New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

Spring 5-31-1990

Experimental evaluation of process zone deformation in concrete

Cherng-Maou Meng New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Civil Engineering Commons

Recommended Citation

Meng, Cherng-Maou, "Experimental evaluation of process zone deformation in concrete" (1990). *Theses*. 1347.

https://digitalcommons.njit.edu/theses/1347

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ℓ) experimental evaluation

 \mathbf{OF}

PROCESS ZONE DEFORMATION

IN CONCRETE

BY |) CHERNG-MAOU MENG

Thesis submitted to the faculty of the graduate school of the New Jersey Institute of Technology in partial fullfillment of the requirements for the degree of Master of Science in Civil Engineering Title of Thesis : Experimental Evaluation of Process Zone Deformation In Concrete

Name of Candidate : Cherng-Maou Meng Master of Science in Civil Engineering , 1990 Thesis and Abstract approved by :

Date

Farhad Ansari, Ph.D. Associate Professor

Department of Civil and Environmental Engineering

Date

Signature of other Member of the Thesis Committee Name : Cherng-Maou Meng

Degree & Date : Master of Science in Civil Engineering 1990

Secondary education : Tsi-Shiu High School

Collegiate Institute Date Degree Date Graduated

Tamkang University 1982-1986 B.S. Civil Eng. June , 1986

New Jersey Institute 1988-1900 M.S. Civil Eng. May , 1990 of Technology

Major : Structure Engineering

Position Held :

1989-1990 : Teaching Assistant at NJIT , NJ 1990-Present : Junior Structure Engineer , Formosa Plastics CO. USA , NJ U.S.A.

ABSTRACT

Title of thesis : Experimental Evaluation of Process Zone Deformation in Concrete

Name: Cherng-Maou Meng Master of Science in Civil Engineering

Thesis directed by : Dr. Farhad Ansari

Concrete structures are often subjected to a variety of loading conditions. Under ultimate load design , concrete structures can resist these loads without evident deformation. However , under service , tension cracks will develop and depending on their location , they may impair load carrying capacity.

It is generally believed that microcrack development is preceeded by formation of a relatively long microcracked region. A large number of studies have indicated that due to formation of this process zone (microcracked zone) , Linear Elastic Fracture Mechanics (LEFM) principles are not applicable to concrete. However , a number of nonlinear models can be developed if the length of this zone can be determined. Determination of process zone length is a difficult experimental problem , mainly due to difficulties involved in accurate detection of microcracks during loading in a typical experiment. Furthermore , as some recent studies indicate , surface microcracks progress further than their internal counterparts. Determination of internal deformations and microcracks are even more challenging than the mere surface flaw detection mentioned earlier. Survey of technical literature indicate , inexistence of an accurate internal deformation measuring technique for concrete.

In the present study , a new technique is developed for measurement of internal deformation in cementitious composites. main emphasis is given to the development of the technique , and measurement of deformations in the process zone. Results from experiments on compact tension , and three point bend specimen are presented.

 \bigcirc \langle

ACKNOWLEDGEMENTS

The author wishes to acknowledge the help of the following persons who contributed to this research in a variety of ways :

To Dr. Farhad Ansari , my graduate advisor , for his valuable guidance throughout the entire project. To Mr. Quij Chen , for his help in doing fiber optics.

TABLE OF CONTENTS

Chap	Page Page
I.	Introduction and Research objectives1
II.	Experimental Program4
	II.1 Experimental Investigation4
	II.2 Methodology4
	II.3 Fiber Optics Crack Opening Displacement (COD)
	Gage 6
	II.4 Instrumentation and Calibration
	II.4.1 Sensor Intrumentation and Calibration9
	II.4.2 Closed Loop Testing and Data Acquisition13
	II.5 Details of Test Specimen
	II.6 Experimental procedure
III	. Analysis and Result

IV.	Concl	lusion	••••	* * * * *	* * * *		.	• • • •	 	• • •		• • •	• • •	.137
	IV.1	Conclu	sion	• • • • •	* * * * *		• • • •		 	* * *		• • •	* * * '	.137
	IV.2	Future	Rese	arch	* * * *		* * * *	* * * *	 	• • •	• • •	* • •	• • • .	138
Appe	ndix	Α		••••		• • • •	• • • •		 ••	* • •		• • •	•••	139

LIST OF TABLE

Table						Page
Table	1	 Specimen	types	and	designation	

LIST OF FIGURES

Figure Page
Fig.1 - Basic for light transmission in optical fibers5
Fig.2 - Light loss in the optical fiber due to deformation7
Fig.3 - Plan view of fiber optic COD gage9
Fig.4 - Block diagram of fiber optic sensor operations10
Fig.5 - Plan view of the calibration instrument12
Fig.6 - Calibration data for channel#114
Fig.7 - Calibration data for channel#115
Fig.8 - Calibration data for channel#1
Fig.9 - Lower range cali. curve for channel#1
Fig.10 - Calibration data for channel#218
Fig.11 - Calibration data for channel#2
Fig.12 - Calibration data for channel#220
Fig.13 - Lower range cali. curve for channel#221
Fig.14 - Calibration data for channel#322
Fig.15 - Calibration data for channel#323
Fig.16 - Calibration data for channel#324
Fig.17 - Lower range cali. curve for channel#325
Fig.18 - Calibration data for channel#426
Fig.19 - Calibration data for channel#427
Fig.20 - Calibration data for channel#428

Fig.21 -	Lower range cali. curve for channel#429
Fig.22 -	Block diagram of experimental setup
Fig.23.1	- Compact tension specimen and location of sensors
Fig.23.2	- Three point bend specimen and location of specimen
Fig.23.3	- Compact tension specimen in the loading fram
Fig.23.4	- Three point bend specimen in the loading frame and the optical setup
Fig.24 -	Internal deformation data for J3140
Fig.25 -	Internal deformation data for J3141
Fig.26 -	Internal deformation data for J3142
Fig.27 -	Internal deformation data for J3143
Fig.28 -	Internal deformation data for F244
Fig.29 -	Internal deformation data for F245
Fig.30 -	Internal deformation data for F246
Fig.31 -	Internal deformation data for F247
Fig.32 -	Internal deformation data for F3#248
Fig.33 -	Internal deformation data for F3#249
Fig.34 -	Internal deformation data for F3#250
Fig.35 -	Internal deformation data for F3#251
Fig.36 -	Internal deformation data for F852
Fig.37 -	Internal deformation data for F853
Fig.38 -	Internal deformation data for F854
Fig.39 -	Internal deformation data for F855
Fig.40 -	Internal deformation data for F1056
Fig.41 -	Internal deformation data for F1057
Fig.42 -	Internal deformation data for F10

