Summer 1974

The interpretation of infrared and raman spectra using pattern recognition

John Martin Comerford
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations
Part of the Chemical Engineering Commons

Recommended Citation

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation.

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen.
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106
COMERFORD, John Martin, 1938-
THE INTERPRETATION OF INFRARED AND RAMAN SPECTRA USING PATTERN RECOGNITION.

New Jersey Institute of Technology,
D.Eng.Sc., 1974
Engineering, chemical

Xerox University Microfilms, Ann Arbor, Michigan 48106
THE INTERPRETATION OF INFRARED AND RAMAN SPECTRA
USING-
PATTERN RECOGNITION

by
John Martin Comerford

A dissertation
presented in partial fulfillment of
the requirements for the degree
of
DOCTOR OF ENGINEERING SCIENCE IN CHEMICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This dissertation is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey
1974
ABSTRACT

An automatic classification of chemical compounds by computer processing of digitized spectral data is presented. The classification system is based on a branch of artificial intelligence known as supervised learning, and used binary linear classifiers to identify compounds as alcohols, esters, ethers, ketones or compounds containing double bonds.

Each of the 1117 spectra in volume one of Sadtler's Standard Raman Spectra was coded using a scale from 0 to 9 in the range from 4000 to 200 cm⁻¹. One hundred and twelve readings were taken on each spectrum. These data were then examined using pattern recognition techniques, and several methods of combining infrared and Raman data from the same compound were tested.

The classification techniques were most successful when applied to concatenated infrared and Raman data. By taking the infrared data in the range from 500 to 1900 cm⁻¹ and concatenating them with Raman data from the same range, a vector representing each of the 400 compounds in the data set was obtained. The parallel polarized Raman was used in preference to the perpendicularly polarized spectrum when both were available, otherwise the nonpolarized spectrum was used. Using an iterative pattern recognition technique a
vector was then calculated which would recognize compounds as members of a class or not members based on the sign of the dot product of the calculated vector and the vector representing the compound.

When vectors were calculated using only half the data set, then tested for their ability to correctly classify the remaining compounds; it was found that they could correctly classify compounds more than 90% of the time.

Vectors which were trained using the entire data set were helpful in determining characteristic group frequencies and each class treated is discussed.

Several compounds for which observed frequencies have been assigned in the literature were tested to determine if the assignments could be supported by the trained vectors. In nearly every case supporting evidence for the assignment was available from the appropriate trained vector.
APPROVAL OF DISSERTATION

THE INTERPRETATION OF INFRARED AND RAMAN SPECTRA USING PATTERN RECOGNITION

BY

JOHN MARTIN COMERFORD

FOR

DEPARTMENT OF CHEMICAL ENGINEERING AND CHEMISTRY

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

Howard S. Kimmel, Chairman

Peter G. Anderson

Howard D. Perlmutter

Edward C. Roche

William H. Snyder

Newark, New Jersey

September, 1974
ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Dr. Howard Kimmel for his guidance and support throughout the work and through the years of graduate study.

I also wish to thank Dr. William H. Snyder for the many useful discussions and particularly for his encouragement through my graduate work.

Dr. Edward C. Roche, Dr. Howard D. Perlmutter and Dr. Peter G. Anderson are each thanked for serving on the advisory committee and for helping to shape this work.

Finally, I find it difficult to pen an adequate expression of my love and appreciation for my wife, Marie, who typed the manuscript, took care of our four children and loved and encouraged when I needed it most.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. Background</td>
<td>1</td>
</tr>
<tr>
<td>2. Application of Pattern Recognition</td>
<td>5</td>
</tr>
<tr>
<td>3. The Problem</td>
<td>7</td>
</tr>
<tr>
<td>4. The Data</td>
<td>8</td>
</tr>
<tr>
<td>INFRARED AND RAMAN SPECTROSCOPY</td>
<td>14</td>
</tr>
<tr>
<td>1. Prologue to the Discussion</td>
<td>14</td>
</tr>
<tr>
<td>2. Infrared and Raman - Different Techniques</td>
<td>15</td>
</tr>
<tr>
<td>3. Selected Rules</td>
<td>16</td>
</tr>
<tr>
<td>4. Classical Approach</td>
<td>17</td>
</tr>
<tr>
<td>5. Quantum Mechanical Approach</td>
<td>21</td>
</tr>
<tr>
<td>6. Group Theoretical Approach</td>
<td>21</td>
</tr>
<tr>
<td>PROOF OF CONVERGENCE</td>
<td>29</td>
</tr>
<tr>
<td>1. Terminology</td>
<td>29</td>
</tr>
<tr>
<td>2. The Learning Machine</td>
<td>32</td>
</tr>
<tr>
<td>3. Proof</td>
<td>34</td>
</tr>
<tr>
<td>4. Variations</td>
<td>37</td>
</tr>
<tr>
<td>THE PROGRAMS</td>
<td>40</td>
</tr>
<tr>
<td>1. Program Names</td>
<td>40</td>
</tr>
<tr>
<td>2. TRAIN</td>
<td>40</td>
</tr>
<tr>
<td>3. TEST and SNOOP</td>
<td>45</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>47</td>
</tr>
<tr>
<td>1. Results from SNOOP</td>
<td>47</td>
</tr>
<tr>
<td>2. TRAIN and TEST</td>
<td>53</td>
</tr>
<tr>
<td>TABLE OF CONTENTS (continued)</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3. Program: TEST</td>
<td>57</td>
</tr>
<tr>
<td>4. Esters</td>
<td>68</td>
</tr>
<tr>
<td>5. Ethers</td>
<td>71</td>
</tr>
<tr>
<td>6. Ketones</td>
<td>73</td>
</tr>
<tr>
<td>7. Double Bonds</td>
<td>77</td>
</tr>
<tr>
<td>8. Alcohols</td>
<td>78</td>
</tr>
<tr>
<td>SPECTRAL INTERPRETATION</td>
<td>83</td>
</tr>
<tr>
<td>1. Method Used</td>
<td>83</td>
</tr>
<tr>
<td>2. cis-1, 2-dimethoxyethylene</td>
<td>88</td>
</tr>
<tr>
<td>3. Divinyl Ether</td>
<td>91</td>
</tr>
<tr>
<td>4. trans-1, 2-dimethoxyethylene</td>
<td>92</td>
</tr>
<tr>
<td>5. Broad Representation of Esters</td>
<td>98</td>
</tr>
<tr>
<td>HEURISTICS</td>
<td>102</td>
</tr>
<tr>
<td>1. Purpose</td>
<td>102</td>
</tr>
<tr>
<td>2. Starting Vector</td>
<td>102</td>
</tr>
<tr>
<td>3. Weighting Factor</td>
<td>103</td>
</tr>
<tr>
<td>4. Transforms</td>
<td>104</td>
</tr>
<tr>
<td>5. Size of Data Set</td>
<td>105</td>
</tr>
<tr>
<td>6. Errors</td>
<td>106</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>108</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>111</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>155</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>191</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE I</td>
<td>Classes of Compounds in Data Set</td>
<td>13</td>
</tr>
<tr>
<td>TABLE II</td>
<td>Notations Used in Proof</td>
<td>29</td>
</tr>
<tr>
<td>TABLE III</td>
<td>Options in Program TRAIN</td>
<td>42</td>
</tr>
<tr>
<td>TABLE IV</td>
<td>The Type of Spectra Considered</td>
<td>43</td>
</tr>
<tr>
<td>TABLE V</td>
<td>Option Three in Program TRAIN</td>
<td>44</td>
</tr>
<tr>
<td>TABLE VI</td>
<td>Number of Compounds Used to Calculate Averages</td>
<td>52</td>
</tr>
<tr>
<td>TABLE VII</td>
<td>Number of Iterations to Converge</td>
<td>54</td>
</tr>
<tr>
<td>TABLE VIII</td>
<td>Percentage of Compounds Correctly Classified 50% of Data</td>
<td>58</td>
</tr>
<tr>
<td>TABLE IX</td>
<td>Percentage of Compounds Correctly Classified 75% of Data</td>
<td>59</td>
</tr>
<tr>
<td>TABLE X</td>
<td>Percentage of Compounds Correctly Classified 80% of Data</td>
<td>60</td>
</tr>
<tr>
<td>TABLE XI</td>
<td>Predictive Ability of Concatenated Vectors, 50% of Data</td>
<td>64</td>
</tr>
<tr>
<td>TABLE XII</td>
<td>Esters Without a Band in the Region from 950 to 800</td>
<td>70</td>
</tr>
<tr>
<td>TABLE XIII</td>
<td>Esters Without a 625 to 500 cm⁻¹ Band</td>
<td>72</td>
</tr>
<tr>
<td>TABLE XIV</td>
<td>Interpretation of cis-1,1-Dimethoxyethylene</td>
<td>89</td>
</tr>
<tr>
<td>TABLE XV</td>
<td>Abbreviations Used in Describing Frequency Assignments</td>
<td>93</td>
</tr>
<tr>
<td>TABLE XVI</td>
<td>Interpretation of trans-1, 2-Dimethoxyethylene</td>
<td>94</td>
</tr>
<tr>
<td>TABLE XVII</td>
<td>Interpretation of Divinyl Ether</td>
<td>96</td>
</tr>
<tr>
<td>TABLE XVIII</td>
<td>Infrared Group Frequencies for Esters</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE 1 Functional Breakdown of Pattern Recognition......................... 2
FIGURE 2 Template Used for Coding.. 11
FIGURE 3 Coding Illustration... 12
FIGURE 4 Forms of the Normal Vibrational Modes......................... 24
FIGURE 5 Variation of Dipole Moment\(\mu\) or Polarizability\(\kappa\) with Vibration along the Normal Coordinate.......................... 25
FIGURE 6 Program TRAIN Flow Diagram..................................... 41
FIGURE 7 Muted Average Raman Parallel Polarized Spectra of Esters........ 49
FIGURE 8 Muted Average Raman Parallel Polarized Spectra of Esters (Positive Portion Only). 49
FIGURE 9 Simple Average Parallel Polarized Spectra of Ethers................. 51
FIGURE 10 Muted Average Parallel Polarized Spectra of Ethers............... 51
FIGURE 11 Predictive Ability of Concatenated Vectors..................... 62
FIGURE 12 Trained Vectors of Ketones...Raman Portion of Concatenated Vector.... 65
FIGURE 13 Trained Vector of Esters (Average of Two Solutions)............... 68
FIGURE 14 Trained Vector of Ethers (Average of Two Solutions).............. 72
FIGURE 15 Trained Vector of Ketones (Average of Two Solutions)........... 74
FIGURE 16 Trained Vector of Esters with Ketone and Ether Bands Outlined............... 76
FIGURE 17 Trained Vector of Double Bonds (Average of Two Solutions)........ 77
FIGURE 18 Trained Vector of Alcohols (Average of Two Solutions)............ 79
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Trained Vectors of Primary and Secondary Alcohols</td>
<td>81</td>
</tr>
<tr>
<td>20</td>
<td>Broad Representation of Ethers - Infrared</td>
<td>85</td>
</tr>
<tr>
<td>21</td>
<td>Broad Representation of Ethers - Raman</td>
<td>85</td>
</tr>
<tr>
<td>22</td>
<td>Broad Representation of Double Bonds Infrared</td>
<td>86</td>
</tr>
<tr>
<td>23</td>
<td>Broad Representation of Double Bonds - Raman</td>
<td>87</td>
</tr>
<tr>
<td>24</td>
<td>Broad Representation of Esters</td>
<td>99</td>
</tr>
</tbody>
</table>
INTRODUCTION

1. Background

Artificial intelligence is the name given to the developing body of knowledge concerning computer techniques for handling large bodies of data or attacking very complex problems. The techniques are as varied as the problems and the body of knowledge is ill-defined. Generally, the techniques are ad hoc to the problem at hand. One branch of artificial intelligence, however, which has been developing at a rapid pace and which does have universal application is the area known as pattern recognition. In Nagy's\(^1\) review of the state of the art in pattern recognition (1968) he conceded at the outset that pattern recognition was hardly a discipline in its own right, and at best was a collection of highly varied problems. In his review, however, he managed to outline the skeleton of what he viewed as a highly amorphous structure. In 1972 in an effort to introduce pattern recognition to the chemical literature Kowalski and Bender\(^2\) offered the functional breakdown of pattern recognition which has been reproduced in Figure 1.

A general statement of the problem which pattern recognition seeks to resolve is: "Given a set of objects and a list of measurements made on these objects, is it possible to find and/or predict a property of the object that is not directly measured but is related to the measurements via some unknown relationship?". In most of the early work in the field it is assumed that a statistically representative data set is available for designing or training the pattern recognition apparatus. This leads to parametric methods which recognize patterns based on the underlying probability distributions of the data. Thus far these techniques have not proven useful with chemical data and they are not discussed in this work.
Nonparametric techniques usually attempt to develop a linear categorizer which assigns objects to category one or two based upon the sign of the weighted sum of measurements made on the object. Let the set of measurements made on any one object be represented by the vector \mathbf{f}, and let the linear categorizer be represented by the vector \mathbf{W}. Both vectors have n members. Then:

$$\mathbf{f} = (f(1), f(2), \ldots, f(n))$$

and

$$\mathbf{W} = (W(1), W(2), \ldots, W(n))$$

The linear categorizer assigns an unknown vector to class one if $\sum_{i=1}^{n} W(i) \cdot f(i) > 0$, otherwise to class two.

From the beginning we will discuss only two-class problems. In principle, however, any multiclass problem can be treated as a number of two class problems involving the separation of each class from the remainder of the universe. A discussion of optimal assignments in multiclass problems can be found in the article by Braverman, or the thesis by Kiessling. Jurs et al also treated this topic.

Preprocessing simply refers to the necessary manipulation of the data which must be done in certain cases to render the problem amenable to an orderly solution. It is referred to variously as preprocessing, filtering or prefiltering, feature or measurement extraction or dimensionality reduction. Some form of preprocessing is frequently needed when the data is taken from more than one source, for example when infrared and mass spectra were used to classify chemical compounds. Occasionally data from a single source, such as nuclear magnetic resonance spectral data must be preprocessed.

Learning and classification is supervised if a set of objects whose classes are known is used to develop the weight vector \(\mathbf{w} \). In unsupervised learning the data is clustered or classified into groups without a priori knowledge as to what defines a group. For example the classification of archaeological artifacts by applying pattern recognition to trace element data was done using unsupervised learning. We will concern ourselves with supervised learning only.

2. Application of Pattern Recognition

Pattern recognition has application in computer assisted medical diagnosis and treatment, drug interaction studies, neurobiological signal processing, etc. Clinical data such as electrocardiograms and electroencephalograms have been analyzed using pattern recognition techniques. Manning studied teleseismic event classification in order to differentiate nuclear explosions from earthquakes on the basis of the characteristics of the wave which travels through the earth's mantle. Problems arising from satellite photography for weather, earth-resource and even the sensing for life on remote planets have been attacked using pattern-recognition. And these diverse applications only touch the surface of the hundreds of areas where pattern recognition is being used.

In the late sixties papers began appearing in the chemical literature, and now many types of chemical data have been explored using pattern recognition. Sybrandt and Perone16 evaluated a pattern recognition technique for qualitative analysis of mixtures by stationary electrode polarography. Molecular formula determination from low resolution mass spectrometry was investigated by Jurs, Kowalski and Isenhour17, 18 and Kowalski and Reilly7 considered nuclear magnetic resonance spectral interpretation by pattern recognition. Wangen and Isenhour19 applied pattern recognition methods to the semiquantitative determination of seventeen light elements by resolution of 14-Mev neutron induced gamma ray spectra. Infrared data were first treated by Kowalski, Jurs, Isenhour and Reilly20 in 1969 then again in 1973 by Liddell and Jurs21. Melting and boiling point data6, 22 have also been investigated.

\begin{itemize}
\item[(16)] L. B. Sybrandt and S. P. Perone, \textit{Anal. Chem.}, No. 5, 382 (1971).
\end{itemize}
3. **The Problem**

In late 1972 the Sadtler Research Laboratories announced the publication of a collection of infrared and Raman spectra. It was decided that the first volume of this collection would be used as the data base to investigate the use of pattern recognition in interpreting infrared and Raman spectra. While earlier work was done with infrared spectra\(^{20, 21}\), no work has yet been reported in which Raman data were investigated using pattern recognition. In the first work done with infrared data\(^{20}\) the coding of the data was crude (a 0, 1, 2, or 3 was used to represent spectral peaks), and the thrust of the first attempt was simply to explore the feasibility of the approach. Using these data these first workers were able to achieve about 75% recognition of various chemical classes (acids, esters, amids, etc.) and thus demonstrated the feasibility of using the approach. In general our recognition rate was slightly above 90%.

Liddell and Jurs\(^ {21}\) improved their coding system and by doing so were able to improve their recognition rate to approximately 87%. The bulk of this second look at infrared data, however, concentrated on attempting by various empirical methods to improve the recognition rate and reduce the number of features (i.e. elements in each vector) used in the decision making process.
None of the earlier workers attempted to use the trained vectors as an aid in interpreting infrared spectra. The unique relationship between infrared and Raman makes these data particularly interesting for this purpose. Additionally, the study of Raman data with pattern recognition techniques provides an orderly approach to the development of spectra-structure correlations. The rapid advance of Raman spectroscopy since the development of the laser has outpaced the development of correlation tables; and workers frequently refer to infrared correlation tables, when Raman data are being analyzed since Raman correlation tables are not available. The differences between the selection rules of infrared and Raman point out the hazards of this practice.

With this background in mind the objectives of this investigation were: (1) to use the vectors trained with infrared and Raman data and combinations of those data to distinguish characteristic group frequencies, and (2) to investigate the predictive ability of the trained vectors.

4. The Data

Volume One of the Sadtler Standard Raman Spectra includes 400 organic compounds (including water) selected with the intention of providing simple compounds with representative functional groups at the beginning of the publication. When liquid compounds are presented both the
parallel polarized and the perpendicularly polarized Raman spectra are given. When solids are presented only the nonpolarized Raman is given. There are no gases in the collection. The infrared spectrum of each compound is given. Among the 400 compounds in Volume One there are 317 liquids and 83 solid compounds. Thus there are a total of 1117 spectra in the data bank for this work.

The Raman spectra in this volume were obtained using the Cary 83 instrument which utilizes the 4880 Å argon line. The laser power was a nominal 100 mW at the laser head and 30-60 mW at the sample. The source used in this volume of spectra was a Coherent Radiation model 59B Argon Ion laser and the detector was a bi-alkali cathode type photodetector. Sample scattering was always detected at right angles to the direction of the incident radiation.

Coding Procedure

1. A base line is drawn which connects the two points of least intensity in the spectrum and which runs along the base of the spectrum (the top of the IR prints; the bottom of the Raman prints).

2. The largest peak in the spectrum is assigned an intensity of 9.
3. The spectrum is divided into 112 bands. From 4000 cm$^{-1}$ to 2000 cm$^{-1}$ the band width is 50 cm$^{-1}$. From 2000 cm$^{-1}$ to 200 cm$^{-1}$ the band width is 25 cm$^{-1}$.

4. Within each band the intensity is measured on a scale from 0 to 9 depending on the relative intensity compared to the strongest peak in the spectrum.

5. When the intensity is measured within a band, the strongest intensity within the band is used as the position at which the measurement is made.

To aid in measuring intensities a system based on the one suggested by Durkin et al. was used. A template similar to the one shown in Figure 2 was drawn. Copies were xeroxed on Albanene tracing paper (Keuffel and Esser Co. #10 5351). By sliding the template across the strongest peak until the perpendicular distance from the base line of the spectrum to the top of the peak just spans the perpendicular distance on the template from the base to

the top line, one is able to quickly find a 0 to 9 scale appropriate for the spectrum being coded. It was convenient to draw a line on the template and then fold it on the line. The templates were discarded after a few uses. We found that this system was superior to the plexiglass type of arrangement suggested in the literature.

FIGURE 2

Template Used for Coding

When measuring the intensities it is important to measure the strongest intensity within each band (step 5), rather than to make the measurement precisely at a particular frequency. Several trials with different types of coding suggested that this system gives the most faithful reproduction of the actual spectrum when manually digitalizing the spectrum. Figure 3 shows the spectrum of a typical
compound, the digital code and a plot of the code vs wave number. It is clear that some detail is lost by the coding process, but most of the peak definition is retained.

