nodes in a given coordinate system, it may act both as a hook element and a gap element. In a gap element a positive displacement is defined such that a node \(j \) moves away from node \(i \). In a hook element a positive displacement is defined such that a node \(i \) moves toward node \(j \). In both elements the positive displacement is defined such a way of tending to open the gap. Thus the two elements act reversely each other. This point is illustrated in Fig. 3-2.

The force-deflection relation for this element is as shown in Fig. 3-3. The element force matrix for this element is

\[
(F_e) = F \begin{bmatrix} -1 \\ 1 \end{bmatrix} \tag{3-5}
\]

where

\[
F = F_1 + F_2
\]

and

\[
F_1 = F_{\text{slide}} \text{ if slider was sliding in previous iteration.}
\]

\[
F_1 = (u_{\text{gap}} - u_{\text{slide}}) \times K_1 \text{ if slider was not sliding in previous iteration.}
\]
\[F_2 = u_{gap} \times K_2 \]

\[K_i = \text{stiness of spring } i \]

The element mass matrix is defined by user, depending upon the value of KEYOPT(6):

\[
[M] = \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\] if KEYOPT(6)=0

\[
[M_e] = \frac{M}{2} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\] if KEYOPT(6)=1 \hspace{1cm} (3-6)

\[
[M] = \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
\] if KEYOPT(6)=2

where \(M \) is a total element mass.

The element stiffness matrix is

\[
[K_e] = K \begin{pmatrix}
1 & -1 \\
-1 & 1
\end{pmatrix}
\] \hspace{1cm} (3-7)

where

\[K = S_1 + S_2 \]

and

\[S_1 = K_1 \text{ or zero, if slider was not sliding or sliding in previous iteration, respectively} \]

\[S_2 = K_2 \]

In the following, the damping matrix \(C \) and friction force \(F_{slide} \) are set to zero. This means that the friction and damping effects are neglected. This could be rationalized by the fact that at the instant of impact, which is usually very short time period, the viscous damping has no signifi-
C. Time Step Optimization

As stated before, the selection of an appropriate time step is crucial to solve a dynamic equilibrium equation using direct integration methods. For selecting an appropriate time step, the stability of the solutions must be considered as well. The analysis of those characteristics results into guidelines for the selection of an appropriate time step.

One solution procedure is to decouple the equations into the bases of eigenvectors, instead of dealing with the coupled general dynamic equilibrium equations, to analyze the stability and the accuracy of the solution. By doing so, one may consider only a typical equation of one degree of freedom.

\[\ddot{x} + 2 \zeta \omega \dot{x} + \omega^2 x = r \] \hspace{1cm} (3-8)

The variables to be considered for this analysis are only time step \(\Delta t \), eigenvalues for free vibration \(\omega \) and damping ratio \(\zeta \). In the following, Houbolt method used in ANSYS is discussed in detail.

The Houbolt method belongs to direct and implicit integration method. The equilibrium equations are considered at time instant \(t+\Delta t \) instead of at time \(t \) for solutions at time \(t+\Delta t \). Substituting the equations (3-2) and (3-3)
after changing variables into equation (3-8), one can get the following relationships among x's in different time steps[16].

\[
\begin{align*}
\begin{pmatrix}
x_{t+\Delta t} \\
x_t \\
x_{t-\Delta t}
\end{pmatrix} &= A \begin{pmatrix}
x_t \\
x_{t-\Delta t} \\
x_{t-2\Delta t}
\end{pmatrix} + H r_{t+\Delta t} \\
\text{(3-9)}
\end{align*}
\]

where

\[
A = \begin{bmatrix}
\frac{5\beta}{\omega^2(\Delta t)^2} + 6\gamma & -\frac{4\beta}{\omega^2(\Delta t)^2} + 3\gamma & \frac{\beta}{\omega^2(\Delta t)^2} + \frac{2\gamma}{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]

and

\[
H = \begin{pmatrix}
\frac{\beta}{\omega^2} \\
0 \\
0
\end{pmatrix}
\]

Since the stability problem must be considered for any arbitrary initial conditions, one may consider free vibration mode, i.e., x=0. In this case the equation (3-9) can be simplified as follows.

\[
x_{x+n\Delta t} = A^n x_t \\
\text{(3-10)}
\]

This is an eigenvalue problem, and the criterion of stabili-
ty is given by eigenvalues. The spectral radius of matrix A is defined by the eigenvalues \(\lambda_i \) of A.

\[
\rho(A) = \text{Max.} |\lambda_i|, \quad i = 1,2,\ldots,n
\]

(3-11)

Then the stability criterion is given by [16]

\[
\rho(A) \leq 1 \quad \text{for} \quad n \to \infty
\]

(3-12)

Generally the small damping is insignificant upon the overall stability characteristics. Therefore the stability of the Houbolt method as well as many of the other integration schemes actually depends on the ratio of time step to period \(T \), i.e., \(\Delta t/T \). As shown in Fig. 3-4, the spectral radius \(\rho(A) \) is always less than 1.0 regardless of the values of \(\Delta t/T \). This proves the fact that Houbolt method is unconditionally stable. That means there is no restriction on the time step as long as the stability is concerned.

For the consideration of accuracy, the criterion of \(\Delta t/T \) must be drawn by analyzing the period elongation and the amplitude decay of the solutions in the time domain. Bathe claims that the solutions of numerical integration using the Houbolt method is generally accurate when \(\Delta t/T \) is smaller than 0.01[16].

