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ABSTRACT

The purpose of this study is to demonstrate the feasibility of
obtaining the electrical conductivity of band gap semiconductors,
by considering the absorption of radiation in the visible region.
The experimental evidence confirmed predictions that the conducti-
vities of the silicon samples are related to the horizontal dis-
placement of energy in the absorption curves. The material used in
this study was p~doped silicon, although the approach should be

valid in general for elther elemental or compound semiconductors.

The absorption coefficient for silicon was measured in the
radiation region between 2.0 and 3.0 ev. This region above the
indirect band gap (= 1.1 ev) is where the absorption coefficlent is
significant (order of 10° cm™!), consequently, a reflectance method
was considered most appropriate to measure the absorption. Measure-
ments were made on p-doped sllicon wafers differing by four orders
of magnitude. The nominal values of the resistivities as determined

by four polnt probe measurements were from 0.005 chm-cm to 50 ohm-cm.

Maxwell's equatlions are applied for a plane electromagnetic
wave propagating in an absorbing, homogeneous, linear medium. The
resulting solutions lead to expressions for the real refractive
index, N, and the extinction coefficient, k. The amount of absorp-

tion of radiation in the medium is defined in terms of the absorption



coefficient, a, which 1s directly proportional to k and inversely

proporticnal to the wavelength, A.

The value for k as a functlon of wavelength was measured using
a non-normal incidence reflectance methed in which the pseudo-polar-
izing angle was measured. A Bausch and Lomb Grating Monochromator
and a Tungsten light source was used for the monochromatic source
(tl./‘i at the 50% intensity points). The incident monochromatic light
beam was collimated, chopped mechanically by a chopper wheel to

produce 3600 HZ, and then reflected from a silicon wafer. The wafer

was mounted on a turn-table designed so that the reflected and incil-
dent angles were equal to better then five minutes of arc. The re-
flected light which was elliptically polarized was measured by a
photamultiplier assembly. The amplitude of the reflected components
in and normal to the plane of incidence was determined by a good
grade of polarizer mounted before the photomultiplier entrace slit.
Expressions are glven which show that only the polarizing angle, ep,
and the amplitude ratioc of reflected components, are necessary to

determine k and n,

Two theoretical models were assumed in an effort to fit the
experimental data. The first attempt was on a semi-classical model
in which the charge carriers were considered to be bound elastically
with damping to account for dissipation due to collisions. The
model, through a proper cholce of the damping constants is found to

be a reasonable fit to the absorption curve, but only for the region

11



from 2.0 to 2.5 ev.

The quantum mechanical approach was, as expected, by far the
better of the two models chosen. The experimental absorption coef-
ficient curve had the same general shape as the ideal quantum me-~
chanical curve, but higher by an order of magnitude. This discre-
pancy 1is explained by the presence of a surface oxide layer and the
fact that the quantum mechanical curve was based on an ldeal semi-

conductor.

The absorption coefficlent is found to vary as the square of
the radiation energy in excess of the indirect band gap, for the
entire region between 2.0 and 3.0 ev. There was no evidence that
the absorption process was due to direct transitions, even for
energlies near 3.0 ev. Expressions are derived which indicate that
the ratio of two low frequency electrical conductlvities are de-
pendent on the effective band shrinkage due to doping and the
Ferml level shift. The conductivity o, can be determined by com-
paring its absorption curve with that of a known ;- This 1is
realized by using the horizontal energy displacement between the
two curves, AEd, in the derived expression.

Further data taken on clean (etched surfaces) silicon wafers
did indicate that direct transitions occurred consistently at

2.48 ev.

i1
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CHAPTER 1

INTRODUCTION

1.1 General

The purpose of thls thesls is to demonstrate that the electrical
conductlivity of band gap semiconductor materials such as silicon can

be determined from its optlical contants. The optical constants,

namely the real refractive index and the extinction coefficlent are a
consequence of a complex propagation veloclty which 1s assumed for a
plane electromagnetic wave traveling in the medium. A camplex propa-
gatlon velocity is necessary in order to describe the absorption of

energy which 1s inherent in lossy materials.

The effort in the study has essentlally been confined to the

determination of the electrical conductivity of silicon at radiation
wavelengths in the visible spectrum (400-700 nm). An expression for
the optical constants 1s obtailned classically using Maxwell's equations
for a plane wave propagating in an lsotropilc, homogeneous, linear
medium. It 1s assumed that any deviations from lsotropy and homo-
geneity will be small and not affect the results. The linearity is

satlsfied because the field strength of the radiation used for the

investigation is small (E = 1 v—cm ) compared to values of the
electric field in the outermost parts of the atoms where the fleld
is smallest (E = 108v~cm”1). Iinearity 1s here defined as the



condition whereby the properties of the material are independent of

the magnitude of the source of excitation.

The optlcal constants used to determine the electrilcal conduc-

tivity in the visible frequency range are the values measured by a

method which will be descrlbed in detalil in Chapter 2. The real
refractive Index and the absorption coefflcient are determined by
measuring the state of polarization in a beam of monochromatic light
reflected from a silicon wafer. It 1s apparent that the technique
avolds the use of a physical contact and so has the advantage of
eliminating contact potentials and contact reslstances which are ever

present in any direct contact measurling method.

The justificatlion for the undertaking of this study can best be

realized by considering the importance of electrical conductivity
measurements for semiconductors and the methods currently used to
make these measurements., These methods become dlifficult to implement
when the measurements are made at very low temperatures or at high

temperatures. There are at present three basic measurement tech-

niques used to determine the electrlcal conductivity of semiconductors.

The first is the conventilonal method where a known current passes

through two conductors in contact with the semiconductor surface and
the resulting voltage measured across two inner contacts. The method
has been successfully employed in determlning the conductlvity,
initially by Pearson and Bardeen [1] and later by Morin and Maita [2].



The current contacts for the samples were applled by the electrolytic
deposition of rhodium (Pearson and Bardeen) or by bonding through
gold plate with Sb-doped gold wire (Morin and Maita). The voltage
contacts are a known distance apart and are made by rhodium pressure
contacts. Successful results were obtained by both teams because of
the care exercised in the preparatlion of the samples and the fact
that the size and geometric shape lmposed no restrictions on the
measurement. In general, however, there are several disadvantages to

this method:

1. The voltage pressure contacts between a conductor
probe and a semlconductor has been shown to result
In a contact resistance [3] also called a constric-
tlon resistance which ls dependent on the contact
force and the resistivity of the higher resistivity
materials.

2. There also exlsts minority carrier injection at one
of the current carrying contacts which if large
enough can effect the potential between the voltage
contacts [U4]. Injection 1s present whenever a
conductor which if in contact with an n~type semi-
conductor 1s made positlve with respect to the
semiconductor. A detalled discussion of carrier
injection is glven by Shockley [5].

3. Perhaps the major disadvantage of this method is
that metal-semiconductor contacts are usually

rectifying in nature [6-8]. A complete picture
of a rectifying contact and be obtalned only if the

surface properties of the semiconductor is also
consldered. The symmetry and periodicity of the
energy band in the bulk of the materdial is not
valld at the surface and this results in allowable



surface energy states for electron energles which
normally lie in the forbidden gap. The surface
layer, about several lattlce constants in thickness
(=1OK), however, i1s small compared to the mean free
path of the carriers.

Surface states with energles in the forbidden band
are called Tamm levels and were first consildered by
Tamm [9]. The theory relating the surface states
and its effects on metal-semlconductor contacts was
introduced by Bardeen [10-13] in 1947, and experi-
mental evidence on the existence of surface states
has been given by Shockley and Pearson [14]. Prior
to this time, the semlconductor surface was consl-
dered to be electrically neutral and a surface
charge existed only when a contact 1s made between
the metal and the semlconductor. This was partly
explained by the fact that the materlals have
different work functions.

The surface properties of semiconductors signifi-
cantly affect the carrler lifetlme and it has been
shown experimentally that the hole lifetime in-
creases with temperature for both germanium [15]
and silicon [16]. The increased lifetime results
in an increased diffusion length which affect the
carrler concentration at the contacts when current
flows through the semlconductor. The typlecal room
temperature values of Lp are about .02 cm for
Silicon and .06 cm for germanium and can vary by
better than an order of magnitude for temperature
variations of about 50°C from room temperature.
The increase for silicon being more pronounced
than that for germanium.



The second and perhaps most wldely used method is the four point

probe technique. Thils method consists of four sharp needle probes
which are placed a fixed distance apart on the flat surface of the

material to be measured. A current flows through the outer probes
and the voltage is measured across the inner probes. The technique
in this method 1s to keep the probe spacing dimensions small which
can ordinarily lead to serious measurement difficulties if care is
not taken. The effects of increased carrier concentration at the

contacts due to carrler injection is significant when the dimensions

are small, because the excess concentration of minorlty carriers
will affect the potential of other contacts resulting in an enhanced
conductivity. Thils injection, however, is prevented or very signi-
ficantly reduced by good contact which can be accomplished by mechan-

ically lapping the surface on which the probes rest.

The four point probe methed which eliminates the disadvantage
of metal-semiconductor rectifying contacts and minority carrier in-
Jection, also permits measurement of resistivity in samples having

a wide variety of sizes and geometric shapes, including small volumes
which may be imbedded in a larger semlconductor volume such as an n

region. The four point probe method applied to a semi-infinite

volume of semiconductor material, for measurements of the semlcon-—

ductor when the boundaries are conductors and non-conductors has been

presented in detall by Valdes [17].



The method, although the most popular, suffers from the disadvan-

tage that measurements for a given conductivity depend on the shape
and upcn the material on which the semiconductor is lying. The true

reslistivity value is obtained by an appropriate correction factor
which varies with the shape, size and materlals adjacent to the

boundaries [17].

The third method, although not as popular as the four point probe
is commonly used and is a three point technique, in which the poten-

tial of the reverse breakdown voltage of the metal-semlconduct point

(rectifying contact is measured. The method consists of three probes,
two of which are current probes and the other a potential probe which
measures the voltage across the depletion layer. A typlcal applica-
tion for the three point probe would be in the measurement of an n-
type epitaxial layer which is grown on an nt+ substrate. The n+ sub-

strate has in general, a much lower resistivity than the n epitaxial
layer, so that the major portion of the current flow which is through

the substrate results In a substantial potential across the depletlon
layer. The resistivity of the n layer is determined by increasing
the reverse voltage until a voltage breakdown occurs. The breakdown
which is a non-destructive avalanche effect depends on the material
to be measured, the composltion of the points, and the point contact

pressure. An expression for the variation of breakdown voltage as a

function of resistivity together with the results for the commonly



used Osmium points on n type slillcon found by a least sqares computer

analysis is avallable [18]. It has been shown that the depletion
width which increases with reverse voltage must be less than the
width of the n layer, otherwise the breakdown will be a function of

the thickness [19-21].

The basic advantage that the three point probe has over the four

point probe is that it is independent of the sample geometry provided

that the potential probe 1s at a distance greater than the depletion
width from the reverse blased contact. However, some aspects of this
method which are not desirable, include a restricted resistivity
range of about one order of magnitude [18-22] (0.1 to 1.0 ohm~cm) and
the necessity of a calibration curve. The calibration curve 1s ob~
talned by measuring the breakdown voltage of non-epltaxial chemically
polished samples of known resistivity. This calibration curve of
breakdown voltage vs. resistivity is then used to measure the reslsti-
vity of épitaxial layers. Also, the three point probe measurement is
dependent on probe characteristics such as point material, point

radius, point loading and probe spacing.

All of the three contact methods have the advantage that the meas-

urements yleld the d.c. or low frequency conductivity directly whereas

the new method considered in this thesis wlll result in an optical
conductivity. It will be shown that there 1s a relatlonship between

the optical conductivity (measured in the visible range of 400-700 rm) -



and the value of the low frequency conductivity thereby making this

method particularly desirable and unique.

A brief review of the remaining chapters of this thesis will now
be presented in an attempt to show a relationship between the varlous
parts of this work. Chapter 2 wlll conslst of the theory necessary
to develop the relationship between the optlcal conductivity as ob-~
tained by the optical constants and the low frequency conductivity as

determined by the mobllity and mgjority carrler density. Expressions

for the optical constants will first be obtained by considering a
camplex propagation gonstant in Maxwell's Equations. The Fresnel
relationships between the radiation incident on the semiconductor
surface and the state of polarization of the reflected waves results
in the expressions which determine the optical constants in terms of
parameters which are measured experimentally. The electric polari-
zatlon caused by the displacement of the electrons in the material
from thelr rest positions as caused by the incident radiation field
1s considered next. This is necessary for rapidly varying fields
such as optlcal fields where the effect of thls electric dipole mo-
ment is not negligible and does contribute to the electric displace-
ment vector. A solution to the linear differential equation for

conditions in which the electric polarization is not negliglble is

investigated for real resonances which are realized analytically by
taking damping conditions into account. The results at the resonant

frequency. are oscillations of finite amplitude, a consequence of the



introduction of the damping factor. The Clausius-Mossottl relation-
ship is then considered and the resulting expressions for the real
refractive index and the extinctlon coefficients are obtained. These
coefficients determine the optical conductivity theoretically which
1s then compared with the optical conductivity measured by the proce-

dure explained in Chapter 3.

