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ABSTRACT 

This thesis presents the results of research in the area of

digital demodulation of FM signals. The first part of the

thesis describes the performance of digital Hilbert-trans-

formers and Differentiators that are optimized in a deter-

mined bandwidth. These digital filters are used to build a

digital Klapper-Kratt detector. According to this procedure,

the coefficients of the digital Klapper-Kratt detectors up

to the filter length N=25 are calculated and the resulting

discriminator ripple computed and evaluated. One suggested

algorithm gives the opportunity to balance the detector at

a certain center-frequency. The major part of this thesis

describes a new approach towards the digital FM-demodu-

lation. This approach uses an FIR-linear filter as a fre-

quency discriminator. The structure of the discriminator has

no restrictions as to certain lengths or certain kinds of

symmetry of coefficients. A practical approach to the FIR

discriminator is given and the chosen approximation tech-

nique is described. The dependence of FIR-discriminator

length, optimized bandwidth and resulting discriminator

ripple is presented. Weighted and split weighting functions

are described with discriminator examples. Changes in the

desired weighting function can be used to shape the resul-

ting discriminator ripple in a desired way. Discriminators

with these additional design criteria are presented. Finally

the results of the new design is discussed and a comparison

and evaluation given.
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CHAPTER I

INTRODUCTION

1.1 Different Approaches for the Demodulation of 

FM Signals 

Conventional FM demodulators can be classified into 4

families: Zero-crossing or cycle counting detectors exploit

zero crossing of the carrier. FM modulation of the carrier

causes displacement or density changes in regular crossings.

This displacememt can be detected. Discriminators employing

linear filters represent the second family. A linear filter

converts frequency modulation into amplitude modulation and

then AM demodulation techniques recover the baseband sig-

nal. Feedback demodulators comprise the third family of FM

demodulators. The Klapper-Kratt detector [1] and the FM-

detector described by Park [2] use linear filters to demodu-

late FM signals. The Klapper-Kratt detector simultaniously

cancels the carrier. These approaches make up the fourth

family of FM detectors.

The field of digital signal processing has grown enor-

mously in the last decade. Application areas that have

traditionally relied on analog signal processing have

switched to digital signal processing techniques. This trend

is also valid for the demodulation of FM-signals. Several

authors describe the results of experimental detectors or

simulations. Ray [3], El-Ghoroury and Gupta [4], Garodnick,

Greco and Schilling [5] and Kelly and Gupta [6] present
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digital or modified techniques for the demodulation of FM-

signals. The digital implementation of the Klapper-Kratt

detector described by Kratt and Klapper [7] uses, similar to

the analog version, the quadrature technique for the demodu-

lation of FM-signals. Kammeyer [8] and Finck and Hoelzl [9]

follow the same method, realizing the advantages in using

quadrature signals.

1.2 Nomenclature 

The digital FM demodulator processes digitized FM sig-

nals of the sampling frequency F. One characteristic of

this system is the use of the frequency F clock as the fre-

quency to trigger the sample-and-hold-circuit and as the

clock frequency for the digital demodulator. In this system,

the sampling frequency F s has to be at least twice as high

as the highest frequency to be processed.
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It is often desirable to express frequencies F a ', Fb'

in terms of a unit frequency that involve the sampling

frequeny F s . For this reason all frequencies are normalized

to the sampling frequency F s .

One significant parameter for calculations of FM-

discriminators is the linearity of the discriminator.

Currently used optimization programs [10] give the maximum

deviation in amplitude of a bandpass filter, Hilbert-

transformers, differentiators or in this thesis described

discriminators. The following equation is used to calculate

the absolute discriminator ripple in dB with given optimized

bandwidth Fbw', slopes of the discriminator and relative

discriminator ripple dev.

Figure 1-2 illustrates this:
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Table 1-1 gives some typical values for the absolute

discriminator ripple:

Table 1-1: Discriminator ripple in dB
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CHAPTER II

DIGITAL KLAPPER-KRATT DETECTOR 

2.1 Functional Description 

Klapper and Kratt [1] introduced a detector with ex-

treme linearity, low deleay, and excellent sensitivity.

Later, Kratt and Klapper [2] discussed a digital implemen-

tation of the detector. Fig. 2-1 shows the block diagram of

one member of the family of Klapper-Kratt detectors:

Fig 2-1 Block diagram of a Klapper-Kratt detector

This detector consists of one differentiator (Dl), two

Hilbert-transformers (H1, H2), two adders (S1, S2) and two

multipliers (M1, M2). The components of the detector can

easily be implemented by using digital signal processing

techniques. The Hilbert-transformer and the differentiator

can be built as Finite Impulse Response (FIR) filters. These

are nonrecursive filters with linear phase. Additions and

multiplications are simple binary arithmetric operations.
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The detector shown in Fig. 2-1 is one member of the Klapper-

Kratt detector family. Other configurations are possible and

are described in references 1 and 2. All detectors have in

common an excellent sensitivity and a good wideband capabi-

lity.

The described detector consists of a frequency

discriminator and a quasi-coherent detector. Fig. 2-1 shows

the processing of an input signal ei(t) = sine() t. The pro-

cessing of sine is shown at the output of each block of the

detector. The cance lat ion of the carrier is achieved by

applying sin 2wt + cos 2wt = 1. The output of the detector

shows the linear dependence eo(t) =o) - 1 of the detected

signal on the radian frequency ω.

2.2 Theoretical Performance 

For a causal FIR-system with the impulse response

we get the frequency response [Reference 3, p 20]

For odd filter length N and by applying anti-symmetri-

cal filter coefficients, this formula reduces to [Reference

3, p 20]
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This is purely a real function and can be used to compute

the frequency response of an FIR filter. Kratt and Klapper

analyzed the detector given in figure 2-1 and found the

following output of the detector:

They made four assumptions, to arrive at this formula:

- the length of all filters N (components of the

detector), is the same for all

- Hilbert-transformer H1 and H2 have the same

coefficients

- the length of the filters is odd

- the symmetry of the coefficients is negative

2.3 Synthesis of the Digital Klapper-Kratt Detector 

Using an odd filter length, all calculated values at

the output of the Hilbert-transformers and differentiator

occur exactly at the sampling instant. Even filter length

creates calculated values with a timing that lies exactly

between two sampling instances. The processing of these

signals is impossible in the given structure of the block

diagram of Fig. 2-1.

Filters with negative coefficient symmetry cause a

filter output of zero at the frequency zero. This is one

design criterion for the differentiators. McClellan, Parks,

and Rabiner [4] present a computer program that is used to
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calculate the coefficients of the Hilbert-transformers and

differentiators. This computer program applies the Remez-

method [5] to optimize the design of filters in the Cheby-

chev- or Minimax-sense. It optimizes the coefficients a(n)

of equation 2-2 to get minimum error in a chosen frequency

range.

2.3.1 Performance of Hilbert-Transformers 

The frequency response of the ideal Hilbert-transformer

[6] can be described by

The impulse response of the ideal Hilbert-transformer can be

described for odd filter length by:

The following figures show the comparison between the

ideal Hilbert-transformer and an optimized Hilbert-transfor-

mer with filter length N = 11. The Hilbert-transformer is

optimized between the frequencies F 1 = 0.15 and F 2 = 0.35.
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The next figures show an example of the frequency res-

ponse and ripple of a non-ideal Hilbert-transformer with

filterlength N = 11.

Fig. 2-3 Frequency ripple of the non-ideal Hilbert-
transformer, F 1 =0.15, F 2 =0.35, N=11
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The ripple in the frequency domain is the design crite-

rion for the computer program. It is defined:

The following table gives the coefficients of the Hil-

bert-transformer with filter length N = 11 and the first

coefficients of the ideal Hilbert-transformer. The number of

coefficients for the ideal Hilbert-transformer is infinite.

optimized ideal

H(6) 0.0 0
H(5), 	 -H(7) 0.59718 0.63662
H(4), 	 -H(8) 0.00001 0
H(3), 	 -H(9) 0.11623 0.21221
H(2), 	 -H(10) 0.00001 0
H(1), 	 -H(11) 0.01942 0.12732

Table 2-1 Coefficients of ideal and non-ideal
Hilbert-transformers

The following tables and figures present the filter

ripple r vs. odd and even filter length N:

Filter length 5 7 9 11 13

Ripple in dB -19.6 -41.6 -41.6 -62.7 -62.7

Filter length 15 17 19 21 23

Ripple in dB -83.3 -83.3 -104.0 -104.0 -126.9

Table 2-2 Ripple of Hilbert-transformer with odd
filter length N, F 1 = 0.15, F 2 = 0.35



Filter length 4 6 8 10 12

Ripple in dB -21.7 -33.1 -44.0 -54.6 -65.1

Filter length 14 16 18 20 22

Ripple in dB -75.6 -86.0 -96.1 -106.3 -116.3

Table 2-3 Ripple of Hilbert-transformer with even
filter length N„ f l = 0.15, f 2 = 0.35

12

Fig. 2-4 Ripple of the Hilbert-transformer vs. length
of the Hilbert-transformer N

The results of the calculations show that for N=N 1 +2,

where N' =3,7,11,15,.—,(4N-1); N = positive integer, there

is no improvement in the resulting ripple of the discri-

minator.
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2.3.2 Performance of Differentiators 

The frequency response of the ideal differentiator [7]

can be described by

The impulse response of the corresponding ideal differentia-

tor can be described for odd filter length by:

The following figures show a comparison between the ideal

differentiator and an optimized differentiator with the

filter length N = 11. The differentiator is optimized

between the frequencies F 1 = 0.15 and F 2 = 0.35.