Fig.43		Internal	deformation	data	for	F10	
Fig.44	-	Internal	deformation	data	for	F11	
Fig.45	-	Internal	deformation	data	for	F11	61
Fig.46	-	Internal	deformation	data	for	F11	62
Fig.47	-	Internal	deformation	data	for	F11	63
Fig.48	-	Internal	deformation	data	for	F12	64
Fig.49		Internal	deformation	data	for	F12	65
Fig.50	-	Internal	deformation	data	for	F12	
Fig.51		Internal	deformation	data	for	F12	67
Fig.52	-	Internal	deformation	data	for	F19A	68
Fig.53	-	Internal	deformation	data	for	F19A	
Fig.54	-	Internal	deformation	data	for	F19A	70
Fig.55		Internal	deformation	data	for	F19A	
Fig.56		Internal	deformation	data	for	F19B	72
Fig.57		Internal	deformation	data	for	F19B	73
Fig.58	-	Internal	deformation	data	for	F19B	74
Fig.59	-	Internal	deformation	data	for	F19B	
Fig.60	-	Internal	deformation	data	for	F19C	76
Fig.61		Internal	deformation	data	for	F19C	77
Fig.62	-	Internal	deformation	data	for	F19C	
Fig.63	-	Internal	deformation	data	for	F19C	
Fig.64		Internal	deformation	data	for	F19D	
Fig.65	-	Internal	deformation	data	for	F19D	81
Fig.66		Internal	deformation	data	for	F19D	
Fig.67		Internal	deformation	data	for	F19D	83
Fig.68	-	Internal	deformation	data	for	F28A	
Fig.69	-	Internal	deformation	data	for	F28A	

Fig.70		Internal	deformation	data for F28A86
Fig.71	-	Internal	deformation	data for F28A87
Fig.72	-	Internal	deformation	data for F28B88
Fig.73	-	Internal	deformation	data for F28B89
Fig.74	-	Internal	deformation	data for F28B90
Fig.75		Internal	deformation	data for F28B91
Fig.76	-	Internal	deformation	data for F28C92
Fig.77		Internal	deformation	data for F28C93
Fig.78	-	Internal	deformation	data for F28C94
Fig.79	-	Internal	deformation	data for F28C95
Fig.80		Internal	deformation	data for MIA96
Fig.81	-	Internal	deformation	data for MIA97
Fig.82	-	Internal	deformation	data for MIA98
Fig.83	-	Internal	deformation	data for MIA99
Fig.84	-	Internal	deformation	data for M1B100
Fig.85	-	Internal	deformation	data for M1B101
Fig.86	-	Internal	deformation	data for M1B102
Fig.87	-	Internal	deformation	data for M1B103
Fig.88	-	Internal	deformation	for J31104
Fig.89	-	Internal	deformation	for F2105
Fig.90	-	Internal	deformation	for F3#2106
Fig.91	-	Internal	deformation	for F8107
Fig.92	-	Internal	deformation	for F11108
Fig.93	-	Internal	deformation	for F12109
Fig.94	-	Internal	deformation	for F19B110
Fig.95	-	Internal	deformation	for F19Dll1
Fig.96	-	Internal	deformation	for F28A112

Fig.97 - Internal deformation for F280	C113
Fig.98 - Internal deformation for MIA	
Fig.99 - Internal deformation for MIB	
Fig.100 - Defor. pattern at diff. load	d F2117
Fig.101 - Defor. pattern at diff. load	d F8118
Fig.102 - Defor. pattern at diff. load	d F11119
Fig.103 - Defor. pattern at diff. load	d F12120
Fig.104 - Defor. pattern at diff. load	d F19B121
Fig.105 - Defor. pattern at diff. load	d F19D122
Fig.106 - Defor. pattern at diff. load	d F28A123
Fig.107 - Defor. pattern at diff. load	d F28C124
Fig.108 - Defor. pattern at diff. load	d M1A125
Fig.109 - Defor. pattern at diff. load	d M1B126
Fig.110 - Defor. pattern without COD 1	F2127
Fig.111 - Defor. pattern without COD 1	F8128
Fig.112 - Defor. pattern without COD 1	F11129
Fig.113 - Defor. pattern without COD 1	F12130
Fig.114 - Defor. pattern without COD H	F19B131
Fig.115 - Defor. pattern without COD 1	F19D132
Fig.116 - Defor. pattern without COD 1	F28A133
Fig.117 - Defor. pattern without COD 1	F28C134
Fig.118 - Defor. pattern without COD M	M1A135
Fig.119 - Defor. pattern without COD N	M1B136

CHAPTER I Introduction and Research Objectives

Formation and growth of microcracks play an important role in the performance of plain , reinforced , and prestressed concrete. For instance , cracking of concrete in tension is a significant factor contributing to the nonliner behavior of reinforced concrete. Therefore , logical design concepts ought to be based on realistic theoretical models that take crack formation and propagation into account. Recent advances in fracture mechanics and application of numerical methods have given possibilities for the establishment of realistic models for concrete fracture 1^{-2} . It is recognized that fracture toughness of concrete can not be evaluated using linear elastic fracture mechanics unless proper modifications are applied. Studies on the fracture behavior of concrete reveal some fracture characteristics that differ from those normally observed in metallic materials 3^{-6} . Among these characteristics is the existence of a microcracking zone or process zone at the tip of an advancing crack. Since the process zone is believed to be relatively large in concrete, calculation of fracture parameters should include the effects of this zone. Lack of data on the experimentally observed zone of microcracking , the COD-crack growth relationship , and the inelastic behavior has forced the investigators to make assumptions pertaining to process zone. The determination of the fracture process zone in concrete is a difficult

experimental problem , because the resulting deformation is strongly localized. The extent of the crack tip at the crack front and the location for the tip of the advancing microcrack that forms that zone is almost impossible to detect.