It 1s found experimentally that the real refractive index agrees
favorably with the results obtained by the analytical expression
whereas the absorption coefficlents determined from measured data
deviates somewhat from the values obtalned by the analytical expres-
sion. This is resolved, however, by the conslderation of the band

theory of semiconductors, in particular the role played by carriers

in making transitions from the valence band to the conductlon band

caused by the radiatlion fleld. The band gap of silicon of about 1.1

ev 1s less than the photon energies in the visible region which are
approximately in the range of 2-3 ev. The findings of this study
shows that the measured absorption coefficient at optical frequencies
is consistent with theoretlcal preditions as determined by a treat-
ment of quantum mechanlcal principles as applied to interband transi-
tions. The theoretical predictions dictate that the absorption coef-
ficient should vary essentlally as the square of the photon energy
for energles above but near the indirect band gap (1.1 ev) and as the

square root of the photon energles near the direct band (2.6 ev).
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The experimental procedure described in Chapter 3 essentlally is
a method using monochromatic radiation in the visible range in a
narow collimated beam which 1s incldent on the semiconductor surface.
The reflected beam is polarilzed and preferentially normal to the
plane of incidence when the incldent radlation angle is at the polari-

zation angle. The semiconductor sample is rotated so that the incident

radiation angle can be changed and the reflected radiation observed.
The measured angle for which the reflected wave vector (measured as
an intensity) normal to the incident plane is a minimum is the polari-

zatlon angle also called the Brewster Angle. Thls measured polarlza~

tion angle and the values of the intensitles of both the reflected
components parallel and normal to the incldent plane are used to de-
termine the refractive index and the absorption coefficient. The pro-
cedure 1s repeated at different wavelengths between 2 and 3 ev and

also for semiconductor wafers of different resistivities.

The theoretical and experimental results are included in Chapter 4.
The measured values of the index of refraction, absorption coefficient

and optleal conductivities are shown graphically as a function of photon
energy and compared wlth the expressions for these parameters derived

by the phencmenological model using the Clausius-Mossottl relation and
the expressions for the absorption coefficient as determined by the
Quantum mechanical model. It is shown here that the expressions for

the absorption coefficlent agrees with the Quantum mechanical model.



The plot in the reglon between the indirect and direct band gap shows
that the absorption coeffilclent varies as the photon energy raised to
a power between one half and two. It is not the aim of this thesis,
however, to determine the exact empirical relationship which exists
in this region for this would necessitate considerable more data
taken over a wider range of wavelengths extending into the infra-red
and ultraviolet. The optical region was chosen because of 1ts desir-

ability for instrumentation and convenlence for measurement.

The optical conductivity shown to be related to the low frequency
conductivity is then campared for different nominal values of low

frequency conductivity as measured by a four point probe.

A comparison between the theoretical and experimental results is

given in Chapter 4, and a discussion of the results in Chapter 5.

1.2 Historical Background

The classical theory of optical properties of solids which is
based on Maxwell's Equations ylelds the extinction coefficient, k,
and the refractive index with its dependence on frequency but does
not give an explanation for the frequency dependence. When the
frequency is in the optical range, the wavelength of the radiation
is only several orders of magnitude greater than the atomic dis-
tances. Consequently, an atomlc model 1s necessary in an attempt

to explain the results obtained experimentally.

The theory developed by Lorentz [23], in 1880, indicated that a

11
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simple atomlic model can account for thls frequency dependence. The
model assumes that electrons in the materlal are bound elastlcally to
their equilibrium positions and are also subject to a damping force
which 1s proportional to the veloclty. A simlilar theory developed by
Drude [24] and Zener [25] was based on the assumption that the elect-

rons are free and included only a damping term. This theory is most

applicable to the case of metals where there are as many free electrons
as there are atoms, whereas the Lorentz theory 1s more general and a

better model for semlconductors.

Measurements of the optical parameters for layers of various
materials immersed in a medium have been obtained by determining the
reflectance at normal incldence [27-29]. The values for germanium was
measured in the visible region by O'Bryan [30] using a reflection
method not at normal incidence, but his values disagree with the results
of Brattain and Briggs [31] who measured transmission through a thin
evaporated layer, with the results of other reflectance techniques by

Archer [32] and with those obtained by Philip and Taft [33-34]. Results

for intrinsic optical absorption in both germanium and silicon were re-

ported by Dash and Newman [35]. The experimental procedure used by

Dash and Newman [35] for single crystal material required accurate
measurement of the thickness samples which were in the order of about

10 micron, and the measurement of the radiation which was absorbed in

transmission. The data taken only for the absorption coefficilent was
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for wavelengths in excess of 6300 R.

Archer [32] measured the optical constants for germanium in
the range of 3600 f!. to 7000 ?l. and used a non-normal reflectance
technique [36] in which it was shown that the optical constants
were not dependent on the angle of incidence as had been reported
previously [37]. He also showed that the effect of an oxlide film
of 10 Kwould cause a variation from 2% to 30% for the extinction
coefficient k and of 0.6% to 5% in the value of the refractive

index n.

Thin films which exist on substrates which are in general ab-
sorbing are difficult to analyze and approximation technlques are
commenly used. The solutlon to these types of problems are
realized by the use of graphical methods. When the film 1s very
thick and absorption appreciable so that multiple reflections are
minimized, then standard techniques for measurement on bulk

materials may be used [28-29].

Schumann et al [38] measured the optical constants of silicon
in the infra-red by using a spectro-photometer modified so as to
measure both the reflectance and transmittance at normal incidence.
The values for the refractive index n and the extinction coefficient
k are measured for carrier concentrations ranging from 1015 em™3 to
1019 cm~3 and for wavelengths extending from 2.5 um to 40 um. The

data is then compared to calculations obtalned from a theoretlcal



14

model [39] which assumes semiclassical free carriler absorption. The

data appears to agree with the theoretical model for short wavelengths

but deviates substantially at the longer wavelengths.

Measurements to determine the carrier concentrations of silicon

[40] using an infra-red He-Ne (3.391 um) Laser as a polarized light

source have been made for n type and p type silicon and compared with
plasma resonance. The method consists of infra-red radiation which is
polarized in the plane of incidence and a detector which measures the

reflected radiation so as to determine the polarizing angle which

occurs when the reflected wave vector is a minimum.

The values of n and k may be used to calculate the real and im-
aginary parts of the dielectric constant at any wavelength. The values
of the real and imaginary part of the dielectric constant are not in-

dependent. The Kramers-Kronlg [41-42] relation shows that if n and k

are known for all freqguencles, the real and lmaginary parts of the
dlelectric constant can be determined at any frequency. This has es-
sentially also been done by Bode [43] and this method to obtain the

optical constant has been used by Robinson [447].



CHAPTER 2

THEORY

2.1 Absorption of Electromagnetic Radlation in Matter

(a) Maxwell's equations for electromagnetic waves in semi-

conductors. The optical properties of semiconductors in general are

characterized by a relatively high reflectivity and high absorption of
visible radiation. The transmission of wavelengths in this region is

small and difficult to detect experimentally unless the material has a

thickness of about a wavelength of the radiation. It is therefore

more advantageous to obtain the optlcal properties of semiconductors
by a reflectance technique when the frequency of radiation is in the
vislble range. The optical properties of materials are represented by
two constants, namely, the fefractive index, n.s and the extinction

coeffilclent, k.

The electric fleld of a plane electromagnetic wave of frequency

propagating in the position x directlon with a velocity v 1s given by
E=E ¢ i2mv (t - x/v) (1)
Consider that the velocity of propagation of the wave in a medium

1s In general

v = ¢/n! (2)

where n' 1s the complex index of refraction given by the optical

15



constants n, and k so that

n' =n, - ik (3)

Considering that the radlation is propagating through a homogeneous
sample having a permeability Hys @ permittivity Ea’ and a conductivity

g , 1t is possible to find n, and k as a functlion of Mgy s Ea’ o and v

Using Maxwell's equations for a plane electromagnetic wave in

the medium
VeD=p (%)
V«B=20 (5)
VXE=- %% (6)
ViH=J+ 22 - (7)

and assuming that the semiconductor is an uncharged homogeneous
isotroplic and linear medium, then in the charge free region

y+D=0 (8)
VeE=0 (9)

Taking the curl of (6) and for a linear medium substituting uaH for B

Vx (VXE) = - 5% (V x uH) (10)

Using (7) and (10), substituting saE for D, M By = Hyo seofbp €y

and the fact that for any vector
2
Vx(VxE)=V (V+E)-VE (11)

2
then 1f L is replaced by C

16



oy W€ 92 E 8J . (12)
- — -U, U, —= 12
c? at? Vst

where C is the speed of light, u is the relatlve permeability, Ho is
the permeability of free space, € is the dlelectric constant and €,
is the permittivity of free space. The value of the relative perme-
ability u = 1 for semiconductors when the excitatlon frequency is 1n
the visible region. Therefore, the linearity condition assumed
which replaces uaH for B is satisfied. The other condition of line-
arity is to show that J can be replaced by oE. This condition is
satisfied in metals where the linear range 1s large, that is to say,
that the range of current densities where J = oE is large. It was
indicated theoretically by W. Shockley [45] in 1951, that departures
from Ohm's Law for semlconductor is more likely than in metals when

subjected to a large electric field. Shockley [U45] showed that

U ow o2 3m HE 2

[¢] 0 0o
) - (=2) = () (13)

where u is the mobility in an electric field E, Hy is the small fileld

mobility and u is the wvelocity of sound in the material.

The vardiation of u with the electric field was verified experi-
mentally for n-type germanium by Arthur, Glbson and Granville [46]
and the variation was found to agree reasonably well with equation
(13). They found that there were observable departures in the mo-

bility in fields as low as lO3 volt/cm.

The condition necessary for u to be independent of the electric

17
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field is from equation (13)

E << %— (a4)

o

The smallest value that the right hand side of equation (13) can have
is when Mo is a maximum. This is true for lightly doped sillcon when
both the minority and majority carriers are significant in determining
the moblility. The electron drift mobility M in both n-type and p~
type materlals is larger than the hole nwbllity u b in both materdials,
although the ratio of un/up is smaller as the doping increases [U47-48].
Selecting 1, = 1500 em?-~volt-sec for high resistivity material (p > 50
ohm-cm) and assuming u = 5 x 10° cm/sec for the velocity of sound in

silicon, it is found that the value of E must be less than 330 volt-cm™!.

The Intensity of the light to be used in the experiment 1s at a
level low enough so that E << 330 volt-cm !. Therefore the mobility
and consequently also the conductivity willl be assumed to be indepen-

dent of the electric field. Thus equation (12) becomes

e J%E oE
VZE——-——-ch—=O (15)
Cc? at? 3t

(b) Absorption coefficient and its relationship to the optical

constant. The absorption coefficlent can in general be determined by

considering how the radiation intensity changes in the medium., This

can be found by knowing the value of k which is in turn related to

n .. Therefore, using equations (1) and (15) glves
1 > i P_‘Lci

v: C? 2mv

(16)



and from equations (2) and (3)

2 2
E;_ n, -k 1 2nrk

2 CZ CZ

<

Therefore, equating reals and imaglnaries

and

Using (18) and (19) and solving for n, and k glves

2 € [0} 21/2
R 1AL ) ]
a,
and
2 _ E_ g% q1/2
k® =5 L1+« 2ME_V ) ] -1
a
Since ¢, = e, e, = ———— farad/meter, ¢ = 3 x 10° m/s
36 x 10°

and

v = c¢/A

where A 1s the radiation wavelength, then

_ € 600X 2 11/2
nrz-é—— l+|:l+(-—€):]

and

_E 600X yz 41/2
k2= [1+(==)21"°-1

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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where N, k, 0 and E are all dependent on A. Also, using the value

of C and u = b x 107 henry/meter, gives using equation (19)
n k
o = =5y (25)

The value of the extlnction coefficient, k, 1s related to the absorp-
tion constant, o, by considering the available volume power density
at a distance x in the materdial which 1s due to an incident electric

field at the surface. Using (1)

p_(x) _ oE® (x) _ ~hmvk (26)
p (o) ©oE* (o) c
and defining
o = fl_mé_k (27)
then
p (x) _ ~ox (28)
p (o)

The application of Maxwell's equatlons for a plane wave propagating in
a semiconductor medium has led to the expression for the conductivity

glven by equation (25). The frequency dependent conductivity glven by
this expression is called the optical conductivity when the wavelength
of the radiation fleld is in or near the visible spectrum. This value

of o 1s in general different than the low frequency conductivity Oy

20



The expression for % is determined by considering
J =0 E (29)

and the concept that the current density, Jo, due to the electric
field, Eo’ is in general determined by two types of carrlers which

for semiconductors are the electrons and the holes, therefore

J,=a<v>n+q <vb> D (30)

where n is the electron density, p is the hole denslty, <Ve> is the

average electron drift veleccity, <Vb> 1s the average hole drift velo-

city, and q, the electronlc charge.

The acceleration of both the electrons and holes due to a con-

stant electric field will cause a constant acceleration. The average

veloclities of both electrons and holes can be expressed as

v > = (31)
e %Eﬁ Te
and
E
v > = 929 1y, (32)

where H%* is the electron effective mass, mh* is the hole effective
mass, Te and th are electron and hole lifetime respectively.

Using equations (29), (30), (31) and (32)

21
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2 2
0, - L, R (33)

where o, as obtained in equation (33) 1s a well known result.

2.2 Semi-Classical Model of Absorption of Radiation for Elemental

Semiconductors

(a) General description. The expression for the conductivlty,

g, glven by (25) will be used to determine a conductivity by using
values of n, and k measured at a particular value of the wavelength,
A. In addition, the measured value of ¢ will also be campared to a
theoretical wavelength dependent value of o. Theoretlcal values for
n, and k using (23) and (24), however, can not be obtalned explicitly
unless both € and o are specified. Expressions for n, and k which
will be independent of € and o, will be obtained by considering what
appears to be a reasonable theoretical model. The model describes
the physical propertities of the medium in terms of constants which

can be specified.