Fig. 2-5 Frequency response of a non-ideal
differentiator, F 1 = 0.15, F 2 = 0.35, N=11
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Fig. 2-6 Frequency ripple of an non-ideal
differentiator, F 1 = 0.15, F 2 = 0.35, N=11
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The ripple in the frequency domain is the design cri-

terion for the computer program.

It is important, due to the definition of the differen-

tiator, that the error of the differentiator be permitted to

increase with freququency. The following table gives the

coefficients of the differentiator with filter length N = 11

and the first coefficients of the ideal differentiator. The

number of the coefficients for the ideal differentiator is

infinite.

coefficient optimized ideal

D(6) 0.0 0
D(5), 	 -D(7) 0.14917 0.159154
D(4), 	 -D(8) -0.05839 -0.079577
D(3), 	 -D(9) 0.02881 0.053051
D(2), 	 -D(10) -0.00993 -0.039789
D(1), 	 -D(11) 0.00471 0.031831

Table 2-4 Coefficients of ideal and non-ideal
differentiator

The following tables and figures present filter ripple

r vs. odd and even filter length N:

Filter length 5 7 9 11 13

ripple in dB -19.5 -30.7 -41.5 -52.1 -62.6

Filter length 15 17 19 21 23

ripple in dB -73.1 -83.3 -93.6 -103.8 -113.9

Table 2-5 Ripple of differentiator with odd filter
length N, F 1 = 0.15, F 2 = 0.35



Filter length 4 6 8 10 12

Ripple in dB -38.8 -53.5 -66.8 -79.3 -91.4

Filter length 14 16 18 20 22

Ripple in dB -103.2 -114.8 -125.8 -138.0 -152.0

Table 2-6 Ripple of differentiator with even filter
length N, Fl = 0.15, F, = 0.35

16

The results presented in this part are similar to the

results in [7]. The ripple of differentiators with even

filter length is more than 26 dB smaller than differentia-

tors with similar length but odd filter length. An increase

in differentiator length always means an improvement in

ripple.
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2.3.3 Balancing Problem of the Klapper-Kratt Detector 

The computer program by McClellan, Parks, and Rabiner

[3] calculates the coefficients for the Hilbert-transformers

and differentiators. The coefficients H(n) of the Hilbert-

transformers can be used directly. To get the desired detec-

tor output, the slope of the discriminator has to be appro-

ximately the value 4. This allows, a desired zero detector-

output at the frequency F c = 0.25 to be achieved. The coef-

ficients D(n) = h d (n) have to be corrected with the factor

k.

The correction factor k is dependent on the filter-

length N and the coefficients of the Hilbert-transformer and

differentiator.
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These formulas can be proved by evaluating equation 2-3 at

the frequency f = 0.25. Every other sample has no influence

on balancing the frequency response at this frequency.

The next table shows the coefficients of the Hilbert-

transformer and the coefficients of the differentiator with

slope equal to 4 before and after correction. The filter

length N is 7 and the calculated filter is optimized between

the two frequencies F 1 = 0.15 and F 2 = 0.35.

slope = 4 corrected

C(4) 0 0 0
C(3), 	 - C(5) 0.5805339 0.5795584 0.5773027
C(2), 	 -C(6) -0.0000329 -0.1949638 -0.1942053
C(1), 	 - C(7) 0.0847717 0.0818591 0.0815405

Table 2-7 Correction of optimized coefficients

The correction coefficient used in this example has the

value k = 3.9844315. The correction improved the suppression

of the carrier at F c = 0.25 from -48.9 dB to -245.4 dB. It

isobvious that a big improvement of the cancellation of the

carrier can be achieved by applying the suggested formulas.

The suggested equations are not only valid for the design of

Klapper-Kratt detectors according to this design procedure,

but for all design procedures, if a cancellation of the
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carrier at F c = 0.25 is desired. The observation that every

other coefficient of the Hilbert-transformer and differen-

tiator is almost zero can be used to simplify the FM de-
tector.

2.3.4 Performance of the Klapper-Kratt Detector with 

Optimized Hilbert-Transformers and Differentiators 

Optimized Hilbert-transformers and differentiators are

used for the synthesis of the digital Klapper-Kratt detec-

tor. The mentioned computer program [4] calculates the coef-

ficients. The coefficients of the digital Klapper-Kratt

detector are also corrected according to the earlier

described procedure. The next table presents as an example

the coefficients of the detector with filter length N = 13.

Coefficient
C(n)

Hilbert-
transformer

Differen-
tiator

C(7) 0 0
C(6), 	 -C(8) 0.5971854 0.5971771
C(5), 	 -C(9) 0.0000342 -0.2537362
C(4), 	 -C(10) 0.1162392 0.1162203
C(3), 	 -C(11) 0.0000370 -0.0611803
C(2), 	 -C(12) 0.0194197 0.0194091
C(1), 	 -C(13) 0.0000182 -0.0094088

Table 2-8 Optimized and corrected coefficients,
N = 13, F 1 = 0.15, F 2 =0.35

The following figures present the detector output and

the detector ripple.



Fig 2-8 Detector output vs. frequency,
N13, F 1 = 0.15, F 2 = 0.35
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Fig 2-9 Detector ripple vs. frequency,
F l= 0.15, F 2 = 0.35

It is obvious that the ripple of the synthesized Klap-

per-Kratt detector is no longer as smooth as the ripple of

its components.
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The following table and figure give the resulting

ripple for the detectors synthesized out of optimized Hil-

bert-transformers and differentiators.

Detector length N 5 7 9 11

Detector ripple in dB -21.9 -28.8 -43.3 -50.5

Detector length N 13 15 17 19

Detector ripple in dB
I-

-64.6 -70.7 -77.7 -92.0

Table 2-9 Detector ripple of the Klapper-Kratt
detector, N13, F l = 0.15, F 2 = 0.35

Fig. 2-10 Detector ripple of the Klapper-Kratt
detector, N=13, F l = 0.15, F 2 = 0.35
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The ripple of the detector can be closely calculated by

the fo11owing formula:

The ripple of a Klapper-Kratt detector with an over-all

optimlization is approximately 6 x 10 -3 . This is equivalent

to -44.4 dB. Each filter of the Klapper-Kratt detector has a

length of N=7. This detector is for the comparison also in

figure 2-10.

2.3.5 Discussion of the Calculated Klapper-Kratt 

Detector 

As shown earlier, the research shows a clear

superiority of the over-all optimized detector over the

detector with optimized components. The gain of the optimi-

zation for the whole detector is approximately 12 dB at the

filter length N = 7. The results show also, that there is an

advantage for certain filter structures and that the res-

triction to a certain filter structure puts restrictions on

the performance of the filters.
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CHAPTER III

FINITE IMPULSE RESPONSE FILTER APPROACH 

FOR FREQUENCY DISCRIMINATORS 

3.1 Introduction 

This chapter presents a brief summary of possible FIR

filters cases and their characteristics. As shown earlier,

FIR filters can be used to build multiple bandpass/stopband

filter, Hilbert-transformers and differentiators. The FIR

discriminator is introduced and analyzed as a fourth type of

FIR linear phase filter.

3.1 Minimax-Error FIR Discriminators 

Rabiner and Gold [1] distinguish FIR filters by

symmetry and filter length. They categorize the filters into

the following 4 cases:

Case Symmetry Length

1 positive odd
2 positive even
3 negative odd
4 negative even

Table 3-1 Categorization of FIR-filters

Positive symmetry of the coefficients is defined by

Negative symmetry of the coefficients is defined by
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The following figures show typical impulse responses of FIR-

filters

Fig. 3.1 Typical impulse response for case 1,
N odd, positive symmetry, N=11

Fig. 3.2 Typical impulse response for case 2,
N even, positive symmetry, N=10



Fig. 3.3 Typical impulse response for case 3,
N odd, negative symmetry, N=11
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Fig. 3.4 Typical impulse response for case 4
N even, negative symmetry, N=10
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Rabiner and Gold prove, that all four cases of FIR-

filters imply exactly linear phase filters.
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Case 4: Antisymmetrical impulse response, N even:

Depending on the case of FIR-filter, several restric-

tions apply. The following table gives an overview over

these restrictions in the frequency-domain

Case 	 if Symmetry Length H 	 at
f = 0

H	 at
f = 	 0.5

Case 1 positive odd X X
Case 2 positive even X 0
Case 3 negative odd 0 X
Case 4 negative even 0 0

X = No restriction

Table 3-2 Frequency-restrictions for different
cases of FIR filters

This table shows, that FIR filter of case 2 necessarily

have to have an output of zero at frequency if = 0.5. Some-

times this is desired, in other cases (highpass filter) it

is not desired.