FIGURE 3
Coding Illustration

\[\text{CH}_3-O-\text{OCH}_2-\text{CH}-\text{CH}_2-O-C-\text{CH}_3 \]
\[O-C-\text{CH}_3 \]
\[O \]

TRIACETIN

![Graph showing wave number vs code values.]
Table I shows the 17 classes of compounds in the data, and gives the number of compounds in each class. The classes which have been treated in this work are noted with an asterisk. There are two ortho-esters in the data, and they have been treated as ethers. Since there are only 4 tertiary alcohols in the data, these were not treated separately. The classes are not mutually exclusive, and there are 21 compounds which do not belong to any of the classes included in Table I. Appendix A gives the data bank and lists the classes to which each compound belongs.

TABLE I

Classes of Compounds in Data Set

<table>
<thead>
<tr>
<th>Description of Class</th>
<th>Number in Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. esters</td>
<td>94*</td>
</tr>
<tr>
<td>2. nitrogen containing compounds</td>
<td>64</td>
</tr>
<tr>
<td>3. primary alcohols</td>
<td>32*</td>
</tr>
<tr>
<td>4. secondary alcohols</td>
<td>12</td>
</tr>
<tr>
<td>5. tertiary alcohols</td>
<td>4</td>
</tr>
<tr>
<td>6. ethers and ortho esters</td>
<td>49*</td>
</tr>
<tr>
<td>7. chlorine containing compounds</td>
<td>47</td>
</tr>
<tr>
<td>8. fluorine containing compounds</td>
<td>1</td>
</tr>
<tr>
<td>9. bromine containing compounds</td>
<td>29</td>
</tr>
<tr>
<td>10. iodine containing compounds</td>
<td>4</td>
</tr>
<tr>
<td>11. aromatic compounds (containing benzene ring)</td>
<td>157</td>
</tr>
<tr>
<td>12. compounds containing a saturated hexane ring</td>
<td>8</td>
</tr>
<tr>
<td>13. compounds containing C=C bond (not benzenes)</td>
<td>38*</td>
</tr>
<tr>
<td>14. compounds containing a triple bond</td>
<td>3</td>
</tr>
<tr>
<td>15. ketones</td>
<td>15*</td>
</tr>
<tr>
<td>16. compounds containing a phenol group</td>
<td>13</td>
</tr>
<tr>
<td>17. compounds containing sulfur</td>
<td>28</td>
</tr>
</tbody>
</table>

(* indicates those classes treated in this work)
1. Prologue to the Discussion

The purpose of this section is to briefly outline the differences between infrared and Raman spectra and to acquaint the uninitiated reader with the selection rules which govern vibrational spectra. The ideas presented here will not be developed, but rather will be stated in as concise a form as seems practicable. These concepts have been thoroughly discussed elsewhere, and for an extensive and authoritative treatment the reader should consult the classical works: *Infrared and Raman Spectra of Polyatomic Molecules* by Herzberg\(^2\) and *Molecular Vibrations* by Wilson, Decius and Cross\(^25\). Supplementally the more recent works by Woodward\(^26\) and Steele\(^27\) both provide an excellent introduction to the topic.

2. Infrared and Raman - Different Techniques

Classical electrodynamics teaches that a system emits radiation by virtue of periodic changes in its electric dipole moment, the frequency of the emitted radiation being the same as that of the dipole oscillations. Absorption is the inverse of emission, and the system is able to absorb radiation of the same frequency as it is able to emit. Infrared spectroscopy is concerned with the absorption of radiation incident upon a sample and is thus a phenomenon which is dependent on the behavior of the vibrating dipole moment, μ, within a molecule. When monochromatic radiation passes through a homogenous material some of the radiation is scattered. Most of the scattered radiation is unaltered in frequency but a portion suffers a frequency shift. This shift results from transference of internal vibrational energy (and also rotational and electronic energy) from the beam to the sample material and vice versa. This effect is known as Raman scattering. It is a molecular light-scattering phenomenon in which a change of frequency occurs in a small portion of the incident radiation. It does not involve absorption at all, and the intrinsic dipole moment μ of the molecular vibration is of no consequence. Unlike infrared the Raman effect is concerned with the induced dipole moment \mathcal{M} which is induced in the molecule by the electric field of the incident light. For field strengths of the magnitude ordinarily used in Raman
spectroscopy the relation between π and E, the applied electric field, may be written

$$\pi = \alpha E$$

where α is the electric polarizability of the molecule.

Thus while infrared and Raman spectroscopy are techniques for investigating the vibrational characteristics of molecules, the underlying principles for each method are different. In principle, the observed frequencies in each technique (i.e. the observed shifts in the Raman and the observed absorption in the infrared) are the same provided they are allowed by both techniques. Vibrational transitions that are forbidden (not allowed) in infrared absorption may be permitted in the Raman effect, and vice versa. Frequently, however, the same frequencies are observed by both techniques. The two experimental methods are thus essentially complementary in character.

3. Selection Rules

The rules or guidelines by which one predicts that a vibration will or will not be allowed using either infrared or Raman spectroscopy are called selection rules. Because the mechanisms of the two techniques are different the selection rules are different. The development of these rules, however is similar in each case.
Three distinct approaches to deriving the selection rules exist. The first is through classical mechanics, the second is through quantum mechanics and the third is through symmetry properties and group theory. The first two methods lead to what are called restricted selection rules because they are restricted by the assumptions used in their derivation. The development based on group theory leads to the general selection rules. While it is outside of the scope of this work to review in detail these approaches, a few comments on each method may help the reader appreciate the meaning and limitations of these rules.

4. Classical Approach

The electric dipole \(\mu \) in a molecule is a vector, and therefore has three components \(\mu_x, \mu_y, \) and \(\mu_z \) in a Cartesian system. The molecule will only be able to absorb radiation of frequency \(\nu \) provided that \(\mu \) (i.e., at least one of its three components) can oscillate with this frequency. Now the dipole moment is a function of the nuclear configuration and so, when the molecule vibrates, the dipole varies correspondingly. In the simple harmonic approximation, all molecular vibrations can be regarded as superpositions of a limited number of fundamental modes, each with its own fundamental frequency \(\nu_k \). It follows that the electric dipole moment can only oscillate with these fundamental frequencies, and only radiation of these fre-
frequencies can be absorbed.

In general the magnitudes of the components of the molecular dipole moment will be functions of all the vibrational coordinates \(Q \), and thus capable of expansion as a Taylor series:

\[
\begin{align*}
\mu_x &= (\mu_x)_0 + \sum_k \left\{ \frac{\delta \mu_x}{\delta Q_k} \right\}_0 Q_k + \text{higher terms} \\
\mu_y &= (\mu_y)_0 + \sum_k \left\{ \frac{\delta \mu_y}{\delta Q_k} \right\}_0 Q_k + \text{higher terms} \\
\mu_z &= (\mu_z)_0 + \sum_k \left\{ \frac{\delta \mu_z}{\delta Q_k} \right\}_0 Q_k + \text{higher terms}
\end{align*}
\]

The zero subscripts in the above equations indicate values at the equilibrium configuration of the molecule. We adopt the general convention whereby the three separate expressions for \(\mu_x \), \(\mu_y \), and \(\mu_z \) are all implied by the single condensed form

\[
\mu = \mu_0 + \sum_k \left\{ \frac{\delta \mu_i}{\delta Q_k} \right\}_0 Q_k
\]

The condition that the molecular dipole moment shall be able to oscillate with the frequency \(\nu_k \), i.e. the condition that this normal frequency shall be capable of being absorbed is that \(\left(\frac{\delta \mu_i}{\delta Q_k} \right)_0 \) shall not be zero. This implies that

\[
\left(\frac{\delta \mu_i}{\delta Q_k} \right)_0 \neq 0
\]

for at least one of the components \((i = x, y, z)\).
This is a statement of the restricted selection rule for infrared absorption. Its derivation is dependent upon two special approximate assumptions. The first is that the molecular vibrations are simple-harmonic, for otherwise the normal modes would not be separable and the meaning of the individual normal coordinates \(Q_k \) would be lost. The second assumption is that in the Taylor expansion of the electric dipole moment all the higher terms are negligible.

Similarly, the corresponding selection rule for Raman scattering may be derived. Like the dipole moment the electric polarizability of a molecule \(\chi \) will in general be a function of all the normal vibrational coordinates. We may therefore expand \(\chi \) as a Taylor series with respect to these coordinates and neglect powers higher than the first. We thus obtain

\[
\chi = \chi_0 + \sum \left\{ \left(\frac{\partial \chi}{\partial Q_k} \right)_0 Q_k \right\}
\]

where \(\chi_0 \) is the polarizability in the equilibrium configuration of the molecule. Since, as we have seen, the induced dipole moment, \(\mathbf{\Pi} \), is given by

\[
\mathbf{\Pi} = \chi \mathbf{E}
\]

we may write

\[
\mathbf{\Pi} = \chi_0 \mathbf{E} + \left\{ \sum_k \left\{ \left(\frac{\partial \chi}{\partial Q_k} \right)_0 Q_k \right\} \right\} \mathbf{E}
\]
Consider the first term, \mathcal{E}, in the expression for Π. Since every component of \mathcal{E} is simply a molecular constant and every component of E oscillates with the incident light frequency ν_0, it follows that the corresponding part of every component of Π must oscillate with this same frequency. Thus light of the incident frequency ν_0 will be emitted and will be observable in directions which differ from that of the incident light. This is the phenomenon known as classical or Rayleigh scattering. Since it is of no interest in this discussion we can ignore this term.

Considering the second term, let us fix attention on the contribution from the particular vibrational mode with the normal coordinate Q_k. Every component of $(\delta \mathcal{E} / \delta Q_k)_0$ is simply a constant. The time dependent factors are Q_k, which oscillates with the normal frequencies ν_k, and all the components of E, which oscillate with the incident frequency ν_0. These time dependences could be expressed by including the respective factors $\cos(2 \Pi \nu_k t)$ and $\cos(2 \Pi \nu_0 t)$. In view of the identity $\cos A \cos B = \frac{1}{2}(\cos(A+B) + \cos(A-B))$ we see that all the corresponding contributions to all the components of the induced dipole moment Π are characterized by the two new frequencies $(\nu_0 + \nu_k)$ and $(\nu_0 - \nu_k)$. These frequencies are referred to as anti-Stokes and Stokes frequencies respectively, and they constitute the contribution of the kth
normal mode to the Raman spectrum of the scattering molecule.

The condition that a particular normal frequency \(\nu_k \) shall be active in Raman scattering is that the factor \((\partial \nu / \partial Q_k)_0 \) shall be different from zero, i.e.,

\[
\left(\frac{\partial \nu}{\partial Q_k} \right)_0 \neq 0
\]

for at least one of the components (i or j = x, y or z) of the polarizability. This statement is the restricted selection rule for Raman scattering and is similar to the selection rule for infrared. As was true with the infrared rule, the Raman rule is subject to the limitation that the vibrations are simple-harmonic and that in the Taylor expansion of the induced dipole moment all higher terms may be neglected.

5. Quantum Mechanical Approach

For the transition between the two states characterized by the wave functions \(\Psi^n \) and \(\Psi^m \) we denote the wave mechanical quantity known as the transition moment by \(\mu_{nm} \). The transition moment is defined by the following equations:

\[
(\mu_x)_{nm} = \int \Psi^n \mu_x \Psi^m \, d\tau
\]

\[
(\mu_y)_{nm} = \int \Psi^n \mu_y \Psi^m \, d\tau
\]

\[
(\mu_z)_{nm} = \int \Psi^n \mu_z \Psi^m \, d\tau
\]
in which \(\mu_x, \mu_y, \) and \(\mu_z \) are the magnitudes of the components of \(\mu \), and \(d\tau \) is a volume element. As is generally done we condense the three expressions into the conventional equation

\[
\mu_{nm} = \int \Psi^n \mu \Psi^m d\tau
\]

The importance of the transition moment is that it determines the intensity of the absorption of radiation by the transition in question. In fact the relation of this intensity to the magnitude \(\mu_{nm} \) of the transition moment is similar to that of the intensity of classical absorption to the amplitude of oscillation of an ordinary dipole moment. Thus the total intensity is proportional to the square of \(\mu_{nm} \), or more precisely, the total intensity is proportional to the sum of the squares of \(\mu_{x,nm} \), \(\mu_{y,nm} \) and \(\mu_{z,nm} \). Thus a very general statement of the selection rule is that a transition is forbidden in the infrared if \(\mu_{nm} = 0 \), i.e. if \(\mu_{x,nm} = \mu_{y,nm} = \mu_{z,nm} = 0 \).

A more particular statement of the selection rule can be derived by substituting the Taylor expansion value of \(\mu \) into the equation for the transition moment. This gives

\[
\mu_{nm} = \mu_0 \int \Psi^n \mu \Psi^m d\tau + \sum_k \left\{ \frac{\partial \mu}{\partial Q_k} \right\}_0 \int \Psi^n Q_k \Psi^m d\tau \]
Because of the mutual orthogonality of the wave functions, the first integral of the right hand of the equation is zero unless \(n = m \). This, however, corresponds to no transition, and may be neglected where absorption is concerned. Thus, as was seen in the classical development, one necessary condition for infrared absorption is that \(\left(\frac{\delta \alpha}{\delta Q_k} \right)_0 \neq 0 \).

The quantum mechanical treatment of Raman scattering is similar to the treatment of absorption. The transition moment arising from the induced dipole moment \(\mathcal{M} \) is given by

\[
\int \psi_n^{*} \pi \psi_m d\tau = E \int \psi_n^{*} \alpha \psi_m d\tau = E \alpha_0 \int \psi_n^{*} \psi_m d\tau + E \sum_k \left(\frac{\delta \alpha}{\delta Q_k} \right)_0 \psi_{m_k} \psi_m d\tau
\]

Because of the mutual orthogonality of the eigenfunctions, the integral in the first term on the right hand side vanishes unless \(\psi_n = \psi_m \), in which case its value is unity. This term accounts for the Rayleigh scattering without change of frequency. When \(n \neq m \) one necessary condition for Raman scattering is that \(\left(\frac{\delta \alpha}{\delta Q_k} \right)_0 \neq 0 \).

As occurs in the classical development of selection rules the quantum mechanical treatment relies on the restrictive assumptions that the molecular vibrations are simple-harmonic, and that in the Taylor expansion higher terms may be neglected.
6. **Group Theoretical Approach**

It is the molecular symmetry that determines whether or not \(\frac{\delta}{\delta Q_x} \neq 0 \) or \(\frac{\delta}{\delta Q_y} \neq 0 \) for a particular vibrational mode. This may be illustrated by the very simple example of a linear \(X-Y-X \) molecule in which the two bonds are identical. Its two modes of vibration along the line of the masses are shown in Figure 4.

FIGURE 4

Forms of the Normal Vibrational Modes
Along the Molecular Axis
(Linear \(X-Y-X \) Molecule)

(a) \(\leftarrow X \quad Y \quad X \rightarrow \)

(b) \(X \rightarrow \leftarrow Y \quad X \rightarrow \)

Remembering that the molecule is composed of positively charged nuclei and negatively charged electrons, we see that in its equilibrium configuration its structural symmetry will carry with it a corresponding electrical symmetry and will result in a zero molecular dipole. In the totally symmetric vibration (a in Figure 4) this symmetry is conserved throughout. The dipole moment therefore remains unchanged. This means that \(\left(\frac{\delta}{\delta Q_x} \right)_0 = 0 \).
i.e. that the mode must be forbidden in infrared absorption. In the antisymmetric mode (b), on the other hand, the molecule does not conserve its equilibrium symmetry. The structural asymmetry through which it passes in the course of a vibration causes a corresponding electrical asymmetry, i.e. produces a non-zero dipole moment which oscillates synchronously with the mechanical vibration, passing through values of equal magnitude but opposite sign at corresponding values of the normal coordinate Q_b. This is shown diagramatically in Figure 5, where the abscissa represents the normal coordinate and the ordinate represents the magnitude of the dipole moment.

FIGURE 5

Variation of Dipole Moment μ or Polarizability α with Vibration along the Normal Coordinate
In this simple case the moment is always directed along the line of the nuclei, which may be called the x direction. Thus we need consider the component μ_x only, the other two (μ_y and μ_z) being always zero. From Figure 5 we see that $(\frac{\delta \mu}{\delta q_b})_0 \neq 0$. The mode is therefore active in infrared absorption.

Similarly it is molecular symmetry that determines whether or not $(\frac{\delta \mu}{\delta q_b})_0 \neq 0$, i.e. whether a normal vibrational mode shall be active in Raman scattering. Consider again the modes a and b of Figure 4 in the totally symmetric mode a, both are stretched in one phase of a vibrational cycle and both are compressed in the other. Although this leaves the molecular dipole unaltered, it is clear that the electrical polarizability will be different in the two phases. In general therefore $(\frac{\delta \alpha}{\delta q_a})_0$ will differ from zero. In mode b, on the other hand, the structural situation is the same in both phases, in that one bond is stretched and the other is compressed. The end-for-end interchange caused a reversal in the sign of the non-zero electric dipole moment vector, but there is no such reversal for the components of the electrical polarizability.

Thus the value of α is the same for $+Q_b$ as for $-Q_b$. This is shown diagrammatically in Figure 5. It is true that the value of any polarizability component at each extreme value of the normal coordinate may be different from its value at
$Q_b = 0$, but from Figure 5 it is clear that the slope at the equilibrium configuration, i.e. $(\frac{\delta\omega}{\delta Q_b})_0$, is zero. Thus mode b is forbidden in Raman scattering. In this very simple example it happens that the mode which is forbidden in infrared is permitted in Raman and vice versa. This, however, is a special circumstance for in general many molecular vibrational modes are permitted in both kinds of spectra, and some are forbidden in both. The example illustrates the importance of symmetry in the context of the restricted selection rules. Generalization of the symmetry considerations in the form of group theory makes it possible to predict the spectroscopic consequences of the application of the rules to molecules containing any number of nuclei and belonging to any point group. In addition it should be recognized that symmetry theory is independent of the particular physical nature of the system to which it is applied. The relevant symmetry properties are independent of whether the intramolecular force field is simple harmonic or anharmonic and no special assumptions about Taylor expansions in terms of normal vibrational coordinates are needed.

While a development of the general selection rules based on group theory is well outside the intention of this section, we will simply conclude this section with
Woodward's formal statement of the general selection rules:

"A transition between the states characterized by the wave function Ψ^n and Ψ^m is forbidden in the infrared absorption unless for at least one of the components μ_i of the molecular electric dipole moment ($i=x$, y, or z) the product $\Psi^n \mu_i \Psi^m$ belongs to a representation whose structure contains the totally symmetric species.

"A transition between states characterized by the wave functions Ψ^n and Ψ^m is forbidden in Raman scattering unless for at least one of the components κ_{ij} of the molecular polarizability tensor (i or j = x, y or z) the product $\Psi^n \kappa_{ij} \Psi^m$ belongs to a representation whose structure contains the totally symmetric species."
PROOF OF CONVERGENCE

1. Terminology

In developing the proof of convergence for the algorithm used in the main computer program, we have availed ourselves of the symbolism common in texts on linear algebra. For a review of this topic and a further development of the principles involved, the reader is directed to the text by Curtis. Table II should suffice, however, for complete understanding of those symbols used in this work.

TABLE II

Notation Used in Proof

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \in B$</td>
<td>a is a member of set B</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>denotes the intersection of set A and set B</td>
</tr>
<tr>
<td>\emptyset</td>
<td>represents an empty set</td>
</tr>
<tr>
<td>$A \cap B = \emptyset$</td>
<td>A and B are disjoint sets; no member of A is in set B and no member of B is in A.</td>
</tr>
<tr>
<td>$A \subseteq B$</td>
<td>implies set A is a subset of set B</td>
</tr>
</tbody>
</table>

It is convenient to think of the data set as a set of vectors, F. Each vector in the set represents one vibrational spectrum and is denoted \vec{f}. The set F is composed of two disjoint sets F^+ and F^-; i.e. $F^+ \cap F^- = \emptyset$, and $F^+, F^- \subseteq F$. Furthermore we denote the members of F^+ as \vec{f}^+ and the members F^- as \vec{f}^-.

