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ABSTRACT

Title of thesis: Investigation of Major Mutagenic Substances in Airborne
Particulate Matter: Biologically-Driven Analysis of Fractions
and Analysis of Polycyclic Aromatic Hydrocarbons (PAHs),
Nitro-PAHs, and Other Classes of Compounds

Jung-Hen Lwo, Master of Science in Environmental Science, 1989

Thesis directed by: Dr. Arthur Greenberg

A modified fractionation scheme involving acid-base partitioning and silica

gel column chromatography has been used as the first step in the bioassay-directed

search for significant levels of mutagenic compounds in extracts of inhalable (IP10)

ambient air particulates. The biologically "hot" fractions were separated and analyzed

chemically or subfractionated to isolate and concentrate "hot" subfractions which

were then chemically analyzed by GC/MS, FTIR, and HPLC equipped with UV,

Fluorescence and Photodiode Array UV detectors.

The Ames assay of mutagenicity has involved the unactivated TA98 strain of

Salmonella and enzyme-activated (TA98+S9) assays. In addition, some assays have

been performed in this present study using TA98NR (TA98-nitroreductase deficient)

and TA98DNP (TA98- dinitropyrene reductase deficient). In essence, we are using

mutagenicity as our chromatographic detector to pinpoint the most active fractions

and compounds which are responsible for carcinogenicity in the air, and then monitor

them as well as assess their reactivity.

The comparison of winter and summer samples indicate that the profiles are

similar in these two periods. However, levels of polycyclic aromatic hydrocarbons

(PAHs) are significantly greater in winter as compared to summer. In addition,

nitro-PAHs are found at levels approximately an order of magnitude lower than the

PAHs.
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CHAPTER ONE

Introduction

Urban air particles contain extractable organic matter which has both mu-

tagenic (1) and carcinogenic (2,3) activities. The polycyclic aromatic hydrocarbons

(PAHs) have been the classic family of airborne carcinogens analyzed and are con-

sidered to be the surrogate for airborne carcinogenicity. (4-12) In fact, one member

of this class, benzo(a)pyrene has been used to represent the PAH class itself. The

most recent U.S.E.P.A. report on the subject attributes the major carcinogenic im-

pact of air pollution to Products of Incomplete Combustion (PICs) (13) for which

benzo(a)pyrene (BaP), a representative of the class of compounds termed polycyclic

aromatic hydrocarbons (PAHs), is also considered as the surrogate.

Over the past decade, the realization occurred that nitro- derivatives of poly-

cyclic aromatic hydrocarbons (14) (nitro-PAHs) may make a very important contri-

bution to the carcinogenicity and mutagenicity of airborne particulates. Therefore,

some interesting trends in research have taken place. Previously, research in the area

had been "chemically-driven". That is to say, one would have advanced knowledge

of carcinogens known to be produced and found in the air and monitor them as well

as assess their reactivity. However, detection of the specific compounds responsible

for this mutagenic and carcinogenic activities is limited by the complexity of these

extracts of ambient air particles. Consequently, these extracts must be separated
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into substantially less complex fractions to faciliate detection of the mutagenic com-

pounds. Thus, in this study a fractionation scheme involving acid-base partition

and silica gel column chromatography has been used as the first separation step in

the bioassay-directed search for mutagenic compounds in extracts of ambient air

particulates.

At the same time, bioassay directed fractionation and characterization has

been proposed as the most cost-effective and time-effective approach for identifying

mutagenic compounds in ambient air particulate extracts.(15) Thus, a new approach

rests upon the fractionation of extracts of air samples and the use of biologically

"hot" fractions which are separated and analyzed chemically or subfractionated

to isolated "hot" subfractions which are then chemically analyzed. Additionally,

GC/MS and other techniques such as FTIR, UV and semi-preparative HPLC as well

as HPLC equipped with a photodiode array UV detector have been used to explore

the presence of other known or unknown compounds and classes of carcinogens and

mutagens in the air. This is the approach we have adopted in this research program.

Samples have been collected from the Newark ATEOS site, (16) which is

about thirty feet above ground, on the roof of the Boy's Club in the Ironbound

section of Newark. This site is bounded primarily by industry to the south as well

as inner-city housing to the north. Samples were sequentially soxhlet extracted with

two different solvents, dichloromethane (DCM) and acetone (ACE). Each of these

two extracts was fractionated by liquid-liquid partition and then subfractionated
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using silica gel open column chromatography. The Ames mutagenicity assay has

been employed by Dr. T. Atherholt, Coriell Institute for Medical Research, to

identify "hot" fractions. They have employed the TA98 Salmonella strain (+S9)

on the basis of the ATEOS experience. (17) In addition, nitroreductase-deficient

(TA98NR) and dinitropyrene reductase-deficient (TA98DNP) strains have also been

employed.

The fractionation procedure employed here is basically the same employed by

Nishioka et al (18,19) which is based upon the scheme developed by Peterson. (20)

We have made one significant modification in the Nishioka et al scheme. Detailed

descriptions of this modified fractionation procedure and the Ames assay results are

presented in Chapter Two. The chemical methods employed are, in part, based upon

HPLC. Analysis of PAH is done using our earlier HPLC technique as well as a more

advanced HPLC system equipped with a photodiode array UV detector. The re-

sults are presented and discussed in Chapter Three. The results achieved by Fourier

Transform Infrared (FTIR) Spectroscopy and High Performance Liquid Chromatog-

raphy equipped with Photodiode Array Ultraviolet detector are presented and dis-

cussed in Chapter Four. In Chapter Five we show the Gas chromatography/Mass

Spectrometry (GC/MS) data. A limited group of fractions were analyzed by Drs.

Robert Rosen and Tom Hartman of the Center for Advanced Food Technology of

Cook College, Rutgers University. Chapter Six summarizes the conclusions of our

study.

3



Reference

1. J.L. Huisingh, Bioassays of particulate organic matter from ambient air, in

Short-Term Bioassays in the Analysis of Complex Enviromental Mixtures II,

9-19, Plenum Press, New York (1981).

2. J. Leiter, M.B. Shimkin and M.J. Shear, "Production of subcutaneous sarcomas

in mice with tars extracted from atmospheric dusts", J. Natl. Cancer Insti., 3,

155-175 (1942).

3. W.C. Hueper, P. Kotin and E.C. Tabor, "carcinogenic bioassays on air pollu-

tants", Arch. Pathol., 74, 89-116 (1962).

4. National Academy of Sciences, Particulate Organic Matter, NAS: Washington,

D.C. (1972).

5. National Academy of Sciences, Polycyclic Aromatic Hydrocarbons: Evaluations

of Sources and Effects, NAS: Washington, D.C. (1983).

6. G. Grimmer, Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons.

CRC Press, Boca Raton (1983).

7a. A. Bjorseth(ed), Handbook of Polycyclic Aromatic Hydrocarbons, 1, Dekker, New

York (1983).

7b. A. Bjorseth and T. Ramdahl (eds), Handbook of Polycyclic Aromatic Hydrocar-

bons, 2, Dekker, New York (1985).

8. Journal Environ. Path Toxicol., 5,1 (1981).

9. M.L. Lee, M.V. Novotny and K.D. Bartle, Analytical Chemistry of Polycyclic

4



Aromatic Compounds, Academic Press, New York (1982).

10. Environ. Health Perspect, 47 (January, 1983).

11. A. Bjorseth and G. Becher, PAH in Work Atmospheres: Occurrence and Deter-

mination, CRC Press, Boca Raton (1986).

12. M. Cooke and A.J. Dennis (eds), Polynuclear Aromatic Hydrocarbons: (Ninth

International Symposium), Battelle Press, Columbus, See also earlier symposia

(1986).

13. E. Haemisegger, A. Jones, B. Steigerwald and V. Thomson, "The Air Toxics

Problem in the United States: An Analysis of Cancer Risks For Selected Pollu-

tants", USEPA Report No. EPA-450/1-85-001 (NTIS Order PB85225175/LA)

(May, 1985).

14. C.M. White (Editor), Nitrated Polycyclic Aromatic Hydrocarbons, Huethig Ver-

lag, Heidelberg (1985).

15. L.D. Claxton, Review of fractionation and bioassay characterization techniques

for the evaluation of organics associated with ambient air particles, in Genotoxic

Effects of Airborne Agents, 19-33, Plenum Press, New York (1982).

16. P.J. Lioy and J.M. Daisey, Toxic Air Pollution: A Comprehensive Study of

Non-Criteria Air Pollutants, Lewis Pub, Chelsea (1987).

17. J.B. Louis, T.B. Atherholt, J.M. Daisey, L.J. McGeorge and G.J. McGa,rrity,

"Mutagenicity of Inhalable Particulate Matter at Four Sites in New Jersey",

Toxic Air Pollution: A Comprehensive Study of Non-Criteria Air Pollutants,

Lewis Pub, Chelsea, 125-166 (1987).

5



18. M.G. Nishioka, C.C. Chuang, B.A. Peterson, A. Austin,and J. Lewtas, "Develop-

ment and Quantitative Evaluation of a Compound Class Fractionation Scheme

for Bioassay-Directed Characterization of Ambient Air Particulate Matter", En-

viron. Int., 11, 137- 146 (1985).

19. S.A. Wise, S.N. Chesler, L.R. Hilpert, W.E. May, R.E. Rebbert, C.R. Vogt,

M.G. Nishioka, A. Austin, and J. Lewtas, "Quantification of Polycyclic Aro-

matic Hydrocarbons and Nitro-Substituted Polycyclic Aromatic Hydrocarbons

and Mutagenicity Testing for the Characterization of Ambient Air Particulate

Matter", Environ. hit., 11, 147-160 (1985).

20. B.A. Peterson, C.C. Chuang, W.L. Margard, and D.A. Trayser, "Identification

of Mutagenic Compounds in Extracts of Diesel Exhaust Particulates", Presented

at 74th Annual Meeting of the Air Pollution Control Association, Philadelphia,

PA, 14 (1981).

6



CHAPTER TWO

Fractionation and Ames Assay Results

2.1 Sample Collection

The air particulate samples were collected using four samplers for 10 days in

Winter and 15 days in Summer on the roof of the Newark Ironbound Boys Club

building on Clifford Street in Newark. Samplers used are all IP10 high volume type

which includes two stage fractionators and one hi-vol blower. Suspended particles in

the air are sampled for 24 hours in each day at 40 SCFM (Standard Cubic Feet per

Minute). At this flow rate, particles greater than 10 microns will cut-point impact

onto the impaction surface and the thoracic particles smaller than 10 microns are

carried vertically upward by the air flow and then down multiple vent tubes to the 8

x 10 in. hi-vol filter where they are collected. The IP10 sampler was designed to

collect particles less than 10 microns because this size of air particles can be inhaled

by human and might damage the human organs.

In addition, the collection periods were 1/6-1/20/88 for Winter samples and

7/27-8/19/88 for Summer samples. Since a typical 24- hour air volume is ca 1,700

m3, an equivalent of nearly 70,000 m3 of Winter air particulates was present in the

10 ml DCM and ACE extract composites as well as 100,000 m 3 of Summer air

particulates was present in the 25 ml DCM and ACE extract composites. Before
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the samples were collected, pre-fired high-volume quartz filters supplied by NJDEP

(New Jersey Department of Environmental Protection) were dried in a desiccator

for 24 hours and then weighed. The particulate samples collected from Newark were

stored overnight in aluminum foil and dried again in desiccator for another 24 hours

prior to soxhlet extraction.

After weighing in order to determine the net total masses of airborne particu-

lates collected, each filter was first soxhlet extracted with 200 ml of dichloromethane

(DCM), Photrex grade (J.T. Baker) and GC2 grade (Burdick & Jackson), then 200

ml of acetone (ACE), same grade and suppliers as DCM. Each 200 ml extract was

concentrated to 10 ml using a Kuderna-Danish apparatus, and ultimately all ex-

tracts were concentrated to one extract composite for DCM and another extract

composite for ACE. A 150-ul aliquot of each extract was used for a residue mass

measurement, and a 1 or 2-ml aliquot of each extract was also removed and pre-

pared for bioassay. Moreover, all glassware was cleaned by a special procedure: (1)

cleaned with strong base detergent, (2) washed with 5% HNO3 solution, (3) rinsed

with distilled water, (4) dried at a oven, (5) rinsed with methanol three times.