One result up to now is, that for the optimization of

certain filter types, filter cases should be chosen, whose

restrictions in the frequency domain do not contradict the

desired frequency response.

Rabiner, et al. [1,2] describe a method to rewrite the

four cases in a common form. By this, the four cases are

expressed as a summation of cosines.



Table 3-3 Transformations for Remez-exchange
algorithm

A central computation method, based on the Remez exchange

algorithm [3] is used to calculate the best approximation.

D(f) is the desired magnitude response.

Rabiner, Gold, McClellan, and Parks apply the Remez ex-

change algorithm to calculate bandpass filters, Hilbert-

transformers and differentiators. The optimization of these

filters is performed between two chosen frequencies F 1 and

F 2.

To calculate optimized FIR discriminators, it is

necessary, to define D(f) for the optimization.

29



30

Fig. 3-5 Ideal frequency response D(f) of the
FIR-discriminator, s = slope

The ideal frequency response of the differentiator can

be expresses as:

W(f) is a modified weighting function. The Chebyshev

approximation in the frequency range f between F 1 and F 2 for

the discriminator may be stated as the minimization of the

quantity

by choice of the coefficients of P(f). The original

weighting function is W(f). McClellan, Parks and Rabiner

suggest a filter design algorithm [2]. The following chart

shows the original chart with changes for the calculation of

FIR discriminators.
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Fig. 3-6 Overall flow chart of filter design algorithm
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Programmodifications were done in the following

sections:

- input section

- output section

- weighting function (WATE)

- desired value function (EFF)

These changes are described in Appendices A, B and C.

Filters calculated according to this approach, are presented

later in this thesis.

3.3 A Practical Approach to FIR Discriminators 

The following pages describe the initial approach

towards the FIR discriminator. In the original computer

program [3] of McClellan, Parks and Rabiner present the

desired magnitude function (EFF). This function calculates

the ideal magnitude of bandpass filters, differentiators and

Hilbert-transformers. The weighting function (WATE) deter-

mines the desired tolerance scheme. This practical approach

towards FIR discriminators, starts with the FIR differen-

tiator and changes the WATE- and EFF-function to get the

magnitude of a FIR discriminator. On the following pages,

one example of the design of an FIR discriminator with this

design algorithm is presented. This example illustrates the

evolution of the FIR differentiator to an FIR discriminator

with filter length N=7.
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The first figures show the frequency response and the

ripple of the original differentiator

Fig. 3-7 Frequency response of the original
differentiator, N=7, F 1=0.15, F 2=0.35

Fig. 3-8 Ripple of the original differentiator
N=7, F 1=0.15, F 2=0.35

The figures show, that the output of the differentiator

and its ripple are increasing with frequency.
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The following frequency response is the result of a

modified desired magnitude function EFF. The desired magni-

tude of the FIR filter is chosen to equal the magnitude of

the ideal discriminator. The ripple function of the discri-

minator still shows the typical behavior of the ripple

function of the differentiator.

Fig. 3-9 Frequency response of discriminator A
N=7, F 1 =0.15, F 2=0.35

Fig. 3-10 Ripple of discriminator A
N=7, F 1 =0.15, F2=0.35
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Modification of the desired magnitude function EFF and

the weighting function WATE result in the final FIR discri-

minator.

Fig. 3-11 Frequency response of the FIR discriminator,
(Discr. B),

Fig. 3-12 Ripple of the FIR discriminator (Discr. B)
N=7, F 1 =0.15, F 2 =0.35

The following table gives the coefficients of 3

filters. These coefficients are the coefficients of the



36

original differentiator, the discriminator with an

error function of the differentiator and the final FIR

discriminator with equiripple error.

Different. Discr. A Discr. 	 B

D(4) 0 0 0
D(3)	 = -D(5) 0.14487990 -0.00088687 -0.00000003
D(2) 	 = 	 -D(6) -0.04872001 -0.04853990 -0.04873794
D(1) 	 = 	 -D(7) 0.02046250 -0.00264300 -0.00000003

Different. = original differentiator
Discr. A = discriminator with unchanged error function
Discr. B = discriminator with modified error function

Table 3-4 Coefficients of differentiator, discriminator A
and discriminator B
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CHAPTER IV

CHARACTERISTICS OF FIR DISCRIMINATORS 

4.1 Introduction 

This chapter presents the results of research in the

field of FIR discriminators. The previous chapter gives the

theoretical background to this kind of FIR filters. The

calculation and evaluation of approximately 500 FIR discri-

minators gives insight into a new application of digital FIR

filters. Under research are such points as constant and

weighted error function, shifted center frequencies of dif-

ferent classes of FIR filters and the detector sensitivity.

The first part of this chapter presents results of FIR

discriminators with constant weighting function. Weighting

functions give the opportunity to shape the tolerance scheme

of a desired magnitude.

Equation 3-16 shows that the error of the discriminator

is the difference of the ideal and nonideal discriminator

multiplied by a weighting function W(f). The weighting

function can be independent of f

The next section presents the characteristics of FIR discri-

minator with constant weighting functions.



4.2 Constant Weighting Functions for FIR Discriminators 

4.2.1 Dependence of FIR Discriminator Ripple on

Filter Length 

38

Fig. 4-1 Frequency response of typical FIR discriminator,
N=15, F 1 =0.15, F 2=0.35, W(f)=const., s=1

Fig. 4-2 Discriminator ripple of typical FIR discrimi-
nator, N=15, F 1=0.15, F 2=0.35, W(f)=const., s=1
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The previous figures show a typical FIR discriminator

(N=15) with constant weighting function. The following

figure shows the absolute value of the discriminator ripple.

Fig. 4-3 Error magnitude for typical FIR discriminator,
N=15, F 1 =0.15, F 2 =0.35, W(f)=const., s=1

The described filter has the following coefficients

D(n) coefficient

D(8) 0
D(7) 	 = 	 -D(9) 0.00000070
D(6) 	 = 	 -D(10) -0.06361061
D(5) 	 = 	 -D(11) 0.00000150
D(4) 	 = 	 -D(12) -0.01547578
D(3) 	 =	 -D(13) 0.00000113
D(2) 	 = 	 -D(14) -0.00243084
D(1) 	 =	 -D(15) 0.00000039

Table 4-1 Coefficients of a typical FIR discriminator

The following tables give the values of the filter

ripple for all four filter cases (see Table 3-1) and with

different filter bandwidths. The center frequencies in all

cases is F c =0•25.
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filter
length N

ripple
case 2

ripple
case 4

filter
length N

ripple
case I

ripple
case 3

- - - 3 -73.8 -
4 -47.9 -47.9 5 -73.8 -61.5
6 -63.3 -63.3 7 -113.2 -61.5
8 -82.0 -82.0 9 -112.7 -95.4

10 -97.7 -97.6 11 -149.5 -95.4
12 -115.6 -115.4 13 -149.6 -129.2
14 -131.6 -131.5 15 -198.8 -129.2
16 -148.4 -147.9 17 -198.2 -163.0
18 -167.2 -169.5 19 -200.0 -163.0
20 -187.1 -180.0 21 -200.0 -170.0
22 -200.0 -170.0 23 -200.0 -170.0

Table 4-2 FIR discriminator ripple vs filter length N
for filter case 1-4, F 1=0.2, F 2=0.3

Fig. 4-4 FIR discriminator ripple vs filter length N
for filter case 1-4, F 1=0.2, F 2=0.3
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filter
length N

ripple
case 2

ripple
case 4

filter
length N

ripple
case 1

ripple
case 3

- - - 3 -55.5 -
4 -34.9 -34.9 5 -55.5 -42.7
6 -44.5 -44.5 7 -82.0 -42.7
8 -56.5 -56.5 9 -82.0 -64.2

10 -66.3 -66.3 11 -106.2 -64.2
12 -77.5 -77.5 13 -106.2 -85.1
14 -87.3 -87.3 15 -129.1 -85.1
16 -98.2 -98.2 17 -129.1 -105.7
18 -108.0 -108.0 19 -152.7 -105.7
20 -118.5 -118.5 21 -152.7 -126.0
22 -128.4 -128.4 23 -170.0 -126.0