To express these ideas in more familiar terms we can consider the problem of developing a means for distinguishing the esters in our data bank from all other spectra. The spectrum of an ester can be represented by \vec{f}^+ and the entire set of esters makes up the set F^+. All other spectra can be represented by \vec{f}^- and the set of spectra which are not esters is called F^-. Our entire data bank is called F.

The task at hand is to develop a rule which will correctly classify any member of F so that all \vec{f}^+ are classified as $\vec{f}^+ \in F^+$ and all \vec{f}^- as $\vec{f}^- \in F^-$. That is, we must develop a simple to use decision procedure (frequently called a predicate) by which we can select any spectrum and tell whether it is an ester or not an ester. A number of conventional classification methods which might be used to attack the problem are discussed in the literature. Nagy's review\(^1\) is comprehensive and a large
number of other works are available\(^2\, 3, 4, 5)\). These approaches, however, construct the predicate by a specific mathematical analysis of the entire data set \(F\). Each approach is ad hoc to each predicate and suffers from the need to work on the entire data set at once. Such approaches are prohibitive when using large data sets.

In this chapter we will describe such a simple decision procedure based upon the sign of the weighted sum of the components of \(\vec{f}\), and an algorithm in which a set of coefficients, \(\vec{W}\), can be found by a systematic and easily mechanized procedure. The procedure begins with the selection of an arbitrary set of coefficients. A vector \(\vec{f}\) is selected from \(F\) and the predicate \(\vec{W}\) is tested to see if it works properly. If it does not, \(\vec{f}\) is used to modify \(\vec{W}\). If it does, \(\vec{W}\) is left unchanged. A new \(\vec{f}\) is then selected from \(F\). The algorithm proceeds in this manner until \(\vec{W}\) will correctly classify all \(\vec{f}\) in \(F\). Because \(\vec{W}\) is modified every time it makes a mistake the procedure has been termed a "learning machine".

Before proceeding it might be helpful to the reader to define a few terms.

The magnitude of a vector \(\vec{W} \) is represented by \(|\vec{W}| \) where

\[
|\vec{W}| = \sqrt{\sum_{i=1}^{\infty} (W(i))^2}
\]

The dot product of 2 vectors \(\vec{W} \) and \(\vec{f} \) is given by

\[
\vec{W} \cdot \vec{f} = \sum_{i=1}^{\infty} W(i) \times f(i)
\]

Note that \(|\vec{W}|^2 = \vec{W} \cdot \vec{W} \), i.e. the magnitude squared of a vector is the vector dotted on itself.

A unit vector \(\vec{W}^* \) is the direction of \(\vec{W} \), i.e. it is the vector divided by its magnitude.

\[
\vec{W}^* = \frac{\vec{W}}{|\vec{W}|}
\]

Provided, of course, \(|\vec{W}| \neq 0 \).

Note that the magnitude of a unit vector is 1, and

\[
|\vec{W}^*|^2 = \vec{W}^* \cdot \vec{W}^* = 1
\]

2. The Learning Machine

We will show how to pick a \(\vec{W} \) which determines whether \(\vec{f} \in F^+ \) or \(F^- \) by \(\vec{W} \cdot \vec{f} > 0 \) if and only if \(\vec{f} \in F^+ \). Intuitively one might suggest the simplest type of feedback or correction of \(\vec{W} \) such as the following procedure.
START: Let \(\vec{W} \) be any vector

TEST: Choose the next \(\vec{f} \) from \(F \) (If \(F \) is exhausted without going to ADD or SUBTRACT, the procedure is done; else begin again with 1st \(\vec{f} \).)

- If \(\vec{f} \in F^+ \) and if \(\vec{W} \cdot \vec{f} \geq 0 \) Go to test
- If \(\vec{f} \in F^+ \) and if \(\vec{W} \cdot \vec{f} < 0 \) Go to add
- If \(\vec{f} \in F^- \) and if \(\vec{W} \cdot \vec{f} < 0 \) Go to test
- If \(\vec{f} \in F^- \) and if \(\vec{W} \cdot \vec{f} \geq 0 \) Go to subtract

ADD: Replace \(\vec{W} \) by \(\vec{W} + R_{\vec{f}} \vec{f} \)
Go to TEST

SUBTRACT: Replace \(\vec{W} \) by \(\vec{W} - R_{\vec{f}} \vec{f} \)
Go to TEST

\(R_{\vec{f}} \) is a positive correction factor with an upper bound \(A \), i.e. \(0 < R_{\vec{f}} < A \). (\(A \) is some number chosen in advance.)

A priori, any procedure of this sort runs the risk of oscillating wildly. An adjustment of \(\vec{W} \) for one vector \(\vec{f} \) might undo the previous adjustment for another \(\vec{f} \). As will be shown, however, this procedure will eventually converge to vector \(\vec{W} \) which will correctly classify all \(\vec{f} \) in \(F \) provided that \(F \) is linearly separable into \(F^+ \) and \(F^- \), i.e. provided a hyper-plane exists which will separate \(F^+ \) from \(F^- \). Remember \(F^+ \cap F^- = \emptyset \) does not imply that \(F^+ \) and \(F^- \) are linearly separable, i.e. it is not a sufficient condition to guarantee that a solution \(\vec{W} \) exists.

This simple feedback algorithm converges by the "perceptron convergence theorem." The theorem states that
whatever choice is made in START and whatever function is used in TEST the vector \(\hat{W} \) will be changed only a finite number of times, provided that \(F \) is linearly separable into \(F^+ \) and \(F^- \).

Before developing the proof of convergence one minor restriction must be placed on the members of any vector, \(\hat{f} \). No element of \(\hat{f} \) may be unbounded (i.e., \(\pm \infty \)). Thus for all \(\hat{f} \in F \), \(\hat{f}(i) \leq L \), where \(L \) is some established upper bound. This restriction is necessary to the proof, but in practice poses no real limitation. In our data bank, for example, every element is in the range from 0 to 9.

Note that if a vector \(\hat{W} \) separates \(F^+ \) from \(F^- \) then any positive multiple of \(W \) will also separate \(F^+ \) from \(F^- \) since
\[
(a \cdot \hat{W}) \cdot \hat{f} = a \cdot (\hat{W} \cdot \hat{f})
\]
From this it follows that we can find a unit vector as the \(\hat{W} \).

The proof of convergence which we present is adapted from Minsky and Papert. Minsky and Papert assumed that \(|\hat{f}| = 1 \) for all \(\hat{f} \in F \), and \(R_f = 1 \). We make no such assumptions.

3. Proof

The program in the previous section is more complicated than is needed for the proof. Recognize that the following
is equivalent.

START: Let \vec{W} be any vector

TEST: Choose the next \vec{r} from F (Done when F is exhausted without going through ADD)

If $\vec{r} \in F^+$ change the sign of \vec{r} by multiplying \vec{r} by -1

If $\vec{W} \cdot \vec{r} > 0$, go to TEST, otherwise go to ADD

ADD: Replace \vec{W} by $\vec{W} + R \cdot \vec{r}$, where R is a positive weighting factor with an upper bound A

Go to TEST

Proof:

Define $G = \frac{\vec{W}^* \cdot \vec{W}}{|\vec{W}|}$

where \vec{W}^* is a unit vector which is a solution, i.e.

$\vec{W}^* \cdot \vec{r} \geq 0 \rightarrow \vec{r} \in F^+$

and $\vec{W}^* \cdot \vec{r} \leq 0 \rightarrow \vec{r} \in F^-$

Because $|\vec{W}^*| = 1, |G| \leq 1$.

(It may help the reader to note that G is the cosine of the angle between \vec{W}^* and \vec{W}.)

Consider the behavior of G on successive passes of the program through ADD. Considering first the numerator as each trial t progresses,

$$\vec{W}^* \cdot \vec{W}_{t+1} = \vec{W}^* \cdot (\vec{W}_t + R \cdot \vec{r}_t)$$

$$= \vec{W}^* \cdot \vec{W}_t + \vec{W}^* \cdot R \cdot \vec{r}_t$$

$$> \vec{W}^* \cdot \vec{W}_t + S$$

where $S > 0$
This holds because since \vec{W}^* is a solution
\[\vec{W}^* \cdot R_{\vec{f}} \vec{f}_t > 0 \]
(after the appropriate adjustment of the sign if $\vec{f} \in F^-$)

Thus after the nth application of add we obtain
\[\vec{W}^* \cdot \vec{W}_n \geq n \delta \]

The numerator of G increases with n, the number of changes of \vec{W}, that is the number of errors.

As for the denominator, since $\vec{W} \cdot R_{\vec{f}} \vec{f}$ must be negative or zero or the program would not have gone through add
\[
\begin{aligned}
|\vec{W}_{t+1}|^2 &= \vec{W}_{t+1} \cdot \vec{W}_{t+1} \\
&= (\vec{W}_t + R_{\vec{f}} \vec{f}_t) \cdot (\vec{W}_t + R_{\vec{f}} \vec{f}_t) \\
&= |\vec{W}_t|^2 + 2 \vec{W}_t \cdot R_{\vec{f}} \vec{f}_t + R_{\vec{f}} \vec{f}_t \cdot R_{\vec{f}} \vec{f}_t \\
&= |\vec{W}_t|^2 + L^2 k^2
\end{aligned}
\]

after the nth application of add
\[
\begin{aligned}
|\vec{W}_n|^2 &< n^2 L^2 k^2 \\
|\vec{W}_n| &< n^{\frac{3}{2}} L K
\end{aligned}
\]

combining the results
\[G = \frac{\vec{W}^* \cdot \vec{W}_n}{\vec{W}_n} \geq \frac{n \delta}{n^{\frac{3}{2}} L K} \]
but \(G \ll 1 \) so this can only be so if

\[
\frac{n \frac{\delta}{L K}}{n^{\frac{1}{2}}} \ll 1
\]

That is

\[
n \ll \frac{L^2 K^2}{\delta^2}
\]

This completes the proof.

4. Variations

The proof presented in this work closely follows the computer program used in the body of this work. A number of minor variants in procedure are possible, however. For example \(R^2 \) may be defined as \(1/|\hat{r}| \) so that a unit vector is added each time a correction is made to \(\hat{W} \). \(R^2 \) may, of course, be a constant, i.e. independent of \(\hat{r} \).

In the program we used, \(R^2 \) was defined in the way suggested by Agmon:

\[
R^2 = -k \left[\frac{\hat{W} \cdot \hat{r}}{|\hat{r}|^2} \right]
\]

where \(k \) is a positive constant. In this manner the magnitude of \(R^2 \) is dependent on how "badly" \(\hat{W} \) failed to

classify \(\hat{f} \). Following the suggestion of Jurs, Kowalski, Isenhour and Reilley\(^\text{18} \) we usually set \(k = 2 \), but a few experiments were done with other values.

It was pointed out earlier that if \(\hat{W} \) is a solution vector, \(\hat{W}' \) is also a solution vector where

\[
\hat{W}' = k \hat{W}
\]

\(k \) being a positive constant. Similarly it should be noted that if \(\hat{W} \) is a solution and \(\hat{W}' \) is a solution, then \(\hat{W}'' \) is also a solution where

\[
\hat{W}'' = \hat{W} + \hat{W}'
\]

Thus all solution vectors form a convex cone and the program will stop changing \(\hat{W} \) as soon as it penetrates the cone.

(Convex cone: a set \(S \) of vectors for which

\[
(1) \text{ } A \in S \implies kA \in S \text{ for all } k > 0, \text{ and }
\]

\[
(2) \text{ } A \in S \text{ and } B \in S \implies (A+B) \in S.
\]

Any solution defines a hyper-plane dividing the space in which we are operating. All \(\hat{f} \) in \(F^+ \) are on one side of the plane while all \(\hat{f} \) in \(F^- \) are on the other side.

Notice, however, that if we are dealing with \(n \) dimensional space (i.e. \(\hat{f} \) has \(n \) members) and our solution hyper-plane is limited to \(n \) members, the hyper-plane must pass through the origin of the space. If, however, we add one member to \(\hat{f} \) and make that member \(+1 \), the solution hyper-
plane is not constrained to pass through the origin. Thus, while we take 112 readings from each spectrum, the dimensionality of the space we are working in is 113. The resulting vector passes through the origin of the 113 dimensional space but not through the origin of the 112 dimensional space.
THE PROGRAMS

1. Program Names

Three programs were written in Fortran IV to analyze the spectral data. The first program, called TRAIN, trains vectors, the second program, SNOOP, is used for either of two jobs. SNOOP is used to average several trained vectors, or it is used to calculate the average spectrum of a class of compounds. Program TEST tests vectors which have been trained to determine how they perform with a new set of data. A listing of each program with a sample set of input and output for the program TRAIN is included in Appendix B. The comment cards in each program are intended to instruct the interested reader in the details necessary for use of each program.

2. TRAIN

Program TRAIN reads a set of options from a card file. It then reads the appropriate spectral data from a file. (The data have been previously stored in the file.) Figure 6 shows a simplified flow diagram for TRAIN and Table III lists the options which are currently available as a part of program TRAIN. In Figure 6 the weight vector being trained is labeled $\mathbf{\hat{w}}$ and a vector representing a spectrum is labeled $\mathbf{\hat{f}}$.
FIGURE 6

Program TRAIN: Flow Diagram

Read options to be used

Read spectral data from disk

Set initial value of \mathbf{W}

Begin Iteration

NO

Present Next Pattern(\mathbf{P})

Have the maximum # of iterations been reached?

YES

Calculate $S = \mathbf{W} \cdot \mathbf{P}$

Desire Response?

Yes

$\mathbf{W} = \mathbf{W} + c \mathbf{P}$

More Patterns?

Yes

Plot the vector and write the vector on the disk

END

NO

Feedback correction

$\mathbf{c} = -k \frac{\mathbf{W} \cdot \mathbf{P}}{|\mathbf{P}|^2}$
TABLE III

OPTIONS IN PROGRAM TRAIN

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Fortran Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NOPT1</td>
<td>Type of spectra to be considered. For complete details see Table III.</td>
</tr>
<tr>
<td>2</td>
<td>NCARD</td>
<td>Number of spectra in the data file stored on disk. For all of the work reported here NCARD = 1117.</td>
</tr>
<tr>
<td>3</td>
<td>NOPT2</td>
<td>Class of compounds being considered. For complete details see Table IV.</td>
</tr>
<tr>
<td>4</td>
<td>FIN</td>
<td>Initial value of all elements of (\vec{W}), the vector being trained. If FIN = 0 the program will read a starting vector from disk file. (see Option 12)</td>
</tr>
<tr>
<td>5</td>
<td>NSHUT</td>
<td>Specifies an upper limit to the number of iterations.</td>
</tr>
<tr>
<td>6</td>
<td>LEN</td>
<td>The vector (\vec{W}) will be printed every "LEN'th" iteration (and again at the end of the calculation).</td>
</tr>
<tr>
<td>7</td>
<td>NOPT3</td>
<td>The number of spectra not in class (Option #3) which are to be included in the training deck.</td>
</tr>
<tr>
<td>8</td>
<td>NOPT4</td>
<td>The number of spectra in the class (Option #3) which are to be included in the training set.</td>
</tr>
<tr>
<td>9</td>
<td>NOPT4</td>
<td>If NOPT6 = 1 every element in the trailing vectors will be used in the training process, else every "NOPT6'th" element is used until the vector (\vec{W}) is trained or until "NSHUT" iterations have been completed. Then (\vec{W}) is used as the initial vector for training with every element.</td>
</tr>
<tr>
<td>10</td>
<td>NOPT5</td>
<td>If NOPT5 ≠ 0 another set of data is expected. The necessary disk files will be rewound.</td>
</tr>
<tr>
<td>11</td>
<td>FKOR</td>
<td>A constant used to weight the correction factor. (FKOR is the value of k in Fig.IV)</td>
</tr>
<tr>
<td>12</td>
<td>NFILE</td>
<td>The position in the disk file of the initial vector. If FIN ≠ 0 NFILE should not be specified.</td>
</tr>
</tbody>
</table>
The value of LEN (Option 6) determines how often the vector is printed during the training process. In the early experiments it was useful to be able to watch the vector develop. In later work only the trained vector was needed; this was done by setting the value of LEN higher than NSHUT.

Options 8 and 9 are used to limit the number of compounds used to train the vector. In those experiments where all the available compounds were not used in the training process, the resulting vector was later used with program TEST to determine how well the vector classifies those compounds not used in the training set.

Table IV provides a detailed description of the type of spectra treated by TRAIN (option one).

<table>
<thead>
<tr>
<th>Value of Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*Infrared spectra only are used</td>
</tr>
<tr>
<td>2</td>
<td>*Raman nonpolarized spectra only are used</td>
</tr>
<tr>
<td>3</td>
<td>*Raman parallel polarized spectra only are used</td>
</tr>
<tr>
<td>4</td>
<td>*Raman perpendicular polarized spectra only are used</td>
</tr>
<tr>
<td>5</td>
<td>Infrared plus Raman nonpolarized spectra are averaged</td>
</tr>
<tr>
<td>6</td>
<td>Infrared plus Raman parallel plus Raman perpendicular polarized spectra are averaged</td>
</tr>
<tr>
<td>7</td>
<td>*Infrared plus all Raman data are averaged</td>
</tr>
<tr>
<td>8</td>
<td>*All Raman data are averaged</td>
</tr>
<tr>
<td>9</td>
<td>Raman parallel plus Raman perpendicular polarized spectra are averaged</td>
</tr>
</tbody>
</table>

(* indicates those types of spectra treated in this work)
Table V shows in detail the variations which are possible through option number 3. If the input value of option 3 is from 1 to 17 the program will use the class of compounds corresponding to the input value. (The 17 classes were given earlier in Table I.) As shown in Table V, however, 4 other values of option 3 are allowable. These values simply instruct the program to combine certain classes.

TABLE V

Option Three in Program TRAIN
(The Class of Compounds Considered)

<table>
<thead>
<tr>
<th>Value of Option 1 through 17</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>All halogens (class 7 through 10)</td>
</tr>
<tr>
<td>19</td>
<td>Compounds containing F, Br and/or I (classes 8, 9 and 10)</td>
</tr>
<tr>
<td>20</td>
<td>All alcohols (classes 3, 4 and 5)</td>
</tr>
<tr>
<td>21</td>
<td>Compounds containing O-H (classes 3, 4, 5 and 16)</td>
</tr>
</tbody>
</table>
A separate program called TRAIN+ was used to combine spectra in a entirely different way. TRAIN+ uses the infrared spectrum of each compound and either the parallel polarized Raman spectrum or, in the case of solids, the nonpolarized Raman spectrum. For each compound the infrared data from 1875 cm\(^{-1}\) to 500 cm\(^{-1}\) is concatenated, i.e. linked in series with the Raman data from the same region to form a single vector. Thus 56 infrared readings and 56 Raman readings are joined to make a single vector representing the compound. TRAIN+ has all of the options that are in TRAIN except, of course, option one. When trained vectors are printed TRAIN+ separates the infrared portion of the vector from the Raman portion and plots them separately on the same scale as is used by TRAIN. Clearly TRAIN+ could have been incorporated in TRAIN as yet another option, but a separate program was written to reduce the complexity of the programing effort.