A1l clear transparent materlals have normal dispersion charac-—
teristics in the visible regilon. Normal dispersion is the condition
whereby the refractive index of a material decreases as the wave-
length is increased. The normal dlspersion properties of gases was
first explained by Cauchy [49, 50] in which the refractive index n P
was shown to be dependent on the wavelength, A, by

n, = A+B/l2+C/pnt .. (34)
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It is usually only necessary to retaln the flrst two terms which
glves reascnable agreement with experiment in the visible region, but
is not satisfactory in the infra-red region. It 1s in the cross-over
region, where for transparent materials, that the refractive index
undergoes an anomalous dispersion. The value of n falls off more
rapidly than indicated by (34) until the radiation approaches an ab-
sorption band where it is almost entirely absorbed. The refractive
index then increases and reaches a peak as the wavelength 1is in-
creased. A further increase in wavelength results in a decrease in
both the refractive index and the absorption coefficlent. The ab-
sorption band is dependent on the physical properties of the materlals
and is in general not limited to any particular portion of the fre-
quency spectrum. The peak value of n, in the anomalous dispersion
curve for the semlconductor silicon has been found to be in the
visible spectrum at a wavelength of about 4000 A (3.3 ev) [33] and

at about 6000 & (2.1 ev) for germanium [34].

Clearly, the Cauchy expression which is valid in only a limited
normal dispersion region is not applicable for materials such as sili-
con which exhibit an anomalous dispersion in the visible region. A
model which will lead to an appropriate expression for n, and k as a
function of wavelength can be realized by consldering that the charge
carriers in a substance are bound elastically to the atoms and are
caused to vibrate by the exciting electric fleld of the radiation.
Then the restoring force that bounds the electron to its equilibrium

position can be considered to be proporticnal to its displacement.
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Damping is also essential in considering an appropriate model
because 1t 1s necessary to account for the dissipation of energy
caused by collislons between carriers and atoms and the emission of

radiation due to the vibrating electrons.

The elemental semiconductors such as silicon do not exhibit polar
characteristics, that is, they do not in general have a resultant
electric dipole moment in the absence of an external electric field.
The electric dipole moment in elemental semiconductors 1s generated
when a dlsplacement between the nuclel and electrons is caused by an

electric fleld. Consider that this dipole moment p is given by
+= E|
p= o (35)

where ap is the polarizability and E' is the effective electric field
in the material acting on the particles. The total electric moment

per unit volume P due to N atoms per unit volume is
P = Nok' (36)
The expressions for the electric field, E', glven by

Bl o B4 ok (37)

3e,
and for the dielectric constant €',

1

o a1v B (38)
0

which when used with (36) gives the polarizability ap as



. et -1

o = =2
p N

(39)

g + 2

Equation (39) is the Clausius-Mossottl relation.[51,52]. Ordinarily

replacing €' by nrzgives the Lorentz-Lorenz condltions [53,54] whereas

2
in thls study it willl be assumed that €' be replaced by n' so that

(40)

where €' is cansidered to be complex in general. It follows from (16)

that €' can be represented by

e'=e-ig% -‘;x (41)
(o]

Assuming that the carriers of charge, q, are acted on by a
Lorentz force, f, where
F=q(E +7vxB8) (42)

and 1f the contribution due to the magnetic field can be neglected,

then
F= gB (43)

Equation (43) is a valid approximation for a semiconductor because the

velocltlies of the carriers in a non-degenerate semiconductor can be

consldered to essentlially have a maxwelllan distribution.
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Consequently, the average energy of the carrlers at room temperature .
is small resulting in a carrier velocity which 1s small when compared

to the speed of light.

The differential equation which describes the motion of the

electron when subjected to an electric field E' is

-> > >
iy L g & 4 ay = b (4b)
dt? dt

where m¥ is the effective mass of the carrier, g is the damping con-

stant and a the elastic constant. If the electric fleld of angular

frequency, w, producing a dipole in the medium is glven by

B o= Eovei“t (45)

then the solution to equation (44) becomes

EJ
¥ = 2 (u6)

m¥ (wo2 - w?) + iuwg

where W is glven by

(47)

Realizing that each electron contributes a dipole moment B such that

2o o (48)
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then using (48), (35) and (36) glves the polarizability

q2

o = (49)
P m* (wOZ - wZ) + iwg

and an appropriate expression in terms of the complex refractive

index, n', can be obtained by the use of (U40) and (49) so that

2 fp 2 1 - (2 w_
nt 42 3egmte ? 1 (wo) +1(m—%—%) (65)

2 2
n' "1 - Ng 1 (50>

when the low frequency conductivity is given by

o = et 61

where T is the mean free time and also called the relaxation time,

then (50) can be expressed in terms of the low frequency conductivity.

The value of the conductivity R is found by considering the

limit of equation (5) as the frequency approaches zero. Because it is

known that k approaches zero rapidly as w decreases then

2
n__ -1
o, = 3eorw02 ro (52)
n_ 242
ro

where N is the low frequency refractive index.

Defining wo by



Hi

7
o 2
nro +2

So that from equation (50) becomes

2
n' -1 _ Yo
n'2+2

=

1o )+t () )

2
and solving for n'

W ? oy yos (W
e 1r2vg - () 4128 )

2
1=y, - (3:)) + 126 <$—o>

where a new damping constant 6 is defined as

0

Because the energy of the radlation is proportional to the

frequency, an expression for n' as a function of the photon energy can

be obtalned from equation

2 2
n' = 142y - (%3)+i26 (%3)

E |2 E
1=y, - (E;) + 128 (E;)"

(53)

(54)

(55)

(56)

(57)
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Using equations (3) and (57) and equating real and imaginary terms yields
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[+2h, - E -, - E 1+ o2 B
n 2 + k2 = [0} [o] 0
r E .2 2 , B |2
[1- Ulo - (E';) 1+ (28) (‘E'—o) {58)
369, (2
_ 0
nrk = E 2 2 » E 2 »
[1- IPO - (E—'o) 1 + (29%) (E(;) (59}

The experimental data yields values of n, and k for photon energies
between 2 and 3 ev. Inspection of equations (58) and (59) shows that

the values of n, and k both measured at two different wavelengths will

determine Eo and § which will completely specify n, and k in terms of

only determined coefflcients and the photon energy. Therefore, a

theoretlcal expression for the optlcal conductivity based on the as-
sumed physical model can be obtained and compared with the optical
conductivity determined by equation (25). The values of n, and k
used in equation (25) will be the measured values. This comparison

will be considered in detaill in Chapter 4.

It can be seen from equation (52), that the conductivity o, can
be determined 1f the relaxatlon time T is also known. A relationship
for the relaxation time of polar molecules in liquids as glven by

Debye [55] for an assumed complex polarizability is

o
_ do
% = T 1o, (60)



where %0 is the static polarizability and T4 is the dielectric relaxa-

tion time. The polarizability given by equation (49) of this study,

however, is not of the same type of relaxation behavior because of a

resonance condition. Rewriting equation {(49) gives

m*moz

o = (61)
p w (2
1 - (a)-) + iU)Tr
o
and by the use of (47) and (56) 1., 1s glven by
.1;1" E —;&—: = 2£ (62)
miw W,

and T defined as the recovery time is the time interval necessary for

the disturbed system to revert to its initial equilibrium condition.
Although the recovery time is not defined in the same way as the
relaxation time, there does appear to be a relationship between the two.
Experimentally, the values of k in the optical range for silicon
will be shown by this study to vary considerably for different values

of doplng whereas the refractive index remain relatively independent of
doplng. An increase in the impurity concentration leads to a less

1deal crystal structure and so an increase in the damping constant §.

A relationship which exlsts between a varliation in k and a variation
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in & can be obtained by differentiating (59).

The theoretical model proposed by the expression glven in equation
(44) which may be valid in certain regions should not be expected to
account for the camplete absorption spectrum of band gap semiconductors

especially for radiatlon energles near the band gap. The model, how-

ever, for conditions under which the elastic constant 1s negligible and
only a damping term is considered does account for free carrier

absorption.

(b) Free carrier absorption. When the frequency of the excita-

tion is lower than the band gap of the semlconductor, then quantum

mechanlcally interband transitions are not possible and the value of o

as determined by the Drude theory of free carrier absorption [56] is

glven by

QN o
%fe = " 2. 2 (63)
n m¥ce (1 + w Tp )

where Tp 1s the relaxation time glven by

r, = M (64)

For wrt £ >>1, the absorption coefficlent, o has been observed for p-

type silicon to obey the A? law very well.[57]. However, the rela-

tionshlp 1s no longer valld for energles near and above the band

edges where (63) predicts a decreasing o with frequency whereas



experimentally the value of o increases with frequency in this range.

2.3 Ideal Quantum Mechanical Model for Absorption

(a) Introduction. Absorption of electromagnetlc radlation in

the optlcal region for semiconductors can be divided into four basic

groups
1. TFree carrier absorption by elther electrons or holes.

2. Fundamental absorptlon due to transitions of electrons

from the valence to the conductlon band.

3. Absorption due to lattice and impurity scattering and
that caused by the excltation of band carriers.
i, Absorption due to transitions of electrons between

trapping levels which exlist wilthin the forbidden energy

gap.

The absorption indicated by group 4 is very significant in real

semlconductors but is very difficult to analyze in detall because of

the complexity of the trapping structure within the band gap. It will,
therefore, not be considered in this study. Absorption of radiation by
the processes of groups 1 and 3 have already been discussed with the
exception of impurity scattering which becomes lmportant only at low
temperatures. The most lmportant absorption process, however, par-
ticularly at the band edge is the fundamental absorption process.

When the wavelength of the incldent radiation is large enough so that

electrons can not be excited from the valence to the conduction band,

32



then the interaction between the carriers and the radiation fleld can
be treated by using classlcal electromagnetlec theory as has already
been done. However, if the radiation 1s such that its energy 1s

greater than the energy gap of the semlconductor, then the absorption
coefflclent does increase very rapidly as has been observed experi-
mentally. This fundamental absorption takes place when the energy of

a photon 1is greater than the band gap. However, there are two basic
types of transitlons by whléh an electron can be excited to the con~-
duction band; a direct transition and an indirect transition. A

direct transition is one in whlech the electron which ls excited to

the valence band by only the absorption of a photon conserves the

crystal momentum. Thils is indicated on an energy E versus wavevector

kc dlagram by vertlcal transitions in which the wavevector kc for the
conductlion band is the same as the wavevector kc for the valence band.

For silicon this transition 1s more probable for kc=o although other
values of k can alsc cause direct transitions. In general, the energy

of the photon is given by

(65)

where E_, is the final electron energy and Ei is the initial electron

f
energy. This type of transition 1s shown in figure 1. An indirect

transition is also possible and this occurs when energy is supplied
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Figure 1l.—Direct Transitions between the initlal state of an
electron in the valence band, Ei’ and the final state in the
conduction band, Ef; The quantity kc is related to the crystal
momentum, P, by P = hkc.

Note: The behavior of an electron in a perlodic potential of a
crystal lattice was first considered by F. Blockt. The quantity
k 1s not proportional to the momentum of the electron, p, which
is not constant in a periodic potential. The quantity, P, the
crystal momentum 1s a constant of the motion of the electron and
is equal to the real momentum, p, only when the potential is a

constant.

+ F. Block, Z. Phys. (1928), 52, 555.
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or absorbed by the lattice vibrations when a photon is absorbed by the
electron. The transitlons are then non-vertical and involves both a
change in energy and momentum so that either an absorption of emlssion
of' a phonon 1s necessary 1n order to conserve the momentum or the
crystal. The phonon absorption energy Epa and the phonon emission
energy Epe necessary for the indirect transition are given by equations

(66) and (67) respectively and the process is shown in figure 2.

Epa Ep = By = hy (66)

Ee= hv- (Ep - E;) (67)
The calculation of energy bands in solids have been sucessfully
obtained for germanium and silicon by Herman [58] and Cardona and
Pollack [59]. Herman [60] indicated theoretilcally that a minimum for
silicon should occur at k o = © and another along the [100] direction.

Experimental evidence appears to confirm that the theoretical calcu-
lations are valid [61]. An energy band structure for silicon in

which only two energy levels for each band are shown is 1llustrated
in figure 3. The bands shown in flgure 3 indlcate that both the
valence and conduction bands are doubly degenerate at kc = (000).

The degeneracy as related to energy bands is defined as the condition

which exists when the minima or maxima of bands occur for the same

value of k. The effective mass of a carrier in these bands 1s in



1.5 ev

4

1.08 ev

—7

k, = (1/2, 1/2, 1/2) k, = (000) k, = (100)

Figure 3.—The energy band diagram for silicon showing only two

energy levels in each band.
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general dependent on the energy band. The effective mass, m* is

defined as

m* = _h? (68)

[o])
N
=1

&

So that the energy bands wlth greater curvature will result in effec-

tive masses which are lighter than those bands which exhibit a gradual
energy change. The electron and hole effective masses are determined
experimentally by a cyclotron resonance method. The method was sug-
gested by Dorfman [62], by Dingle [63] and by Shockley [64] and

applied experimentally by Dresselhaus, Kip and Kittel [65]. The

results of cyclotron resonance yield defferent effective masses for

holes 1n the valence band and different effective electron masses in
the conduction band. However, in this study for pwposes of clarity,

an average effective mass will be used for each carrier.