Table 4-3 FIR discriminator ripple vs filter length N
for filter case 1-4, F 1=0.15, F2=0.35

Fig. 4-5 FIR discriminator ripple vs filter length N
for filter case 1-4, F 1=0.15, F 2=0.35
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filter
length N

ripple
case 2

ripple
case 4

filter
length N

ripple
case 1

ripple
case 3

- - - 3 -44.6 -
4 -26.3 -26.3 5 -44.6 -30.9
6 -32.4 -32.4 7 -63.4 -30.9
8 -40.1 -40.1 9 -63.4 -44.5

10 -46.3 -46.3 11 -79.7 -44.5
12 -53.2 -53.3 13 -79.7 -57.7
14 -59.4 -59.4 15 -94.8 -57.5
16 -66.1 -66.1 17 -94.8 -70.3
18 -72.1 -72.1 19 -109.1 -70.3
20 -78.7 -78.7 21 -109.1 -82.8
22 -84.7 -84.7 23 -123.1 -82.8

Table 4-4 FIR discriminator ripple vs filter length N
for filter case 1-4, F 1 =0.1, F 9=0.4

Fig. 4-6 FIR discriminator ripple vs filter length N
for filter case 1-4, F 1=0.1, F 2=0.4
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All the following results are drawn for the center

frequency F c=0.25. The calculations show the following

results:

- the larger the bandwidth of the discriminator, the

worse the resulting approximation and the larger the

discriminator ripple, as expected.

- FIR discriminators with even length and positive

(class 2) or negative coefficient symmetry (class 4)

have the same ripple for the same filter length N.

- FIR discriminators with even length (class 1 and 3)

do not show necessarily an improvement of discrimina-

tor ripple with two additional coefficients. Only

every other couple of new coefficients result in an

improvement in FIR discriminator ripple.

- FIR discriminators with odd length (class 2 and 4)

show always an improvement of discriminator ripple

with two additional coefficients.

- case 1 (odd filter length and positive symmetry of

the coefficients) is the best approach for F c=0.25 at

different bandwidths.
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4.2.2 Dependence of FIR Discriminator Ripple on 

Discriminator Bandwidth 

To design FIR discriminators, it is useful to know the

interdependence between FIR discriminator ripple and FIR

discriminator bandwidth Fbw* The discriminator bandwidth is

defined as the difference between the two limits of opti-

mization F 1 and F 2 .

The following evaluated filters have in common a center

frequency of F c=0.25. Assuming symmetry around F c , F 1 and F 2

can be expressed by the discriminator bandwidth Fbw.

The next table gives the values of F1and F 2 for the

discriminators with different discriminator bandwidths F bw .

Fbw F 1 F2

0.025 0.2375 0.2625
0.05 0.225 0.275
0.1 0.2 0.3
0.15 0.175 0.325
0.2 0.15 0.35
0.25 0.125 0.375
0.3 0.1 0.4
0.35 0.075 0.425
0.4 0.05 0.45
0.45 0.025 0.475

Table 4-5 Discriminator bandwidth and
limits of optimized frequencies
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The following tables and graphs show the dependence

between FIR discriminator bandwidth and FIR discriminator

ripple. The chosen filter length for case 1 and case 3 are

N=5, N=7, N=9, and N=11. For the other cases the chosen

filter lengths are N=4, N=6, N=8, and N=10. All filters have

the center frequency at F c=0.25.

Fbw filter length N
3 5 7 9

0.025 -100.0 -100.0 -150.0 -150.0
0.05 -91.8 -91.8 -143.4 -143.4
0.1 -73.7 -73.7 -113.2 -113.2
0.15 -63.0 -63.0 -94.9 -94.4
0.2 -55.5 -55.5 -82.0 -82.0
0.25 -49.5 -49.5 -71.9 -71.9
0.3 -44.6 -44.6 -63.4 -63.4
0.35 -40.4 -40.4 -56.0 -56.0
0.4 -36.7 -36.7 -49.3 -49.3
0.45 -33.4 -33.4 -43.2 -43.2
0.475 -31.8 -31.8 -40.2 -40.2

Table 4-6 FIR discriminator ripple in dB for different
discriminator bandwidths for case 1 filter
(N=odd, positive symmetry, Fc=0.25)

Fbw filter length N
4 6 8 10

0.025 -72.2 -100.0 -125.0 -161.8
0.05 -60.1 -82.4 -106.4 -128.5
0.1 -47.9 -63.3 -82.0 -97.7
0.15 -40.4 -52.4 -67.3 -79.5
0.2 -34.9 -44.5 -56.5 -66.3
0.25 -30.3 -38.0 -47.8 -55.6
0.3 -26.3 -32.4 -40.1 -46.3
0.35 -22.6 -27.3 -33.1 -37.8
0.4 -19.1 -22.4 -26.4 -28.7
0.45 -15.6 -17.4 -19.6 -21.4
0.475 -14.5 -14.8 -15.9 -16.9

Table 4-7 FIR discriminator ripple in dB for different
discriminator bandwidths for case 2 filter
(N=even, positive symmetry, F c=0.25)



Fbw filter length N
5 7 9 11

0.025 -100.0 -100.0 -200.0 -200.0
0.05 -79.7 -79.9 -126.4 -126.4
0.1 -61.5 -61.5 -96.0 -96.0
0.15 -50.6 -50.6 -77.6 -77.6
0.2 -42.7 -42.7 -64.2 -64.2
0.25 -36.4 -36.4 -53.6 -53.6
0.3 -30.9 -30.9 -44.5 -44.5
0.35 -26.0 -26.0 -36.1 -36.1
0.4 -21.3 -21.3 -28.5 -28.5
0.45 -18.8 -16.8 -20.6 -20.6
0.475 -14.7 -14.7 -16.5 -16.5

Table 4-8 FIR discriminator ripple in dB for different
discriminator bandwidths for case 3 filter
(N=odd, negative symmetry, F c=0.25)

Fbw filter length N
4 6 8 10

0.025 -72.4 -100.6 -133.0 -150.0
0.05 -60.1 -82.4 -108.0 -128.5
0.1 -47.9 -63.3 -82.0 -97.7
0.15 -40.4 -52.4 -67.3 -79.5
0.2 -34.9 -44.5 -56.5 -66.3
0.25 -30.3 -38.0 -47.7 -55.6
0.3 -26.3 -32.4 -40.1 -46.3
0.35 -22.6 -27.3 -33.1 -37.8
0.4 -19.1 -22.4 -26.4 -29.7
0.45 -15.6 -17.4 -19.6 -21.4
0.475 -13.8 -14.8 -15.9 -16.9

Table 4-9 FIR discriminator ripple in dB for different
discriminator bandwidths for case 1 filter
(N=even, negative symmetry, F c=0.25)
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Fig. 4-7 FIR discriminator ripple for different
discriminator bandwidths for case 1 filter
(N=odd, positive symmetry, Fc=0.25)
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Fig. 4-8 FIR discriminator ripple for different
discriminator bandwidths for case 2 filter
(N=even, positive symmetry, F= 0 . 25 )
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Fig. 4-9 FIR discriminator ripple for different
discriminator bandwidths for case 3 filter
(N=odd, negative symmetry, F c=0.25)
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Fig. 4-10 FIR discriminator ripple for different
discriminator bandwidths for case 4 filter
(N=even, negative symmetry, F c=0.25)
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Preceding figures and tables show the interdependence

between FIR discriminator bandwidth and FIR discriminator

ripple for filters of different cases and discriminator

lengths N. The charts allow the following conclusions for

F c=0.25 and a discriminator with a slope of s = 1:

- For a certain bandwidth, the resulting FIR

disciminator ripple is dependent on the chosen filter

case.

- The narrower the bandwidth, the better the approxi-

mation. This result was already derived from

the charts discussed earlier. But these figures give

values for the improvement of FIR discriminator

ripple.

- identical characteristics are obtained for the fo11o-

wing filters:

filter class 1: N=3 identical with N=5

filter class 1: N=5 identical with N=7

filter class 3: N=5 identical with N=7

filter class 3: N=9 identical with N=11

- conclusion: for odd length of N two additional

coefficients do not mean automatically an improvement

in filter ripple.
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4.2.3 Shifted Center Frequency of the FIR Discriminator 

All experiments up till now assumed a center frequency

F c = 0.25. In many practical cases this choice is

favorable. The reason is the symmetry of frequency modu-

lation relative to F c and the requirement to sample the FM

signal with frequency of at least two times the highest

frequency component in the FM signal.

This part of the thesis deals with a shifted carrier

frequency F c . The folowing tables and figures are the result

of computations of filters with a shifted carrier frequency.