In practical problems, the time step must be chosen from the viewpoint of accuracy and cost. ANSYS recommends the use of time step of one tenth to one fortieth of period \(T \), according to the contact stiffness, for transient dynamic analysis using gap element.
Fig. 3-1: Combination Element

Fig. 3-2: Direction of Positive Displacement
Fig. 3-3: Force-Deflection Relation

Fig. 3-4: Spectral Radius for $\xi = 0.0$
A. Introductory Comments

The matrix method of structural analysis as well as more general finite element method leads to a set of large number of linear algebraic equations in matrix form. Fortunately, those matrices are sparse, symmetric and positive definite. Many efficient numerical methods have been developed, taking advantage of these characteristics. To increase the efficiency further, substructuring technique was developed in 1960s[16].

Even with the advanced hardware and software technique in computer technology today, the substructuring technique is still an attractive tool in computational and logical aspects of structural analysis. This technique can be also applied to the structures having geometric symmetry and repeated systems to reduce the modeling time. In the case of nonlinear dynamic analysis, the stiffness matrix K can be divided into linear and nonlinear parts. Substructuring technique can be applied to the linear part in the same way as in static linear analysis.

This technique has three major advantages[13,17]. The first advantage is that the computation time can be reduced, because a large amount of degrees of freedom are condensed out and the non-interesting part of solutions can be skipped. The second one is that the large structures can be
analyzed with relatively small memory size, because the total degrees of freedom dealt with in substructure analysis are much less than those of entire structure. The third one is that the modeling of large scale structures become easier, since the separate modeling scheme can be adopted and one substructure can be used repeatedly in repeated systems or symmetric parts.

B. General Theory

The basic idea of substructuring technique is the following:[17]:

(1) The whole structure is divided into several substructures.
(2) The displacements of common boundaries with adjoint substructures are assumed to be completely fixed.
(3) Each substructure created is analyzed separately.
(4) All common boundaries are relaxed simultaneously.
(5) The actual displacements of common boundaries are determined from equilibrium equations of forces at boundaries.
(6) Each substructure can then be treated as one independent structure from others and thus it can be analyzed separately under each real substructure loadings and boundary displacements.

To review those concepts, one considers the following
equilibrium equations given by matrix form:

\[
[K] \{u\} = \{F\} \tag{4-1}
\]

Applying this equation to one typical substructure, one can rewrite the equation in partitioned form:

\[
\begin{bmatrix}
K_{bb} & K_{bi} \\
K_{ib} & K_{ii}
\end{bmatrix}
\begin{bmatrix}
u_b \\
u_i
\end{bmatrix} =
\begin{bmatrix}
F_b \\
F_i
\end{bmatrix} \tag{4-2}
\]

The subscripts \(b\) and \(i\) refer to the boundary and internal nodes, respectively.

Solving equation (4-2) with \(u_b = 0\), the first part of solutions are:

\[
\bar{u}_i = K^{-1}_{ii} \ F_i \tag{4-3}
\]

\[
\bar{F}_b = K_{bi} \bar{u}_i \tag{4-4}
\]

Here \(\bar{F}_b\) are the constrain forces at boundaries necessary to maintain \(u_b=0\) when the external forces \(F_i\) are applied to the internal nodes.

When the boundaries are relaxed, the correction terms can be determined by setting \(F_i=0\) and \(F_b = F_b - \bar{F}_b\) in equation (4-2).

\[
u'_i = -K^{-1}_{ii} K_{ib} \ u'_b \tag{4-5}
\]

\[
u'_b = K^{-1}_b \ F'_b \tag{4-6}
\]

where

\[
K_b = K_{bb} - K_{bi} K^{-1}_{ii} K_{ib} \tag{4-7}
\]
Then the real solutions u are given by

$$u = \tilde{u} + u'$$ \hspace{1cm} (4-9)$$

Substituting $\tilde{u}_b = 0$ to the equation (4-9), we can get the following solutions for u_b.

$$u_b = K_b^{-1}(F_b - K_b \tilde{u} \cdot F_i)$$ \hspace{1cm} (4-10)$$

Substituting these results into equation (4-5), we may also obtain the other solutions for u_i.

$$u_i = K_i^{-1}(F_i - K_i \tilde{u}_b)$$ \hspace{1cm} (4-11)$$

The internal degrees of freedom u_i can be statically condensed out from equation (4-11). Thus the overall structural equilibrium equation may be rewritten as

$$[K_b]_{\text{total}} (u_b)_{\text{total}} = (F_b)_{\text{total}}$$ \hspace{1cm} (4-12)$$

Here K_b is called a boundary stiffness matrix and represents the stiffnesses of boundary degrees of freedom. Because the boundary stiffness matrix K_b is much smaller than the total stiffness matrix K, handling the stiffness matrix K_b is much easier than handling the total stiffness matrix K.

In the nonlinear dynamic analysis, the basic equation to be solved using Houbolt method is[9]

$$\hat{t}_k^\Delta u(i) = t + \Delta t_F - t + \Delta t^\Delta_F (i-1)$$ \hspace{1cm} (4-13)$$

where \hat{t}_k is an effective stiffness matrix at time t given
The superscripts t, $t+\Delta t$ and (i) refer to time step and iteration number, respectively. The stiffness matrix K is given by a tangent stiffness matrix at time t, and the $t+\Delta t_f(i-1)$ is an equivalent nodal force vector corresponding to stresses of elements at $(i-1)^{th}$ iteration at time $t+\Delta t$.