3. TEST and SNOOP

Appendix B includes listings of both TEST and SNOOP. The use of TEST is self-explanatory and needs no discussion. When SNOOP was used to calculate the average representation of a class of compounds, two types of representations were generated. The average representation of each class was calculated and plotted, and the average of all compounds in the class minus the average of all compounds not in the
class was plotted. This second type of average representation was obtained by making a minor program change in SNOOP, and is not shown in Appendix B.
RESULTS AND DISCUSSION

1. Results from SNOOP

As mentioned earlier there are two types of "average" spectra which have been obtained. We have called the first type the Simple Average; and the second, the Muted Average. The Simple Average is obtained by adding all the spectra from a given class and specified type of spectrum and dividing the total by the number of spectra. Let \(\overline{f_i} \) represent the ith spectrum of the n spectra in a particular class. Then the Simple Average representation of a class is given by:

\[
\text{Simple Average Representation} = \sum_{i=1}^{i=n} \frac{\overline{f_i}}{n}
\]

If \(\overline{f_j} \) represents the jth spectrum of the m spectra not in the class, the Muted Average representation of the class is given by:

\[
\text{Muted Average Representation} = \left[\sum_{i=1}^{i=n} \frac{\overline{f_i}}{n} \right] - \left[\sum_{j=1}^{j=m} \frac{\overline{f_j}}{m} \right]
\]
When the Muted Average is calculated, negative intensities are encountered. For example, Figure 7 shows the Muted Average of Raman parallel polarized spectra of esters. Figure 8 shows the same spectrum, but only the positive intensities are printed. Since negative intensities do not give any direct information about the class of compounds being treated, we have adopted the convention of printing only the positive portion of the average spectra or the calculated vector under discussion. In this context it should be noted that a strong positive band does provide evidence that a compound in that class would be expected to have that vibrational frequency. Conversely, however, the presence of a strong negative band does not mean that a compound in the particular class is forbidden to vibrate with the frequency which appeared as a negative band. The only interpretation which can be given to negative bands is that compounds not in the class being treated have vibrational frequencies in that region. In general this information is not useful to the chemist interested in vibrational analysis.

The Simple Average representation has the advantage that it shows all of the bands characteristic of a chemical class, and tends to preserve their relative intensities. No bands are lost or muted simply because they happen to be common in compounds both in and out of the class. The Muted Average, of course, has the advantage that while some common bands
FIGURE 7
Muted Average
Raman Parallel Polarized Spectra
of
Esters

FIGURE 8
Muted Average
Raman Parallel Polarized Spectra
of
Esters
(Positive Portion Only)
may be reduced in intensity or lost, much of the noise is eliminated. Figures 9 and 10, for example, show the Simple Average and Muted Average spectra of the parallel polarized Raman spectra of ethers. Notice that the intensity scale for the two spectra differ. This must be considered when making comparisons. The Muted Average spectrum shows the peaks more sharply defined than does the Simple Average, but notice the relative intensity change when using the Muted Average. The C-H stretching bands around 3000 cm\(^{-1}\) are no longer the strongest peak in the spectrum. More importantly perhaps, the bands between 1600 and 1800 cm\(^{-1}\) have disappeared in the Muted Average. This is a clear example of how the Muted Average helps to remove noise.

There are no ether vibrational bands above about 1550 cm\(^{-1}\). The bands appearing in the Simple Average spectrum in that region occur because 31 out of the 41 ethers used to calculate the average contain either a C\(_6\)H\(_6\), C=O, or C=O moiety.

Table VI lists the classes and the types of spectra for which Simple Average and Muted Average spectra have been calculated and gives the number of compounds used to calculate each average. Since there are so few nonpolarized Raman spectra in each class it is unlikely that their averages will be useful, and the combination spectra (all Raman or all IR plus Raman) do not have significance outside of the context of this work. Thus only the Muted and
FIGURE 9
Simple Average
Parallel Polarized Spectra
of
Ethers

Figure 10
Muted Average
Parallel Polarized Spectra
of
Ethers
TABLE VI

Number of Compounds Used to Calculate Averages

<table>
<thead>
<tr>
<th>Type of Spectrum</th>
<th>IR</th>
<th>All Raman</th>
<th>Parallel Raman</th>
<th>Perpendicular Raman</th>
<th>Nonpolarized Raman</th>
<th>IR plus Raman</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td>92</td>
<td>92</td>
<td>87</td>
<td>87</td>
<td>5</td>
<td>92</td>
</tr>
<tr>
<td>Alcohols</td>
<td>45</td>
<td>45</td>
<td>43</td>
<td>43</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>Ethers</td>
<td>48</td>
<td>48</td>
<td>41</td>
<td>41</td>
<td>7</td>
<td>48</td>
</tr>
<tr>
<td>C=O bonds</td>
<td>39</td>
<td>39</td>
<td>33</td>
<td>33</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>Ketones</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1° Alcohols</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>2° Alcohols</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>
Simple Averages of IR, the parallel Raman, and perpendicular Raman are included in Appendix C.

2. **TRAIN** and **TEST**

Table VII shows the number of iterations in one series of experiments needed for **TRAIN** to converge on a solution vector. In this set of experiments the initial value of the vector was set at -1. All of the available data were used in these tests. A plus (+) sign in Table VII indicates that **TRAIN** did not converge and was halted at the number of iterations shown.

The type of spectra labeled "all Raman" in Table VI were obtained by averaging all the Raman spectra for a particular compound. "IR plus Raman" indicates that the IR spectrum and all available Raman spectra were averaged to form a single spectrum for each compound. As was mentioned earlier, "concatenated IR plus Raman" spectra were formed by taking the infrared data from 1900 cm$^{-1}$ to 500 cm$^{-1}$ and combining them with Raman data from the same region. In the case of solids, nonpolarized Raman data were used. For liquid compounds parallel polarized Raman data were used.

The extremely low number of iterations in all cases where nonpolarized Raman spectra were tested is due to the very limited number of data available. (See Table VI.)
<table>
<thead>
<tr>
<th>Type of Spectrum</th>
<th>IR</th>
<th>All Raman</th>
<th>Para. Raman</th>
<th>Perp. Raman</th>
<th>Nonpol. Raman</th>
<th>IR plus Raman</th>
<th>IR plus Raman Concatenated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td>40</td>
<td>500⁺</td>
<td>100⁺</td>
<td>100⁺</td>
<td>4</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>Alcohols</td>
<td>15</td>
<td>100⁺</td>
<td>94</td>
<td>100⁺</td>
<td>4</td>
<td>19</td>
<td>45</td>
</tr>
<tr>
<td>Ethers</td>
<td>54</td>
<td>100⁺</td>
<td>92</td>
<td>100⁺</td>
<td>7</td>
<td>100⁺</td>
<td>27</td>
</tr>
<tr>
<td>C = C</td>
<td>87</td>
<td>22</td>
<td>11</td>
<td>54</td>
<td>4</td>
<td>37</td>
<td>9</td>
</tr>
<tr>
<td>Ketones</td>
<td>22</td>
<td>49</td>
<td>24</td>
<td>66</td>
<td>2</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>1° Alc.</td>
<td>32</td>
<td>100⁺</td>
<td>100⁺</td>
<td>100⁺</td>
<td>4</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>2° Alc.</td>
<td>67</td>
<td>18</td>
<td>11</td>
<td>21</td>
<td>3</td>
<td>23</td>
<td>13</td>
</tr>
</tbody>
</table>

IR = Infrared
Para. = Parallel Polarized
Perp. = Perpendicular Polarized
Nonpol. = Nonpolarized
Alc. = Alcohol
1° = primary
2° = secondary
The only reason for running these tests was to determine whether these data were linearly separable from the rest of the data. In all cases they are.

When all the Raman spectra were combined and the esters were used as the class to be trained, TRAIN was permitted to go to 500 iterations. Prior to doing that test, TRAIN was modified so that all the variables in the iterative part of the program were double precision. The program was not able to train a vector which would correctly classify esters even after 500 iterations. Furthermore, the final vector after 500 iterations did not look significantly different from the vector after 100 iterations. After 500 iterations there were 48 compounds out of 400 which could not be correctly classified by the vector, while after only 100 iterations there were only 46 compounds out of 400 which the vector could not correctly classify. In addition, the compounds which could not be classified correctly after 500 iterations were substantially the same ones which could not be classified after 100 iterations.

After the 100 iteration run with the esters the coding and chemical structure of the most troublesome compounds were checked. Only one anomaly appeared significant. The tri-p-tolyl ester of phosphorous acid was not included in the ester class because it is not a carboxylic acid ester.
It failed to be correctly classified 100 times out of 100 iterations. When the 500 iteration run was made the ester of phosphorous acid was included in the ester category, but this did not make the data linearly separable. In all of the other runs with esters the phosphorous acid ester was not included in the ester class. This experience was typical of what was observed a number of other times during this work. On occasion a computer run was made, then on scrutinizing the data a compound was found in the training set which was not coded correctly. Each time this occurred it was found on rerunning the data that the change in one compound did not significantly alter the vector. Even when one compound in the training set was incorrectly identified as not in the class being treated, the error made little difference in the final vector. In a sense the pattern recognition technique is rather forgiving.

The notation 100+ in Table VII means that the program was halted at 100 iterations without converging. Failure to converge could be due to a failure to allow the program to go far enough or due to a lack of linear separability in the data.

With every class of compounds except alcohols we found that the concatenated data trains considerably faster than other types of spectra. It is not surprising that alcohols do not train as well with the concatenated
vector since these data do not include the very characteristic 0-H stretch region in the infrared. We would expect similar results if amines or other N-H compounds were classified. Interestingly, however, the secondary alcohols are an exception to what might have been anticipated. The reason for this appears to be in the characteristic Raman of secondary alcohols, but further discussion will be deferred until the section on alcohols.

3. Program TEST

In pattern recognition the final criterion of success is the measure of how well the trained vector categorizes new patterns, i.e. patterns not used in the training. Program TEST reads trained vectors previously written on disk by program TRAIN and tests the appropriate set of spectra.

Tables VIII, IX, and X summarize the data obtained with TRAIN. The vector in each case reported in these tables was initiated at -1. In Table VIII the predictive ability of vectors trained with 50% of the available deck is reported. Tables IX and X show the predictive ability of vectors trained with 75% and 80% of the data, respectively. In every case the ratio of compounds in the class to compounds not in the class was maintained. For example, among the 400 compounds in the data there are 94 esters
TABLE VIII

Percentage of Compounds Correctly Classified
50% of Data Used in Training Set

<table>
<thead>
<tr>
<th>Type of Spectra</th>
<th>IR</th>
<th>All Raman</th>
<th>Paralled Polarized Raman</th>
<th>Perpendicular Polarized Raman</th>
<th>IR and Raman Averaged</th>
<th>IR and Raman Concatenated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ester</td>
<td>74</td>
<td>--</td>
<td>(86)</td>
<td>--</td>
<td>72</td>
<td>92</td>
</tr>
<tr>
<td>Alcohol</td>
<td>97</td>
<td>(82)</td>
<td>86</td>
<td>--</td>
<td>95</td>
<td>84</td>
</tr>
<tr>
<td>Ether</td>
<td>80</td>
<td>(68)</td>
<td>79</td>
<td>(70)</td>
<td>(69)</td>
<td>87</td>
</tr>
<tr>
<td>C = C</td>
<td>89</td>
<td>89</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>Ketones</td>
<td>89</td>
<td>91</td>
<td>89</td>
<td>85</td>
<td>89</td>
<td>91</td>
</tr>
</tbody>
</table>

-- indicates that the training set did not converge in 100 iterations.

() that larger training sets of the same type failed to converge.
<table>
<thead>
<tr>
<th>Type of Spectra</th>
<th>IR</th>
<th>All Raman</th>
<th>Parallel Polarized Raman</th>
<th>Perpendicular Polarized Raman</th>
<th>IR and Raman Averaged</th>
<th>IR and Raman Concatenated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ester</td>
<td>82</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>83</td>
<td>95</td>
</tr>
<tr>
<td>Alcohols</td>
<td>98</td>
<td>--</td>
<td>72</td>
<td>--</td>
<td>96</td>
<td>87</td>
</tr>
<tr>
<td>Ethers</td>
<td>81</td>
<td>--</td>
<td>81</td>
<td>--</td>
<td>--</td>
<td>90</td>
</tr>
<tr>
<td>C = C</td>
<td>91</td>
<td>90</td>
<td>91</td>
<td>85</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>Ketones</td>
<td>97</td>
<td>93</td>
<td>89</td>
<td>85</td>
<td>94</td>
<td>97</td>
</tr>
</tbody>
</table>

-- indicates that the training set did not converge in 100 iterations.
<table>
<thead>
<tr>
<th>Type of Spectra</th>
<th>IR</th>
<th>All Raman</th>
<th>Parallel Polarized Raman</th>
<th>Perpendicular Polarized Raman</th>
<th>IR and Raman Averaged</th>
<th>IR and Raman Concatenated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esters</td>
<td>86</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>84</td>
<td>96</td>
</tr>
<tr>
<td>Alcohols</td>
<td>97</td>
<td>--</td>
<td>85</td>
<td>97</td>
<td>96</td>
<td>83</td>
</tr>
<tr>
<td>Ethers</td>
<td>84</td>
<td>--</td>
<td>81</td>
<td>--</td>
<td>--</td>
<td>93</td>
</tr>
<tr>
<td>C = C</td>
<td>90</td>
<td>91</td>
<td>90</td>
<td>87</td>
<td>93</td>
<td>97</td>
</tr>
<tr>
<td>Ketones</td>
<td>97</td>
<td>93</td>
<td>89</td>
<td>85</td>
<td>93</td>
<td>97</td>
</tr>
</tbody>
</table>

--- indicates that the training set did not converge in 100 iterations.
When IR spectra of esters were trained using 50% of the data deck, 47 esters and 153 compounds which were not esters were chosen as the training set. The data were not randomized before each run, and the first compounds in the deck were always included in the training set. Thus all the compounds included in the training set where 50% of the deck was used were also included in those sets where 75% and 80% of the deck was used.

In Table VIII the numbers in brackets signify that while the vector trained with 50% of the deck did converge, the particular experiment did not converge when a larger portion of the data was used. Where data are not presented, signified by a dashed line, the vector did not converge and no run of TEST was made.

With every class except alcohols the type of spectra which are concatenated IR and Raman data are at least as predictive as other types of data. The apparent exception of alcohols is no doubt due to the exclusion of the O-H stretching region in the concatenated data. Interestingly, with esters the Raman data alone did not converge, but the use of Raman data in the concatenated vector seems to significantly improve the predictive ability over what is achieved with IR data alone or Raman data alone. When IR and Raman are combined by simply averaging vectors, the
FIGURE 11

Predictive Ability of Concatenated Vectors
(Vectors Initiated at -1)

Legend:
- Ester
- Alcohol
- Ether
- Double bond
- Ketones

Percent Correctly Classified

Number of Compounds in Training Set
data suggests that the predictive ability is not as good as when the IR is used alone.

Figure 11 shows a plot of the percent correctly predicted versus the number of compounds used in the training set. All of the vectors referred to in Figure 11 were obtained from concatenated infrared and Raman data using -1 as the initial value of the starting vector. In general the data suggests that there is improvement in the predictive ability when more compounds are used in the training set and moving from 200 compounds in the training set to 320 compounds improves the predictive ability on the average by about 5%.

It seems that the initial values of the vector plays a relatively minor part in determining what the final vector will look like. In a series of tests using 50% of the deck we trained a number of classes of compounds by initiating the vector at +1, and -1. A third solution vector was then calculated by averaging the positively initiated vector and the negatively initiated vector. In each test in this series the type of spectra used were concatenated IR and Raman data. Table XI shows that the predictive ability of the vector obtained by averaging the two calculated vectors did not differ significantly from the predictive ability of the two calculated solutions, and in no case was the average solution poorer than either of the calculated solu-
Remembering that the average of two solution vectors is itself a solution to the training set, and noting that the training set used for each class in Table XI was the same, it is understandable that the solution arrived at by averaging is about as predictive as the others. In the two instances where the average solution appears to be more predictive than either calculated solution, we must, at this time, attribute that to scatter.

TABLE XI

Predictive Ability of Concatenated Vectors

50% of Data Used in Training Set

<table>
<thead>
<tr>
<th>% Correctly Predicted</th>
<th>Positively Initiated</th>
<th>Negatively Initiated</th>
<th>Average Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class</td>
</tr>
<tr>
<td>Ester</td>
<td>97</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>Alcohols</td>
<td>93</td>
<td>84</td>
<td>92</td>
</tr>
<tr>
<td>Ethers</td>
<td>85</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>C = C</td>
<td>98</td>
<td>89</td>
<td>97</td>
</tr>
<tr>
<td>Ketones</td>
<td>100</td>
<td>91</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 12 shows the Raman portion of vectors which were trained using concatenated data. In both cases the class treated was ketones, and the result of initiating the vector at +1 and at -1 is shown. Notice that the in-
FIGURE 12

TRAINED VECTORS OF KETONES

RAMAN PORTION OF CONCATENATED VECTOR

ALL ELEMENTS OF VECTOR INITIATED AT +1

ALL ELEMENTS OF VECTOR INITIATED AT -1
tensity scales in the two plots are different; this should be taken into account when making comparisons. In general, vectors which are trained with a particular class of compounds but using different starting values are remarkably similar. Usually there are only three or four bands which appear in one spectrum but not the other. In Figure 12 for example, the only major discrepancy between the two spectra is a band which appears at 500 cm\(^{-1}\) in the vector initiated at \(+1\). With the exception of some minor shifts and line broadening the spectra are about the same. There is no significant difference in the number of iterations to converge on a solution when the vector is initiated with either \(+1\) or \(-1\).

In view of the data presented we have concluded that the best way to combine infrared and Raman data is to concatenate the data from the two sources and treat the result as a single vector. The parallel polarized spectra or the nonpolarized spectra should be used to represent the Raman spectrum. Perpendicularly polarized data in general do not seem to be easily separated, but this may be due mainly to the quality of the starting spectra. They are frequently very low intensity spectra and manually coding them is difficult. The predictive ability of vectors trained with concatenated data seems to be superior to those trained with either infrared or Raman separately.
While averaging vectors which were initiated with different values does not significantly improve the predictive ability it does seem to average out some of the scatter, without adversely affecting the predictive ability.

In the sections that follow emphasis will be placed on interpreting vectors which were obtained by averaging positively initiated and negatively initiated trained vectors. The trained vectors were obtained from concatenated data.
4. Esters

Figure 13 shows the average trained vector of esters. The vector was obtained by averaging two vectors, one trained by initiating all elements at +1, and a second trained by initiating all elements at -1. The intensity scale has been adjusted so that the strongest peak in either the infrared or the Raman is set at 10. All other

FIGURE 13

TRAINED VECTOR OF ESTERS
(AVERAGE OF TWO SOLUTIONS)
peaks in both spectra are scaled to the strongest peak.

The C=O stretch from 1600 to 1700 cm\(^{-1}\) appears in both the infrared and Raman and is perhaps the most well known peak in the entire IR range \(^{35}\). This band is generally expected to occur in the region from 1780 to 1600 cm\(^{-1}\), but we might note that carboxylic acid anhydrides, acid halides, acyl peroxides and ketones have fundamental modes between 1850 and 1750 \(^{36}\), which might account for the relatively low cutoff of this band in the trained vector. Similarly the low end of the carbonyl stretching region is also the region where double bond stretching (1700 to 1500) occurs, and could easily account for the absence of strong bands in the region from 1700 to 1600 cm\(^{-1}\). C-O stretching and/or bending is reported \(^{37}\) from 1300 to 1000 and is generally seen in the IR but not in the Raman. Our vector has this characteristic.

The strongest peak in the vector is a narrow band

in the Raman at 625 cm-1 which does not seem to have
a correspondingly strong band in the IR. Looking at the
Simple Average and Muted Average representations of Esters
(Appendix C) we see that there could well be a characteristic
Raman ester band in the region from about 950 to 800 cm-1.
The band seems greatly reduced in intensity in the Simple
Average IR of esters and is totally absence in the Muted
Average IR representation of esters. These data prompted
us to look at the Raman spectra of all of the 94 esters in
our data set. All except 5 of the compounds have a strong
generally sharp Raman band in the region from about 950
to 800 cm-1. Table XII lists the exceptions and also shows
the nearest band which might be assigned to the vibration

\textbf{TABLE XII}

\begin{tabular}{|l|l|}
\hline
\textbf{Name of Compound} & \textbf{Nearest Assignable Band (cm-1)} \\
\hline
Acetic acid, o-tolyl ester & 1040 or 780 \\
Resorcinol, diacetate & 1000 \\
Benzoylacetic acid, ethyl ester & 1000 \\
Cinnamic acid, ethyl ester & 1000 \\
Bromophenylacetic acid, methyl ester & 1000 or 780 \\
\hline
\end{tabular}
based on proximity, shape and intensity. It would appear that the proximity of the aromatic ring shifts the frequency to higher wave numbers, but further work would have to be done before an assignment could be made. For now we tentatively suggest that in general esters have a characteristic Raman band in the region from 950 to 800 cm⁻¹, and that band is frequently weak or absent in the IR.