(b) General absorption formalism. The process by which electrons

make transitions across the energy gap is a gquantum effect and is

explained by wave mechanics. When the methods of perturbation theory

are used, it 1s lmperative that the interaction term in the Hamlltonian

formalism be small so that 1f H is the Hamiltonlan then

He= H+H (69)
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then H i

well known and ij 1ls the term involving the interaction. Under these

<< Ho where Ho is the ideal Hamiltonlan whose solutions are

conditions and assuming ij is time dependent, the transition rate
from state j to state k as given by first order time dependent pertur-

bation theory and cammonly referred to as Ferml's Gold Rule Number 2
[6611s

we g, |28 (70)
no J dE
where w 1s the transition rate which is in units of m ° - s~ and

dn 1s the energy density of final states.
dE

When the transitions are caused by the interactlon of an electro-

magnetic wave with an electron, the interaction term in the Hamlltonian

as given by the matrix element ij is

-.)-
H, = qE pe'iR*'I' (71)
J 2mm¥*v
where K is the wave vector of the radiation field and p the momentum

operator of the electron,

The absorption coefficlent o is the quantity which determines the
energy removed per unit time per unit volume from a radiation beam of

unit intensity. From the relationship
dI = - Iodx (72)



where I is the Intenslity which is the energy density times the flow

velocity, then

hvw
0 = (73)
(35E") gr

So that using (18), (70) and (73)

'
o = 2n'hv 2m IHJ

2 2 2
€, (nr - k%) cE

|2 4 (74)
k' s

where the units of a are in m_l.

(e) Direct transitions. If the assunption is made that all of

J states are filled and all the k states empty, then the expression

for o when the wave vector of the radlation K is small compared to

the wave vector k, of the electron 1s given [67] for direct allowed

transitions (kc o) by

3/2
q? (2m_¥) n'
gy = - (v - E )12 (75)
m (nl,,2 - k?) esocm*h2 g

where mr* is the reduced mass of the electron-hole palr and Egd the

direct energy gap.

When quantum mechanilcal selection rules forbid direct transitions

at k o = O but does allow them for k # o, then the absorption is glven

bo



by [68] is
Ap (hv - Egd)3/2
hv

(76)

%r =

(d) Indirect transitions. Transitions which take place by

the absorption of a photon and the emission or absorption of a
phonon at the same time are called indirect transitions. Second
order perturbation theory necessary to determine the absorption
coefflcient was used for the Indirect transition and expressions
for o were obtalned [69]. The expression for o when k ov (kc in
the valence band) is different from Ko (k , in the conduction

band) was shown [70] to be for phonon absorption

A(hv-E +E)?
g

= 1% -
o, /R S when hv > Eg Ep (77
= 0 when E -E
g p

and for phonon emisslon by

Atv-E -E)?
( - )

- D
R T R/RE when hv > E + Ej (78)

= 0 when h\)iE+Ep

{ll



The absorption coefficlent oy 1s the sum of these two coefficlent so

that

oy = 0 + o (79)

Indirect transitions may take place also when kcv =k then the

ce?
transition is called a forbidden transition and the absorption coef-

ficlent O p is glven by
B(tv-E +E)?
o= ( gt ) (80)
af eEp/Kt -1

2.4 Actual Quantum Mechanical Absorption

The absorption coefficlents determined for direct and indirect
transitions were based on the assumption that the states 1in the

valence band are filled and the conduction states empty,so that

transitions between these states are permissible. A situation can

exlst where some of the states in the conduction band become occupied
or in the valence band become empty. Thls condition can exist in

some materials which are highly doped allowing the Ferml level to
move into the conduction or valence band. This degenerate condition
decreases the number of available final states to a degree that photon

transitions to these states is not possible resulting in an absorption

coefficlent which decreases with the carrler concentratlon. This
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anomalous absorption has been observed in InSb by Tanenbaum and Briggs

[71] and explained by Burstein [72] and Moss [73]. It will be shown

in this study that this process does not occur for silicon. For indi-
rect band gap semiconductors such as silicon it i1s possible that scat-
tering processes in which the absorption coeffilclent Increases with
carrier concentration can occur by electron-electron scattering [741],
[75] or by impurity scattering [76]. Results for As-doped germanium

[77] show that the absorption does increase with carrier concentration

and that

a= AN (hv - E

where A 1s a constant, N is the number of carriers (scatterers) and

8., the penetration of the Ferml level in the band. Heavy doping of

F
the Indirect gap semlconductors can also result in an effective

shrinkage of the direct and indirect band gaps [78].

This study will show that the value of o will vary as the energy
railsed to a power between one and two. This absorption coefficilent
and consequently the optical conductlvity is not enhanced by the pro-
duction of electron-hole pairs caused by the radiation (see sectlon
3.3). The increase in carriers due to the energy and intensity of

the radiation is small compared to the nominal carrier density due to

the dopants so that the conductivity is not increased because of a

photoconductive effect.
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2.5 Conductivity Determination from Absorption Characteristics

(a) Optical constants of an absorbing medium. The relationships

which express the reflection and transmission of light at the boundary
between two medla are determined by applying the boundary conditions
to the solutions of Maxwell's equations. These boundary condltions
require that tangentlal component of the electric and magnetic field

vectors be contlnuous at the boundary of the two medla.

When the electromagnetic radiation ls considered to be a plane
wave and the angle of incidence of the ray 6 in medium n, reflects

from the surface as shown in figure 4, the Fresnel coefficients are

Inmown to be
R n Cos 6 - n' Cos 0!
g =S 2 (82)
s E n Cos 6 + n' Cos 6!
s o}
_I?R n, Cos 8' —= n' Cos 6
Sy "E_ % n_Cos 6' +n' Cos 6 (83)
o) 0 .
] .
e = _E_;_S_ _ 2 no Cos 6 (8’4)
s E ~ n_ Cos 6 +n' Cos 0f
S o
' 2 n, Cos 0!
(85)

(3
fi
,Ut-lj}cl'd
il

n, Cos B + n' Cos @



Reflected

Incident

Refracted

Figure 4.—Reflected and refracted wave vectors for an
incident wave. The subscript s refers to electric vectors
normal to the plane of incidence and the subscript p for

electric vectors in the plane of incldence.
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When Snell's law is used together with equations (82) through (85),

they become
R
_ s _ Sin (8' - 9)
s "E, T Sin (8" ¥ 9) (862
R tan (6 -6") (87
sp‘Ep T tan (6 + 0')
E'
_ s _ 2 8in 8' Cos ©
ts’E; = Sm @+ o) (88)
E)'  28in 6" Cos 6
tp='E§‘ = Sm(6F 6 ) Cos (8 =0") (89)

Where Ep, Rp , and Ep' are the wave vectors amplitudes polarized
parallel to the plane of incidence and Es’ Rs, and E s' are the ampli-

tudes polarized normal to the incidence plane.

Equations (86) through (89) are valid for real angles only if
the refractive index of medium n' is real which is true only for loss~
less materlals such as dielectrics. In general however, n 1s complex

such as 1s the case for the elemental semlconductor.

When n 1s real, then the Fresnel coefficlent given by (83) and

(87) goes to zero at an angle 6 given by 90 - 8'. Under this condition,



the angle called the polarlizing or Brewster angle, BB, becomes

8, = tan n! (90)

(91)

..F

r (92)
p IE I2
show that rg is a monotonic increasing function of 6 approaching unity

at © = 90° and approaching r,at 8 = 0°, where
— 9 (93)
o

The value of rp approaches the same values as ry but is not monotonlc.
It decreases to zero at the polarizing angle when the refractive

indices n' and n, are real.

When the refractive index n' is complex, then the relationship

given by Snell's law no longer ylelds an angle of refraction but

becames using (3) for n'

bt



n_Sin 6

- [¢)
Sin 6' = R -IF (94)

so that Sin 0' now becomes a complex quantity and only becomes an
angle of refraction for the speclal case in which 6 = 6" = 0 which

occurs at normal incldence.

Using (86) and (87) and letting the radiation be polarized so

that Eh = Es’ then

R
_ Cos (6 + 0")
2 2 o3

Because (95) is a complex quantity, it can be written as

= e (96)

UJ:U}U:U

where p is the ratio of the real amplitudes of R.p and RS and v. 1s the
phase difference between these components. Using equatlons (95) and
(96)

1+ 0e’Y _ Sin 6 sin 6 (97)
iy Cos 6 Cos o'

1~ pe

and using (94) and (97)



1+pe™Y _ _Sin 6 tan 6 (98)
Ty n -1k ; 172

L-pe [ (E—) -sin® 6]

The angle of incidence 8 for which the phase difference is 90° occurs

at the principal angle of incidence, which when an + k% > 1, is

very nearly at the angle where Rp is minimum. [79]. The angle corre-
sponding to this minimum is called the pseudo-polarizing angle, Op s

and using (98) and letting n =1 for air

Sin & tan % (99)
1= [ (o, - 1K)? - Sin? ep]1/2

When (99) is multiplied by the complex conjugate expression glven by

Sin 6_ tan 9
1-1p _ p " %

(100)
LHI [ (g, + 10® - ste? o) 32

then the angle ep can be found using (99) and (100) by

2
S L 4 ) = 2 + 2 - 2 - 2 26 + S ‘#e
in ep tan b (nr k*) 2 (nr k*) Sin b in b

(101)

In the visible radiation reglon, the refractive index for silicon is

about four and the extinction coefficient 1is about unity, so that when
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nr,2 + k2 >> 1, equation (101) becomes

Sin 6 tan 0, = (n? + x2)1/2 (102)

This result could also have been obtained by neglecting Sin?6 in (100).

Then using (98) and its complex conjugate, omitting the Sin?6 term,

defining K as
_ k
K = /hr (103)
and p as
Ra
sa

where the subscript a indicates the real amplitude, then the values

for K and n are found to be
K = tan 2 wp (105)

and

= 6 ) Cos 2 0
n, Sin ptan b os wp (106)

where wp is the condition which exlsts when 6 = ep.



Therefore, in order to determine the values of n, and k, it is
only necessary to know the psuedo-polarizing angle ep and the ampli-

tudes of the reflected waves Rpa and Rps.

)

Figure 5 shows the theoretical reflectance curves for n, = 3.5
and k = 1. The curves are obtained by using equations (82), (83),
(91), (92) and (94). The angle, © at which Ty is minimum is the

pseudo-polarizing angle ep. The curve for rp shows that the re-
flectance does not go to zero at the polarizing angle when the ex-

tinction coefficient k is not zero.

(b) Effect of a surface film on the optical constants. The

results obtained for the reflection and transmission coefficlents of
a single layer can be applied in a situatlion in which the layer is
bounded on either side by semi~infinite layers. The incident beam is
considered tc undergo multiple reflections in the thin film will be
assumed to be non-absorbing and have a thickness, d. This is illus-
trated in figure 6 in which the incident ray, E, 1s of unit amplitude.

Then the resultant reflected amplitude can be shown to be [80]

s, + 8, e —2iz
R = 51z (107)
1 +.3132 e
where
R
= 1
8, % g (108)
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Flgure 5.—Theoretical reflectance curves for n,= 3.5 and

k=1
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1
2ﬂnld
z = iy Cos Bl (110)

and from energy considerations the reflectance as a ratlio of reflected
energy to the incident energy is obtalned by considering that the flow

of energy assoclated with the propagation of an electromagnetic wave

is represented by the Poynting vector as

P = ExH (111)
and requiring that the energy in the magnetic and electric flelds be

equal, the power or intensity is glven by

2
P = n_ |E| (112)
where n, 1s the refractive index of the medium in which the wave 1s
traveling. The absolute value of n, is used if it 1s complex.

The reflectance r is then defined as the ratio of the reflected

intensity to the incident intenslity so that

r = IB]2 (113)

|E]*
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where R and E are the magnitudes or amplitudes of the reflected and

incident flelds respectively. Therefore
R, (R
r=& Y (114)

which becomes, iIf E =1
r = RR# (115)

where the value R¥ represents the complex conjugate. The expression
for the reflectance of the component parallel to plane of incidence

is accordingly

=21z 2iz
S, S, ¥4+8 ¥g + 3 # +8 #
p =-dpPlp " P1p P2 © 1p S2gi ° 2p S2p2i
p # z M Z
1+ Slp SZp Slp S e

¥ +38. 8 . + 3. %3
2p 1p "2p © p “2p

(116)

and an expression for the component normal to the plane of incidence
ry, can be obtained by substituting the subscript s for p. Adapting
equation (83) so that 1t 1s consistent with the conditions shown in
figure 6, then

n, Cos 61 - ng Cos 60

= (117)
1p n, Cos 61 +n, Cos 60

S

and
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t - ]
ny Cos 6 n' Cos 61

S2p - n, Cos 6 +n' Cos &) (118)

The value of n, and n, are real because they represent media which are

considered to be lossless. The value for n', however is complex so

that (116) can be written as

e—2iz + 8 % o212

S. ¥

~217 2iz 2
+ 8, #* + S S, S, %
2p © 2p © ) lIp "2p "2p

) + 3

Because S2p is in general conplex, it can be given as
S = a+1b (120)

and if (120) and its complex conjugate Szp* are substituted in (119),

then

S. 242 slp (a Cos 2z + b Sin 2z) + (a? + b?)

r = 22

= (121)
D 2 2 2
1+2 Slp (a Cos 2z + b Sin 2z) + Slp (a® + b?)

The reflectance due to the medium n' when there is no surface layer is
obtained from (121) and (110) using a value d = 0. This reflectance,

rpo 1s then
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S, 2+2a8, + (a% + b?)
r = 1p ip (122)

p 2 2 2
1+2aslp+slp (a® + b?)

The reflectance 1s also rpo whenever the value of d satisfles

4 ny d Cos 61
7 = when Z = 0, 1, 2, «een (123)

A

The reflectance, r given by equation (113) has been determined
for a dielectric film as a function of 1lts optical thickness when
the film is on a material which has refractive indices smaller and
greater than the film [81]. Results for a metallic film on a die-
lectric where the extinction coefficlent was varied so as to change
the absorption of the metallic film are also available [82]. The

results are shown in figures 7 and 8.