2.2 Separation/Fractionation Procedure

The modification fractionation scheme employed here is based on the scheme

of Peterson et al, (1) which involved acid-base partitioning to separate the extract
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initially into organic acid, organic base, and neutral component fractions. We feel

that this scheme is more useful than a similar one used by the Rome research group.

(2) However, one significant modification was made in this scheme because we are

interested in attempting to separate classes of acids and bases at the fractionation

(extraction) level. Our separation scheme for the DCM extract composite [This

work discusses only the DCM extract; the same technique was used by Ms. Wenhui

Wu for the ACE extract except that first this solvent was replaced by hexane so

that an aqueous extraction could be done. (3)] is depicted in Figure 2-1.

Since 2 ml of Winter composite and 1 ml of Summer composite were sent

for Ames assay and an additional (0.15 m1=150 microliter) was employed for de-

termination of extractable organic matter (EOM), only 7.85 ml of Winter DCM

extract composite and 23.85 ml of Summer DCM extract composite were used in

this fractionation.

The initial extract composite was first extracted with pH 7.0 water, reasoning

that strong acids (e.g. carboxylic acids, RCOOH), strong bases (e.g. alkylamines,

RNH2), and possible highly polar neutrals and inorganic salts, if any, would be

removed at this point. After this the aqueous phase was split into two parts, one part

was used for the separation of strong acids which were back extracted into methylene

chloride after adjusting the pH to 1 with 6M H2SO4, and another was for strong bases

which were back extracted into methylene chloride after adjusting pH to 13 with

40% KOH. Subsequent extraction of acids and bases in the manner of Nishioka et
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al (4,5) should presumably remove weaker acids (e.g. phenols, Ar-OH) and weaker

bases (e.g. anilines, Ai' — NH2 and azaaromatics) from the remaining extract. At

the same time, an aliquot of 150 ul was removed for the EOM (Extractable Organic

Matter) determination and these fractions also submitted for Ames bioassay. If

the fraction give a significantly positive Ames response, chemical analysis was then

carried out.

As noted earlier by Nishioka (4) and in our work (see later discussion), the

neutral component is the most active fraction, so it is further separated by col-

umn chromatography using 5% H20-deactivated silica gel (70-150 mesh, Woehlm

Pharma) eluted with solvents of increasing polarity. The solvents used, hexane, hex-

ane/benzene (1:1 v/v), methylene chloride, and methanol correspond to the fractions

collected. These fractions correspond to the general compound classes of aliphatic

hydrocarbons, polycyclic aromatic hydrocarbons (PAH) and nitro- PA H, moderately

polar, and high polar neutral compounds. The column size remained constant (25

mm i.d. x 450 mm length), and the quantities of silica gel as well as eluent solvents

used were also kept constant.

The method of Nishioka et al (6) involves four levels of chromatography which

were applied to the most active (polar neutral) fraction: 1) Extraction into Frac-

tions, 2) Silica column chromatography into subtractions, 3) HPLC of the most

active subtraction to provide "subsubfractions" which we termed second- order sub-

tractions, 4) HPLC of the "subsubfraction" to produce a third-order subtraction.
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It was at this fourth stage that Nishioka et al (6) identified hydroxynitropyrenes

as important mutagenic components of airborne particulate matter. However, we

adopted the first three stages of Nishioka et al procedure for the most active fraction.

We completed Level 1 fractionation and fractioned the neutral fractions of the DCM

composite using silica gel open column chromatography to form subfractions (Level

2), and then the major mutagenic subfraction was further separated to subsubfrac-

tions (Level 3) on a semi-prep silica column (Du Pont Zorbax silica, 9.4 mm id x 25

cm) by using normal-phase HPLC. Table 2-1 identifies the extracts separated and

tested for mutagenicity. In Figure 2-1, Table 2-1 and subsequently we have used

an abbreviation technique illustrated for a particulate collected in Winter, 1988,

extracted by DCM, collected in the neutral (number 6) fraction and obtained from

DCM elution (third fraction) from the silica column: W88- DCM-N6-S3.

Tables 2-2 and 2-3 show the mass balance results of the first two levels of sep-

aration for Winter and Summer DCM composite extracts. The recoveries of organic

masses through the acid-base partitioning are 75% and 60% for Winter and Summer

composites, respectively. The majority of sample loss which occurred during this

level of fractionation might be due to discarding of the aqueous phase (DCM-P5

fraction) containing high-polar neutral, strong acid and strong base compounds.

However, mass recoveries are 75% and 80% for Winter and Summer neutral fraction

by silica gel column chromatography with only four elution solvents- hexane, hex-

ane/benzene, methylene chloride and methanol. Because we did not use the acidic
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methanol to pull out the last neutral fraction, some dark-colored organic material

remained at the top of the silica gel column at the end of the fractionation proce-

dure. This indicated that the extract contained extremely polar compounds which

did not migrate through the silica gel bed. According to Nishioka study (4), pre-

sumably this unrecovered material would appropriately be called extremely polar

neutral compounds and might have accounted for as much as 20% of the original

extract mass. In addition, the Nishioka group also used acidic methanol [2% 2N HC1

in Methanol (v/v)] to pull out the extremely polar neutral compounds from the sil-

ica gel column. However, the mutagenic activity both with and without activation

of the acidic methanol fraction was quite low and less than any other mutagenic

fraction. Therefore, this subfraction was ignored.

2.3 Ames Assays and Results

The primary interest of the present study is the biological effect (carcinogenic-

ity) of airborne particulates on humans. In recent years the Ames mutagenicity assay

(7) has been employed as a screen in testing environmental samples. Since it is ac-

cepted that cancer can be initiated by an alteration in DNA, mutagenicity appears

to be a reasonable first-order surrogate. Furthermore, 83% of the known animal and

human carcinogens have been detected as mutagens using the Ames assay. (8)

In the present study, Dr. T. Atherholt of the Coriell Institute for Medical
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Research has employed the TA-98 Salmonella strain for the assay since this has

been shown to be highly sensitive to airborne mutagens. (9) The assay has involved

unactivated (TA98- S9) and enzyme-activated (TA98+S9) assays. The significance

of the former is that some substances are known to be direct mutagens: capable of

reacting with DNA without metabolism ("activation"). Other compounds, notably

the PAH, must first be metabolized ("activated") before attacking DNA. In addi-

tion, some assays have been performed in this present study using TA98NR(TA98-

nitroductase deficient) and TA98DNP(TA98- dinitropyrene reductase deficient). If

there are significant reductions in mutageni city using these microorgarlisms, then

the active compounds are presumed to be mononitrated or dinitrated respectively.

The purpose of the Ames assays of extracts and fractions of extracts is to

pinpoint the most mutagenic fractions of the extracts. In essence, we are using mu-

tagenicity as our chromatographic detector and, thus, employing biology to drive our

chemical strategy. This approach has been used to deduce that most of the muta-

genic activity of airborne particulates is associated with polar nitrated compounds.

(6,10)

As noted earlier, samples were extracted and fractionated by using a modifica-

tion of the Nishioka-Peterson scheme and silica gel column chromatography. Then,

the whole extracts, each fraction and subfraction for winter and summer samples

were bioassayed using the TA98 strain with and without enzyme metabolic activa-

tion (S9), as well as by some other assays. The calculated distributions of mutagenic
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activities coupled with EOM (extractable organic matter) results for the first two

levels of fractions in Winter and Summer are shown in Tables 2-4 to 2-7, and the

relative distributions of mutagenic activities between fractions and subfractions are

also listed in Tables 2-8 to 2-11. Table 2-12 and Table 2-13 display the corrected

mutagenicity of each fraction and subfraction which is based upon the 100% re-

covery of TA98-S9 strain, and the activated mutagenicity (TA98+S9) is calculated

from the corrected TA98-S9 multiplied by TA98-FS9 over TA98-S9. This correcting

method is used to keep the original trend betwwen TA98-S9 and TA98-1-S9.

After comparing these data, we found that the neutral fractions, in fact,

are the most active fractions in the first level of separation for both winter and

summer samples, which are responsible for 39% and 53% recovered TA98-S9 as

well as 55% and 61% recovered TA98-FS9 activities. At the same time, subfraction

2 (W88-DCM-N6-S2, S88-DCM-N6-S2) and subfraction 3 (W88-DCM-N6-S3, S88-

DCM-N6-S3) also show the most significant mutagenicity in the second level of

fractionation. Furthermore, the poor recoveries of mutagenic activities at the liquid-

liquid partitioning step (14.05% - 47.74%) are also shown in Tables 2- 4 to 2-7, but

the mutagenic recoveries of subfractions in silica gel column chromatography level

(40.44% - 183.07%) are better than the former.

The amount of EOM mass in the summer DCM extract is comparable to that

of the winter DCM extract. This is interesting and very surprising to us because

our early study indicated that even though the EOM mass of DCM fraction stayed
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remarkably constant through year, it did, however, exhibit one very high reading

during January which is the same time as our winter sample collection period. More-

over, it is clear that the total mutagenicities of the winter extract are considerably

greater than for the summer extract, and total mutagenicity, in the winter, was

fairly evenly divided between the weak base, weak acid, strong base and strong acid

fractions. For the summer, the two acidic fractions appear to have more than double

the mutagenicity of the two basic fractions. This point is consistent with the results

of Nishioka et al. (4,5)

Figures 2-2 to 2-5, include graphs which compare mass data and mutagenicity

results between fractions and between subfractions. The relative percentage distri-

bution charts are shown in Figures 2-6 to 2-9. From these charts, we can more

easily understand that the ordering of mutagenic activities for unactivated TA98

strains are slightly different between winter and summer samples. Specifically, the

orderings are Winter: neutrals > weak acids > weak bases > strong acids > strong

bases and Summer: neutrals > weak acids > strong acids > weak bases > strong

bases, respectively. Additionally, the orderings for activated TA98 strains are also

different in Winter and Summer but the weak acid fractions still are more important

than other fractions, except the neutrals.

For the subtractions of DCM extracts, the DCM-N6-S1 seems to be elicit no

mutagenic response. The remaining three subfractions have significantly increased

mutagenic activities upon activation, and the largest effect is seen for DCM-N6-S2
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which contains the PAH. Most of the mutagenic activity is found in the most polar

DCM-N6-S3 and DCM-N6-S4 fractions, and these two subfractions show significant

contributions from nitro-PAH. In contrast, subfraction, DCM-N6-S2, shows virtually

no contributions by nitro-PAH as expected. Therefore, the chemical analysis or

further fractionation of these three subfractions using HPLC will be discussed in

the next chapter.
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Table 2-1 List of Winter & Summer Fractions and Subfractions

Name 	 Identify

W88-DCM-B1

W88-DCM-A2

W88-DCM-B3

W88-DCM-A4

W88-DCM-N6

W88-DCM-N6-S1

W88-DCM-N6-S2

W88-DCM-N6-S3

W88-DCM-N6-S.4

S88-DCM-B1

S88-DCM-A2

S88-DCM-B3

S88-DCM-A4

S88-DCM-N6

S88-DCM-N6-S1

S88-DCM-N6-S2

S88-DCM-N6-S3

S88-DCM-N6-S4

Winter 1988 DCM Extract: weak bases in DCM

weak acids in DCM

strong bases in DCM

strong acids in DCM

nonpolar-moderate polar

neutral in DCM

W88-DCM-N6 Subfractions: hexane eluant

1:1 hexane-benzene eluant

dichloromethane eluant

methanol eluant

Summer 1988 DCM Extract: weak bases in DCM

weak acids in DCM

strong bases in DCM

strong acids in DCM

nonpolar-moderate polar

neutral in DCM

S88-DCM-N6 Subfractions: hexane eluant

1:1 hexane/benzene eluant

dichloromethane eluant

methanol eluant
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Table 2-2 Mass Balance Results of Winter and Summer Fractions

Total Masses (mg)*	 Percentage (%)