5. Ethers

The characteristic feature of the vibrational spectra of ethers is the broad strong asymmetric stretching band between 1000 and 1300 cm⁻¹ in the infrared, which is weak or absent in the Raman. In Figure 14 the trained vector of ethers shows that characteristic. The band at about 525 in the infrared or 575 in the Raman is interesting because it corresponds to a reported characteristic infrared vibration for ethers which is found in the region from 625 to 500 cm⁻¹. In reviewing the 49 ethers included in the data we find only 4 which do not have a band in the IR and/or Raman in the region from 625 to 500 cm⁻¹. Table XIII lists those four exceptions. The symmetry of the compounds

Figure 14

Trained Vector of Ethers
(Average of Two Solutions)

Table XIII

Ethers Without a 625 to 500 cm⁻¹ Band

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isopentyl ether</td>
<td>C-C-C-C-O-C-C-C-C-C</td>
</tr>
<tr>
<td>Butyl ether</td>
<td>C-C-C-C-O-C-C-C-C-C</td>
</tr>
<tr>
<td>Isopropyl ether</td>
<td>C-O-C-C-C</td>
</tr>
<tr>
<td>Ethyl ether</td>
<td>C-O-C-C-C</td>
</tr>
</tbody>
</table>
might be responsible for the suppression of the band; and, indeed, we have found that the band is very weak with other totally symmetric ethers.

6. Ketones

There are only 15 ketones in the entire data set, and therefore any conclusions based on the trained vector must be made tentatively. Of course, this caveat applies to all of the trained vectors, but it applies a fortiori to such a small class. Some comments will be made on the appropriate size and composition of training sets in a following section.

Figure 15 shows the average of two trained vectors using ketones as the class of trained compounds. The C=O stretch is clearly evident in both the IR and Raman at about 1700 cm\(^{-1}\). The 15 ketones in our set are all aliphatic, we would therefore expect an IR band of medium intensity in the region from 1225 to 1075 cm\(^{-1}\), but the trained vector does not show this band. The Simple Average (Appendix C) spectrum of ketones, however, does show the band. Undoubtedly, the reason for this is that the ethers have such a strong band in this area that they dominate.

In the training process, every time an ether fails to be correctly classified as not-a-ketone (none of the ketones in the set are also ethers), this band gets subtracted out. This points out the care that must be taken in interpretation of trained vectors. While the absence of a band in a particular region would suggest that the class of compounds being trained does not have a characteristic
band there, there are exceptions to this.

It is interesting to note that the strongest band in the Raman portion of the ketone vector is at 1250 cm^{-1}. This is precisely what we expect since the ether band in that region is usually not observable in the Raman spectrum.

We were prompted to train a vector using ketones in spite of the small number of compounds available, because of a desire to estimate the extent to which esters might be considered a combination of ketones and ethers. Figure 16 shows the trained vector of esters as was shown in Figure 13, but traced over the computer print is the outline of all those bands occurring in the trained vectors of ethers and ketones.

The carbonyl band in the ester at 1775 cm^{-1} is shifted to higher wave numbers than is found in ketones, as expected. The band centered around 550 in the IR, which is characteristic of ethers, is absent in the IR of esters, but interestingly (and possibly fortuitously) the Raman of esters shows a band at 550. Many of the esters in the data have a distinct, sharp band around 500, but there are sufficient examples of esters without the band to leave in doubt the question of assignment.
The similarity between the vector of esters and the combination of ethers and ketones is remarkable, particularly in the infrared. Yet, there are apparent differences to permit the differentiation of an ester from a ketone or an ether. This tends to show the power of the pattern recognition technique.
7. **Double Bonds**

In the data set there are 38 compounds which have a double bond in their structure, excluding double bonds which are a part of a benzene ring. Figure 17 shows the trained vector which resulted from treating these compounds.

FIGURE 17

TRAINED VECTOR OF DOUBLE BONDS

(AVERAGE OF TWO SOLUTIONS)
as a class. The vector is dominated by the band between 1700 and 1600 cm$^{-1}$ in the Raman, as might be expected. All 38 of the compounds included in this class have a strong band in the Raman between 1700 and 1600 cm$^{-1}$ and usually the Raman band is much stronger than the corresponding IR band. The infrared portion of the vector has a broad band between 1050 and 875 cm$^{-1}$ which probably corresponds to the bands generally assigned to vinyl substituted, trans substituted (not cis) or geminally substituted double bonds. All of the compounds in the data set which fit one of these categories, with one exception, have a strong IR band around 1000 cm$^{-1}$, and the corresponding Raman band is weak or absent. The exception to this is cinnamyl alcohol (\(\Phi-C=C-C-OH\)) which has a very strong Raman band at 1000 cm$^{-1}$ with a corresponding IR band. Unfortunately the Sadtler index does not label the compound as cis or trans, which undoubtedly means that it is a mixture.

8. Alcohols

Figure 18 shows the trained vector which resulted when all of the 45 alcohols were treated as a single class of compounds. The data were composed of 29 primary alcohols, 9 secondary alcohols, and 4 tertiary alcohols. Three compounds have both primary and secondary moieties.

In order to test the power of the pattern recognition
technique, the primary alcohols and the secondary alcohols were tested as separate classes. When the primary class was treated, those 3 compounds which have both primary and secondary groups were included as being primary alcohols. Similarly, when the secondary alcohols were trained, the three compounds were treated as members of the class of...
secondary alcohols. In both instances the program converged on a solution. Figure 19 shows the vectors which resulted from this treatment of alcohols.

Alcohols are characterized by the strong O-H band in the region from 3500 to 3100 cm\(^{-1}\) in the IR\(^{37,38,39}\). This same band is absent in the Raman. Many other bands also exist in the finger print region of the spectrum, and it is these that are treated in this work.

In Figure 19 the band at 1725 cm\(^{-1}\) in the IR portion of the secondary alcohol vector is the only band which clearly does not appear in the vector for all alcohols (Figure 18). In all likelihood this occurs because three of the secondary alcohols also contain carbonyl groups. Since the class was so small this should be considered an artifact of the data set.

Figure 19 suggests that secondary alcohols differ from primary alcohols in the Raman in that they do not have a band at 1500 cm\(^{-1}\) as do the primary compounds. In reviewing the actual spectra it is difficult to justify such a statement, although some band shifting in that region is evidenced. In view of the small number of data we refrain from any conclusion.
FIGURE 19
TRAINED VECTORS OF PRIMARY AND SECONDARY ALCOHOLS
(EACH VECTOR IS AN AVERAGE OF TWO SOLUTIONS)
(VECTORS WERE TRAINED USING ONLY ALCOHOLS IN THE DATA SET.)

PRIMARY ALCOHOLS

SECONDARY ALCOHOLS

\(\text{IR}^{-1} \)

\(\text{Raman} \)
A band in the Raman around 500 cm^{-1} would appear to be characteristic of secondary alcohols and not primary, but again because of the small number of data we withhold further comment.

Pursuing the topic of primary vs secondary alcohols a little farther, we extracted from the data all compounds which were either primary, secondary or tertiary alcohols; but not combinations. In this manner we made a small data deck composed of alcohols only. We found that we could train vectors for either primary or secondary alcohols using IR data alone, using parallel polarized Raman alone, using perpendicularly polarized Raman alone or using linear combinations of these data. In every case the program converged in less than fifty iterations, offering a convincing demonstration of the power of the pattern recognition technique.
SPECTRAL INTERPRETATION

1. Method Used

In this section we have attempted to carry the results of the pattern recognition techniques as far as seems practical, i.e. we attempt to use the trained vectors as supportive evidence for the assignment of vibrational frequencies. The original assignments were made using more traditional types of evidence.

Ab initio frequency assignments using pattern recognition data alone are well outside the power of the technique at this stage, and it seems likely that such assignments will remain outside the scope of pattern recognition for some time to come. In view of the success that the method enjoys when classifying compounds not used in the training set, however, it seems appropriate to use trained vectors to support frequency assignments. This is so particularly in view of the fact that spectroscopists frequently use the "reasonableness" of an assignment as supportive evidence, sighting similar assignments made for other molecules.

In an earlier section when presenting the data on predictive ability, we showed an advantage to using concatenated IR and Raman data. When averaging positively initiated and negatively initiated trained vectors, however, there does not seem to be an increase in the predictive ability
(nor any decrease). The average vector, nevertheless, did give a single representation which could be used to look for characteristic group frequencies. In looking for support for frequency assignments, however, we choose to have the broadest representation we can. To this end we have combined positively and negatively initiated trained vectors which resulted for concatenated data by superimposing the two vectors on the same frequency scale. The two superimposed vectors were traced in such a way that the strongest intensity in either of the two vectors appeared on the trace. Thus when one intensity at a particular frequency is stronger than the other, the strongest appears on the trace; and when one vector shows a positive intensity and the other does not, the positive intensity is traced. We have referred to this type of trace as a "broad representation".

The effect of this type of treatment is to broaden slightly the frequency bands associated with each chemical group and to emphasize strong bands. For this reason the broad representations which follow are presented without frequency scales.

Figures 20 and 21 show the broad representation of the infrared of ethers and the broad representation of the Raman of ethers respectively. Similarly, Figures 22 and 23 show the broad representation of the IR of compounds containing C=C and the broad representation of the Raman
FIGURE 20
Broad Representation of Ethers
INFRARED

FIGURE 21
Broad Representation of Ethers
RAMAN
FIGURE 22

Broad Representation of Double Bonds

INFRARED
FIGURE 23

Broad Representation of Double Bonds

RAMAN
of compounds containing C=C. These representations were used to provide the supportive evidence for the frequency assignments made in the literature for 3 compounds, and to provide suggested assignments where possible. In each case, when an assignment was made in the literature the appropriate broad representations were checked to determine if the observed frequency appeared in one of the representations. If it did the frequency was labeled "supportable". If it did not appear in the proper broad representation, the observed frequency was labeled "no supporting evidence". When an observed frequency was not assigned, all four broad representations were scrutinized and a suggested assignment was made only if there was no conflicting evidence.

2. cis-1, 2-dimethoxyethylene

Kimmel, Waldron and Snyder\(^4\) recently published a vibrational analysis of cis- and trans-1,2-dimethoxyethylenes. The observed frequencies for the cis molecule, the assignments made and the available evidence from pattern recognition are included in Table XIV. The IR data were taken from the reported data on liquids since most of the IR data in the Sadtler Spectra were taken from liquids.

TABLE XIV

Interpretation of cis-1,1-Dimethoxyethylene

<table>
<thead>
<tr>
<th>Observed Frequency (cm⁻¹)</th>
<th>Assignment</th>
<th>Evidence from Pattern Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>Raman</td>
<td></td>
</tr>
<tr>
<td>1843</td>
<td>vw</td>
<td>——</td>
</tr>
<tr>
<td>1700</td>
<td>m</td>
<td>1720 .s</td>
</tr>
<tr>
<td>1675</td>
<td>m</td>
<td>1690 vs</td>
</tr>
<tr>
<td>1562</td>
<td>w</td>
<td>——</td>
</tr>
<tr>
<td>1460</td>
<td>s</td>
<td>1470 w</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1377</td>
<td>vs</td>
<td>——</td>
</tr>
<tr>
<td>1305</td>
<td>sh</td>
<td>1300 m</td>
</tr>
<tr>
<td>1292</td>
<td>m</td>
<td>——</td>
</tr>
<tr>
<td>1220</td>
<td>vs</td>
<td>1220 vw</td>
</tr>
<tr>
<td>1188</td>
<td>sh</td>
<td>1195 vs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1165 vw</td>
</tr>
<tr>
<td>1155</td>
<td>vs</td>
<td>1120 vw</td>
</tr>
<tr>
<td>1028</td>
<td>m</td>
<td>1030 vw</td>
</tr>
<tr>
<td>978</td>
<td>w</td>
<td>985 vw</td>
</tr>
<tr>
<td>911</td>
<td>m</td>
<td>——</td>
</tr>
<tr>
<td>878</td>
<td>w</td>
<td>885 w</td>
</tr>
<tr>
<td></td>
<td></td>
<td>860 w</td>
</tr>
<tr>
<td></td>
<td></td>
<td>790 vw</td>
</tr>
<tr>
<td></td>
<td></td>
<td>745 w</td>
</tr>
<tr>
<td>725</td>
<td>m</td>
<td>——</td>
</tr>
<tr>
<td>615</td>
<td>s</td>
<td>——</td>
</tr>
<tr>
<td></td>
<td></td>
<td>545 w</td>
</tr>
</tbody>
</table>
Several frequency assignments have been made to carbon-hydrogen type vibrations or skeletal type deformations. Since we have no corresponding pattern recognition data to either support or contradict this type of assignment we have simply used the term "not apply" in the column: Evidence from Pattern Recognition.

There are two bands in cis dimethoxyethylene (Table XIV) which have been assigned by the authors for which there is no supporting evidence.

The frequencies around 1700 and 1675 cm\(^{-1}\) (IR data) are stronger in the Raman than in the IR, and this is in agreement with what is observed in the broad representations of the IR and Raman of compounds with double bonds. The 1120 Raman band is not seen in the Raman representation of ethers, but we expect this since it was observed as a very weak band. The 978 IR band is observed as a weak band and is weak in the IR representation of ethers, while the corresponding 985 Raman band is very weak in the observed spectrum and missing in the broad representation of ethers. The 885 Raman band is seen in the appropriate Raman representation, but the corresponding weak 878 band is not in the IR representation. Both the 725 and 615 IR bands are in the correct representations, but they are weaker in the representations than would be expected based on their observed intensities.
around 1125 cm\(^{-1}\) the IR in that region has a strong band. Thus we might have expected to have observed a corresponding IR band in the spectrum.

Conversely, the assigning of the 635 Raman band to an ether type vibration seems appropriate since the Raman of the broad representation of ethers has a weak band in that region and the representation of the C=C in the Raman has no band there. Additionally, the IR representation of ethers shows only a very weak band at 625 (compared to the corresponding Raman); so it is not unexpected that no 625 IR band was observed in the spectrum.

3. **Divinyl Ether**

Table XVII shows how the evidence from the broad representations of ethers and double bonds applies to divinyl ether. The spectral data were taken from Clague and Danti\(^{41}\) and solution IR data were used rather than the vapor data. Unfortunately no data from neat samples were reported in the IR.

No suggested assignment was made for the 1220 band, because both C=C and ethers vibrate in this region. It should be noted, however, that it is characteristic of ethers and not C=C to be strong in the IR and weak in the Raman near 1220 cm\(^{-1}\). Similarly, the 1030-1028 band is in a region where double bonds are characterized by strong IR and weak Raman bands as observed; yet the interpretation is not clear due to overlapping ether bands. The very weak 790 Raman band corresponds to a band in the Raman of ethers and double bonds do not have a Raman band here, but the broad representation suggests that a strong band should appear. Since the observed band was very weak, no suggested assignment was made.

Table XV defines the abbreviations used in those Tables which describe frequency assignments.

4. trans-1,2-dimethoxyethylene

The data for trans-dimethoxyethylene were taken from the same source as the cis data\(^4,0\) and are presented in Table XVI. Again the IR data used were the liquid data.

The evidence from pattern recognition pertaining to the trans molecule is similar to that pertaining to the cis-dimethoxyethylene. Again there are two assignments made by the authors for which there is no supporting
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>vvw</td>
<td>very, very weak</td>
</tr>
<tr>
<td>vw</td>
<td>very weak</td>
</tr>
<tr>
<td>m</td>
<td>medium</td>
</tr>
<tr>
<td>s</td>
<td>strong</td>
</tr>
<tr>
<td>vs</td>
<td>very strong</td>
</tr>
<tr>
<td>sh</td>
<td>shoulder</td>
</tr>
<tr>
<td>str.</td>
<td>stretch</td>
</tr>
<tr>
<td>asym.</td>
<td>asymmetric</td>
</tr>
<tr>
<td>sym.</td>
<td>symmetric</td>
</tr>
<tr>
<td>def.</td>
<td>deformation</td>
</tr>
<tr>
<td>i.p.</td>
<td>inplane</td>
</tr>
<tr>
<td>o.o.p.</td>
<td>out of plane</td>
</tr>
</tbody>
</table>
TABLE XVI

Interpretation of \textit{trans}-1,2-Dimethoxyethylene

<table>
<thead>
<tr>
<th>Observed (cm(^{-1}))</th>
<th>Frequency</th>
<th>Assignment</th>
<th>Evidence from Pattern Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR 1737 w</td>
<td>1668 m</td>
<td>C=C str.</td>
<td>C=C band, not ether supportable</td>
</tr>
<tr>
<td>1670 m</td>
<td>1675 s</td>
<td>C=C str.</td>
<td>supportable</td>
</tr>
<tr>
<td>1467 m</td>
<td>1460 w</td>
<td>CH(_3) asym. def.</td>
<td>not apply</td>
</tr>
<tr>
<td>1455 m</td>
<td></td>
<td>CH(_3) sym. def.</td>
<td>not apply</td>
</tr>
<tr>
<td>1333 w</td>
<td>1330 w</td>
<td>=C-H i.p. rock</td>
<td>ether band, not C=C supportable</td>
</tr>
<tr>
<td>1310 m</td>
<td>1310 m</td>
<td>=C-H i.p. rock</td>
<td>no supporting evidence supportable</td>
</tr>
<tr>
<td>1292 m</td>
<td></td>
<td>=C-H i.p. rock</td>
<td>no supporting evidence supportable</td>
</tr>
<tr>
<td>1218 vs</td>
<td>1215 vw</td>
<td>C-O-C asym. str.</td>
<td>no supporting evidence supportable</td>
</tr>
<tr>
<td>1182 m</td>
<td></td>
<td>C-OH(_3) rock</td>
<td>no supporting evidence supportable</td>
</tr>
<tr>
<td>1172 vs</td>
<td>1170 vw</td>
<td>C-O-C asym. str.</td>
<td>supportable</td>
</tr>
<tr>
<td>1135 vs</td>
<td>1155 vw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1125 vw</td>
<td>1025 vw</td>
<td></td>
<td>ether band, not C=C</td>
</tr>
<tr>
<td>995 m</td>
<td>995 w</td>
<td>C-O-C sym. str.</td>
<td>supportable</td>
</tr>
<tr>
<td>957 s</td>
<td></td>
<td>=C-H o.o.p. wag</td>
<td>supportable</td>
</tr>
<tr>
<td>945 m</td>
<td>945 w</td>
<td>=C-H o.o.p. wag</td>
<td>supportable</td>
</tr>
<tr>
<td>910 w</td>
<td></td>
<td>C-O-C sym. str.</td>
<td>supportable</td>
</tr>
<tr>
<td>900 s</td>
<td></td>
<td>H-C=C-H twist</td>
<td>supportable</td>
</tr>
<tr>
<td>785 w</td>
<td>785 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>735 vw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>635 w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>605 w</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
evidence from pattern recognition. This, of course, does not indicate that the assignments are wrong; and indeed, we do not think they are wrong. It simply indicates that we can not look to pattern recognition (as we have developed the data thus far) for support in making these assignments.

The 995 band is not seen in the Raman of the broad representation of double bonds, but this is in fairly good agreement with the observation that it is a medium strength band in the IR but weak in the Raman. The 945 Raman band is also not seen in the Raman representation, but it too is weak while its IR band has a medium intensity.

The weak 1737 band in the IR could be assigned to a C=C type vibration but not to an ether type vibration. We note, however, that in the broad representation of C=C in the IR, the band is not weak in the 1737 region. Similarly the 1333 (IR) band is seen in both the IR and Raman of the ether representations, but not in the IR or Raman of the double bond representations. The band strengths, however, do not correspond to the observed weak bands.