Dugale-Barrenblatt model⁷⁻⁸ for modeling metal fracture in the presence of large scale yielding has been extensively applied to concrete treating the fracture process zone as the strip yield zone⁹⁻¹⁰. Assumptions regarding the crack length and crack opening resistance of the fracture process zone were all different in above-mentioned models. Bazant¹¹ developed a nonlinear fracture concept , modeling the fracture process zone extension through nonlinear programming. In another report¹⁰ , double clip-on gage technique was used to infer the location of the process zone in crack-line wedge-loaded double cantilever beams. In a simplified model proposed by Jenq and Shah a closing pressure of zero was assumed as a starting value in the interactive solution that adjusted the effective crack length to yield the value of CMOD from the experiments.

Inconsistency of results reported by many investigators and comparison of their approach in order to model fracture behavior of concrete suggest the nonlinear effects associated with crack propagation in concrete as the major source of inconsistency. Values reported in the technical literature for fracture toughness vary widely even for essentially similar materials depending on the size of the

test specimen^{3,11-13}. The primary reason for the discrepancy in the reported values is the effect of microcracking zone or fracture process zone ahead of the crack tip. Microcracking zone is also responsible for the slow crack growth in concrete. One impractical way to evaluate a size independent fracture toughness for concrete is to test very large specimen so that the uncracked portion of the segment in front of the crack is much larger than the fracture process zone. The alternative approach would be to test practical size specimen and develop an experimental technique such that information regarding the localized displacement field in front of the moving crack and the extent of microcracks can be determined. Once this information is acquired , then the effect of fracture process zone can be introduced in the numerical modeling with the least number of simplified assumption.

Based on above considerations , the main objective of the research reported here is to develop an experimental technique for direct full field measurement of internal deformations and microcrack widths in the process zone of concrete specimen.

CHAPTER II EXPERIMENTAL PROGRAM

II.1 Experimental Investigation

Microcracking is the essential aspect of the fracture process zone in concrete , therefore , there is a need for a testing technique that would be accurate enough to detect and measure the displacement associated with microcracks. Moreover , it is very important to make internal measurement of the deformation associated with microcracking in order to distinguish in between the structural and nonstructural development of microcracks , such as the surface microcracks developed due to shrinkage at the hydration stage.

II.2 Methodology

Transmission of light through optical fibers can be explained by the Snell's law and the concept of total internal reflection. According to Fig.1, when light travels from the fiber core that has a high refractive index into the cladding with a lower index, the lightwave totally reflects back into the core. This is true, provided that the diameter of the core is chosen so as to force the lightwave to propagate according to a certain critical angle of incidence. However, if the fiber is stretched or bent at any point along it's length, the change in the angle of incidence will cause some of the light to escape out through

the cladding (Fig.2). The intensity of light at the output end of the fiber will decrease due to this loss , and it can be directly related to the amount of deformation if properly calibrated. Employing light intensity loss sensors in structural applications is simple since these sensors make use of modulation schemes which perturb the fiber itself , so that the fiber is both the transmission medium and the transducer. In other words , a thin optical fiber is all that is needed for embedment within a concrete member.

II.3 Fiber Optic Crack Opening Displacement (COD) Gage

Practical application of fiber optics to displacement measurements , particularly to COD measurements in concrete require special arrangement for placement of the optical fiber within the concrete , as well as attainment of sufficient sensitivity in measurements. The arrangement shown in Fig.3 provides optimum configuration of the fiber optics for COD measurements. It also satisfies the sensitivity requirements as bending of an optical fiber will result in increased light intensity loss through mode coupling. In other words , the microbending of an optical fiber , steepens the angle of light incidence at the corecladding interface which in turn brings about increased light intensity loss.

Fig. 2 Light loss in the optical filter due to deformation.

Fig.3 Plan View of Fiber Optic COD Gage

II.4 Instrumentation and Calibration

Progress of the microcracking zone was monitored by using four fiber optic COD sensors within the uncracked ligament for which details will be given in a later section. Experiments were performed in a closed loop mechanical testing machine so as to provide the capability of monitoring the descending branch of load-displacement relationship. Details in regard to various instrumentation techniques in performing the experiments , and acquiring pertinent data are given in the following subsections.

II.4.1 Sensor Intrumentation and Calibration

Instrumentation , specific to the operation of the fiber optic sensor are outlined in Fig.4. A 25 mW Helium-Neon laser source provide the input light source. At the coupler stage , light is divided into four equal divisions for use with four sensors. As explained earlier , in a particular sensor , the light output will decrease in proportion to the amount of displacement. This output is detected by a photodiode that in turn is amplified at the amplifier stage. At this point , data is converted to digital signals through a multichannel data acquisition board , and is transferred to a microcomputer.

Conversion of light intensity data (in Volts) to appropriate displacement values ,i.e. in milli-inch units ,

Fig.4 Block diagram of Fiber Optic Sensor operations 10

is accomplished through calibration. A calibration instrument is specifically designed for the fiber optic sensor (Fig.5). Calibration of the sensor is performed according to the following steps :

- 1) Fiber optic is wrapped around a disjoining cylinder whose diameter is 1.25 inchs (Fig.5). A groove is provided on the cylinder so as to facilitate fastening of the fiber optic into a perfect circle of 1.25 diameter. This is an important stage in the procedure , since variations in diameter result in inaccurate calibration^s.
- 2) Stretch the fiber in a straight position by the motorized positioner. Hold it in position by an adhesive tape.
- Use an epoxy to glue the fiber to the disjoining cylinder.
- 4) Once the epoxy is hardened (after 60 minutes), apply another half inch of cement paste on top of the epoxy to insure perfect bonding.
- 5) Once cement is hardened (after 24 hours) , the fiber ends are connected to the laser source and the photodiode.
- 6) Amplifier's output is adjusted to six volts , and the output sensitivity is checked.
- 7) LVDT's core is adjusted to a halfway position.
- 8) Data acquisition rate is set at twenty Hertz for a period of ten seconds , and the computer is initialized.
- 9) At this point , the motorized positioner is turned on to separate the disjoining cylinder , and as a result , create loss in the intensity of input light due to

Fig.5 Plan View of The Calibration Instrument

separation of the cylinder halves.

10) By design , the LVDT core and the two halves of the cylinder displace identically , and therefore the light intensity loss measurements can be directly related to the opening of the cylinder halves.