(¢) Effect due to band shrinkage and the Ferml level shift. The

absorption of radiatlon in semiconductors is known to depend on the
carrier density [74] - [76]. The carrier density of semiconductor
materials is usually difficult to calculate wunless samre simplifying
assunptlons are made, however 1t can be obtained empirically with
reasonable accuracy. Semiconductors which are doped result in a shift
in Ferml level and an effective shrinkage of the band gap, although
the effective band shrinkage is more noticeable for heavily doped ma-

terials [78]. The band shrinkage and the Ferml level shift are both
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film as a function of its optical thickness (After Messner, [81]).
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responsible for the increase in the carrier density so that values for
these quantities, if known, can determine the carrier density. It can
be shown that an expression can be obtained in which the combined effect
of both band shrinkage and Fermi level shift is used to obtain the car-

rier density, and consequently, the low frequency conductivity.

The Fermi level, Ef, of a semiconductor which 18 non-degenerate,
lles between the valence and the conduction bands. When the semlcon-
ductor is intrinsic, the Ferml level lies very nearly in the center of

the forbidden gap and 1s independent of temperature. When the material
1s doped with impuritles, the Fermi level 1ls displaced from the center
of the band and moves toward the gap center as the temperature in-

creases. A semiconductor material which 1ls doped with acceptor atoms
becomes p-type with an acceptor level lying very near the valence band.
The concentration of acceptor atoms at the acceptor level which are

ionized determines the shift in the Ferml level from the center of the

forbidden gap. The acceptor level is readlly ionized at room temper-
ature by electrons which are excited from the valence band. The small
energy gap between the highest valence  band level and the acceptor
level allows a large increase in the number of negative ions and in
the number of holes. The process of recombination 1s such that the

number of corresponding free electrons decrease when the holes in-

crease.

The shift in the Ferml level, AE for p-type material 1s shown in



figure 9(a) for an assumed flat band in the vicinity of the indirect

band gap. The shift is glven by

AE = Efi - Ef. (124)
where the intrinsic energy of the Ferml level is glven by Efi , and
the Fermi level of the p-type material by Ef.

The hole density, p, for p-type material 1s obtained by
Eve
p = S (E) £ (E) @E (125)
Eveb

where the density of states for holes is glven by S (E) and the hole
Fermi factor is glven by fp(E). An expressicn by fp(E) is given in

terms of the Fermi factor, F(E), by

fp(E) = 1-f (E) (126)
and f(E) by
£(E) = [1+e (E-Ep/kty-1 (127)
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Figure 9.—(a) Energy level diagram for a p-doped semiconductor
where Ege is the effective band gap due to energy band shrinkage
ES.

(b) Energy level dlagram for an intrinsic

semlconductor.



Then the general expression for the hole density in p-~type materlal at
a glven temperature can be shown to be, in terms of a constant c¢' and

energy, as

® L ol2 (E-E,)/k _ AE/kt GE
p = c' E e fi e (128)
1+ e (B Bpy )/t o AR/KE

where the upper limit EVe was chosen to be the reference level, zero.
The bottom of the valence band, Evbe’ was chosen as infinity, because
the integral converges very rapldly in the valence band region. When

it is assumed that the semiconductor 1is non-degenerate, then the
factor in the integral

(E - Eﬁ)/kt AB/) »

e e 1 (129)

and the expression for p, therefore becames

©o

ot g /2 g (BE=-Egn)/kt  AB/KE GE (130)

Under the same conditions of non-degeneracy it can also be shown that

the effective intrinsic hole density pie can be glven by
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= ¢'E e (131)

Both expressions (130) and (131) are valid for silicon which has an

indirect band gap of about 1.1 ev when intrinsic. The Ferml level

for intrinsic silicon, therefore can shift 0.55 eﬁ before becoming
degenerate. The actual values, however, are somewhat less than those
indicated, because as shown in figure 9(a), there is a certain amount
of band shrinkage when the semlconductor is doped. Using both (130)

and (131), the hole density for the doped material, p, becomes

p = p e K (132)

The diagram in figure 9(b) shows the band gap, Eg, for an intrinsic
material. The value of the intrinsic hole density Py is kmown to de-

pend on the band gap by
p; = cqe ~Eg/2kt (133)

where cl is a constant.

The effective intrinsic hole density, Pies is then glven by
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-(Eg - AE_)/2kt

e (134)

The hole density, p, can then be obtained by using (132), (133) and

(134) so that

AE_/k :
a-/kb (135)

where

AE, = AE + AE_ /2 (136)

The expression for p in (135) is valld only when the condition ex-

pressed by (129) is valid. When the material is very highly doped,
the Ferml level enters the valence band making the material degenerate.

The value of p for degenerate materials can only be obtained by evalu-

ating the integral in (128) by numerical techniques.

The relationship between the low frequency conductivity as given
by equation (33) and the energy shift AE_, can be obtained by con-
sidering two silicon samples of conductlvities 9y and Oy The cor-

responding values of AEal and AEa2 will then be glven for oy and o5

AE_, = AR, + AE /2 (137)
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and

AE, = AE, + AE,/2 (138)
From equation (33)
0, = 4 (upk P, + W ) (139)

and by using (135) for p-type materials, the ratio of the two conduc-

tivities becomes

9 _ HoMpe * Hho B (140)

When the materials are doped sufficlently so that the minority carriers

are negligible, then, because N, = Ny since both samples are silicon

o u
6_2_ = P2 4 (141)
1 M1

where AEd is glven by



(142)

A plot of radiation energy versus the absorption coefficient will
result in two curves separated by a fixed energy value AEd. If one of

the samples has a known conductlvity, then the other can be cbtained
by equation (141) or in general by equation (140).

The energy bands for different samples of silicon as indicated in
figure 10 are assumed to be flat only for purposes of illustration.
It is shown that the band shrinkage increases with doping as does the

Ferml level shift. The Fermi level for the intrinsic material is

known to lie almost in the center of the band, so that

E +E
Ef_‘ = _E__z_v (143)

whereas. the Fermi level for a p-doped material can be given by

B = Ef - AEk (144)

The valence and conduction bands for the p-material will then become

respectively,

Eg = B, ¥ AESk/2 (145)

and
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ECk = Ec - AEsk(2 (146)

From equation (144), it is spparent that

AE, - AE; = Eg - Eg, (147)
Then, using (137), (138) and (142)
AE; = Egp = Epp + 1/2 (AE, - AE;) (148)

A relationship does exist between the Ferml level and the band shrink-
age but the relationship is not relevant to this discussion. 'The re-
lationship given by (148) indicates that the energy shift AE4 depends
on Fermi level difference and the band shrinkage difference. The
shift, Ed wlll be measured as a displacement between two absorption
curves, one in which the conductivity is known. Equation (141) then

determines the low frequency conductivity 9, when the low frequency

conductivity o, is known.

1

The expression for a degenerate condition is derived in Appendix A

69

and is applied to measurements made on a highly doped wafer in Appendix B.
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CHAPTER 3

EXPERTMENTAL METHOD

3.1 Apparatus and Method

The method used to determine the optical constants n, and k is
by a non-normal reflectance technique shown in figure 11. The mono-
chromator shown 1ls a Bausch and Lomb unit which contains a tungsten
light source and a grating so that the wavelength can be varied from
2000 & to 7000 R. The bandwidth for the resulting wavelength at the
exit port can be varied so that narrow bands corresponding to 1 .K at
50% intensity are feasible. This monochromatic light then passes
through slits in a chopper wheel producing light pulses at a rate of
3.6 KHZ with a duty cycle of about 30%. The lens constructed colli-
mator 1s then used to produce a narrow parallel beam of light which
is incident on the semlconductor sample. The narrow parallel beam is
collimated normal to the plane of incidence, where the plane of inci-
dence 1s the plane which contains the diagram of figure 11. The nar-
row collimated beam of light then reflects from the semiconductor
sample, After the radlation 1s reflected, 1t becomes polarized so
that the reflected electric wave vector parallel, Rp to the plane of
incidence, is In general less than the reflected electric wave vector
normal., RS, to the plane of incidence. The value of Rp for a lossless
sample is zero when the incidence angle, 6, (90 - o in figure 11) 1s at
the polarizing angle, ep. When the sample 1s absorbing such as 1s the
case for metals and semiconductors, then the value of Rp is a non-zero

minimum at ep. The polarizer, which is an Ealing type in which polaroid is
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sandwlched between two glass disks, is mounted so that 1t can be
rotated to orient its transmission axls parallel and normal to the
plane of incidence. The polarizer used was of high quality (the
quality measured by transmission axes results in a transmission in-
tensity of 10'5%) so that only the camponent parallel to the trans-
mission axis can be transmitted. An illustration of the reflected
wave vectors and the transmission of the wave vectors for different
angles of incidence 6 when the sample is absorbing is shown in figure
12, The photomultiplier tube an RCA type and assoclated electronics
as shown in figure 13 i1s used to measure the intensity of wave
vectors Rp and Rs' These values of intensitles are measured as volt-

ages are proporticnal to the square of the amplitudes of Rp and Rs'

The semiconductor sample is mounted on a spectrometer turntable
with a specially designed leveling platform and accurate gear train
assembly wilth only a few seconds of arc of backlash. The gear train
assenbly 1s necessary so that when the sample rotates at an angle o
with respect to the incident beam, the polarizer and photomultiplier
assembly rotate through an angle of 20 thereby maintaining that the

photomultiplier is at the angle of reflection.

3.2 Precision of Measurement

The reflected light reaches the photomultiplier face through a
slit 1/16" in width cut in a mask which covers the tube face. The
width of the collimated reflected beam is adjusted so that it is only

slightly less than the slit width. The photomultiplier is mounted so
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that its face is about four feet from the point of reflection on the
semiconductor sample. Therefore, a deviation of one minute of arc
results in a variation of about one sixteenth of an inch in the beam
falling on the mask. This variation can be discerned visually by an
observer under dark room conditions. The reading of the turntable of
the spectrometer is calibrated so that 1t can read to thirty seconds
of arc which is within the deviation that can be observed. The cbser-
vation which can not be made much better than one minute of arc there-

by limits the accuracy to this value.

It is also necessary to establish that the presence of an oxide
layer on the silicon sample will not adversely affect the measurement.
The sample of refractive index n, will be consildered to be coated with
a silicon dloxlde layer of index ny and thickness d as shown in flgure
14(a). The incident ray is shown as A and the reflected ray from the
oxlde surface as o, whereas the ray c is due to reflectlion from the
silicon surface. Then the angle of deviation © between the rays o and

¢ as shown in figure 14(b) 1s found to be

dno 2 Sin o Cos o
6 = o, ENR (149)
l1- (=) Sin a
n

where R is the distance from the semlconductor sample to the detector.

The maximum deviation for © occurs upon differentiating (124) when
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2

n, 2 n n, 2
SR N I IR V-
snfe = ) EGEH LG -1 (150)
and if n, = 1.5 and n, = 1, then
- d
emax = -76§ (151)

So that when R 1s large as it is in this experiment (= 4 feet) and
d =20 )\ then the value of emax is well within the limits of resolu-

tion of the experimental equipment.

3.3 Effect of Photon Flux

It 1s essential to show that the light flux which is used to make
the conductivity measurements will not result in a large photo-conduc-
tive effect. The maximum number of electron~hole pairs produced by
the photon flux will be shown to be small compared to the population
density of the majority carriers. Therefore the true electrical con-
ductivity will be measured and not an Iincreased conductivity which may

be caused by the measurement if a large number of pairs were produced.

The power density p(x) in a beam of electromagnetic radiation is
glven in terms of p(o) by equation (26). The available power density
after propagating a distance x through the medium is represented by

p(x) and the radiation incident at the surface by p(o).

7



If M is considered to be the number of photons absorbed per unit

time, then it is true that
dp(x) = -EaM (152)

Differentiating (26) and using (152) to obtain an integral equation

so that

" @ -hme
ar = Ak plo) f o A gy (153)

o 0

The value of d 1s chosen so that 1t is the reciprocal of the absorption
coefficient. From equation (27) it is apparent that the exponent in
equation (153) is the absorption coefficient, so that the resulting

expression for M becomes

Mo= 2 & plo) k | (154)

where p(o) is the incident intenslty in watts per unit area, h is
Planck's constant, A the wavelength and k the extinction coefficient.

Substituting the appropriate values

M = 4x10'° plo) k (155)
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where-M is the maximum permissible number of photons absorbed per cm®

per second.

If each photon absorbed produced an electron hole pair, then the
number of pairs produced per unit volume, N, would depend on the life-

time of the carriers, 1, in the medium. Therefore
N = 4x10' p(o)kr (156)

The intensity of the vislible monochromatic radiation used for the
measurement was of the order of 1o’é watts per cm . The lifetime of
the carriers can be assumed to be of the order of 10_6 seconds!®,
and the value of k found experimentally to be of the order of wunilty.
The value of N is then calculated to be 4 x 10!! electron-hole pairs
per cm® which is small when compared to silicon which is normally

doped above 10'® per cm®.

The intensity of light used in the experiment was low enough so
as not to disturb the measurement. It should be reallzed, however,
that very intense light such as that obtained from lasers have large
electric flelds, causing population increases and non-linearities

which will affect the measurement.



CHAPTER U4
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RESULTS

4.1 Comparison of Absorption Model

The absorption coefficients as obtained from measured data for two
silicon wafers and the resulting conductivity of one wafer (using the
other as a reference) is presented in this section. The wafers are
p-type (100) oriented silicon of 15 mil thickness with nominal resis-
tivities (as measured by four point probe) of 0.005 and 50 ohm-cm.