All calculated filters have in common a constant discri-

minator bandwidth Fbw of 0.2. The frequency shift F sh is

defined
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Figure 4-11 shows the desired magnitude for original

and shifted center frequencies between F c=0.15 and F c=0.35.

The slope (s=1) and the bandwidth (F bw=0.2) is constant for

this set of calculated discriminators.

The objective of this experiment is to find the inter-

dependence between shifted center frequency and ripple. The

results are shown below. The tables and figures show the

optimized frequency bands and the resulting discriminator

ripple. The chosen filter in this case is a filter with odd

filter length and negative symmetry of the coefficients.

shift f l f 2 f bw fc

0.0 0.15 0.35 0.2 0.25
0.025 0.125 0.325 0.2 0.225
0.05 0.1 0.3 0.2 0.2
0.1 0.05 0.25 0.2 0.15

Table 4.10 Shifted center frequencies

filter
length N 0.0 0.025

Fsh
0.05 0.1

5 -42.7 -37.8 -33.6 -26.9
7 -42.7 -41.7 -39.2 -31.6
9 -64.2 -55.2 -48.6 -36.6

11 -64.2 -61.5 -55.7 -41.2
13 -85.1 -72.8 -63.8 -45.8
15 -85.1 -80.1 -71.2 -50.3
17 -105.7 -90.3 -78.8 -54.7
19 -105.7 -98.4 -86.2 -59.0
21 -126.0 -107.7 -93.7 -63.4
23 -126.0 -126.0 -116.0 -67.7

Table 4-11 Discriminator ripple of case 3 filters
for different shifted centerfrequencies
(s=1, Fbw=0.2)
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This table and the following graph show, that any shift

of the center frequency F c=0.25 is equivalent to an increase

of the filter ripple. The following chart shows the results

of a shifted center frequency with discrete shifted frequen-

cies Fsh. The results derived from figure 4-12 are only

valid for filter class 3.

Fig. 4-12 Discriminator ripple vs. filter length N for
original discriminator and shifted center
frequencies (class 3 filter, s=1)
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Calculations and evaluations of FIR discriminators with

shifted center frequencies show that it is necessary to

distinguish between all four filter cases. It is desirable

to find the degredation or improvement of discriminator

ripplefoe any center frequency F c . This is the reason,

why each filter case has to be calculated and evaluated

seperately.

The fo11owing items are presented for eachfilter case:

- coefficients of selected filters

- frequency response of selected filters

- discriminator ripple of selected filters

- discriminator ripple for different filter-

lengths and center frequencies.



56

FIR DISCRIMINATOR, CASE 1 (ODD N, POSITIVE SYMMETRY) 

The chosen filter length N for this filter case is 9.

C fc = 0.2 fc =	 0.25 fc = 	 0.3

C5 0.03617845 -0.00000024 -0.03617878
C4 = C6 -0.08340978 -0.09172028 -0.08340996
C3 = C7 -0.00947005 -0.00000014 0.00946985
C2 = C8 -0.00100986 -0.00415503 -0.00100997
Cl = C9 -0.00259275 -0.00000005 0.00259271

Cn = C(n)

Table 4-12 Coefficients of selected filters for
shifted center frequency (case 1)

The frequency responses of these discriminators are

presented in Fig. 4-13. Fig 4-14 shows the magnitude of the

discriminator ripple for the selected filters.

The table shows the filter ripple for case 1 filters of

different filter length N and shifted center frequencies.

3 5 7 9 11 13

0.1 -33.0 -38.0 -41.4 -43.8 -45.7 -47.2
0.125 -35.7 -42.7 -48.6 -53.4 -57.8 -61.7
0.15 -38.4 -46.7 -54.7 -61.4 -67.6 -73.5
0.175 -41.3 -50.1 -60.2 -68.4 -76.4 -83.9
0.2 -44.8 -52.9 -65.8 -74.7 -86.6 -93.3
0.225 -49.5 -54.7 -73.3 -79.8 -93.3 -101.8
0.25 -55.5 -55.5 -82.0 -82.0 -106.2 -106.1
0.275 -49.5 -54.7 -73.3 -79.8 -93.3 -101.8
0.3 -44.8 -52.9 -65.8 -74.7 -86.6 -93.3
0.325 -41.3 -50.1 -60.2 -68.4 -76.4 -83.9
0.35 -38.4 -46.7 -54.7 -61.4 -67.6 -73.5
0.375 -35.7 -42.7 -48.6 -53.4 -57.8 -61.7
0.4 -33.0 -38.0 -41.4 -43.8 -45.7 -47.2

Table 4-13 Discriminator ripple for center frequencies of
the discriminator between 0.1 and 0.4 for
case 1 filter, s = 1, Fbw = 0.2
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Fig 4-13 Frequency responses of selected filters
(filter case 1)



Fig 4-14 Magnitude of filter ripple of selected
filters (case 1)
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Fig. 4-15 Discriminator ripple vs. shifted center
frequency F c for case 1 filters
(s = 1, Fbw = 0.2)

59



60

FIR DISCRIMINATOR, CASE 2 (EVEN N, POSITIVE SYMMETRY) 

The chosen filter length N for this filter case is 8.

C fc = 	 0.15 fc = 0.2 fc = 0.25 fc = 0.3

C4 = C5 0.0198361 -0.0146140 -0.0507390 -0.1688000
C3 = C6 -0.0887728 -0.0685610 -0.0691100 -0.1332000
C2 = C7 0.0232419 0.0115700 0.0081768 -0.0333900
Cl = C8 -0.0135686 -0.0071039 -0.0119500 -0.0313800

Cn = C(n)

Table 4-14 Coefficients of selected filters for
shifted center frequency (case 2)

The frequency responses of these discriminators are

presented in Fig. 4-16. Fig 4-17 shows the magnitude of the

discriminator ripple for the selected filters.

The table shows the filter ripple for case 2 filters of

different filter length N and shifted frequencies.

4 6 8 10 12 14

0.1 -35.5 -38.3 -41.7 -44.0 -45.9 -47.4
0.125 -38.9 -43.2 -49.2 -54.0 -58.3 -62.2
0.15 -44.2 -46.7 -56.3 -62.2 -68.6 -74.4
0.175 -46.4 -48.6 -63.8 -68.9 -78.2 -85.0
0.2 -41.6 -48.5 -71.0 -72.7 -89.3 -93.4
0.225 -37.8 -46.9 -62.5 -71.1 -86.2 -94.2
0.25 -34.9 -44.5 -56.5 -66.3 -77.5 -87.3
0.275 -32.5 -41.5 -51.5 -60.5 -69.9 -78.7
.0.3 -30.3 -38.3 -46.5 -54.5 -62.1 -69.7
0.325 -28.1 -34.9 -41.5 -47.8 -54.0 -60.2
0.35 -25.9 -30.9 -35.8 -40.6 -45.1 -49.7
0.375 -23.3 -26.3 -29.2 -32.8 -34.6 -37.3
0.4 -22.9 -23.2 -23.3 -23.4 -23.4 -23.5

Table 4-15 Discriminator ripple for center frequencies of
the discriminator between 0.1 and 0.4 for
case 2 filter, s = 1, F bw = 0.2
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Fig 4-16 Frequency responses of selected filters
(filter case 2)
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Fig 4-17 Magnitude of filter ripple of selected
filters (case 2)



Fig. 4-18 Discriminator ripple vs. shifted center
frequency F c for case 2 filters
(s = 1, Fbw = 0.2)
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FIR DISCRIMINATOR, CASE 3 (ODD N, NEGATIVE SYMMETRY) 

The chosen filter length N for this filter case is 9.

C fc = 0.2 fc =	 0.25 fc = 0.3

C5 0 0 0
C4 =-C6 0.03572285 0.00000005 -0.03572244
C3 =-C7 -0.07317143 -0.05839286 -0.07317072
C2 =-C8 0.01215681 -0.00000001 -0.01215624
Cl =-C9 -0.01890966 -0.00993923 -0.01890829

Cn = C(n)

Table 4-16 Coefficients of selected filters for
shifted center frequency (case 3)

The frequency responses of these discriminators are

presented in Fig. 4-19. Fig 4-20 shows the magnitude of the

discriminator ripple for the selected filters.

The table shows the filter ripple for case 3 filters of

different filter length N and shifted center frequencies.