A band at 1125 is seen in the Raman representation of double bonds, and is not seen in the Raman representation of ethers. We refrained from suggesting an assignment, however, because the observed frequency is very weak, and because, although the representation in the Raman is weak we would have expected a strong corresponding IR band.
<table>
<thead>
<tr>
<th>Observed Frequency (cm(^{-1}))</th>
<th>Assignment</th>
<th>Evidence from Pattern Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>Raman</td>
<td></td>
</tr>
<tr>
<td>1672 vw</td>
<td>1670 s</td>
<td>C=O str.</td>
</tr>
<tr>
<td>1641 s</td>
<td>1643 vs</td>
<td>C=O str.</td>
</tr>
<tr>
<td>1623 sh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1619 vs</td>
<td>1627 a</td>
<td></td>
</tr>
<tr>
<td>1546 vw</td>
<td>1545vw</td>
<td></td>
</tr>
<tr>
<td>1445 w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1392vww</td>
<td>1390 vw</td>
<td>CH(_2) sym. def.</td>
</tr>
<tr>
<td>1378 m</td>
<td>1383 m</td>
<td>C-H i.p. rock</td>
</tr>
<tr>
<td>1300 m</td>
<td>1299 vs</td>
<td>C-H i.p. rock</td>
</tr>
<tr>
<td>1200 vs</td>
<td>1205 m</td>
<td>C-O-C asym. str.</td>
</tr>
<tr>
<td>1166 vs</td>
<td>1166 m</td>
<td>C-O-C asym. str.</td>
</tr>
<tr>
<td>1111 m</td>
<td>1116 w</td>
<td>CH(_2) rock</td>
</tr>
<tr>
<td>1012 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>990 m</td>
<td>993 w</td>
<td>C-O-C sym. str.</td>
</tr>
<tr>
<td>951vwv</td>
<td>955 vw</td>
<td></td>
</tr>
<tr>
<td>944 m</td>
<td>953 m</td>
<td>H(_2)C= torsion</td>
</tr>
<tr>
<td>938 w</td>
<td>940 w</td>
<td>H(_2)C= torsion</td>
</tr>
<tr>
<td>848 s</td>
<td>850 s</td>
<td>C-O-C sym. str.</td>
</tr>
<tr>
<td>838 sh</td>
<td></td>
<td>H(_2)C= wag</td>
</tr>
<tr>
<td>713vwsh</td>
<td></td>
<td>vinyl wag o.o.p.</td>
</tr>
<tr>
<td>688 m</td>
<td>709 m</td>
<td>vinyl wag o.o.p.</td>
</tr>
<tr>
<td>582 vw</td>
<td>585 w</td>
<td>C=O-C def.</td>
</tr>
<tr>
<td>510 s</td>
<td></td>
<td>C=O-C def.</td>
</tr>
</tbody>
</table>
Two of the bands in the divinyl ether spectrum have been assigned to C=C-O deformations (585 and 510 in the Raman). Since they can not be classed as ether or double bond type assignments, they simply have been labeled "not apply" in Table XVII. The assignment for the weak shoulder in the IR at 713 is the only assigned band for which we do not have some supporting evidence.

In the original paper the 1445 and 1546 IR bands were not labeled with a description of intensity. We assumed the intensities reported for the vapor data.

The 1330 band in the IR is not seen in the representation of double bonds, but judging from the Raman the band might be centered a little lower. Between 1300 and 1325 our representations do show an IR band and a corresponding much stronger Raman band. For both the 1200 and 1168 (IR) bands we see an IR band in the broad representation but we do not see a corresponding Raman. While this is not entirely in agreement with the spectral observation for this assignment, at least the relative intensities (IR stronger that Raman) are in the proper direction.

The only truly weak point in the support that pattern recognition data has to offer with regard to these assignments concerns the assignment of the 990 (IR) to the C-O-C symmetrical mode. We see a small Raman band in this region, but no IR band at all in the pattern recognition
data. Assigning this mode to the 1012 vibration would be in better agreement with our patterns. The author rejects this based on band shape considerations, but the point must still be considered unresolved.

5. **Broad Representation of Esters**

There are 45 alcohols in the data but alcohols as a class represent too broad a group to be useful in spectral assignments. If only primary alcohols are considered we are reduced to a class with only 29 members. This may be too few to be useful. We do have 92 esters, however, and the broad representations of esters may be of considerable use. Figure 24 shows these representations.

Considering only the infrared portion of Figure 24, we have recast the data presented to construct a table of characteristic frequencies for the ester moiety (Table XVIII). One might test the validity of such a table by examining the spectra of many molecules to determine how often the expected frequencies appear in molecules containing esters. More rigorously, however, it is desirable to compare the newly constructed table with frequency assignments which have been confirmed by normal coordinate analysis. Unfor-
FIGURE 24

Broad Representation of Esters
tunately, molecules containing C=O groups12, 43, 44, 45 appear to present difficulties in all except the simplest cases. Matzke, Chacon and Andrade16, however, completed the normal coordinate analysis of methyl formate, methyl acetate and dimethyl oxalate; and all of their assignments can be supported using either the IR or the Raman data from Figure 24. In Table XVIII the IR approximate descriptions which have been shown are taken from Matzke et al. For the 3 molecules considered, there are only 5 frequencies which do not correspond to a frequency range in Table XVIII. All 5, however, correspond to Raman frequencies (Figure 24) which are apparently characteristic of esters.

TABLE XVIII

Infrared Group Frequencies for Esters

<table>
<thead>
<tr>
<th>Range</th>
<th>Approximate Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850 - 1725</td>
<td>C=O stretch a,b,c</td>
</tr>
<tr>
<td>1700 - 1650</td>
<td></td>
</tr>
<tr>
<td>1625 - 1575</td>
<td></td>
</tr>
<tr>
<td>1550 - 1525</td>
<td></td>
</tr>
<tr>
<td>1450 - 1425</td>
<td>C-O stretch a,b,c</td>
</tr>
<tr>
<td>1400 - 1375</td>
<td></td>
</tr>
<tr>
<td>1350 - 1175</td>
<td>O-R stretch a,b,c</td>
</tr>
<tr>
<td>1150 - 1050</td>
<td></td>
</tr>
<tr>
<td>1025 - 975</td>
<td></td>
</tr>
<tr>
<td>875 - 800</td>
<td>O-R stretch, O-C=O bend, b,c</td>
</tr>
<tr>
<td>750 - 725</td>
<td></td>
</tr>
<tr>
<td>700 - 675</td>
<td></td>
</tr>
<tr>
<td>550 - 500</td>
<td></td>
</tr>
</tbody>
</table>

a = methyl formate
b = methyl acetate
c = dimethyl oxylate

Critically reviewing Table XVIII, we see that if we were to join bands separated by only 25 cm\(^{-1}\) (the limit of the resolution used in coding the data) we could distinguish 5 band areas as shown by the dashed lines in the table. These may be considered areas where IR bands for esters, i.e. characteristic group frequencies, are likely to be found.
HEURISTICS

1. Purpose

The purpose of this section is to include in the work certain observations and impressions which are peripheral to the main theme; but which, nevertheless, might be useful to future workers in this area. In the course of this investigation over a hundred computer experiments were run which did not contribute directly to the body of data already presented, but rather directed us to abandon certain paths and follow others. What follows draws on that experience without attempting to document and quantify each observation. Indeed, many of the observations are not able to be proven; hence the title of the section, Heuristics.

2. Starting Vector

We made several computer runs in which we attempted to use the Muted Average representation of a class (both the positive and negative portion) as the starting vector. In general the program does converge slightly faster when the vector is initiated in this way, but the savings was only about 5 iterations. In a few instances it actually took more iterations to converge than when initiated at -1. In none of the 7 cases tried were we able to get a set of Raman data to converge within 100 iterations starting with the appropriate Muted Average, if that same set would not
converge starting with a vector initiated at -1.

One of the options in the program permits us to train a vector using every "n th" element in the data bank. This vector is then used as the starting vector and the entire data set (using every element) is trained. With the infrared spectra of esters as the class to be trained, we tried to train a vector using every 10th element. The vector would not train within 100 iterations. Nevertheless, the program takes the vector "as is" at 100 iterations and uses it as the initial vector to train the entire set. When it did this it trained the entire set of esters in 62 iterations. When this set of data is trained using a vector initialized at -1, it takes only 40 iterations to converge. Similar results were obtained when we tried every 5th element. We abandoned the idea without trying other cases.

Using the trained infrared vector as the starting vector for training the same class of compounds with Raman data did not improve the rate of convergence. Nor did it permit us to train Raman sets which would not converge when initiated at -1.

3. Weighting Factor

In the training process the vector being trained is corrected by adding or subtracting a weighted pattern which failed to be correctly classified. The program has an
option which permits the weight factor to be adjusted by a multiplier which is read into the program at the beginning of each run. (See Figure VI.) Jurs, Kowalski, Isenhour and Reilley18, using data from mass spectrometry, reported that multipliers ranging from 1 to 3 seemed to minimize the number of iterations necessary to reach convergence. We did not repeat their work with our data, but simply used the value 2 throughout the reported runs. We did verify, however, that changing the multiplier does not alter the appearance of the final vector any more than does changing the initial value of the starting vector.

4. Transforms

Two additional data sets were formed by taking the log (base 10) and the anti-log (base 10) of the original data. All of the runs which were done on the original data set were repeated on the two transformed sets in an effort to get certain cases to converge (within 100 iterations). We used the reciprocal transform on the resulting vector and plotted the result in the usual way. With the class of ethers and using perpendicular polarized Raman data we could train a vector using the log set. These data would not train using the untransformed data. In every other case, however, data which would not train without transformation remained untrainable.
In those cases where data sets were trainable without transforms, they remained trainable using either transformed data set. The resulting vectors were substantially different from what resulted from untransformed data, however. We did not attempt to interpret these vectors and did not pursue this, because we found that in every class concatenated data converge very quickly without the need of transforms. There remains here an opportunity for further work.

5. Size of Data Set

A number of workers have suggested that data sets should be over determined by a factor of 10, i.e. there should be 10 times as many patterns in a training set as elements in a pattern. This is rarely done with chemical data, however, because of the scarcity of coded data. Liddell and Jurs, for example use as few as 22 patterns in a set with 131 elements, and report that the resulting vector is 90% predictive with patterns not in their training set.

Our experience suggests that the data should be over determined by at least a factor of one. In developing the reported vectors using concatenated data we were always over determined by a factor of 3.5 (400 patterns, 112 elements per pattern). In other trials we found that predictive ability deteriorates as the data set gets smaller (see Figure 11) and falls below 90% predictive when the data is over deter-
Ideally, the number of compounds in the class and the number not in the class being treated should both be over determined. In no case did we have enough compounds to do this and still use full *spectra*. Nagy suggests that the percentage of patterns in the training set which are members of the class being trained should be the same as the ratio in the real world, i.e. should reflect the universal population. Using spectral data such an approach seems impractical, however, since we have no way of estimating such a number nor attaching significance to its meaning.

We found that when the number of compounds in the class was extremely low compared to the number in the training set, the set would always train. Even when we had a set composed of two class members and 398 compounds not in the class, a vector could be trained. Such vectors are useless, however. Our experience suggests that at least 5% of the total set should be members of the class being trained.

6. Errors

In any situation where over 125,000 data points are observed and recorded manually there are bound to be errors. Every effort was made, however, to minimize the errors. All of the data keypunching was verified, for example. In order
to estimate the magnitude of the errors we recoded 200 spectra. The second coding was not done by the person who first coded the spectrum. In comparing the two codes of the same spectrum we considered a pair in error if they did not match in every element within 3. Using this criteria we found 6 errors in the original 200 spectra (and another 4 errors in the second coding of the 200). Thus we would estimate that in the 1117 coded spectra our error level is about 3%.

After making the original estimate of error level, we continued for some time to comb the data. The training program prints a list of the compounds used and the number of times each failed to be correctly classified during the training process. In the early runs we made it a practice to review the coding of the 10 compounds which failed most often. When errors were found they were corrected. We did not return to make a second estimate of the error level, however. When the final runs were made for inclusion in this work, they were all made using the same data set. No changes were permitted once it was decided to develop the results presented.
SUMMARY AND CONCLUSIONS

We have taken a segment of the Infrared and Raman data which are currently available and manually reduced each spectrum to a digital code. We then explored these data using pattern recognition techniques. We found that the most effective way of treating the data was to consider the infrared code and the Raman code of a compound as a single concatenated vector. In order to save computer space we used the spectral range from 500 to 1900 cm\(^{-1}\) only, thus covering the most complicated portion of the vibrational spectrum.

The vectors which result from the training process can be used to categorize compounds not used in the training and they will correctly categorize approximately 93 percent of the time. This is superior to what can be achieved using either infrared or Raman alone, even though we did not use the full vibrational spectrum as we did when using IR or Raman alone.

The positive portion of the trained vector provides new insight into the characteristic frequencies of chemical groups. In every instance tried, all of the normally reported IR group frequencies appear as positive bands in the trained vector of the group. Other bands suggest the presence of characteristic group frequencies not previously
assigned. A band from 950 to 800 cm\(^{-1}\) in the Raman, for instance, seems to be characteristic of esters. Usually the corresponding IR band is weak or absent.

It is well known that ethers have a characteristic broad band around 1250 cm\(^{-1}\) in the IR which is greatly reduced or absent in the Raman. Our data suggests (based on the 15 ketones available) the ketones have a Raman band in that region, although it is not a strong band.

The IR band around 1050 to 875 cm\(^{-1}\) is usually assigned to double bonds (vinyl, trans or geminal), but the band is not easily picked out in a crowded spectrum. The knowledge that the band is generally weak or absent in the Raman is most helpful.

Three spectra not present in the coded data were selected from the literature, because they have been partially interpreted, and contain two groups for which we have trained vectors. It was shown that with nearly every assignment supportive evidence for the assignment could be found in the trained vectors. What is perhaps a greater contribution, however, is that using the trained vectors we were able, in a few instances, to suggest which group might be responsible for certain observed frequencies. Thus advancing the problem of making band assignments.
In short, what we have done here is to explore an orderly, computerized approach to the interpretation of IR and Raman. In a few years Raman spectroscopy will be as common as infrared, and much can be learned from this approach to those data. What is needed is a method for digitizing the spectra so that the data being explored is error free. What we hope we have contributed, is that we have made a beginning.
THE DATA

The digital codes of spectra are shown in the following pages. Each code uses the following format:

$$(13,12,1x,5812/4x,5412)$$

The first integer (I3) is the compound number, and corresponds to the compound number in the Sadtler Index. The second integer (I2) is the spectrum type: 1 = IR, 2 = Raman parallel polarized, 3 = Raman perpendicularly polarized, 4 = Raman nonpolarized. The 112 readings from each spectrum are in I2 format.
The following 400 lines of data show the chemical classes to which each of the 400 compounds used belongs. Each line corresponds to a compound, and every 10th line has been numbered to facilitate reading.

The data are written in the format: (I4I2). No compound belongs to more than 4 classes. The classes are described in the body of the text. (See Table 1)

In this listing class 15 includes all compounds with a carbonyl group. Compounds 160 through 174 inclusive are the ketones.
PROGRAM TRAIN

plus

SAMPLE OF INPUT AND OUTPUT
LEVEL 21.7 (JAN 73) OS/360 FORTRAN H

COMPILED OPTIONS - NAME: MAIN,OPT=02,LINEM=5,SRC=000K,
SOURCE=PROD,NOLIST,NJDECK,LOAD=40,NOEDIT,NOXRFF

ISN 0003 COMMON FX(400),JC(112),TF(400),W(112),OPT2(400),TERM(400)

ISN 0003 DIMENSION FX(400),JC(400),TF(400),OPT2(400)

ISN 0003 persönlich of the matrixes is done here

ISN 0003 SUBROUTINE REDP - READS THE OPTIONS DESIRED AND
ISN 0003 SUBROUTINE PFI - READS THE MAIN DATA DECK ACCORDING
ISN 0003 TO THE SPECIFIED OPTIONS. THE MAIN DATA DECK IS STORED
ISN 0003 ON THE DISK IN BINARY FORM, THE OPTIONS AVAILABLE
ISN 0003 ARE EXPLAINED IN THE SUBROUTINE REDP.

ISN 0010 CALL REDP(OPT1,NCARD,OPT2,PFI,NSHUT,LEN,OPT3,OPT4,OPT5)
THE SUM OF SQUARES FOR EACH COMPOUND IN THE TRAINING SET IS CALCULATED

The following section initializes the vector(w) which is to be trained. Either the initial vector is read from a disk file (FIN=0) or it is initialized as FIN.

FXOR is the constant used to multiply the correction factor.

GO TO 30

DO 21 J=1,N

W(J) = FIN
THIS SECTION CONTAINS THE MAIN TRAINING ROUTINE.

ISN 0036 30 K=0
ISN 0037 IF (L != NSHUT) 31, 31, 200
ISN 0038 31 NDC = 0

C K IS THE ERROR CHECK TO SEE IF THE VECTOR W IS TRAINED. IF
C K IS C NO ERROR YET FOUND IN THE LTH READ OF THE DATA

ISN 0039 32 IF (NDC - NDC + 1) 34, 33, 33
ISN 0040 33 S = S + 0
ISN 0041 DO 35 I = 1, NT, NPT6
ISN 0042 34 S = S + (W(I) * NDC(I))
ISN 0043 35 IF (T(NDC)) 36, 36, 37
ISN 0044 36 IF (S) 33, 33, 30
ISN 0045 37 IF (S) 34, 39, 33
ISN 0046 38 K = K + 1
ISN 0047 IF (NDC) = FX(NDC) * 114)
ISN 0048 IF (NDC) = FX(NDC) + 1
ISN 0049 IF (K) = (C * FK(NDC))
ISN 0050 IF (K) = (C * FK(NDC))
ISN 0051 IF (K) = (C * FK(NDC))
ISN 0052 IF (K) = (C * FK(NDC))

C THE VALUE OF LEN DETERMINES HOW OFTEN THE UNTRAINED
C VECTOR WILL BE PRINTED. E.G. IF LEN = 10, THE UNTRAINED VECTOR
C WILL BE PRINTED EVERY 10TH ITERATION.

ISN 0053 39 IF (LEN) LEN = 10
ISN 0054 40 IF (LEN) 100, 100, 41
ISN 0055 41 FK = K
ISN 0056 IF (LEN) * LEN = 100

THE VALUE OF LEN DETERMINES HOW OFTEN THE UNTRAINED
VECTOR WILL BE PRINTED. E.G. IF LEN = 10, THE UNTRAINED VECTOR
WILL BE PRINTED EVERY 10TH ITERATION

ISN 0057 30 LEN = 1
ISN 0058 31 LEN = 10
ISN 0059 32 LEN = 100
ISN 0060 33 LEN = 1000

ISN 0062 WRITE(NDC(I), LEN)

FORMAT(1H10, * COMPOUND SIGN VALUE OF S VALUE OF C*)

ISN 0063 4449 FORMAT(1H10, * COMPOUND SIGN VALUE OF S VALUE OF C*)

ISN 0064 45 DO 52 I = 1, K

WRITE(NDC(I), LEN)

FORMAT(1H10, * COMPOUND SIGN VALUE OF S VALUE OF C*)

ISN 0065 52 WRITE(NDC(I), LEN)

FORMAT(1H10, * COMPOUND SIGN VALUE OF S VALUE OF C*)

ISN 0066 53 WRITE(NDC(I), LEN)

FORMAT(1H10, * COMPOUND SIGN VALUE OF S VALUE OF C*)

ISN 0067 54 WRITE(NDC(I), LEN)

FORMAT(1H10, * COMPOUND SIGN VALUE OF S VALUE OF C*)

ISN 0068 55 WRITE(NDC(I), LEN)
THE FOLLOWING IS THE WRITE ROUTINE.

THE FOLLOWING SECTION IS ENTERED ONLY IF THE MAXIMUM NUMBER OF ALLOWED ITERATIONS (NSHUT) IS REACHED.

THE FOLLOWING IS THE CURRENT DESCRIPTOR:

THE FOLLOWING IS THE TRAINED VECTOR:

THE FOLLOWING IS THE LAST VECTOR:

THE PROGRAM Halted. *PASSES MADE*
STATISTICS CONCERNING THE NUMBER OF COMPOUNDS USED AND THE PERCENT IN THE CLASS ARE CALCULATED AND PRINTED.