In principle this equation is established repeatedly at each time step and solved again using iterative methods. However, many practical problems deal with local nonlinearity only. Therefore one can reduce the computational efforts by separating linear portion from nonlinear part. In order to do this, the effective stiffness matrix tK may be divided into linear and nonlinear parts.

$$tK = \frac{2}{(\Delta t)^2} M + \frac{11}{6\Delta t} C + K \tag{4-14}$$

and

$$\Delta u(i) = t+\Delta t_u(i) - t+\Delta t_u(i-1) \tag{4-15}$$

$$t+\Delta t_f(i-1) = \text{sum of the right hand side of equation (3-4) except } F$$

The superscripts t, $t+\Delta t$ and (i) refer to time step and iteration number, respectively. The stiffness matrix K is given by a tangent stiffness matrix at time t, and the $t+\Delta t_f(i-1)$ is an equivalent nodal force vector corresponding to stresses of elements at $(i-1)^{th}$ iteration at time $t+\Delta t$.

Moreover, many practical problems deal with local nonlinearity only. Therefore one can reduce the computational efforts by separating linear portion from nonlinear part. In order to do this, the effective stiffness matrix tK may be divided into linear and nonlinear parts.

$$tK = \hat{K} + tK^n \tag{4-16}$$

Here \hat{K} and tK^n represent all linear and nonlinear degrees of freedom, respectively. Thus \hat{K} is constant and tK^n is time dependent. If the subscripts 1 and n are employed to define the linear and nonlinear degrees of freedom, the basic governing equation (4-13) can be rewritten in partitioned...
Performing static condensation process, one obtains

\[
(K_r + t_kR) \Delta u_n(i) = t+\Delta t_F - t+\Delta t_F(i-1) - \hat{K}_r t+\Delta t_u(i-1)
\]

(4-18)

where

\[
\hat{K}_r = \hat{K}_{nn} - \hat{K}_{nl} \hat{K}_{ll} \hat{K}_{ln}
\]

(4-19)

\[
t+\Delta t_F = t+\Delta t_F - \hat{K}_{nl} \hat{K}_{ll} t+\Delta t_F
\]

(4-20)

Except for using an effective stiffness matrix and reduced load vector, equations (4-18) to (4-20) are equivalent to equations (4-6) to (4-8). The differences are that the nonlinear part of the effective stiffness matrix t_kR must be updated and factorized at each time step, and the reduced load vector $t+\Delta t_F$ must be newly calculated at the beginning of each time step. The iteration process is also required in each time step due to nonlinearity. Thus the substructuring technique can be applied much in the same way as in the static analysis to reduce the degrees of freedom.
C. ANSYS Technique

Substructuring technique in ANSYS can be achieved by designating "master degrees of freedom" in using super-element. The superelement, a simple collection of elements that are reduced to act as one element, is developed upon the following assumptions within substructure[13]:

(1) All elements are linear.
(2) All material properties are constant, time independent.
(3) Unsymmetric element matrices are not permitted.

In principle, the solution procedures in static analysis are the same as those in the previous case, except for defining the master degrees of freedom as the boundary degrees of freedom. In dynamic analysis, however, the solution procedures are far more simplified because of the above basic assumptions.

ANSYS does not take the partitioning and static condensation procedures because of awkwardness to implement[14]. Instead ANSYS uses the Guyan reduction procedure to reduce the degrees of freedom in generating the superelement. This reduction technique gives the following reduced dynamic equilibrium equation[14], and the equation is solved directly.

\[M\ddot{u} + C\dot{u} + Ku = F \quad (4-21) \]

where
Subscripts \textit{m} and \textit{s} designate the correspondence of master and slave degrees of freedom.

The superelement can be used in any analysis type. The solution procedures of substructuring technique consist of three steps. The first step is a generation step. In this step, the reduced load vector and the reduced stiffness, mass and damping matrices are calculated. The second step is a use step. In this step, the superelement is used as one ordinary element with other elements. The only reduced displacements related to the master degrees of freedom. The third step is a stress step. In this step, the full set of displacements and stresses interior to the superelement are calculated. Since the internal displacements and stresses of any superelement are calculated independently from other superelements, one can get the solutions of any interesting sub-domain only without solving the whole equations[13].
A. Pendulum Problem

1. Mathematical model

An initially rested pendulum, which is an equilibrium state, is released at time $t=0$. The problem is to predict its motions in time domain due to gravitation. It has two degrees of freedom as shown in Fig. 5-1-1.

This example is solved for two cases, (1) spring constant $K = \infty$ (i.e., 3×10^5 (lb/in)) and (2) $K = 100$ (lb/in).

2. Data and Solutions

This problem is solved using KAN=4, nonlinear transient dynamic analysis. The mass is defined using generalized mass element, JSTIF=21. The spring is modeled using spring-damper element, JSTIF=14. The input data are given in Appendix and the solution curves are given in Fig. 5-1-2 to Fig. 5-1-5, respectively.

3. Discussion

The equations of motion of this pendulum may be derived using Lagrangean dynamics. Lagrangian L is defined by

$$L = T - V$$
where l_0 is the length of spring at equilibrium state.

Since the potential energy V is independent of the velocity, the Lagrange's equation can be written as

$$
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0, \quad i = 1, 2,
$$

(5-1-2)

Thus the governing equation is

$$
q_2 \ddot{q}_1 + 2q_1 \dot{q}_2 + g \sin q_1 = 0
$$

(5-1-3)

$$
m\ddot{q}_2 - m\dot{q}_1^2 q_2 - mg \cos q_1 + K(q_2 - l_0) = 0
$$

(5-1-4)

If K is infinite as in case (1), the equations may be reduced to one degree of freedom:

$$
\ddot{q}_1 + \frac{g}{l} \sin q_1 = 0
$$

(5-1-5)

This equation is nonlinear and the solution is given by the Jacobian elliptic function[20]. For the given initial conditions of case (1), the solution is

$$
\sin \frac{\theta}{2} = - \frac{1}{2} \text{sn} 6.216(t - 0.2712)
$$

(5-1-6)

where sn is the Jacobian elliptic function[21]. The period of this equation is given by
where \(F(\pi/2, k) \) is the complete elliptic integral of the first order. The amplitude of this solution is also given by

\[
|u_x| = 2 \times 10 \sin 60^\circ = 17.32 \quad (5-1-8)
\]

\[
|u_y| = 10 \times (1 - \cos 60^\circ) = 5 \quad (5-1-9)
\]

These values are almost same as the numerical solutions given in Fig. 5-1-4.