Fraction Name	 W88-DCM S88-DCM	 W88-DCM S88-DCM

#B1 Weak Base	 90.97

#A2 Weak Acid	 .47.12

#B3 Str. Base	 35.22

#A4 Str. Acid	 41.70

#N6 Neutral	 227.77

Sum of Masses	 442.78

Original Mass	 593.78

Recovery	 74.57%

10.02 20.55 3.14

36.67 10.64 11.51

10.40 7.95 3.26

34.37 9.42 10.78

227.24 51.44 71.30

318.70 100 99.99

531.98 - -

59.91% - -

*Total masses of each fraction were placed on original volume scale for as 25 ml

for Summer.
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Table 2-3 Mass Balance Results of Winter and Summer Subfractions

Total Masses (mg)* 	 Percentage (%)

Fraction Name	 W88-DCM	 S88-DCM

#S1 Hexane	 37.88	 49.90

#S2 Hex/Ben	 9.38	 5.62

#S3 D.C.M.	 30.44	 18.94

#S4 Methane	 57.11	 100.82

Sum of Masses	 134.81	 175.28

W88-DCM S88-DCM

28.10 28.47

6.96 3.21

22.58 10.81

42.36 57.52

100.00 100.01

Original Mass	 178.80	 216.79

Recovery	 75.40%	 80.85%

*Total masses of each subfraction were placed on original volume scale for as well

as 15 ml for Summer.
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Table 2-4a
Mass and Ames Assay Results for W88-DCM and Fractions

TA98-S9 	 TA98+S9

Fraction Name	 Mass(ug)

W88-DCM-B1	 90,968

W88-DCM-A2	 47,123

W88-DCM-B3	 35,220

W88-DCM-A4	 41,705

W88-DCM-N6	 227,770

Total(1-6)	 442,787

W88-DCM	 593,780

Recovery	 74.57%

rev/ug Total (rev) rev/ug

0.35 31,839 0.51

0.78 36,756 0.56

0.71 25,006 0.70

0.63 26,274 0.30

0.34 77,442 0.60

- 197,317 -

1.25 742,225 0.87

- 26.58% -

Total (rev)

46,394

26,389

24,654

12,512

136,662

246,611

516,589

47.74%

The mass of each fraction is based upon the original 10 ml volume of W88-DCM

whole extract.
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Table 2-4b

Mass and Ames Assay Results for W88-DCM and Fractions

TA98NR-S9 	 TA98DNP -S9

Fraction Name	 Mass(ug)	 rev/ug	 Total (rev)

W88-DCM-B1	 90,968	 0.23	 20,923

W88-DCM-A2	 47,123	 0.27	 12,723

W88-DCM-B3	 35,220	 0.61	 21,484

W88-DCM-A4	 41,705	 0.48	 20,018

W88-DCM-N6	 227,770	 0.23	 52,387

Total(1-6)	 442,787	 127,535

W88-DCM	 593,780	 0.73	 433,459

rev/ug Total(rev)

0.11 10,006

0.10 4,712

0.25 8,805

0.13 5,422

0.13 29,610

- 58,555

0.24 142,507

Recovery	 74.57%	 29.42%	 41.09%

The mass of each fraction is based upon the original 10 ml volume of W88-DCM

whole extract.
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Table 2-5a

Mass and Ames Assay Results for W88-DCM-N6 and Subfractions

TA98-S9 TA98+S9

Fraction Name Mass(ug) rev/ug Total (rev) rev/ug Total (rev)

W88-DCM-N6-S1 37,876 NEG NEG 0.06 2,273

W88-DCM-N6-S2 9,379 0.64 6,003 1.81 16,976

W88-DCM-N6-S3 30,441 0.45 13,698 1.07 32,572

W88-DCM-N6-S4 57,107 0.30 17,132 0.70 39,975

Total (1-.4) 134,802 - 36,833 - 91,796

W88-DCM-N6 178,800 0.34 60,792 0.60 107,280

Recovery 	 75.39% - 60.59% - 85.57%

The mass of each subfraction is based upon the original 10 ml volume of neutral

fraction, but this amount does not place on the original volume scale of W88-

DCM extract.
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Table 2-5b

Mass and Ames Assay Results for W88-DCM-N6 and Subfractions

TA98NR- S9 	 TA98DNP - S9

Fraction Name Mass(ug)

W88-DCM-N6-S1 37,876

W88-DCM-N6-S2 9,379

W88-DCM-N6-S3 30,441

W88-DCM-N6-S4 57,107

Total (1-4) 134,802

W88-DCM-N6 178,800

Recovery 75.39%

rev/ug	 Total (rev)	 rev/ug	 Total (rev)

NEG 	 NEG 	 NEG	 NEG

0.71	 6,659	 0.63	 5,976

0.14	 4,262	 0.21	 6,393

0.10	 5,711	 0.11	 6,282

-	 16,632	 -	 18,651

0.23	 41,124	 0.13	 23,244

	

40.44%	 80.24%

The mass of each subfraction is based upon the original 10 ml volume of neutral

fraction, but this amount does not place on the original volume scale of W88-

DCM extract.
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Table 2-6a

Mass and Ames Assay Results for S88-DCM and Fractions

TA98-S9 	 TA98+S9

Fraction Name	 Mass(ug)	 rev/ug 	 Totakrev)

S88-DCM-B1 10,016 1.19

S88-DCM-A2 36,675 0.64

S88-DCM-B3 10,403 0.52

S88-DCM-A4 34,371 0.54

S88-DCM-N6 227,241 0.29

Total(1-6) 318,704 -

588-DCM 531,975 0.77

Recovery 59.91% -

The mass of each fraction is based upon the original 25 ml volume of S88-DCM

whole extract.

409,621

30.58%	 42.37%

11,919

23,472

5,410

18,560

65,900

125,261

rev/ug Total (rev)

0.68 6,811

0.55 20,171

0.58 6,.034

0.27 9,280

0.29 65,900

- 108,196

0.48 255,348
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Table 2-6b

Mass and Ames Assay Results for S88-DCM and Fractions

TA98NR-S9 TA98DNP-S9

Fraction Name Mass(ug) rev/ug Total (rev) rev/ug Total (rev)

S88-DCM-B1 10,016 0.22 2,204 0.15 1,502

S88-DCM-A2 36,675 0.13 4, 768 0.12 4,401

S88-DCM-B3 10,403 0.46 4, 785 0.16 1,.664

S88-DCM-A4 34,371 0.28 9,624 0.06 2,062

S88-DCM-N6 227,241 0.13 29,541 0.03 6,817

Total(1-6) 318,704 - 50,922 - 16,446

S88-DCM 531,975 0.34 180,871 0.22 117,035

Recovery 59.91% - 28.15% - 14.05%

The mass of each fraction is based upon the original 25 ml volume of S88-DCM

whole extract.
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Table 2-7a

Mass and Ames Assay Results for S88-DCM-N6 and Subfractions

Fraction Name	 Mass(ug)

S88-DCM-N6-S1	 49,896

S88-DCM-N6-S2	 5,616

S88-DCM-N6-S3	 18,936

S88-DCM-N6-S4	 100,824

Total (1-4)	 175,272

888-DCM-N6	 216,788

Recovery	 80.85%

TA98-S9 TA98+S9

rev/ug Total(rev) rev/ug Total(rev)

0.06 2,994 0.12 5,988

1.76 9,884 2.51 14,096

1.68 31,812 2.40 45,446

0.28 28,231 0.27 27,222

- 72,921 - 92,752

0.29 62,869 0.29 62,869

- 115.99% - 147.53%

The mass of each subfraction is based upon the original 15 ml volume of neutral

fraction, but this amount does not place on the original volume scale of W88-

DCM extract.
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Table 2-7b

Mass and Ames Assay Results for S88-DCM-N6 and Subfractions

TA98NR-S9	 TA98DNP-S9

Fraction Name	 Mass(ug)	 rev/ug	 Total (rev)	 rev/ug	 Total (rev)

S88-DCM-N6-S1	 49,896 	 NEG 	 -

S88-DCM-N6-S2	 5,616	 -

S88-DCM-N6-S3	 18,936	 -

S88-DCM-N6-S4	 100,824

Total (1-4)	 175,272	 -

S88-DCM-N6	 216,788

Recovery	 .80.85%	 183.07%

The mass of each subfraction is based upon the original 15 ml volume of neutral

fraction, but this amount does not place on the original volume scale of W88-

DCM extract.

0.57 3,201

0.30 5,681

0.03 3,025

- 11,907

0.03 6,504
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Table 2-8 Ames Assay Results for W88-DCM and Fractions

TA98-S9 TA98+S9

Fraction Name Total (rev) Percent(%) Total(rev) Percent(%)

W88-DCM-B1 119,786 16.14% 97,181 18.81%

W88-DCM-A2 138,284 18.63% 55,276 10.70%

W88-DCM-B3 94,078 12.67% 51,642 10.00%

W88-DCM-A4 98,849 13.32% 26,209 5.07%

W88-DCM-N6 291,354 39.25% 286,263 55.42%

Totals (1-6) 742,351 - 516,571 -

The total mutagenicity (rev) of each fraction is based upon the 100% of recovery,

so the each mutagenicity should be divided by the original recovery.
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Table 2-9 Ames Assay Results for W88-DCM-N6 and Subfractions

TA98-S9	 TA98+S9

Fraction Name Total(rev) Percent(%) Total(rev) Percent(%)

W88-DCM-N6-S1 NEG NEG 2,656

W88-DCM-N6-S2 9,908 16.30% 19,839 18.49%

W88-DCM-N6-S3 22,608 37.19% 38,065 35.48%

W88-DCM-N6-S4 28,275 46.51% 46,716 43.55%

Total (1-4) 60,791 - 107,276 -

The total mutagenicity (rev) of fraction is based upon the 100% of recovery, so

each mutagenicity should be divided by the original recovery.
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Table 2-10 Ames Assay Results for S88-DCM and Fractions

TA98-S9 	 TA98+S9

Fraction Name	 Total (rev)	 Percent(%)	 Total (rev)	 Percent (%)

S88-DCM-B1	 38,976

S88-DCM-A2	 76,756

S88-DCM-B3	 17,691

S88-DCM-A4	 60,693

S88-DCM-N6	 215,500

Total(1-6)	 409,616

9.52% 16,075 6.30%

18.74% 47,607 18.64%

4.32% 14,241 5.58%

14.82% 21,902 8.58%

52.61% 155,535 60.91%

- 255,360 -

The total mutagenicity (rev) of each fraction is based upon the 100 by the original

recovery.
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Table 2-11 Ames Assay Results for S88-DCM-N6 and Subfractions

TA98-S9	 TA98+S9

Fraction Name Total (rev)

S88-DCM-N6-S1 2,581

S88-DCM-N6-S2 8,521

S88-DCM-N6-S3 27,427

S88-DCM-N6-S4 24,339

Total (1-4) 62,868

Percent(%)	 Total(rev)	 Percent(%)

	

4,059	 6.46%

	

13.55%	 9,555	 15.20%

	

43.63%	 30,805	 49.00

	

38.71%	 18,452	 29.35%

62,871

The total mutagenicity (rev) of each fraction is based upon the 100% of recovery,

so the each mutagenicity should be divided by the original recovery.
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Fraction Name W88-DCM

#B1 Weak Base 119,800

#A2 Weak Acid 138,300

#B3 Str. Base 94,100

#A4 Str. Acid 98,800

#N6 Neutral 291,400

Total (1-6) 742,400

S88-DCM W88-DCM S88-DCM

174,600 22,300

99,300 66,000

92,800 19,700

4 7, 000 30,400

512,200 215,500

925,900 353,900

39,1000

76,800

17,700

60,700

215,500

409,700

Table 2-12 The Corrected Mutagenicity of W88 and S88 Fractions

TA98+S9(rev)bTA98-S9(rev)a

aThe TA98-S9 mutagenicity of each fraction is corrected for 100% recovery.

'The corrected TA98+S9 mutagenicity of each fraction is calculated from the

corrected TA98-S9 multiplied by TA98+S9 over TA98-S9.
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Table 2-13 The Corrected Mutagenicity of W88 and S88 Subfractions

TA98+S9(rev)bTA98-S9(rev)a

Fraction Name	 W88-DCM S88-DCM	 W88-DCM S88-DCM

#81 Hexane

#82 Hex/Ben

#83 DCM

#S4 Methanol

Total (1-4)

NEG 2,600 3,800 5,200

9,900 8,500 28,000 12,100

22,600 27,400 53,700 39,100

28,300 24,300 66,000 23,400

60,600 62,800 151,500 79,800

aThe TA98-S9 mutagenicity of each subfraction is corrected for 100% recovery.