THE VECTOR IS PLOTTED.
IF(I(I 14) T(I) NECON(I) FX(I 14) T(I) NECON(I) FX(I 14) T(I) NECON(I)

IF(I(I 14) T(I) NECON(I) FX(I 14) T(I) NECON(I) FX(I 14) T(I) NECON(I)

SN 0134 352 FORMAT (F4 1 1 X = 13, 9X)

SN 0137 CALL UNPACK

SN 0138 IF(NOPT6 = 0) 10 GO TO 500

SN 0140 NT2 = NOPTA = 1

SN 0141 DO 400 IF = NT2

SN 0142 ON 400 IF = NT2

SN 0143 II = 1 = J

SN 0144 IF(I(I 14) T(I) NT = NOPT6) 400 GO TO 400

SN 0146 M(I) = M(I)

SN 0147 400 CONTINUE

SN 0148 NT = 1

SN 0149 L = 1

SN 0150 GO TO 30

SN 0151 500 CONTINUE

C C

C C

C C

C C

C

C

C

C

C

C

C

C

C

THE OPTIONS WHICH WERE USED DURING THE RUN ARE LISTED

C C

SN 0152 WRITE (NO4, 9997)

SN 0153 WRITE (NO6, 9997)

SN 0154 WRITE (NO8, 9997)

SN 0155 WRITE (NO9, 9997)

SN 0156 WRITE (NO5, 4503)

SN 0160 FORMAT (IH ' THE OPTIONS FOLLOWED WERE THE FOLLOWING:')

SN 0162 WRITE (NO4, 4500) NOPT1

SN 0163 WRITE (NO4, 4500) NOPT2

SN 0164 WRITE (NO6, 4502) NOPT2

SN 0165 4502 FORMAT (IH ' OPTION 2 = ', I14)

SN 0166 WRITE (NO6, 4503) NOPT3

SN 0167 WRITE (NO6, 4503) NOPT3

SN 0169 WRITE (NO6, 4504) NOPT3

SN 0170 WRITE (NO6, 4504) NOPT3

SN 0171 WRITE (NO6, 4505) NOPT4

SN 0172 WRITE (NO6, 4505) NOPT4

SN 0174 WRITE (NO6, 4506) NOPT5

SN 0175 WRITE (NO6, 4506) NOPT5

SN 0176 WRITE (NO6, 4507) NOPT6

SN 0177 WRITE (NO6, 4507) NOPT6

SN 0178 WRITE (NO4, 4507) NOPT6

SN 0179 WRITE (NO4, 4507) NOPT6

IF(NOPT6 = 0) 600 GO TO 600

SN 0176 IF(NOPT6 = 0) 600 GO TO 600

SN 0177 601 GO TO 71

SN 0178 GO TO 1
I*N 0170 A0A CONTINUE
IFN 0180 ENDFILE 72
ISN 0191 STOP
ISN 0192 END
LEVEL 21.7 (JAN 73) 05/360 FORTRAN II

COMPILER OPTIONS — NAME = MAIN,OPT2,OPT3,LINECNT=58,SIZE=8000K,
SOURCE,EBCDIC,NOLIST,NOEDIT,LOAD,MAP,NOEDIT,NOFF

SUBROUTINE EC71(NOPT1,NCARD,NCONT,NOPT2,NOPT3,NOPTA,N30)
COMMON FX(400,114),JC(112),T(400),W(113),NERR(400),TERR(400)

THIS READ SECTION READS IR AND RAMAN DATA IN THE RANGE FROM
1 900 TO 500 CM-1. IT CONSIDERS BOTH THE IR AND THE RAMAN AS A
-SINGLET VECTOR, WHERE THE PARALLEL AND PERPENDICULAR RAMAN DATA
ARE AVAILABLE; THE PARALLEL SPECTRUM ONLY IS USED.

THE CLASS IS NOW READ AS PRESCRIBED BY OPTION 2 (NOPT2).

THE CLASS IS NOW READ AS PRESCRIBED BY OPTION 2 (NOPT2).

OMP2 = 1 THRU 17: CLASS 1 THRU 17
C NOP2 = 18: CLASSES 7,8,9 AND 10 (ALL HALOGENS)
C NOP2 = 19: CLASSES 8,9, AND 10 (F, BR AND I)
C NOP2 = 20: CLASSES 3,4 AND 5 (ALCOHOLS)
C. NOPT2 = 21 ; CLASSES 3,4,5 AND 16 (ALCOHOLS AND PHENOLS)

ISN 0023 1000 IF(NOPTP <EO. 15) GO TO 1081
ISN 0025 DD 1060 J=1,400
ISN 0024 READ(T1) JC(1)=1,17
ISN 0027 IF(NOPTP = 19) 1001,1002,1003
ISN 0524 1091 N = JC(NOPT2)
ISN 0724 GO TO 1050
ISN 0910 1092 N=JC(17) + JC(4) + JC(9) + JC(10)
ISN 0C31 GO TO 1050
ISN 0732 1093 IF(NOPTP=20) 1004,1005,1006
ISN 0913 1094 N=JC(4) + JC(9) + JC(10)
ISN 0574 GO TO 1050
ISN 0C34 1095 N=JC(3) + JC(4) + JC(5)
ISN 0734 GO TO 1050
ISN 0577 1096 N=JC(3) + JC(4) + JC(5) + JC(16)
ISN 0578 GO TO 1050
ISN 0579 1097 IF(N) 1060,1060,1061
ISN 0647 1098 CONTINUE
ISN 0P41 GO TO 1CP
ISN 0C42 1P91 CALL CLASS15
C.
C.
C.
C.
The following section sets Tin(I) to 9.0 if that
C compound is not to be used in the training set because
C option 3 or 4 has already been satisfied.
C.
C.
ISN 0043 1062 N10=0
ISN 0044 N20=0
ISN 0G45 N30=0
ISN 0P46 IF(NOPT3 =EO. 0) GO TO 4000
ISN 0G49 GO TO 3999,11,11,CONT
ISN 0H49 IF(1(11)3001,3001,3002
ISN 0P57 3101 IF(N5-NOPT3) 3100,3101,3101
ISN 0G51 3100 N20=N10+1
ISN 0G52 GO TO 3999
ISN 0P53 3101 Tin(I) = 9.0
ISN 0D49 N30=N30+1
ISN 0P55 GO TO 3999
ISN 0G56 3202 IF(N20-NOPT4) 3200,3201,3201
ISN 0G58 3200 N30=N30+1
ISN 0G59 3201 Tin(I) = 9.0
ISN 0G60 N30=N30+1
ISN 0G61 3999 CONTINUE
ISN 0P62 4000 N30=CONT-N30
ISN 0D63 RETURN
ISN 0D64 END
COMPILER OPTIONS — NAME=MAIN,OPT=02,LINECNT=58, SIZE=4000K,
SOURCE=EDCOIC,HULIST,NODECK,LOAD,MAP,NOEDIT,IO,NOXREF

SUBROUTINE NAME=NOPT1,NCARD,NOPT2,FIN,NSHUT,LEN,NOPT3,NOPT4,NOPT5,
INFO1

COMMON PX(100,114),JC(112),T(400) **(113),NERR(400),TERR(400)

C NOPT1 = 1: IR DATA ONLY
C NOPT1 = 2: RAMAN NONPOLARIZED DATA ONLY
C NOPT1 = 3: RAMAN PARALLEL DATA ONLY
C NOPT1 = 4: RAMAN PERPENDICULAR DATA ONLY
C NOPT1 = 5: IR PLUS RAMAN NONPOLARIZED DATA
C NOPT1 = 6: IR PLUS RAMAN POLARIZED (PARALLEL AND PERPENDICULAR)
C NOPT1 = 7: IR PLUS ALL RAMAN DATA
C NOPT1 = 8: ALL RAMAN DATA
C NOPT1 = 9: RAMAN PARALLEL + PERPENDICULAR
C
C NCARD IS THE NUMBER OF SPECTRA IN THE DECK.

C NOPT2 = 1 THRU 17: CLASS 1 THRU 17
C NOPT2 = 18: CLASSES 7, R, S AND 10 (ALL HALOSENS)
C NOPT2 = 19: CLASSES 8, 9, AND 10 (F, O, AND I)
C NOPT2 = 20: CLASSES 3a AND 5 (ALCOHOLS)
C NOPT2 = 21: CLASSES 3, 4, 5 AND 16
C
C FIN IS THE INITIAL VALUE OF THE VECTOR W(I) WHICH IS TO BE TRAINED.
C IF FIN IS 0.0, THE PROGRAM WILL READ AN INITIAL VECTOR FROM FILE 73; NOTE THAT IF THE PROGRAM IS TO BE USED IN THIS
C MODE THE APPROPRIATE FILE CARD TO DEFINE FILE 73 (READ73) MUST
C NOT BE USED.
C
C NSHUT LIMITS THE NUMBER OF ITERATIONS.

C LFN DETERMINES HOW OFTEN THE UNTRAINED VECTOR
C WILL BE PRINTED. IF LFN=10, THE UNTRAINED VECTOR WILL BE
C PRINTED EVERY 10TH ITERATION. IF LFN=1, THE UNTRAINED
C VECTOR WILL BE PRINTED AT EVERY ITERATION.

C NOPT3 = THE NUMBER OF SPECTRA NOT IN THE CLASS WHICH ARE TO BE
C INCLUDED IN THE DECK FOR TRAINING.
C NOPT4 = THE NUMBER OF SPECTRA IN THE CLASS WHICH ARE TO BE
C INCLUDIco IN THE DECK.
C IF NOPT3 = 00, THE PROGRAM WILL READ THE ENTIRE DATA DECK
C AND COUNT THE NUMBER OF SPECTRA IN THE CLASS AND THE NUMBER
C OF SPECTRA NOT IN THE CLASS.
C
C NOPT6 PERMITS A PART OF THE TRAINING VECTORS TO
C IF USED FOR THE TRAINING ROUTINE. IF NOPT6 IS 1, EVERY ELEMENT
C OF THE VECTOR WILL BE USED. IF, HOWEVER, NOPT6 EQUALS N,
C EVERY NH ELEMENT WILL BE USED FOR THE TRAINING ROUTINE.
C AFTEF THE PROGRAM TRAINS WITH EVERY NH ELEMENT BEING USED
C IT WRITES THE VECTOR ON THE DISK AND PLACES THE TRAINED ELEMENTS
C IN THE NH POSITIONS OF W(1) IMMEDIATELY TO THE RIGHT OF THE ELEMENT USED FOR
C TRAINING. THE PROGRAM THEN USES THIS NEW VECTOR AS THE STARTING VECTOR FOR
C THE WHOLE ROUTINE, IN THE EVENT THAT NHUT IS REACHED BEFORE ANY VECTOR
C IS TRAINED (EITHER USING EVERY ELEMENT OR EVERY NH ELEMENT). THE
C PROGRAM STOPS TRAINING AND CONTINUES WITH THE PARTIALLY TRAINED VECTOR.
C
C IF NHUT = 1OOO, THE PROGRAM WILL END
C IF, HOWEVER, NOPTS = 11111 THE PROGRAM WILL ZERO ALL MATRICES AND
C START OVER AGAIN. MORE DATA IS EXPECTED.
C
IS 0004 READ(999)NOPT1,NCARD,NOPT2,FIN,NSHUT,LEN,NOPT3,NOPT4,
IS 0005 INPUTS
IS 0006 FORMAT(999)NOPTS
IS 0007 FORMAT(14)
IS 0008 RETURN
IS 0009 END
THE FOLLOWING IS THE WRITE ALGORITHM:

C

IF (I-K)3 00.202*300 .

IF (I — K)3 00.202*300 .

WRITE(6,996)

WRITE(6,997)

WRITE(6,998)

WRITE(6,999)

WRITE(6,894)

WRITE(6,895)

WRITE(6,896)

WRITE(6,897)

WRITE(6,790)

WRITE(6,791)

WRITE(6,792)

WRITE(6,793)

WRITE(6,794)

WRITE(6,795)

WRITE(6,796)

WRITE(6,797)

WRITE(6,798)

WRITE(6,799)

WRITE(6,790)

WRITE(6,791)

WRITE(6,792)

WRITE(6,793)

WRITE(6,794)

WRITE(6,795)
ISN 0052 602 WRITE(6,807) (OUT(I,J),J=1,113)
ISN 0053 600 CONTINUE
ISN 0054 WRITE(6,909)
ISN 0055 WRITE(6,796)
ISN 0056 796 FORMAT(1H,12X,1H*,20(1X,1H*),19(3X,1H*))
ISN 0057 WRITE(6,795)
ISN 0058 795 FORMAT(1H,14X,1H*,7X,1H*,3(9X,1H*),3(9X,1H*),11X,1H*))
ISN 0059 WRITE(6,994)
ISN 0060 994 FORMAT(4)
ISN 0061 RETURN
ISN 0062 END
LEVEL 21.7 (JAN 73)

Compiler Options
- NAME: MAIN,OPT=02,LINECNT=58,SIZE=0000K
- SOURCE: ERDINC,NOLIST,N3DECK,LOAD=NAP,NOPDIST,10,NODEXREF

```fortran
COMMON FX(400:111),JC(112),TF(400),W(113),NEPR(400),TERR(400)

ISN 0002 SUBROUTINE UNPACK
ISN 0003 COMMON FX(400:111),JC(112),TF(400),W(113),NEPR(400),TERR(400)

ISN 0004 DIMENSION W(113)

ISN 0005 DO 1 I=1,113

ISN 0006 1 W(I) = W(I)

ISN 0007 DO 2 I=1,144

ISN 0008 2 W(I) = 0

ISN 0009 J=0

ISN 0010 DO 3 I=1,100

ISN 0011 J=J+1

ISN 0012 3 W(I) = W(J)

ISN 0013 DO 4 I=101,112

ISN 0014 4 W(I) = 0

ISN 0015 CALL PLOT

ISN 0016 J=56

ISN 0017 DO 5 I=56,100

ISN 0018 J=J+1

ISN 0019 5 W(I) = W(J)

ISN 0020 CALL PLOT

ISN 0021 DO 7 I=1,113

ISN 0022 7 W(I) = W(I)

ISN 0023 RETURN

ISN 0024 END
```
LEVEL 21+7 (JAN 73)

OS/360 FORTRAN H

COMPILER OPTIONS - NAME= MAIN,OPT=32,LINECNT=59,SIZE=8000K,
SOURCE,FBCDIC,NOFILE,NOLOAD,MAP,NOEDIT,NOREF

ISN 0002 SUBROUTINE CLASS15
ISN 0003 COMMON FX(400,114),JC(112),T(400),W(113),NERR(400),TERR(400)
ISN 0004 DO 10 I=160,174
ISN 0005 10 T(I) = I+0
ISN 0006 RETURN
ISN 0007 END
The output shown on the following pages was generated by program TRAIN from the three lines of input shown below. (Each space on the fortran card is shown by a dash.)

```
1 1117 20 +1.0000 100 200 177 22 1
0000
 2.0
```
The data have been read 10 times.
The following is the trained vector:

-0.44463 0.00073 -0.37861 -0.36825 -1.14669 -0.05555 0.25123 -0.69059 -1.27755 -0.40207
-0.38603 -0.22513 -0.53106 -0.01510 -0.78272 -2.35996 -0.02401 0.22525 0.30421 -1.40743
-0.25613 -0.87061 -0.52956 0.27117 -1.19552 -0.44860 0.00326 0.15155 -0.00935 -1.40902
-0.41746 0.44202 2.11059 2.41291 2.61166 1.23642 0.39444 -1.89485 -0.47185 -1.16293
0.13072 0.55187 0.16916 -0.37255 -0.35397 0.14132 1.31463 0.47219 -0.20140 1.24689
0.77279 1.45859 0.86057 -0.13755 0.85046 1.01151 0.64423 0.20154 -0.15637 0.51626
0.31239 1.30355 1.29963 0.46859 -0.20144 -0.43015 -0.94010 -1.03402 -1.43575 0.07842
0.29639 0.93576 -1.05090 0.46986 0.50012 -0.95333 -1.32729 -0.09421 -0.62407 0.25418
-2.21942 -0.61043 0.24954 0.52467 -0.62405 -0.39788 -0.21355 -0.33621 -0.07330 0.07126
0.02620 -1.39361 -0.52905 -2.04557 0.32950 -0.86659 1.76589 1.89221 1.92938 -1.13274
-0.05665 -1.65618 0.75414 -0.64107 0.59027 -1.22728 -1.02229 -0.37610 -0.53357 0.50579
-0.32441 0.42915 0.30108

The deck was composed of 177.01 88.94 percent) compounds not in the class, and
22.01 11.06 percent) in the class.
THE RANGE IS FROM 2.4409 TO -2.3996.
EACH DIVISION ON THE PLOT IS 0.10166 UNITS.
The options followed were the following:

OPTICK 1 = 1
OPTICK 2 = 20
OPTICK 3 = 177
OPTICK 4 = 22
OPTICK 6 = 1

Total number of spectra considered (NCARD) = 1107

Maximum number of iterations (NSHUT) = 100

The untrained vector was printed every 200th iteration

The initial value of the vector was (FIN) 1.0000
COMMON FX(400,114),JC(112),T(400),W(113),NERR(400),TERR(400)
DIMENSION CI(400)
N = 1
NOPT6 = 1
1
FNTJ = 0
FNT2=0
FNT4=0
IF(NOPT6 .EQ. 0) GO TO 2
IF(NOPT6 .EQ. 1) GO TO 2
N = 1
GO TO 3
2
DO I = 1,400
FNTJ = 0
DC N0OPT7 JT=1,114
DO 10 J = 1,114
CALL RESP(NOPT1,NCARD,NOPT2,FINT,NSHUT,LEN,NOPT3,NOPT4,NOPT5,NOPT6)
C
C NOPT7 IS EITHER 1 OR 2. 1 IF SUBROUTINE RE7I IS TO BE USED; ELSE 2.
C NOPTA GIVES THE POSITION ON THE FILE WHERE THE TEST VECTOR IS TO BE FOUND.
C NOPTA GIVES THE FILE NUMBER WHICH IS TO BE READ.*
C
C
READ(5,500) NOPT7,NOPT8,NOPT9
500 FOPVATCI4*X|4*2X*14)
M1=NOPT3
M2=NOPT4
GO TO (A,4),N0PT7
4
CALL RE7I(NOPT1,NCARD,NOPT2,NOPT3,NOPT4,NOPT5,NOPT6)
GO TO 6
5
CALL RE74(NOPT1,NCARD,NOPT2,NOPT3,NOPT4,NOPT5,NOPT6)
6
N = 2
3
DO K = 1,NOPTB
PF (D(NOPT1(W(I)*1*111)
10
FNTJ = FNTJ + 1
DO 30 I = 1,400
70
IF(I) = 20,20,30
7C
IF(I) = 21,21,25
21
FNTJ = FNTJ + 1
GO TO 100
25
FNT2 = FNT2 + 1
K=K+1
NPF(K) = FXK + 114)
TEEP(K) = T(K)
CI(K) = F
GO TO 100
30
IF(K) = 31,31,35
31
FNT3 = FNT3 + 1
K=K+1
NPF(K) = FXK + 114)
TEEP(K) = T(K)
CI(K) = F
GO TO 100
35
FNT4 = FNT4 + 1
100 CONTINUE
F1=FNT1
F2=FNT2
F3=FNT3
F4=FNT4
F5=FNT5

1000 CONTINUE

100 CONTINUE

END

SUBROUTINE PET1(NOPT1,NCOA,D,NCONT1,NOPT2,NCOA,D,NCONT2,NOPT3,NCOA,D,NCONT3,NOPT4,NCOA,D,NCONT4,N30)

C NCONT1 = 1 : IR DATA ONLY
C NOPT1 = 2 : RAMAN NONPOLARIZED DATA ONLY
C NOPT1 = 3 : RAMAN PARALLEL DATA ONLY
C NOPT1 = 4 : RAMAN PERPENDICULAR DATA ONLY
C NOPT1 = 5 : IR PLUS RAMAN NONPOLARIZED DATA
C NOPT1 = 6 : IR PLUS RAMAN POLARIZED (PARALLEL AND PERPENDICULAR)
C NOPT1 = 7 : IR PLUS ALL RAMAN DATA
C NOPT1 = 8 : ALL RAMAN DATA
C NOPT1 = 9 : RAMAN PARALLEL + PERPENDICULAR