In case (2), the solution procedure is not so simple. The one possible way is to use a computer program such as DE, which is a general purpose automatic computer program to solve ordinary differential equations. However, one can infer from the results of case (1) that the solution of case (2) may also be valid. Thus the more detail verification is omitted.
Fig. 5-1-1: Mathematical Model of Pendulum
Fig. 5-1-2: Motion of Pendulum for case (1)
Fig. 5-1-3: Motion of Pendulum for Case (2)
Fig. 5-1-4: Displacement vs Time for Case (1)
Fig. 5-1-5: Displacement vs Time for Case (2)
B. Car Crash Problem

1. Mathematical Model

The car is modelled as shown in Fig. 5-2-1 using a moving spar with constant velocity, \(v = 100 \) (in/sec). The material properties used are for steel. The nodal masses may be determined by lumped mass distribution. The problem is solved for three different contact stiffnesses.

Integration time step \(\Delta t \) and applied force \(F \) at each node are determined from \(1/30f \) and \(d(mv)/dt = (mv)/\Delta t \), where \(f \) is the highest frequency of interest.

(1) Contact Stiffness \(K = 1000 \) (lb/in)

\[
t = \frac{1}{30}f = \frac{2\pi \sqrt{K/m}}{30} = 0.0001 \text{ (sec)}
\]

\[
F = \frac{d(mv)}{dt} = \frac{(mv)}{\Delta t} = m*10^6 \text{ (lb)}
\]

(2) Contact Stiffness \(K = 10000 \) (lb/in)

\[
t = \frac{1}{30}f = \frac{2\pi \sqrt{K/m}}{30} = 0.00004 \text{ (sec)}
\]

\[
F = \frac{d(mv)}{dt} = \frac{(mv)}{\Delta t} = m*2.5*10^6 \text{ (lb)}
\]

(3) Contact Stiffness \(K = 100000 \) (lb/in)

\[
t = \frac{1}{30}f = \frac{2\pi \sqrt{K/m}}{30} = 0.00001 \text{ (sec)}
\]

\[
F = \frac{d(mv)}{dt} = \frac{(mv)}{\Delta t} = m*10^7 \text{ (lb)}
\]

The load steps for each case are choosen as shown in Fig. 5-2-2 to Fig. 5-2-4.
Fig. 5-2-1: Mathematical Model

\[V = 100 \text{ (in/s)} \]

Fig. 5-2-2: Load, Case (1)

Fig. 5-2-3: Load, Case (2)

Fig. 5-2-4: Load, Case (3)
2. Data and Solutions

The problem is solved using KAN=5, reduced linear transient dynamic analysis. The input data are given in Appendix and the solution curves are given in Fig. 5-2-5 to Fig. 5-2-10, respectively.

3. Discussion

The differential equation of a lateral vibration for elastic body is

\[E \frac{\partial^2 u}{\partial x^2} = \rho \frac{\partial^2 u}{\partial t^2} \] \hspace{1cm} (5-2-1)

Replacing \(E \) by \(\frac{\partial \sigma}{\partial E} \), differential equation (5-2-1) may be modified for the case in which plastic deformation occurs.

\[\frac{\partial \sigma}{\partial E} \frac{\partial^2 u}{\partial x^2} = \rho \frac{\partial^2 u}{\partial t^2} \] \hspace{1cm} (5-2-2)

This equation is nonlinear whose analytical solution has never been obtained[18]. Equation (5-2-1) is analytically solved for simple case by S. Timoshenko[19]. However the initial and boundary conditions make the analytical solution almost impossible to obtain. The solution may be macroscopically checked by maximum displacement obtained from energy theorem. From the principle of energy conservation,
Kinetic Energy(T) + Potential Energy(V) = Constant \hspace{1em} (5-2-3)

where

\[
T = \frac{1}{2} mv^2 \quad \text{and} \quad V = \frac{1}{2} K(\Delta u)^2 \hspace{1em} (5-2-4)
\]

The maximum displacements calculated from equations (5-2-3) and (5-2-4) for each case are given in Table. 5-2-1 with the results of numerical analysis. If the displacement field is properly determined, the strain and stress may be automatically and correctly determined by the theory of elasticity.