The corrected TA981-S9 mutagenicity of each subfraction is calculated from the

corrected TA98-S9 multiplied by TA984-S9 over TA98-S9.
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Figure 2--1 Fractionation Scheme of DCM Extract



Figure 2-2 Distribution of Corrected Mass and Mutagenicity for Winter Fractions



Figure 2-3 Distribution of Corrected Mass and Mutagenicity for Winter Subfractions



Figure 2-4 Distribution of Corrected Mass and Mutagenicity for Summer Fractions



Figure 2-5 Distribution of Corrected Mass and Mutagenicity for Summer Subfractions



Figure 2-6 Percentage of Mass and Mutagenicity for Winter Fractions



Figure 2-7 Percentage of Mass and Mutagenicity for Winter Subfractions



Figure 2-8 Percentage of Mass and Mutagenicity for Summer Fractions



Figure 2-9 Percentage of Mass and Mutagenicity for Summer Subfractions



CHAPTER THREE

PAH Analysis and HPLC Subsubfractionation

3.1 Polycyclic Aromatic Hydrocarbon Analysis

3.1 - 1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are produced from incomplete com-

bustion of fossil fuels. (1-6) Thus with the concornmitant rise in industrial activity

and population growth, these pollutants have become ubiquitous components of our

environment. One of the major goals of the present study is to characterize the air

environment for specific genotoxic pollutants, including PAH.

3.1-2 Experimental

The samples analyzed here are the appropriate eluent fractions using hex-

ane/benzene (1:1 v/v) solvent through silica gel bed (DCM-N6-S2). A Waters

Associates gradient High Performance Liquid Chromatography system was used

consisting of two Model 501 pumps, a Model U6K injector, a Digital Professional

350 computer with a Waters system interface module, a Model 481 absorbance de-

tector operated at 280 nm wavelength, and a Kratos Analytical spectroflow 980

programmable fluorescence detector operating at 290 nm (excitation) and 370 nm

(emission). The column used was a Vydac 201 TP54 polymeric C18 (5 urn, 4.6 mm
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x 25 cm) column. The samples were analyzed by reversed-phase HPLC using an

acetonitrile-water mobile phase and the solvent flow rate was 1 ml/min. The follow-

ing gradient conditions were used for the separation: step (1) 3 minutes equilibration

at 50% water: 50% acetonitrile, step (2) injection, step (3) 3 minutes hold at 50%

water: 50% acetonitrile, step (4) 15 minutes linear gradient to 100% acetonitrile,

step (5) 10 minutes hold at 100% acetonitrile, and step (6) 7 minutes linear gradient

to 50% water: 50% acetonitrile.

NBS (National Bureau of Standards) Standard Reference Material (SRM)

1647a containing sixteen PAH compounds was first used to make the calibration

curves (Figures 3-1a-3-1k) and a representative chromatogram of this mixture is

shown in Figure 3- 2. In this investigation, a 25 or 50 microliter aliquot of the sub-

subfraction containing the PAH was injected after solvent exchange with tetrahydro-

furan (THF) to replace the hexane/benzene eluant. Figures 3-3 and 3-4 represent

the ultraviolet absorbance and fluorescence chromatograms for W88-DCM-N6-S2

and S88-DCM-N6- S2 subsubfractions, respectively. A Waters Model 990 photodi-

ode array (FDA) UV detector was also used to identify compounds in these two sam

ples. A typical chromatogram of W88-DCM-N6-S2 fraction using the PDA Detector

is shown in Figure 3-5 and more detailed discussion related to data interpretation

will be provided in Chapter Four.

3.1-3 Results and Discussion
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Using the earlier HPLC analytic techniques, we assigned eleven PAH com-

pounds in these two subfractions. In addition, the concentration of each compound

identified was determined by comparing areas with those of the NBS standard and

the results are shown in Tables 3-1 and 3-2. The winter levels are between ten and

thirty-five times higher than the summer levels. Figures 3-6 and 3-7 show the profiles

for eleven selected PAH compounds in winter and summer samples. Noteworthy,

in Figure 3-8, is the drastic decrease in the concentrations of benz(a)anthracene

and benzo(a)pyrene as one goes from winter to summer. This is due to volatility

losses of the tetracyclic compound benz(a)anthracene, in warm weather, (7,8) and

benzo(a)pyrene which is relatively reactive. (9,10)

Since BaP volatility losses are negligible, this might allow it to be the in-

dex compound. In Figure 3-9 we depict the PAH/BaP ratios for eleven selected

PAH compounds. Of the eleven compounds, only benz(a)anthracene shows volatil-

ity losses and this is not consistent with our previous observation. According to

our earlier study, phenanthrene (C14), pyrene and fluoranthene (C16) would be ex-

pected to display greater volatility losses than benz(a)anthracene (C18). However,

one of disadvantage of using BaP as the index compound for PAH profiles is that

it is relatively reactive. (11) Thus, we prefer to use benzo(b)fluoranthene (BbF)

as our index PAH since it is nonvolatile and very unreactive. (11) Figure 3-10

shows the PAH/BbF ratios for eleven selected PAH. Pyrene, benz(a)anthracene and

benzo(a)pyrene show decreases in the PAH/BbF ratios upon going from winter to
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summer. It is difficult to make anything of the trends in the other PAH/BbF ratios.

Although some ratios increased from winter to summer there are not enough data

to permit conclusions.

In spite of the long history of PAH studies in the air pollution literature,

there still remains a rather incomplete knowledge of emission rates for selected PAH

from specific sources and the factors which alter their emission rates. (6) In recent

studies, much of the BaP emission data was summarized and generated. (12) The

very high emissions due to winter wood use appear to suggest a winter/summer

concentration ratio for BaP of about 50, somewhat higher than the maximum value

of 13 observed in the earlier study (13) but our present study also show a ratio near 35

of winter/summer concentration ratio for BaP. The deduction that wood combustion

is the major winter PAH source in New Jersey is at first somewhat surprising.

However, the BaP emissions arising from residential wood combustion appear to be

a factor of about 400-fo1d greater per BTU than emissions due to gasoline combustion

and at least 10,000-fold greater than emissions from combustion of home-heating oil.

(13) Even in the cities, where fireplaces and wood-burning stoves are not common

and one might not expect wood combustion to be a significant PAH source, one

could rationalize high PAH levels arising from wood combustion due to the presence

of fairly densely populated inner suburbs surrounding the cities. (14)

Although the very high emissions due to winter wood use appear to sug-

gest even higher winter/summer BaP factors (ca 50), as noted earlier, it is still
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worthwhile to attempt to understand the possible role of chemical reactivity in es-

tablishing low levels during summer when photochemistry and presumably thermal

chemistry should be more significant than in winter. In discussing the role of chemi-

cal reactivity of PAHs, it is important to differentiate, in principle at least, between

losses occurring during sampling and atmospheric residence. Sampling losses due

to volatilization are significant for tetracyclic species but negligible for pentacyclic

and larger PAH. (15,16) Researchers have suggested that significant chemical losses

occur as an artifact of sampling presumably due to reactions catalysed on the col-

lection surface, particularly when glass-fiber filters are employed. (17-20) Reaction

of PAH during sampling could also produce derivatives which are themselves pow-

erful mutagens. For example, it has been estimated that 1-40% of the 1-nitropyrene

collected from diesel exhaust on glass-fiber filters is artifactual. (21) Thus, as much

as 30% of the TA-98 direct- acting mutagenicity of diesel particulate extract has

been attributed to this compound. (22) However, a recent study employing levels of

03, NO and SO2 typical of urban environments suggested negligible losses of even

such reactive PAH as BaP and perylene when adsorbed to a variety of substrates

including airborne particulate matter. (23)

The issue of chemical reactivity in the atmosphere remains a significant ques-

tion (5) since it relates to (a) atmospheric lifetime and thus atmospheric transport,

(b) PAH profiles and the possibility of employing them in source assessment, (c)

the nature of derivatives which may be direct mutagens or non- mutagens and (d)
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a portion, perhaps small, of the winter/summer PAH concentration ratio. Thus

the question remains whether physical disappearance of particles or chemical dis-

appearance of the particle-bound PAH determines the atmospheric lifetime of these

'species.

3.2 Subsubfractionation of Subtraction S3 by HPLC

3.2- 1 Introduction

Organic fractions extracted from airborne particles have been shown to ex-

hibit mutagenic activity by in-vitro bioassays as reported by several investigations.

(24-28) The search for major mutagens associated with airborne particulate matter

has evolved from investigations of polycyclic aromatic hydrocarbons (PAH) through

studies of nitro-PAH, PAH-quinones and other oxygenated derivatives. It has been

shown that the PAH class itself only accounts for a minor part of the mutagenicity

in ambient airborne particulate matter. (29) Therefore, interest in nitro-PAH, PAH-

quinones and the oxygenated derivatives of PAH has grown in recent years.

Nitro-PAH have been a source of increasing health-related concern due to

their direct-acting mutagenic response in the salmonella test, (30-32) positive muta-

genic responses in mammalian cells, (33) and carcinogenic activity in animal exper-

iments. (34) In addition to nitro-PAHs, many oxygenated PAH may be associated
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with particulate matter in ambient air. For instance, model experiments on chemi-

cal and, particularly, photochemical PAH stability suggest that several of the PAH

that are emitted in sizable amounts from various natural and anthropogenic sources

are degraded in the atmosphere by sunlight or by interactions with other reactive

airborne species. (35-44)

The discovery of potent bacterial mutagenicity of some nitro-PAH, coupled

with the recognition of the almost ubiquitous distribution of these chemicals in the

environment, has generated a great deal of interest in their properties. (45,46) The

mutagenicity of nitro-PAH was found to be optimal in Salmonella typhimurium

TA98, a plasmid-containing strain which detects frameshift mutations. Therefore,

in this present study, we also tried to develop better analytical method for the

separation and identification of nitro-PAH in ambient air samples.

According to Nishioka's studies (47) and our mutagenicity results, obviously,

most of the mutagenic activity (TA98+S9) was found in the most polar DCM-N6-S3

and S4, especially in DCM-N6-S3. At the same time, the contributions of nitro-PAH

in these subtractions appear to be much greater. However, detection of the specific

compounds responsible for this mutagenic and carcinogenic activities is limited by

the complexity of air samples. In other words, separation into substantially less

complex fractions to facilitate detection of the mutagenic compounds should be

very important for us. Thus, the further fractionation of these subtractions has

been adopted in this study.
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3.2-2 Experimental

This fractionation procedure was done by High Performance Liquid Chro-

matography (HPLC) system as that described previously, except that a Du Pont

zorbax silica semi-prep column (9.4 mm id x 25 cm) and a UV absorbance detector

operating at 280 nm as well as a fluorescence detector operating at 290 nm (ex-

citation) and 370 nm (emission) were used here. The mobile phase used are 2%

methanol/98% methylene chloride (solvent A) as well as hexane (solvent B) and

the solvent flow rate is set up at 4.0 ml/min. The gradient conditions are: (1) 10

minutes hold at 8% solvent A: 92% solvent B, (2) 30 minutes linear gradient to 35%

solvent A: 65% solvent B, (3) 35 minutes hold at 35% solvent A: 65% solvent B, (4)

5 minutes linear gradient to 8% solvent A: 92% solvent B.

A mixed standard containing NBS 1647a (PAHs), NBS 1587 (nitro- PAHs),

PAH-quinones and hydroxypyrenes as well as nitrohydroxypyrenes (1-nitro-3;6;8-

hydroxypyrene isomers) was first injected to make sure what conditions were best

for separation in order to decrease the complexity of the samples. A typical chro-

matogram is shown in Figure 3-11. 1 ml aliquots of environmental subfraction

sample were injected each time, and the four subsubfractions were separated and

collected from the outlet of the HPLC system. Representative chromatograms of

the winter (DCM-N6-S3) and summer (DCM-N6-S3) subfraction samples are shown

in Figures 3-12 and 3-13, respectively. After each subsubfraction was concentrated
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with nitrogen and the same subsubfractions were combined, one-third of the sample

was tested for mutagenicity, one-third of the sample was run on FTIR and another

one-third of the sample was identified by GC/MS.