The surfaces of the wafers are highly polished and coated with an oxide of
about 50 X. This oxide film will cause a measured absorption co-

efficient which is too large by about 94% (see table 5). The film to-
gether with contaminants and trapped charge in the oxide-silicon interface
could be the reason for the absence of a noticeable slope change in

the curve.. The slope change should occur at the onset of direct transitions
(2.6 ev). The effect of the equal surface films will cause equal
degradation of the absorption coefficlents and produce equal shifts in

the absorption curves. Therefore, the relationship of section 2.5 (c)

are applicable and the conductivity of one sample can be determined from
the shift between the curves. For the sake of brevity, only the two samples
of 0.005 and 50 ohm cm silicon will be used throughout the main text of

the thesis. Additional data and calculations for six other silicon wafers
in which the surfaces are carefully cleaned and etched are presented in
Appendix B. A very pronounced slope change is evldent in all these curves
at about 2.5 ev.

The values of o for the semi-classical model are given in table 2
and those for the quantum mechanical model by tables 3 and 4. The

absorption curves for both of these models are compared to the experimental
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curves. The experimental values of o and n, calculated by using (102)
and (105), the polarizing angle ep, and the value k obtained by (104)
are given In table 1. The Intensities of the reflected rays are
measured as voltages and are proportional to the square of the amplitude.
The values for o and n, using the semi-classical model (table 2) are
for the damplng canstant 6§ which gives the best fit to the measured

a curve (see figure 15). The values of n, and k for best flt were
obtained by a computer program of (58) and (59) where ¥, = 0.78 and
E = 7.0. The value of E_ was obtained using (58) and (59) to agree
with the refractive index peak obtalned fram the results of Philipp
and Taft [347 .

The quantum mechanical model yields theoretical values of o for
indirect ard direct transitions which are given in tables 3 and 4
respectively. The value of the phonon energy Ep for indirect trans-
itions has been shown [70] to be about 0.05 ev at room temperature.

The term a, becames negligible in (79) for hv slightly above the
indirect gap, consequently, when Ef is considered as 1.05 ev, (79)

becanes

se = A' (hv - 1.1)2 (157)

so that absorption is essentially due to phonon emission. From the
slope of the curves given [70] , the value of A' for intrinsic silicon

can be found to be



TABLE 2

6 = 0,040 § = 0.070

hv (ev) o (10° em™') n, o (10° em™') n,
2.1 0.79 4,27 1.34 4,11
2.2 0.96 b, 39 1.63 4,18
2.3 1.18 4,53 1.99 4,26
2.4 1.46 4,68 2.47 4,32
2.5 1.84 4,85 3.05 4.37
2.6 2.35 5.04 3.89 4,38
2.7 3.09 5.23 5.03 4,30
2.8 b, 20 5.40 6.92 3.98
2.9 6.01 5. 44
3.0 9.74 4,95

The absorption coefficient o as obtained from the

semi~classical model using equations (27), (58) and (59).



TABLE 3
hv (ev) (hv - 1.1) ev o, (em=?)
1.2 0.1 33
1.3 0.2 131
1.4 0.3 294
1.5 0.4 522
1.6 0.5 816
1.7 0.6 1,175
1.8 0.7 1,600
1.9 0.8 2,090
2.0 0.9 2,645
2.2 1.1 3,950
2.4 1.3 5,518
2.6 1.5 7,346
2.8 1.7 9,436
3.0 1.9 11,786
3.2 2.1 14,398

Quantum mechanical results for the absorption coefficient

for Indirect transitions assuming intrinsic silicon.

A further

assumption 1s that all electron states are initially unoccupied

and all hole states are fllled.
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TARLE 4

hv (ev) (hv - 2.50) (ev) G (10* em-?)
2.51 0.01 0.17
2.52 0.02 0.25
2.54 0.04 0.35
2.60 0.10 0.55
2.70 0.20 0.78
2.80 0.30 0.95
2.90 0.40 1.10
3.00 0.50 1.23
3.10 0.60 1.35
3.20 0.70 1.46

Quantum mechanical results for the absorption
coefficient for direct transitions in intrinsic silicon
assuming inltially unoccupied electron states and

f1lled hole states.
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o, = 3265 (v - L.1)2 N (158)

The absorption coefficlent for direct allowed transitions can be
obtained from equation (75) which applies when the photon energy is
near and greater then the direct band gap. Assuming that the electron
and hole masses are the same and equal to half the free electron mass,

then for an n, = 5, and Egd = 2,50 ev

I

o 1.74 x 10 (hv - 2.50)2 (e} (159)

da

The results for the absorption coefflclent as a function of
photon energy is given in table 3 for equation (158) and in table U

for equation (159).

Figure 15 campares the absorption coefficlent calculated by the
semi~classical model with the measured absorption cceffilclent obtalned
experimentally. The seml-classical model which may account for dis-
sipative processes of absorption by the crystal lattice, agrees with
the experimental curves for the lower values of photon energles.

There is a noticeable departure from the experlimental curves at higher
energles. The value of § which gives the best fit for the absorption
coefficient, however, does not glve the best fit for n, as can be seen
in figure 16. The inconsistency appears to be due to the cholce of tpo
and E . The vertical shift in the curve of figure 16 is caused by an
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error in the choice of wo, whereas, the difference in the peaks is a
result of the choice for E. The actual percent variation of the
experimental value of n, i1s small when compared to the corresponding
percent varlation in k (see Table 1). From equations (25) and (27),
then, 1t is apparent that the experimental optical conductivity, o
varles very nearly as the absorption ccefficlent a, consequently, in
further discussion 1t ls only necessary to conslder the absorption

coefficlent.

The values of the absorption coefficient obtained experimentally
are compared with results of the quantum mechanical model glven by
tables 3 and 4. The curve in figure 17 shows the results of the
experimental absorption coefficient for 50 ohm-cm silicon, which is
campared with an ldeal gquantum mechanical model of near intrinsic
silicon. Although the curves are similar, the absorption coefficient
for the experimental curve is an order of magnitude larger than the

ideal quantum mechanical predictions.

4,2 Dependence of Absorption on Radiation Energy

The absorption characteristics of a semiconductor, 1ln general,
are dependent on the number of electron and hole states which are
available. This has been discussed in section (2.4) as the anomalous
absorption explained by Burstein [72] and Moss [73]. The calculated
effect of avallable states in the conducticn band on the absorption
in germanium at Y4.2°K has been glven by Pankove and Aigrain [76].

The calculated effect indlcates that the extrapolated band gap
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increases with doping at 4.2°K. Experimental evidence [761, [78],

however, has shown that the extrapolated band gap for germanium de-
creases with doping at 4.2°K. This indicates that the anomalous ef-
fect i1s negligible in indirect band gap materlals such as germanium.

The experimental data obtalned in this study for p-type silicon
also shows that the extrapolated band gap decreases with doping at
room temperature. The anomalows effect is also not noticeable for
silicon which 1s also consldered an indirect band gap semiconductor.
Semiconductors in which the indirect process 1s predominant, ap~
parently mask the ancmalous effect and consequently the effect 1is not
observed. The effect 1s significant because its tends to decrease
the absorption as the doping increases. Therefore, it must be con-

sidered as part of the absorption process when the data is analyzed.

The absorption curves for 0.005 ohm-cm and 50 ohm-cm p-~type
silicon are shown in figure 18. The absorption coefficient, o, is
plotted versus the quantity, (hv - Ege), where Ege will be defined as
the effective band gap. The values of the indirect band gap (= 1l.lev)
and the direct band gap (= 2.6ev) are known for intrinsic silicon.

The corresponding absorption characteristics vary as the square of
the energy above the indirect gap, Egi’ and the one half power of the
energy above the direct gap, Egd' One possibility 1s to consider that
the straight line extrapolated value for the experimental curve (for
energles in the range of two to three electron volts) should have a

value between Egi and Egd’ Another cholce for Ege is to consider that

o1



the process of absorptlon is predominantly due to an indirect process,
thereby making it difficult to discern the effect due to a direct pro-
cess. In this case, it can be assumed that Ege = Egi‘ The two curves
shown in figure 18 are plotted for Ege = Egi = 1.1 ev for both materi-
als. The curves both have a slope of approximately two which indi-
cates that the absorption process is predominantly indirect. It is
reasonable to assume that the direct band gap for the 50 ohm-cm sili-
con i1s 1.1 ev because it is relatively lightly doped. The 0.005 ohm-
cm material will have an indirect band gap which is less, because of
band shrinkage. It 1s not possible, however, to determine the band
shrinkage unless data 1s taken in the Infra-red. Also, anomalous
absorption may play an important role by compensating for the band
shrinkage. The curves in figure 19 shows how the slope varies when
Ege has the values of 1.1 ev and 1.5 ev. The slopes are 2.0 and 1.2

respectively. A larger value for Ege willl result in a smaller slope.

4,3 Low Frequency Conductivity

The value of the low frequency conductivity of silicon can be
inferred from its absorption characteristics. This is accomplished
by the comparison of the absorption coefficients for two different
conductivities, one of which is used as the reference. The general
relationship which exists between the two conductivities has been
presented in the theory in section 2.5 (c¢) by equation (140). The
specific case in which both samples are doped so that simplifylng
assumptions can be made is glven by equation (141). The samples

studied in this thesis are doped sufficiently so that equation (141)
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holds. The absorption characteristics for two p-type, nominal con-
ductivity 50 ohm-cm and 0.005 ohm-cm, are shown in figure 20. The
logarithm-logarithm plot is used in figure 20 and this appears to
give the best fit for a stralght line relationship. It appears that
the slopes are about the same, although by measurement the 50 ohm-cm
has a slope of 3.8, and the 0.005 ohm-cm a slope of 3.5. A direct
Interpolation of these curves to the vicinity of the band gap, how-
ever, will not yield the absorption coefficient for low frequencies.
The absorption coefficient is a complex parameter which is frequency

dependent and is of the form
o = o (v) + a' (v) (160)

where o (v) is the absorption coefficlent below the absorption edge
(band gap). Free carriler absorption becomes important near but

below the band edge (see 2.2(b)), and then eventually a, (v) becomes
relatively constant. The term o'(v) has a value of zero when hv $ Eg,
otherwlse, its value 1s essentially determined by an expression which

has the same form as given by equation (90) namely
o' (v) = A (hv - Eg)n (161)

The low frequency absorption coeffilcilent can be measured for silicon

9k
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if the radiation is 12000 R or greater. These wavelengths are in
the Infra-red reglon and have not been explored in this study. It
1s therefore not possible to determine either the absorption coef-
ficient o (v) or the band gap of silicon. The band gap for in-
trinsic silicon at different temperatures, however, is known with
a reasonable degree of accuracy. It is also known that there is an

effective shrinkage of the band gap with doping,

The curves plotted in figure 20 are significant because they
indicate a shift in energy between the two curves. The energy shift
is caused by an effective band shrinkage and the shift in the Ferml
level. Both of these quantitiles determine the carrier density which
In tum has an effect on the absorption coefficlent. The energy

shift, AE., measured as the horizontal difference between the two

q°
curves 1ls found to be approximately 0.25 ev. The kt energy at room
temperature is 0.26 ev and the mobility of holes in the p materials
are assumed to be equal, so that up2 = “pl’ This assumption however
1s valid if one sample is doped within an order of magnitude of the
other. When this assumption is made, then equation (141) and the

conductivity o, known to have a nominal value of 0.02 mho/cm, yields

a calculated value of 300 mho/cm for Oye The nominal value for o,
as measured by a four point probe is given as 200 mho/cm. The dis-~
crepancy can be resolved by considering that the moblilities upl and

U . are not equal. Thils is evident since the conductivities are not

p2
within an order of magnitude, consequently, neither are thelr major-

ity carriers. The mobllity up2 corresponding to the higher
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conductivity material is less than the mobility “pl' The drift mobility
for holes, upl, in p~type 0.02 mho/cm silicon is about 500 cm2 - volt_l-
sec_1 and can be extrapolated to a up2 of 350 em? - volt !- aec_1 for
conductivities greater than 1 mho/cm [48]. Then if equation (141) is
used, a value of 210 mho/cm is found for 9, which 1s in very good agreement
with the conductivity (200 mho/cm) as measured by the four point probe.
The results for six additional (111) p type silicon samples (surfaces
etched) illustrating the important role played by the mobility is given
in Appendix B.

The value of the conductilvity g, as has been shown is determined
from the displacement, AE,, between the straight lime plots 1llustrated
in figure 20. The conductivity 9, is independent of the radiation as is
evident by close Inspection of the plot. The ruled measurement of
AEd at a lower absorption is greater than that obtained at a higher
absorption. This results in a AEa in energy units of electron volts

(ev) which 1s independent of the absorption.



CHAPTER 5
DISCUSSION

The absorption coefflclent, o, has been shown to be a sensitive
function of the doping in the semiconductor silicon. The variation
of o with radiation energy has been investigated in this study. The
absorption coefficient is defined as a general relationship by equa-
tion (27) and the related conductivity by equation (25). Using (25)
and (27), the absorption coefficient in terms of the conductivity,

g, 1s

The conductivity, o, is the value measured at the frequency of the
radiation, which 1s in the visible range for this study. The value
of o iIn this region is greater than the low freguency conductivity
by several orders of magnitude. In this visible region it is

camonly referred to as the optical conductivity.

The Theory and Results have been presented in terms of the ab-
sorption coefficlent o rather than the optical conductivity, o, be-
cause o appears to have more physical meaning than o. The value of

0, however, is readily obtained fram o because n, has been measured.

With the absorption coefficlent defined in general, from (25)
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it is necessary that k be measured so that the experimental value of

0. can be campared with possible physical models.