For the third case, displacements between two ends, node 1 and 7, are slightly different, so that the stresses developed at the each side, element 1 and 6, have some time lag and show the waves (see Fig. 5-2-7 and 5-2-10). These phenomena result from the fact that time step (\(\Delta t\)) is less than the velocity of stress wave. The velocity of stress wave may be calculated by

\[
c = \sqrt{\frac{E}{\rho}} = 202721.2 \text{ (in/sec)} \hspace{1em} (5-2-4)
\]

The time required for stress transmission from one end to the other end may be determined from:

\[
t = \frac{\text{length}}{\text{velocity}} = 4.93 \times 10^{-5} \text{ (sec)} \hspace{1em} (5-2-5)
\]

This is larger than time step \(\Delta t = 0.00001\). The stress at element 6 is initiated at time \(t=0.0001\) (sec), but the stress at element 1 is initiated at time \(t=0.000148\) (sec). There-
Table. 5-2-1: Max. Values of Displacement

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Gap</td>
<td>0.1</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>u</td>
<td>0.27</td>
<td>0.085</td>
<td>0.027</td>
</tr>
<tr>
<td>Total Disp.</td>
<td>0.37</td>
<td>0.125</td>
<td>0.037</td>
</tr>
<tr>
<td>Numerical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSYS</td>
<td>0.37</td>
<td>0.1254</td>
<td>0.0373</td>
</tr>
</tbody>
</table>
fore the time lag between two points is

\[T_{\text{lag}} = 0.0000148 - 0.0001 = 0.000048 \text{ (sec)} \quad (5-2-6) \]

The agreement between equation (5-2-5) and (5-2-6) is excellent. However these results must be verified by physical experiments, since numerical experiment is based on the assumed contact stiffnesses and forces.
Fig. 5-2-5: Displacement vs Time for case (1)
Fig. 5-2-6: Displacement vs Time for case (2)
Fig. 5-2-7: Displacement vs Time for Case (3)
Fig. 5-2-8: Stress vs Time for Case (1)
Fig. 5-2-9: Stress vs Time for Case (2)
Fig. 5-2-10: Stree vs Time for Case (3)
C. Helmet Problem

1. Mathematical Model

The problem dealt with in this example involve two gap elements in series. The first gap exits between a helmet and ground. The second gap exits between a head and a helmet. The helmet is crudely approximated by a small curved plate which is a part of SPH-4 US Army helmet and modelled using quadrilateral shell elements, JSTIF=63. The head is also crudely approximated by a small rectangular aluminum block and 3-D isoparametric solids, JSTIF=45, is used. This is shown in Fig. 5-3-1.

The contact stiffnesses between helmet and ground and the one between head and helmet are assumed to be 1000(lb/in) and 1650(lb/in), respectively, to give sufficient stiffnesses and to reduce integration time steps. The integration time step Δt is determined by

$$\Delta t = \frac{T}{33} = \frac{2\pi}{33\sqrt{K/m}} = 6.667 \times 10^{-5} \text{ (sec)} \quad (5-3-1)$$

There is no external force except for a gravitational force.

2. Data and Solutions

This problem is solved in two ways: (1) without using substructuring technique and (2) using substructuring technique. In the latter solution procedure, the whole quadri-
lateral shell elements approximating a helmet are condensed to one superelement used in solution phase of this analysis. As can be expected, the former solution procedure requires large memory as well as CPU time, thus the analysis is limited to the first short time period. The CPU time and memory storage needed for each case are compared with in the next section. The input data for each case are given in Appendix. The numerical solutions using method (2) are illustrated in Fig. 5-3-2 to Fig. 5-3-7.

3. Discussion

This example is somewhat more complicated than the previous examples. Since damping effect is neglected, the differential equation has a form

$$M \ddot{u} + Ku = Mg$$ \hspace{1cm} (5-3-2)

To solve this equation, one may first calculate element stiffnesses and then integrate in time using direct numerical integration technique. To briefly predict the behavior of the entire structure, one may use a single degree of freedom model whose closed form solution is easily obtained.

Until any of the the gap is closed, the motion is a complete free fall. It is easy to see that the gap between helmet and ground is the first to close. The time taken to close the gap is

$$t_{\text{gap}} = 2 \times \text{Gap/g} = 0.07194 \text{(sec)}$$ \hspace{1cm} (5-3-3)
After the gap is closed, the equation of motion and its consistent initial conditions for helmet are

$$M \ddot{x} + K x = M g$$ \hspace{1cm} (5-3-4)

$$x=0, \quad \dot{x}=-27.798 \quad \text{at } t'=0$$ \hspace{1cm} (5-3-5)

Here

$$x = u+1, \quad t' = t-0.07194$$ \hspace{1cm} (5-3-6)

The solution satisfying equations (5-3-4) and (5-3-5) is

$$x=-9.7727 \times 10^{-3} \sin \omega t' + 4.7759 \times 10^{-5} (1-\cos \omega t')$$ \hspace{1cm} (5-3-7)

Here ω is an eigenvalue of this system given by $\omega = \sqrt{K/M} = 2844.4$ (rad./sec). The maximum displacement occurs at time $t=0.0725$ ($t'=5.522 \times 10^{-4}$) (sec) with magnitude

$$u_{\text{Max}} = -1.0097 \text{ (in)}$$ \hspace{1cm} (5-3-8)

The maximum acceleration also occurs at time $t=0.0725$ (sec) with magnitude

$$u_{\text{Max}} = 79067 \text{ (in/sec}^2)$$ \hspace{1cm} (5-3-9)

There is an excellent agreement between these numbers and numerical solutions.

Since the spring is linear, the gap reopens at time $t=0.073$ (sec). Thus the above solutions are valid during this time period only. The time when the gap between head and helmet is closed may be determined by

$$gt^2/2 + 27.798(t-0.073) - g(t-0.073)^2/2 = 1.1$$ \hspace{1cm} (5-3-10)
Thus, the gap reopens at time $t=0.07425$ (sec).

The numerical solutions show that the slope of the curves of displacements and accelerations changes its magnitude at this time instant. Furthermore, one can see that the period of those curves are approximately 0.002. This agrees well with exact solution, $T=2\pi/\omega=2.20\times10^{-3}$ (sec). The solution curve, Fig. 5-3-3, shows that the displacement of node 41 is slightly bigger than that of the crown of helmet, i.e., node 43. This is very reasonable. In conclusion, the numerical solution does make sense. However, the contact stiffness which was assumed previously without verification must be determined by experiments.