3.2-3 Results and Discussion

The mass balance results are shown in Table 3-3. Total recoveries for winter

and summer samples are around 82% and 92% respectively. It is better than those

of acid-base partitioning and open column chromatography fractionations. Tables

3-4 and 3-5 represent the mutagenic activities of winter and summer DCM-N6-S3

subsubfractions. We also depict the trends of corrected mutagenicities in winter and

summer subsubfractions in Figures 3- 14 and 3-15.

In fact, there are some difference between these two trends. Of winter sub-

subfractions, obviously, the most potent direct-acting mutagenic fractions should be

Li, L2 and L3, and Indirect-acting mutagens were present in the first subsubfraction

(L1) only. However, for summer samples, we would reasonably expect that subsub-

fraction L3 contained about 70% masses should respond the most potent mutagenic

activity. Actually, of all W88 and S88 subsubfractions assayed, the highest spe-

cific activity was observed in S88-DCM-N6-S3-L3 subsubfraction, and the specific

activity of this subsubfraction was higher than the activity of the equivalent sub-

subfraction from the Winter campaign. Meanwhile, we cannot get optimal quality
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data for the other three subsubfractions (L1, L2 and L4) due to the small amount of

material available for Ames assays. In addition, of the direct- acting mutagens, there

was clear-cut evidence that some or most were nitro group-containing mutagens in

this subsubfraction. Therefore, the further identification of these major mutagenic

subsubfractions is necessary. The results of FTIR and GC/MS will be described in

the following two chapters.

3.3 Subsubfractionation of Subfraction S4 by HPLC

3.3-1 Introduction

Beside the subfractions, DCM-N6-S3, corresponding to most of mutagenic

activity, the subfractions, DCM-N6-S4, also exhibited important roles in the contri-

butions of nitro-PAH.. Thus, a fractionation by HPLC was also employed here.

3.3-2 Experimental

The same Waters HPLC chromatography system and silica semi-prep column

were used but we employed 5% methanol/95% methylene chloride (solvent A) and

hexane (solvent B) as the mobile phase. The running conditions, also changed, are:

(1) 15 minutes hold at 100% solvent B, (2) 15 minutes linear gradient to 35% solvent

A: 65% solvent B, (3) 40 minutes hold at 35% solvent A: 65% solvent B, then (4)
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10 minutes linear gradient to 100% solvent B. The UV absorbance detector is set at

254 nm and the wavelength of fluorescene detector are 290 nm (excitation) and 370

nm (emission).

3.3-3 Results and Discussion

We also cut the subfractions to four subsubfractions and the chromatograms

of a mixed standard and these two subfractions are shown in Figure 3-16 to Figure

3-18. After collection in the same way as above, a portion of these samples was also

bioassayed in TA98 strains. Table 3-6 shows about mass balance results and the

Ames assay data are depicted in Table 3-7 and Table 3-8. The mass recoveries of

both samples are approximately 60% and similar mass distributions are displayed

in these two subfractions. From Figure 3-19 and Figure 3-20, it is obvious that the

subsubfractions with the highest specific activity were L2 for winter and summer

samples, followed by L1 and L3, then L4. At the same time, the summer L2 sub-

subfraction had a lower specific activity than did the equivalent fraction from the

Winter campaign. In fact, these L2 mutagens appeared to be nitro mutagens, so the

further identification is positively necessary to be achieved. Moreover, although the

winter L4 had the lowest specific activity of direct-acting mutagens of the four win-

ter subsubfractions, it was the only fraction of the four which appeared to contain

indirect-acting mutagens. This is also an interesting point.
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Table 3-1

Concentrations of Compounds Identified from W88- DCM Extract

Compounds Identified 	 a Conc. by HPLC (ug/ml)	 'Conc. in Air (ng/m3)

Phenanthrene	 -	 -

Fluoranthene	 1.33	 0.29

Pyrene	 1.45	 0.32

Benzo(a)anthracene	 1.92	 0.42

Chrysene	 2.88	 0.63

Benzo(b)fluoranthene	 4-43	 0.96

Benzo(k)fluoranthene	 2.01	 0.44

Benzo(a)pyrene	 4.29	 0.93

Dibenz(a,Nanthracene	 0.53	 0.11

Benzo (ghi)perylene	 8.76	 1.91

171 deno ( 1 , 2 , 3- cd) pyren e 	 6.87	 1.50

aThe concentrations determined by HPLC are based upon W88-DCM-N6-S2.

The concentration in the air is calculated by:

1. The concentration determined by HPLC times 10 ml, total volume of W88-

DCM-N6-S2 fraction

2. The masses got from step 1. are divided by 0.885 (8.85 m1/10 ml) to place

an original 10 ml scale in neutral composite and then divided by 0.785 (7.85

m1/10 ml) to reflect an original 10 ml scale in whole DCM extract.

3. Those masses in DCM extract are finally divided by 66,115 m3 of total air

volume collected for 40 days.
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Table 3-2

Concentrations of Compounds Identified from 588- DCM Extract

Compounds Identified aConc. by HPLC (ug/ml) b Conc. in Air (ng/m3)

Phenanthrene 0.10 0.03

Fluoranthene 0.12 0.03

Pyrene 0.06 0.01

Benzo(a)anthracene 0.04 0.01

Chrysene 0.17 0.04

Benzo(b)fluoranthene 0.18 0.05	

Benzo(k)fluoranthene 0.09 0.02

Benzo(a)pyrene 0.10 0.03

Dibenz(a,h)anthracene 0.03 0.01

Benzo(ghi)perylene 0.37 0.10

Indeno ( 1, 2,3-cd)pyrene 0.29 0.08

aThe concentrations determined by HPLC are based upon S88-DCM-N6-S2.

'The concentration in the air is calculated by:

1. The concentration determined by HPLC times 10 ml, total volume of S88-

DCM-N6-S2 fraction

2. The masses got from step 1. are divided by 0.4167 (6.25 m1/15 ml) to place

an original 15 ml scale in neutral composite and then divided by 0.954 (23.85

m1/25 ml) to reflect an original 25 ml scale in whole DCM extract.

3. Those masses in DCM extract are finally divided by 96,664 m3 of total air

volume collected for 60 clays.
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Table 3-3 Mass Results of Winter and Summer S3 Subsubfractions

Total Masses (mg)* 	 Percentage (%)

Fraction Name	 W88-DCM S88-DCM	 W88-DCM S88-DCM

DCM-N6-S3-L1	 4.95

DCM-N6-S3-L2	 10.30

DCM-N6-S3-L3	 4.80

DCM-N6-S3-L4	 2.11

Sum of Masses	 22.16

0.81 22.54 11.10

0.72 46.49 9.86

5.07 21.66 69.45

0.70 9.52 9.59

7.30 100.01 100.00

7.89 - -Original Mass	 26.94

Recovery	 82.26%	 92.52%

*Total masses of each subsubfra,ction were placed on original volume scale for

winter and summer samples.
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Table 3-4

Ames Assay Results for W88-DCM-N6-S3 and Subsubfractions

TA98-S9 TA98+S9

Fraction Name Mass(ug) rev/ug Total (rev) rev/ug Total (rev)

W88-N6-S3-L1 6,020 0.49 2,950 0.91 5,478

W88-N6-S3-L2 12,521 0.59 7,387 0.60 7,513

W88-N6-S3-L3 5,831 0.68 3,965 0.46 2,682

W88-N6-S3-L4 2,567 0.28 719 NEG NEG

Total(1-4) - - 15,021 - 15,673

W88-N6-S3 26,939 0.45 12,123 1.07 28,825

Recovery 	 - - 123.90% - 54.37%

The mass of each subsubfraction is based upon the original 10 ml volume of

W88-DCM-N6-S3 subfraction and EOM recovery is assumped at 100%.
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Table 3-5

Ames Assay Results for S88-DCM-N6-S3 and Subsubfractions

TA98-S9 	 TA98+S9

Fraction Name Mass(ug) rev/ug Total(rev) rev/ug

S88-N6-S3-L1 875 - - -

S88-N6-S3-L2 778

S88-N6-S3-L3 5,480 2.60 14,248 1.50

S88-N6-S3-L4 757

Total(1-4) _ _ 14,248 -

S88-DCM-N6-83 7,890 1.68 13,255 2.40

Recovery .	 - - 107.54% -

Total (rev)

8,220

8,220

18,936

43.41%

The mass of each subsubfraction is based upon the original 10 ml volume of S88-

DCM-N6-S3 subfraction and EOM recovery is assumped at 100%. Additionally,

Li, L2 and L4 did not run bioassays since too low mass was not available for

testing.
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S88-DCM W88-DCM S88-DCM

2.20 20.74 9.03

16.27 62.41 66.79

0.71 7.30 2.91

5.18 9.55 21.26

24.36 100 99.99

Table 3-6 Mass Results of Winter and Summer S4 Subsubfractions

Total Masses (mg)* 	 Percentage (%)

Fraction Name W88-DCM

DCM-N6-S4-L1 6.56

DCM-N6-S4-L2 19. 74

DCM-N6-S4-L3 2.31

DCM-N6-S4-L4 3.02

Sum of Masses 31.63

Original Mass 50.54

Recovery 62.58%

42.01

57.99%

*Total masses of each subsubfraction were placed on original volume scale for

winter and summer samples.
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Table 3-7

Ames Assay Results for W88-DCM-N6-S4 and Subsubfractions

TA98- S9 	 TA98+S9

Fraction Name	 Mass (ug)	 rev/ug	 Total (rev)	 rev/ug	 Total ('rev)

W88-N6-S4-L1	 10,483	 0.39	 4,088	 0.55	 5,766

W88-N6-S4-L2	 31,544	 0.93	 29,336	 0.67	 21,134

W88-N6-S4-L3	 3,691	 0.37	 1,366	 0.38	 1,403

W88-N6-S4-L4	 4,826	 0.26	 1,255	 0.63	 3,040

Total(1-4)	 -	 -	 36,045	 _	 31,343

W88-DCM-N6-S4	 50,540	 0.30	 15,162	 0.70	 35,378

Recovery	 .	 -	 -	 237.73%	 -	 88.59%

The mass of each subsubfraction is based upon the original 10 ml volume of

W88-DCM-N6-S4 subtraction and EOM recovery is assumped at 100%.
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Table 3-8

Ames Assay Results for S88-DCM-N6-S4 and Subsubfractions

TA98- S9 	 TA98+S9

Fraction Name	 Mass(ug)	 rev/ug	 Total(rev)	 rev/ug	 Total (rev)

	

S88-N6-S4-L1	 3,794	 0.32	 1,214

	

S88-N6-84-L2	 28,057	 0.43	 12,065

	 S88-N6-S4-L3	 1,224

	

888-N6-S4-L4	 8,933	 0.12	 1,072

Total (1-4)	 -	 -	 14,351

S88-DCM-N6-S4	 42,010	 0.28	 11,763

Recovery	 	 -	 -	 122.00%

The mass of each subsubfraction is based upon the original 10 ml volume of S88-

DCM-N6-S4 subfraction and EOM recovery is assumped at 100%. Additionally,

L3 did not run bioassays since too low mass was not available for testing.
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Figure 3-la Fluoranthene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-1b Pyrene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-1c Benz(a)anthracene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-1d Chrysene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-le Benzo(b)fluoranthene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-1f Benzo(k)fluoranthene Calibration Using NBS SRM 1647a, A Mixture of 16 PA H



Figure 3-1g Benzo(a)pyrene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-1h Dibenz(a,h)anthracene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-1i Benzo(ghi)perylene Calibration Using NBS SH,M 1647a, A Mixture of 16 PAH



Figure 3-1j Indeno(1,2,3-cd)Pyrene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-1k Phenanthrene Calibration Using NBS SRM 1647a, A Mixture of 16 PAH



Figure 3-2 The HPLC Chromatogram of NBS 1647a



Figure 3-3 The HPLC Chromatogram of W88-DCM-N6-S2



Figure 3-4 The HPLC Chromatogram of S88-DCM-N6-S2



Figure 3-5 The UV Chromatogram done by HPLC with Photodiode Array Detector



Figure 3-6 The Concentrations of Ten Selected PAH Identified in W88-DCM-N6-S2



Figure 3-7 The Concentrations of Eleven Selected PAH Identified in S88-DCM-N6-S2



Figure 3-8 Concentration Comparison of Selected PAH between W88- DCM-N6-S2 and S88 - DCM - N6 - S2