Calibration results obtained in this way are automatically stored in the microcomputer via the data acquisition system. each of the four sensors were calibrated individually , and results are shown in Fig.6 thru Fig.21. A calibration constant relating the loss in the intensity of light to the displacement for each of the sensors can be obtained from the slope of Figs.8 , 12 , 16 , and 20. The calibration constants calculated in this way are : <u>34.4575volts/in.</u> , <u>50.6821volts/in.</u> , <u>75.43volts/in.</u> , and <u>67.245volts/in.</u> for channel 1 thru 4 respectively.

II.4.2 Closed Loop testing and Data acquisition

It is essential to study the prepeak response as well as post peak softening behavior of concrete. Therefore , specimen were tested in a screw-driven microcomputer-based closed loop testing system. An Apple II microcomputer was employed in generating testing program signals (Fig.22). The system is capable of controlling the movement of optical components as well as providing closed-loop feedback control for loading of specimen so as to maintain a constant rate of increase in the deformation of specimens. details regarding

Fig.9 Lower range call. curve for CH.1

Fig.18 Callbration data for channel#4

the design and fabrication of the system are given elsewhere¹⁴. Feedback signal for loading was provided by an LVDT at the precast notch mouth. In other words , for both the three point bend and the compact tension specimen , COD was used as a feedback signal. A second LVDT was employed for measuring the Load Point Deformation. Calibration data for these LVDT's are given as :

LVDT for COD measurements : 1 inch = 33.87 volts. LVDT for LPD measurements : 1 inch = 35.7 volts.

As mentioned earlier , four optical sensors were embeded in each specimen through equal division of laser light source by a coupler as shown in Fig.22. A data acquisition program , DASH-16 was modified by BASIC programming and employed for data handling from seven channels. Data acquisition channels included , load , two LVDT's , and four fiber optic sensors. Program modification was performed through a BASIC program , MENG.BAS , that will be given in detail in the Appendix. Sampling rate was set at 20 HZ , for 25 minutes. a total of 30,000 data points were acquired per specimen.

II.5 Details of test specimen

A mix proportion of 1:2:2:0.55 , by weight of cement : sand : gravel : water was employed. Type III portland cement conforming to ASTM c 150 , ASTM NO.2 grade river sand passing through sieve NO.8 , maximum coarse aggregate size

31

passing 0.375 inch (9.5mm) and retained on NO.4 sieve was used. Specimen were cast in plexiglass molds. Freshly cast specimens were left at room temperature for 24 hours. They were then demolded and air-dried before testing. Average age of specimen at testing time ranged between 21 to 30 days. Specimen geometry and location of sensors are shown in Fig.23.1 and 23.2. Fig.23.3 and Fig.23.4 depict the compact tension and the three point bend specimen with associated optical setup in the loading frame respectively.

II.6 Experimental procedure

Beams were tested under three point load and Compact Tension specimen were tested under direct tension in a testing frame on a vibration isolated table. Experiments were monitored from an adjacent room employing a microcomputer as discussed earlier. Following are steps taken during testing :

- Load "MCCLSS" program into microcomputer(Apple II) , which is a program for closed-loop system.
- 2, Place the specimen into the load machine very carefully, and connect the laser to the corresponding channels, and then connect the other ends of the fiber sensor to the amplifier.
- 3, Turn on the microcomputer (IBM) for data acquisition. Load "LABTECH", data acquisition software for checking

32

ł

I.

1

1

Į.

Fig.23.1 Compact tension specimen and location of sensors

Fig.23.2 Three point bend specimen and location of sensors

Fig.23.3 Compact tension specimen in the

Fig.23.4 Three point bend specimen in the loading frame and the optical setup proper operation of all the channels.

- 4, Load "DASH-16" and "MENG.BAS" into micro-computer for data acquisition .
- 5, Following steps are required for zero adjustment of the closed-loop testing system :
 - (a), Loosen the drive belt in order not to damage the specimen.
 - (b), Adjust the LVDT at the crack mouth for zero adjustment.
 - (c), Adjust the load controlling switch so as to get the exact zero point on the specimen.
- 6, Use "MCCLSS" to set all the required parameters into the program in order to operate the testing system.(While doing compact tension specimen use an exposure time of 0.09 min., for BEAM tests use 0.2 min..)
- 7, Run "MENG.BAS" in the IBM microcomputer for data acquisition.
- 8, After the test turn off all system.

CHAPTER III Analysis and Results

This chapter presents experimental results , their analysis and a discussion of observed trend. As shown in Table 1, sixteen concrete specimens were tested. Seven specimens were tested under tension and the rest were tested under three point load.

Experimental data acquired by the computer , representing load , load point displacement , COD , and the four sensor outputs are given in direct data acquisition voltage units in Figs.24 thru 87.

These figures represent raw experimental data. Program CHAN.FOR , DEF.FOR , and TOT.FOR that are explained in detailed in the Appendix and the HARVARD GRAPHICS software were employed to convert the raw data into corresponding load , COD , LVDT , and deformation values.

Load versus corresponding COD , LPD , and internal deformations are shown in Figs.88 thru 99.

Experimental results indicated that specimen F2 , F8 , F11 , F12 , F19D , F28A , M1A , and M1B showed consistent results , whereas , the rest of the specimen did not provide good results. These bad results were due to either deficiencies in the specimen such as damages due to precast notch , or fracture of the compact tension arms prior to the completion of tests. Experimental data indicates that in

CONCRETE SPECIMEN		
NUMBER	NAME	TYPE
1	J31	CT
2	F2	СТ
З	F3#2	CŤ
4	F8	CT
5	F10	CT
6	F11	CT
7	F12	CT
8	F19A	Beam
9	F19B	BEAM
10	F19C	BEAM
11	F19D	BEAM
12	FZBA	BEAM
13	F28B	BEAM
14	F28C	BEAM
15	Mla	Beam
16	MLE	BEAM

Fig.28 Internal deformation data for F2

Fig.36 Internal deformation data for F8

Fig.37 Internal deformation data for F8

3.41 Internal deformation data for F10

ig.42 internal deformation data for F10

1g.43 internal deformation data for F10

Fig.44 internal deformation data for F11

Fig.46 Internal deformation data for F11

Fig. 61 internal deformation data for F12

Fig.63 Internal deformation data for F19A

Fig.60 Internal deformation data for F19C

Fig. 61 internal deformation data for F19C

Fig.63 Internal deformation data for 3C

--- CHANNEL3

Fig.73 internal deformation data for F28B

Fig.74 Internal deformation data for F28B

Fig.76 Internal deformation data ForF28C

Ē

Fig.85 Internal deformation date

Fig.93 Internal deformation for F12

Fig.95 Internal deformation for F19D

Fig.97 internal deformation for F28C

some of the specimen cracks did not propagate in a straight manner , and therefore did not stretch the fibers.