NCONT4 = 0

GO TO (100,100,100,100,500,500,500,500,000,900) NOPT1

100 IF (NOPT1 .GE. 10) GO TO 100

READ(11) JCARD

READ(11) JC(1),JC(11),JC(111),JC(1111)

IF (NOPT1 .NE. 1) GO TO 101

101 NCONT2 = NCONT1

IF (NOPT1 .NE. 2) GO TO 102

102 IF (NCONT1 .EQ. JC(1)) IF (NCONT1 .EQ. JC(11)) = N1

GO TO 100

END

CONTINUE

GO TO 1000

500 GO TO 500

READ(11) JCARD

READ(11) JC(1),JC(11),JC(111),JC(1111)

IF (NOPT1 .NE. 1) GO TO 501

501 NCONT2 = NCONT1

IF (NOPT1 .NE. 2) GO TO 502

502 IF (NCONT1 .EQ. JC(1)) IF (NCONT1 .EQ. JC(11)) = N1

GO TO 500

510 GO TO (500,500,500,500,500,500,500,500,500,500) NOPT1

511 IF (NOPT1 .NE. 2) GO TO 513

512 FIX = JC(1)

513 FIX = NCONT1 = (FIX + NCONT1) / 2

GO TO 510

520 IF (NOPT1 .NE. 2) GO TO 521

521 NSKIP = NSKIP + 1

GO TO 522

522 FIX = JC(1)

523 IF (NCONT1 .EQ. NCONT1) GO TO 524

524 NSKIP = NCONT1 / 3

GO TO 520

530 FIX = JC(1)

531 FIX = NCONT1 = (FIX + NCONT1) / 2

GO TO 530

532 FIX = NCONT1 = (FIX + NCONT1) / 2

GO TO 530

533 FIX = NCONT1 = (FIX + NCONT1) / 2

GO TO 530

535 FIX = NCONT1 = (FIX + NCONT1) / 2
CONTINUE
GO TO 1000
800 DO 400 J=1,NCARD
PABLE(J) = W*2*(JC(J)+1) + 98
PINC(J) = W*2*(JC(J)+1) + 98
IF(J*2) = 99,99,99
401 DO 999 I=1,112
999 CONTINUE
GO TO 1000
900 DO 900 J=1,NCARD
PABLE(J) = W*2*(JC(J)+1) + 98
PINC(J) = W*2*(JC(J)+1) + 98
IF(J*2) = 99,99,99
901 NCINT=NCINT+1
902 DC 903 I=1,112
903 FIX=JC(J)
904 IF(JC(J)*2) = 99,99,99
910 DC 901 I=1,112
911 FIX=JC(J)
912 CONTINUE
C NINT2 = 1 THRU 17 : CLASS 1 THRU 17
C NINT2 = 19 : CLASSES 18 AND 10 (ALL HALOGENS)
C NINT2 = 29 : CLASSES 3,4 AND 5 (ALCOHOLS)
C NINT2 = 21 : CLASSES 3,4,5 AND 10
1000 CONTINUE
DC 1040 J=1,400
PINC(J) = W*2*(JC(J)+1) + 98
IF(JC(J)*2) = 19,1001,1002
1001 N=JC(NINT2)
GO TO 1050
1002 N=JC(J)+JC(J)+JC(J)+JC(J+10)
GO TO 1050
1003 IF(JC(J+10) = 20,1004,1005
1004 JC(J+10) = JC(J)+JC(J+10)
GO TO 1050
1005 JC(J+3) = JC(J)+JC(J)+JC(J)
GO TO 1050
1006 JC(J+3) = JC(J)+JC(J)+JC(J)+JC(J+10)
1050 FTEN
1060 CONTINUE
DP 2000 W*2+CONT
N=FX(1,113)
2000 FX(1,114)=FX(N)
DO 2001 I=1,CONT
T(I) = FX(I,114)
FX(1,114) = FX(I,114)
2001 FX(1,113) = 1
W*2+CONT
RETURN
END

SUBROUTINE PEB(NOPT1,NCARD,NDPT2,FIN,NSHUT,LEN,NOPT3,NOPT4,NOPTS)
COMMON FX(400,114),JC(112),T(400),W(113),NERR(400),TERR(400)
C
C NCPT1 = 1 : IR DATA ONLY
C NCPT1 = 2 : RAMAN NONPOLARIZED DATA ONLY
C NCPT1 = 3 : RAMAN PARALLEL DATA ONLY
C NCPT1 = 4 : RAMAN PERPENDICULAR DATA ONLY
C NCPT1 = 5 : IR PLUS RAMAN NONPOLARIZED DATA
C NCPT1 = 6 : IR PLUS RAMAN POLARIZED (PARALLEL AND PERPENDICULAR)
C NCPT1 = 7 : IR PLUS ALL RAMAN DATA
C NCPT1 = 8 : ALL RAMAN DATA
C NCPT1 = 9 : RAMAN PARALLEL + PERPENDICULAR
C
NCARD IS THE NUMBER OF SPECTRA IN THE DECK.
C
C NCPT2 = 0 : THRU 17 : CLASS 1 THRU 17
C NCPT2 = 19 : CLASSES 7,8,9 AND 10 (ALL HALOGENS)
C NCPT2 = 19 : CLASSES 9,10, AND 11 (P,Br AND I)
C NCPT2 = 20 : CLASSES 3,4 AND (SIALCOHOLS)
C NCPT2 = 21 : CLASSES 3,4,5 AND 16
C
C FIN IS THE INITIAL VALUE OF THE VECTOR W(I) WHICH IS TO BE TRAINED.
C IF FIN IS 0.0, THE PROGRAM WILL READ AN INITIAL VECTOR FROM FILE 73.
C NOTE THAT IF THE PROGRAM IS TO BE USED IN THIS MANNER THE APPROPRIATE FILE CARD TO DEFINE FILE 73 (DECK73) MUST BE USED.
C
C NSHUT LIMITS THE NUMBER OF ITERATIONS.
C
C LEN DETERMINES HOW OFTEN THE UNTRAINED VECTOR WILL BE PRINTED. IF LEN=0, THE UNTRAINED VECTOR WILL BE PRINTED EVERY 10TH ITERATION. IF LEN>0, THE UNTRAINED VECTOR WILL BE PRINTED AT EVERY ITERATION.
C
C NCPT1 = THE NUMBER OF SPECTRA NOT IN THE CLASS WHICH ARE TO BE INCLUDED IN THE DECK FOR TRAINING.
C NCPT2 = THE NUMBER OF SPECTRA IN THE CLASS WHICH ARE TO BE INCLUDED IN THE DECK.
C IF NCPT1 = 0, THE PROGRAM WILL READ THE ENTIRE DATA DECK AND PRINT THE NUMBER OF SPECTRA NOT IN THE CLASS.
C A READ ERROR WILL OCCUR IF THE PROGRAM IS INSTRUCTED TO READ MORE COMPOUNDS EITHER IN THE CLASS OR NOT IN THE CLASS THAN ACTUALLY EXIST IN THE DECK.
C
C IF NCPT1<50000, THE PROGRAM WILL END.
C IF NCPT1=500000, THE PROGRAM WILL ZERO ALL MATRICES AND START OVER AGAIN. MORE DATA IS EXPECTED.
C
READ*,999,NOPT1,NCARD,NDPT2,FIN,NSHUT,LEN,NOPT3,NOPT4
READ(5,998)NOPTS
999 FORMAT(14)
RETURN
END

SUBROUTINE PEB(NOPT1,NCARD,NCNT,NOPT2,NDPT3,NOPT4,NSN)
COMMON FX(400,114),JC(112),T(400),W(113),NERR(400),TERR(400)
NCONT = 0
DO 200 KXV = 1NCARD
READ(71) N1,N2,JCC(JC(I))
IF(N1 .GT. 1) GO TO 100
NCONT = NCONT + 1
DO 1 I = 1,56
J = I
101 IF(NCONT .EQ. JCC(J)) GO TO 200
J = J + 1
DO 101 I = 57,112
IF(N1 .EQ. JCC(J)) GO TO 100
J = J + 1
100 CONTINUE
1C00 CONTINUE
DO 1070 J = 1,400
READ(71) JCC(J)
IF(NOPT .EQ. 15) 1001,1002,1003
1001 N = JCC(NOPT2)
GO TO 1070
1002 N = JCC(JC(7)) + JCC(JC(8)) + JCC(JC(9)) + JCC(JC(10))
GO TO 1070
1003 IF(NOPT .EQ. 20) 1004,1005,1006
1004 N = JCC(JC(6)) + JCC(JC(9)) + JCC(JC(10))
GO TO 1070
1CCS N = JCC(JC(3)) + JCC(JC(4)) + JCC(JC(5))
GO TO 1070
1005 N = JCC(JC(7)) + JCC(JC(8)) + JCC(JC(9)) + JCC(JC(10))
1050 IF(NOPT .EQ. 15) 1060,1061
1060 CONTINUE
N20 = 0
RETURN
END
// THOR END
Subroutines RE71 and PLOT are not included in this listing. They were included in the listing of earlier programs.
COMMON FX(400,114),JC(112),TF(400),W(113)
DIMENSION W(113)
C IF N1 = 1, THE PROGRAM AVERAGES VECTORS.
C WHEN USED IN THIS MODE N2 EQUALS THE NUMBER OF VECTORS TO BE AVERAGED.
C N5 EQUALS 00 IF THE VECTOR CALCULATED (AVERAGED) IS NOT TO BE WRITTEN ON
C A DISK FILE.
C N3 AND N4 GIVE THE FILE NUMBER AND THE POSITION ON THE FILE TO BE READ.
C THERE SHOULD BE N2 CARDS SHOWING N3,N4 DATA.
C
C IF N1 EQUALS 2, THE PROGRAM WILL CALCULATE THE AVERAGE REPRESENTATION
C OF A VECTOR FOR A PARTICULAR CLASS.
C IF THE PROGRAM IS USED IN THIS MODE, N2 IS 00. N5 AGAIN IS 00 IF IT IS NOT
C DESIRED TO WRITE THE CALCULATED VECTOR ON A DISK FILE.
C IF THE PROGRAM IS USED WITH N2 SET AT 2 THE SECOND CARD MUST GIVE
C N0FT1,N0FT2,N0FT3, AND N0FT4.
C
C IF N1 IS 3 OR GREATER THE PROGRAM WILL HALT.
C
1003 DO 1001 I=1,400
T(I) = 0
1001 DO 1003 J=1,114
TF(I,J) = 0
1002 DO 1003 J=1,112
JC(I) = 0
W(I) = 0
1003 W(I+1) = 0
W(I+13) = 0
C, C, C
C N05 = 5
N06 = 6
READ(405,9999) N1,N2,N5
9999 FORMAT(2X,12,2X,12)
WRITE(405,9999) N1
9409 FORMAT(1X,THE VALUE OF N1 IS:*1X,14)
WRITE(405,9409) N1
9499 FORMAT(1X,THE VALUE OF N2 IS:*1X,14)
WRITE(405,9499) N2
9997 FORMAT(1X,IF NS >0, THE VECTOR WILL BE SAVFO. NS =:15)
WRITE(405,9997) N5
WRITE(405,9995) N3
WRITE(405,9995) N3
WRITE(405,9995) N3
9806 FORMAT(1X,IF N1 = 2) 1,100,1000
C, C, C
C, C
I
DO 3 J=1,N2
READ(405,9999) N3,N4
9948 FORMAT(2X,12,2X,12)
WRITE(405,9948) N3,N4
100 FORMAT(14,2X,14,2X,14,2X,14)
101 FORMAT(14,2X,14,2X,14,2X,14)
102 FORMAT(14,2X,14,2X,14,2X,14)
103 FORMAT(14,2X,14,2X,14,2X,14)
104 FORMAT(14,2X,14,2X,14,2X,14)
105 FORMAT(14,2X,14,2X,14,2X,14)
106 FORMAT(14,2X,14,2X,14,2X,14)
107 FORMAT(14,2X,14,2X,14,2X,14)
108 FORMAT(14,2X,14,2X,14,2X,14)
109 FORMAT(14,2X,14,2X,14,2X,14)
110 FORMAT(14,2X,14,2X,14,2X,14)
111 FORMAT(14,2X,14,2X,14,2X,14)
112 FORMAT(14,2X,14,2X,14,2X,14)
113 FORMAT(14,2X,14,2X,14,2X,14)
114 FORMAT(14,2X,14,2X,14,2X,14)
115 FORMAT(14,2X,14,2X,14,2X,14)
116 FORMAT(14,2X,14,2X,14,2X,14)
117 FORMAT(14,2X,14,2X,14,2X,14)
118 FORMAT(14,2X,14,2X,14,2X,14)
119 FORMAT(14,2X,14,2X,14,2X,14)
120 FORMAT(14,2X,14,2X,14,2X,14)
121 FORMAT(14,2X,14,2X,14,2X,14)
122 FORMAT(14,2X,14,2X,14,2X,14)
123 FORMAT(14,2X,14,2X,14,2X,14)
124 FORMAT(14,2X,14,2X,14,2X,14)
125 FORMAT(14,2X,14,2X,14,2X,14)
126 FORMAT(14,2X,14,2X,14,2X,14)
127 FORMAT(14,2X,14,2X,14,2X,14)
128 FORMAT(14,2X,14,2X,14,2X,14)
129 FORMAT(14,2X,14,2X,14,2X,14)
130 FORMAT(14,2X,14,2X,14,2X,14)
131 FORMAT(14,2X,14,2X,14,2X,14)
132 FORMAT(14,2X,14,2X,14,2X,14)
133 FORMAT(14,2X,14,2X,14,2X,14)
134 FORMAT(14,2X,14,2X,14,2X,14)
135 FORMAT(14,2X,14,2X,14,2X,14)
136 FORMAT(14,2X,14,2X,14,2X,14)
137 FORMAT(14,2X,14,2X,14,2X,14)
138 FORMAT(14,2X,14,2X,14,2X,14)
139 FORMAT(14,2X,14,2X,14,2X,14)
140 FORMAT(14,2X,14,2X,14,2X,14)
141 FORMAT(14,2X,14,2X,14,2X,14)
142 FORMAT(14,2X,14,2X,14,2X,14)
143 FORMAT(14,2X,14,2X,14,2X,14)
144 FORMAT(14,2X,14,2X,14,2X,14)
145 FORMAT(14,2X,14,2X,14,2X,14)
146 FORMAT(14,2X,14,2X,14,2X,14)
147 FORMAT(14,2X,14,2X,14,2X,14)
148 FORMAT(14,2X,14,2X,14,2X,14)
149 FORMAT(14,2X,14,2X,14,2X,14)
150 FORMAT(14,2X,14,2X,14,2X,14)
151 FORMAT(14,2X,14,2X,14,2X,14)
152 FORMAT(14,2X,14,2X,14,2X,14)
153 FORMAT(14,2X,14,2X,14,2X,14)
154 FORMAT(14,2X,14,2X,14,2X,14)
155 FORMAT(14,2X,14,2X,14,2X,14)
156 FORMAT(14,2X,14,2X,14,2X,14)
157 FORMAT(14,2X,14,2X,14,2X,14)
158 FORMAT(14,2X,14,2X,14,2X,14)
159 FORMAT(14,2X,14,2X,14,2X,14)
160 FORMAT(14,2X,14,2X,14,2X,14)
161 FORMAT(14,2X,14,2X,14,2X,14)
162 FORMAT(14,2X,14,2X,14,2X,14)
163 FORMAT(14,2X,14,2X,14,2X,14)
164 FORMAT(14,2X,14,2X,14,2X,14)
165 FORMAT(14,2X,14,2X,14,2X,14)
166 FORMAT(14,2X,14,2X,14,2X,14)
167 FORMAT(14,2X,14,2X,14,2X,14)
168 FORMAT(14,2X,14,2X,14,2X,14)
169 FORMAT(14,2X,14,2X,14,2X,14)
170 FORMAT(14,2X,14,2X,14,2X,14)
171 FORMAT(14,2X,14,2X,14,2X,14)
172 FORMAT(14,2X,14,2X,14,2X,14)
173 FORMAT(14,2X,14,2X,14,2X,14)
174 FORMAT(14,2X,14,2X,14,2X,14)
175 FORMAT(14,2X,14,2X,14,2X,14)
176 FORMAT(14,2X,14,2X,14,2X,14)
177 FORMAT(14,2X,14,2X,14,2X,14)
178 FORMAT(14,2X,14,2X,14,2X,14)
179 FORMAT(14,2X,14,2X,14,2X,14)
180 FORMAT(14,2X,14,2X,14,2X,14)
181 FORMAT(14,2X,14,2X,14,2X,14)
182 FORMAT(14,2X,14,2X,14,2X,14)
183 FORMAT(14,2X,14,2X,14,2X,14)
184 FORMAT(14,2X,14,2X,14,2X,14)
185 FORMAT(14,2X,14,2X,14,2X,14)
186 FORMAT(14,2X,14,2X,14,2X,14)
187 FORMAT(14,2X,14,2X,14,2X,14)
188 FORMAT(14,2X,14,2X,14,2X,14)
189 FORMAT(14,2X,14,2X,14,2X,14)
190 FORMAT(14,2X,14,2X,14,2X,14)
SIMPLE AVERAGE REPRESENTATIONS

and

MUTED AVERAGE REPRESENTATIONS
ESTERS
Simple Average Representation
Raman Parallel Polarized
ESTERS
Simple Average Representation
Raman Perpendicularly Polarized
ESTERS
Muted Average Representation
Raman Parallel Polarized
KETONES
Simple Average Representation
Raman Parallel Polarized
KETONES

Muted Average Representation

Raman Perpendicularly Polarized
DOUBLE BONDS

Simple Average Representation

Infrared
DOUBLE BONDS
Simple Average Representation
Raman Parallel Polarized
DOUBLE BONDS
Simple Average Representation
Raman Perpendicularly Polarized
DOUBLE BONDS
Mutated Average Representation
Infrared
DOUBLE BONDS
Muted Average Representation
Raman Parallel Polarized
ETHERS
Simple Average Representation
Infrared
ETHERS
Simple Average Representation
Raman Parallel Polarized
PLEASE NOTE: p.213

This page not included in material received from the Graduate School. Filmed as received.

UNIVERSITY MICROFILMS
ETHERS
Simple Average Representation
Raman Perpendicularly Polarized
ETHERS
Muted Average Representation
Raman Perpendicularly Polarized
ALCOHOLS

Simple Average Representation

Infrared
ALCOHOLS

Simple Average Representation

Raman Parallel Polarized
PRIMARY ALCOHOLS

Simple Average Representation

Infrared
PRIMARY ALCOHOLS

Simple Average Representation

Raman Parallel Polarized
PRIMARY ALCOHOLS

Simple Average Representation

Raman Perpendicularly Polarized
PRIMARY ALCOHOLS

Muted Average Representation

Infrared
PRIMARY ALCOHOLS

Muted Average Representation

Raman Perpendicularly Polarized
SECONDARY ALCOHOLS

Simple Average Representation

Infrared
SECONDARY ALCOHOLS

Simple Average Representation

Raman Parallel Polarized
SECONDARY ALCOHOLS

Muted Average Representation

Raman Perpendicularly Polarized
VITA

The author was born in ,

He graduated from Northeast Catholic High School, and received the Bachelor of Science degree in Chemistry from Niagara University, graduating Summa Cum Laude.

In 1967 he married Marie A. Grove of Trenton, New Jersey and they now have four children.

In 1970 he received the Master of Science degree from Newark College of Engineering studying under the guidance of Dr. Howard Kimmel and Dr. William H. Snyder. His doctoral dissertation was also done under Dr. Kimmel, while Dr. Snyder served as one of the members of his advisory committee.

Since 1966 the author has been employed by Personal Products Company, one of the Johnson and Johnson Family of Companies, and it was they who funded the entire graduate program and provided the sabbatical year to fulfill the residence requirement.