The VAX 11/780 computer at Mechanical Engineering Department of NJIT is used for this analysis. The CPU time and disk memory needed for this analysis of each case are:

<table>
<thead>
<tr>
<th>Case</th>
<th>CPU (sec)</th>
<th>Memory (block)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>5485.08</td>
<td>25644</td>
</tr>
<tr>
<td>(2)</td>
<td>1152.31(56.69)</td>
<td>10391(1829)</td>
</tr>
</tbody>
</table>

In case (1), the above values are for carrying out 70 iterations, which means the analysis is only carried out for 0.072 (sec) only. In case (2), the above values are for 190 iterations for full analysis, up to $t=0.08$. The values inside parentheses show portions for generating superelement. Thus one can conclude that the substructuring technique is a very powerful technique, especially for large structural analysis.
Fig. 5-3-1: Mathematical Model
Fig. 5-3-2: Displacement of Head vs Time
Fig. 5-3-3: Displacement of Helmet vs Time
Fig. 5-3-4: Velocity of Head vs Time
Fig. 5-3-5: Velocity of Helmet vs Time

EXAMPLE #3. HELMET PROB. (CASE 2)
Fig. 5-3-6: Acceleration of Head vs Time
Fig. 5-3-7: Acceleration of Helmet vs time
CHAPTER VI. CONCLUSION

A. Concluding Remarks

This thesis demonstrated the use of ANSYS package for the analysis of impact dynamics. Both substructuring analysis technique and gap element technique are fully discussed.

Looking at the growth of increasing needs of impact dynamics, the demands of numerical analysis technique for the problem is expanding rapidly. This thesis is hoped to facilitate the use of ANSYS finite element package for the beginner, especially in the area of impact dynamics for which the ANSYS manual fails to give clear explanations.

B. Future Study

In this thesis, all the impact was exclusively assumed to be elastic. However, in actual situation, this will not happen but involve local plasticity phenomena. Researches of developing mathematical model including this effect must be done for more meaningful numerical simulations.

The gap element technique explained in this thesis may be too crude to simulate reasonable impact situation, and also too restricted from numerical analysis point of view. Development of better techniques replacing gap element in finite element environment could be an excellent research topic.
APPENDIX. INPUT DATA LISTS FOR ANSYS

A. Pendulum Problem

1. \$PREP7
2. \$TITLE: EXAMPLE #1. PENDULUM PROB. (CASE 1)
3. KAN, 4
4. ET, 1, 8
5. ET, 2, 21,, 2
6. KAY, 5, 1
7. KAY, 6, 1
8. R, 1, 0, 1
9. EX, 1, 3E6
10. R, 2, 1, 0
11. N, 1
13. E, 1, 2
14. TYPE, 2
15. REAL, 2
16. E, 2
17. ITER, 101, 5, 1
18. TIME, 1.5
19. ACCL, 386.4
20. KBC, 1
21. D, 1, UZ,, 2
22. D, 1, UX,, UY
23. AFWRITE
24. FINISH
25. /INPUT, 27
26. FINISH
1. \$INTER
2. \$SHOW
3. \$POST1
4. \$NOPR
5. \$DSCL, 1
6. \$FOCUSE,, -7.5
7. \$DIST, 15
8. *SET, NJIT, 1, 5
9. *BEGIN, MARC
10. SET, 1, NJIT
11. PLDISP
12. *END
13. \$NOERASE
14. *DO, MARC, 1, 20
15. FINISH

[EOB]
/PREP7
/TITLE, EXAMPLE #1. PENDULUM PROB. (CASE 2)
KAN, 4
ET, 1, 14, , , 2
ET, 2, 21, , , 2
KAY, 5, 1
KAY, 6, 1
R, 1, 100
R, 2, 1.0
N, 1
N, 2, -8.66025, -5.
E, 1, 2
TYPE, 2
REAL, 2
E, 2
ITER, 101, 5, 1
TIME, 1.5
ACEL, , 386.4
KBC, 1
D, 1, UZ, , , 2
D, 1, UX, , , , UY
AFWRITE
FINISH
/INPUT, 27
FINISH
/INTER
/SHOW
/POST1
/NOPR
/DSCALE, , , 1
/FOCUSE, , , , -7.5
/DIST, , 15
*SET, NJIT, 1.5
*BEGIN, MARC
SET, 1, NJIT
PLDISP
*END
/NOERASE
*DO, MARC, 1, 20
FINISH
B. Car Crash Problem

```
1  /PREP7
2  /TITLE, EXAMPLE #2-1. CAR CRASH
3  KAN 5
4  ET, 1,1
5  KAY, 1,1
6  EX, 1,30E6
7  DENS, 1, .00073
8  NUXY, 1, .33
9  R, 1,1
10 N, 1
11 ,2, 2.5
12 ,3, 4.5
13 ,4, 6.25
14 ,5, 7.75
15 ,6, .9
16 ,7, 10
17 ,10, 15
18 E, 1,2
19 EGEN, 6,1,1
20 M, 1, UX, .7
21 GP, 10, 7, FX, 1000, .1
22 ITER, 1,1,1
23 DTIME, .0001
24 KBC, 1
25 FLAY, F, 1, FX, ,7
26 LWRITE
27 TIME, .0001
28 F, 1, FX, -912.5
29 ,2, FX, -1642.5
30 ,3, FX, -1368.75
31 ,4, FX, -1186.25
32 ,5, FX, -1003.75
33 ,6, FX, -821.25
34 ,7, FX, -365
```