Fc filter lengthN
3 5 7 9 11 13

0.1 -23.1 -23.3 -23.4 -23.5 -23.5 -23.5
0.125 -23.7 -26.6 -29.5 -32.3 -35.0 -37.5
0.15 -26.9 -31.6 -36.6 -41.2 -45.8 -50.3
0.175 -30.1 -35.8 -42.7 -48.9 -55.1 -61.2
0.2 -33.6 -39.2 -48.6 -55.7 -63.8 -71.2
0.225 -37.8 -41.8 -55.2 -61.5 -72.8 -80.2
0.25 -42.7 -42.7 -64.2 -64.2 -85.2 -85.2
0.275 -37.8 -41.8 -55.2 -61.5 -72.8 -80.2
0.3 -33.6 -39.2 -48.6 -55.7 -63.8 -71.2
0.325 -30.1 -35.8 -42.7 -48.9 -55.1 -61.2
0.35 -26.9 -31.6 -36.6 -41.2 -45.8 -50.3
0.375 -23.7 -26.6 -29.5 -32.3 -35.0 -37.5
0.4 -23.1 -23.3 -23.4 -23.5 -23.5 -23.5

Table 4-17 Discriminator ripple for center frequencies of
the discriminator between 0.1 and 0.4 for
case 3 filter, s = 1, F bw = 0.2
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Fig 4-19 Frequency responses of selected filters
(filter case 3)



Fig 4-20 Magnitude of filter ripple of selected
filters (case 3)
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Fig. 4-21 Discriminator ripple vs. shifted center
frequency F c for case 3 filters
(s = 1, F bw = 0.2)
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FIR DISCRIMINATOR, CASE 4 (EVEN N, NEGATIVE SYMMETRY) 

The chosen filter length N for this filter case is 8.

C fc = 	 0.2 fc = 0.25 fc = 	 0.3 fc = 	 0.35

C4 =-05 0.16889440 0.05073904 -0.00710340 -0.09836000
C3 =-C6 -0.13329600 -0.06911039 -0.01157000 -0.08877300
C2 =-C7 0.03339469 -0.00817786 -0.06856000 -0.02324200
Cl =-C8 -0.03138814 -0.01119553 0.01461400 -0.01356800

Cn = C(n)

Table 4-18 Coefficients of selected filters for
shifted center frequency (case 4)

The frequency responses of these discriminators are

presented in Fig. 4-22. Fig 4-23 shows the magnitude of the

discriminator ripple for the selected filters.

The table shows the filter ripple for case 4 filters of

different filter length N and shifted center frequencies.

4 6 8 10 12 14

0.1 -22.9 -23.2 -23.3 -23.4 -23.4 -23.5
0.125 -23.3 -26.3 -29.2 -32.8 -34.6 -37.3
0.15 -25.9 -30.9 -35.8 -40.6 -45.1 -49.7
0.175 -28.1 -34.9 -41.5 -47.8 -54.0 -60.2
0.2 -30.3 -38.3 -46.5 -54.5 -62.1 -69.7
0.225 -32.5 -41.5 -51.5 -60.5 -69.9 -78.7
0.25 -34.9 -44.5 -56.5 -66.3 -77.5 -87.3
0.275 -37.8 -46.9 -62.5 -71.1 -86.2 -94.2
0.3 -41.6 -48.5 -71.0 -72.7 -89.3 -93.4
0.325 -46.4 -48.6 -63.8 -68.9 -78.2 -85.0
0.35 -44.2 -46.7 -56.3 -62.2 -68.6 -74.4
0.375 -38.9 -43.2 -49.2 -54.0 -58.3 -62.2
0.4 -35.5 -38.3 -41.7 -44.0 -45.9 -47.4

Table 4-19 Discriminator ripple for center frequencies of
the discriminator between 0.1 and 0.4 for
case 4 filter, s = 1, F bw = 0.2



Fig 4-22 Frequency responses of selected filters
(filter case 4)
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Fig 4-23 Magnitude of filter ripple of selected
filters (case 4)
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Fig. 4-24 Discriminator ripple vs. shifted center
frequency F c for case 4 filters
(s = 1, Fbw = 0.2)
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Previous figures and tables show the interdependence

between center frequency and discriminator ripple for

four different filter cases. The discriminator bandwidth and

the slope of the discriminator remained constant for this

set of calculations. The FIR discriminators have the follo-

wing characteristics:

- discriminators with odd length (case 1 and case 3)

have their minimum ripple at the frequency F c=0.25.

- the minimum ripple for discriminators with even

length (case 2) is below the frequency f=0.25 and

approaches f=0.25 with increasing discriminator

length.

- the minimum ripple for discriminators with even

length (case 4) is above the frequency f=0.25 and

approaches f=0.25 with increasing filter length.

- the ripple of discriminators of odd length (cases 1

and 3) are symmetrical to f=0.25. There is no diffe-

rence in resulting discriminator ripple whether the

new center frequency lies a certain amount below or

above the frequency f=0.25.

- the ripple of FIR discriminators of even length with

positive (case 2) and negative (case 4) coefficient

symmetry are symmetrical to each other relative to

f=0.25. This result can be explained by having a

closer look at the coefficients of the selected fil-
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ters in case 2 and case 4.

- coefficients of case 2 filters at a center fre-

quency of 0.15 have the same coefficients as case

4 filters at the center frequency of f=0.35 except

an inverted sign for every other coefficient.

- coefficients of case 2 filters at a center fre-

quency of 0.20 have the same coefficients as case

4 filters at the center frequency for f=0.3 except

an inverted sign of every other coefficient.

This result can be applied to any other frequency for

this kind of FIR discriminators. The inverting of

every other coefficient is equivalent to a flipping

of the frequency axis at f=0.25. Figures 4-16 and 4-

22 illustrate this. These figures are symmetrical to

each other relative to f=0.25.

- filters with positive symmetry of coefficients show

better discriminator ripple than filters with

negative coefficient symmetry of the same length.

- for a certain filter length case 1, case 2 or case 4

filters show the minimum discriminator ripple depen-

ding on the chosen center frequency
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4.3 Weighted Error Functions for FIR Discriminators 

4.3.1 Reasons for Weighted Error Functions 

All earlier presented FIR discriminators have a con-

stant weighting function in common. This constant weighting

function leads to an equiripple error of the calculated FIR

discriminator. Sometimes it is desirable to influence the

weighting function to change the tolerance scheme. This part

of the thesis presents two newly developed approaches to

shape the tolerance scheme of the error of an FIR discri-

minator in a selected discriminator bandwidth.

The first approach is the "split optimized bandwidth

approach"; the second is the "closed solution approach".

Both approaches utilize either features of the original

computer program or require additional changes in the lis-

ting. Appendices A, B and C present the changes in the

computer program.

Design requirements might require a nonconstant tole-

rance scheme within the FIR discriminator bandwidth. In

other cases it is desirable to have an output of nearly zero

at certain frequencies. Tougher specifications in a defined

frequency band result in meeting this requirement.
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4.3.2 Split Optimized Bandwidth Approach

The computer program with the Remez exchange algorithm

gives the opportunity to specify weighting factors for

selected frequency regions. This feature is usually used to

give different weightings to the passband and stopband of

lowpass, highpass or bandpass filters. This feature is used

here to shape the weighting function in the discriminator

bandwidth by splitting it into several frequency regions

with different weighting factors.

The following example illustrates the procedure. The

chosen discriminator bandwidth is F bw=0.2 with a center

frequency of F c=0.25. Discriminator A has a constant

weighting function. The bandwidth of discriminator B is

split into three regions. Table 4-21 shows the weighting

factors of the discriminators in the different bandwidths.

discriminator frequency 	 band
type 0.15...0.2 0.2...0.3 0.3...0.35

A	 uniform 1 1 1
B 	 split 1 10 1

Table 4-20 Weighting factors for uniform and split
weighting function

Table 4-22 gives the coefficients of two discriminators

calculated with uniform and split weighting function. The

discriminators have the filter length N=13 and negative

symmetry of the coefficients.



D(n) weighting function
constant split

D(7) 0 0
D(6) 	 = 	 -D(8) 0.00000003 -0.00000083
D(5) 	 =	 -D(9) -0.06360787 -0.06294256
D(4) 	 = 	 -D(10) 0.00000011 -0.00000097
D(3) 	 =	 -D(11) -0.01547262 -0.01475467
D(2) 	 = 	 -D(12) 0.00000009 -0.00000007
D(1) 	 = 	 -D(12) -0.00242904 -0.00213461

Table 4-21 Coefficients of FIR discriminators with
constant and split weighting function
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Fig. 4-25 Frequency response of FIR discriminator with
constant and split weighting function
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Figures 5-25 and 5-26 show the frequency response and

the magnitude of the discriminator ripple of the FIR discri-

minators with constant and split weighting function.

Fig. 4-26 Magnitude of error of FIR discriminator with
constant and split weighting function

The minimum ripple of the FIR discriminator with a

constant weighting factor has the value 5.5 10 -5 . Between

the frequencies 0.15 and 0.2 and between 0.3 and 0.35 the

ripple has the value of 1.3 10-5. In the range with

weighting factor 10 between 0.2 and 0.3 the value of the
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ripple is 1.13 10 -5 .