Fig.100 thru 109 illustrate the deformation pattern at different load intervals for each one of the specimen tested. As indicated in these figures , COD values in almost all cases were considerably much larger than all the other deformations. For this reason , in another set of figures (110 thru 119) , internal deformation patterns are compared separately. Results shown in Fig.110 thru 119 indicate that the critical cracking zone in compact tension is approximately 1.7 inchs , whereas in the three point bend specimen is about 1.2 inchs.

Fig.100 Defor. pattern at diff. load F2

Fig.101 Defor. pattern at diff. load F8

Fig. 104 Defor. pattern at diff. loadF19B

121

Fig. 105 Defor. pattern at diff. loadF19D

Fig. 108 Defor. pattern at diff. loadF28A

Fig.107 Defor. pattern at diff. loadF28C

Fig.108 Defor. pattern at diff #ad M1A

Fig.109 Defor. pattern at diff. load

Fig.114 Defor. pattern without CO

Fig.116 Defor. pattern without CC.

Fig.116 Defor. pattern without COi

Fig.119 Defor. pattern without COF

CHAPTER IV Conclusion

IV.1 Conclusion

Based on the results obtained in this research , the following conclusions can be drawn :

- 1. The experimental techniques which were used in this study are reliable and worth further usage.
- The critical load for CT specimen (tension test) is about 170LBS.
- 3. The critical load for three point bend specimen is about 220LBS.
- The average critical COD of CT specimen (tension test) is about 0.048 inch.
- 5. The average critical COD of three point bend specimen is about 0.016 inch.
- The average critical internal deformation of CT specimen for CH1 , CH2 , CH3 & CH4 is about 0.0018 , 0.0013 , 0.0004 & 0.0003 inch respectively.
- 7. The average critical internal deformation of BEAM specimen for CH1 , CH2 , CH3 & CH4 is about 0.0002 , 0.00016 , 0.00005 & 0.00003 respectively.

IV.2 Future Research

The experimental method presented in this study for internal deformation measurement is new and requires further research for improvements.

Possible future research might be the following :

- Place more than four fiber optic sensors in the process zone for deformation measurements.
- 2. Use this technique for concrete specimen subjected to impact load for detection of cracking.

REFERENCES

- Hillerborg, A., Modeer, M., and Petersson, P.E., "Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finit Elements, "Cement and Concrete Research, Vol. 6, 1976, pp. 773-782.
- 2. Ingraffea, A.R., Henze, F.E., "Finite Element Models for Rock Fracture Mechanics,"International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 4,1980, pp.25-43.
- Brown, J.H., "Measuring The Fracture Toughness of Cement Paste and Mortar, "Magnize of Concrete Research, Vol. 24, No.81, 1972, pp. 185-196.
- Petersson, P.E., "Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, "Report No.TVBM-1006, Lund Institute of Technology, Dec. 1981 174 pages.
- 5. Visalvanich, K, Naaman, A.E., "Fracture Methods in Cement Composites, "ASCE-EMD, Vol.107 No. EM6, Dec. 1981, pp. 1155-1171.
- 6. Li,V.C., "Fracture Resistance Parameters For Cementitious Materials and Their Experimental Determinations," Applications of Fracture Mechanics to Cementitious Composites, NATO-ARW, Sept. 1984, Northwestern Unversity , S.P. Shah, Editor.
- 7. Dugdale ,D.S., "Yielding of Steel Sheets Containing Slits ," Journal of Mechanics, Physics and Solids, Vol.8 ,1960

139

, pp. 100-104.

- Barrenblatt,G.J., "The Mathemathical Theory of Equilibrium Crack in The Brittle Fracture, "Advances in Applied Mechanics, Vol. 7, 1962, pp. 55-125.
- 9. Wecharatana, M., Shah, S.P., "Predictions of Nonlinear Fracture Process Zone in Concrete, "ASCE -EMD, Vol. 109 No. 5, October 1983, pp. 1231-1246.
- 10. Cho, K.Z., Kobayashi, A.S., Hawkins, N.M., Barker, D.B., Jeang, F.L., "Fracture Process Zone of Concrete Cracks," ASCE-EMD, Vol.110, No. 8, August 1984, pp.1174-1184.
- 11. Kaplan, M.F., "Crack Propagation and The Fracture of Concrete," ACI Journal, Vol. 58, No. 5, November 1961, pp.591-610.
- 12. Walsh, P.F., "Fracture of Plain Concrete," Indian Concrete Institute, Vol. 46, No. 11, Nov. 72.
- 13. Mindess,S., Nadeau,J.S., "Effect of Notch Width on K for Mortar and Concrete,"Cement and Concrete Research, Vol. 6,1967, pp.529-534.
- 14. Ansari,F., Yang,S.X., "Microcomputer Controlled Closed-Loop Testing System in a Vibration Isolated Environment." Experimental Techniques (SEM), Vol.12 , No.2, Feb. 1988, PP. 25-27