The seml-classical model was the first model chosen, because it
appeared to be the one which is most fundamental. Also, the similar
but modlfied model for free carrier absorption has been successful
in explaining absorption just below the absorption edge. The semi-
classical model considers that the charge carriers are bound elasti-
cally to the atoms, and are forced to oscillate when subjected to a
radiagtion field. The restoring force between the charge carriers
and the atoms are assumed to follow Hooke's law, and the dissipation
is in part accounted for by a damping coefficient. The model has
been modified from the Clausius-Moscotti [51], [52], and Lorentz-
Lorenz [53], [54] form, by replacing the dielectric constant and the
refractive index by complex quantitles. The resulting equations for
n, and k are given by equations (66) and (67). The values of n, and
o based on calculations using these equations for two different
values of the damping constant, §, are given in table 2. The values

of § have been chosen so as to glve the best fit to the experimental

o given in table 1. The comparison between the curves shown in
figure 15 shows that as expected, the larger damping constant corre-

sponds to the larger conductivity sample.
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The seml-classical characteristics also have some other inter-
esting properties. The value of n, aSymptotically approaches the
accepted value of the refractive index (3.42) as the wavelength of
the radiation increases. Equations (66) and (67) also show that n,
approaches a peak and then eventually will reach a value of unity
for decreasing wavelengths. It has been shown by Philipp and Taft
[34] that the peak value of n, for silicon 1s 7.0 and occurs at
3.3 ev. The camparison between the semi-classical and measured n,
glven in figure 14 shows a similarity in the shape of the two curves.

The displacement between the two curves has been explained in section

4,1 of the Results.

The equatlons for the semi-classical model also shows that the
absorption coefficient will peak (although not shown in figure 15)
and then approach a small value with decreasing wavelength. The
value of o also decreases with increasing wavelength, which again
agrees with experiment [34]. The decrease, however, is a linear
change and not an abrupt change, as is observed experimentally. The
sudden increase in the absorption coefflclent which takes place at
the absorption edge (band gap) in semiconductors is caused by the
gquantum effect. Below this value the absorptlon is small as de~
termined experimentally [34]. It is below this edge where the semi~
classical model glves an absorption coefficlent which is too large
when compared to the experimental results. The semi-classical model
can therefore not be considered to be valid in this region. Below

the absorption edge, however, the modified seml-classical model in
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which the elastic restoring force 1s eliminated, (see section 2.2(b))
results in a free carrier absorption model, which 1s in good agree-~

ment with experdiment.

The region above the band gap energy (absorption edge) is physi-
cally best described by a quantum mechanical model. The absorption
coefficient curve, derived from the quantum mechanical model, is in
better agreement wlth the experimental curve than that obtained by
the semi-classical model. The ideal quantum model assumes that the
value of the absorption coefficient is zero below the absorption
edge. This 1s in reallty not true, because of dissipation of energy
by other non-quantum effects, such as processes Involving inelastlc
collisions. Inelastic processes by charge carriers for energles
above the band gap also take place in real materials, consequently
causing an increase in the absorption coefficient. Thls should not
however, in general, be expected to result In an increase in the
measured absorption coefficlent, because of other compensating ef-
fects such as the anamalous effect [72], [73]. When the anomalous
effect is negliglble as it is for silicon, then the measured ab-
sorption coefficient will be larger than that assumed by the ideal

quantum mechanlcal model.

The ideal quantum model for band gap materials includes tran-
sitions which are allowed and those which are forbidden. In addi-
tion, transitions can be direct or indirect. The ldeal quantum
mechanical curve for allowed transltions 1ls shown in figure 17.

This camposite curve for silicon conslsts of an indirect transition
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for energles above 1.1 ev, and a direct transition for energles
greater than about 2.6 ev. It 1s assumed that there 1s no inherent
absorption below the indirect band gap. Because the anomalous effect
1s negligible for indirect processes, it can be assumed that the
values of the quantum absorption curve should be greater than those
shown. The S shape curve 1ls caused by the onset of direct transitions
which occur at about 2.6 ev. The curve (indirect transitions) to
about 2.6 ev varles as the square of the radiation energy in excess
of 1.1 ev, whereas for energles greater than 2.6 ev, the value of a

is determined by direct and indirect processes.

The experimental data for the absorption coefficient given in
table 1 for 50 ohm-cm and 0.005 ohm-cm is plotted in figure 15. The
curves show that the absorption coefficient does increase with the
doping concentration, indicating that there is no apparent anomalous
effect. The increase in the absorption coefficlent with the radia-

tion can be explained by considering equation (160)
o = a_ (V) +A (v ~-E )"
0 g

There are two possibllities which must be iInvestigated when consi-
dering thls expression. Either the inherent absorption term o (v)
is negligible when compared to the second term, or it 1s appreciable

and must be taken into account.



104

When the absorption term o (v) 1s set equal to zero, and the
absorption coefflclent for 50 ohm-cm 1s takén from table 1 as o =
1.90 x 10° em™! for hvy = 2.25 ev and o, = 3.15 x 10° cm for hv, =
2.62 ev, the value of n is found to be equal to 2.16 if Eg = 1.10 ev.
When Eg is considered to be an extrapolated effective value (see
section 4.2) and is taken as Eg = 1.50 ev, then the value of n is
found to be equal to 1.48. The corresponding values of n for the
0.005 ohm-cm sample were found to be 1.83 and 1.25 for respective

values of Eg of 1.1 ev and 1.5 ev.

When the indirect band gap is chosen for E 2 the value of n 1s
2.16 for the 50 ohm~cm sample and 1.83 for the 0.005 ohm-cm material.
The higher conductivity material has a smaller band gap caused by

band shrinkage, and will result in a greater n value. Calculations

show that n 2.0 when Eg 1s assumed to be 1.0 ev for the 0.005 ohm-

cm sample.

The results obtalned for n are significantly different when the
value of o, (v) is not negligible. When the following set of equa-

tions are solved for n,
_ - n
o = o +tA (h\’k Eg)

where o, = 1.13 x 10° am”t, hv; = 2.25 ev; a, = 2.06 x 10° em ?,

2
hv, = 2.62 ev; oy = 1.58 x 10° em™?, hvg = 2.48 ev; the value of n
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can be either 0.5 or 2.2 for the 50 ohm-cm sample.

The result of 0.49 for n implies that the absorption coefficilent
is due to a direct transition. This 1s not in agreement with the
curves of figures 18 and 19. In particular, the 50 ohm-cm material
1s very lightly doped so that its inherent absorption o (v) can be
considered negligible. Also the indirect band gap can be considered
to be 1.10 ev for the 50 ohm-cm material. The slope, n, is found to
be 2.0, and even for a curve extrapolated effective band gap of Ege =
1.5, the value of n = 1.65. Further, transitions which are predomi~

nantly direct, may cause an anomalous effect which has not been

observed.

From the results and the dilscussion pertaining to the silicon
samples it appears that the value of n can have values ranging from
about 1/2 to 2. However, the results seem to favor the value for
n = 2, This can be verified experimentally by further investigation
of the absorption at lower energles. The direct band gap occurs at
about 2.6 ev and data may have to be taken at energles significantly
above this value :Ln. order to determine its slope. The highest energy
of the radliation used in thils study was 2.92 ev; it was limited by

the overall response of the experimental system.

The absorption coefficilent for the 50 ohm-cm sample 1ls compared
with that of the ideal.quantum model. The two curves are shown in
figure 17. The experimental curve 1s about one order of magnltude
greater for all wavelengths. It has already been méntioned that the
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quantum model neglects inherent absorption. When the inherent
absorption 1s consldered, the quantum mechanical curve will be
increased by a constant amount. The effect on the log-linear plot
is an increase in absorption at all wavelengths and a flattening of
the .S shape. The flattening of the S shape results in a curve which

is in better agreement with the experimental curve.

The argument which strongly favored indirect transitions (n = 2)
was based on the assumptlon that the inherent absorption, o, (v), was
small when compared to the experimental curve, but not small when
compared to the quantum model. Consequently an ‘amount, o (v), must
be added to the ideal quantum curve, but can not be too large.
Therefore, it appears that some other factors must be considered

which can account for a lower experimental curve.

A surface fllm which may be present on a sillcon wafer will
increase the measured intensity of the reflected beam. This will
result in an increase In the calculated absorption. Because it is
reasonable to assume that a surface layer can exist, it is also valid
to expect that the true absorption should be less than that shown by
figure 17. The effect of a surface film has been presented in sec-~
tion 2.5 (b) of the theory. The expression for the reflectance of
the component of the electric fleld parallel to the plane of inci-
dence, T is given by equation (121). This expression includes the
effect of a surface layer of thickness, d. This expression which

gives the reflectance, r in which it 1s assumed that there is no

po’

surface layer, is glven by equation (122).
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The effects of the surface layer can be determined by consi-
dering the change the absorptlon caused by surface layers of differ-

ent thicknesses. The change is glven by

in which 04 1s the total absorption due to the silicon wafer and 1lts
surface oxide layer, d. The value % is the absorption due to the
silicon wafer alone. Equation (122) is used to find rpo at the
polarizing angle, ep, of the silicon wafer. A polarizing angle of
80° measured at a wavelength of L4000 K results in an Yoo of 0.093%
and a 6, of 75.8° at 6000 A ylelds an ro OF 0.719%. The absorption
at the two wavelengths then can be found from (27), (104) and (105).
The absorption caused by a silicon dloxide layer of refractive index
1.8 on a silicon wafer, is determined by finding Ty at 4000 A and
then at 6000 K. Because the polarizing angles are large, the value
of r, can be considered to be approximately equal to unity (see
figure 5). Then, it follows that R, = 1, because E and Ep are both
equal to unity, consequently, o4 and Oys can be readily found from

(1o4).

The variation in the absorption coefflcient of a silicon wafer
=]
caused by a surface silicon dloxide layer of 10 A and 20 K is given

in table 5. The calculations show that a maximum error of 20% in
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the absorption coefficlient occurs at the shortest wavelength when
the oxide layer is 20 R thick. The ratio Aa/do was calculated using
K and assuming that n, in (103) is the same for the oxlde as for the
silicon. An effective value for n, which should be used will result
in a smaller absorptlon and an error less than those shown in table
5. Therefore, the values shown in table 5 are maximum for thelr

respective oxide layers.

The purpose of the previous discussion on surface layers was to
show that they can cause errors in the absorption coefficlent. In
fact, it results in a measured value of o which is too large. A 20 K
silicon dioxide layer wlll therefore result in an absorption coef-
ficlent which is 20% too large at 4000 K (3.10 ev) and 16.8% too
large at 6000 & (2.07 ev). Although care was taken in preparing the
surfaces, 1t is reascnable to assume that in practice, a 20 ﬁ layer

can be formed at room temperature.

The true absorption coefficlent for the 50 ohm-cm silicon is
therefore smaller for all wavelengths than those shown in figure 17.
If the values of the oxlde thickness and the inherent absorption,

a, (V) (infra~red wavelengths) were known, the experimental curve
will be found to be in very good agreement with the quantum mechani-

cal curve.

It has been shown in section 4.3, that the low frequency conduc-
tivity of sllicon can be determined from lts absorption of visible

radiation. The absorption curve must be compared to the absorption



TABLE 5

EFFECT OF A SURFACE LAYER

by ad A @ o, (DEGREES) K =r (%)
(o]
0 0 6000 75.83 0.0610 0.093
4,3 10.0 6000 75.83 0.0636 0.101
16.8 20.0 6000 75.83 0.0713 0.127
0 0 4000 80.00 0.1709 0.719
5.9 10.0 4000 80.00 0.1804 0.801
20.0 20.0 4000 80.00 0.2064 1.043
94,2 50.0 4000 80.00 0.3350 2.662
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curve for a silicon sample of known conductivity. When the general
case is considered, it is necessary that equation (140) be used.
The minorilty carrier densitiles and minority mobilities must then be
known. These quantities, however, may not be known unless the
conductivity is known. But, if the conductivity o, is used as the
known value, and 1t ls intrinsic, then the value AEal = 0. When
both samples are silicon, then n;; =n,, = n, and equation (140)

becames

AE

5 L e /b y N
£ = B ¢ B (140a)
1 o1 T Hm o1 T Hpy/ P

e,

The values of Moy and “pl are known for the Intrinsic materlal to be
1500 and 500 cm? - volt—! - sec~!'respectively. The value of n, for

silicon at room temperature is also known to be 1.6 x 10!° em~3,

The low frequency conductivity, o, can be found by first con-

sidering that

The conductivity o5 determined by this expression for a known AEd is

then used to determine Wyos s and p [47], [48]. Using these
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values in (140a) then determines the conductivity 0, more precisely.
Each trial will theoretically glve a more accurate value, however,
the parameters are not rapidly varying functlon of the conductivity,

so that in practice it 1s only necessary to use (140a) one time.

The expression for the low frequency conductivity glven by
equation (140), is dependent on the band shrinkage AE_ and the Fermi
level shift AE. Both AES and AE increase with impurity concentration
when the temperature remains constant. An increase in impurity

concentration does lead to an increase in absorption.