This example shows that the split weighting function is

a powerful tool to shape the tolerance scheme. In a region

of the discriminator bandwidth with a higher weighting fac-

tor, the resulting value of the equiripple error has a lower

value compared to other regions. Several discriminators with

up to 5 different frequency bands showed in experiments the

good performance of the design program. This approach has

the advantage of easy use and few changes in the original

program.

5.3.3 Closed Solution Approach

McClellan, Parks, and Rabiner [1] describe with an

example an arbitrary weighting function for a bandpass fil-

ter. The "closed solution approach" utilizes this technique

for FIR discriminators to shape the tolerance scheme.

The following FIR discriminator has a filter length of

N=13, a desired slope of s=1, a center frequency of F c=0.25

and a error function with x 2-weighting, symmetrical to the

center frequency F c=0.25. W(f) is defined by

Figure 4-27 shows this weighting function. The

frequency f=0.25 has the largest weighting. The weighting

function decreasinges towards f=0 and f=0.5.
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Fig. 4-27 X 2 -weighting function

The optimized FIR discriminator with oddfilter length

and negative filter symmetry has the coefficients D(n).

coefficient

D(7) 0
D(6) 	 = -D(8) -0.00000005
D(5) 	 = -D(9) -0.06340289
D(4)	 = 	 -D(10) -0.00000004
D(3) 	 = -D(11) -0.01525602
D(2) 	 = 	 -D(12) -0.00000001
D(1) 	 = -D(13) -0.00233613

Table 4-22 Coefficients of FIR discriminator with x 2-
weighting function

The next two figures show the frequency response and the

magnitude of the discriminator with an x 2-weighting function

for the discriminator error.
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Fig. 5-28 Frequency response of a FIR discriminator with x 2-
error weighting function

Fig. 5-29 Magnitude of FIR discriminator ripple with x 2-
weighting function
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5.3.5 Possible Weighting Functions 

Previous example shows an FIR discriminator with an

error function defined as a function of frequency in the

discriminator bandwidth. There are no restrictions to the

kind of weighting function. For example all kinds of X n -

functions are conceivable. A higher weighting factor close

to f=0.25 leads to a smaller resulting ripple in this fre-

quency range.

There are also almost no restrictions on the use of

either split weighting functions or closed solution

weighting functions. Even arbitrary weighting functions are

thinkable. The computer program gives this possiblibity by

replacing the functions in the WATE function by an array

that carries the arbitrary weighting coefficients. This

approach needs larger changes in the program and also an

additional input of the coefficients.

Depending on the required tolerance scheme, one of the

suggested approaches has to be chosen, implemented, and the

resulting FIR discriminators evaluated. All calculated FIR

discriminators should be checked by plotting the discrimina-

tor error. The reason is a possible drastic improvement of

discriminator ripple by slight changes in the desired tole-

rance scheme.
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4.4 Experiments on Sensitivity 

The FIR discriminator gives the opportunity to

influence the sensitivity and resulting error of the FIR

discriminator by simple multiplication of the original coef-

ficients D(n) by a factor k. This procedure results in the

new coefficients D (n).

The following table shows the coefficients D(n) of the

original discriminator. This discriminator has a slope of

s=1, the center frequency at F c=0.25, the filter length N=7

and the discriminator bandwidth Fbw=02

coefficient

D(4) 0
D(3)	 = 	 -D(5) -0.01525602
D(2) 	 =	 -D(6) -0.00000001
D(1) 	 =	 -D(7) -0.00233613

Table 4-23 Filter coefficients of FIR discriminator
with slope s=1

Calculated filters have the factors k of 1, 0.5, 2 and

-0.5. The following figures show the frequency response and

the resulting discrimiator ripple of the 4 filters.



Fig. 4-30 Frequency response of original discriminator
and discriminators with k-factors of 0.5, 2
and -0.5
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Fig. 5-28 Discrimiator ripple of original discriminator
and discriminators with k-factors of 0.5, 2
and -0.5
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Plotting the frequency response and the resulting error

of these 5 different discriminators shows

- multiplication of the coefficients of the FIR discri-

minator by a factor k is equivalent to a multipli-

cation of the frequency response by a factor k.

Expanding equation 2-1 on both sides by a factor k

proves this:

- the same is true for the resulting FIR discriminator

ripple. A multiplication of the coefficients D(n) by

k results in a multiplication of the ripple by the

factor k.

- modifications to obtain a desired output voltage can

be easily done by changing the set of coefficients of

the FIR discriminator.



86

5.5 Discusion of the Results on the FIR Discriminator

Design 

5.5.1 Comparison of Different Filter Cases 

As shown earlier,5 different filter cases are possible

with different characteristics in the resulting discri-

minators.A decision towards odd/even filter length or posi-

tive or negative symmetry of the coefficients puts a certain

number of restrictions in the frequency domain on the

optimization of the FIR discriminator.

One characteristic value for FIR discriminators is the

resulting ripple. The suggested procedure minimizes this

ripple. Research shows that the ripple is dependent on the

chosen filter length and filter case. The fewer restrictions

in the frequency domain, the better the results concerning

FIR discriminator ripple.

The over all performance of FIR discriminators with odd

filter length and positive symmetry of the coefficients has

the fewest restrictions in the frequency domain and the best

performance of calculated filters, because there are no

restrictions at the frequencies f=0 or f=0.5. So this filter

fits best for the design of an FIR FM demodulator.

But there are also limitations. The selection of the

filter case 1 for FIR discriminators does turn out to be not

always the best choice. In applications with a shifted

center frequency, two other filter cases of the same discri-



87

minator length N show better results depending on the chosen

center frequency. For this reason it is desirable to calcu-

late all four filter cases for a specific application and

make the decision, which case to choose, after evaluation of

all 5 filters.

5.5.2 Discussion of Constant/Non-constant 

Weighting Functions 

The choice between constant and nonconstant weighting

functions gives the opportunity to design standard FIR dis-

criminators with equiripple error or FIR discriminators with

controllable error function. Shaping the error function by

defining a tolerance scheme is an important design feature

to influence the computated discriminator. Appendix C des-

cribes the necessary modifications of the original design

program to create a computer program capable to design FIR

discriminators with uniform and weighted error functions. It

can be used as a powerful tool to adapt the design of an FIR

discriminator to the design requirements. The two suggested

approaches to shape the tolerance scheme can be used to

control the ripple within the FIR discriminator bandwidth.
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5.5.3 Evaluation of FIR Discrimator Design

The design of FIR discriminators with equiripple error

in a chosen discriminator bandwidth is a new solution of a

problem in the field of digital signal processing. The

problem is to find a minimum digital system capable to

perform FM to AM conversion and detect the baseband signal.

The easy implementation and possibility to change the

characteristic of the discriminator by simply changing the

set of coefficients is one big advantage of this approach.

The FIR discriminator shows a very good performance at

different center frequencies and different slopes of the

discriminator. Minor changes in an available FIR filter

design program lead to a program capable to design equirip-

ple FIR discriminators.

The computed coefficients can be used for digital

filters, but also for SAW filters or any other kind of

"tapped delay line"-filter.

The presented figures can be used as design charts for

FIR discriminators. A selection of desired ripple, weighting

function, bandwidth and center frequency, for example will

lead to the required filter length N.
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5.5.5 Comparison of the Digital Klapper-Kratt Detector

with the Digital FIR Discriminator 

A direct comparison between the Klapper-Kratt detector

and the suggested. FIR FM demodulator is not fully possible.

Both types of discriminators use linear filters for the

demodulation of FM signals, but only with the Klapper-Kratt

detector a cancellation of the carrier is possible. Fig. 2.1

shows the block diagram of the digital Klapper Kratt detec-

tor. The following figure shows the block diagram of the FIR

FM discriminator with lowpass filter to recover the baseband

signal.

Fig. 5-29 FIR FM detector

Using this configuration, only FIR discriminators of the

filter cases 1 and 3 can be realized, as only in these

filter cases the calculated values lie exactly on the

sampling points. A processing of signals generated by case 2

or 5 filters is in the suggested block diagram not possible.

The fo11owing two block diagrams show sections of the

Klapper-Kratt detector, comparable to the FIR FM

discriminator.



Fig 4-30 FM discriminator configurations of the
Klapper-Kratt detector

The complexity of one of these kind of detectors is pro-

portional to the required delays and number of coefficients.

The FIR FM discriminator delay in Figure 4-32 does not have

to be built seperately, because this delay line has to be

implemented to build the FIR discriminator. This minimizes

the complexity of the device.

The linearity of the detector is proportional to the

number of impulses at the output. For the FIR FM discri-

minator in Fig. 5-32, the FIR discriminator has to have N

coefficients, to get N impulses at the output. The other

configurations require 2 N coefficients. This is equivalent

to an improvement of 50 per cent.