140

APPENDIX A

110 ** 120 `* MENG.BAS - DATA ACQUISTION FROGRAM Rev. 1.10 8-27-84 130.'* MetraByte Corporation 150 1 160 '----- STEP 1 -----170 'Load DASH16.BIN by contracting workspace & initialize 180 CLEAR: 49152!*Contract BASIC's workspace to 48K190 DEF SEG = 0*Get BASIC's segment in memory 200 SG = 254 * PEEK(&H511) + PEEK(&H510)210 SG = SG + 49152!/16220 DEF SEG = SG 'Load segment for CALL routine 230 BLOAD "DASH16.BIN", 0 *Load it 40 DIM DIO%(8),A%(18000) .50 DIO(0) = &H300 'DASH-16 board base address260 DIO%(1) = 2'Selected interrupt level for DASH-16270 DIO%(2) = 3'Selected DMA level for DASH-16 280 DASH16 = 0 "Declare & initialize other CALL parameters 290 FLAG% = 0300 MD% = 0Select Mode 0 - initialize driver 310 CALL DASH16 (MD%, DIO%(0), FLAG%) do it 320 IF FLAG%<>0 THEN PRINT "INITIALIZATION ERROR":STOP []any error? 330 ° 340 '----- STEF 2 -----350 'Prompt user for multiplexer scan limits 360 '(this step can be omitted if default limits o.k.) 370 'Set up multiplexer scanning limits 380 MD%=1 'Mode 1 - set scan limits 390 INPUT "Lower multiplexer scanning limit (0-7 or 15)? : ",DIO%(0) 400 INPUT "Upper multiplexer scanning limit (0-7 or 15)? : ",DIO%(1) 410 CALL DASH16 (MD%, DIO%(0),FLAG%) 420 IF FLAG%<>0 THEN PRINT "Error in scan limits # ";FLAG% : STOP 430 ' 440 '----- STEP 3 ------450 'SET UP SCANNING RATE (20HZ) +60 MD% = 17470 DIO(0) = 50 : DIO(1) = 1000480 CALL DASH16 (MD%, DIO%(O), FLAG%) 490 IF FLAG%<>0 THEN PRINT"Error in scan rate set up # ";FLAG% : STOP 500 1 510 `----- STEP 4 -----530 DIO(0) = 18000540 DIOX(1) = VARPTR(AX(0)) 'Array locator 550 DIOX(2) = 1 'Trigger source - programmable timer 560 MD%=4 T70 CALL DASH16 (MD%, DIO%(0), FLAG%) 30 IF FLAG%<>0 THEN FRINT "Error in mode 4 # ";FLAG% : STOP .90 ? 600 '----- STEP 5 ------610 'Display converted data 616 OPEN "C:DATA.DAT" FOR OUTPUT AS #1 620 FOR I=0 TO 18000 630 WRITE #1, A%(I) 640 NEXT I 650 END

:

D	Line#	1	7
	1		FROGRAM CHAN.FOR
	1		DIMENSION D1(300),D2(300),D3(300),D4(300),D5(300)
	2	÷	*,D6(300),L1(300),L2(300),L3(300),L4(300),L5(300)
	Э		*,L6(300)
	4		N=300
	5		OPEN(1,FILE='DATA.DAT',STATUS='OLD')
	6		OPEN(2,FILE='CH1.DAT',STATUS='NEW')
	7		OPEN(3,FILE='CH2.DAT',STATUS='NEW')
	8		OPEN(4,FILE='CH3.DAT',STATUS='NEW')
	9		OPEN(5,FILE="CH4.DAT",STATUS="NEW")
	10		DD IQ I=1, N
1	11		READ(1,15)L1(I)
1	12		READ(1,15)L2(I)
1	13		READ(1,15)L3(I)
1	14		READ(1,15)L4(I)
1	15		READ(1,15)L5(I)
1	16		READ(1,15)L6(I)
1	17	15	FORMAT(IS)
1	18	10	CONTINUE
	19		DO 20 J=1,N
1	20		D1(J)=((L1(J)-351.4)/182.11-1.2)*1000.0
1	21		D2(J)=(L2(J)/198.98-2.8)*1000.0
1	22		D3(J)=(L3(J)/192.23-2.6)*1000.0
1	23		D4(J)=(L4(J)/189.97-2.18)*1000.0
1	24	20	CONTINUE
	25		Q=UL
	26		DO 30 K=1,N
1	27		JJ=JJ+3
1	28		WRITE(2,25)JJ,D1(K)
1	29		WRITE(3,25)JJ,D2(K)
1	30		WRITE(4,25)JJ,D3(K)
1	31		WRITE(5,25)JJ,D4(K)
1	35	25	FORMAT(5X,13,10X,F10.3)
1	33	30	CONTINUE
	34		STOF
	35		END
			
Na	ame	lype	Uttset F Class

	7 F -	
D1	REAL	16
D2	REAL	1216
DЭ	REAL	· 2416
D4	REAL	3 6 16
D5	REAL	4816
Dá	REAL	6016
I	INTEGER*4	14420
J	INTEGER*4	14432
JJ	INTEGER*4	14440
ł	INTEGER*4	14444
L1	INTEGER#4	7216
12	INTEGER*4	8410
<u>1</u> 3	INTEGER*4	9615
L4	INTEGER*4	10816
; =	THITCOLOUGH	10011

5 Line	H I	-
	,	PROGRAM TOT.EDR
		RIMENCION BELLIC POZZIN ROZZIN DAZZNE REZZON
	1	
	⊆ →	,AC1(37),AC2(37),AC3(37),AC4(37)
	3	DINENSION F(40),G(40),A(39)
	4	DATA D1.D2.D3.D4.P/0.00035.0.0004.0.000133.
	- 	- 00026 100 0.
	J ^	OPEN/A EN E COM DATA OTATUE-ANEURA
	0	UPEN(I,FILE='LDI.DAI',SIAIUS='NEW')
	7	OPEN(2.FILE='CD2.DAT',STATUS='NEW')
	8	OPEN(3,FILE='CD3.DAT',STATUS='NEW')
	Ģ	OPEN(4,FILF='CD4.DAT',STATUS='NEW')
1	, O	OPEN(S ELLE-COS DAT? OTATUS-(NEL?)
1	0	OPEN(U, FILE- UUJ.DAT (STATUS- NEW /
1	1	UPEN(0,FILE='A1.UU ',SIAIUS='NEW')
1	2	OPEN(7,FILE='A2.OUT',STATUS='NEW')
1	3	OPEN(8,FILE='TT.DAT',STATUS='NEW')
1	4	AD1=D1/40.0
- 1	5	
1	. u ,	
T	0	AD3=D3/40.0
1	.7	AD4=D4/40.0
1	8	AP=P/20.0
1	.9	B1(1)=0.0
2	0	B2(1)=0.0
	. <u></u> 	
	1	B3(1)=0.0
2	2	B4(1)=0.0
2	23	B5(1)=0.0
2	4	WRITE(1,33)B1(1),B5(1)
2		WRITE(2,33)R2(1),R5(1)
	- 	
		WRITE(3,33)E3(1),E3(1)
ć	27	WRI(E(4,33)B4(1),B5(1))
2	28	DO 10 $I=1,19$
1 2	29	Bi(I+1) = Bi(I) + AD1
1 3	() ()	RP(T+1) = RP(T) + ADP
1 7	21	
1 -) T	
E 1	5 2	B4(1+1)=B4(1)+AD4
1 3	33	B5(I+1)=B5(I)+AP
1 3	34	WRITE(1,33)B1(I+1),B5(I+1)
1 3	35	WRITE(2,33)B2(I+1),B5(I+1)
1 .3	16	WRITE(3,33)B3(I+1),B5(I+1)
1 7		NETTE// 22/06/06/1+1/ DE/1+1/
		WRITE(4(33)54(1+1),53(1+1)
ت 1	10 IO	LUNTINUE
3	39	DO 88 K=20,21
1 4	FÖ –	B1(K+1)=B1(K)+AD1
1 4	+1	B2(K+1) = B2(K) + AD2
1 4	2	$B_{3}(k+1) = B_{3}(k) + \Delta D_{3}$
1 /	. つ	
1 4	, ,	BH (K +1)= BH (K)+ ADH
1 4	+4	195(10+1)=195(10)-4月来0.1
1 4	+5	WRITE(1,33)B1(K+1),B5(K+1)
1 4	6	WRITE(2,33)B2(K+1),B5(K+1)
1 4	+7	WRITE(3,33)B3(K+1),B5(K+1)
1 /		WRITE/A 22) PARTIN RE(K+1)
. 4		
1 4	+7 JJ	FURMAI (52, F15, 13, 102, F8, 4)
1 5	io 88	CONTINUE
	51	DO 82 IJ=22,37
1 5	52	B1(IJ+1)=B1(IJ)+AD1
1 5	1.5	BP(TT+1) = BP(TT) + ADP
; =		RR/1741,=RR/1714ADR
- i		
	ມມັ -	54(1)+1/=54(1)/+AD4
1 5	0 Ú	BO(10+1)=BO(10)-AP+1.2