It has been shown for germanium [76], that o is roughly propor-
tional to doping. This, however, was shown to be valid only over a
doping range from 5 x 10'® cm™?® to 4 x 10'® em~®. In fact, there is
no proportional ratlo when heavily doped germanium 1s compared with
a pure sample. The'n, of a pure germanium sample is 2.5 x 102 cm?
and its absorption coefficient, o, as measured from curves [76] at
0.78 ev is about 4 cm~?!, whereas, o measured at the same energy is
about 30 cnr! for a doped sample of 5 x 10'% em~3. The absorption
value, therefore, has increased by only about an order of magnitude,
whereas the doping has increased by five orders of magnitude. The
same condition exists for silicon as is shown by the results of this
study. This is shown in figure 18 by the two curves for 0.005 ohm-
cm and 50 ohm-cm, p-doped sillcon. The conductivities differ by
four orders of magnitude whereas the ratio of the absorption coef-
ficients are about 1.5. There appears to be no fixed relationship

between the absorption coeffici-nt and the impurlty concentration



for germanium and silicon, when a broad range of doping is considered.

It has been postulated in this thesis that a simple relationship
does exist between the absorption coefficient, and the energy shift,

AE ., between the curves of figure 20. The energy shift, consists of

d
both AE and AES which are both related to the impurity concentration.
The results of section 4.3 are consistent with the theory given in

section 2.5 (e¢).

There is a tendency for the curves of figure 20 to get closer
together at the higher energles. This implies, as expected, that
the energy shift AE 3 is independent of radiation energy, hv. The
tendency for thls convergence can best be explained by consldering
equations (160) and (161) for two different conductivities. A plot
of o vergus hv on a logarithm - logarithm plot, wlll indicate that
the higher conductivity sample changes more slowly than the other
sample. However the higher conductlvity material will always have
the higher absorption although the vertical difference in the ab-
sorption although the vertlcal difference in the absorption coef-
ficient is constant. Consequently, the curve gets closer together

at the higher energles.

The inherent absorption coefficlent, a (v) of the higher
conductivity material can be assumed to be much greater than that
of the 50 ohm-cm sample. ‘Therefore, the vertical difference between
the curves of figure 20, can be considered to be equal to the value

of o, (v) for the 0.005 ohm-cm sample. The value of o, (v) will then
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be about 10° cm—!, indicating that the 0.005 chm-cm curve intercepts
the energy axls at about 1.9 ev. This makes 1t impossible to de-
termine the direct band gap by an intercept method, because, ao(v) is
almost constant over a wide range of energles (approximately 1.0 ev).
The effect of an energy gap, however, is not obscured when measured
by energles in the visible region. Verification of the exact vari-
ation of the value of ao(v), can be determined only by absorption

data for energles up to and below the direct gap of about 1.1 ev.

Although the increase in carrilers due to the photon flux in-
tensity used in this study, has been shown in section 3.3 to be negli-~
gible, it should be realized that large increases in intensity can

cause errors in the measurement of the absorptlon coefficlent.

The mailn sources of error in the measurement of the absorption
coefficient is due to the surface oxide layer, and has already been
considered in detail in this section. However, it should be realized
that the values for the resistivities of the samples were obtained
by the four point probe method. The method, although commonly
employed, can not be considered to give measured values to much

better than + 25% for the samples used in the study.
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Conclusion

The data and calculations presented in the body of the text and
in the Appendices indicates that the absorption follows the expected
relationships. These relationships which assume a quantum mechanical
model of absorption, predict that the absorption should vary as the
square of the photon energy which is in excess of the indirect gat,
and as the one half power of the photon energy in excess of the direct
gap. The curves in Appendix B confirm these predictions. These curves
also indicate that direct transitions occur consistently at 2.48 ev im-
plying that this is the energy for the direct gap.

The hypothesis that the absorption is due to an intrinsic quantum
mechanical effect and proportional to the carrier density is also
verified by the experimental results. The horizontal energy shift
between the curves shows that these displacements shift to the left as
the conductivity increases. The measured conductivities as determined by
these shifts in energles and the expressions derived in the Theory and
Appendix A, indicate reasonable agreement with measurements obtained by
the four point probe (See Table 4B).

The most apparent advantage of the optical method presented in
this study is that it has the potential to be adaptable into a system
of rapid scanning. The scanning can be utilized either in production
processing of materials or as a research tool. The spot size of the photon
beam can be adjusted and made small enough so that changes in conductivity

over a small contour can be measured. It 1s true, however, that the
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resolution and accuracy of the apparatus must be better than that used
in this study if very small changes in resistivity values are to be
obtained.

The optical method also eliminates the errors caused by contact
methods and perhaps more significantly is independent of the geometry.
Further, it can be readily employed to make measurements on materials
at all temperatures, which is not always possible or at least 1s some—

times objectionable when contacts are used.
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APPENDIX A

General Analysis Of Electrical Conductivity
From The Absorptim Characteristics.

It has been shown in section 2.5 (¢) that the electrical conductivity
of a semiconductor sample can be determined from the absorption curve
of the material. It must, however, be compared.to the absorption curve
of a semiconductor of known conductivity. The sample of known con-
ductivity is measured by an accepted method such as the four point probe
which 1s perhaps the most reliable of existing direct contact measuring
methods. The four point probe does, however, have some disadvantages
and measurements can vary significantly even when repeated measurements
are taken by the same operator. Extreme precautions in the shieiding of
semiconductor samples and the four point probe apparatus ls necessary in
order to obtain consistent readings.

When the conductivity of the sample corresponding to the reférence
curve 1s known, the conductivity of any other sample can be determined
if its absorption curve is compared to the reference curve. The shift -
between the curves represents a change in the apparent band gap which can

be inferred from (135) to be caused by band shrinkage and the shift in

121

Fermi level. When the same type semlconductor are used, then the expression

given by (140) is used to find the unknown conductivity. This 1s, however,
valid only when both semiconductors are non-degenerate. When the samples
are of the same material, then the simpler expression given by (141)

can be used. The term AEd represents the displacement between curves

and should be measured at energles below the energy of direct transitions

(=2.5 ev).
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When a semiconductor sample becames degenerate, the assumption of
(129) cn no longer be made so that equation (130) is not valid. The
expression for p must then be evaluated for the degenerate case.

The expression for p is glven from (125) as

E-E
E, T
p = c(Ev ~-E)®2 e KI' dE (14)
E-
1+e EF
OO K[I]

when x=Ev-E , 5=5:-EF

KT KT
and c' =c (KT) 3/2  then (1A) becomes
] ® ;/
p=2c x? dx
1+e x=6 (28)

When the semiconductor is normal (lightly doped), then the value of the
integral in (2A) is the T (3/2) so that p becomes the Boltzman

approximation,

p,=c'2/3 & 3/2 (34)

Under conditions of heavy doping so that a degenerate condition exists
(6>), it can be seen that the denaminator (2A) is essentially unity
until X approaches 6. For values of X greater than §, the denominator
ircreases much more rapidly than the numerator so that the contributlon
to the integral becomes negligible for x> > § and the integral rapidly
converges. Consequently, a reasonable approximation for equation (2a)

under condiltions of degeneracy is



= e e xFa= o ¥3 (s V2 (4a)

Using the expression in (3A) and (U4A) and applying them to the ratio of

two conductivities, one of which 1s degenerate (62) » then

3
2 v _upp P = mpp C' 2/3 (8)) /2
o) up;, P, 8, (54)
Wpy CT Y T o
2

3/
g2 = _up2 U (82) 2
a1 wpl g o el

The expression (5A) will give the true conductlvity for u,. However,
the Boltzmann approximation was used for P, in the measurement of the

energy shift AED, therefore the measured conductlvity ratio is

— &2 E
92" = _upaC' ' ° = _up2 e 4 Dy
t 1

Z

Consequently, the true conductivity ratio in terms of measured

parameters becomes

o1 g1 ct S 6o (78)
_z_e :

g, _ /2 8Ep,

%2 = 4 wpe (8p) T2 o Y/g,
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APPENDIX B

Experdmental Data and Conductivity Determination
of Semiconductors With Clean Surfaces

The values of the absorption coefficients as calculated from.
measured data, the absorption curves, and the resulting associated
electrical conductivities for six clean silicon samples are presented in
this appendix.

The six silicon p-type (111) wafers of 20 mil thickness were obtained
from the Montsanto Corporation. The wafers were measured by them and
then again independently by the Radio Corporation of America with
significant differences of up to 70% in the measured values. The
measurements were made by four point probe by both companies under the
same test conditions. The values of conductivities as obtalned optically
are canpared with the two four point probe measurements and are presented
in Table 3B.

The surfaces of the six highly polished wafers were carefully

prepared so as to remove contaminants and oxide layers. Each sample was
first glven a detergent both of distilled water and alconox for 20
minutes. It was then rinsed well in a distilled water bath and blot
dried with lens tissue. A 10 minute etch in a 15 to 1 distilled water
to hydroflouric acid solution was then followed by several distilled
water baths and finally dried by lint free lens tissue. The optical
measurements were begun within 5 minutes after the wafer had been dried.
The process consisting of the etch and the optlcal measurements was

completed on each wafer before the process was repeated on the next wafer.
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The values of the absorption coefficients for the clean surfaces as
determined from the measured optical constants (see Section 2.5 (a)) are
glven in Table 1B. Measurements on the wafers prlor to cleaning were
also taken, but the results are not included in this Appendix because the
surface conditlion was not known. The wafers had shelf lives ranging fram
three months to three years with exposure to differing envirorments. In
all cases, the absorption curve was lower after the surface preparation,
but the decrease varying significantly from one wafer to the other with
decreases by as much as 50%.

The cleaned surfaces served as a basis of comparison for the six
wafers. The absorption coefficients given in Table 1B indicate that the
values increase as the nominal resistivity (measured by Montsanto)
decreases. This is in accordance with theoretical predictions.

The values of the absorption coefficient as a function of photon
energy are plotted for each wafer and the results are glven in figures
1B, 2B, and 3B. In all of the six curves, there 1s a noticeable change
in slope at a photon energy, hv of 2.48 ev which agrees with the energy
necessary for the onset of direct transition. This slope change was
not observed for the two samples (0.005 and 50 ohm-cm) in the main text
of the thesls, because of the surface oxides. However, further calculations
to determine the electrical conductivity were unaffected because of the
equal surface oxide films.

The graph of Figure 1B shows the absorption curve for the sample
known to be 95 olm~cm (by four point probe) and used as a reference.
Comparison between the reference curve and the 0.063 ohm-cm (nominal
resistivity by Montsanto using the four point probe) results in a value
of 0.07 omm-cm as shown in Table 3B. Resistivitles of the other four

silicon samples as obtained by camparison to the reference curve



(95 ohm-cm) are also glven in Table 3B. The calculations are made using
equation (141) which applies for all the silicon wafers except the value
of 0.0l ohm-cm resistivity. The 0.0l ohlm-cm sample was found to be
degenerate (see Table 3B and Figure 4B) so that equation (7A) derived

in Appendix A is applicable. The values of the mobilities at room
temperature are readily avgilable fram any standard semiconductor
handbook. Some values covering the resistivity range of thé samples

are given in Table 2B. The mobilities are selected so that they
correspond to the nominal resistivities. The displacement between the
reference curve (95 ohm-cm) and the unknown curve is given by AE, and

is taken in the region where the transitions are indirect. The reason
for selecting this region is that the experimental curve for photon
energies between 1.98 ev and 2.48 ev closely follows the square low
predicted theoretically. Energies above 2.48 ev involve the addition

of both direct and indirect contributions. This results in the sum of

an absorption coefficient which follows a one half power law and one which

obeys the square law (see 2.3 (c), (d) and figure 17). The increase in
o for energies above but near the direct gap 1s very large (see equation

(159)). This makes it difficult to determine the exact relationship of

this part of the curve.

The calculations show that the optical method is In reasonable agree-
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ment with measurements taken by the four point probe. There is same degree

of error which can be attributed to system error and surface effects.
Table 4B presents the camparison of the results using the optical method

and the four point probe.
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0 ‘IAE]_ = 0.25ev *F1

Be1 (95 otm - cm)
0.50ev AEL = 0.47 ev
\\ 4
0.57 Tev Ey
Epo  (0.01 ohm-cm)
FIGURE 4B 'Energy band diagram for

silicon assuming some band shrinkage

in the degenerate case (EG = 1.0 ev).

The value of ¢ = 22 v G at room
KT

temperature. The value of AE, 1s

found using equation (132).
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TABLE 1B
Nominal Resistiuity (olm-cm)

95 10 1.0 0.5 .063 .01
hv-1.1 Absorption Coefficient, o
(ev) (10" enl)
.88 3.6 3.6 3.6 3.6 4.9 8.1
97 3.5 3.8 3.8 3.8 5.1 8.4
1.06 4.3 b,y 4.5 4.9 5.8 11.2
1.16 b7 b7 5.2 5.9 6.8 13.4
1.26 5.9 5.9 6.1 7.0 7.9 14.5
1.38 7.1 6.9 7.2 8.3 9.3 15.8
1.51 12.4 12.7 12.6 12.4 14.9 20.4
1.66 24,3 22.3 24,7 23.0 24,1 28.7
1.82 33.7 32.7 33.1 36.6 35.8 35.6
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TABLE 2B

p (ohm-cm) Ny (cm_3 ) up (emP—v"% s1y
100 10t 500
10 10%° 450
1 2 x 10%° 350
0.1 y x 107 200

0.01 1019 50
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TABLE 3B
AR (ev) (@) p (orm-cm) calculatég) p(otm-cm) Nominal

optical method Resistivity

.01 52 10

.09 3.2 1.0

.12 1.1 5

.22 .07 .063

47 . 006 .01

(a) AE, is the displacement from the reference curve (95 otm-cm)

to the unknown resistivity curve.

(b) The value of KT is taken as 0.025 ev.
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TABLE 4B
Four Point Probe Optical Method
Monsanto RCA
p (ohm-cm) p (ohm-cm) p (okm-cm)
95 60 95
10 9.7 52
1.0 .89 3.2
0.5 .37 1.1
0.063 .06U .07

0.01 .017 .006
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