LWRITE
ITER, 1,1,1
TIME, .006
F, 1, FX, ,7
LWRITE
AFWRITE
FINISH
INPUT, 27
FINISH
STRESS
END
FINISH
/PREP7
/TITLE, EXAMPLE #2-2. CAR CR
KAN,5
ET,1,1,1
KAY,1,1
EX,1,30E6
DENS,1, .00073
NUXY,1, .33
R,1,1
N,1
,2,2.5
,3,4.5
,4,6.25
,5,7.75
,6,9
,7,10
,10,15
E,1,2
EGEN,6,1,1
M,1,UX,7
GP,10,7,FX,10000,.04
ITER,1,1,1
DTIME,.00004
KBC,1
F,1,FX,.,7
LWRITE
TIME,.00004
F,1,FX,-2281.25
,2,FX,-4106.25
,3,FX,-3421.875
,4,FX,-2265.625
,5,FX,-2509.375
,6,FX,-2053.125
,7,FX,-912.5

LWRITE
ITER,1,1,1
TIME,.0024
F,1,FX,.,7
LWRITE
AFWRITE
FINISH
/INPUT,27
FINISH
/STRESS
ITER,1,1,1
NSTRES,1
TIME,.00004
ITER,1,1,1
NSTRES,60
TIME,.0024
END
FINISH
LWRITE
ITER, 1, 1, 1
TIME, 0.0006
F, 1, FX, ..., 7
AFWRITE
FINISH
INPUT, 27
FINISH
/Stress
ITER, 1, 1, 1
NSTRES, 1
TIME, 0.0001
ITER, 1, 1, 1
NSTRES, 60
TIME, 0.0006
END
FINISH
EGEN, 6, 1, 1
* E, 1, 2
M, 1, UX, 7
GP, 10, 7, FX, 100000, .01
ITER, 1, 1, 1
DTIME, 0.0001
KBC, 1
F, 1, FX, ..., 7
LWRITE
TIME, 0.0001
F, 1, FX, -.9125.
2, FX, -16425.
3, FX, -13687.5
4, FX, -11862.5
5, FX, -10037.5
6, FX, -8212.5
7, FX, -3650.
C. Helmet Problem