Ē,	Line# .		
1	57		WRITE(1,33)B1(IJ+1),B5(IJ+1)
ì	58		WRITE(2,33)B2(IJ+1),B5(IJ+1)
1	- 59		WRITE(3,33)B3(IJ+1),B5(IJ+1)
1	50		WRITE(4,33)B4(IJ+1),B5(IJ+1)
1	61	82	CONTINUE
-	42		DO 57 IN=38,39
1	20		$E1(1K+1) = E1(1K) + \Delta D1$
1			
1	04		BE(IN+I) = BE(IN) + ADE
1	03		B3(1K+1)=B3(1K)+AD3
1	60		B4(1K+1) = B4(1K) + AD4
1	67		B5(IK+1)=B5(IK)-AP*0.05
1	68		WRITE(1,33)B1(IK+1),B5(IK+1)
1	69		WRITE(2,33)B2(IK+1),B5(IK+1)
1	70		WRITE(3,33)B3(IK+1),B5(IK+1)
1	71		WRITE(4,33)B4(IK+1),B5(IK+1)
1	72	67	CONTINUE
	73		AC1(1)=0.0
	74		AC2(1)=0.0
	75		AC3(1)=0.0
	76		AC4(1) = 0.0
	77		DD 37 I=1,39
1	78		J=I+1
1	79		AC1(J) = AC1(I) + (B1(J) - B1(I)) * ((B5(I) + B5(J))/2.0)
1	80		ACP(I) = ACP(I) + (BP(I) - BP(I)) + (BS(I) + BS(I))/2 0)
1	81		$\Delta C P (T) = \Delta C P (T) + (P P (T) + P P (T)) + (P P (T) + P P (T)) + P P (T)) + P P (T) + P P ($
1	82		$\Delta \Gamma \Delta (T) = \Delta \Gamma \Delta (T) + (B \Delta (T) - B \Delta (T)) \times ((B \Delta (T) + B \Delta (T)) / 2)$
1	83	77	
1	84	ر د	
	05		WRITE(0:00)HUI(17)
	63		
	00		WRITE(0:00)AU3(19)
	8/		WRITE(0,00)HU4(19)
	88	00	FURMAT(IOX, AREA= , F9.3)
	84		F(1)=0.0
	90		G(1)=0.0
	91		WRITE(5,22)F(1),G(1)
	92		DO 25 I=1,19
1	93		G(I+1)=G(I)+AP
1	94		F(I+1)=(G(I+1)*0.043)/1000*0.02801
1	95		WRITE(5,22)F(I+1),G(I+1)
1	96	25	CONTINUE
	97		DO 91 J=20,21
1	98		G(J+1)=G(J)-AF*0.1
1	99		F(J+1)=((G(J)-G(J+1))*0.043/1000)*0.02801
1	100	91	WRITE(5,22)F(J+1),G(J+1)
	101		DO 92 K=22,37
1	102		G(K+1)=G(K)-AP*1.2
1	103		F(K+1)={(G(K)-G(K+1))*0.043/1000)*0.02801
1	104	92	WRITE(5,22)F(K+1),G(K+1)
	105		DO 93 L=38.39
1	106		G(L+1) = G(L) - AP * 0.05
1	107		F(L+1)=((G(L)-G(L+1))*0.043/1000)*0.02801
1	108	93	WRITE(5,22)F(L+1),G(L+1)
	109	_	TA=0.0
	110		DD 94 M=1.39
1	111		(I=M+1
÷	115		i = F(N) - F(M)

Ð	Line#	<u>:</u>		-
1	113			A(M)=X*G(N)
1	114			TA=TA+A(N)
1	- 115	Q	¤4	CONTINUE
	116			WRITE(7,14)TA
	117	ć	22	FORMAT(5X,F15,13,10X,F8,4)
	118		14	FORMAT(10X, AREA=1, F9.3)
	119			DO 75 MN=1,40
1	120		73	FORMAT(F8.4.5X,F8.6.5X,F8.6.5X,F8.6.5X,F8.6.5X,F8.6)
1	121		75	WRITE(8,73)B5(MN),B1(MN),B2(MN),B3(MN),B4(MN),F(MN)
	122			STOF
	123			END