The comparison shows that there are good results

possible calculating FIR discriminators. The higher value

of ripple for the over all optimized Klapper-Kratt discrimi-

nator can be explained, as it consists of two filters, each

having two restrictions in the frequency domain. The best

90
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FIR discriminator does not have any restriction in the

frequency domain.
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CHAPTER V

PRACTICAL DESIGN CONSIDERATIONS 

5.1 Introduction 

The selection of an adequate technique is an important

decision in the design procedure. Three solutions are

possible:

- software solution

- combined hardware/software solution

- hardware solution

The desired sampling speed and the need for an instantaneous

output have an impact on the decision. Low speed appli-

cations are in favor of the software solution. Increasing

sampling speed works with a hardware solution.

Parallel processing and the utilization of the FIR

discriminator symmetry make the design easier. One example

in this chapter shows the simplification of a FIR filter by

utilizing the filter symmetry.
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5.2 Remarks on FIR Filter Design

Parallel processing splits complicated arithmetric

structures into sma11er pieces and implements these smaller

pieces. This technique can be used to increase the proces-

sing speed, as the execution time is also split.

Another helpful approach to increase the speed and to

simplify the implementation is to derive a modified struc-

ture from the original FIR filter structure. Figures 5-1 and

5-2 show the original and modified FIR filter structure.

Fig 5-1 Original FIR filter structure



Fig 5-2 Modified FIR filter structure

The second figure shows only three coefficients,

compared to six for the original structure. The minimization

of the number of multiplications is desirable, as multipli-

cation of digital signals require sophisticated subroutines

or special purpose integrated hardware circuits. This is

only one example how a simplification can be done.

Depending on the sampling rate, different kind of

simplifications are possible. A combination of distributed

arithmetic and simplification by utilization of filter

symmetry shows good results.
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CHAPTER VI

CONCLUSIONS

6.1 FIR discriminator - A New Approach 

The trend in communication goes to the digital

processing of analog signals. Fink, Hoelzel, and Kammeyer

[1]-[3] describe the digital demodulation of FM signals,

using interpolation techniques. Narasimha and Peterson [4]

simplify interpolation filters , and Iwase, Kumata and

Hashimoto [5] support the hardware solution by introducing

digital signal processing integrated circuits for very high

sampling frequencies. Deubert [6] and Lerner [7] apply digi-

tal signal processing to the digital demodulation of TV

signals.

The objective of this thesis is to introduce the

optimized FIR discriminator and to compare it with the

digital Klapper-Kratt discriminator. The FIR discriminator

is a direct approach towards the demodulation of FM signals

with extreme linearity.

The FIR discriminator can be considered as one basic

element of the digital signal processing. Applications

include FM to AM conversion. Interpolation techniques may

make this approach even more powerful. An AM detection

technique is still needed to recover the baseband signal.
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6.1 Future Efforts 

There exist more areas that need further investigation.

All of this thesis deals with non-quantitized input signals

and coefficients. The performance of the filter with quanti-

tized input signals and quantitized coefficients needs

further investigation. Experiments with shifted center

frequency should be extended with discriminator bandwidths

that differ from Fbw=0.2.

The integration of the FIR discriminator into a system

that uses interpolation to retrieve the original signals

needs also further investigation.

The most important point to mention here is the

implementation of all the suggested design procedures in one

universal digital signal processing program package. This

program should

- have all features of the original WEQFIR

- have all features of the modified WEQFIR

- offer the opportunity to plot frequency response and

the error function of WEQFIR and modified WEQFIR

- offer the choice between different weighting

functions.



REFERENCES - CHAPTER VI 

[1) K.-R. Fink, F. Hoelzel, "Principle for a digital
receiver," ntz-Archiv, Vol. 5, pp. 353-358, Dec.1983.

[2) Karl-Dirk Kammeyer, "Digital demodulation of frequency-
modulated signals," AEU, Vol. 36, pp.292-298, July/Aug.
1982.

[3] Karl-Dirk Kammeyer, "Hardware realiation of a digital
FM demodulation unit for the 10.7 MHz range," Frequenz,
Vol. 37, pp.16-22, Jan. 1983.

[5) Madihally Narasimha and Allen Peterson, "On using the
symmetry of FIR filters for digital interpolation,"
IEEE Transactions on Acoustics, Speech and Signal
Processing, Vol. ASSP-26, pp. 267-268, June 1978.

[5] Seiichiro Iwase, Ichiro Kumata, and Yoshitaka Hashimo-
to, "A new Multiplier-Adder LSI for digital video
processing," SMPTE Journal, Vol. 93, pp.830-835, Sept.
1984.

[6] R. Deubert, "Feature IC's for digivision TV sets," IEEE
Transactions on Consumer Electronics, Vol. CE-29, pp.
237-251, Aug. 1983.

[7] Eric J. Lerner, "Digital TV: makers bet on VLSI," IEEE
spectrum, pp. 39-43, Feb. 1983.

97



APPENDIX 

APPENDIX A - CHANGES IN WEQFIR

WEQFIR is a design program, capable to design equi-

ripple FIR bandpass filter, differentiators, and Hilbert-

Transformers. This FIR design program is the basis for the

program to design FIR discriminators. This FORTRAN program

runs with minor modifications on any mainframe, mini- or

personal computer. The designer of WEQFIR gave the users the

opportunity to change the functions EFF and WATE. EFF calcu-

lates the desired transfer characteristic of ideal lowpass,

highpass, bandpass filters, differentiators, or Hilbert-

Transformers. WATE calculates the desired error weighting

characteristic.

The main changes to modify the computer program into a

computer program capable to design FIR discriminators are

done by modifying the functions EFF and WATE. Changes in the

main section of WEQFIR are not necessary. The programmers of

WEQFIR give the user the choice to select filter length,

filtertype, grid density, desired frequency bands for opti-

mization and the weighting factor in a chosen frequency

band. The program is designed to calculate lowpass, highpass

and bandpass filter with positive symmetry of coefficients,

discriminators and Hilbert-transformers with negative coef-

ficient symmetry. I use this feature and select either

bandpass filter mode or the Hilbert-transforme/differentia-



99

for mode to select the kind of filter symmetry. Changes in

EFF and WATE are necessary to compute FIR discriminators.

The variable JTYPE in the program represents the

selected filter type:

1 	 stands for multiple passband/stopband filter

2 	 stands for differentiators,

3 	 stands for Hilbert-transformer.

"1" as an input for the variable JTYPE is chosen to

calculate FIR discriminators with positive symmetry of the

coefficients, "2" for an FIR filter with negative symmetry

of the coefficients. To get a neat output, in the output

section "bandpass filter" can be replaced by "differentiator

case 1/3" and "differentiator" by "differentiator case 2/5"

The result of this thesis is not a perfect new computer

program, this being suggested as future efforts, but rather

a procedure to change and use the modified program WEQFIR

to design FIR discirminators. Chapter 3.3 gives an example

for the modification of EFF and WATE, till reaching the

desired frequency response and error ripple.



APPENDIX B - CHANGES IN EFF

The following listing shows a modified example of the

function EFF:

DIMENSION FX(5), WTX(5)
EFF=FX(LBAND) * FREQ-X
RETURN
END

This program has always to be changed. The desired

magnitude of the FIR discriminator does not match the ideal

magnitudes of the program WEQFIR.

The variable "X" stands for any frequency between 0 and

0.5 and determines the desired center frequency. In this

thesis, F c can directly be replaced by "X". They are identi-

cal. "X" stands for the center frequency of the FIR dis-

criminator with slope s=1.
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APPENDIX C - CHANGES IN WATE 

This program has to be changed to create the equiripple

error function.

The following listing shows a modified example of the

function EFF:

DIMENSION FX(5), WTX(5)
WATE=WTX(LBAND)
RETURN

Changes up till now are already sufficient to calculate

equiripple FIR discriminators. This modified function EFF is

also capable to deal with the "split weighting function

approach" to design FIR discriminators with split weighting

funtion in the optimized bandwidth.

The closed solution approach to design to calculate FIR

discriminators with non-uniform weighting function requires

depending on the chosen weighting function further modi-

fications.

The following example shows the FORTRAN listing of WATE

with an x 2-error weighting function.

DIMENSION FX(5), WTX(5)
IF(JTYPE.EQ.2) GO TO 2
WATE=WTX(LBAND)
RETURN

1 IF(FX(LBAND).LT.0.0001) GO TO 2
WATE=WTX(LBAND)/FREQ
RETURN

2 IF(FREQ.LE.0.25) WATE=WTX(LBAND) * FREQ
IF(FREQ.GT.0.25) WATE=WTX(LBAND) * (0.5-FREQ)*2
RETURN
END
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