Figure 3-9 The Ratio (PAH/BaP) Comparison between W88-DCM-N6-S2 and S88-DCM-N6-S2



Figure 3-10 The Ratio (PAH/BbF) Comparison between W88-DCM-N6-S2 and S88-DCM-N6-S2



Figure 3-11 The HPLC Chromatogram of Mixed Standard



Figure 3-12 The Semi-preparative HPLC Chromatogram of Subfraction



Figure 3-13 The Semi-preparative HPLC Chromatogram of Subfraction



Figure 3- 14 Distribution of Corrected Mass and Mutagenicity for W88-DCM- N6-S3 - L1 to L4



Figure 3-15 Distribution of Corrected Mass and Mutagenicity for S88-DCM-N6-S3-L1 to L4



Figure 3-16 The HPLC Chromatogram of Mixed Standard



Figure 3-17 The Semi-preparative HPLC Chromatogram of Subfraction

W88-DCM-N6-S4 to Yield Four Subsubfractions



Figure 3-18 The Semi-preparative HPLC Chromatogram of Subfraction

S88-DCM-N6-S4 to Yield Four Subsubfractions



Figure 3-19 Distribution of Corrected Mass and Mutagenicity for W88-DCM-N6-S4-L1 to L4



Figure 3-20 Distribution of Corrected Mass and Mutagenicity for S88 - DCM- N6 - S4 - L1 to L4



CHAPTER FOUR

Fourier Transform Infrared and Diode Array UV

4.1 Fourier Transform Infrared (FTIR) Spectroscopy

4.1-1 Introduction

We have attempted to gain insight into the nature of functional groups and

classes of organic compounds in our airborne particulate extracts by -employing

Fourier Transform Infrared (FTIR) spectroscopy on 8 fractions obtained by acid-

base partition, 8 subfractions obtained by open column chromatography and 7 sub-

subfractions from HPLC semi-preparative column chromatography.

Fourier Transform Infrared (FTIR) Spectroscopy is a potentially powerful

technique for analyzing classes of pollutants on ambient particulates. In the present

study, a portion of each fraction, subfraction and subsubfraction was brought down

to around 50 ul. Then, all samples were layered on a KBr window and the solvent

evaporated.

4.1-2 Experimental

The FTIR technique has been discussed elsewhere. (1) For the present study,

samples dissolved in different solvents were evaporated to dryness on KBr (13 x 2
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mm) windows and scanned 32 times on a Nicolet System 740 FTIR spectrophotome-

ter equipped with a sensitive MCT detector. Interferograms are collected with an

optical velocity of 20 scans per second and Fourier transformed to yield a resolution

of 0.3 cm-1 and data encoded every 0.2 Cm-1 . The frequencies were determined

with an uncertainty of less than +0.004 cm-1 . The spectra were obtained under the

supervision of Dr. David Bugay at the Squibb Medical Research Institute in New

Brunswick, N.J. Interpretation of FTIR spectra is based on standard sources. (2) We

will discuss the FTIR spectra of the fractions, subfractions and "subsubfractions"

in turn.

4.1-3 Results and Discussion

A. Weak Base Fractions

A quick glance at the transmittance scales of Figure 4-1 and Figure 4-2 in-

dicates that there are very strong bands at 2925 cm-1, 2854 cm-1 , 1463 cm-1, 1377

Cm-1 and 1277 Cm-1 , which could correspond to alkanes. However, there is a hint of

unsaturated and/or aromatic hydrocarbons as shown by the small shoulder around

3058 Cm-1 and the small peak around 1600 cm-1. Two weak absorption bands:

one near 3430 Cm -1 , the other near 3360 cm-1- represent, respectively, the "free"

asymmetrical and symmetrical N-H stretching modes, and a shoulder around 3200

Cm -1 display Fermi resonance band of aromatic amines with overtone of 1074 c m -1
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band. Moreover, some of the intense carbonyl absorptions around 1713-1728 crn-1

are likely to be phthalates because our mass spectrometric results indicated that

samples were contaminated with phthalates. Acctually, phthalates have carbonyl

absorption around 1720 cm -1 . For the winter weak base fraction (W88-DCM-B1),

the band at 1123 cm -1 could correspond, along with the 3430 cm to an

alcohol or to an ester. This is a significant difference between winter and sum-

mer weak base fractions, since the summer fraction lacks this. At the same time,

the S88-DCM-B1 fraction has more bands in the 1600-1730 cm-1 area than does

W88-DCM-B1 fraction. This could be the resonance effect increases the  C=O band

length and reduces the frequency of absorption, such as NH2 or S groups in R(CO)X

compounds.

B. Weak Acid Fractions

The winter (Figure 4-3) and summer (Figure 4-4) weak acid fractions have

very similar IR spectra: both have carbonyl bands at 1710 cm-1 and weak aromatic

band above 3000 cm-1 as well as aromatic C-C ring stretch around 1600 cm-1. In

addition, the O-H absorption peak around 3280 cm-1 is probably due to some fatty

acid contribution although moisture is possible. It is interesting that asymmetric

stretching (1515-1550 cm-1) and symmetric stretching (1345-1385 cm-1) for the nitro

group were found in these two fractions. In this regard it is worthwhile remembering

the earlier-cited observations of a number of research groups that most of the muta-
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genic activity is associated with nitrated compounds. This is, perhaps, the reason

why these weak acid fractions were the second most mutagenic at the first level of

separation.

C. Strong Base Fractions

The IR spectra of strong base fractions are shown in Figure 4-5 and Figure

4-6. There is a significant level of alkanes which appear to compose most of its mass.

Thus, there is less mutagenicity in these two samples. It appears, as in the weak base

fractions, that levels of nitro group can not be obviously found in these fractions

but the Ames assay results showed more important TA98NR-S9 and TA98DNP-S9

response in W88-DCM-B3 fraction. This could be due to very few nitro compounds

in the samples. There might be a carbonyl band (1712-1728 cm -1 ) which is likely

to be associated with an ester. Actually, a lot of esters of fatty acids have been

found (using GC/MS) in these two fractions. In addition, the associated N-H bands

at 3400-3330 cm 3330-3250 cm -1 , which are weaker but frequently sharper

than the corresponding O -H bands, were also found in these strong base samples.

A weak aromatic band around 3000 cm -1 was also displayed in the spectra of the

winter strong base fraction but not in that of summer fraction.

D. Strong Acid Fractions

In Figure 4-7 and Figure 4-8, the spectra of strong acid fractions displayed
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intense and wide carbonyl absorption bands at 1720 cm -1 which could correspond

to carboxylic C=O stretch, 1715 cm -1 , and the bands around 1280 Cm -1 might

represent the C-O, dimer, stretch in carboxylic acids. The aromatic absorption

band above 3000 cm -1 was also seen in the winter fraction only. At the same time,

samples were contaminated by a lot of phthalates when analyzed by GC/MS, but

the results still show the presence of carboxylic acid. Furthermore, the weak peak

around 1550 cm -1 and the bands at 1377 cm--1 corresponding to nitro group were

observed in these fractions. This is interesting and surprising to us. In fact, a

nitrosomorpholine compound was found in GC/MS results. The stronger band at

1638 cm-1 in S88-DCM-A4 but weaker in W88-DCM-A4 could be due to alkene C=C

stretch or PAH-quinones since extended quinones are known to absorb at around

1645 cm -1

E. First Neutral Subfraction (Si)

These two subtractions (W88-DCM-N6-S1 and S88-DCM-N6-S1) eluted from

an open silica column with hexane are the non-polar and second most massive

fractions at the second level of separation. Those FTIR spectra (Figure 4-9 and

Figure 4-10) show the alkane bands at 2970 cm 2842 cm -1 corresponding to

C-H stretch of alkanes, as well as at 1463 cm-1 and 1377 cm -1 corresponding to C-H

bend of alkanes. The absorption band around 720 cm -1  also represent the CH2 rock.

However, the peak around 1640 OTC 1 display the C=C stretch, too. Therefore, there
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could be some other aliphatic compounds, such as alkenes, in these subtractions. The

absorption band around 1600 cm -1,along with the strong band at 1460cm-1 ,should

well be the aromatic C-C ring stretch. GC/MS results, in fact, show some alkene

and aromatic compounds found in these samples.

F. Second Neutral Subfraction (S2)

These hexane/benzene (1:1 v/v) eluant neutral subtractions should corre-

spond to polycyclic aromatic hydrocarbon (PAR) compounds. The aromatic C-H

stretching band at 3050 cm-1 is evident and the most characteristic absorption of

polycyclic aromatics resulting from C-H out-of-plane bending in the 900-675 cm - 1

region is also found in Figure 4-11 and Figure 4-12. Thus, consistent with HPLC and

GC/MS results, most of the parent PAH compounds are in these subtractions. At

the same time, a major indirect-acting mutagenic activity was also found in these

two subtractions. Two peaks at 1090-1030 cm-1 displayed unconjugated straight

chain anhydrides, and cyclic anhydride C- CO-O-CO-C stretch near 952-909 cm-1

as well as 1299-1176 cm-1 was shown in these samples.

G. Third Neutral Subfraction (S3)

The aromatic C-H stretching bands are still observable at 3050 cm-1 in Fig-

ure 4-13 and Figure 4-14. Weak C-C ring stretch occurs at 1580, 1487 and 1466

Cm -1 . Unexpectedly, it seems to us that these spectra do not clearly show a,sym-
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metrical and symmetrical stretching of the nitro group in the regions of 1550- 1515

cm -1 and 1385-1345 cm-1. However, a C-N stretching vibration of nitro aromatic

compounds appears near 860 cm -1 . Asymmetrical stretching in the NO 2 group of

organic nitrates results in strong absorption in the 1660-1625 cm-1 region and the

symmetrical vibration absorbs strongly near 1300-1255 cm-1. In addition, the car-

bonyl band at 1729 cm-1 could correspond to benzoates because conjugation of an

aryl group or other unsaturation with the carbonyl group causes this C=O stretch

to be at lower than normal frequency (e.g. benzoates absorb at ca.1724 cm -1 ). The

band around 1635 cm-1 could well be due to PAH-quinones since extended quinones

are known to absorb in 1655-1635 cm -1 region. In fact, we found some ketones in

these subfractions using GC/MS techniques.

H. Fourth Neutral Subtraction (S.4)

The characteristic bands observed in these two spectra (Figure 4- 15 and

Figure 4-16) are shown at 3350-3360 cm -1 which might be intermolecular hydrogen

bonded 0-H stretch. We feel that this band is likely to be associated with phenols.

Furthermore, for winter sample, the bands near 3430 cm-1 and 3350 cm-1 represent

N-H stretching modes and the shoulder around 3200 Cm - 1 with overtone of 1073 cm-1

could be aromatic amines. This is the difference between these two methanol eluant

subfractions. Moreover, the absorption bands at 1721 cm-1 and 1122 cm-1 should

correspond to benzoates and alcohols. Our GC/MS results indicate the presence of
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phenols and alcohols as the major contributor in these more polar samples. The

clear band at 1278 cm-1 might represent the organic phosphate compounds which

display P=0 stretch near 1299-1250 cm -1 . The evidence can be also observed from

the GC/MS results.

I. Neutral Subsubfractions (S3-L1 to S3-4)

The IR spectra of subsubfractions (L1-L4) separated from neutral subfraction

S3 using HPLC techniques are shown in Figure 4-17 to Figure 4-23, respectively.

Basically, these spectra have similar peak positions but more intense absorption

band and more obvious aromatic C-H stretch were found in winter samples. It

means these four subsubfractions could contain the same classes of compounds and

the only difference is individual concentration. This can be evidenced from our

GC/MS results.

There is a clear carbonyl band at 1730 Cm -1 but no O-H stretching band

was seen in these subsubfractions except summer L4 sample. We feel that this

carbonyl band could correspond to ketones or PAH-quinones. The aliphatic C-H

stretch between 2956 cm -1and 2855cm-1as well as aliphatic C-H bend at 1466

cm-1 and 1378 cm-1 displayed a lot of aliphatic CH3 and CH2 groups included in

these samples. An absorption band around 3060 cm-1 corresponding to 0-H stretch

found in summer L4 subsubfraction might represent some polar compounds such

as phenols or alcohols. Actually, there is not enough L4 sample for GC/MS test
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and the Ames assay results exhibited no significant mutagenic activity in these two

samples.