Name	Туре	Offset P Class
Name A AC1 AC2 AC3 AC4 AD1 AD2 AD3 AD4 AP B1 B2 B3 B4 B5 D1 D2 D3 D4 F	Type REAL REAL REAL REAL REAL REAL REAL REAL	Offset P Class 1756 1132 1288 1444 1600 1932 1936 1936 1940 1944 1948 12 172 332 492 652 1912 1916 1920 1924 912
G	REAL	972
I IJ	INTEGER*4 INTEGER*4	1952 1980
IK	INTEGER*4	1984
J	INTEGER*4	1988
l.	INTEGER*4	2012
M	INTEGER*4	2020
MN	INTEGER*4	2072
N	INTEGER*4	2024
F	REAL	1928
TA	REAL	2016
Х	REAL	2028

Name	Туре	Size	Class
MAIN			PROGRAM

D-Line#	1 7
- 1	PROGRAM DEF.FOR
1	DIMENSION 81(40),82(40),83(40),84(40),85(40)
	↔ AF1(39), AF2(39), AF3(39), AF4(39)
2	
<u>ب</u>	20 00001 100 0/
4	*0.00034.198.0/ Open/// EX.E. 208/ 2072 OF07UE 20/EU22
5	UPEN(1,FILE='CD1.DAT',STATUS='NEW')
Ó	OPEN(2,FILE='CD2.DAT',STATUS='NEW')
7	OPEN(3,FILE='CD3.DAT',STATUS='NEW')
8	OPEN(4,FILE="CD4.DAT",STATUS="NEW")
9	AD1=D1/40.0
10	AD2=D2/40.0
11	AD3=D3/40.0
12	AD4=D4/40 0
1	
14	RE-F/20.0
14	
ن ا ، ہ	BC(1)=0.0
10	$B_{3(1)=0.0}$
17	B4(1)=0.0
18	B5(1)=0.0
19	WRITE(1,33)B1(1),B5(1)
20	WRITE(2,33)B2(1),B5(1)
21	WRITE(3,33)B3(1),B5(1)
22	WRITE(4,33)84(1),85(1)
23	DO 10 $I=1, 19$
1 24	B1(I+1) = B1(I) + AD1
1 25	B2(I+1) = B2(I) + AD2
1 26	$B_{3}(1+1) = B_{3}(1) + AD_{3}$
1 27	B4(1+1) = B4(1) + AD4
1 29	$B_{2}(1+1) = B_{2}(1) + \Delta B$
1 20	UDITE/1 00\01/141\ E5/141\
1 20	WRI(E(1,33)BI(1+1),63(1+1)
1 30	WRI(E(2,33)B2(1+1),B3(1+1)
1 31	WRITE(3,33)B3(1+1),B3(1+1)
1 32	WR1[E(4,33)B4(1+1),B5(1+1)]
1 33	10 CUNTINUE
34	DO 88 K=20,21
1 35	B1(K+1) = B1(K) + AD1
1 36	B2(K+1) = B2(K) + AD2
1 37	B3(K+1)=B3(K)+AD3
1 38	B4(K+1) = B4(K) + AD4
1 39	B5(K+1)=B5(K)−AP*0.1
1 40	WRITE(1,33)B1(K+1),B5(K+1)
1 41	WRITE(2,33)B2(K+1),B5(K+1)
1 42	WRITE(3,33)B3(K+1),B5(K+1)
1 43	WRITE(4,33)84(K+1),85(K+1)
1 44	33 EDRMAT(5%,E10.7,10%,11,10%,EB.4)
1 45	
1 10 46	
1 47	
1 40	DD/IT_1)-DD/IT)-ADD
1 48 1 AE	DO(IT)/=BC(IJ/THDC DO(IT)/(_DO(TT))/ADO
1 49	5U()+1)-5U()+1)-5U() 10()-5U()-5U()-5U()-5U()-5U()-5U()-5U()-5U
1 50	B4(1J+1)=B4(1J)+AD4
1 51	85(1J+1)=85(1J)-AF*0.43
1 52	WRITE(1,33)B1(IJ+1),B5(IJ+1)
: 53	WRITE(2,33)B2(IJ+1),65(IJ+1)
1 54	WRITE(3,33)83(IJ+1),85(IJ+1)

E dine# 1 57 1 58 1 59 1 60 1 61 1 62 1 63 1 64 1 65 1 65 1 67 68 69 70 71 72 1 67 68 69 70 71 72 1 75 1 75 1 75 1 76 1 77 1 78 37 79 80 81 82 83 66 84 85	7 DD 67 IK=38.39 B1(IK+1)=B1(IK)+AD1 B2(IK+1)=B2(IK)+AD2 B3(IK+1)=B3(IK)+AD3 B4(IK+1)=B4(IK)+AD4 B5(IK+1)=B5(IK)+AP*0.05 WRITE(1,33)B1(IK+1),B5(IK+1) WRITE(2,33)B2(IK+1),B5(IK+1) WRITE(3,33)B3(IK+1),B5(IK+1) WRITE(4,33)B4(IK+1),B5(IK+1) CONTINUE AC1(1)=0.0 AC2(1)=0.0 AC2(1)=0.0 AC2(1)=0.0 AC3(1)=0.0 AC4(1)=0.0 D0 37 I=1,37 J=I+1 AC1(J)=AC1(I)+(B1(J)-B1(I))*((B5(I)+B5(J))/2.0) AC2(J)=AC2(I)+(B2(J)-B2(I))*((B5(I)+B5(J))/2.0) AC3(J)=AC3(I)+(B4(J)-B4(I))*((B5(I)+B5(J))/2.0) AC4(J)=AC4(I)+(B4(J)-B4(I))*((B5(I)+B5(J))/2.0) CONTINUE WRITE(6,66)AC1(19) WRITE(6,66)AC2(19) WRITE(6,66)AC3(19) WRITE(6,66)AC4(19) FORMAT(I0X,'AREA=',F9.3) STOP END
Name Tvpe	Offset P Class
AC1REALAC2REALAC3REALAC4REALAD1REALAD2REALAD3REALAD4REALB1REALB2REALB3REALB4REALB5REALD6REALD7REALD8REALD1REALD2REALD3REALD4REALD5INTEGE11INTEGE12INTEGE13INTEGE14INTEGE15INTEGE16INTEGE	$\begin{array}{c} 812\\ 968\\ 1124\\ 1280\\ 1456\\ 1460\\ 1464\\ 1468\\ 1472\\ 12\\ 172\\ 332\\ 492\\ 652\\ 1436\\ 1440\\ 1446\\ 1$