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/PREP7</td>
<td>35</td>
<td>.35,-.5,-.5,.125</td>
</tr>
<tr>
<td>2</td>
<td>/TITLE: EXAMPLE #3. CASE (1)</td>
<td>36</td>
<td>.36,-.5,.0625</td>
</tr>
<tr>
<td>3</td>
<td>KAN, 4</td>
<td>37</td>
<td>.37,-.5,.5,.125</td>
</tr>
<tr>
<td>4</td>
<td>ET, 1, .63, .63, .63, 1</td>
<td>38</td>
<td>.38,-.5,1,.3125</td>
</tr>
<tr>
<td>5</td>
<td>ET, 2, .45, 1</td>
<td>39</td>
<td>.39,-.5,1.5,.625</td>
</tr>
<tr>
<td>6</td>
<td>ET, 3, .40, .40, 2</td>
<td>40</td>
<td>.40,-1.5,.5625</td>
</tr>
<tr>
<td>7</td>
<td>KAY, 5, 1</td>
<td>41</td>
<td>.41,-1,.25</td>
</tr>
<tr>
<td>8</td>
<td>KAY, 6, 1</td>
<td>42</td>
<td>.42,-.5,.0625</td>
</tr>
<tr>
<td>9</td>
<td>KAY, 8, 1</td>
<td>43</td>
<td>.43,0</td>
</tr>
<tr>
<td>10</td>
<td>EX, 1, 2.6E6</td>
<td>44</td>
<td>.44,.5,.0625</td>
</tr>
<tr>
<td>11</td>
<td>EX, 2, 10E6</td>
<td>45</td>
<td>.45,1,.25</td>
</tr>
<tr>
<td>12</td>
<td>NUXY, 1, .25</td>
<td>46</td>
<td>.46,1.5,.5625</td>
</tr>
<tr>
<td>13</td>
<td>NUXY, 2, .33</td>
<td>47</td>
<td>NGEN, 2, 14, 33, 39, 1, 1</td>
</tr>
<tr>
<td>14</td>
<td>DENS, 1, 1.965E-4</td>
<td>48</td>
<td>.2,28,26,32,1,2</td>
</tr>
<tr>
<td>15</td>
<td>DENS, 2, 2.588E-4</td>
<td>49</td>
<td>.2,42,19,25,1,3</td>
</tr>
<tr>
<td>16</td>
<td>R, 1, .06</td>
<td>50</td>
<td>EN, 1, 20, 19, 26, 26</td>
</tr>
<tr>
<td>17</td>
<td>R, 2, 1650, .1</td>
<td>51</td>
<td>.4,30,23,22,22</td>
</tr>
<tr>
<td>18</td>
<td>R, 3, 1000, .1, 1.0</td>
<td>52</td>
<td>.7,26,27,29,20</td>
</tr>
<tr>
<td>19</td>
<td>N, 19, -1.5, -1.5, 1.125</td>
<td>53</td>
<td>.10,22,29,30,30</td>
</tr>
<tr>
<td>20</td>
<td>20, -1.5, -1.0, 0.8125</td>
<td>54</td>
<td>.37,48,41,40,40</td>
</tr>
<tr>
<td>21</td>
<td>21, -1.5, -0.5, 0.625</td>
<td>55</td>
<td>.48,44,43,50,50</td>
</tr>
<tr>
<td>22</td>
<td>22, -1.5, 0.5625</td>
<td>56</td>
<td>.43,48,47,48,48</td>
</tr>
<tr>
<td>23</td>
<td>23, -1.5, 0.5, 0.625</td>
<td>57</td>
<td>.46,50,51,44,44</td>
</tr>
<tr>
<td>24</td>
<td>24, -1.5, 1.0, 0.8125</td>
<td>58</td>
<td>ENGEN, 1, 3, 1, 1</td>
</tr>
<tr>
<td>25</td>
<td>25, -1.5, 1.5, 1.125</td>
<td>59</td>
<td>.1,3,1,4</td>
</tr>
<tr>
<td>26</td>
<td>26, -1.0, -1.5, 0.8125</td>
<td>60</td>
<td>.1,3,1,7</td>
</tr>
<tr>
<td>27</td>
<td>27, -1.0, -1.0, 0.5</td>
<td>61</td>
<td>.1,3,1,10</td>
</tr>
<tr>
<td>28</td>
<td>28, -1.0, -0.5, 0.3125</td>
<td>62</td>
<td>.1,3,1,37</td>
</tr>
<tr>
<td>29</td>
<td>29, -1, .25</td>
<td>63</td>
<td>.1,3,1,48</td>
</tr>
<tr>
<td>30</td>
<td>30, -1, .5, 3.125</td>
<td>64</td>
<td>.1,3,1,43</td>
</tr>
<tr>
<td>31</td>
<td>31, -1, 1, .5</td>
<td>65</td>
<td>.1,3,1,46</td>
</tr>
<tr>
<td>32</td>
<td>32, -1, 1.5, 3.125</td>
<td>66</td>
<td>ENGEN, 12, 3, 7, 1, 3</td>
</tr>
<tr>
<td>33</td>
<td>33, -5, -1.5, 6.25</td>
<td>67</td>
<td>.12,3,7,4,6</td>
</tr>
<tr>
<td>34</td>
<td>34, -5, -1, .3125</td>
<td>68</td>
<td>.12,3,7,7,9</td>
</tr>
<tr>
<td>35</td>
<td>35, -5, -1, .3125</td>
<td>69</td>
<td>.12,3,7,10,12</td>
</tr>
</tbody>
</table>
70 12,7,37,39 104 141 37,39 142
71 12,7,40,42 105 145 42
72 12,7,43,45 106 145 45
73 12,7,46,48 107 E,43,14
74 N,1,-1,-1,1,5 108 TYPE,3
75 N,3,-1,1,1,5 109 REAL,3
76 FILL 110 E,68,43
77 NGEN,3,1,3,1,1 111 M,18,18
78 N,10,-1,-1,1 112 M,27,31,2
79 12,-1,1,5 113 41,45,2
80 FILL 114 55,59,2
81 NGEN,3,10,12,1,1 115 ITER,15,5,1
82 N,17,-1,1,5 116 TIME,0.06
83 31,-1,1,5 117 ACEN,386,4
84 29,-1,25 118 KBC,1
85 41,-1,25 119 D,68,ALL
86 ,43, 120 D,1,UX,,18,,UY,ROTX,ROT
87 ,45,1,25 121 D,27,UX,,31,2,UY,ROTX,RO
88 ,55,1,1,5 122 D,41,UX,,45,2,UY,ROTX,RO
89 ,57,1,25 123 D,55,UX,,59,2,UY,ROTX,RO
90 ,59,1,1,5 124 KRF,1
91 ,68,,-2, 125 LWRITE
92 TYPE,2 126 ITER,25,5,1
93 TY,ROTZ 127 TIME,0.07
94 EN,73,10,13,14,11,1,4,5,2 128 ACEN,386,4
95 ENGEN,3,1,2,1,73 129 KBC,1
96 ENGEN,2,2,3,73,74 130 KRF,1
97 TYPE,3 131 LWRITE
98 REAL,2 132 ITER,150,10,1
99 E,27,10 133 TIME,0.08
100 31,12 134 ACEN,386,4
101 55,16 135 KBC,1
102 59,18 136 KRF,1
103 E,29,11 137 LWRITE
104 41,13 138 AFWRITE
105 ,45,15 139 FINISH
106 ,57,17 140 /EXEC
107 E,43,14 141 /INPUT,27
108 TYPE,3 142 FINISH
109 REAL,3
/*

/PREP7
/TITLE, GENERATION SUPERELEM
KAN, 7
ET, 1.63, 1.63, 1.63
KAY, 6.2
KAY, 7.1
KAY, 8.1
EX, 1.26E6
NUXY, 1.25
DENS, 1.1965E-4
R, 1.06
N, 19, -1.5, -1.5, 1.125
20, -1.5, -1.0, 0.8125
21, -1.5, -0.5, 0.625
22, -1.5, 0.5, 0.625
23, -1.5, 0.5, 0.625
24, -1.0, -1.5, 0.8125
25, -1.5, 1.5, 1.125
26, -1.0, -1.5, 0.8125
27, -1.0, -1.0, 0.5
28, -1.0, -0.5, 0.3125
29, -1.0, -0.3125
30, -1.0, -0.5
31, -1.0, -5
32, -1.0, -1.5, 0.8125
33, -1.0, -1.5, 0.8125
34, -1.0, -1.5, 0.8125
ITER, 1, 1, 1
D, 27, UX, 31, 2, UY, ROTX, ROTY, ROTZ
D, 28, UX, 45, 2, UY, ROTX, ROTY, ROTZ
D, 55, UX, 59, 2, UY, ROTX, ROTY, ROTZ
LWRITE
AFWRITE
FINISH
/EXEC
/INPUT, 27
FINISH
*/
Bibliography