In addition, as our earlier description about the neutral S3 subfraction, the

nitro group stretch seemed negligible to be shown in all of these four subsubfrac-

tions. However, a little N-H stretching peak around 3055 cm -1 and the N-H bend

(scissoring) at 1620 cm-1  well as N-H wag between 900-700 cm-1  indicated that

some amines might exist in these samples.

It is worth noting that the first three subsubfractions of winter samples and

the third subsubfraction of summer samples show the major masses and mutagenic

activities in this level of separation. Therefore, the further identification should be

made, obviously.

4.2 Photodiode Array Ultraviolet

4.2-1 Introduction

High performance liquid chromatography (HPLC) with photodiode array ul-

traviolet detector is a advanced technique to identify individual compounds from

mixed organic solution samples. Thus, in this study, a Waters Model 990 photodi-

ode array HPLC system was employed to determine the specific compounds in the
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subfraction S2 and subsubfractions (L1-L3) separated from subfraction S3. Subsub-

fraction L4 and summer subsubfraction L1 as well as L2 were not run on this system

because no significant mutagenic activity was found in these samples.

4.2-2 Experimental

A Vydac 201 TP54 polymeric C18 (5 urn, 4.6 mm x 25 cm) column was used

and the separation condition for subsubfraction L1 to L3 is: step (1) 3 minutes

equilibration at 60% acetonitrile: 40% water, step (2) 30 minutes linear gradient

to 90% acetonitrile: 10% water, step (3) 15 minutes hold at 90% acetonitrile: 10%

water. The separation condition for subfraction S2 has been described in Chapter

Three and the chromatogram was shown in Figure 3-5.

Photodiode array detector which can provide rapid scan from 200 nm to 800

nm once a second is a very powerful ultraviolet spectroscopy. Dr. Edward Aig and

Mr. John Van Antwerp, Waters Associates, ran this advanced HPLC system for us.

They set up UV wavelength at the range from 220 nm to 400 nm. Each sample was

injected using a automatic injector and all data were collected by Digital computer

data system. At the same time, one selected wavelength ultraviolet chromatogram

was also graphically shown in a printer.

4.2-3 Results and Discussion
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Figure 4-24 to Figure 4-27 represent the whole chromatogram of winter sub-

subfraction L1, L2, L3 and summer L3, respectively. The same chromatographic

runs with complete UV spectra at the beginning, top and end of each peak were dis-

played in Figure 4-28 to Figure 4-31. From analysis of these chromatograms with UV

spectra, one can clearly establish whether each peak corresponds to one pure com-

pound or includes more than one component. Furthermore, the UV spectrum of each

compound can provide the identification from matching of these compounds in the

environmental sample with those in the library of knowns. In Figure 4-32 through

Figure 4-35, the same chromatogram with UV spectra from 220 nm to 400 nm were

used to indicate what compounds exist in these subsubfractions. Figure 4-33a to

Figure 4-33d show four examples of matching and mismatching of PAH compounds

found in W88-DCM-N6-S2 samples. Unfortunately, there is no clear evidence for

the nitro-PAH compounds identified in these four subsubfractions. However, three

similar hydroxynitro-PAH compounds were found in W88-DCM-N6-S3-L3 samples.

Thus, even having not confirmed the presence of nitro derivatives in these most

mutagenic polar subsubfractions yet, we believe they are present but at low enough

levels that they are obscured by abundant substances.
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Figure 4-1



Figure 4-2

S88-DCM-B1, KBR DISC 13 X 2 MM. 1/23/89
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Figure 4-24 The HPLC Chromatogram of W88-DCM-N6-S3-L1 at 254 nm wavelength



Figure 4-25 The HPLC Chromatogram of W88-DCM-N6-S3-L2 at 254 nm wavelength



Figure 4-26 The HPLC Chromatogram of W88-DCM-N6-S3-L3 at 254 nm wavelength



Figure 4-27 The HPLC Chromatogram of S88-DCM-N6-S3-L3 at 254 nm wavelength
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Figure 4-32 HPLC Chromatogram with Complete Diode Array UV Spectra for W88-DCM-N6-S3-L1



Figure 4-33 HPLC Chromatogram with Complete Diode Array UV Spectra for W88-DCM-1\16-S3-L2



Figure 4-34 HPLC Chromatogram with Complete Diode Array UV Spectra for W88-DCM-N6-S3.L3



Figure 4-35 HPLC Chromatogram with Complete Diode Array UV Spectra for S88-DCM-N6-S3-L3



Figure 4-36a and Figure 4-36b Matching of Benzo(b)Fluoranthene and Pyrene

in W88-DCM-N6-S2 with Library Spectra of Knowns
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Figure 4-36c and Figure 4-36d Matching of Benzo(ghi)Perylene and Mismatching of
Benzo(b)Fluoranthene with Library Spectra of Knowns
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CHAPTER FIVE

Gas Chromatography/Mass Spectrometric Results

5.1 Introduction

A major research goal of this present study is to obtain data on classes of or-

ganic compounds, presently unknown, which contribute to mutagenicity of airborne

particulates. Additionally, as mentioned earlier in this study, a large fraction of the

mutagenic activity of the extracts is associated with more polar materials. There is

literature evidence implicating nitro- substituted compounds and, more specifically,

hydroxynitro-PAH. (1,2) Therefore, all major mutagenic fractions, subfractions and

subsubfractions of DCM extracts were analyzed by GC/MS technique at the Center

for Advanced Food Technology, Cook College of Rutgers University where samples

were run by Drs. Robert Rosen and Thomas Hartman.

5.2 Experimental

All analysis were conducted using a Varian 3400 gas chromatograph directly

interfaced to a Finnigan Mat model 8230 mass spectrometer. Data was acquired and

processed using the SS-300 data system. Chromatography was performed using on-

column injection techniques. Samples were injected on a 15 m x 0.32 mm i.d. DB-5

capillary column containing a 0.25 micron film thickness. The injector temperature
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was 260°C. Various column programs were used. The GC-MS interface lines were

maintained at 320°C. The mass spectrometer was scanned at a rate of 1 second

per decade from mass 35 to 550 and mass spectra were produced using standard

electron ionization (70eV).

Since the presence of plasticizers obscured GC/MS results, some of the acidic

fractions were taken using acid/base extraction to further fractionate into strong

acids (e.g. carboxylic acids) and weak acids (e.g. phenols). The original sample

was evaporated under nitrogen, then a solution of NaHCO3 was added to reach a

pH of 8.4. The sample was partitioned with dichloromethane. The DCM extract

was collected and designated weak acid fraction. The aqueous portion was acidified

with HC1 to a pH<2.0 and again partitioned with dichloromethane. This sample

was collected and designated strong acid fraction. Samples were then concentrated

and analyzed as was done with previous samples. Other fractions of samples were

given similar treatment.

5.3 Results and Discussion

GC/MS results for selected fractions, subfractions and subsubfractions of

winter and summer samples are listed in Table 5-1 to Table 5-10. It is clear that

the fractionation into acids and bases was not a neat one and many water-soluble

compounds are present that are neither acid nor base. Furthermore, the presence of a
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lot of phthalates contaminated our samples and obscured GC/MS results, especially

in nitro group compound identification. This is probably due to the ubiquitous

nature of these plastics additives and perhaps due to plastics processing activity

in the area. Even so, some interesting compounds were still found in the selected

fractions, subfractions and subsubfractions, and will be discussed in turn.

At the first level of separation, nitrosomorpholine found in acid fractions

(W88-DCM-A4 and S88-DCM-A2) and the weak base fraction (S88-DCM-B1) is

very interesting to us, since it is both mutagenic and carcinogenic. This substance

had been listed as a carcinogen by the EPA in 1981. (3) In fact, this compound

is used in the manufacture of rubber, so the source of this pollutant could be from

industries in the area as well as tires. Additionally, abietic acids are also seen in

these samples. These compounds are employed in the manufacture of ester gums,

lacquers, varnishes, soaps, plastics and paper sizing. There is automobile body

stripping and painting activity at more than one location near the Newark site.

The DCM-N6-S2 subfractions are known to contain normal PAH as we have

determined using IIPLC techniques. The best GC/MS results were also obtained

for these two subfractions (W88-DCM-N6-S2 and S88-DCM-N6-S2) for which PAH

were clearly detected. A tributylphosphate found in summer S4 subfraction as well

as B1, A2 and B3 fractions is a plasticizer for cellulose esters, lacquers, plastics,

and vinyl resins, and it irritates mucous membrances. Moreover, some quinones or

ketones were seen in S3 subfraction and a compound of considerable interest to us
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is benzanthracenedione since it is very closely related to 7H- benzanthracene-7-one

(benzanthrone) which was reported to be the most abundant oxygenated non-volatile

PAH. (4)

At the same time, several chloro compounds such as chlorostyrylquinoline and

cholrobenzoylchloride are the findings of unusual chemicals. Nonylphenol, a chemical

used in the preparation of lubricating oil additives, resins, plasticizers, surface active

agents, was also found to be present in the S88- DCM-N6-S3 subfraction.

Of the subsubfractions, a lot of quinones, ketones, alcohols and phenols were

found in W88-DCM-N6-S3-L1, L2 and L3. These three subsubfractions displayed

the most direct-acting and nitro group mutagenic activity in the Ames assay results.

Thus, the nitro group compounds were presumably involved in these samples. How-

ever, there is no evidence for hydroxynitro-PAH or any other nitro compounds in

these polar subsubfractions, since our samples were too contaminated with phtha-

lates and adipates. It is also possible that there is some thermal decomposition on

the GC column of these polar, nonvolatile nitrated molecules. In addition, although

we believe the nitro compounds are present, they are at low enough levels that they

are obscured by the more abundant substances. How to clean up or prevent our sam-

ples from being contaminated is definitely important for the further identification

using GC/MS techniques.
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Table 5-1 The GC/MS Results for W88-DCM-B1 Fraction

Assignment 	 MW

Nitrosornorpholine	 116

Dimethylquinoline	 157

Trimethylquinoline	 171

Tributylphosphate	 266

Diethylbiphenyl or isomer 	 210

Benzoquinoline or acridine or phenylethlpyridine 	 179

Caffein	 194

Hexadecanamide	 255

Octadecenarnide	 281

Sample too contaminated by phthalates for further identification.
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Table 5-2a The GC/MS Results for W88-DCM-A2 Fraction

Assignment 	 MW

Dimethylnonenone	 168

Propanoic acid, 2-methyl-, 1-(1,1-dimethyl-1,3 propanediol) 	 286

Phenol-, 2, 6-bis(1, 1 - dimethylethyl)-4 -ethyl- 	 234

Caffeine	 194

Hexadecanoic acid	 256

Octadecanoic acid	 284

Butylphenylmethylphthalate	 312

Octadecanamide	 281

Abietic acid	 300

Sample too contaminated with phthalates for further identification.
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Table 5-2b The GC/MS Results for S88-DCM-A2 Fraction

Assignment 	 MW

Nitrosomorpholine 	 116

Tributylphosphate 	 266

Methylethylpropylpropandiyl propanoate 	 286

Aliphatic amide 	 337

Sample too contaminated with phthalates for further identification.
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Table 5-3a The GC/MS Results for W88-DCM-B3 Fraction

Assignment 	 MW

Phosphorodithioic acid 0,0,s-trimethylester 	 172

Butenedioic acid, diethyl ester	 172

Pentenedioic acid, diethyl ester	 186

Sample too contaminated by phthalates for further identification.
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Table 5-3b The GC/MS Results for S88-DCM-B3 Fraction

Assignment 	 MW

Butoxyethoxyethoxyethanol 	 206

Diethylethanediamine 	 116

Chlorotoluene isomer 	 126

Diethylaminobutanone 	 143

Bis (methyl ethyl,) amino ethanol 	 145

Methylpyrrolidinyl pyridene 	 162

Tributylphosphate 	 266

Caffeine 	 194

Hexadecanamide 	 255

Azabicyclooctanecarboxylic acid benzyloxy-8-methylester 	 303

Tributylacetyloxylpropanecarboxylic acid 	 402

Octadecenarnide 	 281

Sample too contaminated by phthalates for further identification.
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Table 5-4a The GC/MS Results for W88-DCM-A4 Fraction

Assignment 	 MW

Nitrosomorpholine 	 116

Butoxyethoxyethanol 	 162

Benzenedicarboxylic acid 	 166

Sample too contaminated by phthalates for further identification.
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Table 5-4b The GC/MS Results for S88-DCM-A4 Fraction

Assignment 	 MW

Methylethylpropylpropayl diyl propanoate 	 286

Sample too contaminated by phthalates for further identification.
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Table 5-5a The GC/MS Results for W88-DCM-N6-S2 Subfraction

Assignment 	 MW

Naphthalene	 128

Phenanthrene	 178

Methylanthracene	 192

Phenylindene	 192

Dihydrophenylnaphthalene	 206

Fluoranthene	 202

Pyrene	 202

Abietic acid analog	 324

Met hylpyrene	 216

Benzofluoranthene	 226

Chrysene	 228

Naphthacene	 228

Methylchrysene	 242

Methylbenzanthracene	 242

Dihydroxypropylanthracendione	 282

Binaphthalene	 254

Benzopyrene	 252

Benzofluoranthene	 252

Methylbenzaceanthrylene	 266

Methylbenzaceanthrylenol 	 284

Quaterphenyl	 306

Benzochrysenopyrandione	 322

Benzochrysene	 276

Benzoperylene	 276

Diethyldiphenylpyrazine 	 288

Hexdecylhexadecanoate	 480

Dibenzochrysene	 302

Coronene	 300

Dibenzonaphthacene	 302
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Table 5-5b The GC/MS Results for S88-DCM-N6-S2 Subfraction

Assignment 	 MW

Isocyanonaphthalene	 153

Dimethylethyldihydrodimethyl- 1H-in denone 	 216

Ethoxydimethylcyclohexoenylidene methylfuran 	 232

Dimethylphenylmethylbenzene 	 196

Methylbutylidene-indene-2H- dione	 214

Hydroxyphenylbenzeneacetic acid 	 226

Methylphenylbenzylamine 	 211

Methylene-9H-fluorene 	 178

Methylanthracene (or isomer) 	 192

Fluoranthene or pyrene 	 202

Methoxystilbene	 210

Abietic acid analog	 314

Triphenylene	 228

Chrysene	 228

Pentaethylstyrene	 244

Tetramethoxybenzobisbenzofuranclione 	 408

Benzo (a)pyrene	 252

Benzo (e)p ymne	 252

Dibenzochrysene	 276

Benzoperylene	 276

Indenopyrene	 276
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Table 5-6 The GC/MS Results for S88-DCM-N6-S3 Subfraction

Assignment 	 MW

Diphenylmethanone 	 182

Methylethylpropylpropandiyl propanoate 	 286

Dimethylethylhydroxyin ethyl benzo ate 	 264

Benzanthracenedione 	 258

Dihydroxyphenyl-4H-benzopyranone 	 254

Stigmastenol 	 414

Chlorobenzylchloride 	 160

Caffeine 	 194

Nonylphenol 	 220

Chlorostyrylquinoline 	 265

Naphthalenepropanol derivative 	 272
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Table 5-7 The GC/MS Results for S88-DCM-N6-S4 Subfraction

Assignment 	 MW

Bis(dimethylpropyl)benzenediol 	 250

Dis (dimethylethyl)benzene	 190

Dimethylethylhydroxymethyl benzoate 	 264

Tributylphosphate	 266

Unknown subsituted phenol	 286

Aminobenzamide	 136

Dimethyloxohexylcyclohexenecarboxylic acid methyl ester 	 266

Tetramethylbutylphenoxyethoxyethanol	 294

Octyldiphenylphosphate 	 362

Methylene bis(dimethylethyl)methylphenol 	 340

N-propylbenzamide	 163

Stigmastenol	 414

Cholesterol	 386
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Table 5-8 GC/MS Results of W88-DCM-N6-S3-L1 Subsubfraction

Assignment 	 MW

Bis (dimethylethyl) cyclohexadienedione 	 220

Octahydro (2H) cy clopropanaphthalenone	 218

Diphenylmethanone 	 182

Phenanthrenol	 194

Ethyldimethylpyridine	 135

7H-benzanthracenone 	 230

B enzanthracenedione	 258

Naphthalene	 128

Aliphatic hydrocarbons, low molecular weight aromatic hydrocarbons (as

toluene, xylene etc) fatty acid esters, phthalates and adipates not listed

in this table.
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Table 5-9 GC/MS Results of W88-DCM-N6-S3-L2 Subsubfraction

Assignment 	 MW

Met hoxybenzenediol	 140

9H-fluorenone	 180

Bis(diethylamino)phenylmethanone 	 324

Anthracenecarboxaldehyde 	 206

Bis(dimethylethyl)isocyanophenol	 231

Cyclopropyl octadecenamide	 321

Friedooleananone	 426

Methylethylpropylpropandiyl propanoate 	 286

9H-fluorenamine	 181

Caffeine analogn	 208

Trimetliy/pentadecanone 	 268

7H-indeno(2,1-A)anthracenone 	 280

7H-benzanthracenone 	 230

Dimethoxyanthracendione 	 268

Aliphatic hydrocarbons, low molecular weight aromatic hydrocarbons (as

toluene, xylene etc) fatty acid esters, phthalates and adipates not listed

in this table.
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Table 5-10 GC/MS Results of W88-DCM-N6-S3-L3 Subsubfraction

Assignment 	 MW

Methylethenyl benzene	 118

Propenylbenzene	 118

Tetramethylbutyl phenol	 206

Dimethylbutylidenebisbenzene 	 236

Trimethylpheny1-1H-indene	 236

Dimethyltrimethylphenylester pro panoic acid	 220

Abietic acid analog 	 284

Bis (diethylamino)phenylmethanone 	 324

Ethenylbenzene ethanol	 148

Abietic acid analog	 318

Triphenyl phosphate 	 326

Abietic acid analog	 300

Aliphatic hydrocarbons, low molecular weight aromatic hydrocarbons (as

toluene, xylene etc) fatty acid esters, phthalates and adipates not listed

in this table.
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CHAPTER SIX

Conclusion

This study had as its goal the identification of levels and variations of known

atmospheric mutagens as well as the identification of mutagenic fractions and in-

vestigation of unknown mutagens or classes of mutagens in these fractions. Thus,

the strategy employed here is one of "biologically-driven" chemical analysis. A

modification of the published fractionation scheme based on acid-base partitioning

and silica gel column chromatography was developed for the separation of ambi-

ent air particulate extracts. Then, bioassays were run to isolate the most potent

mutagenic fractions which were further fractionated using semi-preparative HP LC.

Meanwhile, in order to identify the compounds in these major mutagenic fractions,

FTIR, HPLC/Photodiode Array UV and GC/MS techniques were achieved. The

previous studies summarized here lead to the following conclusions:

While the amounts of material present in the total winter and summer DCM

composites (593.8 mg and 532.0 mg) respectively extracted from 70,000 m 3 of win-

ter air particulates and 100,000 m3 of summer air particulates are just about equal

to that in the ACE extract composites (566.6 mg and 523.0 mg), the total muta-

genicities of the former are greater, reflecting material more highly mutagenic on

a revertants per mass basis: as shown in Table 6-1, for TA98-S9: DCM extract

composites: 1.25 rev/ug or 742,300 total rev for winter sample and 0.77 rev/ug
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or 409,600 total rev for summer sample; ACE extract composites: 0.51 rev/ug or

289,000 total rev for winter sample but the summer ACE sample was lost. There-

fore, the winter DCM extract is responsible for 72% of direct TA98 mutagenicity.

For TA98+S9: DCM extract composites: 0.87 rev/ug or 516,600 total rev for win-

ter sample and 0.48 rev/ug or 255,400 total rev for summer sample; ACE extract

composites: 0.26 rev/ug or 147,300 rev total for winter sample. Thus, the winter

DCM extract is responsible for 78% of activated TA98 mutagenicity.

Comparison of mass and mutagenicity at three levels of separation for winter

and summer samples is shown in Figure 6-1. From this figure, we note the great

similarity in profiles between summer and winter samples. It is clear that the amount

of mutagenic activity in the summer DCM extract is considerably smaller than for

the winter extract. In addition, as in Nishioka's study, the greatest activity in our

winter and summer DCM extracts is also in the N6 fractions. However, in the

winter, total mutagenicity was fairly evenly divided between the B1, A2, B3 and A4

fractions. This differs from Nishioka's finding in which a specific class of mutagenic

compounds, organic acids, collected over a period in excess of 12 months are the

second major mutagenic fraction. For the summer, the two acidic fractions appear

to have more than double the mutagenicity of the two basic fractions. It is the same

result as in Nishioka's study.

The most mutagenic subfraction displayed in Figure 6-1 is DCM-N6- S4 for

both winter and summer, but the DCM-N6-S3 subfraction has the most potent
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rnutagenicity per mass, as Nishiolca/Lewtas found. That is the reason why we

analyzed the S3 subfractions in greater detail. In fact, the Ames assay results

of subsubfractions showed the L1, L2 and L3 are more important in winter S3

subfraction, and L3 represents the most mutagenicity in summer S3 subfraction. As

to the winter and summer S4 subfractions, the L2 appears to contain the highest

level of direct-acting mutagens.

A lot of PAH compounds identified using HPLC and GC/MS techniques were

found in DCM-N6-S2 subfractions. The levels of polycyclic aromatic hydrocarbons

(PAH) are significantly greater in winter compared to summer. Meanwhile, the

constancy in PAH profiles (except for semivolatile tetracyclic species) indicates rel-

atively little reactivity of PAH (or conceivably some total levelling reactivity of all

exposed PAH immediately upon atmospheric exposure).

Fourier Transform Infrared (FTIR) analysis indicated that the massive DCM-

N6-S1 subfractions are probably largely composed of aliphatic hydrocarbons thus

explaining the nonmutagenicity of these subfractions. FTIR also indicates the pres-

ence of carbonyl compounds in the most mutagenic DCM fractions, subfractions and

subsubfractions. However, nitro-PAH levels were too low to be observed by FTIR.

Furthermore, the GC/MS results indicate that the samples were highly con-

taminated with phthalates and adipates and, thus, no evidence for any nitro - sub-

stituted PAH or hydroxynitro-PAH was found in these samples. However, a carcino-
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genic and mutagenic compound, 4-nitrosomorpholine, was found in W88-DCM-A4,

S88-DCM- A2 and S88-DCM-B1 fractions, and three compounds likely to be hydrox-

ynitropyrene isomers were also seen in W88-DCM-N6-S3-L3 subsubfraction from

Photodiode Array UV results. Therefore, more extensive cleanup of the samples

and contaminant reduction are steps clearly necessary for further identification.

Even though some unsatisfactory results are present in this study, the ap-

proach using a modification fractionation and silica column chromatography and

semi-preparative HPLC to isolate and monitor the most mutagenic known or un-

known compounds is definitely necessary for continuation of this study. The reason

why this strategy is strongly recommended is that much greater detail in the analysis

of fractions, subfractions and subsubfractions from a small number of sample com-

posites is obtained than using the older strategy of analyzing many more samples

superficially.
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Table 6-1

Comparison of Mass and Mutagenicity for DCM and ACE Extracts

TA98-S9	 TA98-1-S9

Name Mass(ug)

W88-DCM 593,800

W88-ACE 566,600

S88-DCM 532,000

.S88-ACE 523,000

rev/ug	 Total(rev)	 rev/ug	 Total (rev)

	

1.25	 742,250	 0.87	 516,600

(72%)	 (78%)

	

0.51	 289,000	 0.26	 147,300

(28%) 	 (22%)

	

0.77 	 409,600	 0.48 	 255,400

*The S88-ACE extract was not run on TA98 strains since it was lost.

**The approximate total air volumes collected in Winter and Summer are 70,000

7-723 and 100,000 m3 .

172



Subsubfractionation by IIPLC with Silica Column

Figure 6-1 Tracking Mass and Mutagenicity Distribution for W88 and S88 DCM Extracts
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